1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
30 #include "gdb_string.h"
32 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
34 /* Prototypes for local functions. */
36 static alpha_extra_func_info_t push_sigtramp_desc PARAMS ((CORE_ADDR low_addr));
38 static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
40 static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
42 static alpha_extra_func_info_t heuristic_proc_desc PARAMS ((CORE_ADDR,
44 struct frame_info *));
46 static alpha_extra_func_info_t find_proc_desc PARAMS ((CORE_ADDR,
47 struct frame_info *));
50 static int alpha_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
53 static void reinit_frame_cache_sfunc PARAMS ((char *, int,
54 struct cmd_list_element *));
56 static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
57 alpha_extra_func_info_t proc_desc));
59 static int alpha_in_prologue PARAMS ((CORE_ADDR pc,
60 alpha_extra_func_info_t proc_desc));
62 /* Heuristic_proc_start may hunt through the text section for a long
63 time across a 2400 baud serial line. Allows the user to limit this
65 static unsigned int heuristic_fence_post = 0;
67 /* Layout of a stack frame on the alpha:
70 pdr members: | 7th ... nth arg, |
71 | `pushed' by caller. |
73 ----------------|-------------------------------|<-- old_sp == vfp
76 | |localoff | Copies of 1st .. 6th |
77 | | | | | argument if necessary. |
79 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
81 | | | | Locals and temporaries. |
83 | | | |-------------------------------|
85 |-fregoffset | Saved float registers. |
91 | | -------|-------------------------------|
93 | | | Saved registers. |
100 | ----------|-------------------------------|
102 frameoffset | Argument build area, gets |
103 | | 7th ... nth arg for any |
104 | | called procedure. |
106 -------------|-------------------------------|<-- sp
110 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
111 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
112 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.iopt) /* frame for CALL_DUMMY */
113 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
114 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
115 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
116 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
117 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
118 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
119 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
120 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
121 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
122 #define _PROC_MAGIC_ 0x0F0F0F0F
123 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
124 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
126 struct linked_proc_info
128 struct alpha_extra_func_info info;
129 struct linked_proc_info *next;
130 } *linked_proc_desc_table = NULL;
133 /* Under GNU/Linux, signal handler invocations can be identified by the
134 designated code sequence that is used to return from a signal
135 handler. In particular, the return address of a signal handler
136 points to the following sequence (the first instruction is quadword
143 Each instruction has a unique encoding, so we simply attempt to
144 match the instruction the pc is pointing to with any of the above
145 instructions. If there is a hit, we know the offset to the start
146 of the designated sequence and can then check whether we really are
147 executing in a designated sequence. If not, -1 is returned,
148 otherwise the offset from the start of the desingated sequence is
151 There is a slight chance of false hits: code could jump into the
152 middle of the designated sequence, in which case there is no
153 guarantee that we are in the middle of a sigreturn syscall. Don't
154 think this will be a problem in praxis, though.
158 alpha_linux_sigtramp_offset (CORE_ADDR pc)
160 unsigned int i[3], w;
163 if (read_memory_nobpt(pc, (char *) &w, 4) != 0)
169 case 0x47de0410: off = 0; break; /* bis $30,$30,$16 */
170 case 0x43ecf400: off = 4; break; /* addq $31,0x67,$0 */
171 case 0x00000083: off = 8; break; /* call_pal callsys */
177 /* designated sequence is not quadword aligned */
181 if (read_memory_nobpt(pc, (char *) i, sizeof(i)) != 0)
184 if (i[0] == 0x47de0410 && i[1] == 0x43ecf400 && i[2] == 0x00000083)
191 /* Under OSF/1, the __sigtramp routine is frameless and has a frame
192 size of zero, but we are able to backtrace through it. */
194 alpha_osf_skip_sigtramp_frame (frame, pc)
195 struct frame_info *frame;
199 find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL, (CORE_ADDR *)NULL);
200 if (IN_SIGTRAMP (pc, name))
207 /* Dynamically create a signal-handler caller procedure descriptor for
208 the signal-handler return code starting at address LOW_ADDR. The
209 descriptor is added to the linked_proc_desc_table. */
211 static alpha_extra_func_info_t
212 push_sigtramp_desc (low_addr)
215 struct linked_proc_info *link;
216 alpha_extra_func_info_t proc_desc;
218 link = (struct linked_proc_info *)
219 xmalloc (sizeof (struct linked_proc_info));
220 link->next = linked_proc_desc_table;
221 linked_proc_desc_table = link;
223 proc_desc = &link->info;
225 proc_desc->numargs = 0;
226 PROC_LOW_ADDR (proc_desc) = low_addr;
227 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
228 PROC_DUMMY_FRAME (proc_desc) = 0;
229 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
230 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
231 PROC_REG_MASK (proc_desc) = 0xffff;
232 PROC_FREG_MASK (proc_desc) = 0xffff;
233 PROC_PC_REG (proc_desc) = 26;
234 PROC_LOCALOFF (proc_desc) = 0;
235 SET_PROC_DESC_IS_DYN_SIGTRAMP (proc_desc);
240 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
244 alpha_find_saved_regs (frame)
245 struct frame_info *frame;
248 CORE_ADDR reg_position;
250 alpha_extra_func_info_t proc_desc;
253 frame_saved_regs_zalloc (frame);
255 /* If it is the frame for __sigtramp, the saved registers are located
256 in a sigcontext structure somewhere on the stack. __sigtramp
257 passes a pointer to the sigcontext structure on the stack.
258 If the stack layout for __sigtramp changes, or if sigcontext offsets
259 change, we might have to update this code. */
260 #ifndef SIGFRAME_PC_OFF
261 #define SIGFRAME_PC_OFF (2 * 8)
262 #define SIGFRAME_REGSAVE_OFF (4 * 8)
263 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
265 if (frame->signal_handler_caller)
267 CORE_ADDR sigcontext_addr;
269 sigcontext_addr = SIGCONTEXT_ADDR (frame);
270 for (ireg = 0; ireg < 32; ireg++)
272 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
273 frame->saved_regs[ireg] = reg_position;
275 for (ireg = 0; ireg < 32; ireg++)
277 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
278 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
280 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
284 proc_desc = frame->proc_desc;
285 if (proc_desc == NULL)
286 /* I'm not sure how/whether this can happen. Normally when we can't
287 find a proc_desc, we "synthesize" one using heuristic_proc_desc
288 and set the saved_regs right away. */
291 /* Fill in the offsets for the registers which gen_mask says
294 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
295 mask = PROC_REG_MASK (proc_desc);
297 returnreg = PROC_PC_REG (proc_desc);
299 /* Note that RA is always saved first, regardless of its actual
301 if (mask & (1 << returnreg))
303 frame->saved_regs[returnreg] = reg_position;
305 mask &= ~(1 << returnreg); /* Clear bit for RA so we
306 don't save again later. */
309 for (ireg = 0; ireg <= 31 ; ++ireg)
310 if (mask & (1 << ireg))
312 frame->saved_regs[ireg] = reg_position;
316 /* Fill in the offsets for the registers which float_mask says
319 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
320 mask = PROC_FREG_MASK (proc_desc);
322 for (ireg = 0; ireg <= 31 ; ++ireg)
323 if (mask & (1 << ireg))
325 frame->saved_regs[FP0_REGNUM+ireg] = reg_position;
329 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
333 read_next_frame_reg(fi, regno)
334 struct frame_info *fi;
337 for (; fi; fi = fi->next)
339 /* We have to get the saved sp from the sigcontext
340 if it is a signal handler frame. */
341 if (regno == SP_REGNUM && !fi->signal_handler_caller)
345 if (fi->saved_regs == NULL)
346 alpha_find_saved_regs (fi);
347 if (fi->saved_regs[regno])
348 return read_memory_integer(fi->saved_regs[regno], 8);
351 return read_register(regno);
355 alpha_frame_saved_pc(frame)
356 struct frame_info *frame;
358 alpha_extra_func_info_t proc_desc = frame->proc_desc;
359 /* We have to get the saved pc from the sigcontext
360 if it is a signal handler frame. */
361 int pcreg = frame->signal_handler_caller ? PC_REGNUM : frame->pc_reg;
363 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
364 return read_memory_integer(frame->frame - 8, 8);
366 return read_next_frame_reg(frame, pcreg);
370 alpha_saved_pc_after_call (frame)
371 struct frame_info *frame;
373 CORE_ADDR pc = frame->pc;
375 alpha_extra_func_info_t proc_desc;
378 /* Skip over shared library trampoline if necessary. */
379 tmp = SKIP_TRAMPOLINE_CODE (pc);
383 proc_desc = find_proc_desc (pc, frame->next);
384 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
386 if (frame->signal_handler_caller)
387 return alpha_frame_saved_pc (frame);
389 return read_register (pcreg);
393 static struct alpha_extra_func_info temp_proc_desc;
394 static struct frame_saved_regs temp_saved_regs;
396 /* Nonzero if instruction at PC is a return instruction. "ret
397 $zero,($ra),1" on alpha. */
400 alpha_about_to_return (pc)
403 return read_memory_integer (pc, 4) == 0x6bfa8001;
408 /* This fencepost looks highly suspicious to me. Removing it also
409 seems suspicious as it could affect remote debugging across serial
413 heuristic_proc_start(pc)
416 CORE_ADDR start_pc = pc;
417 CORE_ADDR fence = start_pc - heuristic_fence_post;
419 if (start_pc == 0) return 0;
421 if (heuristic_fence_post == UINT_MAX
422 || fence < VM_MIN_ADDRESS)
423 fence = VM_MIN_ADDRESS;
425 /* search back for previous return */
426 for (start_pc -= 4; ; start_pc -= 4)
427 if (start_pc < fence)
429 /* It's not clear to me why we reach this point when
430 stop_soon_quietly, but with this test, at least we
431 don't print out warnings for every child forked (eg, on
433 if (!stop_soon_quietly)
435 static int blurb_printed = 0;
437 if (fence == VM_MIN_ADDRESS)
438 warning("Hit beginning of text section without finding");
440 warning("Hit heuristic-fence-post without finding");
442 warning("enclosing function for address 0x%lx", pc);
446 This warning occurs if you are debugging a function without any symbols\n\
447 (for example, in a stripped executable). In that case, you may wish to\n\
448 increase the size of the search with the `set heuristic-fence-post' command.\n\
450 Otherwise, you told GDB there was a function where there isn't one, or\n\
451 (more likely) you have encountered a bug in GDB.\n");
458 else if (alpha_about_to_return (start_pc))
461 start_pc += 4; /* skip return */
465 static alpha_extra_func_info_t
466 heuristic_proc_desc(start_pc, limit_pc, next_frame)
467 CORE_ADDR start_pc, limit_pc;
468 struct frame_info *next_frame;
470 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
473 int has_frame_reg = 0;
474 unsigned long reg_mask = 0;
479 memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
480 memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
481 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
483 if (start_pc + 200 < limit_pc)
484 limit_pc = start_pc + 200;
486 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
492 status = read_memory_nobpt (cur_pc, buf, 4);
494 memory_error (status, cur_pc);
495 word = extract_unsigned_integer (buf, 4);
497 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
500 frame_size += (-word) & 0xffff;
502 /* Exit loop if a positive stack adjustment is found, which
503 usually means that the stack cleanup code in the function
504 epilogue is reached. */
507 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
508 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
510 int reg = (word & 0x03e00000) >> 21;
511 reg_mask |= 1 << reg;
512 temp_saved_regs.regs[reg] = sp + (short)word;
514 /* Starting with OSF/1-3.2C, the system libraries are shipped
515 without local symbols, but they still contain procedure
516 descriptors without a symbol reference. GDB is currently
517 unable to find these procedure descriptors and uses
518 heuristic_proc_desc instead.
519 As some low level compiler support routines (__div*, __add*)
520 use a non-standard return address register, we have to
521 add some heuristics to determine the return address register,
522 or stepping over these routines will fail.
523 Usually the return address register is the first register
524 saved on the stack, but assembler optimization might
525 rearrange the register saves.
526 So we recognize only a few registers (t7, t9, ra) within
527 the procedure prologue as valid return address registers.
528 If we encounter a return instruction, we extract the
529 the return address register from it.
531 FIXME: Rewriting GDB to access the procedure descriptors,
532 e.g. via the minimal symbol table, might obviate this hack. */
534 && cur_pc < (start_pc + 80)
535 && (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM))
538 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
539 pcreg = (word >> 16) & 0x1f;
540 else if (word == 0x47de040f) /* bis sp,sp fp */
545 /* If we haven't found a valid return address register yet,
546 keep searching in the procedure prologue. */
547 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
552 if (read_memory_nobpt (cur_pc, buf, 4))
555 word = extract_unsigned_integer (buf, 4);
557 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
558 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
560 int reg = (word & 0x03e00000) >> 21;
561 if (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM)
567 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
569 pcreg = (word >> 16) & 0x1f;
576 PROC_FRAME_REG(&temp_proc_desc) = GCC_FP_REGNUM;
578 PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
579 PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
580 PROC_REG_MASK(&temp_proc_desc) = reg_mask;
581 PROC_PC_REG(&temp_proc_desc) = (pcreg == -1) ? RA_REGNUM : pcreg;
582 PROC_LOCALOFF(&temp_proc_desc) = 0; /* XXX - bogus */
583 return &temp_proc_desc;
586 /* This returns the PC of the first inst after the prologue. If we can't
587 find the prologue, then return 0. */
590 after_prologue (pc, proc_desc)
592 alpha_extra_func_info_t proc_desc;
594 struct symtab_and_line sal;
595 CORE_ADDR func_addr, func_end;
598 proc_desc = find_proc_desc (pc, NULL);
602 if (PROC_DESC_IS_DYN_SIGTRAMP (proc_desc))
603 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
605 /* If function is frameless, then we need to do it the hard way. I
606 strongly suspect that frameless always means prologueless... */
607 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
608 && PROC_FRAME_OFFSET (proc_desc) == 0)
612 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
613 return 0; /* Unknown */
615 sal = find_pc_line (func_addr, 0);
617 if (sal.end < func_end)
620 /* The line after the prologue is after the end of the function. In this
621 case, tell the caller to find the prologue the hard way. */
626 /* Return non-zero if we *might* be in a function prologue. Return zero if we
627 are definitively *not* in a function prologue. */
630 alpha_in_prologue (pc, proc_desc)
632 alpha_extra_func_info_t proc_desc;
634 CORE_ADDR after_prologue_pc;
636 after_prologue_pc = after_prologue (pc, proc_desc);
638 if (after_prologue_pc == 0
639 || pc < after_prologue_pc)
645 static alpha_extra_func_info_t
646 find_proc_desc (pc, next_frame)
648 struct frame_info *next_frame;
650 alpha_extra_func_info_t proc_desc;
655 /* Try to get the proc_desc from the linked call dummy proc_descs
656 if the pc is in the call dummy.
657 This is hairy. In the case of nested dummy calls we have to find the
658 right proc_desc, but we might not yet know the frame for the dummy
659 as it will be contained in the proc_desc we are searching for.
660 So we have to find the proc_desc whose frame is closest to the current
663 if (PC_IN_CALL_DUMMY (pc, 0, 0))
665 struct linked_proc_info *link;
666 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
667 alpha_extra_func_info_t found_proc_desc = NULL;
668 long min_distance = LONG_MAX;
670 for (link = linked_proc_desc_table; link; link = link->next)
672 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
673 if (distance > 0 && distance < min_distance)
675 min_distance = distance;
676 found_proc_desc = &link->info;
679 if (found_proc_desc != NULL)
680 return found_proc_desc;
683 b = block_for_pc(pc);
685 find_pc_partial_function (pc, NULL, &startaddr, NULL);
690 if (startaddr > BLOCK_START (b))
691 /* This is the "pathological" case referred to in a comment in
692 print_frame_info. It might be better to move this check into
696 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
700 /* If we never found a PDR for this function in symbol reading, then
701 examine prologues to find the information. */
702 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
707 /* IF this is the topmost frame AND
708 * (this proc does not have debugging information OR
709 * the PC is in the procedure prologue)
710 * THEN create a "heuristic" proc_desc (by analyzing
711 * the actual code) to replace the "official" proc_desc.
713 proc_desc = (alpha_extra_func_info_t)SYMBOL_VALUE(sym);
714 if (next_frame == NULL)
716 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
718 alpha_extra_func_info_t found_heuristic =
719 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
723 PROC_LOCALOFF (found_heuristic) =
724 PROC_LOCALOFF (proc_desc);
725 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
726 proc_desc = found_heuristic;
735 /* Is linked_proc_desc_table really necessary? It only seems to be used
736 by procedure call dummys. However, the procedures being called ought
737 to have their own proc_descs, and even if they don't,
738 heuristic_proc_desc knows how to create them! */
740 register struct linked_proc_info *link;
741 for (link = linked_proc_desc_table; link; link = link->next)
742 if (PROC_LOW_ADDR(&link->info) <= pc
743 && PROC_HIGH_ADDR(&link->info) > pc)
746 /* If PC is inside a dynamically generated sigtramp handler,
747 create and push a procedure descriptor for that code: */
748 offset = DYNAMIC_SIGTRAMP_OFFSET (pc);
750 return push_sigtramp_desc (pc - offset);
752 /* If heuristic_fence_post is non-zero, determine the procedure
753 start address by examining the instructions.
754 This allows us to find the start address of static functions which
755 have no symbolic information, as startaddr would have been set to
756 the preceding global function start address by the
757 find_pc_partial_function call above. */
758 if (startaddr == 0 || heuristic_fence_post != 0)
759 startaddr = heuristic_proc_start (pc);
762 heuristic_proc_desc (startaddr, pc, next_frame);
767 alpha_extra_func_info_t cached_proc_desc;
770 alpha_frame_chain(frame)
771 struct frame_info *frame;
773 alpha_extra_func_info_t proc_desc;
774 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
776 if (saved_pc == 0 || inside_entry_file (saved_pc))
779 proc_desc = find_proc_desc(saved_pc, frame);
783 cached_proc_desc = proc_desc;
785 /* Fetch the frame pointer for a dummy frame from the procedure
787 if (PROC_DESC_IS_DUMMY(proc_desc))
788 return (CORE_ADDR) PROC_DUMMY_FRAME(proc_desc);
790 /* If no frame pointer and frame size is zero, we must be at end
791 of stack (or otherwise hosed). If we don't check frame size,
792 we loop forever if we see a zero size frame. */
793 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
794 && PROC_FRAME_OFFSET (proc_desc) == 0
795 /* The previous frame from a sigtramp frame might be frameless
796 and have frame size zero. */
797 && !frame->signal_handler_caller)
798 return FRAME_PAST_SIGTRAMP_FRAME (frame, saved_pc);
800 return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
801 + PROC_FRAME_OFFSET(proc_desc);
805 init_extra_frame_info (frame)
806 struct frame_info *frame;
808 /* Use proc_desc calculated in frame_chain */
809 alpha_extra_func_info_t proc_desc =
810 frame->next ? cached_proc_desc : find_proc_desc(frame->pc, frame->next);
812 frame->saved_regs = NULL;
814 frame->pc_reg = RA_REGNUM;
815 frame->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
818 /* Get the locals offset and the saved pc register from the
819 procedure descriptor, they are valid even if we are in the
820 middle of the prologue. */
821 frame->localoff = PROC_LOCALOFF(proc_desc);
822 frame->pc_reg = PROC_PC_REG(proc_desc);
824 /* Fixup frame-pointer - only needed for top frame */
826 /* Fetch the frame pointer for a dummy frame from the procedure
828 if (PROC_DESC_IS_DUMMY(proc_desc))
829 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME(proc_desc);
831 /* This may not be quite right, if proc has a real frame register.
832 Get the value of the frame relative sp, procedure might have been
833 interrupted by a signal at it's very start. */
834 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
835 && !PROC_DESC_IS_DYN_SIGTRAMP (proc_desc))
836 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
838 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
839 + PROC_FRAME_OFFSET (proc_desc);
841 if (proc_desc == &temp_proc_desc)
845 /* Do not set the saved registers for a sigtramp frame,
846 alpha_find_saved_registers will do that for us.
847 We can't use frame->signal_handler_caller, it is not yet set. */
848 find_pc_partial_function (frame->pc, &name,
849 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
850 if (!IN_SIGTRAMP (frame->pc, name))
852 frame->saved_regs = (CORE_ADDR*)
853 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
854 memcpy (frame->saved_regs, temp_saved_regs.regs, SIZEOF_FRAME_SAVED_REGS);
855 frame->saved_regs[PC_REGNUM]
856 = frame->saved_regs[RA_REGNUM];
862 /* ALPHA stack frames are almost impenetrable. When execution stops,
863 we basically have to look at symbol information for the function
864 that we stopped in, which tells us *which* register (if any) is
865 the base of the frame pointer, and what offset from that register
866 the frame itself is at.
868 This presents a problem when trying to examine a stack in memory
869 (that isn't executing at the moment), using the "frame" command. We
870 don't have a PC, nor do we have any registers except SP.
872 This routine takes two arguments, SP and PC, and tries to make the
873 cached frames look as if these two arguments defined a frame on the
874 cache. This allows the rest of info frame to extract the important
875 arguments without difficulty. */
878 setup_arbitrary_frame (argc, argv)
883 error ("ALPHA frame specifications require two arguments: sp and pc");
885 return create_new_frame (argv[0], argv[1]);
888 /* The alpha passes the first six arguments in the registers, the rest on
889 the stack. The register arguments are eventually transferred to the
890 argument transfer area immediately below the stack by the called function
891 anyway. So we `push' at least six arguments on the stack, `reload' the
892 argument registers and then adjust the stack pointer to point past the
893 sixth argument. This algorithm simplifies the passing of a large struct
894 which extends from the registers to the stack.
895 If the called function is returning a structure, the address of the
896 structure to be returned is passed as a hidden first argument. */
899 alpha_push_arguments (nargs, args, sp, struct_return, struct_addr)
904 CORE_ADDR struct_addr;
907 int accumulate_size = struct_return ? 8 : 0;
908 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
909 struct alpha_arg { char *contents; int len; int offset; };
910 struct alpha_arg *alpha_args =
911 (struct alpha_arg*)alloca (nargs * sizeof (struct alpha_arg));
912 register struct alpha_arg *m_arg;
913 char raw_buffer[sizeof (CORE_ADDR)];
914 int required_arg_regs;
916 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
918 value_ptr arg = args[i];
919 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
920 /* Cast argument to long if necessary as the compiler does it too. */
921 switch (TYPE_CODE (arg_type))
926 case TYPE_CODE_RANGE:
928 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
930 arg_type = builtin_type_long;
931 arg = value_cast (arg_type, arg);
937 m_arg->len = TYPE_LENGTH (arg_type);
938 m_arg->offset = accumulate_size;
939 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
940 m_arg->contents = VALUE_CONTENTS(arg);
943 /* Determine required argument register loads, loading an argument register
944 is expensive as it uses three ptrace calls. */
945 required_arg_regs = accumulate_size / 8;
946 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
947 required_arg_regs = ALPHA_NUM_ARG_REGS;
949 /* Make room for the arguments on the stack. */
950 if (accumulate_size < arg_regs_size)
951 accumulate_size = arg_regs_size;
952 sp -= accumulate_size;
954 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
957 /* `Push' arguments on the stack. */
958 for (i = nargs; m_arg--, --i >= 0; )
959 write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
962 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
963 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
966 /* Load the argument registers. */
967 for (i = 0; i < required_arg_regs; i++)
971 val = read_memory_integer (sp + i * 8, 8);
972 write_register (A0_REGNUM + i, val);
973 write_register (FPA0_REGNUM + i, val);
976 return sp + arg_regs_size;
980 alpha_push_dummy_frame()
983 struct linked_proc_info *link;
984 alpha_extra_func_info_t proc_desc;
985 CORE_ADDR sp = read_register (SP_REGNUM);
986 CORE_ADDR save_address;
987 char raw_buffer[MAX_REGISTER_RAW_SIZE];
990 link = (struct linked_proc_info *) xmalloc(sizeof (struct linked_proc_info));
991 link->next = linked_proc_desc_table;
992 linked_proc_desc_table = link;
994 proc_desc = &link->info;
997 * The registers we must save are all those not preserved across
999 * In addition, we must save the PC and RA.
1001 * Dummy frame layout:
1011 * Parameter build area
1015 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1016 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1017 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1018 #define GEN_REG_SAVE_COUNT 24
1019 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1020 #define FLOAT_REG_SAVE_COUNT 23
1021 /* The special register is the PC as we have no bit for it in the save masks.
1022 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1023 #define SPECIAL_REG_SAVE_COUNT 1
1025 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
1026 PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
1027 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1028 but keep SP aligned to a multiple of 16. */
1029 PROC_REG_OFFSET(proc_desc) =
1030 - ((8 * (SPECIAL_REG_SAVE_COUNT
1031 + GEN_REG_SAVE_COUNT
1032 + FLOAT_REG_SAVE_COUNT)
1034 PROC_FREG_OFFSET(proc_desc) =
1035 PROC_REG_OFFSET(proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1037 /* Save general registers.
1038 The return address register is the first saved register, all other
1039 registers follow in ascending order.
1040 The PC is saved immediately below the SP. */
1041 save_address = sp + PROC_REG_OFFSET(proc_desc);
1042 store_address (raw_buffer, 8, read_register (RA_REGNUM));
1043 write_memory (save_address, raw_buffer, 8);
1045 mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
1046 for (ireg = 0; mask; ireg++, mask >>= 1)
1049 if (ireg == RA_REGNUM)
1051 store_address (raw_buffer, 8, read_register (ireg));
1052 write_memory (save_address, raw_buffer, 8);
1056 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1057 write_memory (sp - 8, raw_buffer, 8);
1059 /* Save floating point registers. */
1060 save_address = sp + PROC_FREG_OFFSET(proc_desc);
1061 mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
1062 for (ireg = 0; mask; ireg++, mask >>= 1)
1065 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1066 write_memory (save_address, raw_buffer, 8);
1070 /* Set and save the frame address for the dummy.
1071 This is tricky. The only registers that are suitable for a frame save
1072 are those that are preserved across procedure calls (s0-s6). But if
1073 a read system call is interrupted and then a dummy call is made
1074 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1075 is satisfied. Then it returns with the s0-s6 registers set to the values
1076 on entry to the read system call and our dummy frame pointer would be
1077 destroyed. So we save the dummy frame in the proc_desc and handle the
1078 retrieval of the frame pointer of a dummy specifically. The frame register
1079 is set to the virtual frame (pseudo) register, it's value will always
1080 be read as zero and will help us to catch any errors in the dummy frame
1082 PROC_DUMMY_FRAME(proc_desc) = sp;
1083 PROC_FRAME_REG(proc_desc) = FP_REGNUM;
1084 PROC_FRAME_OFFSET(proc_desc) = 0;
1085 sp += PROC_REG_OFFSET(proc_desc);
1086 write_register (SP_REGNUM, sp);
1088 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS ();
1089 PROC_HIGH_ADDR(proc_desc) = PROC_LOW_ADDR(proc_desc) + 4;
1091 SET_PROC_DESC_IS_DUMMY(proc_desc);
1092 PROC_PC_REG(proc_desc) = RA_REGNUM;
1098 register int regnum;
1099 struct frame_info *frame = get_current_frame ();
1100 CORE_ADDR new_sp = frame->frame;
1102 alpha_extra_func_info_t proc_desc = frame->proc_desc;
1104 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
1105 if (frame->saved_regs == NULL)
1106 alpha_find_saved_regs (frame);
1109 for (regnum = 32; --regnum >= 0; )
1110 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
1111 write_register (regnum,
1112 read_memory_integer (frame->saved_regs[regnum],
1114 for (regnum = 32; --regnum >= 0; )
1115 if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
1116 write_register (regnum + FP0_REGNUM,
1117 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1119 write_register (SP_REGNUM, new_sp);
1120 flush_cached_frames ();
1122 if (proc_desc && (PROC_DESC_IS_DUMMY(proc_desc)
1123 || PROC_DESC_IS_DYN_SIGTRAMP (proc_desc)))
1125 struct linked_proc_info *pi_ptr, *prev_ptr;
1127 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1129 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1131 if (&pi_ptr->info == proc_desc)
1136 error ("Can't locate dummy extra frame info\n");
1138 if (prev_ptr != NULL)
1139 prev_ptr->next = pi_ptr->next;
1141 linked_proc_desc_table = pi_ptr->next;
1147 /* To skip prologues, I use this predicate. Returns either PC itself
1148 if the code at PC does not look like a function prologue; otherwise
1149 returns an address that (if we're lucky) follows the prologue. If
1150 LENIENT, then we must skip everything which is involved in setting
1151 up the frame (it's OK to skip more, just so long as we don't skip
1152 anything which might clobber the registers which are being saved.
1153 Currently we must not skip more on the alpha, but we might the lenient
1157 alpha_skip_prologue (pc, lenient)
1163 CORE_ADDR post_prologue_pc;
1166 #ifdef GDB_TARGET_HAS_SHARED_LIBS
1167 /* Silently return the unaltered pc upon memory errors.
1168 This could happen on OSF/1 if decode_line_1 tries to skip the
1169 prologue for quickstarted shared library functions when the
1170 shared library is not yet mapped in.
1171 Reading target memory is slow over serial lines, so we perform
1172 this check only if the target has shared libraries. */
1173 if (target_read_memory (pc, buf, 4))
1177 /* See if we can determine the end of the prologue via the symbol table.
1178 If so, then return either PC, or the PC after the prologue, whichever
1181 post_prologue_pc = after_prologue (pc, NULL);
1183 if (post_prologue_pc != 0)
1184 return max (pc, post_prologue_pc);
1186 /* Can't determine prologue from the symbol table, need to examine
1189 /* Skip the typical prologue instructions. These are the stack adjustment
1190 instruction and the instructions that save registers on the stack
1191 or in the gcc frame. */
1192 for (offset = 0; offset < 100; offset += 4)
1196 status = read_memory_nobpt (pc + offset, buf, 4);
1198 memory_error (status, pc + offset);
1199 inst = extract_unsigned_integer (buf, 4);
1201 /* The alpha has no delay slots. But let's keep the lenient stuff,
1202 we might need it for something else in the future. */
1206 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1208 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1210 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1212 else if ((inst & 0xfc1f0000) == 0xb41e0000
1213 && (inst & 0xffff0000) != 0xb7fe0000)
1214 continue; /* stq reg,n($sp) */
1216 else if ((inst & 0xfc1f0000) == 0x9c1e0000
1217 && (inst & 0xffff0000) != 0x9ffe0000)
1218 continue; /* stt reg,n($sp) */
1220 else if (inst == 0x47de040f) /* bis sp,sp,fp */
1229 /* Is address PC in the prologue (loosely defined) for function at
1233 alpha_in_lenient_prologue (startaddr, pc)
1234 CORE_ADDR startaddr;
1237 CORE_ADDR end_prologue = alpha_skip_prologue (startaddr, 1);
1238 return pc >= startaddr && pc < end_prologue;
1242 /* The alpha needs a conversion between register and memory format if
1243 the register is a floating point register and
1244 memory format is float, as the register format must be double
1246 memory format is an integer with 4 bytes or less, as the representation
1247 of integers in floating point registers is different. */
1249 alpha_register_convert_to_virtual (regnum, valtype, raw_buffer, virtual_buffer)
1251 struct type *valtype;
1253 char *virtual_buffer;
1255 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1257 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1261 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1263 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1264 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1266 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1269 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1270 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1271 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1274 error ("Cannot retrieve value from floating point register");
1278 alpha_register_convert_to_raw (valtype, regnum, virtual_buffer, raw_buffer)
1279 struct type *valtype;
1281 char *virtual_buffer;
1284 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1286 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1290 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1292 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1293 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1295 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1298 if (TYPE_UNSIGNED (valtype))
1299 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1301 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1302 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1303 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1306 error ("Cannot store value in floating point register");
1309 /* Given a return value in `regbuf' with a type `valtype',
1310 extract and copy its value into `valbuf'. */
1313 alpha_extract_return_value (valtype, regbuf, valbuf)
1314 struct type *valtype;
1315 char regbuf[REGISTER_BYTES];
1318 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1319 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1320 regbuf + REGISTER_BYTE (FP0_REGNUM),
1323 memcpy (valbuf, regbuf + REGISTER_BYTE (V0_REGNUM), TYPE_LENGTH (valtype));
1326 /* Given a return value in `regbuf' with a type `valtype',
1327 write its value into the appropriate register. */
1330 alpha_store_return_value (valtype, valbuf)
1331 struct type *valtype;
1334 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1335 int regnum = V0_REGNUM;
1336 int length = TYPE_LENGTH (valtype);
1338 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1340 regnum = FP0_REGNUM;
1341 length = REGISTER_RAW_SIZE (regnum);
1342 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1345 memcpy (raw_buffer, valbuf, length);
1347 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1350 /* Just like reinit_frame_cache, but with the right arguments to be
1351 callable as an sfunc. */
1354 reinit_frame_cache_sfunc (args, from_tty, c)
1357 struct cmd_list_element *c;
1359 reinit_frame_cache ();
1362 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1363 to find a convenient place in the text segment to stick a breakpoint to
1364 detect the completion of a target function call (ala call_function_by_hand).
1368 alpha_call_dummy_address ()
1371 struct minimal_symbol *sym;
1373 entry = entry_point_address ();
1378 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1380 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1383 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1387 _initialize_alpha_tdep ()
1389 struct cmd_list_element *c;
1391 tm_print_insn = print_insn_alpha;
1393 /* Let the user set the fence post for heuristic_proc_start. */
1395 /* We really would like to have both "0" and "unlimited" work, but
1396 command.c doesn't deal with that. So make it a var_zinteger
1397 because the user can always use "999999" or some such for unlimited. */
1398 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1399 (char *) &heuristic_fence_post,
1401 Set the distance searched for the start of a function.\n\
1402 If you are debugging a stripped executable, GDB needs to search through the\n\
1403 program for the start of a function. This command sets the distance of the\n\
1404 search. The only need to set it is when debugging a stripped executable.",
1406 /* We need to throw away the frame cache when we set this, since it
1407 might change our ability to get backtraces. */
1408 c->function.sfunc = reinit_frame_cache_sfunc;
1409 add_show_from_set (c, &showlist);