1 // s390.cc -- s390 target support for gold.
3 // Copyright (C) 2015-2016 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
36 #include "copy-relocs.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
49 // A class to handle the .got.plt section.
52 class Output_data_got_plt_s390 : public Output_section_data_build
55 Output_data_got_plt_s390(Layout* layout)
56 : Output_section_data_build(size/8),
60 Output_data_got_plt_s390(Layout* layout, off_t data_size)
61 : Output_section_data_build(data_size, size/8),
66 // Write out the PLT data.
68 do_write(Output_file*);
70 // Write to a map file.
72 do_print_to_mapfile(Mapfile* mapfile) const
73 { mapfile->print_output_data(this, "** GOT PLT"); }
76 // A pointer to the Layout class, so that we can find the .dynamic
77 // section when we write out the GOT PLT section.
81 // A class to handle the PLT data.
84 class Output_data_plt_s390 : public Output_section_data
87 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
90 Output_data_plt_s390(Layout* layout,
91 Output_data_got<size, true>* got,
92 Output_data_got_plt_s390<size>* got_plt,
93 Output_data_space* got_irelative)
94 : Output_section_data(4), layout_(layout),
95 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96 got_irelative_(got_irelative), count_(0),
97 irelative_count_(0), free_list_()
98 { this->init(layout); }
100 Output_data_plt_s390(Layout* layout,
101 Output_data_got<size, true>* got,
102 Output_data_got_plt_s390<size>* got_plt,
103 Output_data_space* got_irelative,
104 unsigned int plt_count)
105 : Output_section_data((plt_count + 1) * plt_entry_size,
107 layout_(layout), irelative_rel_(NULL), got_(got),
108 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109 irelative_count_(0), free_list_()
113 // Initialize the free list and reserve the first entry.
114 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115 this->free_list_.remove(0, plt_entry_size);
118 // Initialize the PLT section.
120 init(Layout* layout);
122 // Add an entry to the PLT.
124 add_entry(Symbol_table*, Layout*, Symbol* gsym);
126 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
128 add_local_ifunc_entry(Symbol_table*, Layout*,
129 Sized_relobj_file<size, true>*, unsigned int);
131 // Add the relocation for a PLT entry.
133 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
135 // Return the .rela.plt section data.
138 { return this->rel_; }
140 // Return where the IRELATIVE relocations should go in the PLT
143 rela_irelative(Symbol_table*, Layout*);
145 // Return whether we created a section for IRELATIVE relocations.
147 has_irelative_section() const
148 { return this->irelative_rel_ != NULL; }
150 // Return the number of PLT entries.
153 { return this->count_ + this->irelative_count_; }
155 // Return the offset of the first non-reserved PLT entry.
157 first_plt_entry_offset()
158 { return plt_entry_size; }
160 // Return the size of a PLT entry.
162 get_plt_entry_size() const
163 { return plt_entry_size; }
165 // Reserve a slot in the PLT for an existing symbol in an incremental update.
167 reserve_slot(unsigned int plt_index)
169 this->free_list_.remove((plt_index + 1) * plt_entry_size,
170 (plt_index + 2) * plt_entry_size);
173 // Return the PLT address to use for a global symbol.
175 address_for_global(const Symbol*);
177 // Return the PLT address to use for a local symbol.
179 address_for_local(const Relobj*, unsigned int symndx);
181 // Add .eh_frame information for the PLT.
183 add_eh_frame(Layout* layout)
186 layout->add_eh_frame_for_plt(this,
188 plt_eh_frame_cie_size,
190 plt_eh_frame_fde_size);
194 // Fill in the first PLT entry.
196 fill_first_plt_entry(unsigned char* pov,
197 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
200 // Fill in a normal PLT entry. Returns the offset into the entry that
201 // should be the initial GOT slot value.
203 fill_plt_entry(unsigned char* pov,
204 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 unsigned int got_offset,
207 unsigned int plt_offset,
208 unsigned int plt_rel_offset);
211 do_adjust_output_section(Output_section* os);
213 // Write to a map file.
215 do_print_to_mapfile(Mapfile* mapfile) const
216 { mapfile->print_output_data(this, _("** PLT")); }
219 // Set the final size.
221 set_final_data_size();
223 // Write out the PLT data.
225 do_write(Output_file*);
227 // A pointer to the Layout class, so that we can find the .dynamic
228 // section when we write out the GOT PLT section.
230 // The reloc section.
232 // The IRELATIVE relocs, if necessary. These must follow the
233 // regular PLT relocations.
234 Reloc_section* irelative_rel_;
236 Output_data_got<size, true>* got_;
237 // The .got.plt section.
238 Output_data_got_plt_s390<size>* got_plt_;
239 // The part of the .got.plt section used for IRELATIVE relocs.
240 Output_data_space* got_irelative_;
241 // The number of PLT entries.
243 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
244 // follow the regular PLT entries.
245 unsigned int irelative_count_;
246 // List of available regions within the section, for incremental
248 Free_list free_list_;
250 // The size of an entry in the PLT.
251 static const int plt_entry_size = 0x20;
252 // The first entry in the PLT.
253 static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254 static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255 static const unsigned char first_plt_entry_64[plt_entry_size];
256 // Other entries in the PLT for an executable.
257 static const unsigned char plt_entry_32_abs[plt_entry_size];
258 static const unsigned char plt_entry_32_pic12[plt_entry_size];
259 static const unsigned char plt_entry_32_pic16[plt_entry_size];
260 static const unsigned char plt_entry_32_pic[plt_entry_size];
261 static const unsigned char plt_entry_64[plt_entry_size];
263 // The .eh_frame unwind information for the PLT.
264 static const int plt_eh_frame_cie_size = 12;
265 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266 static const int plt_eh_frame_fde_size = 12;
267 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
272 class Target_s390 : public Sized_target<size, true>
275 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
278 : Sized_target<size, true>(&s390_info),
279 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280 global_offset_table_(NULL), rela_dyn_(NULL),
281 rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
286 // Scan the relocations to look for symbol adjustments.
288 gc_process_relocs(Symbol_table* symtab,
290 Sized_relobj_file<size, true>* object,
291 unsigned int data_shndx,
292 unsigned int sh_type,
293 const unsigned char* prelocs,
295 Output_section* output_section,
296 bool needs_special_offset_handling,
297 size_t local_symbol_count,
298 const unsigned char* plocal_symbols);
300 // Scan the relocations to look for symbol adjustments.
302 scan_relocs(Symbol_table* symtab,
304 Sized_relobj_file<size, true>* object,
305 unsigned int data_shndx,
306 unsigned int sh_type,
307 const unsigned char* prelocs,
309 Output_section* output_section,
310 bool needs_special_offset_handling,
311 size_t local_symbol_count,
312 const unsigned char* plocal_symbols);
314 // Finalize the sections.
316 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
318 // Return the value to use for a dynamic which requires special
321 do_dynsym_value(const Symbol*) const;
323 // Relocate a section.
325 relocate_section(const Relocate_info<size, true>*,
326 unsigned int sh_type,
327 const unsigned char* prelocs,
329 Output_section* output_section,
330 bool needs_special_offset_handling,
332 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 section_size_type view_size,
334 const Reloc_symbol_changes*);
336 // Scan the relocs during a relocatable link.
338 scan_relocatable_relocs(Symbol_table* symtab,
340 Sized_relobj_file<size, true>* object,
341 unsigned int data_shndx,
342 unsigned int sh_type,
343 const unsigned char* prelocs,
345 Output_section* output_section,
346 bool needs_special_offset_handling,
347 size_t local_symbol_count,
348 const unsigned char* plocal_symbols,
349 Relocatable_relocs*);
351 // Scan the relocs for --emit-relocs.
353 emit_relocs_scan(Symbol_table* symtab,
355 Sized_relobj_file<size, true>* object,
356 unsigned int data_shndx,
357 unsigned int sh_type,
358 const unsigned char* prelocs,
360 Output_section* output_section,
361 bool needs_special_offset_handling,
362 size_t local_symbol_count,
363 const unsigned char* plocal_syms,
364 Relocatable_relocs* rr);
366 // Return a string used to fill a code section with nops.
368 do_code_fill(section_size_type length) const;
370 // Emit relocations for a section.
373 const Relocate_info<size, true>*,
374 unsigned int sh_type,
375 const unsigned char* prelocs,
377 Output_section* output_section,
378 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
380 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
381 section_size_type view_size,
382 unsigned char* reloc_view,
383 section_size_type reloc_view_size);
385 // Return whether SYM is defined by the ABI.
387 do_is_defined_by_abi(const Symbol* sym) const
388 { return strcmp(sym->name(), "__tls_get_offset") == 0; }
390 // Return the PLT address to use for a global symbol.
392 do_plt_address_for_global(const Symbol* gsym) const
393 { return this->plt_section()->address_for_global(gsym); }
396 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
397 { return this->plt_section()->address_for_local(relobj, symndx); }
399 // Return the offset to use for the GOT_INDX'th got entry which is
400 // for a local tls symbol specified by OBJECT, SYMNDX.
402 do_tls_offset_for_local(const Relobj* object,
404 unsigned int got_indx) const;
406 // Return the offset to use for the GOT_INDX'th got entry which is
407 // for global tls symbol GSYM.
409 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
411 // This function should be defined in targets that can use relocation
412 // types to determine (implemented in local_reloc_may_be_function_pointer
413 // and global_reloc_may_be_function_pointer)
414 // if a function's pointer is taken. ICF uses this in safe mode to only
415 // fold those functions whose pointer is defintely not taken.
417 do_can_check_for_function_pointers() const
420 // Return whether SYM is call to a non-split function.
422 do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
423 const unsigned char* view,
424 section_size_type view_size) const;
426 // Adjust -fsplit-stack code which calls non-split-stack code.
428 do_calls_non_split(Relobj* object, unsigned int shndx,
429 section_offset_type fnoffset, section_size_type fnsize,
430 const unsigned char* prelocs, size_t reloc_count,
431 unsigned char* view, section_size_type view_size,
432 std::string* from, std::string* to) const;
434 // Return the size of the GOT section.
438 gold_assert(this->got_ != NULL);
439 return this->got_->data_size();
442 // Return the number of entries in the GOT.
444 got_entry_count() const
446 if (this->got_ == NULL)
448 return this->got_size() / (size / 8);
451 // Return the number of entries in the PLT.
453 plt_entry_count() const;
455 // Return the offset of the first non-reserved PLT entry.
457 first_plt_entry_offset() const;
459 // Return the size of each PLT entry.
461 plt_entry_size() const;
463 // Create the GOT section for an incremental update.
464 Output_data_got_base*
465 init_got_plt_for_update(Symbol_table* symtab,
467 unsigned int got_count,
468 unsigned int plt_count);
470 // Reserve a GOT entry for a local symbol, and regenerate any
471 // necessary dynamic relocations.
473 reserve_local_got_entry(unsigned int got_index,
474 Sized_relobj<size, true>* obj,
476 unsigned int got_type);
478 // Reserve a GOT entry for a global symbol, and regenerate any
479 // necessary dynamic relocations.
481 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
482 unsigned int got_type);
484 // Register an existing PLT entry for a global symbol.
486 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
489 // Force a COPY relocation for a given symbol.
491 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
493 // Apply an incremental relocation.
495 apply_relocation(const Relocate_info<size, true>* relinfo,
496 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
498 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
501 typename elfcpp::Elf_types<size>::Elf_Addr address,
502 section_size_type view_size);
506 // The class which scans relocations.
511 : issued_non_pic_error_(false)
515 get_reference_flags(unsigned int r_type);
518 local(Symbol_table* symtab, Layout* layout, Target_s390* target,
519 Sized_relobj_file<size, true>* object,
520 unsigned int data_shndx,
521 Output_section* output_section,
522 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
523 const elfcpp::Sym<size, true>& lsym,
527 global(Symbol_table* symtab, Layout* layout, Target_s390* target,
528 Sized_relobj_file<size, true>* object,
529 unsigned int data_shndx,
530 Output_section* output_section,
531 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
535 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
537 Sized_relobj_file<size, true>* object,
538 unsigned int data_shndx,
539 Output_section* output_section,
540 const elfcpp::Rela<size, true>& reloc,
542 const elfcpp::Sym<size, true>& lsym);
545 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
547 Sized_relobj_file<size, true>* object,
548 unsigned int data_shndx,
549 Output_section* output_section,
550 const elfcpp::Rela<size, true>& reloc,
556 unsupported_reloc_local(Sized_relobj_file<size, true>*,
557 unsigned int r_type);
560 unsupported_reloc_global(Sized_relobj_file<size, true>*,
561 unsigned int r_type, Symbol*);
564 check_non_pic(Relobj*, unsigned int r_type);
567 possible_function_pointer_reloc(unsigned int r_type);
570 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
571 unsigned int r_type);
573 // Whether we have issued an error about a non-PIC compilation.
574 bool issued_non_pic_error_;
577 // The class which implements relocation.
581 // Do a relocation. Return false if the caller should not issue
582 // any warnings about this relocation.
584 relocate(const Relocate_info<size, true>*, unsigned int,
585 Target_s390*, Output_section*, size_t, const unsigned char*,
586 const Sized_symbol<size>*, const Symbol_value<size>*,
587 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
591 // Do a TLS relocation.
592 inline typename elfcpp::Elf_types<size>::Elf_Addr
593 relocate_tls(const Relocate_info<size, true>*, Target_s390*,
594 size_t relnum, const elfcpp::Rela<size, true>&,
595 unsigned int r_type, const Sized_symbol<size>*,
596 const Symbol_value<size>*,
597 unsigned char*, section_size_type);
599 // Do a TLS General-Dynamic to Initial-Exec transition.
601 tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
602 const elfcpp::Rela<size, true>&,
604 section_size_type view_size);
606 // Do a TLS General-Dynamic to Local-Exec transition.
608 tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
609 const elfcpp::Rela<size, true>&,
611 section_size_type view_size);
613 // Do a TLS Local-Dynamic to Local-Exec transition.
615 tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
616 const elfcpp::Rela<size, true>&,
618 section_size_type view_size);
620 // Do a TLS Initial-Exec to Local-Exec transition.
622 tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
623 const elfcpp::Rela<size, true>&,
625 section_size_type view_size);
628 // Adjust TLS relocation type based on the options and whether this
629 // is a local symbol.
630 static tls::Tls_optimization
631 optimize_tls_reloc(bool is_final, int r_type);
633 // Get the GOT section.
634 const Output_data_got<size, true>*
637 gold_assert(this->got_ != NULL);
641 // Get the GOT section, creating it if necessary.
642 Output_data_got<size, true>*
643 got_section(Symbol_table*, Layout*);
645 typename elfcpp::Elf_types<size>::Elf_Addr
648 gold_assert(this->got_ != NULL);
649 return this->got_plt_->address();
652 typename elfcpp::Elf_types<size>::Elf_Addr
653 got_main_offset() const
655 gold_assert(this->got_ != NULL);
656 return this->got_->address() - this->got_address();
659 // Create the PLT section.
661 make_plt_section(Symbol_table* symtab, Layout* layout);
663 // Create a PLT entry for a global symbol.
665 make_plt_entry(Symbol_table*, Layout*, Symbol*);
667 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
669 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
670 Sized_relobj_file<size, true>* relobj,
671 unsigned int local_sym_index);
673 // Create a GOT entry for the TLS module index.
675 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
676 Sized_relobj_file<size, true>* object);
678 // Get the PLT section.
679 Output_data_plt_s390<size>*
682 gold_assert(this->plt_ != NULL);
686 // Get the dynamic reloc section, creating it if necessary.
688 rela_dyn_section(Layout*);
690 // Get the section to use for IRELATIVE relocations.
692 rela_irelative_section(Layout*);
694 // Add a potential copy relocation.
696 copy_reloc(Symbol_table* symtab, Layout* layout,
697 Sized_relobj_file<size, true>* object,
698 unsigned int shndx, Output_section* output_section,
699 Symbol* sym, const elfcpp::Rela<size, true>& reloc)
701 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
702 this->copy_relocs_.copy_reloc(symtab, layout,
703 symtab->get_sized_symbol<size>(sym),
704 object, shndx, output_section,
705 r_type, reloc.get_r_offset(),
706 reloc.get_r_addend(),
707 this->rela_dyn_section(layout));
710 // A function for targets to call. Return whether BYTES/LEN matches
711 // VIEW/VIEW_SIZE at OFFSET. Like the one in Target, but takes
712 // an unsigned char * parameter.
714 match_view_u(const unsigned char* view, section_size_type view_size,
715 section_offset_type offset, const unsigned char* bytes, size_t len) const
717 return this->match_view(view, view_size, offset,
718 reinterpret_cast<const char*>(bytes), len);
721 // Information about this specific target which we pass to the
722 // general Target structure.
723 static Target::Target_info s390_info;
725 // The types of GOT entries needed for this platform.
726 // These values are exposed to the ABI in an incremental link.
727 // Do not renumber existing values without changing the version
728 // number of the .gnu_incremental_inputs section.
731 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
732 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
733 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
737 Output_data_got<size, true>* got_;
739 Output_data_plt_s390<size>* plt_;
740 // The GOT PLT section.
741 Output_data_got_plt_s390<size>* got_plt_;
742 // The GOT section for IRELATIVE relocations.
743 Output_data_space* got_irelative_;
744 // The _GLOBAL_OFFSET_TABLE_ symbol.
745 Symbol* global_offset_table_;
746 // The dynamic reloc section.
747 Reloc_section* rela_dyn_;
748 // The section to use for IRELATIVE relocs.
749 Reloc_section* rela_irelative_;
750 // Relocs saved to avoid a COPY reloc.
751 Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
752 // Offset of the GOT entry for the TLS module index.
753 unsigned int got_mod_index_offset_;
754 // True if the _TLS_MODULE_BASE_ symbol has been defined.
755 bool tls_base_symbol_defined_;
756 // For use in do_tls_offset_for_*
759 // Code sequences for -fsplit-stack matching.
760 static const unsigned char ss_code_st_r14[];
761 static const unsigned char ss_code_l_r14[];
762 static const unsigned char ss_code_bras_8[];
763 static const unsigned char ss_code_l_basr[];
764 static const unsigned char ss_code_a_basr[];
765 static const unsigned char ss_code_ear[];
766 static const unsigned char ss_code_c[];
767 static const unsigned char ss_code_larl[];
768 static const unsigned char ss_code_brasl[];
769 static const unsigned char ss_code_jg[];
770 static const unsigned char ss_code_jgl[];
772 // Variable code sequence matchers for -fsplit-stack.
773 bool ss_match_mcount(unsigned char* view,
774 section_size_type view_size,
775 section_offset_type *offset) const;
776 bool ss_match_l(unsigned char* view,
777 section_size_type view_size,
778 section_offset_type *offset,
779 int *guard_reg) const;
780 bool ss_match_ahi(unsigned char* view,
781 section_size_type view_size,
782 section_offset_type *offset,
784 uint32_t *arg) const;
785 bool ss_match_alfi(unsigned char* view,
786 section_size_type view_size,
787 section_offset_type *offset,
789 uint32_t *arg) const;
790 bool ss_match_cr(unsigned char* view,
791 section_size_type view_size,
792 section_offset_type *offset,
793 int guard_reg) const;
797 Target::Target_info Target_s390<32>::s390_info =
800 true, // is_big_endian
801 elfcpp::EM_S390, // machine_code
802 false, // has_make_symbol
803 false, // has_resolve
804 true, // has_code_fill
805 true, // is_default_stack_executable
806 true, // can_icf_inline_merge_sections
808 "/lib/ld.so.1", // dynamic_linker
809 0x00400000, // default_text_segment_address
810 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
811 4 * 1024, // common_pagesize (overridable by -z common-page-size)
812 false, // isolate_execinstr
814 elfcpp::SHN_UNDEF, // small_common_shndx
815 elfcpp::SHN_UNDEF, // large_common_shndx
816 0, // small_common_section_flags
817 0, // large_common_section_flags
818 NULL, // attributes_section
819 NULL, // attributes_vendor
820 "_start", // entry_symbol_name
821 32, // hash_entry_size
825 Target::Target_info Target_s390<64>::s390_info =
828 true, // is_big_endian
829 elfcpp::EM_S390, // machine_code
830 false, // has_make_symbol
831 false, // has_resolve
832 true, // has_code_fill
833 true, // is_default_stack_executable
834 true, // can_icf_inline_merge_sections
836 "/lib/ld64.so.1", // dynamic_linker
837 0x80000000ll, // default_text_segment_address
838 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
839 4 * 1024, // common_pagesize (overridable by -z common-page-size)
840 false, // isolate_execinstr
842 elfcpp::SHN_UNDEF, // small_common_shndx
843 elfcpp::SHN_UNDEF, // large_common_shndx
844 0, // small_common_section_flags
845 0, // large_common_section_flags
846 NULL, // attributes_section
847 NULL, // attributes_vendor
848 "_start", // entry_symbol_name
849 64, // hash_entry_size
853 class S390_relocate_functions
873 typedef S390_relocate_functions<size> This;
874 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
876 template<int valsize>
878 has_overflow_signed(Address value)
880 // limit = 1 << (valsize - 1) without shift count exceeding size of type
881 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
882 limit <<= ((valsize - 1) >> 1);
883 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
884 return value + limit > (limit << 1) - 1;
887 template<int valsize>
889 has_overflow_unsigned(Address value)
891 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
892 limit <<= ((valsize - 1) >> 1);
893 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
894 return value > (limit << 1) - 1;
897 template<int fieldsize>
899 rela(unsigned char* view, Address mask, Address value)
901 typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
902 Valtype* wv = reinterpret_cast<Valtype*>(view);
903 Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
906 elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
910 // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
912 rela12(unsigned char* view, Address value)
914 if (This::template has_overflow_unsigned<12>(value))
915 return STATUS_OVERFLOW;
916 This::template rela<16>(view, 0x0fff, value);
920 // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
922 rela16(unsigned char* view, Address value)
924 if (This::template has_overflow_signed<16>(value))
925 return STATUS_OVERFLOW;
926 This::template rela<16>(view, 0xffff, value);
930 // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
932 rela20(unsigned char* view, Address value)
934 if (This::template has_overflow_signed<20>(value))
935 return STATUS_OVERFLOW;
936 This::template rela<16>(view, 0x0fff, value);
937 This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
941 // R_390_PC12DBL, R_390_PLT12DBL
943 pcrela12dbl(unsigned char* view, Address value, Address address)
946 if ((value & 1) != 0)
947 return STATUS_OVERFLOW;
948 if (This::template has_overflow_signed<13>(value))
949 return STATUS_OVERFLOW;
951 This::template rela<16>(view, 0x0fff, value);
955 // R_390_PC16DBL, R_390_PLT16DBL
957 pcrela16dbl(unsigned char* view, Address value, Address address)
960 if ((value & 1) != 0)
961 return STATUS_OVERFLOW;
962 if (This::template has_overflow_signed<17>(value))
963 return STATUS_OVERFLOW;
965 This::template rela<16>(view, 0xffff, value);
969 // R_390_PC24DBL, R_390_PLT24DBL
971 pcrela24dbl(unsigned char* view, Address value, Address address)
974 if ((value & 1) != 0)
975 return STATUS_OVERFLOW;
976 if (This::template has_overflow_signed<25>(value))
977 return STATUS_OVERFLOW;
979 // Swap doesn't take 24-bit fields well...
980 This::template rela<8>(view, 0xff, value >> 16);
981 This::template rela<16>(view + 1, 0xffff, value);
985 // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
987 pcrela32dbl(unsigned char* view, Address value, Address address)
989 Address reloc = value - address;
990 if ((reloc & 1) != 0)
992 gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
993 // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
994 // return STATUS_OVERFLOW;
996 if (This::template has_overflow_signed<33>(reloc))
997 return STATUS_OVERFLOW;
999 if (value < address && size == 32)
1000 reloc |= 0x80000000;
1001 This::template rela<32>(view, 0xffffffff, reloc);
1007 // Initialize the PLT section.
1011 Output_data_plt_s390<size>::init(Layout* layout)
1013 this->rel_ = new Reloc_section(false);
1014 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1015 elfcpp::SHF_ALLOC, this->rel_,
1016 ORDER_DYNAMIC_PLT_RELOCS, false);
1021 Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
1023 os->set_entsize(plt_entry_size);
1026 // Add an entry to the PLT.
1030 Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
1033 gold_assert(!gsym->has_plt_offset());
1035 unsigned int plt_index;
1037 section_offset_type got_offset;
1039 unsigned int* pcount;
1040 unsigned int offset;
1041 unsigned int reserved;
1042 Output_section_data_build* got;
1043 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1044 && gsym->can_use_relative_reloc(false))
1046 pcount = &this->irelative_count_;
1049 got = this->got_irelative_;
1053 pcount = &this->count_;
1056 got = this->got_plt_;
1059 if (!this->is_data_size_valid())
1061 // Note that when setting the PLT offset for a non-IRELATIVE
1062 // entry we skip the initial reserved PLT entry.
1063 plt_index = *pcount + offset;
1064 plt_offset = plt_index * plt_entry_size;
1068 got_offset = (plt_index - offset + reserved) * size / 8;
1069 gold_assert(got_offset == got->current_data_size());
1071 // Every PLT entry needs a GOT entry which points back to the PLT
1072 // entry (this will be changed by the dynamic linker, normally
1073 // lazily when the function is called).
1074 got->set_current_data_size(got_offset + size / 8);
1078 // FIXME: This is probably not correct for IRELATIVE relocs.
1080 // For incremental updates, find an available slot.
1081 plt_offset = this->free_list_.allocate(plt_entry_size,
1083 if (plt_offset == -1)
1084 gold_fallback(_("out of patch space (PLT);"
1085 " relink with --incremental-full"));
1087 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1088 // can be calculated from the PLT index, adjusting for the three
1089 // reserved entries at the beginning of the GOT.
1090 plt_index = plt_offset / plt_entry_size - 1;
1091 got_offset = (plt_index - offset + reserved) * size / 8;
1094 gsym->set_plt_offset(plt_offset);
1096 // Every PLT entry needs a reloc.
1097 this->add_relocation(symtab, layout, gsym, got_offset);
1099 // Note that we don't need to save the symbol. The contents of the
1100 // PLT are independent of which symbols are used. The symbols only
1101 // appear in the relocations.
1104 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1109 Output_data_plt_s390<size>::add_local_ifunc_entry(
1110 Symbol_table* symtab,
1112 Sized_relobj_file<size, true>* relobj,
1113 unsigned int local_sym_index)
1115 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1116 ++this->irelative_count_;
1118 section_offset_type got_offset = this->got_irelative_->current_data_size();
1120 // Every PLT entry needs a GOT entry which points back to the PLT
1122 this->got_irelative_->set_current_data_size(got_offset + size / 8);
1124 // Every PLT entry needs a reloc.
1125 Reloc_section* rela = this->rela_irelative(symtab, layout);
1126 rela->add_symbolless_local_addend(relobj, local_sym_index,
1127 elfcpp::R_390_IRELATIVE,
1128 this->got_irelative_, got_offset, 0);
1133 // Add the relocation for a PLT entry.
1137 Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1140 unsigned int got_offset)
1142 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1143 && gsym->can_use_relative_reloc(false))
1145 Reloc_section* rela = this->rela_irelative(symtab, layout);
1146 rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1147 this->got_irelative_, got_offset, 0);
1151 gsym->set_needs_dynsym_entry();
1152 this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1157 // Return where the IRELATIVE relocations should go in the PLT. These
1158 // follow the JUMP_SLOT and the TLSDESC relocations.
1161 typename Output_data_plt_s390<size>::Reloc_section*
1162 Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1165 if (this->irelative_rel_ == NULL)
1167 this->irelative_rel_ = new Reloc_section(false);
1168 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1169 elfcpp::SHF_ALLOC, this->irelative_rel_,
1170 ORDER_DYNAMIC_PLT_RELOCS, false);
1171 gold_assert(this->irelative_rel_->output_section()
1172 == this->rel_->output_section());
1174 if (parameters->doing_static_link())
1176 // A statically linked executable will only have a .rela.plt
1177 // section to hold R_390_IRELATIVE relocs for
1178 // STT_GNU_IFUNC symbols. The library will use these
1179 // symbols to locate the IRELATIVE relocs at program startup
1181 symtab->define_in_output_data("__rela_iplt_start", NULL,
1182 Symbol_table::PREDEFINED,
1183 this->irelative_rel_, 0, 0,
1184 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1185 elfcpp::STV_HIDDEN, 0, false, true);
1186 symtab->define_in_output_data("__rela_iplt_end", NULL,
1187 Symbol_table::PREDEFINED,
1188 this->irelative_rel_, 0, 0,
1189 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1190 elfcpp::STV_HIDDEN, 0, true, true);
1193 return this->irelative_rel_;
1196 // Return the PLT address to use for a global symbol.
1200 Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1202 uint64_t offset = 0;
1203 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1204 && gsym->can_use_relative_reloc(false))
1205 offset = (this->count_ + 1) * plt_entry_size;
1206 return this->address() + offset + gsym->plt_offset();
1209 // Return the PLT address to use for a local symbol. These are always
1210 // IRELATIVE relocs.
1214 Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1217 return (this->address()
1218 + (this->count_ + 1) * plt_entry_size
1219 + object->local_plt_offset(r_sym));
1222 // Set the final size.
1225 Output_data_plt_s390<size>::set_final_data_size()
1227 unsigned int count = this->count_ + this->irelative_count_;
1228 this->set_data_size((count + 1) * plt_entry_size);
1233 Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1235 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1236 0x0d, 0x10, // basr %r1, %r0
1237 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1238 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1239 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1240 0x07, 0xf1, // br %r1
1241 0x00, 0x00, // padding
1242 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1243 0x00, 0x00, 0x00, 0x00, // padding
1248 Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1250 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1251 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1252 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1253 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1254 0x07, 0xf1, // br %r1
1255 0x00, 0x00, // padding
1256 0x00, 0x00, 0x00, 0x00, // padding
1257 0x00, 0x00, 0x00, 0x00, // padding
1258 0x00, 0x00, 0x00, 0x00, // padding
1263 Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1265 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1266 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1267 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1268 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1269 0x07, 0xf1, // br %r1
1277 Output_data_plt_s390<size>::fill_first_plt_entry(
1279 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1280 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1284 memcpy(pov, first_plt_entry_64, plt_entry_size);
1285 S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1287 else if (!parameters->options().output_is_position_independent())
1289 memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1290 elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1294 memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1300 Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1303 0x0d, 0x10, // basr %r1, %r0
1304 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1305 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1306 0x07, 0xf1, // br %r1
1308 0x0d, 0x10, // basr %r1, %r0
1309 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1310 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1311 0x00, 0x00, // padding
1312 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1313 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1318 Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1321 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1322 0x07, 0xf1, // br %r1
1323 0x00, 0x00, // padding
1324 0x00, 0x00, 0x00, 0x00, // padding
1326 0x0d, 0x10, // basr %r1, %r0
1327 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1328 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1329 0x00, 0x00, // padding
1330 0x00, 0x00, 0x00, 0x00, // padding
1331 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1336 Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1339 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1340 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1341 0x07, 0xf1, // br %r1
1342 0x00, 0x00, // padding
1344 0x0d, 0x10, // basr %r1, %r0
1345 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1346 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1347 0x00, 0x00, // padding
1348 0x00, 0x00, 0x00, 0x00, // padding
1349 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1354 Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1357 0x0d, 0x10, // basr %r1, %r0
1358 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1359 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1360 0x07, 0xf1, // br %r1
1362 0x0d, 0x10, // basr %r1, %r0
1363 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1364 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1365 0x00, 0x00, // padding
1366 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1367 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1372 Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1375 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1376 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1377 0x07, 0xf1, // br %r1
1379 0x0d, 0x10, // basr %r1, %r0
1380 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1381 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1382 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1387 Output_data_plt_s390<size>::fill_plt_entry(
1389 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1390 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1391 unsigned int got_offset,
1392 unsigned int plt_offset,
1393 unsigned int plt_rel_offset)
1397 memcpy(pov, plt_entry_64, plt_entry_size);
1398 S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1399 S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1403 if (!parameters->options().output_is_position_independent())
1405 memcpy(pov, plt_entry_32_abs, plt_entry_size);
1406 elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1410 if (got_offset < 0x1000)
1412 memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1413 S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1415 else if (got_offset < 0x8000)
1417 memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1418 S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1422 memcpy(pov, plt_entry_32_pic, plt_entry_size);
1423 elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1426 typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1427 if (plt_offset >= 0x10000)
1429 // Would overflow pcrela16dbl - aim at the farthest previous jump
1431 if (plt_offset > 0x10000)
1433 // Use the full range of pcrel16dbl.
1434 target = plt_address + plt_offset - 0x10000 + 18;
1438 // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1439 // of first_plt_entry, which doesn't have the jump back like the others.
1440 // Aim at the next entry instead.
1441 target = plt_address + plt_offset - 0xffe0 + 18;
1444 S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1446 elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1453 // The .eh_frame unwind information for the PLT.
1457 Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1460 'z', // Augmentation: augmentation size included.
1461 'R', // Augmentation: FDE encoding included.
1462 '\0', // End of augmentation string.
1463 1, // Code alignment factor.
1464 0x7c, // Data alignment factor.
1465 14, // Return address column.
1466 1, // Augmentation size.
1467 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1468 | elfcpp::DW_EH_PE_sdata4),
1469 elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60.
1474 Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1477 'z', // Augmentation: augmentation size included.
1478 'R', // Augmentation: FDE encoding included.
1479 '\0', // End of augmentation string.
1480 1, // Code alignment factor.
1481 0x78, // Data alignment factor.
1482 14, // Return address column.
1483 1, // Augmentation size.
1484 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1485 | elfcpp::DW_EH_PE_sdata4),
1486 elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0.
1491 Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1493 0, 0, 0, 0, // Replaced with offset to .plt.
1494 0, 0, 0, 0, // Replaced with size of .plt.
1495 0, // Augmentation size.
1501 // Write out the PLT. This uses the hand-coded instructions above,
1502 // and adjusts them as needed.
1506 Output_data_plt_s390<size>::do_write(Output_file* of)
1508 const off_t offset = this->offset();
1509 const section_size_type oview_size =
1510 convert_to_section_size_type(this->data_size());
1511 unsigned char* const oview = of->get_output_view(offset, oview_size);
1513 const off_t got_file_offset = this->got_plt_->offset();
1514 gold_assert(parameters->incremental_update()
1515 || (got_file_offset + this->got_plt_->data_size()
1516 == this->got_irelative_->offset()));
1517 const section_size_type got_size =
1518 convert_to_section_size_type(this->got_plt_->data_size()
1519 + this->got_irelative_->data_size());
1520 unsigned char* const got_view = of->get_output_view(got_file_offset,
1523 unsigned char* pov = oview;
1525 // The base address of the .plt section.
1526 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1527 // The base address of the PLT portion of the .got section,
1528 // which is where the GOT pointer will point, and where the
1529 // three reserved GOT entries are located.
1530 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1531 = this->got_plt_->address();
1533 this->fill_first_plt_entry(pov, got_address, plt_address);
1534 pov += this->get_plt_entry_size();
1536 unsigned char* got_pov = got_view;
1538 const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1540 unsigned int plt_offset = this->get_plt_entry_size();
1541 unsigned int plt_rel_offset = 0;
1542 unsigned int got_offset = 3 * size / 8;
1543 const unsigned int count = this->count_ + this->irelative_count_;
1544 // The first three entries in the GOT are reserved, and are written
1545 // by Output_data_got_plt_s390::do_write.
1546 got_pov += 3 * size / 8;
1548 for (unsigned int plt_index = 0;
1551 pov += plt_entry_size,
1552 got_pov += size / 8,
1553 plt_offset += plt_entry_size,
1554 plt_rel_offset += rel_size,
1555 got_offset += size / 8)
1557 // Set and adjust the PLT entry itself.
1558 unsigned int lazy_offset = this->fill_plt_entry(pov,
1559 got_address, plt_address,
1560 got_offset, plt_offset,
1563 // Set the entry in the GOT.
1564 elfcpp::Swap<size, true>::writeval(got_pov,
1565 plt_address + plt_offset + lazy_offset);
1568 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1569 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1571 of->write_output_view(offset, oview_size, oview);
1572 of->write_output_view(got_file_offset, got_size, got_view);
1575 // Get the GOT section, creating it if necessary.
1578 Output_data_got<size, true>*
1579 Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1581 if (this->got_ == NULL)
1583 gold_assert(symtab != NULL && layout != NULL);
1585 // When using -z now, we can treat .got as a relro section.
1586 // Without -z now, it is modified after program startup by lazy
1588 bool is_got_relro = parameters->options().now();
1589 Output_section_order got_order = (is_got_relro
1593 // The old GNU linker creates a .got.plt section. We just
1594 // create another set of data in the .got section. Note that we
1595 // always create a PLT if we create a GOT, although the PLT
1597 this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1598 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1599 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1600 this->got_plt_, got_order, is_got_relro);
1602 // The first three entries are reserved.
1603 this->got_plt_->set_current_data_size(3 * size / 8);
1605 // If there are any IRELATIVE relocations, they get GOT entries
1606 // in .got.plt after the jump slot entries.
1607 this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1608 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1609 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1610 this->got_irelative_,
1611 got_order, is_got_relro);
1613 // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1614 // .got.plt sections in output. The output .got section contains both
1615 // PLT and non-PLT GOT entries.
1616 this->got_ = new Output_data_got<size, true>();
1618 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1619 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1620 this->got_, got_order, is_got_relro);
1622 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1623 this->global_offset_table_ =
1624 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1625 Symbol_table::PREDEFINED,
1627 0, 0, elfcpp::STT_OBJECT,
1629 elfcpp::STV_HIDDEN, 0,
1636 // Get the dynamic reloc section, creating it if necessary.
1639 typename Target_s390<size>::Reloc_section*
1640 Target_s390<size>::rela_dyn_section(Layout* layout)
1642 if (this->rela_dyn_ == NULL)
1644 gold_assert(layout != NULL);
1645 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1646 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1647 elfcpp::SHF_ALLOC, this->rela_dyn_,
1648 ORDER_DYNAMIC_RELOCS, false);
1650 return this->rela_dyn_;
1653 // Get the section to use for IRELATIVE relocs, creating it if
1654 // necessary. These go in .rela.dyn, but only after all other dynamic
1655 // relocations. They need to follow the other dynamic relocations so
1656 // that they can refer to global variables initialized by those
1660 typename Target_s390<size>::Reloc_section*
1661 Target_s390<size>::rela_irelative_section(Layout* layout)
1663 if (this->rela_irelative_ == NULL)
1665 // Make sure we have already created the dynamic reloc section.
1666 this->rela_dyn_section(layout);
1667 this->rela_irelative_ = new Reloc_section(false);
1668 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1669 elfcpp::SHF_ALLOC, this->rela_irelative_,
1670 ORDER_DYNAMIC_RELOCS, false);
1671 gold_assert(this->rela_dyn_->output_section()
1672 == this->rela_irelative_->output_section());
1674 return this->rela_irelative_;
1677 // Write the first three reserved words of the .got.plt section.
1678 // The remainder of the section is written while writing the PLT
1679 // in Output_data_plt_s390::do_write.
1683 Output_data_got_plt_s390<size>::do_write(Output_file* of)
1685 // The first entry in the GOT is the address of the .dynamic section
1686 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1687 // We saved space for them when we created the section in
1688 // Target_x86_64::got_section.
1689 const off_t got_file_offset = this->offset();
1690 gold_assert(this->data_size() >= 3 * size / 8);
1691 unsigned char* const got_view =
1692 of->get_output_view(got_file_offset, 3 * size / 8);
1693 Output_section* dynamic = this->layout_->dynamic_section();
1694 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1695 elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1696 memset(got_view + size / 8, 0, 2 * size / 8);
1697 of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1700 // Create the PLT section.
1704 Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1706 if (this->plt_ == NULL)
1708 // Create the GOT sections first.
1709 this->got_section(symtab, layout);
1711 // Ensure that .rela.dyn always appears before .rela.plt This is
1712 // necessary due to how, on 32-bit S/390 and some other targets,
1713 // .rela.dyn needs to include .rela.plt in it's range.
1714 this->rela_dyn_section(layout);
1716 this->plt_ = new Output_data_plt_s390<size>(layout,
1717 this->got_, this->got_plt_, this->got_irelative_);
1719 // Add unwind information if requested.
1720 if (parameters->options().ld_generated_unwind_info())
1721 this->plt_->add_eh_frame(layout);
1723 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1725 | elfcpp::SHF_EXECINSTR),
1726 this->plt_, ORDER_PLT, false);
1728 // Make the sh_info field of .rela.plt point to .plt.
1729 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1730 rela_plt_os->set_info_section(this->plt_->output_section());
1734 // Create a PLT entry for a global symbol.
1738 Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1741 if (gsym->has_plt_offset())
1744 if (this->plt_ == NULL)
1745 this->make_plt_section(symtab, layout);
1747 this->plt_->add_entry(symtab, layout, gsym);
1750 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1754 Target_s390<size>::make_local_ifunc_plt_entry(
1755 Symbol_table* symtab, Layout* layout,
1756 Sized_relobj_file<size, true>* relobj,
1757 unsigned int local_sym_index)
1759 if (relobj->local_has_plt_offset(local_sym_index))
1761 if (this->plt_ == NULL)
1762 this->make_plt_section(symtab, layout);
1763 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1766 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1769 // Return the number of entries in the PLT.
1773 Target_s390<size>::plt_entry_count() const
1775 if (this->plt_ == NULL)
1777 return this->plt_->entry_count();
1780 // Return the offset of the first non-reserved PLT entry.
1784 Target_s390<size>::first_plt_entry_offset() const
1786 return this->plt_->first_plt_entry_offset();
1789 // Return the size of each PLT entry.
1793 Target_s390<size>::plt_entry_size() const
1795 return this->plt_->get_plt_entry_size();
1798 // Create the GOT and PLT sections for an incremental update.
1801 Output_data_got_base*
1802 Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1804 unsigned int got_count,
1805 unsigned int plt_count)
1807 gold_assert(this->got_ == NULL);
1809 // Add the three reserved entries.
1810 this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1811 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1813 | elfcpp::SHF_WRITE),
1814 this->got_plt_, ORDER_NON_RELRO_FIRST,
1817 // If there are any IRELATIVE relocations, they get GOT entries in
1818 // .got.plt after the jump slot entries.
1819 this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1820 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1821 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1822 this->got_irelative_,
1823 ORDER_NON_RELRO_FIRST, false);
1825 this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1826 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1828 | elfcpp::SHF_WRITE),
1829 this->got_, ORDER_RELRO_LAST,
1832 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1833 this->global_offset_table_ =
1834 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1835 Symbol_table::PREDEFINED,
1837 0, 0, elfcpp::STT_OBJECT,
1839 elfcpp::STV_HIDDEN, 0,
1842 // Create the PLT section.
1843 this->plt_ = new Output_data_plt_s390<size>(layout,
1844 this->got_, this->got_plt_, this->got_irelative_, plt_count);
1846 // Add unwind information if requested.
1847 if (parameters->options().ld_generated_unwind_info())
1848 this->plt_->add_eh_frame(layout);
1850 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1851 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1852 this->plt_, ORDER_PLT, false);
1854 // Make the sh_info field of .rela.plt point to .plt.
1855 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1856 rela_plt_os->set_info_section(this->plt_->output_section());
1858 // Create the rela_dyn section.
1859 this->rela_dyn_section(layout);
1864 // Reserve a GOT entry for a local symbol, and regenerate any
1865 // necessary dynamic relocations.
1869 Target_s390<size>::reserve_local_got_entry(
1870 unsigned int got_index,
1871 Sized_relobj<size, true>* obj,
1873 unsigned int got_type)
1875 unsigned int got_offset = got_index * size / 8;
1876 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1878 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1881 case GOT_TYPE_STANDARD:
1882 if (parameters->options().output_is_position_independent())
1883 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1884 this->got_, got_offset, 0, false);
1886 case GOT_TYPE_TLS_OFFSET:
1887 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1888 this->got_, got_offset, 0);
1890 case GOT_TYPE_TLS_PAIR:
1891 this->got_->reserve_slot(got_index + 1);
1892 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1893 this->got_, got_offset, 0);
1900 // Reserve a GOT entry for a global symbol, and regenerate any
1901 // necessary dynamic relocations.
1905 Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1907 unsigned int got_type)
1909 unsigned int got_offset = got_index * size / 8;
1910 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1912 this->got_->reserve_global(got_index, gsym, got_type);
1915 case GOT_TYPE_STANDARD:
1916 if (!gsym->final_value_is_known())
1918 if (gsym->is_from_dynobj()
1919 || gsym->is_undefined()
1920 || gsym->is_preemptible()
1921 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1922 rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1923 this->got_, got_offset, 0);
1925 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1926 this->got_, got_offset, 0, false);
1929 case GOT_TYPE_TLS_OFFSET:
1930 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1931 this->got_, got_offset, 0, false);
1933 case GOT_TYPE_TLS_PAIR:
1934 this->got_->reserve_slot(got_index + 1);
1935 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1936 this->got_, got_offset, 0, false);
1937 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1938 this->got_, got_offset + size / 8, 0, false);
1945 // Register an existing PLT entry for a global symbol.
1949 Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1951 unsigned int plt_index,
1954 gold_assert(this->plt_ != NULL);
1955 gold_assert(!gsym->has_plt_offset());
1957 this->plt_->reserve_slot(plt_index);
1959 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1961 unsigned int got_offset = (plt_index + 3) * size / 8;
1962 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1965 // Force a COPY relocation for a given symbol.
1969 Target_s390<size>::emit_copy_reloc(
1970 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1972 this->copy_relocs_.emit_copy_reloc(symtab,
1973 symtab->get_sized_symbol<size>(sym),
1976 this->rela_dyn_section(NULL));
1979 // Create a GOT entry for the TLS module index.
1983 Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1984 Sized_relobj_file<size, true>* object)
1986 if (this->got_mod_index_offset_ == -1U)
1988 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1989 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1990 Output_data_got<size, true>* got = this->got_section(symtab, layout);
1991 unsigned int got_offset = got->add_constant(0);
1992 rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
1994 got->add_constant(0);
1995 this->got_mod_index_offset_ = got_offset;
1997 return this->got_mod_index_offset_;
2000 // Optimize the TLS relocation type based on what we know about the
2001 // symbol. IS_FINAL is true if the final address of this symbol is
2002 // known at link time.
2005 tls::Tls_optimization
2006 Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
2008 // If we are generating a shared library, then we can't do anything
2010 if (parameters->options().shared())
2011 return tls::TLSOPT_NONE;
2015 case elfcpp::R_390_TLS_GD32:
2016 case elfcpp::R_390_TLS_GD64:
2017 case elfcpp::R_390_TLS_GDCALL:
2018 // These are General-Dynamic which permits fully general TLS
2019 // access. Since we know that we are generating an executable,
2020 // we can convert this to Initial-Exec. If we also know that
2021 // this is a local symbol, we can further switch to Local-Exec.
2023 return tls::TLSOPT_TO_LE;
2024 return tls::TLSOPT_TO_IE;
2026 case elfcpp::R_390_TLS_LDM32:
2027 case elfcpp::R_390_TLS_LDM64:
2028 case elfcpp::R_390_TLS_LDO32:
2029 case elfcpp::R_390_TLS_LDO64:
2030 case elfcpp::R_390_TLS_LDCALL:
2031 // This is Local-Dynamic, which refers to a local symbol in the
2032 // dynamic TLS block. Since we know that we generating an
2033 // executable, we can switch to Local-Exec.
2034 return tls::TLSOPT_TO_LE;
2036 case elfcpp::R_390_TLS_IE32:
2037 case elfcpp::R_390_TLS_IE64:
2038 case elfcpp::R_390_TLS_GOTIE32:
2039 case elfcpp::R_390_TLS_GOTIE64:
2040 case elfcpp::R_390_TLS_LOAD:
2041 // These are Initial-Exec relocs which get the thread offset
2042 // from the GOT. If we know that we are linking against the
2043 // local symbol, we can switch to Local-Exec, which links the
2044 // thread offset into the instruction.
2046 return tls::TLSOPT_TO_LE;
2047 return tls::TLSOPT_NONE;
2049 case elfcpp::R_390_TLS_GOTIE12:
2050 case elfcpp::R_390_TLS_IEENT:
2051 case elfcpp::R_390_TLS_GOTIE20:
2052 // These are Initial-Exec, but cannot be optimized.
2053 return tls::TLSOPT_NONE;
2055 case elfcpp::R_390_TLS_LE32:
2056 case elfcpp::R_390_TLS_LE64:
2057 // When we already have Local-Exec, there is nothing further we
2059 return tls::TLSOPT_NONE;
2066 // Get the Reference_flags for a particular relocation.
2070 Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2074 case elfcpp::R_390_NONE:
2075 case elfcpp::R_390_GNU_VTINHERIT:
2076 case elfcpp::R_390_GNU_VTENTRY:
2077 case elfcpp::R_390_GOTPC:
2078 case elfcpp::R_390_GOTPCDBL:
2079 // No symbol reference.
2082 case elfcpp::R_390_64:
2083 case elfcpp::R_390_32:
2084 case elfcpp::R_390_20:
2085 case elfcpp::R_390_16:
2086 case elfcpp::R_390_12:
2087 case elfcpp::R_390_8:
2088 return Symbol::ABSOLUTE_REF;
2090 case elfcpp::R_390_PC12DBL:
2091 case elfcpp::R_390_PC16:
2092 case elfcpp::R_390_PC16DBL:
2093 case elfcpp::R_390_PC24DBL:
2094 case elfcpp::R_390_PC32:
2095 case elfcpp::R_390_PC32DBL:
2096 case elfcpp::R_390_PC64:
2097 case elfcpp::R_390_GOTOFF16:
2098 case elfcpp::R_390_GOTOFF32:
2099 case elfcpp::R_390_GOTOFF64:
2100 return Symbol::RELATIVE_REF;
2102 case elfcpp::R_390_PLT12DBL:
2103 case elfcpp::R_390_PLT16DBL:
2104 case elfcpp::R_390_PLT24DBL:
2105 case elfcpp::R_390_PLT32:
2106 case elfcpp::R_390_PLT32DBL:
2107 case elfcpp::R_390_PLT64:
2108 case elfcpp::R_390_PLTOFF16:
2109 case elfcpp::R_390_PLTOFF32:
2110 case elfcpp::R_390_PLTOFF64:
2111 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2113 case elfcpp::R_390_GOT12:
2114 case elfcpp::R_390_GOT16:
2115 case elfcpp::R_390_GOT20:
2116 case elfcpp::R_390_GOT32:
2117 case elfcpp::R_390_GOT64:
2118 case elfcpp::R_390_GOTENT:
2119 case elfcpp::R_390_GOTPLT12:
2120 case elfcpp::R_390_GOTPLT16:
2121 case elfcpp::R_390_GOTPLT20:
2122 case elfcpp::R_390_GOTPLT32:
2123 case elfcpp::R_390_GOTPLT64:
2124 case elfcpp::R_390_GOTPLTENT:
2126 return Symbol::ABSOLUTE_REF;
2128 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2129 case elfcpp::R_390_TLS_GD64:
2130 case elfcpp::R_390_TLS_GDCALL:
2131 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2132 case elfcpp::R_390_TLS_LDM64:
2133 case elfcpp::R_390_TLS_LDO32:
2134 case elfcpp::R_390_TLS_LDO64:
2135 case elfcpp::R_390_TLS_LDCALL:
2136 case elfcpp::R_390_TLS_IE32: // Initial-exec
2137 case elfcpp::R_390_TLS_IE64:
2138 case elfcpp::R_390_TLS_IEENT:
2139 case elfcpp::R_390_TLS_GOTIE12:
2140 case elfcpp::R_390_TLS_GOTIE20:
2141 case elfcpp::R_390_TLS_GOTIE32:
2142 case elfcpp::R_390_TLS_GOTIE64:
2143 case elfcpp::R_390_TLS_LOAD:
2144 case elfcpp::R_390_TLS_LE32: // Local-exec
2145 case elfcpp::R_390_TLS_LE64:
2146 return Symbol::TLS_REF;
2148 case elfcpp::R_390_COPY:
2149 case elfcpp::R_390_GLOB_DAT:
2150 case elfcpp::R_390_JMP_SLOT:
2151 case elfcpp::R_390_RELATIVE:
2152 case elfcpp::R_390_IRELATIVE:
2153 case elfcpp::R_390_TLS_TPOFF:
2154 case elfcpp::R_390_TLS_DTPOFF:
2155 case elfcpp::R_390_TLS_DTPMOD:
2157 // Not expected. We will give an error later.
2162 // Report an unsupported relocation against a local symbol.
2166 Target_s390<size>::Scan::unsupported_reloc_local(
2167 Sized_relobj_file<size, true>* object,
2168 unsigned int r_type)
2170 gold_error(_("%s: unsupported reloc %u against local symbol"),
2171 object->name().c_str(), r_type);
2174 // We are about to emit a dynamic relocation of type R_TYPE. If the
2175 // dynamic linker does not support it, issue an error.
2179 Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2181 gold_assert(r_type != elfcpp::R_390_NONE);
2187 // These are the relocation types supported by glibc for s390 64-bit.
2188 case elfcpp::R_390_RELATIVE:
2189 case elfcpp::R_390_IRELATIVE:
2190 case elfcpp::R_390_COPY:
2191 case elfcpp::R_390_GLOB_DAT:
2192 case elfcpp::R_390_JMP_SLOT:
2193 case elfcpp::R_390_TLS_DTPMOD:
2194 case elfcpp::R_390_TLS_DTPOFF:
2195 case elfcpp::R_390_TLS_TPOFF:
2196 case elfcpp::R_390_8:
2197 case elfcpp::R_390_16:
2198 case elfcpp::R_390_32:
2199 case elfcpp::R_390_64:
2200 case elfcpp::R_390_PC16:
2201 case elfcpp::R_390_PC16DBL:
2202 case elfcpp::R_390_PC32:
2203 case elfcpp::R_390_PC32DBL:
2204 case elfcpp::R_390_PC64:
2215 // These are the relocation types supported by glibc for s390 32-bit.
2216 case elfcpp::R_390_RELATIVE:
2217 case elfcpp::R_390_IRELATIVE:
2218 case elfcpp::R_390_COPY:
2219 case elfcpp::R_390_GLOB_DAT:
2220 case elfcpp::R_390_JMP_SLOT:
2221 case elfcpp::R_390_TLS_DTPMOD:
2222 case elfcpp::R_390_TLS_DTPOFF:
2223 case elfcpp::R_390_TLS_TPOFF:
2224 case elfcpp::R_390_8:
2225 case elfcpp::R_390_16:
2226 case elfcpp::R_390_32:
2227 case elfcpp::R_390_PC16:
2228 case elfcpp::R_390_PC16DBL:
2229 case elfcpp::R_390_PC32:
2230 case elfcpp::R_390_PC32DBL:
2238 // This prevents us from issuing more than one error per reloc
2239 // section. But we can still wind up issuing more than one
2240 // error per object file.
2241 if (this->issued_non_pic_error_)
2243 gold_assert(parameters->options().output_is_position_independent());
2244 object->error(_("requires unsupported dynamic reloc; "
2245 "recompile with -fPIC"));
2246 this->issued_non_pic_error_ = true;
2250 // Return whether we need to make a PLT entry for a relocation of the
2251 // given type against a STT_GNU_IFUNC symbol.
2255 Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2256 Sized_relobj_file<size, true>* object,
2257 unsigned int r_type)
2259 int flags = Scan::get_reference_flags(r_type);
2260 if (flags & Symbol::TLS_REF)
2261 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2262 object->name().c_str(), r_type);
2266 // Scan a relocation for a local symbol.
2270 Target_s390<size>::Scan::local(Symbol_table* symtab,
2272 Target_s390<size>* target,
2273 Sized_relobj_file<size, true>* object,
2274 unsigned int data_shndx,
2275 Output_section* output_section,
2276 const elfcpp::Rela<size, true>& reloc,
2277 unsigned int r_type,
2278 const elfcpp::Sym<size, true>& lsym,
2284 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2285 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2287 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2289 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2290 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2295 case elfcpp::R_390_NONE:
2296 case elfcpp::R_390_GNU_VTINHERIT:
2297 case elfcpp::R_390_GNU_VTENTRY:
2300 case elfcpp::R_390_64:
2301 // If building a shared library (or a position-independent
2302 // executable), we need to create a dynamic relocation for this
2303 // location. The relocation applied at link time will apply the
2304 // link-time value, so we flag the location with an
2305 // R_390_RELATIVE relocation so the dynamic loader can
2306 // relocate it easily.
2307 if (parameters->options().output_is_position_independent() && size == 64)
2309 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2310 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2311 rela_dyn->add_local_relative(object, r_sym,
2312 elfcpp::R_390_RELATIVE,
2313 output_section, data_shndx,
2314 reloc.get_r_offset(),
2315 reloc.get_r_addend(), is_ifunc);
2319 case elfcpp::R_390_32:
2320 case elfcpp::R_390_20:
2321 case elfcpp::R_390_16:
2322 case elfcpp::R_390_12:
2323 case elfcpp::R_390_8:
2324 if (parameters->options().output_is_position_independent())
2326 if (size == 32 && r_type == elfcpp::R_390_32)
2328 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2329 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2330 rela_dyn->add_local_relative(object, r_sym,
2331 elfcpp::R_390_RELATIVE,
2332 output_section, data_shndx,
2333 reloc.get_r_offset(),
2334 reloc.get_r_addend(), is_ifunc);
2338 check_non_pic(object, r_type);
2340 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2341 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2342 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2343 rela_dyn->add_local(object, r_sym, r_type, output_section,
2344 data_shndx, reloc.get_r_offset(),
2345 reloc.get_r_addend());
2348 gold_assert(lsym.get_st_value() == 0);
2349 unsigned int shndx = lsym.get_st_shndx();
2351 shndx = object->adjust_sym_shndx(r_sym, shndx,
2354 object->error(_("section symbol %u has bad shndx %u"),
2357 rela_dyn->add_local_section(object, shndx,
2358 r_type, output_section,
2359 data_shndx, reloc.get_r_offset(),
2360 reloc.get_r_addend());
2365 case elfcpp::R_390_PC12DBL:
2366 case elfcpp::R_390_PC16:
2367 case elfcpp::R_390_PC16DBL:
2368 case elfcpp::R_390_PC24DBL:
2369 case elfcpp::R_390_PC32:
2370 case elfcpp::R_390_PC32DBL:
2371 case elfcpp::R_390_PC64:
2374 case elfcpp::R_390_PLT12DBL:
2375 case elfcpp::R_390_PLT16DBL:
2376 case elfcpp::R_390_PLT24DBL:
2377 case elfcpp::R_390_PLT32:
2378 case elfcpp::R_390_PLT32DBL:
2379 case elfcpp::R_390_PLT64:
2380 // Since we know this is a local symbol, we can handle this as a
2384 case elfcpp::R_390_GOTPC:
2385 case elfcpp::R_390_GOTPCDBL:
2386 case elfcpp::R_390_GOTOFF16:
2387 case elfcpp::R_390_GOTOFF32:
2388 case elfcpp::R_390_GOTOFF64:
2389 case elfcpp::R_390_PLTOFF16:
2390 case elfcpp::R_390_PLTOFF32:
2391 case elfcpp::R_390_PLTOFF64:
2392 // We need a GOT section.
2393 target->got_section(symtab, layout);
2394 // For PLTOFF*, we'd normally want a PLT section, but since we
2395 // know this is a local symbol, no PLT is needed.
2398 case elfcpp::R_390_GOT12:
2399 case elfcpp::R_390_GOT16:
2400 case elfcpp::R_390_GOT20:
2401 case elfcpp::R_390_GOT32:
2402 case elfcpp::R_390_GOT64:
2403 case elfcpp::R_390_GOTENT:
2404 case elfcpp::R_390_GOTPLT12:
2405 case elfcpp::R_390_GOTPLT16:
2406 case elfcpp::R_390_GOTPLT20:
2407 case elfcpp::R_390_GOTPLT32:
2408 case elfcpp::R_390_GOTPLT64:
2409 case elfcpp::R_390_GOTPLTENT:
2411 // The symbol requires a GOT section.
2412 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2414 // The symbol requires a GOT entry.
2415 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2417 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2418 // lets function pointers compare correctly with shared
2419 // libraries. Otherwise we would need an IRELATIVE reloc.
2422 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2424 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2427 // If we are generating a shared object, we need to add a
2428 // dynamic relocation for this symbol's GOT entry.
2429 if (parameters->options().output_is_position_independent())
2431 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2432 unsigned int got_offset =
2433 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2434 rela_dyn->add_local_relative(object, r_sym,
2435 elfcpp::R_390_RELATIVE,
2436 got, got_offset, 0, is_ifunc);
2439 // For GOTPLT*, we'd normally want a PLT section, but since
2440 // we know this is a local symbol, no PLT is needed.
2444 case elfcpp::R_390_COPY:
2445 case elfcpp::R_390_GLOB_DAT:
2446 case elfcpp::R_390_JMP_SLOT:
2447 case elfcpp::R_390_RELATIVE:
2448 case elfcpp::R_390_IRELATIVE:
2449 // These are outstanding tls relocs, which are unexpected when linking
2450 case elfcpp::R_390_TLS_TPOFF:
2451 case elfcpp::R_390_TLS_DTPOFF:
2452 case elfcpp::R_390_TLS_DTPMOD:
2453 gold_error(_("%s: unexpected reloc %u in object file"),
2454 object->name().c_str(), r_type);
2457 // These are initial tls relocs, which are expected when linking
2458 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2459 case elfcpp::R_390_TLS_GD64:
2460 case elfcpp::R_390_TLS_GDCALL:
2461 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2462 case elfcpp::R_390_TLS_LDM64:
2463 case elfcpp::R_390_TLS_LDO32:
2464 case elfcpp::R_390_TLS_LDO64:
2465 case elfcpp::R_390_TLS_LDCALL:
2466 case elfcpp::R_390_TLS_IE32: // Initial-exec
2467 case elfcpp::R_390_TLS_IE64:
2468 case elfcpp::R_390_TLS_IEENT:
2469 case elfcpp::R_390_TLS_GOTIE12:
2470 case elfcpp::R_390_TLS_GOTIE20:
2471 case elfcpp::R_390_TLS_GOTIE32:
2472 case elfcpp::R_390_TLS_GOTIE64:
2473 case elfcpp::R_390_TLS_LOAD:
2474 case elfcpp::R_390_TLS_LE32: // Local-exec
2475 case elfcpp::R_390_TLS_LE64:
2477 bool output_is_shared = parameters->options().shared();
2478 const tls::Tls_optimization optimized_type
2479 = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2483 case elfcpp::R_390_TLS_GD32: // General-dynamic
2484 case elfcpp::R_390_TLS_GD64:
2485 case elfcpp::R_390_TLS_GDCALL:
2486 if (optimized_type == tls::TLSOPT_NONE)
2488 // Create a pair of GOT entries for the module index and
2489 // dtv-relative offset.
2490 Output_data_got<size, true>* got
2491 = target->got_section(symtab, layout);
2492 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2493 unsigned int shndx = lsym.get_st_shndx();
2495 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2497 object->error(_("local symbol %u has bad shndx %u"),
2500 got->add_local_pair_with_rel(object, r_sym,
2503 target->rela_dyn_section(layout),
2504 elfcpp::R_390_TLS_DTPMOD);
2506 else if (optimized_type != tls::TLSOPT_TO_LE)
2507 unsupported_reloc_local(object, r_type);
2510 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2511 case elfcpp::R_390_TLS_LDM64:
2512 case elfcpp::R_390_TLS_LDCALL:
2513 if (optimized_type == tls::TLSOPT_NONE)
2515 // Create a GOT entry for the module index.
2516 target->got_mod_index_entry(symtab, layout, object);
2518 else if (optimized_type != tls::TLSOPT_TO_LE)
2519 unsupported_reloc_local(object, r_type);
2522 case elfcpp::R_390_TLS_LDO32:
2523 case elfcpp::R_390_TLS_LDO64:
2526 case elfcpp::R_390_TLS_IE32: // Initial-exec
2527 case elfcpp::R_390_TLS_IE64:
2528 // These two involve an absolute address
2529 if (parameters->options().shared()
2530 && optimized_type == tls::TLSOPT_NONE)
2532 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2533 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2535 // We need to create a dynamic relocation.
2536 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2537 unsigned int r_sym =
2538 elfcpp::elf_r_sym<size>(reloc.get_r_info());
2539 rela_dyn->add_local_relative(object, r_sym,
2540 elfcpp::R_390_RELATIVE,
2541 output_section, data_shndx,
2542 reloc.get_r_offset(),
2543 reloc.get_r_addend(), false);
2547 unsupported_reloc_local(object, r_type);
2551 case elfcpp::R_390_TLS_IEENT:
2552 case elfcpp::R_390_TLS_GOTIE12:
2553 case elfcpp::R_390_TLS_GOTIE20:
2554 case elfcpp::R_390_TLS_GOTIE32:
2555 case elfcpp::R_390_TLS_GOTIE64:
2556 case elfcpp::R_390_TLS_LOAD:
2557 layout->set_has_static_tls();
2558 if (optimized_type == tls::TLSOPT_NONE)
2560 if (!output_is_shared)
2562 // We're making an executable, and the symbol is local, but
2563 // we cannot optimize to LE. Make a const GOT entry instead.
2564 Output_data_got<size, true>* got
2565 = target->got_section(symtab, layout);
2567 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2568 got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2572 // Create a GOT entry for the tp-relative offset.
2573 Output_data_got<size, true>* got
2574 = target->got_section(symtab, layout);
2576 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2577 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2578 target->rela_dyn_section(layout),
2579 elfcpp::R_390_TLS_TPOFF);
2582 else if (optimized_type != tls::TLSOPT_TO_LE)
2583 unsupported_reloc_local(object, r_type);
2586 case elfcpp::R_390_TLS_LE32: // Local-exec
2587 case elfcpp::R_390_TLS_LE64:
2588 layout->set_has_static_tls();
2589 if (output_is_shared)
2591 // We need to create a dynamic relocation.
2592 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2593 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2595 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2597 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2598 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2599 rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2600 output_section, data_shndx,
2601 reloc.get_r_offset(),
2602 reloc.get_r_addend());
2606 unsupported_reloc_local(object, r_type);
2618 gold_error(_("%s: unsupported reloc %u against local symbol"),
2619 object->name().c_str(), r_type);
2624 // Scan a relocation for a global symbol.
2628 Target_s390<size>::Scan::global(Symbol_table* symtab,
2630 Target_s390<size>* target,
2631 Sized_relobj_file<size, true>* object,
2632 unsigned int data_shndx,
2633 Output_section* output_section,
2634 const elfcpp::Rela<size, true>& reloc,
2635 unsigned int r_type,
2638 // A STT_GNU_IFUNC symbol may require a PLT entry.
2639 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2640 && this->reloc_needs_plt_for_ifunc(object, r_type))
2641 target->make_plt_entry(symtab, layout, gsym);
2645 case elfcpp::R_390_NONE:
2646 case elfcpp::R_390_GNU_VTINHERIT:
2647 case elfcpp::R_390_GNU_VTENTRY:
2650 case elfcpp::R_390_64:
2651 case elfcpp::R_390_32:
2652 case elfcpp::R_390_20:
2653 case elfcpp::R_390_16:
2654 case elfcpp::R_390_12:
2655 case elfcpp::R_390_8:
2657 // Make a PLT entry if necessary.
2658 if (gsym->needs_plt_entry())
2660 target->make_plt_entry(symtab, layout, gsym);
2661 // Since this is not a PC-relative relocation, we may be
2662 // taking the address of a function. In that case we need to
2663 // set the entry in the dynamic symbol table to the address of
2665 if (gsym->is_from_dynobj() && !parameters->options().shared())
2666 gsym->set_needs_dynsym_value();
2668 // Make a dynamic relocation if necessary.
2669 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2671 if (!parameters->options().output_is_position_independent()
2672 && gsym->may_need_copy_reloc())
2674 target->copy_reloc(symtab, layout, object,
2675 data_shndx, output_section, gsym, reloc);
2677 else if (((size == 64 && r_type == elfcpp::R_390_64)
2678 || (size == 32 && r_type == elfcpp::R_390_32))
2679 && gsym->type() == elfcpp::STT_GNU_IFUNC
2680 && gsym->can_use_relative_reloc(false)
2681 && !gsym->is_from_dynobj()
2682 && !gsym->is_undefined()
2683 && !gsym->is_preemptible())
2685 // Use an IRELATIVE reloc for a locally defined
2686 // STT_GNU_IFUNC symbol. This makes a function
2687 // address in a PIE executable match the address in a
2688 // shared library that it links against.
2689 Reloc_section* rela_dyn =
2690 target->rela_irelative_section(layout);
2691 unsigned int r_type = elfcpp::R_390_IRELATIVE;
2692 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2693 output_section, object,
2695 reloc.get_r_offset(),
2696 reloc.get_r_addend());
2698 else if (((size == 64 && r_type == elfcpp::R_390_64)
2699 || (size == 32 && r_type == elfcpp::R_390_32))
2700 && gsym->can_use_relative_reloc(false))
2702 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2703 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2704 output_section, object,
2706 reloc.get_r_offset(),
2707 reloc.get_r_addend(), false);
2711 check_non_pic(object, r_type);
2712 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2713 rela_dyn->add_global(gsym, r_type, output_section, object,
2714 data_shndx, reloc.get_r_offset(),
2715 reloc.get_r_addend());
2721 case elfcpp::R_390_PC12DBL:
2722 case elfcpp::R_390_PC16:
2723 case elfcpp::R_390_PC16DBL:
2724 case elfcpp::R_390_PC24DBL:
2725 case elfcpp::R_390_PC32:
2726 case elfcpp::R_390_PC32DBL:
2727 case elfcpp::R_390_PC64:
2729 // Make a PLT entry if necessary.
2730 if (gsym->needs_plt_entry())
2732 target->make_plt_entry(symtab, layout, gsym);
2733 // larl is often used to take address of a function. Aim the
2734 // symbol at the PLT entry.
2735 if (gsym->is_from_dynobj() && !parameters->options().shared())
2736 gsym->set_needs_dynsym_value();
2738 // Make a dynamic relocation if necessary.
2739 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2741 if (parameters->options().output_is_executable()
2742 && gsym->may_need_copy_reloc())
2744 target->copy_reloc(symtab, layout, object,
2745 data_shndx, output_section, gsym, reloc);
2749 check_non_pic(object, r_type);
2750 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2751 rela_dyn->add_global(gsym, r_type, output_section, object,
2752 data_shndx, reloc.get_r_offset(),
2753 reloc.get_r_addend());
2759 case elfcpp::R_390_PLT12DBL:
2760 case elfcpp::R_390_PLT16DBL:
2761 case elfcpp::R_390_PLT24DBL:
2762 case elfcpp::R_390_PLT32:
2763 case elfcpp::R_390_PLT32DBL:
2764 case elfcpp::R_390_PLT64:
2765 // If the symbol is fully resolved, this is just a PC32 reloc.
2766 // Otherwise we need a PLT entry.
2767 if (gsym->final_value_is_known())
2769 // If building a shared library, we can also skip the PLT entry
2770 // if the symbol is defined in the output file and is protected
2772 if (gsym->is_defined()
2773 && !gsym->is_from_dynobj()
2774 && !gsym->is_preemptible())
2776 target->make_plt_entry(symtab, layout, gsym);
2779 case elfcpp::R_390_GOTPC:
2780 case elfcpp::R_390_GOTPCDBL:
2781 case elfcpp::R_390_GOTOFF16:
2782 case elfcpp::R_390_GOTOFF32:
2783 case elfcpp::R_390_GOTOFF64:
2784 case elfcpp::R_390_PLTOFF16:
2785 case elfcpp::R_390_PLTOFF32:
2786 case elfcpp::R_390_PLTOFF64:
2787 // We need a GOT section.
2788 target->got_section(symtab, layout);
2789 // For PLTOFF*, we also need a PLT entry (but only if the
2790 // symbol is not fully resolved).
2791 if ((r_type == elfcpp::R_390_PLTOFF16
2792 || r_type == elfcpp::R_390_PLTOFF32
2793 || r_type == elfcpp::R_390_PLTOFF64)
2794 && !gsym->final_value_is_known())
2795 target->make_plt_entry(symtab, layout, gsym);
2798 case elfcpp::R_390_GOT12:
2799 case elfcpp::R_390_GOT16:
2800 case elfcpp::R_390_GOT20:
2801 case elfcpp::R_390_GOT32:
2802 case elfcpp::R_390_GOT64:
2803 case elfcpp::R_390_GOTENT:
2804 case elfcpp::R_390_GOTPLT12:
2805 case elfcpp::R_390_GOTPLT16:
2806 case elfcpp::R_390_GOTPLT20:
2807 case elfcpp::R_390_GOTPLT32:
2808 case elfcpp::R_390_GOTPLT64:
2809 case elfcpp::R_390_GOTPLTENT:
2811 // The symbol requires a GOT entry.
2812 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2814 if (gsym->final_value_is_known())
2816 // For a STT_GNU_IFUNC symbol we want the PLT address.
2817 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2818 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2820 got->add_global(gsym, GOT_TYPE_STANDARD);
2824 // If this symbol is not fully resolved, we need to add a
2825 // dynamic relocation for it.
2826 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2828 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2830 // 1) The symbol may be defined in some other module.
2832 // 2) We are building a shared library and this is a
2833 // protected symbol; using GLOB_DAT means that the dynamic
2834 // linker can use the address of the PLT in the main
2835 // executable when appropriate so that function address
2836 // comparisons work.
2838 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2839 // code, again so that function address comparisons work.
2840 if (gsym->is_from_dynobj()
2841 || gsym->is_undefined()
2842 || gsym->is_preemptible()
2843 || (gsym->visibility() == elfcpp::STV_PROTECTED
2844 && parameters->options().shared())
2845 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2846 && parameters->options().output_is_position_independent()))
2847 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2848 elfcpp::R_390_GLOB_DAT);
2851 // For a STT_GNU_IFUNC symbol we want to write the PLT
2852 // offset into the GOT, so that function pointer
2853 // comparisons work correctly.
2855 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2856 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2859 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2860 // Tell the dynamic linker to use the PLT address
2861 // when resolving relocations.
2862 if (gsym->is_from_dynobj()
2863 && !parameters->options().shared())
2864 gsym->set_needs_dynsym_value();
2868 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2869 rela_dyn->add_global_relative(gsym,
2870 elfcpp::R_390_RELATIVE,
2871 got, got_off, 0, false);
2878 case elfcpp::R_390_COPY:
2879 case elfcpp::R_390_GLOB_DAT:
2880 case elfcpp::R_390_JMP_SLOT:
2881 case elfcpp::R_390_RELATIVE:
2882 case elfcpp::R_390_IRELATIVE:
2883 // These are outstanding tls relocs, which are unexpected when linking
2884 case elfcpp::R_390_TLS_TPOFF:
2885 case elfcpp::R_390_TLS_DTPOFF:
2886 case elfcpp::R_390_TLS_DTPMOD:
2887 gold_error(_("%s: unexpected reloc %u in object file"),
2888 object->name().c_str(), r_type);
2891 // These are initial tls relocs, which are expected for global()
2892 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2893 case elfcpp::R_390_TLS_GD64:
2894 case elfcpp::R_390_TLS_GDCALL:
2895 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2896 case elfcpp::R_390_TLS_LDM64:
2897 case elfcpp::R_390_TLS_LDO32:
2898 case elfcpp::R_390_TLS_LDO64:
2899 case elfcpp::R_390_TLS_LDCALL:
2900 case elfcpp::R_390_TLS_IE32: // Initial-exec
2901 case elfcpp::R_390_TLS_IE64:
2902 case elfcpp::R_390_TLS_IEENT:
2903 case elfcpp::R_390_TLS_GOTIE12:
2904 case elfcpp::R_390_TLS_GOTIE20:
2905 case elfcpp::R_390_TLS_GOTIE32:
2906 case elfcpp::R_390_TLS_GOTIE64:
2907 case elfcpp::R_390_TLS_LOAD:
2908 case elfcpp::R_390_TLS_LE32: // Local-exec
2909 case elfcpp::R_390_TLS_LE64:
2911 // For the optimizable Initial-Exec model, we can treat undef symbols
2912 // as final when building an executable.
2913 const bool is_final = (gsym->final_value_is_known() ||
2914 ((r_type == elfcpp::R_390_TLS_IE32 ||
2915 r_type == elfcpp::R_390_TLS_IE64 ||
2916 r_type == elfcpp::R_390_TLS_GOTIE32 ||
2917 r_type == elfcpp::R_390_TLS_GOTIE64) &&
2918 gsym->is_undefined() &&
2919 parameters->options().output_is_executable()));
2920 const tls::Tls_optimization optimized_type
2921 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2924 case elfcpp::R_390_TLS_GD32: // General-dynamic
2925 case elfcpp::R_390_TLS_GD64:
2926 case elfcpp::R_390_TLS_GDCALL:
2927 if (optimized_type == tls::TLSOPT_NONE)
2929 // Create a pair of GOT entries for the module index and
2930 // dtv-relative offset.
2931 Output_data_got<size, true>* got
2932 = target->got_section(symtab, layout);
2933 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2934 target->rela_dyn_section(layout),
2935 elfcpp::R_390_TLS_DTPMOD,
2936 elfcpp::R_390_TLS_DTPOFF);
2938 else if (optimized_type == tls::TLSOPT_TO_IE)
2940 // Create a GOT entry for the tp-relative offset.
2941 Output_data_got<size, true>* got
2942 = target->got_section(symtab, layout);
2943 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2944 target->rela_dyn_section(layout),
2945 elfcpp::R_390_TLS_TPOFF);
2947 else if (optimized_type != tls::TLSOPT_TO_LE)
2948 unsupported_reloc_global(object, r_type, gsym);
2951 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2952 case elfcpp::R_390_TLS_LDM64:
2953 case elfcpp::R_390_TLS_LDCALL:
2954 if (optimized_type == tls::TLSOPT_NONE)
2956 // Create a GOT entry for the module index.
2957 target->got_mod_index_entry(symtab, layout, object);
2959 else if (optimized_type != tls::TLSOPT_TO_LE)
2960 unsupported_reloc_global(object, r_type, gsym);
2963 case elfcpp::R_390_TLS_LDO32:
2964 case elfcpp::R_390_TLS_LDO64:
2967 case elfcpp::R_390_TLS_IE32: // Initial-exec
2968 case elfcpp::R_390_TLS_IE64:
2969 // These two involve an absolute address
2970 if (parameters->options().shared())
2972 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2973 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2975 // We need to create a dynamic relocation.
2976 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2977 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2978 output_section, object,
2980 reloc.get_r_offset(),
2981 reloc.get_r_addend(), false);
2985 unsupported_reloc_global(object, r_type, gsym);
2989 case elfcpp::R_390_TLS_IEENT:
2990 case elfcpp::R_390_TLS_GOTIE12:
2991 case elfcpp::R_390_TLS_GOTIE20:
2992 case elfcpp::R_390_TLS_GOTIE32:
2993 case elfcpp::R_390_TLS_GOTIE64:
2994 case elfcpp::R_390_TLS_LOAD:
2995 layout->set_has_static_tls();
2996 if (optimized_type == tls::TLSOPT_NONE)
2998 if (is_final && !parameters->options().shared())
3000 // We're making an executable, and the symbol is local, but
3001 // we cannot optimize to LE. Make a const GOT entry instead.
3002 Output_data_got<size, true>* got
3003 = target->got_section(symtab, layout);
3004 got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
3008 // Create a GOT entry for the tp-relative offset.
3009 Output_data_got<size, true>* got
3010 = target->got_section(symtab, layout);
3011 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3012 target->rela_dyn_section(layout),
3013 elfcpp::R_390_TLS_TPOFF);
3016 else if (optimized_type != tls::TLSOPT_TO_LE)
3017 unsupported_reloc_global(object, r_type, gsym);
3020 case elfcpp::R_390_TLS_LE32: // Local-exec
3021 case elfcpp::R_390_TLS_LE64:
3022 layout->set_has_static_tls();
3023 if (parameters->options().shared())
3025 // We need to create a dynamic relocation.
3026 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
3027 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
3029 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3030 rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
3031 output_section, object,
3032 data_shndx, reloc.get_r_offset(),
3033 reloc.get_r_addend());
3037 unsupported_reloc_global(object, r_type, gsym);
3049 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3050 object->name().c_str(), r_type,
3051 gsym->demangled_name().c_str());
3057 // Report an unsupported relocation against a global symbol.
3061 Target_s390<size>::Scan::unsupported_reloc_global(
3062 Sized_relobj_file<size, true>* object,
3063 unsigned int r_type,
3066 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3067 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3070 // Returns true if this relocation type could be that of a function pointer.
3073 Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3077 case elfcpp::R_390_32:
3078 case elfcpp::R_390_64:
3079 case elfcpp::R_390_PC32DBL: // could be used by larl insn
3080 case elfcpp::R_390_GOT12:
3081 case elfcpp::R_390_GOT16:
3082 case elfcpp::R_390_GOT20:
3083 case elfcpp::R_390_GOT32:
3084 case elfcpp::R_390_GOT64:
3085 case elfcpp::R_390_GOTENT:
3086 case elfcpp::R_390_GOTOFF16:
3087 case elfcpp::R_390_GOTOFF32:
3088 case elfcpp::R_390_GOTOFF64:
3094 // For safe ICF, scan a relocation for a local symbol to check if it
3095 // corresponds to a function pointer being taken. In that case mark
3096 // the function whose pointer was taken as not foldable.
3100 Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3103 Target_s390<size>* ,
3104 Sized_relobj_file<size, true>* ,
3107 const elfcpp::Rela<size, true>& ,
3108 unsigned int r_type,
3109 const elfcpp::Sym<size, true>&)
3111 // When building a shared library, do not fold any local symbols.
3112 return (parameters->options().shared()
3113 || possible_function_pointer_reloc(r_type));
3116 // For safe ICF, scan a relocation for a global symbol to check if it
3117 // corresponds to a function pointer being taken. In that case mark
3118 // the function whose pointer was taken as not foldable.
3122 Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3125 Target_s390<size>* ,
3126 Sized_relobj_file<size, true>* ,
3129 const elfcpp::Rela<size, true>& ,
3130 unsigned int r_type,
3133 // When building a shared library, do not fold symbols whose visibility
3134 // is hidden, internal or protected.
3135 return ((parameters->options().shared()
3136 && (gsym->visibility() == elfcpp::STV_INTERNAL
3137 || gsym->visibility() == elfcpp::STV_PROTECTED
3138 || gsym->visibility() == elfcpp::STV_HIDDEN))
3139 || possible_function_pointer_reloc(r_type));
3144 Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3146 Sized_relobj_file<size, true>* object,
3147 unsigned int data_shndx,
3148 unsigned int sh_type,
3149 const unsigned char* prelocs,
3151 Output_section* output_section,
3152 bool needs_special_offset_handling,
3153 size_t local_symbol_count,
3154 const unsigned char* plocal_symbols)
3156 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3159 if (sh_type == elfcpp::SHT_REL)
3162 gold::gc_process_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
3171 needs_special_offset_handling,
3176 // Perform a relocation.
3180 Target_s390<size>::Relocate::relocate(
3181 const Relocate_info<size, true>* relinfo,
3183 Target_s390<size>* target,
3186 const unsigned char* preloc,
3187 const Sized_symbol<size>* gsym,
3188 const Symbol_value<size>* psymval,
3189 unsigned char* view,
3190 typename elfcpp::Elf_types<size>::Elf_Addr address,
3191 section_size_type view_size)
3196 const elfcpp::Rela<size, true> rela(preloc);
3197 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
3198 const Sized_relobj_file<size, true>* object = relinfo->object;
3200 // Pick the value to use for symbols defined in the PLT.
3201 Symbol_value<size> symval;
3203 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3205 symval.set_output_value(target->plt_address_for_global(gsym));
3208 else if (gsym == NULL && psymval->is_ifunc_symbol())
3210 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3211 if (object->local_has_plt_offset(r_sym))
3213 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3218 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3220 typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3224 case elfcpp::R_390_PLT64:
3225 case elfcpp::R_390_PLT32:
3226 case elfcpp::R_390_PLT32DBL:
3227 case elfcpp::R_390_PLT24DBL:
3228 case elfcpp::R_390_PLT16DBL:
3229 case elfcpp::R_390_PLT12DBL:
3230 gold_assert(gsym == NULL
3231 || gsym->has_plt_offset()
3232 || gsym->final_value_is_known()
3233 || (gsym->is_defined()
3234 && !gsym->is_from_dynobj()
3235 && !gsym->is_preemptible()));
3237 case elfcpp::R_390_8:
3238 case elfcpp::R_390_12:
3239 case elfcpp::R_390_16:
3240 case elfcpp::R_390_20:
3241 case elfcpp::R_390_32:
3242 case elfcpp::R_390_64:
3243 case elfcpp::R_390_PC16:
3244 case elfcpp::R_390_PC32:
3245 case elfcpp::R_390_PC64:
3246 case elfcpp::R_390_PC32DBL:
3247 case elfcpp::R_390_PC24DBL:
3248 case elfcpp::R_390_PC16DBL:
3249 case elfcpp::R_390_PC12DBL:
3250 value = psymval->value(object, addend);
3253 case elfcpp::R_390_GOTPC:
3254 case elfcpp::R_390_GOTPCDBL:
3255 gold_assert(gsym != NULL);
3256 value = target->got_address() + addend;
3259 case elfcpp::R_390_PLTOFF64:
3260 case elfcpp::R_390_PLTOFF32:
3261 case elfcpp::R_390_PLTOFF16:
3262 gold_assert(gsym == NULL
3263 || gsym->has_plt_offset()
3264 || gsym->final_value_is_known());
3266 case elfcpp::R_390_GOTOFF64:
3267 case elfcpp::R_390_GOTOFF32:
3268 case elfcpp::R_390_GOTOFF16:
3269 value = (psymval->value(object, addend)
3270 - target->got_address());
3273 case elfcpp::R_390_GOT12:
3274 case elfcpp::R_390_GOT16:
3275 case elfcpp::R_390_GOT20:
3276 case elfcpp::R_390_GOT32:
3277 case elfcpp::R_390_GOT64:
3278 case elfcpp::R_390_GOTENT:
3279 case elfcpp::R_390_GOTPLT12:
3280 case elfcpp::R_390_GOTPLT16:
3281 case elfcpp::R_390_GOTPLT20:
3282 case elfcpp::R_390_GOTPLT32:
3283 case elfcpp::R_390_GOTPLT64:
3284 case elfcpp::R_390_GOTPLTENT:
3286 unsigned int got_offset = 0;
3289 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3290 got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3294 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3295 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3296 got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3298 value = got_offset + target->got_main_offset() + addend;
3302 // These are initial tls relocs, which are expected when linking
3303 case elfcpp::R_390_TLS_LOAD:
3304 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic
3305 case elfcpp::R_390_TLS_GD32:
3306 case elfcpp::R_390_TLS_GD64:
3307 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic
3308 case elfcpp::R_390_TLS_LDM32:
3309 case elfcpp::R_390_TLS_LDM64:
3310 case elfcpp::R_390_TLS_LDO32:
3311 case elfcpp::R_390_TLS_LDO64:
3312 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec
3313 case elfcpp::R_390_TLS_GOTIE20:
3314 case elfcpp::R_390_TLS_GOTIE32:
3315 case elfcpp::R_390_TLS_GOTIE64:
3316 case elfcpp::R_390_TLS_IE32:
3317 case elfcpp::R_390_TLS_IE64:
3318 case elfcpp::R_390_TLS_IEENT:
3319 case elfcpp::R_390_TLS_LE32: // Local-exec
3320 case elfcpp::R_390_TLS_LE64:
3321 value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3329 typename S390_relocate_functions<size>::Status status
3330 = S390_relocate_functions<size>::STATUS_OK;
3334 case elfcpp::R_390_NONE:
3335 case elfcpp::R_390_GNU_VTINHERIT:
3336 case elfcpp::R_390_GNU_VTENTRY:
3337 case elfcpp::R_390_TLS_GDCALL:
3338 case elfcpp::R_390_TLS_LDCALL:
3339 case elfcpp::R_390_TLS_LOAD:
3342 case elfcpp::R_390_64:
3343 case elfcpp::R_390_GOT64:
3344 case elfcpp::R_390_GOTPLT64:
3345 case elfcpp::R_390_PLTOFF64:
3346 case elfcpp::R_390_GOTOFF64:
3347 case elfcpp::R_390_TLS_GD64:
3348 case elfcpp::R_390_TLS_LDM64:
3349 case elfcpp::R_390_TLS_LDO64:
3350 case elfcpp::R_390_TLS_GOTIE64:
3351 case elfcpp::R_390_TLS_IE64:
3352 case elfcpp::R_390_TLS_LE64:
3353 Relocate_functions<size, true>::rela64(view, value, 0);
3356 case elfcpp::R_390_32:
3357 case elfcpp::R_390_GOT32:
3358 case elfcpp::R_390_GOTPLT32:
3359 case elfcpp::R_390_PLTOFF32:
3360 case elfcpp::R_390_GOTOFF32:
3361 case elfcpp::R_390_TLS_GD32:
3362 case elfcpp::R_390_TLS_LDM32:
3363 case elfcpp::R_390_TLS_LDO32:
3364 case elfcpp::R_390_TLS_GOTIE32:
3365 case elfcpp::R_390_TLS_IE32:
3366 case elfcpp::R_390_TLS_LE32:
3367 Relocate_functions<size, true>::rela32(view, value, 0);
3370 case elfcpp::R_390_20:
3371 case elfcpp::R_390_GOT20:
3372 case elfcpp::R_390_GOTPLT20:
3373 case elfcpp::R_390_TLS_GOTIE20:
3374 status = S390_relocate_functions<size>::rela20(view, value);
3377 case elfcpp::R_390_16:
3378 case elfcpp::R_390_GOT16:
3379 case elfcpp::R_390_GOTPLT16:
3380 case elfcpp::R_390_PLTOFF16:
3381 case elfcpp::R_390_GOTOFF16:
3382 status = S390_relocate_functions<size>::rela16(view, value);
3385 case elfcpp::R_390_12:
3386 case elfcpp::R_390_GOT12:
3387 case elfcpp::R_390_GOTPLT12:
3388 case elfcpp::R_390_TLS_GOTIE12:
3389 status = S390_relocate_functions<size>::rela12(view, value);
3392 case elfcpp::R_390_8:
3393 Relocate_functions<size, true>::rela8(view, value, 0);
3396 case elfcpp::R_390_PC16:
3397 Relocate_functions<size, true>::pcrela16(view, value, 0,
3401 case elfcpp::R_390_PLT64:
3402 case elfcpp::R_390_PC64:
3403 Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3406 case elfcpp::R_390_PLT32:
3407 case elfcpp::R_390_PC32:
3408 case elfcpp::R_390_GOTPC:
3409 Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3412 case elfcpp::R_390_PLT32DBL:
3413 case elfcpp::R_390_PC32DBL:
3414 case elfcpp::R_390_GOTPCDBL:
3415 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3418 case elfcpp::R_390_PLT24DBL:
3419 case elfcpp::R_390_PC24DBL:
3420 status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3423 case elfcpp::R_390_PLT16DBL:
3424 case elfcpp::R_390_PC16DBL:
3425 status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3428 case elfcpp::R_390_PLT12DBL:
3429 case elfcpp::R_390_PC12DBL:
3430 status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3433 case elfcpp::R_390_GOTENT:
3434 case elfcpp::R_390_GOTPLTENT:
3435 case elfcpp::R_390_TLS_IEENT:
3436 value += target->got_address();
3437 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3440 case elfcpp::R_390_COPY:
3441 case elfcpp::R_390_GLOB_DAT:
3442 case elfcpp::R_390_JMP_SLOT:
3443 case elfcpp::R_390_RELATIVE:
3444 case elfcpp::R_390_IRELATIVE:
3445 // These are outstanding tls relocs, which are unexpected when linking
3446 case elfcpp::R_390_TLS_TPOFF:
3447 case elfcpp::R_390_TLS_DTPMOD:
3448 case elfcpp::R_390_TLS_DTPOFF:
3449 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3450 _("unexpected reloc %u in object file"),
3455 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3456 _("unsupported reloc %u"),
3461 if (status != S390_relocate_functions<size>::STATUS_OK)
3463 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3464 _("relocation overflow"));
3470 // Perform a TLS relocation.
3473 inline typename elfcpp::Elf_types<size>::Elf_Addr
3474 Target_s390<size>::Relocate::relocate_tls(
3475 const Relocate_info<size, true>* relinfo,
3476 Target_s390<size>* target,
3478 const elfcpp::Rela<size, true>& rela,
3479 unsigned int r_type,
3480 const Sized_symbol<size>* gsym,
3481 const Symbol_value<size>* psymval,
3482 unsigned char* view,
3483 section_size_type view_size)
3485 Output_segment* tls_segment = relinfo->layout->tls_segment();
3487 const Sized_relobj_file<size, true>* object = relinfo->object;
3488 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3489 elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3490 bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3492 typename elfcpp::Elf_types<size>::Elf_Addr value
3493 = psymval->value(relinfo->object, addend);
3495 const bool is_final = (gsym == NULL
3496 ? !parameters->options().shared()
3497 : gsym->final_value_is_known());
3498 tls::Tls_optimization optimized_type
3499 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3502 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker
3503 if (optimized_type == tls::TLSOPT_TO_LE)
3505 if (tls_segment == NULL)
3507 gold_assert(parameters->errors()->error_count() > 0
3508 || issue_undefined_symbol_error(gsym));
3511 this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3516 if (optimized_type == tls::TLSOPT_TO_IE)
3518 this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3521 else if (optimized_type == tls::TLSOPT_NONE)
3526 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3527 _("unsupported reloc %u"), r_type);
3530 case elfcpp::R_390_TLS_GD32: // Global-dynamic
3531 case elfcpp::R_390_TLS_GD64:
3532 if (optimized_type == tls::TLSOPT_TO_LE)
3534 if (tls_segment == NULL)
3536 gold_assert(parameters->errors()->error_count() > 0
3537 || issue_undefined_symbol_error(gsym));
3540 return value - tls_segment->memsz();
3544 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3545 ? GOT_TYPE_TLS_OFFSET
3546 : GOT_TYPE_TLS_PAIR);
3549 gold_assert(gsym->has_got_offset(got_type));
3550 return (gsym->got_offset(got_type)
3551 + target->got_main_offset()
3556 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3557 gold_assert(object->local_has_got_offset(r_sym, got_type));
3558 return (object->local_got_offset(r_sym, got_type)
3559 + target->got_main_offset()
3563 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3564 _("unsupported reloc %u"), r_type);
3567 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker
3568 // This is a marker relocation. If the sequence is being turned to LE,
3569 // we modify the instruction, otherwise the instruction is untouched.
3570 if (optimized_type == tls::TLSOPT_TO_LE)
3572 if (tls_segment == NULL)
3574 gold_assert(parameters->errors()->error_count() > 0
3575 || issue_undefined_symbol_error(gsym));
3578 this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3581 else if (optimized_type == tls::TLSOPT_NONE)
3585 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3586 _("unsupported reloc %u"), r_type);
3589 case elfcpp::R_390_TLS_LDM32: // Local-dynamic module
3590 case elfcpp::R_390_TLS_LDM64:
3591 if (optimized_type == tls::TLSOPT_TO_LE)
3593 if (tls_segment == NULL)
3595 gold_assert(parameters->errors()->error_count() > 0
3596 || issue_undefined_symbol_error(gsym));
3599 // Doesn't matter what we fill it with - it's going to be unused.
3602 else if (optimized_type == tls::TLSOPT_NONE)
3604 // Relocate the field with the offset of the GOT entry for
3605 // the module index.
3606 return (target->got_mod_index_entry(NULL, NULL, NULL)
3608 + target->got_main_offset());
3610 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3611 _("unsupported reloc %u"), r_type);
3614 case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset
3615 case elfcpp::R_390_TLS_LDO64:
3616 // This relocation type is used in debugging information.
3617 // In that case we need to not optimize the value. If the
3618 // section is not allocatable, then we assume we should not
3619 // optimize this reloc.
3620 if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3622 if (tls_segment == NULL)
3624 gold_assert(parameters->errors()->error_count() > 0
3625 || issue_undefined_symbol_error(gsym));
3628 value -= tls_segment->memsz();
3632 case elfcpp::R_390_TLS_LOAD: // Initial-exec marker
3633 // This is a marker relocation. If the sequence is being turned to LE,
3634 // we modify the instruction, otherwise the instruction is untouched.
3636 && gsym->is_undefined()
3637 && parameters->options().output_is_executable())
3639 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3644 else if (optimized_type == tls::TLSOPT_TO_LE)
3646 if (tls_segment == NULL)
3648 gold_assert(parameters->errors()->error_count() > 0
3649 || issue_undefined_symbol_error(gsym));
3652 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3657 else if (optimized_type == tls::TLSOPT_NONE)
3661 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3662 _("unsupported reloc type %u"),
3666 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable
3667 case elfcpp::R_390_TLS_GOTIE20:
3668 case elfcpp::R_390_TLS_IEENT:
3669 case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable
3670 case elfcpp::R_390_TLS_GOTIE64:
3671 case elfcpp::R_390_TLS_IE32:
3672 case elfcpp::R_390_TLS_IE64:
3674 && gsym->is_undefined()
3675 && parameters->options().output_is_executable()
3676 // These three cannot be optimized to LE, no matter what
3677 && r_type != elfcpp::R_390_TLS_GOTIE12
3678 && r_type != elfcpp::R_390_TLS_GOTIE20
3679 && r_type != elfcpp::R_390_TLS_IEENT)
3683 else if (optimized_type == tls::TLSOPT_TO_LE)
3685 if (tls_segment == NULL)
3687 gold_assert(parameters->errors()->error_count() > 0
3688 || issue_undefined_symbol_error(gsym));
3691 return value - tls_segment->memsz();
3693 else if (optimized_type == tls::TLSOPT_NONE)
3695 // Relocate the field with the offset of the GOT entry for
3696 // the tp-relative offset of the symbol.
3697 unsigned int got_offset;
3700 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3701 got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3705 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3706 gold_assert(object->local_has_got_offset(r_sym,
3707 GOT_TYPE_TLS_OFFSET));
3708 got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3710 got_offset += target->got_main_offset();
3711 if (r_type == elfcpp::R_390_TLS_IE32
3712 || r_type == elfcpp::R_390_TLS_IE64)
3713 return target->got_address() + got_offset + addend;
3715 return got_offset + addend;
3717 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3718 _("unsupported reloc type %u"),
3722 case elfcpp::R_390_TLS_LE32: // Local-exec
3723 case elfcpp::R_390_TLS_LE64:
3724 if (tls_segment == NULL)
3726 gold_assert(parameters->errors()->error_count() > 0
3727 || issue_undefined_symbol_error(gsym));
3730 return value - tls_segment->memsz();
3735 // Do a relocation in which we convert a TLS General-Dynamic to an
3740 Target_s390<size>::Relocate::tls_gd_to_ie(
3741 const Relocate_info<size, true>* relinfo,
3743 const elfcpp::Rela<size, true>& rela,
3744 unsigned char* view,
3745 section_size_type view_size)
3747 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3748 if (view[0] == 0x4d)
3750 // bas, don't care about details
3751 // Change to l %r2, 0(%r2, %r12)
3758 else if (view[0] == 0xc0)
3760 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3761 // brasl %r14, __tls_get_offset@plt
3762 if (view[1] == 0xe5)
3764 // Change to l/lg %r2, 0(%r2, %r12)
3765 // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3790 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3791 _("unsupported op for GD to IE"));
3794 // Do a relocation in which we convert a TLS General-Dynamic to a
3799 Target_s390<size>::Relocate::tls_gd_to_le(
3800 const Relocate_info<size, true>* relinfo,
3802 const elfcpp::Rela<size, true>& rela,
3803 unsigned char* view,
3804 section_size_type view_size)
3806 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3807 if (view[0] == 0x0d)
3809 // basr, change to nop
3813 else if (view[0] == 0x4d)
3815 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3816 // bas, don't care about details, change to nop
3823 else if (view[0] == 0xc0)
3825 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3826 // brasl %r14, __tls_get_offset@plt
3827 if (view[1] == 0xe5)
3829 // Change to nop jump. There was a PLT32DBL reloc at the last
3830 // 4 bytes, overwrite its result.
3839 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3840 _("unsupported op for GD to LE"));
3845 Target_s390<size>::Relocate::tls_ld_to_le(
3846 const Relocate_info<size, true>* relinfo,
3848 const elfcpp::Rela<size, true>& rela,
3849 unsigned char* view,
3850 section_size_type view_size)
3852 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3854 if (view[0] == 0x0d)
3856 // basr, change to nop
3860 else if (view[0] == 0x4d)
3862 // bas, don't care about details, change to nop
3869 else if (view[0] == 0xc0)
3871 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3872 // brasl %r14, __tls_get_offset@plt
3873 if (view[1] == 0xe5)
3875 // Change to nop jump. There was a PLT32DBL reloc at the last
3876 // 4 bytes, overwrite its result.
3885 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3886 _("unsupported op for LD to LE"));
3889 // Do a relocation in which we convert a TLS Initial-Exec to a
3894 Target_s390<size>::Relocate::tls_ie_to_le(
3895 const Relocate_info<size, true>* relinfo,
3897 const elfcpp::Rela<size, true>& rela,
3898 unsigned char* view,
3899 section_size_type view_size)
3901 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3903 if (view[0] == 0x58)
3905 // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3906 if ((view[2] & 0x0f) != 0 || view[3] != 0)
3908 int rx = view[1] >> 4 & 0xf;
3909 int ry = view[1] & 0xf;
3910 int rz = view[2] >> 4 & 0xf;
3929 view[1] = rx << 4 | ry;
3934 else if (view[0] == 0xe3)
3936 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3937 // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3938 if ((view[2] & 0x0f) != 0 ||
3943 int rx = view[1] >> 4 & 0xf;
3944 int ry = view[1] & 0xf;
3945 int rz = view[2] >> 4 & 0xf;
3962 // to sllg %rX, $rY, 0
3964 view[1] = rx << 4 | ry;
3973 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3974 _("unsupported op for IE to LE"));
3978 // Scan relocations for a section.
3982 Target_s390<size>::scan_relocs(Symbol_table* symtab,
3984 Sized_relobj_file<size, true>* object,
3985 unsigned int data_shndx,
3986 unsigned int sh_type,
3987 const unsigned char* prelocs,
3989 Output_section* output_section,
3990 bool needs_special_offset_handling,
3991 size_t local_symbol_count,
3992 const unsigned char* plocal_symbols)
3994 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3997 if (sh_type == elfcpp::SHT_REL)
3999 gold_error(_("%s: unsupported REL reloc section"),
4000 object->name().c_str());
4004 gold::scan_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
4013 needs_special_offset_handling,
4018 // Finalize the sections.
4022 Target_s390<size>::do_finalize_sections(
4024 const Input_objects*,
4025 Symbol_table* symtab)
4027 const Reloc_section* rel_plt = (this->plt_ == NULL
4029 : this->plt_->rela_plt());
4030 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4031 this->rela_dyn_, true, size == 32);
4033 this->layout_ = layout;
4035 // Emit any relocs we saved in an attempt to avoid generating COPY
4037 if (this->copy_relocs_.any_saved_relocs())
4038 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4040 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4041 // the .got section.
4042 Symbol* sym = this->global_offset_table_;
4045 uint64_t data_size = this->got_->current_data_size();
4046 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4049 if (parameters->doing_static_link()
4050 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4052 // If linking statically, make sure that the __rela_iplt symbols
4053 // were defined if necessary, even if we didn't create a PLT.
4054 static const Define_symbol_in_segment syms[] =
4057 "__rela_iplt_start", // name
4058 elfcpp::PT_LOAD, // segment_type
4059 elfcpp::PF_W, // segment_flags_set
4060 elfcpp::PF(0), // segment_flags_clear
4063 elfcpp::STT_NOTYPE, // type
4064 elfcpp::STB_GLOBAL, // binding
4065 elfcpp::STV_HIDDEN, // visibility
4067 Symbol::SEGMENT_START, // offset_from_base
4071 "__rela_iplt_end", // name
4072 elfcpp::PT_LOAD, // segment_type
4073 elfcpp::PF_W, // segment_flags_set
4074 elfcpp::PF(0), // segment_flags_clear
4077 elfcpp::STT_NOTYPE, // type
4078 elfcpp::STB_GLOBAL, // binding
4079 elfcpp::STV_HIDDEN, // visibility
4081 Symbol::SEGMENT_START, // offset_from_base
4086 symtab->define_symbols(layout, 2, syms,
4087 layout->script_options()->saw_sections_clause());
4091 // Scan the relocs during a relocatable link.
4095 Target_s390<size>::scan_relocatable_relocs(
4096 Symbol_table* symtab,
4098 Sized_relobj_file<size, true>* object,
4099 unsigned int data_shndx,
4100 unsigned int sh_type,
4101 const unsigned char* prelocs,
4103 Output_section* output_section,
4104 bool needs_special_offset_handling,
4105 size_t local_symbol_count,
4106 const unsigned char* plocal_symbols,
4107 Relocatable_relocs* rr)
4109 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4111 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4112 Scan_relocatable_relocs;
4114 gold_assert(sh_type == elfcpp::SHT_RELA);
4116 gold::scan_relocatable_relocs<size, true, Scan_relocatable_relocs>(
4124 needs_special_offset_handling,
4130 // Scan the relocs for --emit-relocs.
4134 Target_s390<size>::emit_relocs_scan(
4135 Symbol_table* symtab,
4137 Sized_relobj_file<size, true>* object,
4138 unsigned int data_shndx,
4139 unsigned int sh_type,
4140 const unsigned char* prelocs,
4142 Output_section* output_section,
4143 bool needs_special_offset_handling,
4144 size_t local_symbol_count,
4145 const unsigned char* plocal_syms,
4146 Relocatable_relocs* rr)
4148 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4150 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4151 Emit_relocs_strategy;
4153 gold_assert(sh_type == elfcpp::SHT_RELA);
4155 gold::scan_relocatable_relocs<size, true, Emit_relocs_strategy>(
4163 needs_special_offset_handling,
4169 // Relocate a section during a relocatable link.
4173 Target_s390<size>::relocate_relocs(
4174 const Relocate_info<size, true>* relinfo,
4175 unsigned int sh_type,
4176 const unsigned char* prelocs,
4178 Output_section* output_section,
4179 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4180 unsigned char* view,
4181 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4182 section_size_type view_size,
4183 unsigned char* reloc_view,
4184 section_size_type reloc_view_size)
4186 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4189 gold_assert(sh_type == elfcpp::SHT_RELA);
4191 gold::relocate_relocs<size, true, Classify_reloc>(
4196 offset_in_output_section,
4204 // Return the offset to use for the GOT_INDX'th got entry which is
4205 // for a local tls symbol specified by OBJECT, SYMNDX.
4208 Target_s390<size>::do_tls_offset_for_local(
4213 // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4214 // couldn't be optimised to LE.
4215 Output_segment* tls_segment = layout_->tls_segment();
4216 return -tls_segment->memsz();
4219 // Return the offset to use for the GOT_INDX'th got entry which is
4220 // for global tls symbol GSYM.
4223 Target_s390<size>::do_tls_offset_for_global(
4227 Output_segment* tls_segment = layout_->tls_segment();
4228 return -tls_segment->memsz();
4231 // Return the value to use for a dynamic which requires special
4232 // treatment. This is how we support equality comparisons of function
4233 // pointers across shared library boundaries, as described in the
4234 // processor specific ABI supplement.
4238 Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4240 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4241 return this->plt_address_for_global(gsym);
4244 // Return a string used to fill a code section with nops to take up
4245 // the specified length.
4249 Target_s390<size>::do_code_fill(section_size_type length) const
4252 gold_warning(_("S/390 code fill of odd length requested"));
4253 return std::string(length, static_cast<char>(0x07));
4256 // Return whether SYM should be treated as a call to a non-split
4257 // function. We don't want that to be true of a larl instruction
4258 // that merely loads its address.
4262 Target_s390<size>::do_is_call_to_non_split(const Symbol* sym,
4263 const unsigned char* preloc,
4264 const unsigned char* view,
4265 section_size_type view_size) const
4267 if (sym->type() != elfcpp::STT_FUNC)
4269 typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc reloc(preloc);
4270 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4271 = reloc.get_r_info();
4272 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4273 section_offset_type offset = reloc.get_r_offset();
4276 // PLT refs always involve calling the function.
4277 case elfcpp::R_390_PLT12DBL:
4278 case elfcpp::R_390_PLT16DBL:
4279 case elfcpp::R_390_PLT24DBL:
4280 case elfcpp::R_390_PLT32:
4281 case elfcpp::R_390_PLT32DBL:
4282 case elfcpp::R_390_PLT64:
4283 case elfcpp::R_390_PLTOFF16:
4284 case elfcpp::R_390_PLTOFF32:
4285 case elfcpp::R_390_PLTOFF64:
4286 // Could be used for calls for -msmall-exec.
4287 case elfcpp::R_390_PC16DBL:
4290 // Tricky case. When used in a brasl, jg, and other branch instructions,
4291 // it's a call or a sibcall. However, when used in larl, it only loads
4292 // the function's address - not a call.
4293 case elfcpp::R_390_PC32DBL:
4296 || offset + 4 > static_cast<section_offset_type>(view_size))
4298 // Should not happen.
4299 gold_error(_("instruction with PC32DBL not wholly within section"));
4303 uint8_t op0 = view[offset-2];
4304 uint8_t op1 = view[offset-1] & 0xf;
4307 if (op0 == 0xc0 && op1 == 0)
4310 // Otherwise, it's either a call instruction, a branch instruction
4311 // (used as a sibcall), or a data manipulation instruction (which
4312 // has no business being used on a function, and can be ignored).
4316 // Otherwise, it's probably not a call.
4322 // Code sequences to match below.
4326 Target_s390<32>::ss_code_st_r14[] = {
4327 0x50, 0xe0, 0xf0, 0x04, // st %r14, 4(%r15)
4332 Target_s390<64>::ss_code_st_r14[] = {
4333 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x24 // stg %r14, 8(%r15)
4338 Target_s390<32>::ss_code_l_r14[] = {
4339 0x58, 0xe0, 0xf0, 0x04, // l %r14, 4(%r15)
4344 Target_s390<64>::ss_code_l_r14[] = {
4345 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x04 // lg %r14, 8(%r15)
4350 Target_s390<size>::ss_code_bras_8[] = {
4351 0xa7, 0x15, 0x00, 0x06, // bras %r1, .+0xc
4356 Target_s390<size>::ss_code_l_basr[] = {
4357 0x58, 0xe0, 0x10, 0x00, // l %r14, 0(%r1)
4358 0x58, 0x10, 0x10, 0x04, // l %r1, 4(%r1)
4359 0x0d, 0xee, // basr %r14, %r14
4364 Target_s390<size>::ss_code_a_basr[] = {
4365 0x18, 0xe1, // lr %r14, %r1
4366 0x5a, 0xe0, 0x10, 0x00, // a %r14, 0(%r1)
4367 0x5a, 0x10, 0x10, 0x04, // a %r1, 4(%r1)
4368 0x0d, 0xee, // basr %r14, %r14
4373 Target_s390<32>::ss_code_ear[] = {
4374 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4379 Target_s390<64>::ss_code_ear[] = {
4380 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4381 0xeb, 0x11, 0x00, 0x20, 0x00, 0x0d, // sllg %r1,%r1,32
4382 0xb2, 0x4f, 0x00, 0x11, // ear %r1, %a1
4387 Target_s390<32>::ss_code_c[] = {
4388 0x59, 0xf0, 0x10, 0x20, // c %r15, 0x20(%r1)
4393 Target_s390<64>::ss_code_c[] = {
4394 0xe3, 0xf0, 0x10, 0x38, 0x00, 0x20, // cg %r15, 0x38(%r1)
4399 Target_s390<size>::ss_code_larl[] = {
4400 0xc0, 0x10, // larl %r1, ...
4405 Target_s390<size>::ss_code_brasl[] = {
4406 0xc0, 0xe5, // brasl %r14, ...
4411 Target_s390<size>::ss_code_jg[] = {
4412 0xc0, 0xf4, // jg ...
4417 Target_s390<size>::ss_code_jgl[] = {
4418 0xc0, 0x44, // jgl ...
4423 Target_s390<size>::ss_match_mcount(unsigned char* view,
4424 section_size_type view_size,
4425 section_offset_type *offset) const
4427 // Match the mcount call sequence.
4428 section_offset_type myoff = *offset;
4430 // First, look for the store instruction saving %r14.
4431 if (!this->match_view_u(view, view_size, myoff, ss_code_st_r14,
4432 sizeof ss_code_st_r14))
4434 myoff += sizeof ss_code_st_r14;
4436 // Now, param load and the actual call.
4437 if (this->match_view_u(view, view_size, myoff, ss_code_larl,
4438 sizeof ss_code_larl))
4440 myoff += sizeof ss_code_larl + 4;
4442 // After larl, expect a brasl.
4443 if (!this->match_view_u(view, view_size, myoff, ss_code_brasl,
4444 sizeof ss_code_brasl))
4446 myoff += sizeof ss_code_brasl + 4;
4448 else if (size == 32 &&
4449 this->match_view_u(view, view_size, myoff, ss_code_bras_8,
4450 sizeof ss_code_bras_8))
4452 // The bras skips over a block of 8 bytes, loading its address
4454 myoff += sizeof ss_code_bras_8 + 8;
4456 // Now, there are two sequences used for actual load and call,
4457 // absolute and PIC.
4458 if (this->match_view_u(view, view_size, myoff, ss_code_l_basr,
4459 sizeof ss_code_l_basr))
4460 myoff += sizeof ss_code_l_basr;
4461 else if (this->match_view_u(view, view_size, myoff, ss_code_a_basr,
4462 sizeof ss_code_a_basr))
4463 myoff += sizeof ss_code_a_basr;
4470 // Finally, a load bringing %r14 back.
4471 if (!this->match_view_u(view, view_size, myoff, ss_code_l_r14,
4472 sizeof ss_code_l_r14))
4474 myoff += sizeof ss_code_l_r14;
4483 Target_s390<32>::ss_match_l(unsigned char* view,
4484 section_size_type view_size,
4485 section_offset_type *offset,
4486 int *guard_reg) const
4488 // l %guard_reg, 0x20(%r1)
4489 if (convert_to_section_size_type(*offset + 4) > view_size
4490 || view[*offset] != 0x58
4491 || (view[*offset + 1] & 0xf) != 0x0
4492 || view[*offset + 2] != 0x10
4493 || view[*offset + 3] != 0x20)
4496 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4502 Target_s390<64>::ss_match_l(unsigned char* view,
4503 section_size_type view_size,
4504 section_offset_type *offset,
4505 int *guard_reg) const
4507 // lg %guard_reg, 0x38(%r1)
4508 if (convert_to_section_size_type(*offset + 6) > view_size
4509 || view[*offset] != 0xe3
4510 || (view[*offset + 1] & 0xf) != 0x0
4511 || view[*offset + 2] != 0x10
4512 || view[*offset + 3] != 0x38
4513 || view[*offset + 4] != 0x00
4514 || view[*offset + 5] != 0x04)
4517 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4523 Target_s390<size>::ss_match_ahi(unsigned char* view,
4524 section_size_type view_size,
4525 section_offset_type *offset,
4527 uint32_t *arg) const
4529 int op = size == 32 ? 0xa : 0xb;
4530 // a[g]hi %guard_reg, <arg>
4531 if (convert_to_section_size_type(*offset + 4) > view_size
4532 || view[*offset] != 0xa7
4533 || view[*offset + 1] != (guard_reg << 4 | op)
4534 // Disallow negative size.
4535 || view[*offset + 2] & 0x80)
4537 *arg = elfcpp::Swap<16, true>::readval(view + *offset + 2);
4544 Target_s390<size>::ss_match_alfi(unsigned char* view,
4545 section_size_type view_size,
4546 section_offset_type *offset,
4548 uint32_t *arg) const
4550 int op = size == 32 ? 0xb : 0xa;
4551 // al[g]fi %guard_reg, <arg>
4552 if (convert_to_section_size_type(*offset + 6) > view_size
4553 || view[*offset] != 0xc2
4554 || view[*offset + 1] != (guard_reg << 4 | op))
4556 *arg = elfcpp::Swap<32, true>::readval(view + *offset + 2);
4563 Target_s390<32>::ss_match_cr(unsigned char* view,
4564 section_size_type view_size,
4565 section_offset_type *offset,
4566 int guard_reg) const
4568 // cr %r15, %guard_reg
4569 if (convert_to_section_size_type(*offset + 2) > view_size
4570 || view[*offset] != 0x19
4571 || view[*offset + 1] != (0xf0 | guard_reg))
4579 Target_s390<64>::ss_match_cr(unsigned char* view,
4580 section_size_type view_size,
4581 section_offset_type *offset,
4582 int guard_reg) const
4584 // cgr %r15, %guard_reg
4585 if (convert_to_section_size_type(*offset + 4) > view_size
4586 || view[*offset] != 0xb9
4587 || view[*offset + 1] != 0x20
4588 || view[*offset + 2] != 0x00
4589 || view[*offset + 3] != (0xf0 | guard_reg))
4596 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4597 // compiled with -fsplit-stack. The function calls non-split-stack
4598 // code. We have to change the function so that it always ensures
4599 // that it has enough stack space to run some random function.
4603 Target_s390<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4604 section_offset_type fnoffset,
4606 const unsigned char *prelocs,
4608 unsigned char* view,
4609 section_size_type view_size,
4613 // true if there's a conditional call to __morestack in the function,
4614 // false if there's an unconditional one.
4615 bool conditional = false;
4616 // Offset of the byte after the compare insn, if conditional.
4617 section_offset_type cmpend = 0;
4618 // Type and immediate offset of the add instruction that adds frame size
4624 } fsadd_type = SS_ADD_NONE;
4625 section_offset_type fsadd_offset = 0;
4626 uint32_t fsadd_frame_size = 0;
4627 // Register used for loading guard. Usually r1, but can also be r0 or r2-r5.
4629 // Offset of the conditional jump.
4630 section_offset_type jump_offset = 0;
4631 // Section view and offset of param block.
4632 section_offset_type param_offset = 0;
4633 unsigned char *param_view = 0;
4634 section_size_type param_view_size = 0;
4635 // Current position in function.
4636 section_offset_type curoffset = fnoffset;
4637 // And the position of split-stack prologue.
4638 section_offset_type ssoffset;
4640 typename elfcpp::Elf_types<size>::Elf_Addr frame_size;
4641 // Relocation parsing.
4642 typedef typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc Reltype;
4643 const int reloc_size = Reloc_types<elfcpp::SHT_RELA, size, true>::reloc_size;
4644 const unsigned char *pr = prelocs;
4646 // If the function was compiled with -pg, the profiling code may come before
4647 // the split-stack prologue. Skip it.
4649 this->ss_match_mcount(view, view_size, &curoffset);
4650 ssoffset = curoffset;
4652 // First, figure out if there's a conditional call by looking for the
4653 // extract-tp, add, cmp sequence.
4655 if (this->match_view_u(view, view_size, curoffset, ss_code_ear,
4656 sizeof ss_code_ear))
4658 // Found extract-tp, now look for an add and compare.
4659 curoffset += sizeof ss_code_ear;
4661 if (this->match_view_u(view, view_size, curoffset, ss_code_c,
4664 // Found a direct compare of stack pointer with the guard,
4666 curoffset += sizeof ss_code_c;
4668 else if (this->ss_match_l(view, view_size, &curoffset, &guard_reg))
4670 // Found a load of guard to register, look for an add and compare.
4671 if (this->ss_match_ahi(view, view_size, &curoffset, guard_reg,
4674 fsadd_type = SS_ADD_AHI;
4675 fsadd_offset = curoffset - 2;
4677 else if (this->ss_match_alfi(view, view_size, &curoffset, guard_reg,
4680 fsadd_type = SS_ADD_ALFI;
4681 fsadd_offset = curoffset - 4;
4687 // Now, there has to be a compare.
4688 if (!this->ss_match_cr(view, view_size, &curoffset, guard_reg))
4698 // Second, look for the call.
4699 if (!this->match_view_u(view, view_size, curoffset, ss_code_larl,
4700 sizeof ss_code_larl))
4702 curoffset += sizeof ss_code_larl;
4704 // Find out larl's operand. It should be a local symbol in .rodata
4706 for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
4709 if (static_cast<section_offset_type>(reloc.get_r_offset())
4712 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4713 = reloc.get_r_info();
4714 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
4715 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4716 if (r_type != elfcpp::R_390_PC32DBL)
4718 if (r_sym >= object->local_symbol_count())
4720 Sized_relobj_file<size, true> *object_sized =
4721 static_cast<Sized_relobj_file<size, true> *>(object);
4722 const Symbol_value<size>* sym = object_sized->local_symbol(r_sym);
4723 bool param_shndx_ordinary;
4724 const unsigned int param_shndx =
4725 sym->input_shndx(¶m_shndx_ordinary);
4726 if (!param_shndx_ordinary)
4728 param_offset = sym->input_value() + reloc.get_r_addend() - 2
4729 - object->output_section(param_shndx)->address()
4730 - object->output_section_offset(param_shndx);
4731 param_view = object->get_output_view(param_shndx,
4742 // Now, there has to be a jump to __morestack.
4743 jump_offset = curoffset;
4745 if (this->match_view_u(view, view_size, curoffset,
4746 conditional ? ss_code_jgl : ss_code_jg,
4748 curoffset += sizeof ss_code_jg;
4754 // Read the frame size.
4755 if (convert_to_section_size_type(param_offset + size / 8) > param_view_size)
4757 frame_size = elfcpp::Swap<size, true>::readval(param_view + param_offset);
4760 if (fsadd_type != SS_ADD_NONE && fsadd_frame_size != frame_size)
4763 // Bump the frame size.
4764 frame_size += parameters->options().split_stack_adjust_size();
4766 // Store it to the param block.
4767 elfcpp::Swap<size, true>::writeval(param_view + param_offset, frame_size);
4771 // If the call was already unconditional, we're done.
4773 else if (frame_size <= 0xffffffff && fsadd_type == SS_ADD_ALFI)
4775 // Using alfi to add the frame size, and it still fits. Adjust it.
4776 elfcpp::Swap_unaligned<32, true>::writeval(view + fsadd_offset,
4781 // We were either relying on the backoff area, or used ahi to load
4782 // frame size. This won't fly, as our new frame size is too large.
4783 // Convert the sequence to unconditional by nopping out the comparison,
4784 // and rewiring the jump.
4785 this->set_view_to_nop(view, view_size, ssoffset, cmpend - ssoffset);
4787 // The jump is jgl, we'll mutate it to jg.
4788 view[jump_offset+1] = 0xf4;
4794 if (!object->has_no_split_stack())
4795 object->error(_("failed to match split-stack sequence at "
4796 "section %u offset %0zx"),
4797 shndx, static_cast<size_t>(fnoffset));
4800 // Relocate section data.
4804 Target_s390<size>::relocate_section(
4805 const Relocate_info<size, true>* relinfo,
4806 unsigned int sh_type,
4807 const unsigned char* prelocs,
4809 Output_section* output_section,
4810 bool needs_special_offset_handling,
4811 unsigned char* view,
4812 typename elfcpp::Elf_types<size>::Elf_Addr address,
4813 section_size_type view_size,
4814 const Reloc_symbol_changes* reloc_symbol_changes)
4816 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4819 gold_assert(sh_type == elfcpp::SHT_RELA);
4821 gold::relocate_section<size, true, Target_s390<size>, Relocate,
4822 gold::Default_comdat_behavior, Classify_reloc>(
4828 needs_special_offset_handling,
4832 reloc_symbol_changes);
4835 // Apply an incremental relocation. Incremental relocations always refer
4836 // to global symbols.
4840 Target_s390<size>::apply_relocation(
4841 const Relocate_info<size, true>* relinfo,
4842 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4843 unsigned int r_type,
4844 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4846 unsigned char* view,
4847 typename elfcpp::Elf_types<size>::Elf_Addr address,
4848 section_size_type view_size)
4850 gold::apply_relocation<size, true, Target_s390<size>,
4851 typename Target_s390<size>::Relocate>(
4863 // The selector for s390 object files.
4866 class Target_selector_s390 : public Target_selector
4869 Target_selector_s390()
4870 : Target_selector(elfcpp::EM_S390, size, true,
4871 (size == 64 ? "elf64-s390" : "elf32-s390"),
4872 (size == 64 ? "elf64_s390" : "elf32_s390"))
4876 do_instantiate_target()
4877 { return new Target_s390<size>(); }
4880 Target_selector_s390<32> target_selector_s390;
4881 Target_selector_s390<64> target_selector_s390x;
4883 } // End anonymous namespace.