1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
35 #include "gdbthread.h"
39 #include "python/python.h"
40 #include "python/python-internal.h"
45 /* Non-zero if we want to see trace of varobj level stuff. */
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
72 /* Block for which this expression is valid */
73 struct block *valid_block;
75 /* The frame for this expression. This field is set iff valid_block is
77 struct frame_id frame;
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
101 /* Next root variable */
102 struct varobj_root *next;
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
125 /* Index of this variable in its parent or -1 */
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
139 /* The number of (immediate) children this variable has */
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
145 /* Children of this object. */
146 VEC (varobj_p) *children;
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
152 int children_requested;
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
160 /* Was this variable updated via a varobj_set_value operation */
163 /* Last print value. */
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
184 struct cpstack *next;
187 /* A list of varobjs */
195 /* Private function prototypes */
197 /* Helper functions for the above subcommands. */
199 static int delete_variable (struct cpstack **, struct varobj *, int);
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
204 static int install_variable (struct varobj *);
206 static void uninstall_variable (struct varobj *);
208 static struct varobj *create_child (struct varobj *, int, char *);
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
214 /* Utility routines */
216 static struct varobj *new_variable (void);
218 static struct varobj *new_root_variable (void);
220 static void free_variable (struct varobj *var);
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
224 static struct type *get_type (struct varobj *var);
226 static struct type *get_value_type (struct varobj *var);
228 static struct type *get_target_type (struct type *);
230 static enum varobj_display_formats variable_default_display (struct varobj *);
232 static void cppush (struct cpstack **pstack, char *name);
234 static char *cppop (struct cpstack **pstack);
236 static int install_new_value (struct varobj *var, struct value *value,
239 static void install_default_visualizer (struct varobj *var);
241 /* Language-specific routines. */
243 static enum varobj_languages variable_language (struct varobj *var);
245 static int number_of_children (struct varobj *);
247 static char *name_of_variable (struct varobj *);
249 static char *name_of_child (struct varobj *, int);
251 static struct value *value_of_root (struct varobj **var_handle, int *);
253 static struct value *value_of_child (struct varobj *parent, int index);
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
260 PyObject *value_formatter);
262 static int varobj_value_is_changeable_p (struct varobj *var);
264 static int is_root_p (struct varobj *var);
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
269 /* C implementation */
271 static int c_number_of_children (struct varobj *var);
273 static char *c_name_of_variable (struct varobj *parent);
275 static char *c_name_of_child (struct varobj *parent, int index);
277 static char *c_path_expr_of_child (struct varobj *child);
279 static struct value *c_value_of_root (struct varobj **var_handle);
281 static struct value *c_value_of_child (struct varobj *parent, int index);
283 static struct type *c_type_of_child (struct varobj *parent, int index);
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
288 /* C++ implementation */
290 static int cplus_number_of_children (struct varobj *var);
292 static void cplus_class_num_children (struct type *type, int children[3]);
294 static char *cplus_name_of_variable (struct varobj *parent);
296 static char *cplus_name_of_child (struct varobj *parent, int index);
298 static char *cplus_path_expr_of_child (struct varobj *child);
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
309 /* Java implementation */
311 static int java_number_of_children (struct varobj *var);
313 static char *java_name_of_variable (struct varobj *parent);
315 static char *java_name_of_child (struct varobj *parent, int index);
317 static char *java_path_expr_of_child (struct varobj *child);
319 static struct value *java_value_of_root (struct varobj **var_handle);
321 static struct value *java_value_of_child (struct varobj *parent, int index);
323 static struct type *java_type_of_child (struct varobj *parent, int index);
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
328 /* The language specific vector */
330 struct language_specific
333 /* The language of this variable */
334 enum varobj_languages language;
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
368 c_number_of_children,
371 c_path_expr_of_child,
380 c_number_of_children,
383 c_path_expr_of_child,
392 cplus_number_of_children,
393 cplus_name_of_variable,
395 cplus_path_expr_of_child,
397 cplus_value_of_child,
399 cplus_value_of_variable}
404 java_number_of_children,
405 java_name_of_variable,
407 java_path_expr_of_child,
411 java_value_of_variable}
414 /* A little convenience enum for dealing with C++/Java */
417 v_public = 0, v_private, v_protected
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
427 static int rootcount = 0; /* number of root varobjs in the list */
429 /* Prime number indicating the number of buckets in the hash table */
430 /* A prime large enough to avoid too many colisions */
431 #define VAROBJ_TABLE_SIZE 227
433 /* Pointer to the varobj hash table (built at run time) */
434 static struct vlist **varobj_table;
436 /* Is the variable X one of our "fake" children? */
437 #define CPLUS_FAKE_CHILD(x) \
438 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
441 /* API Implementation */
443 is_root_p (struct varobj *var)
445 return (var->root->rootvar == var);
448 /* Creates a varobj (not its children) */
450 /* Return the full FRAME which corresponds to the given CORE_ADDR
451 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
453 static struct frame_info *
454 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
456 struct frame_info *frame = NULL;
458 if (frame_addr == (CORE_ADDR) 0)
461 for (frame = get_current_frame ();
463 frame = get_prev_frame (frame))
465 if (get_frame_base_address (frame) == frame_addr)
473 varobj_create (char *objname,
474 char *expression, CORE_ADDR frame, enum varobj_type type)
477 struct frame_info *fi;
478 struct frame_info *old_fi = NULL;
480 struct cleanup *old_chain;
482 /* Fill out a varobj structure for the (root) variable being constructed. */
483 var = new_root_variable ();
484 old_chain = make_cleanup_free_variable (var);
486 if (expression != NULL)
489 enum varobj_languages lang;
490 struct value *value = NULL;
492 /* Parse and evaluate the expression, filling in as much of the
493 variable's data as possible. */
495 if (has_stack_frames ())
497 /* Allow creator to specify context of variable */
498 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
499 fi = get_selected_frame (NULL);
501 /* FIXME: cagney/2002-11-23: This code should be doing a
502 lookup using the frame ID and not just the frame's
503 ``address''. This, of course, means an interface
504 change. However, with out that interface change ISAs,
505 such as the ia64 with its two stacks, won't work.
506 Similar goes for the case where there is a frameless
508 fi = find_frame_addr_in_frame_chain (frame);
513 /* frame = -2 means always use selected frame */
514 if (type == USE_SELECTED_FRAME)
515 var->root->floating = 1;
519 block = get_frame_block (fi, 0);
522 innermost_block = NULL;
523 /* Wrap the call to parse expression, so we can
524 return a sensible error. */
525 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
530 /* Don't allow variables to be created for types. */
531 if (var->root->exp->elts[0].opcode == OP_TYPE)
533 do_cleanups (old_chain);
534 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
535 " as an expression.\n");
539 var->format = variable_default_display (var);
540 var->root->valid_block = innermost_block;
541 var->name = xstrdup (expression);
542 /* For a root var, the name and the expr are the same. */
543 var->path_expr = xstrdup (expression);
545 /* When the frame is different from the current frame,
546 we must select the appropriate frame before parsing
547 the expression, otherwise the value will not be current.
548 Since select_frame is so benign, just call it for all cases. */
549 if (innermost_block && fi != NULL)
551 var->root->frame = get_frame_id (fi);
552 var->root->thread_id = pid_to_thread_id (inferior_ptid);
553 old_fi = get_selected_frame (NULL);
557 /* We definitely need to catch errors here.
558 If evaluate_expression succeeds we got the value we wanted.
559 But if it fails, we still go on with a call to evaluate_type() */
560 if (!gdb_evaluate_expression (var->root->exp, &value))
562 /* Error getting the value. Try to at least get the
564 struct value *type_only_value = evaluate_type (var->root->exp);
565 var->type = value_type (type_only_value);
568 var->type = value_type (value);
570 install_new_value (var, value, 1 /* Initial assignment */);
572 /* Set language info */
573 lang = variable_language (var);
574 var->root->lang = &languages[lang];
576 /* Set ourselves as our root */
577 var->root->rootvar = var;
579 /* Reset the selected frame */
581 select_frame (old_fi);
584 /* If the variable object name is null, that means this
585 is a temporary variable, so don't install it. */
587 if ((var != NULL) && (objname != NULL))
589 var->obj_name = xstrdup (objname);
591 /* If a varobj name is duplicated, the install will fail so
593 if (!install_variable (var))
595 do_cleanups (old_chain);
600 install_default_visualizer (var);
601 discard_cleanups (old_chain);
605 /* Generates an unique name that can be used for a varobj */
608 varobj_gen_name (void)
613 /* generate a name for this object */
615 obj_name = xstrprintf ("var%d", id);
620 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
621 error if OBJNAME cannot be found. */
624 varobj_get_handle (char *objname)
628 unsigned int index = 0;
631 for (chp = objname; *chp; chp++)
633 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
636 cv = *(varobj_table + index);
637 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
641 error (_("Variable object not found"));
646 /* Given the handle, return the name of the object */
649 varobj_get_objname (struct varobj *var)
651 return var->obj_name;
654 /* Given the handle, return the expression represented by the object */
657 varobj_get_expression (struct varobj *var)
659 return name_of_variable (var);
662 /* Deletes a varobj and all its children if only_children == 0,
663 otherwise deletes only the children; returns a malloc'ed list of all the
664 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
667 varobj_delete (struct varobj *var, char ***dellist, int only_children)
671 struct cpstack *result = NULL;
674 /* Initialize a stack for temporary results */
675 cppush (&result, NULL);
678 /* Delete only the variable children */
679 delcount = delete_variable (&result, var, 1 /* only the children */ );
681 /* Delete the variable and all its children */
682 delcount = delete_variable (&result, var, 0 /* parent+children */ );
684 /* We may have been asked to return a list of what has been deleted */
687 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
691 *cp = cppop (&result);
692 while ((*cp != NULL) && (mycount > 0))
696 *cp = cppop (&result);
699 if (mycount || (*cp != NULL))
700 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
707 /* Convenience function for varobj_set_visualizer. Instantiate a
708 pretty-printer for a given value. */
710 instantiate_pretty_printer (PyObject *constructor, struct value *value)
713 PyObject *val_obj = NULL;
715 volatile struct gdb_exception except;
717 TRY_CATCH (except, RETURN_MASK_ALL)
719 value = value_copy (value);
721 GDB_PY_HANDLE_EXCEPTION (except);
722 val_obj = value_to_value_object (value);
727 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
734 /* Set/Get variable object display format */
736 enum varobj_display_formats
737 varobj_set_display_format (struct varobj *var,
738 enum varobj_display_formats format)
745 case FORMAT_HEXADECIMAL:
747 var->format = format;
751 var->format = variable_default_display (var);
754 if (varobj_value_is_changeable_p (var)
755 && var->value && !value_lazy (var->value))
757 xfree (var->print_value);
758 var->print_value = value_get_print_value (var->value, var->format,
759 var->pretty_printer);
765 enum varobj_display_formats
766 varobj_get_display_format (struct varobj *var)
772 varobj_get_display_hint (struct varobj *var)
777 PyGILState_STATE state = PyGILState_Ensure ();
778 if (var->pretty_printer)
779 result = gdbpy_get_display_hint (var->pretty_printer);
780 PyGILState_Release (state);
786 /* If the variable object is bound to a specific thread, that
787 is its evaluation can always be done in context of a frame
788 inside that thread, returns GDB id of the thread -- which
789 is always positive. Otherwise, returns -1. */
791 varobj_get_thread_id (struct varobj *var)
793 if (var->root->valid_block && var->root->thread_id > 0)
794 return var->root->thread_id;
800 varobj_set_frozen (struct varobj *var, int frozen)
802 /* When a variable is unfrozen, we don't fetch its value.
803 The 'not_fetched' flag remains set, so next -var-update
806 We don't fetch the value, because for structures the client
807 should do -var-update anyway. It would be bad to have different
808 client-size logic for structure and other types. */
809 var->frozen = frozen;
813 varobj_get_frozen (struct varobj *var)
819 update_dynamic_varobj_children (struct varobj *var,
820 VEC (varobj_p) **changed,
821 VEC (varobj_p) **new_and_unchanged,
826 /* FIXME: we *might* want to provide this functionality as
827 a standalone function, so that other interested parties
828 than varobj code can benefit for this. */
829 struct cleanup *back_to;
833 int children_changed = 0;
834 PyObject *printer = var->pretty_printer;
835 PyGILState_STATE state;
837 state = PyGILState_Ensure ();
838 back_to = make_cleanup_py_restore_gil (&state);
841 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
843 do_cleanups (back_to);
847 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
852 gdbpy_print_stack ();
853 error (_("Null value returned for children"));
856 make_cleanup_py_decref (children);
858 if (!PyIter_Check (children))
859 error (_("Returned value is not iterable"));
861 iterator = PyObject_GetIter (children);
864 gdbpy_print_stack ();
865 error (_("Could not get children iterator"));
867 make_cleanup_py_decref (iterator);
871 PyObject *item = PyIter_Next (iterator);
875 struct cleanup *inner;
879 inner = make_cleanup_py_decref (item);
881 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
882 error (_("Invalid item from the child list"));
884 if (PyObject_TypeCheck (py_v, &value_object_type))
886 /* If we just call convert_value_from_python for this type,
887 we won't know who owns the result. For this one case we
888 need to copy the resulting value. */
889 v = value_object_to_value (py_v);
893 v = convert_value_from_python (py_v);
895 /* TODO: This assume the name of the i-th child never changes. */
897 /* Now see what to do here. */
898 if (VEC_length (varobj_p, var->children) < i + 1)
900 /* There's no child yet. */
901 struct varobj *child = varobj_add_child (var, name, v);
902 if (new_and_unchanged)
903 VEC_safe_push (varobj_p, *new_and_unchanged, child);
904 children_changed = 1;
908 varobj_p existing = VEC_index (varobj_p, var->children, i);
909 if (install_new_value (existing, v, 0) && changed)
912 VEC_safe_push (varobj_p, *changed, existing);
916 if (new_and_unchanged)
917 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
924 if (i < VEC_length (varobj_p, var->children))
927 children_changed = 1;
928 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
929 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
931 VEC_truncate (varobj_p, var->children, i);
932 var->num_children = VEC_length (varobj_p, var->children);
934 do_cleanups (back_to);
936 *cchanged = children_changed;
939 gdb_assert (0 && "should never be called if Python is not enabled");
944 varobj_get_num_children (struct varobj *var)
946 if (var->num_children == -1)
949 if (!var->pretty_printer
950 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
951 var->num_children = number_of_children (var);
954 return var->num_children;
957 /* Creates a list of the immediate children of a variable object;
958 the return code is the number of such children or -1 on error */
961 varobj_list_children (struct varobj *var)
963 struct varobj *child;
965 int i, children_changed;
967 var->children_requested = 1;
969 if (var->pretty_printer
970 /* This, in theory, can result in the number of children changing without
971 frontend noticing. But well, calling -var-list-children on the same
972 varobj twice is not something a sane frontend would do. */
973 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
974 return var->children;
976 if (var->num_children == -1)
977 var->num_children = number_of_children (var);
979 /* If that failed, give up. */
980 if (var->num_children == -1)
981 return var->children;
983 /* If we're called when the list of children is not yet initialized,
984 allocate enough elements in it. */
985 while (VEC_length (varobj_p, var->children) < var->num_children)
986 VEC_safe_push (varobj_p, var->children, NULL);
988 for (i = 0; i < var->num_children; i++)
990 varobj_p existing = VEC_index (varobj_p, var->children, i);
992 if (existing == NULL)
994 /* Either it's the first call to varobj_list_children for
995 this variable object, and the child was never created,
996 or it was explicitly deleted by the client. */
997 name = name_of_child (var, i);
998 existing = create_child (var, i, name);
999 VEC_replace (varobj_p, var->children, i, existing);
1000 install_default_visualizer (existing);
1004 return var->children;
1007 static struct varobj *
1008 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1010 varobj_p v = create_child_with_value (var,
1011 VEC_length (varobj_p, var->children),
1013 VEC_safe_push (varobj_p, var->children, v);
1014 install_default_visualizer (v);
1018 /* Obtain the type of an object Variable as a string similar to the one gdb
1019 prints on the console */
1022 varobj_get_type (struct varobj *var)
1025 struct cleanup *old_chain;
1026 struct ui_file *stb;
1030 /* For the "fake" variables, do not return a type. (It's type is
1032 Do not return a type for invalid variables as well. */
1033 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1036 stb = mem_fileopen ();
1037 old_chain = make_cleanup_ui_file_delete (stb);
1039 /* To print the type, we simply create a zero ``struct value *'' and
1040 cast it to our type. We then typeprint this variable. */
1041 val = value_zero (var->type, not_lval);
1042 type_print (value_type (val), "", stb, -1);
1044 thetype = ui_file_xstrdup (stb, &length);
1045 do_cleanups (old_chain);
1049 /* Obtain the type of an object variable. */
1052 varobj_get_gdb_type (struct varobj *var)
1057 /* Return a pointer to the full rooted expression of varobj VAR.
1058 If it has not been computed yet, compute it. */
1060 varobj_get_path_expr (struct varobj *var)
1062 if (var->path_expr != NULL)
1063 return var->path_expr;
1066 /* For root varobjs, we initialize path_expr
1067 when creating varobj, so here it should be
1069 gdb_assert (!is_root_p (var));
1070 return (*var->root->lang->path_expr_of_child) (var);
1074 enum varobj_languages
1075 varobj_get_language (struct varobj *var)
1077 return variable_language (var);
1081 varobj_get_attributes (struct varobj *var)
1085 if (varobj_editable_p (var))
1086 /* FIXME: define masks for attributes */
1087 attributes |= 0x00000001; /* Editable */
1093 varobj_get_formatted_value (struct varobj *var,
1094 enum varobj_display_formats format)
1096 return my_value_of_variable (var, format);
1100 varobj_get_value (struct varobj *var)
1102 return my_value_of_variable (var, var->format);
1105 /* Set the value of an object variable (if it is editable) to the
1106 value of the given expression */
1107 /* Note: Invokes functions that can call error() */
1110 varobj_set_value (struct varobj *var, char *expression)
1116 /* The argument "expression" contains the variable's new value.
1117 We need to first construct a legal expression for this -- ugh! */
1118 /* Does this cover all the bases? */
1119 struct expression *exp;
1120 struct value *value;
1121 int saved_input_radix = input_radix;
1122 char *s = expression;
1125 gdb_assert (varobj_editable_p (var));
1127 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1128 exp = parse_exp_1 (&s, 0, 0);
1129 if (!gdb_evaluate_expression (exp, &value))
1131 /* We cannot proceed without a valid expression. */
1136 /* All types that are editable must also be changeable. */
1137 gdb_assert (varobj_value_is_changeable_p (var));
1139 /* The value of a changeable variable object must not be lazy. */
1140 gdb_assert (!value_lazy (var->value));
1142 /* Need to coerce the input. We want to check if the
1143 value of the variable object will be different
1144 after assignment, and the first thing value_assign
1145 does is coerce the input.
1146 For example, if we are assigning an array to a pointer variable we
1147 should compare the pointer with the the array's address, not with the
1149 value = coerce_array (value);
1151 /* The new value may be lazy. gdb_value_assign, or
1152 rather value_contents, will take care of this.
1153 If fetching of the new value will fail, gdb_value_assign
1154 with catch the exception. */
1155 if (!gdb_value_assign (var->value, value, &val))
1158 /* If the value has changed, record it, so that next -var-update can
1159 report this change. If a variable had a value of '1', we've set it
1160 to '333' and then set again to '1', when -var-update will report this
1161 variable as changed -- because the first assignment has set the
1162 'updated' flag. There's no need to optimize that, because return value
1163 of -var-update should be considered an approximation. */
1164 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1165 input_radix = saved_input_radix;
1169 /* Returns a malloc'ed list with all root variable objects */
1171 varobj_list (struct varobj ***varlist)
1174 struct varobj_root *croot;
1175 int mycount = rootcount;
1177 /* Alloc (rootcount + 1) entries for the result */
1178 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
1182 while ((croot != NULL) && (mycount > 0))
1184 *cv = croot->rootvar;
1187 croot = croot->next;
1189 /* Mark the end of the list */
1192 if (mycount || (croot != NULL))
1194 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
1195 rootcount, mycount);
1200 /* Assign a new value to a variable object. If INITIAL is non-zero,
1201 this is the first assignement after the variable object was just
1202 created, or changed type. In that case, just assign the value
1204 Otherwise, assign the new value, and return 1 if the value is different
1205 from the current one, 0 otherwise. The comparison is done on textual
1206 representation of value. Therefore, some types need not be compared. E.g.
1207 for structures the reported value is always "{...}", so no comparison is
1208 necessary here. If the old value was NULL and new one is not, or vice versa,
1211 The VALUE parameter should not be released -- the function will
1212 take care of releasing it when needed. */
1214 install_new_value (struct varobj *var, struct value *value, int initial)
1219 int intentionally_not_fetched = 0;
1220 char *print_value = NULL;
1222 /* We need to know the varobj's type to decide if the value should
1223 be fetched or not. C++ fake children (public/protected/private) don't have
1225 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1226 changeable = varobj_value_is_changeable_p (var);
1228 /* If the type has custom visualizer, we consider it to be always
1229 changeable. FIXME: need to make sure this behaviour will not
1230 mess up read-sensitive values. */
1231 if (var->pretty_printer)
1234 need_to_fetch = changeable;
1236 /* We are not interested in the address of references, and given
1237 that in C++ a reference is not rebindable, it cannot
1238 meaningfully change. So, get hold of the real value. */
1241 value = coerce_ref (value);
1242 release_value (value);
1245 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1246 /* For unions, we need to fetch the value implicitly because
1247 of implementation of union member fetch. When gdb
1248 creates a value for a field and the value of the enclosing
1249 structure is not lazy, it immediately copies the necessary
1250 bytes from the enclosing values. If the enclosing value is
1251 lazy, the call to value_fetch_lazy on the field will read
1252 the data from memory. For unions, that means we'll read the
1253 same memory more than once, which is not desirable. So
1257 /* The new value might be lazy. If the type is changeable,
1258 that is we'll be comparing values of this type, fetch the
1259 value now. Otherwise, on the next update the old value
1260 will be lazy, which means we've lost that old value. */
1261 if (need_to_fetch && value && value_lazy (value))
1263 struct varobj *parent = var->parent;
1264 int frozen = var->frozen;
1265 for (; !frozen && parent; parent = parent->parent)
1266 frozen |= parent->frozen;
1268 if (frozen && initial)
1270 /* For variables that are frozen, or are children of frozen
1271 variables, we don't do fetch on initial assignment.
1272 For non-initial assignemnt we do the fetch, since it means we're
1273 explicitly asked to compare the new value with the old one. */
1274 intentionally_not_fetched = 1;
1276 else if (!gdb_value_fetch_lazy (value))
1278 /* Set the value to NULL, so that for the next -var-update,
1279 we don't try to compare the new value with this value,
1280 that we couldn't even read. */
1286 /* Below, we'll be comparing string rendering of old and new
1287 values. Don't get string rendering if the value is
1288 lazy -- if it is, the code above has decided that the value
1289 should not be fetched. */
1290 if (value && !value_lazy (value))
1291 print_value = value_get_print_value (value, var->format,
1292 var->pretty_printer);
1294 /* If the type is changeable, compare the old and the new values.
1295 If this is the initial assignment, we don't have any old value
1297 if (!initial && changeable)
1299 /* If the value of the varobj was changed by -var-set-value, then the
1300 value in the varobj and in the target is the same. However, that value
1301 is different from the value that the varobj had after the previous
1302 -var-update. So need to the varobj as changed. */
1309 /* Try to compare the values. That requires that both
1310 values are non-lazy. */
1311 if (var->not_fetched && value_lazy (var->value))
1313 /* This is a frozen varobj and the value was never read.
1314 Presumably, UI shows some "never read" indicator.
1315 Now that we've fetched the real value, we need to report
1316 this varobj as changed so that UI can show the real
1320 else if (var->value == NULL && value == NULL)
1323 else if (var->value == NULL || value == NULL)
1329 gdb_assert (!value_lazy (var->value));
1330 gdb_assert (!value_lazy (value));
1332 gdb_assert (var->print_value != NULL && print_value != NULL);
1333 if (strcmp (var->print_value, print_value) != 0)
1339 if (!initial && !changeable)
1341 /* For values that are not changeable, we don't compare the values.
1342 However, we want to notice if a value was not NULL and now is NULL,
1343 or vise versa, so that we report when top-level varobjs come in scope
1344 and leave the scope. */
1345 changed = (var->value != NULL) != (value != NULL);
1348 /* We must always keep the new value, since children depend on it. */
1349 if (var->value != NULL && var->value != value)
1350 value_free (var->value);
1352 if (var->print_value)
1353 xfree (var->print_value);
1354 var->print_value = print_value;
1355 if (value && value_lazy (value) && intentionally_not_fetched)
1356 var->not_fetched = 1;
1358 var->not_fetched = 0;
1361 gdb_assert (!var->value || value_type (var->value));
1367 install_visualizer (struct varobj *var, PyObject *visualizer)
1370 /* If there are any children now, wipe them. */
1371 varobj_delete (var, NULL, 1 /* children only */);
1372 var->num_children = -1;
1374 Py_XDECREF (var->pretty_printer);
1375 var->pretty_printer = visualizer;
1377 install_new_value (var, var->value, 1);
1379 /* If we removed the visualizer, and the user ever requested the
1380 object's children, then we must compute the list of children.
1381 Note that we needn't do this when installing a visualizer,
1382 because updating will recompute dynamic children. */
1383 if (!visualizer && var->children_requested)
1384 varobj_list_children (var);
1386 error (_("Python support required"));
1391 install_default_visualizer (struct varobj *var)
1394 struct cleanup *cleanup;
1395 PyGILState_STATE state;
1396 PyObject *pretty_printer = NULL;
1398 state = PyGILState_Ensure ();
1399 cleanup = make_cleanup_py_restore_gil (&state);
1403 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1404 if (! pretty_printer)
1406 gdbpy_print_stack ();
1407 error (_("Cannot instantiate printer for default visualizer"));
1411 if (pretty_printer == Py_None)
1413 Py_DECREF (pretty_printer);
1414 pretty_printer = NULL;
1417 install_visualizer (var, pretty_printer);
1418 do_cleanups (cleanup);
1420 /* No error is right as this function is inserted just as a hook. */
1425 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1428 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1429 struct cleanup *back_to, *value;
1430 PyGILState_STATE state;
1433 state = PyGILState_Ensure ();
1434 back_to = make_cleanup_py_restore_gil (&state);
1436 mainmod = PyImport_AddModule ("__main__");
1437 globals = PyModule_GetDict (mainmod);
1438 Py_INCREF (globals);
1439 make_cleanup_py_decref (globals);
1441 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1443 /* Do not instantiate NoneType. */
1444 if (constructor == Py_None)
1446 pretty_printer = Py_None;
1447 Py_INCREF (pretty_printer);
1450 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1452 Py_XDECREF (constructor);
1454 if (! pretty_printer)
1456 gdbpy_print_stack ();
1457 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1460 if (pretty_printer == Py_None)
1462 Py_DECREF (pretty_printer);
1463 pretty_printer = NULL;
1466 install_visualizer (var, pretty_printer);
1468 do_cleanups (back_to);
1470 error (_("Python support required"));
1474 /* Update the values for a variable and its children. This is a
1475 two-pronged attack. First, re-parse the value for the root's
1476 expression to see if it's changed. Then go all the way
1477 through its children, reconstructing them and noting if they've
1480 The EXPLICIT parameter specifies if this call is result
1481 of MI request to update this specific variable, or
1482 result of implicit -var-update *. For implicit request, we don't
1483 update frozen variables.
1485 NOTE: This function may delete the caller's varobj. If it
1486 returns TYPE_CHANGED, then it has done this and VARP will be modified
1487 to point to the new varobj. */
1489 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1492 int type_changed = 0;
1497 struct varobj **templist = NULL;
1499 VEC (varobj_update_result) *stack = NULL;
1500 VEC (varobj_update_result) *result = NULL;
1501 struct frame_info *fi;
1503 /* Frozen means frozen -- we don't check for any change in
1504 this varobj, including its going out of scope, or
1505 changing type. One use case for frozen varobjs is
1506 retaining previously evaluated expressions, and we don't
1507 want them to be reevaluated at all. */
1508 if (!explicit && (*varp)->frozen)
1511 if (!(*varp)->root->is_valid)
1513 varobj_update_result r = {*varp};
1514 r.status = VAROBJ_INVALID;
1515 VEC_safe_push (varobj_update_result, result, &r);
1519 if ((*varp)->root->rootvar == *varp)
1521 varobj_update_result r = {*varp};
1522 r.status = VAROBJ_IN_SCOPE;
1524 /* Update the root variable. value_of_root can return NULL
1525 if the variable is no longer around, i.e. we stepped out of
1526 the frame in which a local existed. We are letting the
1527 value_of_root variable dispose of the varobj if the type
1529 new = value_of_root (varp, &type_changed);
1532 r.type_changed = type_changed;
1533 if (install_new_value ((*varp), new, type_changed))
1537 r.status = VAROBJ_NOT_IN_SCOPE;
1538 r.value_installed = 1;
1540 if (r.status == VAROBJ_NOT_IN_SCOPE)
1542 if (r.type_changed || r.changed)
1543 VEC_safe_push (varobj_update_result, result, &r);
1547 VEC_safe_push (varobj_update_result, stack, &r);
1551 varobj_update_result r = {*varp};
1552 VEC_safe_push (varobj_update_result, stack, &r);
1555 /* Walk through the children, reconstructing them all. */
1556 while (!VEC_empty (varobj_update_result, stack))
1558 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1559 struct varobj *v = r.varobj;
1561 VEC_pop (varobj_update_result, stack);
1563 /* Update this variable, unless it's a root, which is already
1565 if (!r.value_installed)
1567 new = value_of_child (v->parent, v->index);
1568 if (install_new_value (v, new, 0 /* type not changed */))
1575 /* We probably should not get children of a varobj that has a
1576 pretty-printer, but for which -var-list-children was never
1577 invoked. Presumably, such varobj is not yet expanded in the
1578 UI, so we need not bother getting it. */
1579 if (v->pretty_printer)
1581 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1582 int i, children_changed;
1585 if (!v->children_requested)
1591 /* If update_dynamic_varobj_children returns 0, then we have
1592 a non-conforming pretty-printer, so we skip it. */
1593 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1596 if (children_changed)
1597 r.children_changed = 1;
1598 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1600 varobj_update_result r = {tmp};
1602 r.value_installed = 1;
1603 VEC_safe_push (varobj_update_result, stack, &r);
1606 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1609 varobj_update_result r = {tmp};
1610 r.value_installed = 1;
1611 VEC_safe_push (varobj_update_result, stack, &r);
1613 if (r.changed || r.children_changed)
1614 VEC_safe_push (varobj_update_result, result, &r);
1619 /* Push any children. Use reverse order so that the first
1620 child is popped from the work stack first, and so
1621 will be added to result first. This does not
1622 affect correctness, just "nicer". */
1623 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1625 varobj_p c = VEC_index (varobj_p, v->children, i);
1626 /* Child may be NULL if explicitly deleted by -var-delete. */
1627 if (c != NULL && !c->frozen)
1629 varobj_update_result r = {c};
1630 VEC_safe_push (varobj_update_result, stack, &r);
1634 if (r.changed || r.type_changed)
1635 VEC_safe_push (varobj_update_result, result, &r);
1638 VEC_free (varobj_update_result, stack);
1644 /* Helper functions */
1647 * Variable object construction/destruction
1651 delete_variable (struct cpstack **resultp, struct varobj *var,
1652 int only_children_p)
1656 delete_variable_1 (resultp, &delcount, var,
1657 only_children_p, 1 /* remove_from_parent_p */ );
1662 /* Delete the variable object VAR and its children */
1663 /* IMPORTANT NOTE: If we delete a variable which is a child
1664 and the parent is not removed we dump core. It must be always
1665 initially called with remove_from_parent_p set */
1667 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1668 struct varobj *var, int only_children_p,
1669 int remove_from_parent_p)
1673 /* Delete any children of this variable, too. */
1674 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1676 varobj_p child = VEC_index (varobj_p, var->children, i);
1679 if (!remove_from_parent_p)
1680 child->parent = NULL;
1681 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1683 VEC_free (varobj_p, var->children);
1685 /* if we were called to delete only the children we are done here */
1686 if (only_children_p)
1689 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1690 /* If the name is null, this is a temporary variable, that has not
1691 yet been installed, don't report it, it belongs to the caller... */
1692 if (var->obj_name != NULL)
1694 cppush (resultp, xstrdup (var->obj_name));
1695 *delcountp = *delcountp + 1;
1698 /* If this variable has a parent, remove it from its parent's list */
1699 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1700 (as indicated by remove_from_parent_p) we don't bother doing an
1701 expensive list search to find the element to remove when we are
1702 discarding the list afterwards */
1703 if ((remove_from_parent_p) && (var->parent != NULL))
1705 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1708 if (var->obj_name != NULL)
1709 uninstall_variable (var);
1711 /* Free memory associated with this variable */
1712 free_variable (var);
1715 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1717 install_variable (struct varobj *var)
1720 struct vlist *newvl;
1722 unsigned int index = 0;
1725 for (chp = var->obj_name; *chp; chp++)
1727 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1730 cv = *(varobj_table + index);
1731 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1735 error (_("Duplicate variable object name"));
1737 /* Add varobj to hash table */
1738 newvl = xmalloc (sizeof (struct vlist));
1739 newvl->next = *(varobj_table + index);
1741 *(varobj_table + index) = newvl;
1743 /* If root, add varobj to root list */
1744 if (is_root_p (var))
1746 /* Add to list of root variables */
1747 if (rootlist == NULL)
1748 var->root->next = NULL;
1750 var->root->next = rootlist;
1751 rootlist = var->root;
1758 /* Unistall the object VAR. */
1760 uninstall_variable (struct varobj *var)
1764 struct varobj_root *cr;
1765 struct varobj_root *prer;
1767 unsigned int index = 0;
1770 /* Remove varobj from hash table */
1771 for (chp = var->obj_name; *chp; chp++)
1773 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1776 cv = *(varobj_table + index);
1778 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1785 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1790 ("Assertion failed: Could not find variable object \"%s\" to delete",
1796 *(varobj_table + index) = cv->next;
1798 prev->next = cv->next;
1802 /* If root, remove varobj from root list */
1803 if (is_root_p (var))
1805 /* Remove from list of root variables */
1806 if (rootlist == var->root)
1807 rootlist = var->root->next;
1812 while ((cr != NULL) && (cr->rootvar != var))
1820 ("Assertion failed: Could not find varobj \"%s\" in root list",
1827 prer->next = cr->next;
1834 /* Create and install a child of the parent of the given name */
1835 static struct varobj *
1836 create_child (struct varobj *parent, int index, char *name)
1838 return create_child_with_value (parent, index, name,
1839 value_of_child (parent, index));
1842 static struct varobj *
1843 create_child_with_value (struct varobj *parent, int index, const char *name,
1844 struct value *value)
1846 struct varobj *child;
1849 child = new_variable ();
1851 /* name is allocated by name_of_child */
1852 /* FIXME: xstrdup should not be here. */
1853 child->name = xstrdup (name);
1854 child->index = index;
1855 child->parent = parent;
1856 child->root = parent->root;
1857 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1858 child->obj_name = childs_name;
1859 install_variable (child);
1861 /* Compute the type of the child. Must do this before
1862 calling install_new_value. */
1864 /* If the child had no evaluation errors, var->value
1865 will be non-NULL and contain a valid type. */
1866 child->type = value_type (value);
1868 /* Otherwise, we must compute the type. */
1869 child->type = (*child->root->lang->type_of_child) (child->parent,
1871 install_new_value (child, value, 1);
1878 * Miscellaneous utility functions.
1881 /* Allocate memory and initialize a new variable */
1882 static struct varobj *
1887 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1889 var->path_expr = NULL;
1890 var->obj_name = NULL;
1894 var->num_children = -1;
1896 var->children = NULL;
1900 var->print_value = NULL;
1902 var->not_fetched = 0;
1903 var->children_requested = 0;
1904 var->pretty_printer = 0;
1909 /* Allocate memory and initialize a new root variable */
1910 static struct varobj *
1911 new_root_variable (void)
1913 struct varobj *var = new_variable ();
1914 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1915 var->root->lang = NULL;
1916 var->root->exp = NULL;
1917 var->root->valid_block = NULL;
1918 var->root->frame = null_frame_id;
1919 var->root->floating = 0;
1920 var->root->rootvar = NULL;
1921 var->root->is_valid = 1;
1926 /* Free any allocated memory associated with VAR. */
1928 free_variable (struct varobj *var)
1930 value_free (var->value);
1932 /* Free the expression if this is a root variable. */
1933 if (is_root_p (var))
1935 xfree (var->root->exp);
1941 PyGILState_STATE state = PyGILState_Ensure ();
1942 Py_XDECREF (var->pretty_printer);
1943 PyGILState_Release (state);
1948 xfree (var->obj_name);
1949 xfree (var->print_value);
1950 xfree (var->path_expr);
1955 do_free_variable_cleanup (void *var)
1957 free_variable (var);
1960 static struct cleanup *
1961 make_cleanup_free_variable (struct varobj *var)
1963 return make_cleanup (do_free_variable_cleanup, var);
1966 /* This returns the type of the variable. It also skips past typedefs
1967 to return the real type of the variable.
1969 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1970 except within get_target_type and get_type. */
1971 static struct type *
1972 get_type (struct varobj *var)
1978 type = check_typedef (type);
1983 /* Return the type of the value that's stored in VAR,
1984 or that would have being stored there if the
1985 value were accessible.
1987 This differs from VAR->type in that VAR->type is always
1988 the true type of the expession in the source language.
1989 The return value of this function is the type we're
1990 actually storing in varobj, and using for displaying
1991 the values and for comparing previous and new values.
1993 For example, top-level references are always stripped. */
1994 static struct type *
1995 get_value_type (struct varobj *var)
2000 type = value_type (var->value);
2004 type = check_typedef (type);
2006 if (TYPE_CODE (type) == TYPE_CODE_REF)
2007 type = get_target_type (type);
2009 type = check_typedef (type);
2014 /* This returns the target type (or NULL) of TYPE, also skipping
2015 past typedefs, just like get_type ().
2017 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2018 except within get_target_type and get_type. */
2019 static struct type *
2020 get_target_type (struct type *type)
2024 type = TYPE_TARGET_TYPE (type);
2026 type = check_typedef (type);
2032 /* What is the default display for this variable? We assume that
2033 everything is "natural". Any exceptions? */
2034 static enum varobj_display_formats
2035 variable_default_display (struct varobj *var)
2037 return FORMAT_NATURAL;
2040 /* FIXME: The following should be generic for any pointer */
2042 cppush (struct cpstack **pstack, char *name)
2046 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2052 /* FIXME: The following should be generic for any pointer */
2054 cppop (struct cpstack **pstack)
2059 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2064 *pstack = (*pstack)->next;
2071 * Language-dependencies
2074 /* Common entry points */
2076 /* Get the language of variable VAR. */
2077 static enum varobj_languages
2078 variable_language (struct varobj *var)
2080 enum varobj_languages lang;
2082 switch (var->root->exp->language_defn->la_language)
2088 case language_cplus:
2099 /* Return the number of children for a given variable.
2100 The result of this function is defined by the language
2101 implementation. The number of children returned by this function
2102 is the number of children that the user will see in the variable
2105 number_of_children (struct varobj *var)
2107 return (*var->root->lang->number_of_children) (var);;
2110 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2112 name_of_variable (struct varobj *var)
2114 return (*var->root->lang->name_of_variable) (var);
2117 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2119 name_of_child (struct varobj *var, int index)
2121 return (*var->root->lang->name_of_child) (var, index);
2124 /* What is the ``struct value *'' of the root variable VAR?
2125 For floating variable object, evaluation can get us a value
2126 of different type from what is stored in varobj already. In
2128 - *type_changed will be set to 1
2129 - old varobj will be freed, and new one will be
2130 created, with the same name.
2131 - *var_handle will be set to the new varobj
2132 Otherwise, *type_changed will be set to 0. */
2133 static struct value *
2134 value_of_root (struct varobj **var_handle, int *type_changed)
2138 if (var_handle == NULL)
2143 /* This should really be an exception, since this should
2144 only get called with a root variable. */
2146 if (!is_root_p (var))
2149 if (var->root->floating)
2151 struct varobj *tmp_var;
2152 char *old_type, *new_type;
2154 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2155 USE_SELECTED_FRAME);
2156 if (tmp_var == NULL)
2160 old_type = varobj_get_type (var);
2161 new_type = varobj_get_type (tmp_var);
2162 if (strcmp (old_type, new_type) == 0)
2164 /* The expression presently stored inside var->root->exp
2165 remembers the locations of local variables relatively to
2166 the frame where the expression was created (in DWARF location
2167 button, for example). Naturally, those locations are not
2168 correct in other frames, so update the expression. */
2170 struct expression *tmp_exp = var->root->exp;
2171 var->root->exp = tmp_var->root->exp;
2172 tmp_var->root->exp = tmp_exp;
2174 varobj_delete (tmp_var, NULL, 0);
2179 tmp_var->obj_name = xstrdup (var->obj_name);
2180 varobj_delete (var, NULL, 0);
2182 install_variable (tmp_var);
2183 *var_handle = tmp_var;
2195 return (*var->root->lang->value_of_root) (var_handle);
2198 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2199 static struct value *
2200 value_of_child (struct varobj *parent, int index)
2202 struct value *value;
2204 value = (*parent->root->lang->value_of_child) (parent, index);
2209 /* GDB already has a command called "value_of_variable". Sigh. */
2211 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2213 if (var->root->is_valid)
2214 return (*var->root->lang->value_of_variable) (var, format);
2220 value_get_print_value (struct value *value, enum varobj_display_formats format,
2221 PyObject *value_formatter)
2224 struct ui_file *stb;
2225 struct cleanup *old_chain;
2226 char *thevalue = NULL;
2227 struct value_print_options opts;
2234 PyGILState_STATE state = PyGILState_Ensure ();
2235 if (value_formatter && PyObject_HasAttr (value_formatter,
2236 gdbpy_to_string_cst))
2239 struct value *replacement;
2240 int string_print = 0;
2242 hint = gdbpy_get_display_hint (value_formatter);
2245 if (!strcmp (hint, "string"))
2250 thevalue = apply_varobj_pretty_printer (value_formatter,
2252 if (thevalue && !string_print)
2254 PyGILState_Release (state);
2258 value = replacement;
2260 PyGILState_Release (state);
2264 stb = mem_fileopen ();
2265 old_chain = make_cleanup_ui_file_delete (stb);
2267 get_formatted_print_options (&opts, format_code[(int) format]);
2272 make_cleanup (xfree, thevalue);
2273 LA_PRINT_STRING (stb, builtin_type (current_gdbarch)->builtin_char,
2274 (gdb_byte *) thevalue, strlen (thevalue),
2278 common_val_print (value, stb, 0, &opts, current_language);
2279 thevalue = ui_file_xstrdup (stb, &dummy);
2281 do_cleanups (old_chain);
2286 varobj_editable_p (struct varobj *var)
2289 struct value *value;
2291 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2294 type = get_value_type (var);
2296 switch (TYPE_CODE (type))
2298 case TYPE_CODE_STRUCT:
2299 case TYPE_CODE_UNION:
2300 case TYPE_CODE_ARRAY:
2301 case TYPE_CODE_FUNC:
2302 case TYPE_CODE_METHOD:
2312 /* Return non-zero if changes in value of VAR
2313 must be detected and reported by -var-update.
2314 Return zero is -var-update should never report
2315 changes of such values. This makes sense for structures
2316 (since the changes in children values will be reported separately),
2317 or for artifical objects (like 'public' pseudo-field in C++).
2319 Return value of 0 means that gdb need not call value_fetch_lazy
2320 for the value of this variable object. */
2322 varobj_value_is_changeable_p (struct varobj *var)
2327 if (CPLUS_FAKE_CHILD (var))
2330 type = get_value_type (var);
2332 switch (TYPE_CODE (type))
2334 case TYPE_CODE_STRUCT:
2335 case TYPE_CODE_UNION:
2336 case TYPE_CODE_ARRAY:
2347 /* Return 1 if that varobj is floating, that is is always evaluated in the
2348 selected frame, and not bound to thread/frame. Such variable objects
2349 are created using '@' as frame specifier to -var-create. */
2351 varobj_floating_p (struct varobj *var)
2353 return var->root->floating;
2356 /* Given the value and the type of a variable object,
2357 adjust the value and type to those necessary
2358 for getting children of the variable object.
2359 This includes dereferencing top-level references
2360 to all types and dereferencing pointers to
2363 Both TYPE and *TYPE should be non-null. VALUE
2364 can be null if we want to only translate type.
2365 *VALUE can be null as well -- if the parent
2368 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2369 depending on whether pointer was dereferenced
2370 in this function. */
2372 adjust_value_for_child_access (struct value **value,
2376 gdb_assert (type && *type);
2381 *type = check_typedef (*type);
2383 /* The type of value stored in varobj, that is passed
2384 to us, is already supposed to be
2385 reference-stripped. */
2387 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2389 /* Pointers to structures are treated just like
2390 structures when accessing children. Don't
2391 dererences pointers to other types. */
2392 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2394 struct type *target_type = get_target_type (*type);
2395 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2396 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2398 if (value && *value)
2400 int success = gdb_value_ind (*value, value);
2404 *type = target_type;
2410 /* The 'get_target_type' function calls check_typedef on
2411 result, so we can immediately check type code. No
2412 need to call check_typedef here. */
2417 c_number_of_children (struct varobj *var)
2419 struct type *type = get_value_type (var);
2421 struct type *target;
2423 adjust_value_for_child_access (NULL, &type, NULL);
2424 target = get_target_type (type);
2426 switch (TYPE_CODE (type))
2428 case TYPE_CODE_ARRAY:
2429 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2430 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2431 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2433 /* If we don't know how many elements there are, don't display
2438 case TYPE_CODE_STRUCT:
2439 case TYPE_CODE_UNION:
2440 children = TYPE_NFIELDS (type);
2444 /* The type here is a pointer to non-struct. Typically, pointers
2445 have one child, except for function ptrs, which have no children,
2446 and except for void*, as we don't know what to show.
2448 We can show char* so we allow it to be dereferenced. If you decide
2449 to test for it, please mind that a little magic is necessary to
2450 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2451 TYPE_NAME == "char" */
2452 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2453 || TYPE_CODE (target) == TYPE_CODE_VOID)
2460 /* Other types have no children */
2468 c_name_of_variable (struct varobj *parent)
2470 return xstrdup (parent->name);
2473 /* Return the value of element TYPE_INDEX of a structure
2474 value VALUE. VALUE's type should be a structure,
2475 or union, or a typedef to struct/union.
2477 Returns NULL if getting the value fails. Never throws. */
2478 static struct value *
2479 value_struct_element_index (struct value *value, int type_index)
2481 struct value *result = NULL;
2482 volatile struct gdb_exception e;
2484 struct type *type = value_type (value);
2485 type = check_typedef (type);
2487 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2488 || TYPE_CODE (type) == TYPE_CODE_UNION);
2490 TRY_CATCH (e, RETURN_MASK_ERROR)
2492 if (field_is_static (&TYPE_FIELD (type, type_index)))
2493 result = value_static_field (type, type_index);
2495 result = value_primitive_field (value, 0, type_index, type);
2507 /* Obtain the information about child INDEX of the variable
2509 If CNAME is not null, sets *CNAME to the name of the child relative
2511 If CVALUE is not null, sets *CVALUE to the value of the child.
2512 If CTYPE is not null, sets *CTYPE to the type of the child.
2514 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2515 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2518 c_describe_child (struct varobj *parent, int index,
2519 char **cname, struct value **cvalue, struct type **ctype,
2520 char **cfull_expression)
2522 struct value *value = parent->value;
2523 struct type *type = get_value_type (parent);
2524 char *parent_expression = NULL;
2533 if (cfull_expression)
2535 *cfull_expression = NULL;
2536 parent_expression = varobj_get_path_expr (parent);
2538 adjust_value_for_child_access (&value, &type, &was_ptr);
2540 switch (TYPE_CODE (type))
2542 case TYPE_CODE_ARRAY:
2544 *cname = xstrprintf ("%d", index
2545 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2547 if (cvalue && value)
2549 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2550 struct value *indval =
2551 value_from_longest (builtin_type_int32, (LONGEST) real_index);
2552 gdb_value_subscript (value, indval, cvalue);
2556 *ctype = get_target_type (type);
2558 if (cfull_expression)
2559 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2561 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2566 case TYPE_CODE_STRUCT:
2567 case TYPE_CODE_UNION:
2569 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2571 if (cvalue && value)
2573 /* For C, varobj index is the same as type index. */
2574 *cvalue = value_struct_element_index (value, index);
2578 *ctype = TYPE_FIELD_TYPE (type, index);
2580 if (cfull_expression)
2582 char *join = was_ptr ? "->" : ".";
2583 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2584 TYPE_FIELD_NAME (type, index));
2591 *cname = xstrprintf ("*%s", parent->name);
2593 if (cvalue && value)
2595 int success = gdb_value_ind (value, cvalue);
2600 /* Don't use get_target_type because it calls
2601 check_typedef and here, we want to show the true
2602 declared type of the variable. */
2604 *ctype = TYPE_TARGET_TYPE (type);
2606 if (cfull_expression)
2607 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2612 /* This should not happen */
2614 *cname = xstrdup ("???");
2615 if (cfull_expression)
2616 *cfull_expression = xstrdup ("???");
2617 /* Don't set value and type, we don't know then. */
2622 c_name_of_child (struct varobj *parent, int index)
2625 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2630 c_path_expr_of_child (struct varobj *child)
2632 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2634 return child->path_expr;
2637 /* If frame associated with VAR can be found, switch
2638 to it and return 1. Otherwise, return 0. */
2640 check_scope (struct varobj *var)
2642 struct frame_info *fi;
2645 fi = frame_find_by_id (var->root->frame);
2650 CORE_ADDR pc = get_frame_pc (fi);
2651 if (pc < BLOCK_START (var->root->valid_block) ||
2652 pc >= BLOCK_END (var->root->valid_block))
2660 static struct value *
2661 c_value_of_root (struct varobj **var_handle)
2663 struct value *new_val = NULL;
2664 struct varobj *var = *var_handle;
2665 struct frame_info *fi;
2666 int within_scope = 0;
2667 struct cleanup *back_to;
2669 /* Only root variables can be updated... */
2670 if (!is_root_p (var))
2671 /* Not a root var */
2674 back_to = make_cleanup_restore_current_thread ();
2676 /* Determine whether the variable is still around. */
2677 if (var->root->valid_block == NULL || var->root->floating)
2679 else if (var->root->thread_id == 0)
2681 /* The program was single-threaded when the variable object was
2682 created. Technically, it's possible that the program became
2683 multi-threaded since then, but we don't support such
2685 within_scope = check_scope (var);
2689 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2690 if (in_thread_list (ptid))
2692 switch_to_thread (ptid);
2693 within_scope = check_scope (var);
2699 /* We need to catch errors here, because if evaluate
2700 expression fails we want to just return NULL. */
2701 gdb_evaluate_expression (var->root->exp, &new_val);
2705 do_cleanups (back_to);
2710 static struct value *
2711 c_value_of_child (struct varobj *parent, int index)
2713 struct value *value = NULL;
2714 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2719 static struct type *
2720 c_type_of_child (struct varobj *parent, int index)
2722 struct type *type = NULL;
2723 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2728 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2730 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2731 it will print out its children instead of "{...}". So we need to
2732 catch that case explicitly. */
2733 struct type *type = get_type (var);
2735 /* If we have a custom formatter, return whatever string it has
2737 if (var->pretty_printer && var->print_value)
2738 return xstrdup (var->print_value);
2740 /* Strip top-level references. */
2741 while (TYPE_CODE (type) == TYPE_CODE_REF)
2742 type = check_typedef (TYPE_TARGET_TYPE (type));
2744 switch (TYPE_CODE (type))
2746 case TYPE_CODE_STRUCT:
2747 case TYPE_CODE_UNION:
2748 return xstrdup ("{...}");
2751 case TYPE_CODE_ARRAY:
2754 number = xstrprintf ("[%d]", var->num_children);
2761 if (var->value == NULL)
2763 /* This can happen if we attempt to get the value of a struct
2764 member when the parent is an invalid pointer. This is an
2765 error condition, so we should tell the caller. */
2770 if (var->not_fetched && value_lazy (var->value))
2771 /* Frozen variable and no value yet. We don't
2772 implicitly fetch the value. MI response will
2773 use empty string for the value, which is OK. */
2776 gdb_assert (varobj_value_is_changeable_p (var));
2777 gdb_assert (!value_lazy (var->value));
2779 /* If the specified format is the current one,
2780 we can reuse print_value */
2781 if (format == var->format)
2782 return xstrdup (var->print_value);
2784 return value_get_print_value (var->value, format,
2785 var->pretty_printer);
2795 cplus_number_of_children (struct varobj *var)
2798 int children, dont_know;
2803 if (!CPLUS_FAKE_CHILD (var))
2805 type = get_value_type (var);
2806 adjust_value_for_child_access (NULL, &type, NULL);
2808 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2809 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2813 cplus_class_num_children (type, kids);
2814 if (kids[v_public] != 0)
2816 if (kids[v_private] != 0)
2818 if (kids[v_protected] != 0)
2821 /* Add any baseclasses */
2822 children += TYPE_N_BASECLASSES (type);
2825 /* FIXME: save children in var */
2832 type = get_value_type (var->parent);
2833 adjust_value_for_child_access (NULL, &type, NULL);
2835 cplus_class_num_children (type, kids);
2836 if (strcmp (var->name, "public") == 0)
2837 children = kids[v_public];
2838 else if (strcmp (var->name, "private") == 0)
2839 children = kids[v_private];
2841 children = kids[v_protected];
2846 children = c_number_of_children (var);
2851 /* Compute # of public, private, and protected variables in this class.
2852 That means we need to descend into all baseclasses and find out
2853 how many are there, too. */
2855 cplus_class_num_children (struct type *type, int children[3])
2859 children[v_public] = 0;
2860 children[v_private] = 0;
2861 children[v_protected] = 0;
2863 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2865 /* If we have a virtual table pointer, omit it. */
2866 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2869 if (TYPE_FIELD_PROTECTED (type, i))
2870 children[v_protected]++;
2871 else if (TYPE_FIELD_PRIVATE (type, i))
2872 children[v_private]++;
2874 children[v_public]++;
2879 cplus_name_of_variable (struct varobj *parent)
2881 return c_name_of_variable (parent);
2884 enum accessibility { private_field, protected_field, public_field };
2886 /* Check if field INDEX of TYPE has the specified accessibility.
2887 Return 0 if so and 1 otherwise. */
2889 match_accessibility (struct type *type, int index, enum accessibility acc)
2891 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2893 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2895 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2896 && !TYPE_FIELD_PROTECTED (type, index))
2903 cplus_describe_child (struct varobj *parent, int index,
2904 char **cname, struct value **cvalue, struct type **ctype,
2905 char **cfull_expression)
2908 struct value *value;
2911 char *parent_expression = NULL;
2919 if (cfull_expression)
2920 *cfull_expression = NULL;
2922 if (CPLUS_FAKE_CHILD (parent))
2924 value = parent->parent->value;
2925 type = get_value_type (parent->parent);
2926 if (cfull_expression)
2927 parent_expression = varobj_get_path_expr (parent->parent);
2931 value = parent->value;
2932 type = get_value_type (parent);
2933 if (cfull_expression)
2934 parent_expression = varobj_get_path_expr (parent);
2937 adjust_value_for_child_access (&value, &type, &was_ptr);
2939 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2940 || TYPE_CODE (type) == TYPE_CODE_UNION)
2942 char *join = was_ptr ? "->" : ".";
2943 if (CPLUS_FAKE_CHILD (parent))
2945 /* The fields of the class type are ordered as they
2946 appear in the class. We are given an index for a
2947 particular access control type ("public","protected",
2948 or "private"). We must skip over fields that don't
2949 have the access control we are looking for to properly
2950 find the indexed field. */
2951 int type_index = TYPE_N_BASECLASSES (type);
2952 enum accessibility acc = public_field;
2953 if (strcmp (parent->name, "private") == 0)
2954 acc = private_field;
2955 else if (strcmp (parent->name, "protected") == 0)
2956 acc = protected_field;
2960 if (TYPE_VPTR_BASETYPE (type) == type
2961 && type_index == TYPE_VPTR_FIELDNO (type))
2963 else if (match_accessibility (type, type_index, acc))
2970 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2972 if (cvalue && value)
2973 *cvalue = value_struct_element_index (value, type_index);
2976 *ctype = TYPE_FIELD_TYPE (type, type_index);
2978 if (cfull_expression)
2979 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2981 TYPE_FIELD_NAME (type, type_index));
2983 else if (index < TYPE_N_BASECLASSES (type))
2985 /* This is a baseclass. */
2987 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2989 if (cvalue && value)
2991 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2992 release_value (*cvalue);
2997 *ctype = TYPE_FIELD_TYPE (type, index);
3000 if (cfull_expression)
3002 char *ptr = was_ptr ? "*" : "";
3003 /* Cast the parent to the base' type. Note that in gdb,
3006 will create an lvalue, for all appearences, so we don't
3007 need to use more fancy:
3010 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3012 TYPE_FIELD_NAME (type, index),
3019 char *access = NULL;
3021 cplus_class_num_children (type, children);
3023 /* Everything beyond the baseclasses can
3024 only be "public", "private", or "protected"
3026 The special "fake" children are always output by varobj in
3027 this order. So if INDEX == 2, it MUST be "protected". */
3028 index -= TYPE_N_BASECLASSES (type);
3032 if (children[v_public] > 0)
3034 else if (children[v_private] > 0)
3037 access = "protected";
3040 if (children[v_public] > 0)
3042 if (children[v_private] > 0)
3045 access = "protected";
3047 else if (children[v_private] > 0)
3048 access = "protected";
3051 /* Must be protected */
3052 access = "protected";
3059 gdb_assert (access);
3061 *cname = xstrdup (access);
3063 /* Value and type and full expression are null here. */
3068 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3073 cplus_name_of_child (struct varobj *parent, int index)
3076 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3081 cplus_path_expr_of_child (struct varobj *child)
3083 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3085 return child->path_expr;
3088 static struct value *
3089 cplus_value_of_root (struct varobj **var_handle)
3091 return c_value_of_root (var_handle);
3094 static struct value *
3095 cplus_value_of_child (struct varobj *parent, int index)
3097 struct value *value = NULL;
3098 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3102 static struct type *
3103 cplus_type_of_child (struct varobj *parent, int index)
3105 struct type *type = NULL;
3106 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3111 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3114 /* If we have one of our special types, don't print out
3116 if (CPLUS_FAKE_CHILD (var))
3117 return xstrdup ("");
3119 return c_value_of_variable (var, format);
3125 java_number_of_children (struct varobj *var)
3127 return cplus_number_of_children (var);
3131 java_name_of_variable (struct varobj *parent)
3135 name = cplus_name_of_variable (parent);
3136 /* If the name has "-" in it, it is because we
3137 needed to escape periods in the name... */
3140 while (*p != '\000')
3151 java_name_of_child (struct varobj *parent, int index)
3155 name = cplus_name_of_child (parent, index);
3156 /* Escape any periods in the name... */
3159 while (*p != '\000')
3170 java_path_expr_of_child (struct varobj *child)
3175 static struct value *
3176 java_value_of_root (struct varobj **var_handle)
3178 return cplus_value_of_root (var_handle);
3181 static struct value *
3182 java_value_of_child (struct varobj *parent, int index)
3184 return cplus_value_of_child (parent, index);
3187 static struct type *
3188 java_type_of_child (struct varobj *parent, int index)
3190 return cplus_type_of_child (parent, index);
3194 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3196 return cplus_value_of_variable (var, format);
3199 extern void _initialize_varobj (void);
3201 _initialize_varobj (void)
3203 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3205 varobj_table = xmalloc (sizeof_table);
3206 memset (varobj_table, 0, sizeof_table);
3208 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3210 Set varobj debugging."), _("\
3211 Show varobj debugging."), _("\
3212 When non-zero, varobj debugging is enabled."),
3215 &setlist, &showlist);
3218 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3219 are defined on globals.
3220 Invalidated varobjs will be always printed in_scope="invalid". */
3223 varobj_invalidate (void)
3225 struct varobj **all_rootvarobj;
3226 struct varobj **varp;
3228 if (varobj_list (&all_rootvarobj) > 0)
3230 varp = all_rootvarobj;
3231 while (*varp != NULL)
3233 /* Floating varobjs are reparsed on each stop, so we don't care if
3234 the presently parsed expression refers to something that's gone.
3236 if ((*varp)->root->floating)
3239 /* global var must be re-evaluated. */
3240 if ((*varp)->root->valid_block == NULL)
3242 struct varobj *tmp_var;
3244 /* Try to create a varobj with same expression. If we succeed
3245 replace the old varobj, otherwise invalidate it. */
3246 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0,
3248 if (tmp_var != NULL)
3250 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
3251 varobj_delete (*varp, NULL, 0);
3252 install_variable (tmp_var);
3255 (*varp)->root->is_valid = 0;
3257 else /* locals must be invalidated. */
3258 (*varp)->root->is_valid = 0;
3263 xfree (all_rootvarobj);