1 /* Target-struct-independent code to start (run) and stop an inferior
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
34 #include "cli/cli-script.h"
36 #include "gdbthread.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
53 /* Prototypes for local functions */
55 static void signals_info (char *, int);
57 static void handle_command (char *, int);
59 static void sig_print_info (enum target_signal);
61 static void sig_print_header (void);
63 static void resume_cleanups (void *);
65 static int hook_stop_stub (void *);
67 static int restore_selected_frame (void *);
69 static void build_infrun (void);
71 static int follow_fork (void);
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
76 static int currently_stepping (struct thread_info *tp);
78 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 static void xdb_handle_command (char *args, int from_tty);
83 static int prepare_to_proceed (int);
85 void _initialize_infrun (void);
87 void nullify_last_target_wait_ptid (void);
89 /* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92 int step_stop_if_no_debug = 0;
94 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100 /* In asynchronous mode, but simulating synchronous execution. */
102 int sync_execution = 0;
104 /* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
108 static ptid_t previous_inferior_ptid;
110 int debug_displaced = 0;
112 show_debug_displaced (struct ui_file *file, int from_tty,
113 struct cmd_list_element *c, const char *value)
115 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
118 static int debug_infrun = 0;
120 show_debug_infrun (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
123 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 /* If the program uses ELF-style shared libraries, then calls to
127 functions in shared libraries go through stubs, which live in a
128 table called the PLT (Procedure Linkage Table). The first time the
129 function is called, the stub sends control to the dynamic linker,
130 which looks up the function's real address, patches the stub so
131 that future calls will go directly to the function, and then passes
132 control to the function.
134 If we are stepping at the source level, we don't want to see any of
135 this --- we just want to skip over the stub and the dynamic linker.
136 The simple approach is to single-step until control leaves the
139 However, on some systems (e.g., Red Hat's 5.2 distribution) the
140 dynamic linker calls functions in the shared C library, so you
141 can't tell from the PC alone whether the dynamic linker is still
142 running. In this case, we use a step-resume breakpoint to get us
143 past the dynamic linker, as if we were using "next" to step over a
146 in_solib_dynsym_resolve_code() says whether we're in the dynamic
147 linker code or not. Normally, this means we single-step. However,
148 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
149 address where we can place a step-resume breakpoint to get past the
150 linker's symbol resolution function.
152 in_solib_dynsym_resolve_code() can generally be implemented in a
153 pretty portable way, by comparing the PC against the address ranges
154 of the dynamic linker's sections.
156 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
157 it depends on internal details of the dynamic linker. It's usually
158 not too hard to figure out where to put a breakpoint, but it
159 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
160 sanity checking. If it can't figure things out, returning zero and
161 getting the (possibly confusing) stepping behavior is better than
162 signalling an error, which will obscure the change in the
165 /* This function returns TRUE if pc is the address of an instruction
166 that lies within the dynamic linker (such as the event hook, or the
169 This function must be used only when a dynamic linker event has
170 been caught, and the inferior is being stepped out of the hook, or
171 undefined results are guaranteed. */
173 #ifndef SOLIB_IN_DYNAMIC_LINKER
174 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
178 /* Convert the #defines into values. This is temporary until wfi control
179 flow is completely sorted out. */
181 #ifndef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 0
184 #undef CANNOT_STEP_HW_WATCHPOINTS
185 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 /* Tables of how to react to signals; the user sets them. */
190 static unsigned char *signal_stop;
191 static unsigned char *signal_print;
192 static unsigned char *signal_program;
194 #define SET_SIGS(nsigs,sigs,flags) \
196 int signum = (nsigs); \
197 while (signum-- > 0) \
198 if ((sigs)[signum]) \
199 (flags)[signum] = 1; \
202 #define UNSET_SIGS(nsigs,sigs,flags) \
204 int signum = (nsigs); \
205 while (signum-- > 0) \
206 if ((sigs)[signum]) \
207 (flags)[signum] = 0; \
210 /* Value to pass to target_resume() to cause all threads to resume */
212 #define RESUME_ALL (pid_to_ptid (-1))
214 /* Command list pointer for the "stop" placeholder. */
216 static struct cmd_list_element *stop_command;
218 /* Function inferior was in as of last step command. */
220 static struct symbol *step_start_function;
222 /* Nonzero if we want to give control to the user when we're notified
223 of shared library events by the dynamic linker. */
224 static int stop_on_solib_events;
226 show_stop_on_solib_events (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
229 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
233 /* Nonzero means expecting a trace trap
234 and should stop the inferior and return silently when it happens. */
238 /* Save register contents here when executing a "finish" command or are
239 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
240 Thus this contains the return value from the called function (assuming
241 values are returned in a register). */
243 struct regcache *stop_registers;
245 /* Nonzero after stop if current stack frame should be printed. */
247 static int stop_print_frame;
249 /* This is a cached copy of the pid/waitstatus of the last event
250 returned by target_wait()/deprecated_target_wait_hook(). This
251 information is returned by get_last_target_status(). */
252 static ptid_t target_last_wait_ptid;
253 static struct target_waitstatus target_last_waitstatus;
255 static void context_switch (ptid_t ptid);
257 void init_thread_stepping_state (struct thread_info *tss);
259 void init_infwait_state (void);
261 static const char follow_fork_mode_child[] = "child";
262 static const char follow_fork_mode_parent[] = "parent";
264 static const char *follow_fork_mode_kind_names[] = {
265 follow_fork_mode_child,
266 follow_fork_mode_parent,
270 static const char *follow_fork_mode_string = follow_fork_mode_parent;
272 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
275 fprintf_filtered (file, _("\
276 Debugger response to a program call of fork or vfork is \"%s\".\n"),
281 /* Tell the target to follow the fork we're stopped at. Returns true
282 if the inferior should be resumed; false, if the target for some
283 reason decided it's best not to resume. */
288 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
289 int should_resume = 1;
290 struct thread_info *tp;
292 /* Copy user stepping state to the new inferior thread. FIXME: the
293 followed fork child thread should have a copy of most of the
294 parent thread structure's run control related fields, not just these.
295 Initialized to avoid "may be used uninitialized" warnings from gcc. */
296 struct breakpoint *step_resume_breakpoint = NULL;
297 CORE_ADDR step_range_start = 0;
298 CORE_ADDR step_range_end = 0;
299 struct frame_id step_frame_id = { 0 };
304 struct target_waitstatus wait_status;
306 /* Get the last target status returned by target_wait(). */
307 get_last_target_status (&wait_ptid, &wait_status);
309 /* If not stopped at a fork event, then there's nothing else to
311 if (wait_status.kind != TARGET_WAITKIND_FORKED
312 && wait_status.kind != TARGET_WAITKIND_VFORKED)
315 /* Check if we switched over from WAIT_PTID, since the event was
317 if (!ptid_equal (wait_ptid, minus_one_ptid)
318 && !ptid_equal (inferior_ptid, wait_ptid))
320 /* We did. Switch back to WAIT_PTID thread, to tell the
321 target to follow it (in either direction). We'll
322 afterwards refuse to resume, and inform the user what
324 switch_to_thread (wait_ptid);
329 tp = inferior_thread ();
331 /* If there were any forks/vforks that were caught and are now to be
332 followed, then do so now. */
333 switch (tp->pending_follow.kind)
335 case TARGET_WAITKIND_FORKED:
336 case TARGET_WAITKIND_VFORKED:
338 ptid_t parent, child;
340 /* If the user did a next/step, etc, over a fork call,
341 preserve the stepping state in the fork child. */
342 if (follow_child && should_resume)
344 step_resume_breakpoint
345 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
346 step_range_start = tp->step_range_start;
347 step_range_end = tp->step_range_end;
348 step_frame_id = tp->step_frame_id;
350 /* For now, delete the parent's sr breakpoint, otherwise,
351 parent/child sr breakpoints are considered duplicates,
352 and the child version will not be installed. Remove
353 this when the breakpoints module becomes aware of
354 inferiors and address spaces. */
355 delete_step_resume_breakpoint (tp);
356 tp->step_range_start = 0;
357 tp->step_range_end = 0;
358 tp->step_frame_id = null_frame_id;
361 parent = inferior_ptid;
362 child = tp->pending_follow.value.related_pid;
364 /* Tell the target to do whatever is necessary to follow
365 either parent or child. */
366 if (target_follow_fork (follow_child))
368 /* Target refused to follow, or there's some other reason
369 we shouldn't resume. */
374 /* This pending follow fork event is now handled, one way
375 or another. The previous selected thread may be gone
376 from the lists by now, but if it is still around, need
377 to clear the pending follow request. */
378 tp = find_thread_ptid (parent);
380 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
382 /* This makes sure we don't try to apply the "Switched
383 over from WAIT_PID" logic above. */
384 nullify_last_target_wait_ptid ();
386 /* If we followed the child, switch to it... */
389 switch_to_thread (child);
391 /* ... and preserve the stepping state, in case the
392 user was stepping over the fork call. */
395 tp = inferior_thread ();
396 tp->step_resume_breakpoint = step_resume_breakpoint;
397 tp->step_range_start = step_range_start;
398 tp->step_range_end = step_range_end;
399 tp->step_frame_id = step_frame_id;
403 /* If we get here, it was because we're trying to
404 resume from a fork catchpoint, but, the user
405 has switched threads away from the thread that
406 forked. In that case, the resume command
407 issued is most likely not applicable to the
408 child, so just warn, and refuse to resume. */
410 Not resuming: switched threads before following fork child.\n"));
413 /* Reset breakpoints in the child as appropriate. */
414 follow_inferior_reset_breakpoints ();
417 switch_to_thread (parent);
421 case TARGET_WAITKIND_SPURIOUS:
422 /* Nothing to follow. */
425 internal_error (__FILE__, __LINE__,
426 "Unexpected pending_follow.kind %d\n",
427 tp->pending_follow.kind);
431 return should_resume;
435 follow_inferior_reset_breakpoints (void)
437 struct thread_info *tp = inferior_thread ();
439 /* Was there a step_resume breakpoint? (There was if the user
440 did a "next" at the fork() call.) If so, explicitly reset its
443 step_resumes are a form of bp that are made to be per-thread.
444 Since we created the step_resume bp when the parent process
445 was being debugged, and now are switching to the child process,
446 from the breakpoint package's viewpoint, that's a switch of
447 "threads". We must update the bp's notion of which thread
448 it is for, or it'll be ignored when it triggers. */
450 if (tp->step_resume_breakpoint)
451 breakpoint_re_set_thread (tp->step_resume_breakpoint);
453 /* Reinsert all breakpoints in the child. The user may have set
454 breakpoints after catching the fork, in which case those
455 were never set in the child, but only in the parent. This makes
456 sure the inserted breakpoints match the breakpoint list. */
458 breakpoint_re_set ();
459 insert_breakpoints ();
462 /* EXECD_PATHNAME is assumed to be non-NULL. */
465 follow_exec (ptid_t pid, char *execd_pathname)
467 struct target_ops *tgt;
468 struct thread_info *th = inferior_thread ();
470 /* This is an exec event that we actually wish to pay attention to.
471 Refresh our symbol table to the newly exec'd program, remove any
474 If there are breakpoints, they aren't really inserted now,
475 since the exec() transformed our inferior into a fresh set
478 We want to preserve symbolic breakpoints on the list, since
479 we have hopes that they can be reset after the new a.out's
480 symbol table is read.
482 However, any "raw" breakpoints must be removed from the list
483 (e.g., the solib bp's), since their address is probably invalid
486 And, we DON'T want to call delete_breakpoints() here, since
487 that may write the bp's "shadow contents" (the instruction
488 value that was overwritten witha TRAP instruction). Since
489 we now have a new a.out, those shadow contents aren't valid. */
490 update_breakpoints_after_exec ();
492 /* If there was one, it's gone now. We cannot truly step-to-next
493 statement through an exec(). */
494 th->step_resume_breakpoint = NULL;
495 th->step_range_start = 0;
496 th->step_range_end = 0;
498 /* The target reports the exec event to the main thread, even if
499 some other thread does the exec, and even if the main thread was
500 already stopped --- if debugging in non-stop mode, it's possible
501 the user had the main thread held stopped in the previous image
502 --- release it now. This is the same behavior as step-over-exec
503 with scheduler-locking on in all-stop mode. */
504 th->stop_requested = 0;
506 /* What is this a.out's name? */
507 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
509 /* We've followed the inferior through an exec. Therefore, the
510 inferior has essentially been killed & reborn. */
512 gdb_flush (gdb_stdout);
514 breakpoint_init_inferior (inf_execd);
516 if (gdb_sysroot && *gdb_sysroot)
518 char *name = alloca (strlen (gdb_sysroot)
519 + strlen (execd_pathname)
521 strcpy (name, gdb_sysroot);
522 strcat (name, execd_pathname);
523 execd_pathname = name;
526 /* That a.out is now the one to use. */
527 exec_file_attach (execd_pathname, 0);
529 /* Reset the shared library package. This ensures that we get a
530 shlib event when the child reaches "_start", at which point the
531 dld will have had a chance to initialize the child. */
532 /* Also, loading a symbol file below may trigger symbol lookups, and
533 we don't want those to be satisfied by the libraries of the
534 previous incarnation of this process. */
535 no_shared_libraries (NULL, 0);
537 /* Load the main file's symbols. */
538 symbol_file_add_main (execd_pathname, 0);
540 #ifdef SOLIB_CREATE_INFERIOR_HOOK
541 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
543 solib_create_inferior_hook ();
546 /* Reinsert all breakpoints. (Those which were symbolic have
547 been reset to the proper address in the new a.out, thanks
548 to symbol_file_command...) */
549 insert_breakpoints ();
551 /* The next resume of this inferior should bring it to the shlib
552 startup breakpoints. (If the user had also set bp's on
553 "main" from the old (parent) process, then they'll auto-
554 matically get reset there in the new process.) */
557 /* Non-zero if we just simulating a single-step. This is needed
558 because we cannot remove the breakpoints in the inferior process
559 until after the `wait' in `wait_for_inferior'. */
560 static int singlestep_breakpoints_inserted_p = 0;
562 /* The thread we inserted single-step breakpoints for. */
563 static ptid_t singlestep_ptid;
565 /* PC when we started this single-step. */
566 static CORE_ADDR singlestep_pc;
568 /* If another thread hit the singlestep breakpoint, we save the original
569 thread here so that we can resume single-stepping it later. */
570 static ptid_t saved_singlestep_ptid;
571 static int stepping_past_singlestep_breakpoint;
573 /* If not equal to null_ptid, this means that after stepping over breakpoint
574 is finished, we need to switch to deferred_step_ptid, and step it.
576 The use case is when one thread has hit a breakpoint, and then the user
577 has switched to another thread and issued 'step'. We need to step over
578 breakpoint in the thread which hit the breakpoint, but then continue
579 stepping the thread user has selected. */
580 static ptid_t deferred_step_ptid;
582 /* Displaced stepping. */
584 /* In non-stop debugging mode, we must take special care to manage
585 breakpoints properly; in particular, the traditional strategy for
586 stepping a thread past a breakpoint it has hit is unsuitable.
587 'Displaced stepping' is a tactic for stepping one thread past a
588 breakpoint it has hit while ensuring that other threads running
589 concurrently will hit the breakpoint as they should.
591 The traditional way to step a thread T off a breakpoint in a
592 multi-threaded program in all-stop mode is as follows:
594 a0) Initially, all threads are stopped, and breakpoints are not
596 a1) We single-step T, leaving breakpoints uninserted.
597 a2) We insert breakpoints, and resume all threads.
599 In non-stop debugging, however, this strategy is unsuitable: we
600 don't want to have to stop all threads in the system in order to
601 continue or step T past a breakpoint. Instead, we use displaced
604 n0) Initially, T is stopped, other threads are running, and
605 breakpoints are inserted.
606 n1) We copy the instruction "under" the breakpoint to a separate
607 location, outside the main code stream, making any adjustments
608 to the instruction, register, and memory state as directed by
610 n2) We single-step T over the instruction at its new location.
611 n3) We adjust the resulting register and memory state as directed
612 by T's architecture. This includes resetting T's PC to point
613 back into the main instruction stream.
616 This approach depends on the following gdbarch methods:
618 - gdbarch_max_insn_length and gdbarch_displaced_step_location
619 indicate where to copy the instruction, and how much space must
620 be reserved there. We use these in step n1.
622 - gdbarch_displaced_step_copy_insn copies a instruction to a new
623 address, and makes any necessary adjustments to the instruction,
624 register contents, and memory. We use this in step n1.
626 - gdbarch_displaced_step_fixup adjusts registers and memory after
627 we have successfuly single-stepped the instruction, to yield the
628 same effect the instruction would have had if we had executed it
629 at its original address. We use this in step n3.
631 - gdbarch_displaced_step_free_closure provides cleanup.
633 The gdbarch_displaced_step_copy_insn and
634 gdbarch_displaced_step_fixup functions must be written so that
635 copying an instruction with gdbarch_displaced_step_copy_insn,
636 single-stepping across the copied instruction, and then applying
637 gdbarch_displaced_insn_fixup should have the same effects on the
638 thread's memory and registers as stepping the instruction in place
639 would have. Exactly which responsibilities fall to the copy and
640 which fall to the fixup is up to the author of those functions.
642 See the comments in gdbarch.sh for details.
644 Note that displaced stepping and software single-step cannot
645 currently be used in combination, although with some care I think
646 they could be made to. Software single-step works by placing
647 breakpoints on all possible subsequent instructions; if the
648 displaced instruction is a PC-relative jump, those breakpoints
649 could fall in very strange places --- on pages that aren't
650 executable, or at addresses that are not proper instruction
651 boundaries. (We do generally let other threads run while we wait
652 to hit the software single-step breakpoint, and they might
653 encounter such a corrupted instruction.) One way to work around
654 this would be to have gdbarch_displaced_step_copy_insn fully
655 simulate the effect of PC-relative instructions (and return NULL)
656 on architectures that use software single-stepping.
658 In non-stop mode, we can have independent and simultaneous step
659 requests, so more than one thread may need to simultaneously step
660 over a breakpoint. The current implementation assumes there is
661 only one scratch space per process. In this case, we have to
662 serialize access to the scratch space. If thread A wants to step
663 over a breakpoint, but we are currently waiting for some other
664 thread to complete a displaced step, we leave thread A stopped and
665 place it in the displaced_step_request_queue. Whenever a displaced
666 step finishes, we pick the next thread in the queue and start a new
667 displaced step operation on it. See displaced_step_prepare and
668 displaced_step_fixup for details. */
670 /* If this is not null_ptid, this is the thread carrying out a
671 displaced single-step. This thread's state will require fixing up
672 once it has completed its step. */
673 static ptid_t displaced_step_ptid;
675 struct displaced_step_request
678 struct displaced_step_request *next;
681 /* A queue of pending displaced stepping requests. */
682 struct displaced_step_request *displaced_step_request_queue;
684 /* The architecture the thread had when we stepped it. */
685 static struct gdbarch *displaced_step_gdbarch;
687 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
688 for post-step cleanup. */
689 static struct displaced_step_closure *displaced_step_closure;
691 /* The address of the original instruction, and the copy we made. */
692 static CORE_ADDR displaced_step_original, displaced_step_copy;
694 /* Saved contents of copy area. */
695 static gdb_byte *displaced_step_saved_copy;
697 /* Enum strings for "set|show displaced-stepping". */
699 static const char can_use_displaced_stepping_auto[] = "auto";
700 static const char can_use_displaced_stepping_on[] = "on";
701 static const char can_use_displaced_stepping_off[] = "off";
702 static const char *can_use_displaced_stepping_enum[] =
704 can_use_displaced_stepping_auto,
705 can_use_displaced_stepping_on,
706 can_use_displaced_stepping_off,
710 /* If ON, and the architecture supports it, GDB will use displaced
711 stepping to step over breakpoints. If OFF, or if the architecture
712 doesn't support it, GDB will instead use the traditional
713 hold-and-step approach. If AUTO (which is the default), GDB will
714 decide which technique to use to step over breakpoints depending on
715 which of all-stop or non-stop mode is active --- displaced stepping
716 in non-stop mode; hold-and-step in all-stop mode. */
718 static const char *can_use_displaced_stepping =
719 can_use_displaced_stepping_auto;
722 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
723 struct cmd_list_element *c,
726 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
727 fprintf_filtered (file, _("\
728 Debugger's willingness to use displaced stepping to step over \
729 breakpoints is %s (currently %s).\n"),
730 value, non_stop ? "on" : "off");
732 fprintf_filtered (file, _("\
733 Debugger's willingness to use displaced stepping to step over \
734 breakpoints is %s.\n"), value);
737 /* Return non-zero if displaced stepping can/should be used to step
741 use_displaced_stepping (struct gdbarch *gdbarch)
743 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
745 || can_use_displaced_stepping == can_use_displaced_stepping_on)
746 && gdbarch_displaced_step_copy_insn_p (gdbarch)
750 /* Clean out any stray displaced stepping state. */
752 displaced_step_clear (void)
754 /* Indicate that there is no cleanup pending. */
755 displaced_step_ptid = null_ptid;
757 if (displaced_step_closure)
759 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
760 displaced_step_closure);
761 displaced_step_closure = NULL;
766 cleanup_displaced_step_closure (void *ptr)
768 struct displaced_step_closure *closure = ptr;
770 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
773 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
775 displaced_step_dump_bytes (struct ui_file *file,
781 for (i = 0; i < len; i++)
782 fprintf_unfiltered (file, "%02x ", buf[i]);
783 fputs_unfiltered ("\n", file);
786 /* Prepare to single-step, using displaced stepping.
788 Note that we cannot use displaced stepping when we have a signal to
789 deliver. If we have a signal to deliver and an instruction to step
790 over, then after the step, there will be no indication from the
791 target whether the thread entered a signal handler or ignored the
792 signal and stepped over the instruction successfully --- both cases
793 result in a simple SIGTRAP. In the first case we mustn't do a
794 fixup, and in the second case we must --- but we can't tell which.
795 Comments in the code for 'random signals' in handle_inferior_event
796 explain how we handle this case instead.
798 Returns 1 if preparing was successful -- this thread is going to be
799 stepped now; or 0 if displaced stepping this thread got queued. */
801 displaced_step_prepare (ptid_t ptid)
803 struct cleanup *old_cleanups, *ignore_cleanups;
804 struct regcache *regcache = get_thread_regcache (ptid);
805 struct gdbarch *gdbarch = get_regcache_arch (regcache);
806 CORE_ADDR original, copy;
808 struct displaced_step_closure *closure;
810 /* We should never reach this function if the architecture does not
811 support displaced stepping. */
812 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
814 /* For the first cut, we're displaced stepping one thread at a
817 if (!ptid_equal (displaced_step_ptid, null_ptid))
819 /* Already waiting for a displaced step to finish. Defer this
820 request and place in queue. */
821 struct displaced_step_request *req, *new_req;
824 fprintf_unfiltered (gdb_stdlog,
825 "displaced: defering step of %s\n",
826 target_pid_to_str (ptid));
828 new_req = xmalloc (sizeof (*new_req));
829 new_req->ptid = ptid;
830 new_req->next = NULL;
832 if (displaced_step_request_queue)
834 for (req = displaced_step_request_queue;
841 displaced_step_request_queue = new_req;
848 fprintf_unfiltered (gdb_stdlog,
849 "displaced: stepping %s now\n",
850 target_pid_to_str (ptid));
853 displaced_step_clear ();
855 old_cleanups = save_inferior_ptid ();
856 inferior_ptid = ptid;
858 original = regcache_read_pc (regcache);
860 copy = gdbarch_displaced_step_location (gdbarch);
861 len = gdbarch_max_insn_length (gdbarch);
863 /* Save the original contents of the copy area. */
864 displaced_step_saved_copy = xmalloc (len);
865 ignore_cleanups = make_cleanup (free_current_contents,
866 &displaced_step_saved_copy);
867 read_memory (copy, displaced_step_saved_copy, len);
870 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
872 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
875 closure = gdbarch_displaced_step_copy_insn (gdbarch,
876 original, copy, regcache);
878 /* We don't support the fully-simulated case at present. */
879 gdb_assert (closure);
881 make_cleanup (cleanup_displaced_step_closure, closure);
883 /* Resume execution at the copy. */
884 regcache_write_pc (regcache, copy);
886 discard_cleanups (ignore_cleanups);
888 do_cleanups (old_cleanups);
891 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
894 /* Save the information we need to fix things up if the step
896 displaced_step_ptid = ptid;
897 displaced_step_gdbarch = gdbarch;
898 displaced_step_closure = closure;
899 displaced_step_original = original;
900 displaced_step_copy = copy;
905 displaced_step_clear_cleanup (void *ignore)
907 displaced_step_clear ();
911 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
913 struct cleanup *ptid_cleanup = save_inferior_ptid ();
914 inferior_ptid = ptid;
915 write_memory (memaddr, myaddr, len);
916 do_cleanups (ptid_cleanup);
920 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
922 struct cleanup *old_cleanups;
924 /* Was this event for the pid we displaced? */
925 if (ptid_equal (displaced_step_ptid, null_ptid)
926 || ! ptid_equal (displaced_step_ptid, event_ptid))
929 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
931 /* Restore the contents of the copy area. */
933 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
934 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
935 displaced_step_saved_copy, len);
937 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
938 paddr_nz (displaced_step_copy));
941 /* Did the instruction complete successfully? */
942 if (signal == TARGET_SIGNAL_TRAP)
944 /* Fix up the resulting state. */
945 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
946 displaced_step_closure,
947 displaced_step_original,
949 get_thread_regcache (displaced_step_ptid));
953 /* Since the instruction didn't complete, all we can do is
955 struct regcache *regcache = get_thread_regcache (event_ptid);
956 CORE_ADDR pc = regcache_read_pc (regcache);
957 pc = displaced_step_original + (pc - displaced_step_copy);
958 regcache_write_pc (regcache, pc);
961 do_cleanups (old_cleanups);
963 displaced_step_ptid = null_ptid;
965 /* Are there any pending displaced stepping requests? If so, run
967 while (displaced_step_request_queue)
969 struct displaced_step_request *head;
973 head = displaced_step_request_queue;
975 displaced_step_request_queue = head->next;
978 context_switch (ptid);
980 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
982 if (breakpoint_here_p (actual_pc))
985 fprintf_unfiltered (gdb_stdlog,
986 "displaced: stepping queued %s now\n",
987 target_pid_to_str (ptid));
989 displaced_step_prepare (ptid);
995 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
996 paddr_nz (actual_pc));
997 read_memory (actual_pc, buf, sizeof (buf));
998 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1001 target_resume (ptid, 1, TARGET_SIGNAL_0);
1003 /* Done, we're stepping a thread. */
1009 struct thread_info *tp = inferior_thread ();
1011 /* The breakpoint we were sitting under has since been
1013 tp->trap_expected = 0;
1015 /* Go back to what we were trying to do. */
1016 step = currently_stepping (tp);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1020 target_pid_to_str (tp->ptid), step);
1022 target_resume (ptid, step, TARGET_SIGNAL_0);
1023 tp->stop_signal = TARGET_SIGNAL_0;
1025 /* This request was discarded. See if there's any other
1026 thread waiting for its turn. */
1031 /* Update global variables holding ptids to hold NEW_PTID if they were
1032 holding OLD_PTID. */
1034 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1036 struct displaced_step_request *it;
1038 if (ptid_equal (inferior_ptid, old_ptid))
1039 inferior_ptid = new_ptid;
1041 if (ptid_equal (singlestep_ptid, old_ptid))
1042 singlestep_ptid = new_ptid;
1044 if (ptid_equal (displaced_step_ptid, old_ptid))
1045 displaced_step_ptid = new_ptid;
1047 if (ptid_equal (deferred_step_ptid, old_ptid))
1048 deferred_step_ptid = new_ptid;
1050 for (it = displaced_step_request_queue; it; it = it->next)
1051 if (ptid_equal (it->ptid, old_ptid))
1052 it->ptid = new_ptid;
1058 /* Things to clean up if we QUIT out of resume (). */
1060 resume_cleanups (void *ignore)
1065 static const char schedlock_off[] = "off";
1066 static const char schedlock_on[] = "on";
1067 static const char schedlock_step[] = "step";
1068 static const char *scheduler_enums[] = {
1074 static const char *scheduler_mode = schedlock_off;
1076 show_scheduler_mode (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1079 fprintf_filtered (file, _("\
1080 Mode for locking scheduler during execution is \"%s\".\n"),
1085 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1087 if (!target_can_lock_scheduler)
1089 scheduler_mode = schedlock_off;
1090 error (_("Target '%s' cannot support this command."), target_shortname);
1094 /* Try to setup for software single stepping over the specified location.
1095 Return 1 if target_resume() should use hardware single step.
1097 GDBARCH the current gdbarch.
1098 PC the location to step over. */
1101 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 if (gdbarch_software_single_step_p (gdbarch)
1106 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1109 /* Do not pull these breakpoints until after a `wait' in
1110 `wait_for_inferior' */
1111 singlestep_breakpoints_inserted_p = 1;
1112 singlestep_ptid = inferior_ptid;
1118 /* Resume the inferior, but allow a QUIT. This is useful if the user
1119 wants to interrupt some lengthy single-stepping operation
1120 (for child processes, the SIGINT goes to the inferior, and so
1121 we get a SIGINT random_signal, but for remote debugging and perhaps
1122 other targets, that's not true).
1124 STEP nonzero if we should step (zero to continue instead).
1125 SIG is the signal to give the inferior (zero for none). */
1127 resume (int step, enum target_signal sig)
1129 int should_resume = 1;
1130 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1131 struct regcache *regcache = get_current_regcache ();
1132 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1133 struct thread_info *tp = inferior_thread ();
1134 CORE_ADDR pc = regcache_read_pc (regcache);
1139 fprintf_unfiltered (gdb_stdlog,
1140 "infrun: resume (step=%d, signal=%d), "
1141 "trap_expected=%d\n",
1142 step, sig, tp->trap_expected);
1144 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1145 over an instruction that causes a page fault without triggering
1146 a hardware watchpoint. The kernel properly notices that it shouldn't
1147 stop, because the hardware watchpoint is not triggered, but it forgets
1148 the step request and continues the program normally.
1149 Work around the problem by removing hardware watchpoints if a step is
1150 requested, GDB will check for a hardware watchpoint trigger after the
1152 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1153 remove_hw_watchpoints ();
1156 /* Normally, by the time we reach `resume', the breakpoints are either
1157 removed or inserted, as appropriate. The exception is if we're sitting
1158 at a permanent breakpoint; we need to step over it, but permanent
1159 breakpoints can't be removed. So we have to test for it here. */
1160 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1162 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1163 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1166 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1167 how to step past a permanent breakpoint on this architecture. Try using\n\
1168 a command like `return' or `jump' to continue execution."));
1171 /* If enabled, step over breakpoints by executing a copy of the
1172 instruction at a different address.
1174 We can't use displaced stepping when we have a signal to deliver;
1175 the comments for displaced_step_prepare explain why. The
1176 comments in the handle_inferior event for dealing with 'random
1177 signals' explain what we do instead. */
1178 if (use_displaced_stepping (gdbarch)
1179 && tp->trap_expected
1180 && sig == TARGET_SIGNAL_0)
1182 if (!displaced_step_prepare (inferior_ptid))
1184 /* Got placed in displaced stepping queue. Will be resumed
1185 later when all the currently queued displaced stepping
1186 requests finish. The thread is not executing at this point,
1187 and the call to set_executing will be made later. But we
1188 need to call set_running here, since from frontend point of view,
1189 the thread is running. */
1190 set_running (inferior_ptid, 1);
1191 discard_cleanups (old_cleanups);
1196 /* Do we need to do it the hard way, w/temp breakpoints? */
1198 step = maybe_software_singlestep (gdbarch, pc);
1204 resume_ptid = RESUME_ALL; /* Default */
1206 /* If STEP is set, it's a request to use hardware stepping
1207 facilities. But in that case, we should never
1208 use singlestep breakpoint. */
1209 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1211 if (singlestep_breakpoints_inserted_p
1212 && stepping_past_singlestep_breakpoint)
1214 /* The situation here is as follows. In thread T1 we wanted to
1215 single-step. Lacking hardware single-stepping we've
1216 set breakpoint at the PC of the next instruction -- call it
1217 P. After resuming, we've hit that breakpoint in thread T2.
1218 Now we've removed original breakpoint, inserted breakpoint
1219 at P+1, and try to step to advance T2 past breakpoint.
1220 We need to step only T2, as if T1 is allowed to freely run,
1221 it can run past P, and if other threads are allowed to run,
1222 they can hit breakpoint at P+1, and nested hits of single-step
1223 breakpoints is not something we'd want -- that's complicated
1224 to support, and has no value. */
1225 resume_ptid = inferior_ptid;
1228 if ((step || singlestep_breakpoints_inserted_p)
1229 && tp->trap_expected)
1231 /* We're allowing a thread to run past a breakpoint it has
1232 hit, by single-stepping the thread with the breakpoint
1233 removed. In which case, we need to single-step only this
1234 thread, and keep others stopped, as they can miss this
1235 breakpoint if allowed to run.
1237 The current code actually removes all breakpoints when
1238 doing this, not just the one being stepped over, so if we
1239 let other threads run, we can actually miss any
1240 breakpoint, not just the one at PC. */
1241 resume_ptid = inferior_ptid;
1246 /* With non-stop mode on, threads are always handled
1248 resume_ptid = inferior_ptid;
1250 else if ((scheduler_mode == schedlock_on)
1251 || (scheduler_mode == schedlock_step
1252 && (step || singlestep_breakpoints_inserted_p)))
1254 /* User-settable 'scheduler' mode requires solo thread resume. */
1255 resume_ptid = inferior_ptid;
1258 if (gdbarch_cannot_step_breakpoint (gdbarch))
1260 /* Most targets can step a breakpoint instruction, thus
1261 executing it normally. But if this one cannot, just
1262 continue and we will hit it anyway. */
1263 if (step && breakpoint_inserted_here_p (pc))
1268 && use_displaced_stepping (gdbarch)
1269 && tp->trap_expected)
1271 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1272 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1275 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1276 paddr_nz (actual_pc));
1277 read_memory (actual_pc, buf, sizeof (buf));
1278 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1281 /* Install inferior's terminal modes. */
1282 target_terminal_inferior ();
1284 /* Avoid confusing the next resume, if the next stop/resume
1285 happens to apply to another thread. */
1286 tp->stop_signal = TARGET_SIGNAL_0;
1288 target_resume (resume_ptid, step, sig);
1291 discard_cleanups (old_cleanups);
1296 /* Clear out all variables saying what to do when inferior is continued.
1297 First do this, then set the ones you want, then call `proceed'. */
1300 clear_proceed_status_thread (struct thread_info *tp)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "infrun: clear_proceed_status_thread (%s)\n",
1305 target_pid_to_str (tp->ptid));
1307 tp->trap_expected = 0;
1308 tp->step_range_start = 0;
1309 tp->step_range_end = 0;
1310 tp->step_frame_id = null_frame_id;
1311 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1312 tp->stop_requested = 0;
1316 tp->proceed_to_finish = 0;
1318 /* Discard any remaining commands or status from previous stop. */
1319 bpstat_clear (&tp->stop_bpstat);
1323 clear_proceed_status_callback (struct thread_info *tp, void *data)
1325 if (is_exited (tp->ptid))
1328 clear_proceed_status_thread (tp);
1333 clear_proceed_status (void)
1335 if (!ptid_equal (inferior_ptid, null_ptid))
1337 struct inferior *inferior;
1341 /* If in non-stop mode, only delete the per-thread status
1342 of the current thread. */
1343 clear_proceed_status_thread (inferior_thread ());
1347 /* In all-stop mode, delete the per-thread status of
1349 iterate_over_threads (clear_proceed_status_callback, NULL);
1352 inferior = current_inferior ();
1353 inferior->stop_soon = NO_STOP_QUIETLY;
1356 stop_after_trap = 0;
1358 observer_notify_about_to_proceed ();
1362 regcache_xfree (stop_registers);
1363 stop_registers = NULL;
1367 /* Check the current thread against the thread that reported the most recent
1368 event. If a step-over is required return TRUE and set the current thread
1369 to the old thread. Otherwise return FALSE.
1371 This should be suitable for any targets that support threads. */
1374 prepare_to_proceed (int step)
1377 struct target_waitstatus wait_status;
1378 int schedlock_enabled;
1380 /* With non-stop mode on, threads are always handled individually. */
1381 gdb_assert (! non_stop);
1383 /* Get the last target status returned by target_wait(). */
1384 get_last_target_status (&wait_ptid, &wait_status);
1386 /* Make sure we were stopped at a breakpoint. */
1387 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1388 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1393 schedlock_enabled = (scheduler_mode == schedlock_on
1394 || (scheduler_mode == schedlock_step
1397 /* Switched over from WAIT_PID. */
1398 if (!ptid_equal (wait_ptid, minus_one_ptid)
1399 && !ptid_equal (inferior_ptid, wait_ptid)
1400 /* Don't single step WAIT_PID if scheduler locking is on. */
1401 && !schedlock_enabled)
1403 struct regcache *regcache = get_thread_regcache (wait_ptid);
1405 if (breakpoint_here_p (regcache_read_pc (regcache)))
1407 /* If stepping, remember current thread to switch back to. */
1409 deferred_step_ptid = inferior_ptid;
1411 /* Switch back to WAIT_PID thread. */
1412 switch_to_thread (wait_ptid);
1414 /* We return 1 to indicate that there is a breakpoint here,
1415 so we need to step over it before continuing to avoid
1416 hitting it straight away. */
1424 /* Basic routine for continuing the program in various fashions.
1426 ADDR is the address to resume at, or -1 for resume where stopped.
1427 SIGGNAL is the signal to give it, or 0 for none,
1428 or -1 for act according to how it stopped.
1429 STEP is nonzero if should trap after one instruction.
1430 -1 means return after that and print nothing.
1431 You should probably set various step_... variables
1432 before calling here, if you are stepping.
1434 You should call clear_proceed_status before calling proceed. */
1437 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1439 struct regcache *regcache;
1440 struct gdbarch *gdbarch;
1441 struct thread_info *tp;
1445 /* If we're stopped at a fork/vfork, follow the branch set by the
1446 "set follow-fork-mode" command; otherwise, we'll just proceed
1447 resuming the current thread. */
1448 if (!follow_fork ())
1450 /* The target for some reason decided not to resume. */
1455 regcache = get_current_regcache ();
1456 gdbarch = get_regcache_arch (regcache);
1457 pc = regcache_read_pc (regcache);
1460 step_start_function = find_pc_function (pc);
1462 stop_after_trap = 1;
1464 if (addr == (CORE_ADDR) -1)
1466 if (pc == stop_pc && breakpoint_here_p (pc)
1467 && execution_direction != EXEC_REVERSE)
1468 /* There is a breakpoint at the address we will resume at,
1469 step one instruction before inserting breakpoints so that
1470 we do not stop right away (and report a second hit at this
1473 Note, we don't do this in reverse, because we won't
1474 actually be executing the breakpoint insn anyway.
1475 We'll be (un-)executing the previous instruction. */
1478 else if (gdbarch_single_step_through_delay_p (gdbarch)
1479 && gdbarch_single_step_through_delay (gdbarch,
1480 get_current_frame ()))
1481 /* We stepped onto an instruction that needs to be stepped
1482 again before re-inserting the breakpoint, do so. */
1487 regcache_write_pc (regcache, addr);
1491 fprintf_unfiltered (gdb_stdlog,
1492 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1493 paddr_nz (addr), siggnal, step);
1496 /* In non-stop, each thread is handled individually. The context
1497 must already be set to the right thread here. */
1501 /* In a multi-threaded task we may select another thread and
1502 then continue or step.
1504 But if the old thread was stopped at a breakpoint, it will
1505 immediately cause another breakpoint stop without any
1506 execution (i.e. it will report a breakpoint hit incorrectly).
1507 So we must step over it first.
1509 prepare_to_proceed checks the current thread against the
1510 thread that reported the most recent event. If a step-over
1511 is required it returns TRUE and sets the current thread to
1513 if (prepare_to_proceed (step))
1517 /* prepare_to_proceed may change the current thread. */
1518 tp = inferior_thread ();
1522 tp->trap_expected = 1;
1523 /* If displaced stepping is enabled, we can step over the
1524 breakpoint without hitting it, so leave all breakpoints
1525 inserted. Otherwise we need to disable all breakpoints, step
1526 one instruction, and then re-add them when that step is
1528 if (!use_displaced_stepping (gdbarch))
1529 remove_breakpoints ();
1532 /* We can insert breakpoints if we're not trying to step over one,
1533 or if we are stepping over one but we're using displaced stepping
1535 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1536 insert_breakpoints ();
1540 /* Pass the last stop signal to the thread we're resuming,
1541 irrespective of whether the current thread is the thread that
1542 got the last event or not. This was historically GDB's
1543 behaviour before keeping a stop_signal per thread. */
1545 struct thread_info *last_thread;
1547 struct target_waitstatus last_status;
1549 get_last_target_status (&last_ptid, &last_status);
1550 if (!ptid_equal (inferior_ptid, last_ptid)
1551 && !ptid_equal (last_ptid, null_ptid)
1552 && !ptid_equal (last_ptid, minus_one_ptid))
1554 last_thread = find_thread_ptid (last_ptid);
1557 tp->stop_signal = last_thread->stop_signal;
1558 last_thread->stop_signal = TARGET_SIGNAL_0;
1563 if (siggnal != TARGET_SIGNAL_DEFAULT)
1564 tp->stop_signal = siggnal;
1565 /* If this signal should not be seen by program,
1566 give it zero. Used for debugging signals. */
1567 else if (!signal_program[tp->stop_signal])
1568 tp->stop_signal = TARGET_SIGNAL_0;
1570 annotate_starting ();
1572 /* Make sure that output from GDB appears before output from the
1574 gdb_flush (gdb_stdout);
1576 /* Refresh prev_pc value just prior to resuming. This used to be
1577 done in stop_stepping, however, setting prev_pc there did not handle
1578 scenarios such as inferior function calls or returning from
1579 a function via the return command. In those cases, the prev_pc
1580 value was not set properly for subsequent commands. The prev_pc value
1581 is used to initialize the starting line number in the ecs. With an
1582 invalid value, the gdb next command ends up stopping at the position
1583 represented by the next line table entry past our start position.
1584 On platforms that generate one line table entry per line, this
1585 is not a problem. However, on the ia64, the compiler generates
1586 extraneous line table entries that do not increase the line number.
1587 When we issue the gdb next command on the ia64 after an inferior call
1588 or a return command, we often end up a few instructions forward, still
1589 within the original line we started.
1591 An attempt was made to have init_execution_control_state () refresh
1592 the prev_pc value before calculating the line number. This approach
1593 did not work because on platforms that use ptrace, the pc register
1594 cannot be read unless the inferior is stopped. At that point, we
1595 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1596 call can fail. Setting the prev_pc value here ensures the value is
1597 updated correctly when the inferior is stopped. */
1598 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1600 /* Fill in with reasonable starting values. */
1601 init_thread_stepping_state (tp);
1603 /* Reset to normal state. */
1604 init_infwait_state ();
1606 /* Resume inferior. */
1607 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1609 /* Wait for it to stop (if not standalone)
1610 and in any case decode why it stopped, and act accordingly. */
1611 /* Do this only if we are not using the event loop, or if the target
1612 does not support asynchronous execution. */
1613 if (!target_can_async_p ())
1615 wait_for_inferior (0);
1621 /* Start remote-debugging of a machine over a serial link. */
1624 start_remote (int from_tty)
1626 struct inferior *inferior;
1627 init_wait_for_inferior ();
1629 inferior = current_inferior ();
1630 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1632 /* Always go on waiting for the target, regardless of the mode. */
1633 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1634 indicate to wait_for_inferior that a target should timeout if
1635 nothing is returned (instead of just blocking). Because of this,
1636 targets expecting an immediate response need to, internally, set
1637 things up so that the target_wait() is forced to eventually
1639 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1640 differentiate to its caller what the state of the target is after
1641 the initial open has been performed. Here we're assuming that
1642 the target has stopped. It should be possible to eventually have
1643 target_open() return to the caller an indication that the target
1644 is currently running and GDB state should be set to the same as
1645 for an async run. */
1646 wait_for_inferior (0);
1648 /* Now that the inferior has stopped, do any bookkeeping like
1649 loading shared libraries. We want to do this before normal_stop,
1650 so that the displayed frame is up to date. */
1651 post_create_inferior (¤t_target, from_tty);
1656 /* Initialize static vars when a new inferior begins. */
1659 init_wait_for_inferior (void)
1661 /* These are meaningless until the first time through wait_for_inferior. */
1663 breakpoint_init_inferior (inf_starting);
1665 clear_proceed_status ();
1667 stepping_past_singlestep_breakpoint = 0;
1668 deferred_step_ptid = null_ptid;
1670 target_last_wait_ptid = minus_one_ptid;
1672 previous_inferior_ptid = null_ptid;
1673 init_infwait_state ();
1675 displaced_step_clear ();
1679 /* This enum encodes possible reasons for doing a target_wait, so that
1680 wfi can call target_wait in one place. (Ultimately the call will be
1681 moved out of the infinite loop entirely.) */
1685 infwait_normal_state,
1686 infwait_thread_hop_state,
1687 infwait_step_watch_state,
1688 infwait_nonstep_watch_state
1691 /* Why did the inferior stop? Used to print the appropriate messages
1692 to the interface from within handle_inferior_event(). */
1693 enum inferior_stop_reason
1695 /* Step, next, nexti, stepi finished. */
1697 /* Inferior terminated by signal. */
1699 /* Inferior exited. */
1701 /* Inferior received signal, and user asked to be notified. */
1703 /* Reverse execution -- target ran out of history info. */
1707 /* The PTID we'll do a target_wait on.*/
1710 /* Current inferior wait state. */
1711 enum infwait_states infwait_state;
1713 /* Data to be passed around while handling an event. This data is
1714 discarded between events. */
1715 struct execution_control_state
1718 /* The thread that got the event, if this was a thread event; NULL
1720 struct thread_info *event_thread;
1722 struct target_waitstatus ws;
1724 CORE_ADDR stop_func_start;
1725 CORE_ADDR stop_func_end;
1726 char *stop_func_name;
1727 int new_thread_event;
1731 void init_execution_control_state (struct execution_control_state *ecs);
1733 void handle_inferior_event (struct execution_control_state *ecs);
1735 static void handle_step_into_function (struct execution_control_state *ecs);
1736 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1737 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1738 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1739 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1740 struct frame_id sr_id);
1741 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1743 static void stop_stepping (struct execution_control_state *ecs);
1744 static void prepare_to_wait (struct execution_control_state *ecs);
1745 static void keep_going (struct execution_control_state *ecs);
1746 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1749 /* Callback for iterate over threads. If the thread is stopped, but
1750 the user/frontend doesn't know about that yet, go through
1751 normal_stop, as if the thread had just stopped now. ARG points at
1752 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1753 ptid_is_pid(PTID) is true, applies to all threads of the process
1754 pointed at by PTID. Otherwise, apply only to the thread pointed by
1758 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1760 ptid_t ptid = * (ptid_t *) arg;
1762 if ((ptid_equal (info->ptid, ptid)
1763 || ptid_equal (minus_one_ptid, ptid)
1764 || (ptid_is_pid (ptid)
1765 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1766 && is_running (info->ptid)
1767 && !is_executing (info->ptid))
1769 struct cleanup *old_chain;
1770 struct execution_control_state ecss;
1771 struct execution_control_state *ecs = &ecss;
1773 memset (ecs, 0, sizeof (*ecs));
1775 old_chain = make_cleanup_restore_current_thread ();
1777 switch_to_thread (info->ptid);
1779 /* Go through handle_inferior_event/normal_stop, so we always
1780 have consistent output as if the stop event had been
1782 ecs->ptid = info->ptid;
1783 ecs->event_thread = find_thread_ptid (info->ptid);
1784 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1785 ecs->ws.value.sig = TARGET_SIGNAL_0;
1787 handle_inferior_event (ecs);
1789 if (!ecs->wait_some_more)
1791 struct thread_info *tp;
1795 /* Finish off the continuations. The continations
1796 themselves are responsible for realising the thread
1797 didn't finish what it was supposed to do. */
1798 tp = inferior_thread ();
1799 do_all_intermediate_continuations_thread (tp);
1800 do_all_continuations_thread (tp);
1803 do_cleanups (old_chain);
1809 /* This function is attached as a "thread_stop_requested" observer.
1810 Cleanup local state that assumed the PTID was to be resumed, and
1811 report the stop to the frontend. */
1814 infrun_thread_stop_requested (ptid_t ptid)
1816 struct displaced_step_request *it, *next, *prev = NULL;
1818 /* PTID was requested to stop. Remove it from the displaced
1819 stepping queue, so we don't try to resume it automatically. */
1820 for (it = displaced_step_request_queue; it; it = next)
1824 if (ptid_equal (it->ptid, ptid)
1825 || ptid_equal (minus_one_ptid, ptid)
1826 || (ptid_is_pid (ptid)
1827 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1829 if (displaced_step_request_queue == it)
1830 displaced_step_request_queue = it->next;
1832 prev->next = it->next;
1840 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1844 infrun_thread_thread_exit (struct thread_info *tp, int silent)
1846 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1847 nullify_last_target_wait_ptid ();
1850 /* Callback for iterate_over_threads. */
1853 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1855 if (is_exited (info->ptid))
1858 delete_step_resume_breakpoint (info);
1862 /* In all-stop, delete the step resume breakpoint of any thread that
1863 had one. In non-stop, delete the step resume breakpoint of the
1864 thread that just stopped. */
1867 delete_step_thread_step_resume_breakpoint (void)
1869 if (!target_has_execution
1870 || ptid_equal (inferior_ptid, null_ptid))
1871 /* If the inferior has exited, we have already deleted the step
1872 resume breakpoints out of GDB's lists. */
1877 /* If in non-stop mode, only delete the step-resume or
1878 longjmp-resume breakpoint of the thread that just stopped
1880 struct thread_info *tp = inferior_thread ();
1881 delete_step_resume_breakpoint (tp);
1884 /* In all-stop mode, delete all step-resume and longjmp-resume
1885 breakpoints of any thread that had them. */
1886 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1889 /* A cleanup wrapper. */
1892 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1894 delete_step_thread_step_resume_breakpoint ();
1897 /* Pretty print the results of target_wait, for debugging purposes. */
1900 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1901 const struct target_waitstatus *ws)
1903 char *status_string = target_waitstatus_to_string (ws);
1904 struct ui_file *tmp_stream = mem_fileopen ();
1908 /* The text is split over several lines because it was getting too long.
1909 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1910 output as a unit; we want only one timestamp printed if debug_timestamp
1913 fprintf_unfiltered (tmp_stream,
1914 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1915 if (PIDGET (waiton_ptid) != -1)
1916 fprintf_unfiltered (tmp_stream,
1917 " [%s]", target_pid_to_str (waiton_ptid));
1918 fprintf_unfiltered (tmp_stream, ", status) =\n");
1919 fprintf_unfiltered (tmp_stream,
1920 "infrun: %d [%s],\n",
1921 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1922 fprintf_unfiltered (tmp_stream,
1926 text = ui_file_xstrdup (tmp_stream, &len);
1928 /* This uses %s in part to handle %'s in the text, but also to avoid
1929 a gcc error: the format attribute requires a string literal. */
1930 fprintf_unfiltered (gdb_stdlog, "%s", text);
1932 xfree (status_string);
1934 ui_file_delete (tmp_stream);
1937 /* Wait for control to return from inferior to debugger.
1939 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1940 as if they were SIGTRAP signals. This can be useful during
1941 the startup sequence on some targets such as HP/UX, where
1942 we receive an EXEC event instead of the expected SIGTRAP.
1944 If inferior gets a signal, we may decide to start it up again
1945 instead of returning. That is why there is a loop in this function.
1946 When this function actually returns it means the inferior
1947 should be left stopped and GDB should read more commands. */
1950 wait_for_inferior (int treat_exec_as_sigtrap)
1952 struct cleanup *old_cleanups;
1953 struct execution_control_state ecss;
1954 struct execution_control_state *ecs;
1958 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1959 treat_exec_as_sigtrap);
1962 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1965 memset (ecs, 0, sizeof (*ecs));
1967 overlay_cache_invalid = 1;
1969 /* We'll update this if & when we switch to a new thread. */
1970 previous_inferior_ptid = inferior_ptid;
1972 /* We have to invalidate the registers BEFORE calling target_wait
1973 because they can be loaded from the target while in target_wait.
1974 This makes remote debugging a bit more efficient for those
1975 targets that provide critical registers as part of their normal
1976 status mechanism. */
1978 registers_changed ();
1982 struct cleanup *old_chain;
1984 if (deprecated_target_wait_hook)
1985 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
1987 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
1990 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
1992 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1994 xfree (ecs->ws.value.execd_pathname);
1995 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1996 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1999 /* If an error happens while handling the event, propagate GDB's
2000 knowledge of the executing state to the frontend/user running
2002 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2004 /* Now figure out what to do with the result of the result. */
2005 handle_inferior_event (ecs);
2007 /* No error, don't finish the state yet. */
2008 discard_cleanups (old_chain);
2010 if (!ecs->wait_some_more)
2014 do_cleanups (old_cleanups);
2017 /* Asynchronous version of wait_for_inferior. It is called by the
2018 event loop whenever a change of state is detected on the file
2019 descriptor corresponding to the target. It can be called more than
2020 once to complete a single execution command. In such cases we need
2021 to keep the state in a global variable ECSS. If it is the last time
2022 that this function is called for a single execution command, then
2023 report to the user that the inferior has stopped, and do the
2024 necessary cleanups. */
2027 fetch_inferior_event (void *client_data)
2029 struct execution_control_state ecss;
2030 struct execution_control_state *ecs = &ecss;
2031 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2032 struct cleanup *ts_old_chain;
2033 int was_sync = sync_execution;
2035 memset (ecs, 0, sizeof (*ecs));
2037 overlay_cache_invalid = 1;
2039 /* We can only rely on wait_for_more being correct before handling
2040 the event in all-stop, but previous_inferior_ptid isn't used in
2042 if (!ecs->wait_some_more)
2043 /* We'll update this if & when we switch to a new thread. */
2044 previous_inferior_ptid = inferior_ptid;
2047 /* In non-stop mode, the user/frontend should not notice a thread
2048 switch due to internal events. Make sure we reverse to the
2049 user selected thread and frame after handling the event and
2050 running any breakpoint commands. */
2051 make_cleanup_restore_current_thread ();
2053 /* We have to invalidate the registers BEFORE calling target_wait
2054 because they can be loaded from the target while in target_wait.
2055 This makes remote debugging a bit more efficient for those
2056 targets that provide critical registers as part of their normal
2057 status mechanism. */
2059 registers_changed ();
2061 if (deprecated_target_wait_hook)
2063 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2065 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2068 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2071 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2072 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2073 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2074 /* In non-stop mode, each thread is handled individually. Switch
2075 early, so the global state is set correctly for this
2077 context_switch (ecs->ptid);
2079 /* If an error happens while handling the event, propagate GDB's
2080 knowledge of the executing state to the frontend/user running
2083 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2085 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2087 /* Now figure out what to do with the result of the result. */
2088 handle_inferior_event (ecs);
2090 if (!ecs->wait_some_more)
2092 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2094 delete_step_thread_step_resume_breakpoint ();
2096 /* We may not find an inferior if this was a process exit. */
2097 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2100 if (target_has_execution
2101 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2102 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2103 && ecs->event_thread->step_multi
2104 && ecs->event_thread->stop_step)
2105 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2107 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2110 /* No error, don't finish the thread states yet. */
2111 discard_cleanups (ts_old_chain);
2113 /* Revert thread and frame. */
2114 do_cleanups (old_chain);
2116 /* If the inferior was in sync execution mode, and now isn't,
2117 restore the prompt. */
2118 if (was_sync && !sync_execution)
2119 display_gdb_prompt (0);
2122 /* Prepare an execution control state for looping through a
2123 wait_for_inferior-type loop. */
2126 init_execution_control_state (struct execution_control_state *ecs)
2128 ecs->random_signal = 0;
2131 /* Clear context switchable stepping state. */
2134 init_thread_stepping_state (struct thread_info *tss)
2136 struct symtab_and_line sal;
2138 tss->stepping_over_breakpoint = 0;
2139 tss->step_after_step_resume_breakpoint = 0;
2140 tss->stepping_through_solib_after_catch = 0;
2141 tss->stepping_through_solib_catchpoints = NULL;
2143 sal = find_pc_line (tss->prev_pc, 0);
2144 tss->current_line = sal.line;
2145 tss->current_symtab = sal.symtab;
2148 /* Return the cached copy of the last pid/waitstatus returned by
2149 target_wait()/deprecated_target_wait_hook(). The data is actually
2150 cached by handle_inferior_event(), which gets called immediately
2151 after target_wait()/deprecated_target_wait_hook(). */
2154 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2156 *ptidp = target_last_wait_ptid;
2157 *status = target_last_waitstatus;
2161 nullify_last_target_wait_ptid (void)
2163 target_last_wait_ptid = minus_one_ptid;
2166 /* Switch thread contexts. */
2169 context_switch (ptid_t ptid)
2173 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2174 target_pid_to_str (inferior_ptid));
2175 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2176 target_pid_to_str (ptid));
2179 switch_to_thread (ptid);
2183 adjust_pc_after_break (struct execution_control_state *ecs)
2185 struct regcache *regcache;
2186 struct gdbarch *gdbarch;
2187 CORE_ADDR breakpoint_pc;
2189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2190 we aren't, just return.
2192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2194 implemented by software breakpoints should be handled through the normal
2197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2198 different signals (SIGILL or SIGEMT for instance), but it is less
2199 clear where the PC is pointing afterwards. It may not match
2200 gdbarch_decr_pc_after_break. I don't know any specific target that
2201 generates these signals at breakpoints (the code has been in GDB since at
2202 least 1992) so I can not guess how to handle them here.
2204 In earlier versions of GDB, a target with
2205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2207 target with both of these set in GDB history, and it seems unlikely to be
2208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2210 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2213 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2216 /* In reverse execution, when a breakpoint is hit, the instruction
2217 under it has already been de-executed. The reported PC always
2218 points at the breakpoint address, so adjusting it further would
2219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2222 B1 0x08000000 : INSN1
2223 B2 0x08000001 : INSN2
2225 PC -> 0x08000003 : INSN4
2227 Say you're stopped at 0x08000003 as above. Reverse continuing
2228 from that point should hit B2 as below. Reading the PC when the
2229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2230 been de-executed already.
2232 B1 0x08000000 : INSN1
2233 B2 PC -> 0x08000001 : INSN2
2237 We can't apply the same logic as for forward execution, because
2238 we would wrongly adjust the PC to 0x08000000, since there's a
2239 breakpoint at PC - 1. We'd then report a hit on B1, although
2240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2242 if (execution_direction == EXEC_REVERSE)
2245 /* If this target does not decrement the PC after breakpoints, then
2246 we have nothing to do. */
2247 regcache = get_thread_regcache (ecs->ptid);
2248 gdbarch = get_regcache_arch (regcache);
2249 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2252 /* Find the location where (if we've hit a breakpoint) the
2253 breakpoint would be. */
2254 breakpoint_pc = regcache_read_pc (regcache)
2255 - gdbarch_decr_pc_after_break (gdbarch);
2257 /* Check whether there actually is a software breakpoint inserted at
2260 If in non-stop mode, a race condition is possible where we've
2261 removed a breakpoint, but stop events for that breakpoint were
2262 already queued and arrive later. To suppress those spurious
2263 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2264 and retire them after a number of stop events are reported. */
2265 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2266 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2268 struct cleanup *old_cleanups = NULL;
2270 old_cleanups = record_gdb_operation_disable_set ();
2272 /* When using hardware single-step, a SIGTRAP is reported for both
2273 a completed single-step and a software breakpoint. Need to
2274 differentiate between the two, as the latter needs adjusting
2275 but the former does not.
2277 The SIGTRAP can be due to a completed hardware single-step only if
2278 - we didn't insert software single-step breakpoints
2279 - the thread to be examined is still the current thread
2280 - this thread is currently being stepped
2282 If any of these events did not occur, we must have stopped due
2283 to hitting a software breakpoint, and have to back up to the
2286 As a special case, we could have hardware single-stepped a
2287 software breakpoint. In this case (prev_pc == breakpoint_pc),
2288 we also need to back up to the breakpoint address. */
2290 if (singlestep_breakpoints_inserted_p
2291 || !ptid_equal (ecs->ptid, inferior_ptid)
2292 || !currently_stepping (ecs->event_thread)
2293 || ecs->event_thread->prev_pc == breakpoint_pc)
2294 regcache_write_pc (regcache, breakpoint_pc);
2297 do_cleanups (old_cleanups);
2302 init_infwait_state (void)
2304 waiton_ptid = pid_to_ptid (-1);
2305 infwait_state = infwait_normal_state;
2309 error_is_running (void)
2312 Cannot execute this command while the selected thread is running."));
2316 ensure_not_running (void)
2318 if (is_running (inferior_ptid))
2319 error_is_running ();
2322 /* Given an execution control state that has been freshly filled in
2323 by an event from the inferior, figure out what it means and take
2324 appropriate action. */
2327 handle_inferior_event (struct execution_control_state *ecs)
2329 int sw_single_step_trap_p = 0;
2330 int stopped_by_watchpoint;
2331 int stepped_after_stopped_by_watchpoint = 0;
2332 struct symtab_and_line stop_pc_sal;
2333 enum stop_kind stop_soon;
2335 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2336 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2337 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2339 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2341 stop_soon = inf->stop_soon;
2344 stop_soon = NO_STOP_QUIETLY;
2346 /* Cache the last pid/waitstatus. */
2347 target_last_wait_ptid = ecs->ptid;
2348 target_last_waitstatus = ecs->ws;
2350 /* Always clear state belonging to the previous time we stopped. */
2351 stop_stack_dummy = 0;
2353 /* If it's a new process, add it to the thread database */
2355 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2356 && !ptid_equal (ecs->ptid, minus_one_ptid)
2357 && !in_thread_list (ecs->ptid));
2359 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2360 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2361 add_thread (ecs->ptid);
2363 ecs->event_thread = find_thread_ptid (ecs->ptid);
2365 /* Dependent on valid ECS->EVENT_THREAD. */
2366 adjust_pc_after_break (ecs);
2368 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2369 reinit_frame_cache ();
2371 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2373 breakpoint_retire_moribund ();
2375 /* Mark the non-executing threads accordingly. In all-stop, all
2376 threads of all processes are stopped when we get any event
2377 reported. In non-stop mode, only the event thread stops. If
2378 we're handling a process exit in non-stop mode, there's
2379 nothing to do, as threads of the dead process are gone, and
2380 threads of any other process were left running. */
2382 set_executing (minus_one_ptid, 0);
2383 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2384 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2385 set_executing (inferior_ptid, 0);
2388 switch (infwait_state)
2390 case infwait_thread_hop_state:
2392 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2393 /* Cancel the waiton_ptid. */
2394 waiton_ptid = pid_to_ptid (-1);
2397 case infwait_normal_state:
2399 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2402 case infwait_step_watch_state:
2404 fprintf_unfiltered (gdb_stdlog,
2405 "infrun: infwait_step_watch_state\n");
2407 stepped_after_stopped_by_watchpoint = 1;
2410 case infwait_nonstep_watch_state:
2412 fprintf_unfiltered (gdb_stdlog,
2413 "infrun: infwait_nonstep_watch_state\n");
2414 insert_breakpoints ();
2416 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2417 handle things like signals arriving and other things happening
2418 in combination correctly? */
2419 stepped_after_stopped_by_watchpoint = 1;
2423 internal_error (__FILE__, __LINE__, _("bad switch"));
2425 infwait_state = infwait_normal_state;
2427 switch (ecs->ws.kind)
2429 case TARGET_WAITKIND_LOADED:
2431 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2432 /* Ignore gracefully during startup of the inferior, as it might
2433 be the shell which has just loaded some objects, otherwise
2434 add the symbols for the newly loaded objects. Also ignore at
2435 the beginning of an attach or remote session; we will query
2436 the full list of libraries once the connection is
2438 if (stop_soon == NO_STOP_QUIETLY)
2440 /* Check for any newly added shared libraries if we're
2441 supposed to be adding them automatically. Switch
2442 terminal for any messages produced by
2443 breakpoint_re_set. */
2444 target_terminal_ours_for_output ();
2445 /* NOTE: cagney/2003-11-25: Make certain that the target
2446 stack's section table is kept up-to-date. Architectures,
2447 (e.g., PPC64), use the section table to perform
2448 operations such as address => section name and hence
2449 require the table to contain all sections (including
2450 those found in shared libraries). */
2452 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
2454 solib_add (NULL, 0, ¤t_target, auto_solib_add);
2456 target_terminal_inferior ();
2458 /* If requested, stop when the dynamic linker notifies
2459 gdb of events. This allows the user to get control
2460 and place breakpoints in initializer routines for
2461 dynamically loaded objects (among other things). */
2462 if (stop_on_solib_events)
2464 stop_stepping (ecs);
2468 /* NOTE drow/2007-05-11: This might be a good place to check
2469 for "catch load". */
2472 /* If we are skipping through a shell, or through shared library
2473 loading that we aren't interested in, resume the program. If
2474 we're running the program normally, also resume. But stop if
2475 we're attaching or setting up a remote connection. */
2476 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2478 /* Loading of shared libraries might have changed breakpoint
2479 addresses. Make sure new breakpoints are inserted. */
2480 if (stop_soon == NO_STOP_QUIETLY
2481 && !breakpoints_always_inserted_mode ())
2482 insert_breakpoints ();
2483 resume (0, TARGET_SIGNAL_0);
2484 prepare_to_wait (ecs);
2490 case TARGET_WAITKIND_SPURIOUS:
2492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2493 resume (0, TARGET_SIGNAL_0);
2494 prepare_to_wait (ecs);
2497 case TARGET_WAITKIND_EXITED:
2499 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2500 inferior_ptid = ecs->ptid;
2501 target_terminal_ours (); /* Must do this before mourn anyway */
2502 print_stop_reason (EXITED, ecs->ws.value.integer);
2504 /* Record the exit code in the convenience variable $_exitcode, so
2505 that the user can inspect this again later. */
2506 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2507 (LONGEST) ecs->ws.value.integer);
2508 gdb_flush (gdb_stdout);
2509 target_mourn_inferior ();
2510 singlestep_breakpoints_inserted_p = 0;
2511 stop_print_frame = 0;
2512 stop_stepping (ecs);
2515 case TARGET_WAITKIND_SIGNALLED:
2517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2518 inferior_ptid = ecs->ptid;
2519 stop_print_frame = 0;
2520 target_terminal_ours (); /* Must do this before mourn anyway */
2522 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2523 reach here unless the inferior is dead. However, for years
2524 target_kill() was called here, which hints that fatal signals aren't
2525 really fatal on some systems. If that's true, then some changes
2527 target_mourn_inferior ();
2529 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2530 singlestep_breakpoints_inserted_p = 0;
2531 stop_stepping (ecs);
2534 /* The following are the only cases in which we keep going;
2535 the above cases end in a continue or goto. */
2536 case TARGET_WAITKIND_FORKED:
2537 case TARGET_WAITKIND_VFORKED:
2539 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2541 if (!ptid_equal (ecs->ptid, inferior_ptid))
2543 context_switch (ecs->ptid);
2544 reinit_frame_cache ();
2547 /* Immediately detach breakpoints from the child before there's
2548 any chance of letting the user delete breakpoints from the
2549 breakpoint lists. If we don't do this early, it's easy to
2550 leave left over traps in the child, vis: "break foo; catch
2551 fork; c; <fork>; del; c; <child calls foo>". We only follow
2552 the fork on the last `continue', and by that time the
2553 breakpoint at "foo" is long gone from the breakpoint table.
2554 If we vforked, then we don't need to unpatch here, since both
2555 parent and child are sharing the same memory pages; we'll
2556 need to unpatch at follow/detach time instead to be certain
2557 that new breakpoints added between catchpoint hit time and
2558 vfork follow are detached. */
2559 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2561 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2563 /* This won't actually modify the breakpoint list, but will
2564 physically remove the breakpoints from the child. */
2565 detach_breakpoints (child_pid);
2568 /* In case the event is caught by a catchpoint, remember that
2569 the event is to be followed at the next resume of the thread,
2570 and not immediately. */
2571 ecs->event_thread->pending_follow = ecs->ws;
2573 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2575 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2577 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2579 /* If no catchpoint triggered for this, then keep going. */
2580 if (ecs->random_signal)
2584 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2586 should_resume = follow_fork ();
2588 ecs->event_thread = inferior_thread ();
2589 ecs->ptid = inferior_ptid;
2594 stop_stepping (ecs);
2597 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2598 goto process_event_stop_test;
2600 case TARGET_WAITKIND_EXECD:
2602 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2604 if (!ptid_equal (ecs->ptid, inferior_ptid))
2606 context_switch (ecs->ptid);
2607 reinit_frame_cache ();
2610 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2612 /* This causes the eventpoints and symbol table to be reset.
2613 Must do this now, before trying to determine whether to
2615 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
2617 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2618 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2620 /* Note that this may be referenced from inside
2621 bpstat_stop_status above, through inferior_has_execd. */
2622 xfree (ecs->ws.value.execd_pathname);
2623 ecs->ws.value.execd_pathname = NULL;
2625 /* If no catchpoint triggered for this, then keep going. */
2626 if (ecs->random_signal)
2628 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2632 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2633 goto process_event_stop_test;
2635 /* Be careful not to try to gather much state about a thread
2636 that's in a syscall. It's frequently a losing proposition. */
2637 case TARGET_WAITKIND_SYSCALL_ENTRY:
2639 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2640 resume (0, TARGET_SIGNAL_0);
2641 prepare_to_wait (ecs);
2644 /* Before examining the threads further, step this thread to
2645 get it entirely out of the syscall. (We get notice of the
2646 event when the thread is just on the verge of exiting a
2647 syscall. Stepping one instruction seems to get it back
2649 case TARGET_WAITKIND_SYSCALL_RETURN:
2651 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2652 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2653 prepare_to_wait (ecs);
2656 case TARGET_WAITKIND_STOPPED:
2658 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2659 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2662 case TARGET_WAITKIND_NO_HISTORY:
2663 /* Reverse execution: target ran out of history info. */
2664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2665 print_stop_reason (NO_HISTORY, 0);
2666 stop_stepping (ecs);
2669 /* We had an event in the inferior, but we are not interested
2670 in handling it at this level. The lower layers have already
2671 done what needs to be done, if anything.
2673 One of the possible circumstances for this is when the
2674 inferior produces output for the console. The inferior has
2675 not stopped, and we are ignoring the event. Another possible
2676 circumstance is any event which the lower level knows will be
2677 reported multiple times without an intervening resume. */
2678 case TARGET_WAITKIND_IGNORE:
2680 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2681 prepare_to_wait (ecs);
2685 if (ecs->new_thread_event)
2688 /* Non-stop assumes that the target handles adding new threads
2689 to the thread list. */
2690 internal_error (__FILE__, __LINE__, "\
2691 targets should add new threads to the thread list themselves in non-stop mode.");
2693 /* We may want to consider not doing a resume here in order to
2694 give the user a chance to play with the new thread. It might
2695 be good to make that a user-settable option. */
2697 /* At this point, all threads are stopped (happens automatically
2698 in either the OS or the native code). Therefore we need to
2699 continue all threads in order to make progress. */
2701 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2702 prepare_to_wait (ecs);
2706 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2708 /* Do we need to clean up the state of a thread that has
2709 completed a displaced single-step? (Doing so usually affects
2710 the PC, so do it here, before we set stop_pc.) */
2711 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2713 /* If we either finished a single-step or hit a breakpoint, but
2714 the user wanted this thread to be stopped, pretend we got a
2715 SIG0 (generic unsignaled stop). */
2717 if (ecs->event_thread->stop_requested
2718 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2719 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2722 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2726 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2727 paddr_nz (stop_pc));
2728 if (target_stopped_by_watchpoint ())
2731 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2733 if (target_stopped_data_address (¤t_target, &addr))
2734 fprintf_unfiltered (gdb_stdlog,
2735 "infrun: stopped data address = 0x%s\n",
2738 fprintf_unfiltered (gdb_stdlog,
2739 "infrun: (no data address available)\n");
2743 if (stepping_past_singlestep_breakpoint)
2745 gdb_assert (singlestep_breakpoints_inserted_p);
2746 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2747 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2749 stepping_past_singlestep_breakpoint = 0;
2751 /* We've either finished single-stepping past the single-step
2752 breakpoint, or stopped for some other reason. It would be nice if
2753 we could tell, but we can't reliably. */
2754 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2757 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2758 /* Pull the single step breakpoints out of the target. */
2759 remove_single_step_breakpoints ();
2760 singlestep_breakpoints_inserted_p = 0;
2762 ecs->random_signal = 0;
2764 context_switch (saved_singlestep_ptid);
2765 if (deprecated_context_hook)
2766 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2768 resume (1, TARGET_SIGNAL_0);
2769 prepare_to_wait (ecs);
2774 if (!ptid_equal (deferred_step_ptid, null_ptid))
2776 /* In non-stop mode, there's never a deferred_step_ptid set. */
2777 gdb_assert (!non_stop);
2779 /* If we stopped for some other reason than single-stepping, ignore
2780 the fact that we were supposed to switch back. */
2781 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2784 fprintf_unfiltered (gdb_stdlog,
2785 "infrun: handling deferred step\n");
2787 /* Pull the single step breakpoints out of the target. */
2788 if (singlestep_breakpoints_inserted_p)
2790 remove_single_step_breakpoints ();
2791 singlestep_breakpoints_inserted_p = 0;
2794 /* Note: We do not call context_switch at this point, as the
2795 context is already set up for stepping the original thread. */
2796 switch_to_thread (deferred_step_ptid);
2797 deferred_step_ptid = null_ptid;
2798 /* Suppress spurious "Switching to ..." message. */
2799 previous_inferior_ptid = inferior_ptid;
2801 resume (1, TARGET_SIGNAL_0);
2802 prepare_to_wait (ecs);
2806 deferred_step_ptid = null_ptid;
2809 /* See if a thread hit a thread-specific breakpoint that was meant for
2810 another thread. If so, then step that thread past the breakpoint,
2813 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2815 int thread_hop_needed = 0;
2817 /* Check if a regular breakpoint has been hit before checking
2818 for a potential single step breakpoint. Otherwise, GDB will
2819 not see this breakpoint hit when stepping onto breakpoints. */
2820 if (regular_breakpoint_inserted_here_p (stop_pc))
2822 ecs->random_signal = 0;
2823 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2824 thread_hop_needed = 1;
2826 else if (singlestep_breakpoints_inserted_p)
2828 /* We have not context switched yet, so this should be true
2829 no matter which thread hit the singlestep breakpoint. */
2830 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2832 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2834 target_pid_to_str (ecs->ptid));
2836 ecs->random_signal = 0;
2837 /* The call to in_thread_list is necessary because PTIDs sometimes
2838 change when we go from single-threaded to multi-threaded. If
2839 the singlestep_ptid is still in the list, assume that it is
2840 really different from ecs->ptid. */
2841 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2842 && in_thread_list (singlestep_ptid))
2844 /* If the PC of the thread we were trying to single-step
2845 has changed, discard this event (which we were going
2846 to ignore anyway), and pretend we saw that thread
2847 trap. This prevents us continuously moving the
2848 single-step breakpoint forward, one instruction at a
2849 time. If the PC has changed, then the thread we were
2850 trying to single-step has trapped or been signalled,
2851 but the event has not been reported to GDB yet.
2853 There might be some cases where this loses signal
2854 information, if a signal has arrived at exactly the
2855 same time that the PC changed, but this is the best
2856 we can do with the information available. Perhaps we
2857 should arrange to report all events for all threads
2858 when they stop, or to re-poll the remote looking for
2859 this particular thread (i.e. temporarily enable
2862 CORE_ADDR new_singlestep_pc
2863 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2865 if (new_singlestep_pc != singlestep_pc)
2867 enum target_signal stop_signal;
2870 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2871 " but expected thread advanced also\n");
2873 /* The current context still belongs to
2874 singlestep_ptid. Don't swap here, since that's
2875 the context we want to use. Just fudge our
2876 state and continue. */
2877 stop_signal = ecs->event_thread->stop_signal;
2878 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2879 ecs->ptid = singlestep_ptid;
2880 ecs->event_thread = find_thread_ptid (ecs->ptid);
2881 ecs->event_thread->stop_signal = stop_signal;
2882 stop_pc = new_singlestep_pc;
2887 fprintf_unfiltered (gdb_stdlog,
2888 "infrun: unexpected thread\n");
2890 thread_hop_needed = 1;
2891 stepping_past_singlestep_breakpoint = 1;
2892 saved_singlestep_ptid = singlestep_ptid;
2897 if (thread_hop_needed)
2899 int remove_status = 0;
2902 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2904 /* Switch context before touching inferior memory, the
2905 previous thread may have exited. */
2906 if (!ptid_equal (inferior_ptid, ecs->ptid))
2907 context_switch (ecs->ptid);
2909 /* Saw a breakpoint, but it was hit by the wrong thread.
2912 if (singlestep_breakpoints_inserted_p)
2914 /* Pull the single step breakpoints out of the target. */
2915 remove_single_step_breakpoints ();
2916 singlestep_breakpoints_inserted_p = 0;
2919 /* If the arch can displace step, don't remove the
2921 if (!use_displaced_stepping (current_gdbarch))
2922 remove_status = remove_breakpoints ();
2924 /* Did we fail to remove breakpoints? If so, try
2925 to set the PC past the bp. (There's at least
2926 one situation in which we can fail to remove
2927 the bp's: On HP-UX's that use ttrace, we can't
2928 change the address space of a vforking child
2929 process until the child exits (well, okay, not
2930 then either :-) or execs. */
2931 if (remove_status != 0)
2932 error (_("Cannot step over breakpoint hit in wrong thread"));
2937 /* Only need to require the next event from this
2938 thread in all-stop mode. */
2939 waiton_ptid = ecs->ptid;
2940 infwait_state = infwait_thread_hop_state;
2943 ecs->event_thread->stepping_over_breakpoint = 1;
2945 registers_changed ();
2949 else if (singlestep_breakpoints_inserted_p)
2951 sw_single_step_trap_p = 1;
2952 ecs->random_signal = 0;
2956 ecs->random_signal = 1;
2958 /* See if something interesting happened to the non-current thread. If
2959 so, then switch to that thread. */
2960 if (!ptid_equal (ecs->ptid, inferior_ptid))
2963 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2965 context_switch (ecs->ptid);
2967 if (deprecated_context_hook)
2968 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2971 if (singlestep_breakpoints_inserted_p)
2973 /* Pull the single step breakpoints out of the target. */
2974 remove_single_step_breakpoints ();
2975 singlestep_breakpoints_inserted_p = 0;
2978 if (stepped_after_stopped_by_watchpoint)
2979 stopped_by_watchpoint = 0;
2981 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2983 /* If necessary, step over this watchpoint. We'll be back to display
2985 if (stopped_by_watchpoint
2986 && (target_have_steppable_watchpoint
2987 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2989 /* At this point, we are stopped at an instruction which has
2990 attempted to write to a piece of memory under control of
2991 a watchpoint. The instruction hasn't actually executed
2992 yet. If we were to evaluate the watchpoint expression
2993 now, we would get the old value, and therefore no change
2994 would seem to have occurred.
2996 In order to make watchpoints work `right', we really need
2997 to complete the memory write, and then evaluate the
2998 watchpoint expression. We do this by single-stepping the
3001 It may not be necessary to disable the watchpoint to stop over
3002 it. For example, the PA can (with some kernel cooperation)
3003 single step over a watchpoint without disabling the watchpoint.
3005 It is far more common to need to disable a watchpoint to step
3006 the inferior over it. If we have non-steppable watchpoints,
3007 we must disable the current watchpoint; it's simplest to
3008 disable all watchpoints and breakpoints. */
3011 if (!target_have_steppable_watchpoint)
3012 remove_breakpoints ();
3014 hw_step = maybe_software_singlestep (current_gdbarch, stop_pc);
3015 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3016 registers_changed ();
3017 waiton_ptid = ecs->ptid;
3018 if (target_have_steppable_watchpoint)
3019 infwait_state = infwait_step_watch_state;
3021 infwait_state = infwait_nonstep_watch_state;
3022 prepare_to_wait (ecs);
3026 ecs->stop_func_start = 0;
3027 ecs->stop_func_end = 0;
3028 ecs->stop_func_name = 0;
3029 /* Don't care about return value; stop_func_start and stop_func_name
3030 will both be 0 if it doesn't work. */
3031 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3032 &ecs->stop_func_start, &ecs->stop_func_end);
3033 ecs->stop_func_start
3034 += gdbarch_deprecated_function_start_offset (current_gdbarch);
3035 ecs->event_thread->stepping_over_breakpoint = 0;
3036 bpstat_clear (&ecs->event_thread->stop_bpstat);
3037 ecs->event_thread->stop_step = 0;
3038 stop_print_frame = 1;
3039 ecs->random_signal = 0;
3040 stopped_by_random_signal = 0;
3042 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3043 && ecs->event_thread->trap_expected
3044 && gdbarch_single_step_through_delay_p (current_gdbarch)
3045 && currently_stepping (ecs->event_thread))
3047 /* We're trying to step off a breakpoint. Turns out that we're
3048 also on an instruction that needs to be stepped multiple
3049 times before it's been fully executing. E.g., architectures
3050 with a delay slot. It needs to be stepped twice, once for
3051 the instruction and once for the delay slot. */
3052 int step_through_delay
3053 = gdbarch_single_step_through_delay (current_gdbarch,
3054 get_current_frame ());
3055 if (debug_infrun && step_through_delay)
3056 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3057 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3059 /* The user issued a continue when stopped at a breakpoint.
3060 Set up for another trap and get out of here. */
3061 ecs->event_thread->stepping_over_breakpoint = 1;
3065 else if (step_through_delay)
3067 /* The user issued a step when stopped at a breakpoint.
3068 Maybe we should stop, maybe we should not - the delay
3069 slot *might* correspond to a line of source. In any
3070 case, don't decide that here, just set
3071 ecs->stepping_over_breakpoint, making sure we
3072 single-step again before breakpoints are re-inserted. */
3073 ecs->event_thread->stepping_over_breakpoint = 1;
3077 /* Look at the cause of the stop, and decide what to do.
3078 The alternatives are:
3079 1) stop_stepping and return; to really stop and return to the debugger,
3080 2) keep_going and return to start up again
3081 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3082 3) set ecs->random_signal to 1, and the decision between 1 and 2
3083 will be made according to the signal handling tables. */
3085 /* First, distinguish signals caused by the debugger from signals
3086 that have to do with the program's own actions. Note that
3087 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3088 on the operating system version. Here we detect when a SIGILL or
3089 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3090 something similar for SIGSEGV, since a SIGSEGV will be generated
3091 when we're trying to execute a breakpoint instruction on a
3092 non-executable stack. This happens for call dummy breakpoints
3093 for architectures like SPARC that place call dummies on the
3096 If we're doing a displaced step past a breakpoint, then the
3097 breakpoint is always inserted at the original instruction;
3098 non-standard signals can't be explained by the breakpoint. */
3099 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3100 || (! ecs->event_thread->trap_expected
3101 && breakpoint_inserted_here_p (stop_pc)
3102 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3103 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3104 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3105 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3106 || stop_soon == STOP_QUIETLY_REMOTE)
3108 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3111 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3112 stop_print_frame = 0;
3113 stop_stepping (ecs);
3117 /* This is originated from start_remote(), start_inferior() and
3118 shared libraries hook functions. */
3119 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3122 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3123 stop_stepping (ecs);
3127 /* This originates from attach_command(). We need to overwrite
3128 the stop_signal here, because some kernels don't ignore a
3129 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3130 See more comments in inferior.h. On the other hand, if we
3131 get a non-SIGSTOP, report it to the user - assume the backend
3132 will handle the SIGSTOP if it should show up later.
3134 Also consider that the attach is complete when we see a
3135 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3136 target extended-remote report it instead of a SIGSTOP
3137 (e.g. gdbserver). We already rely on SIGTRAP being our
3138 signal, so this is no exception.
3140 Also consider that the attach is complete when we see a
3141 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3142 the target to stop all threads of the inferior, in case the
3143 low level attach operation doesn't stop them implicitly. If
3144 they weren't stopped implicitly, then the stub will report a
3145 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3146 other than GDB's request. */
3147 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3148 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3149 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3150 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3152 stop_stepping (ecs);
3153 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3157 /* See if there is a breakpoint at the current PC. */
3158 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
3160 /* Following in case break condition called a
3162 stop_print_frame = 1;
3164 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3165 at one stage in the past included checks for an inferior
3166 function call's call dummy's return breakpoint. The original
3167 comment, that went with the test, read:
3169 ``End of a stack dummy. Some systems (e.g. Sony news) give
3170 another signal besides SIGTRAP, so check here as well as
3173 If someone ever tries to get call dummys on a
3174 non-executable stack to work (where the target would stop
3175 with something like a SIGSEGV), then those tests might need
3176 to be re-instated. Given, however, that the tests were only
3177 enabled when momentary breakpoints were not being used, I
3178 suspect that it won't be the case.
3180 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3181 be necessary for call dummies on a non-executable stack on
3184 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3186 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3187 || ecs->event_thread->trap_expected
3188 || (ecs->event_thread->step_range_end
3189 && ecs->event_thread->step_resume_breakpoint == NULL));
3192 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3193 if (!ecs->random_signal)
3194 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3198 /* When we reach this point, we've pretty much decided
3199 that the reason for stopping must've been a random
3200 (unexpected) signal. */
3203 ecs->random_signal = 1;
3205 process_event_stop_test:
3206 /* For the program's own signals, act according to
3207 the signal handling tables. */
3209 if (ecs->random_signal)
3211 /* Signal not for debugging purposes. */
3215 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3216 ecs->event_thread->stop_signal);
3218 stopped_by_random_signal = 1;
3220 if (signal_print[ecs->event_thread->stop_signal])
3223 target_terminal_ours_for_output ();
3224 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3226 /* Always stop on signals if we're either just gaining control
3227 of the program, or the user explicitly requested this thread
3228 to remain stopped. */
3229 if (stop_soon != NO_STOP_QUIETLY
3230 || ecs->event_thread->stop_requested
3231 || signal_stop_state (ecs->event_thread->stop_signal))
3233 stop_stepping (ecs);
3236 /* If not going to stop, give terminal back
3237 if we took it away. */
3239 target_terminal_inferior ();
3241 /* Clear the signal if it should not be passed. */
3242 if (signal_program[ecs->event_thread->stop_signal] == 0)
3243 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3245 if (ecs->event_thread->prev_pc == stop_pc
3246 && ecs->event_thread->trap_expected
3247 && ecs->event_thread->step_resume_breakpoint == NULL)
3249 /* We were just starting a new sequence, attempting to
3250 single-step off of a breakpoint and expecting a SIGTRAP.
3251 Instead this signal arrives. This signal will take us out
3252 of the stepping range so GDB needs to remember to, when
3253 the signal handler returns, resume stepping off that
3255 /* To simplify things, "continue" is forced to use the same
3256 code paths as single-step - set a breakpoint at the
3257 signal return address and then, once hit, step off that
3260 fprintf_unfiltered (gdb_stdlog,
3261 "infrun: signal arrived while stepping over "
3264 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3265 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3270 if (ecs->event_thread->step_range_end != 0
3271 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3272 && (ecs->event_thread->step_range_start <= stop_pc
3273 && stop_pc < ecs->event_thread->step_range_end)
3274 && frame_id_eq (get_frame_id (get_current_frame ()),
3275 ecs->event_thread->step_frame_id)
3276 && ecs->event_thread->step_resume_breakpoint == NULL)
3278 /* The inferior is about to take a signal that will take it
3279 out of the single step range. Set a breakpoint at the
3280 current PC (which is presumably where the signal handler
3281 will eventually return) and then allow the inferior to
3284 Note that this is only needed for a signal delivered
3285 while in the single-step range. Nested signals aren't a
3286 problem as they eventually all return. */
3288 fprintf_unfiltered (gdb_stdlog,
3289 "infrun: signal may take us out of "
3290 "single-step range\n");
3292 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3297 /* Note: step_resume_breakpoint may be non-NULL. This occures
3298 when either there's a nested signal, or when there's a
3299 pending signal enabled just as the signal handler returns
3300 (leaving the inferior at the step-resume-breakpoint without
3301 actually executing it). Either way continue until the
3302 breakpoint is really hit. */
3307 /* Handle cases caused by hitting a breakpoint. */
3309 CORE_ADDR jmp_buf_pc;
3310 struct bpstat_what what;
3312 what = bpstat_what (ecs->event_thread->stop_bpstat);
3314 if (what.call_dummy)
3316 stop_stack_dummy = 1;
3319 switch (what.main_action)
3321 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3322 /* If we hit the breakpoint at longjmp while stepping, we
3323 install a momentary breakpoint at the target of the
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3330 ecs->event_thread->stepping_over_breakpoint = 1;
3332 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3333 || !gdbarch_get_longjmp_target (current_gdbarch,
3334 get_current_frame (), &jmp_buf_pc))
3337 fprintf_unfiltered (gdb_stdlog, "\
3338 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3343 /* We're going to replace the current step-resume breakpoint
3344 with a longjmp-resume breakpoint. */
3345 delete_step_resume_breakpoint (ecs->event_thread);
3347 /* Insert a breakpoint at resume address. */
3348 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3353 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3355 fprintf_unfiltered (gdb_stdlog,
3356 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3358 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3359 delete_step_resume_breakpoint (ecs->event_thread);
3361 ecs->event_thread->stop_step = 1;
3362 print_stop_reason (END_STEPPING_RANGE, 0);
3363 stop_stepping (ecs);
3366 case BPSTAT_WHAT_SINGLE:
3368 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3369 ecs->event_thread->stepping_over_breakpoint = 1;
3370 /* Still need to check other stuff, at least the case
3371 where we are stepping and step out of the right range. */
3374 case BPSTAT_WHAT_STOP_NOISY:
3376 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3377 stop_print_frame = 1;
3379 /* We are about to nuke the step_resume_breakpointt via the
3380 cleanup chain, so no need to worry about it here. */
3382 stop_stepping (ecs);
3385 case BPSTAT_WHAT_STOP_SILENT:
3387 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3388 stop_print_frame = 0;
3390 /* We are about to nuke the step_resume_breakpoin via the
3391 cleanup chain, so no need to worry about it here. */
3393 stop_stepping (ecs);
3396 case BPSTAT_WHAT_STEP_RESUME:
3398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3400 delete_step_resume_breakpoint (ecs->event_thread);
3401 if (ecs->event_thread->step_after_step_resume_breakpoint)
3403 /* Back when the step-resume breakpoint was inserted, we
3404 were trying to single-step off a breakpoint. Go back
3406 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3407 ecs->event_thread->stepping_over_breakpoint = 1;
3411 if (stop_pc == ecs->stop_func_start
3412 && execution_direction == EXEC_REVERSE)
3414 /* We are stepping over a function call in reverse, and
3415 just hit the step-resume breakpoint at the start
3416 address of the function. Go back to single-stepping,
3417 which should take us back to the function call. */
3418 ecs->event_thread->stepping_over_breakpoint = 1;
3424 case BPSTAT_WHAT_CHECK_SHLIBS:
3427 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3429 /* Check for any newly added shared libraries if we're
3430 supposed to be adding them automatically. Switch
3431 terminal for any messages produced by
3432 breakpoint_re_set. */
3433 target_terminal_ours_for_output ();
3434 /* NOTE: cagney/2003-11-25: Make certain that the target
3435 stack's section table is kept up-to-date. Architectures,
3436 (e.g., PPC64), use the section table to perform
3437 operations such as address => section name and hence
3438 require the table to contain all sections (including
3439 those found in shared libraries). */
3441 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
3443 solib_add (NULL, 0, ¤t_target, auto_solib_add);
3445 target_terminal_inferior ();
3447 /* If requested, stop when the dynamic linker notifies
3448 gdb of events. This allows the user to get control
3449 and place breakpoints in initializer routines for
3450 dynamically loaded objects (among other things). */
3451 if (stop_on_solib_events || stop_stack_dummy)
3453 stop_stepping (ecs);
3458 /* We want to step over this breakpoint, then keep going. */
3459 ecs->event_thread->stepping_over_breakpoint = 1;
3465 case BPSTAT_WHAT_LAST:
3466 /* Not a real code, but listed here to shut up gcc -Wall. */
3468 case BPSTAT_WHAT_KEEP_CHECKING:
3473 /* We come here if we hit a breakpoint but should not
3474 stop for it. Possibly we also were stepping
3475 and should stop for that. So fall through and
3476 test for stepping. But, if not stepping,
3479 /* In all-stop mode, if we're currently stepping but have stopped in
3480 some other thread, we need to switch back to the stepped thread. */
3483 struct thread_info *tp;
3484 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3488 /* However, if the current thread is blocked on some internal
3489 breakpoint, and we simply need to step over that breakpoint
3490 to get it going again, do that first. */
3491 if ((ecs->event_thread->trap_expected
3492 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3493 || ecs->event_thread->stepping_over_breakpoint)
3499 /* If the stepping thread exited, then don't try reverting
3500 back to it, just keep going. We need to query the target
3501 in case it doesn't support thread exit events. */
3502 if (is_exited (tp->ptid)
3503 || !target_thread_alive (tp->ptid))
3506 fprintf_unfiltered (gdb_stdlog, "\
3507 infrun: not switching back to stepped thread, it has vanished\n");
3509 delete_thread (tp->ptid);
3514 /* Otherwise, we no longer expect a trap in the current thread.
3515 Clear the trap_expected flag before switching back -- this is
3516 what keep_going would do as well, if we called it. */
3517 ecs->event_thread->trap_expected = 0;
3520 fprintf_unfiltered (gdb_stdlog,
3521 "infrun: switching back to stepped thread\n");
3523 ecs->event_thread = tp;
3524 ecs->ptid = tp->ptid;
3525 context_switch (ecs->ptid);
3531 /* Are we stepping to get the inferior out of the dynamic linker's
3532 hook (and possibly the dld itself) after catching a shlib
3534 if (ecs->event_thread->stepping_through_solib_after_catch)
3536 #if defined(SOLIB_ADD)
3537 /* Have we reached our destination? If not, keep going. */
3538 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3541 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3542 ecs->event_thread->stepping_over_breakpoint = 1;
3548 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3549 /* Else, stop and report the catchpoint(s) whose triggering
3550 caused us to begin stepping. */
3551 ecs->event_thread->stepping_through_solib_after_catch = 0;
3552 bpstat_clear (&ecs->event_thread->stop_bpstat);
3553 ecs->event_thread->stop_bpstat
3554 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3555 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3556 stop_print_frame = 1;
3557 stop_stepping (ecs);
3561 if (ecs->event_thread->step_resume_breakpoint)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "infrun: step-resume breakpoint is inserted\n");
3567 /* Having a step-resume breakpoint overrides anything
3568 else having to do with stepping commands until
3569 that breakpoint is reached. */
3574 if (ecs->event_thread->step_range_end == 0)
3577 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3578 /* Likewise if we aren't even stepping. */
3583 /* If stepping through a line, keep going if still within it.
3585 Note that step_range_end is the address of the first instruction
3586 beyond the step range, and NOT the address of the last instruction
3588 if (stop_pc >= ecs->event_thread->step_range_start
3589 && stop_pc < ecs->event_thread->step_range_end)
3592 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3593 paddr_nz (ecs->event_thread->step_range_start),
3594 paddr_nz (ecs->event_thread->step_range_end));
3596 /* When stepping backward, stop at beginning of line range
3597 (unless it's the function entry point, in which case
3598 keep going back to the call point). */
3599 if (stop_pc == ecs->event_thread->step_range_start
3600 && stop_pc != ecs->stop_func_start
3601 && execution_direction == EXEC_REVERSE)
3603 ecs->event_thread->stop_step = 1;
3604 print_stop_reason (END_STEPPING_RANGE, 0);
3605 stop_stepping (ecs);
3613 /* We stepped out of the stepping range. */
3615 /* If we are stepping at the source level and entered the runtime
3616 loader dynamic symbol resolution code, we keep on single stepping
3617 until we exit the run time loader code and reach the callee's
3619 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3620 && in_solib_dynsym_resolve_code (stop_pc))
3622 CORE_ADDR pc_after_resolver =
3623 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3626 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3628 if (pc_after_resolver)
3630 /* Set up a step-resume breakpoint at the address
3631 indicated by SKIP_SOLIB_RESOLVER. */
3632 struct symtab_and_line sr_sal;
3634 sr_sal.pc = pc_after_resolver;
3636 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3643 if (ecs->event_thread->step_range_end != 1
3644 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3645 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3646 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3649 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3650 /* The inferior, while doing a "step" or "next", has ended up in
3651 a signal trampoline (either by a signal being delivered or by
3652 the signal handler returning). Just single-step until the
3653 inferior leaves the trampoline (either by calling the handler
3659 /* Check for subroutine calls. The check for the current frame
3660 equalling the step ID is not necessary - the check of the
3661 previous frame's ID is sufficient - but it is a common case and
3662 cheaper than checking the previous frame's ID.
3664 NOTE: frame_id_eq will never report two invalid frame IDs as
3665 being equal, so to get into this block, both the current and
3666 previous frame must have valid frame IDs. */
3667 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3668 ecs->event_thread->step_frame_id)
3669 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3670 ecs->event_thread->step_frame_id)
3671 || execution_direction == EXEC_REVERSE))
3673 CORE_ADDR real_stop_pc;
3676 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3678 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3679 || ((ecs->event_thread->step_range_end == 1)
3680 && in_prologue (ecs->event_thread->prev_pc,
3681 ecs->stop_func_start)))
3683 /* I presume that step_over_calls is only 0 when we're
3684 supposed to be stepping at the assembly language level
3685 ("stepi"). Just stop. */
3686 /* Also, maybe we just did a "nexti" inside a prolog, so we
3687 thought it was a subroutine call but it was not. Stop as
3689 ecs->event_thread->stop_step = 1;
3690 print_stop_reason (END_STEPPING_RANGE, 0);
3691 stop_stepping (ecs);
3695 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3697 /* We're doing a "next".
3699 Normal (forward) execution: set a breakpoint at the
3700 callee's return address (the address at which the caller
3703 Reverse (backward) execution. set the step-resume
3704 breakpoint at the start of the function that we just
3705 stepped into (backwards), and continue to there. When we
3706 get there, we'll need to single-step back to the caller. */
3708 if (execution_direction == EXEC_REVERSE)
3710 struct symtab_and_line sr_sal;
3712 if (ecs->stop_func_start == 0
3713 && in_solib_dynsym_resolve_code (stop_pc))
3715 /* Stepped into runtime loader dynamic symbol
3716 resolution code. Since we're in reverse,
3717 we have already backed up through the runtime
3718 loader and the dynamic function. This is just
3719 the trampoline (jump table).
3721 Just keep stepping, we'll soon be home.
3726 /* Normal (staticly linked) function call return. */
3728 sr_sal.pc = ecs->stop_func_start;
3729 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3732 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3738 /* If we are in a function call trampoline (a stub between the
3739 calling routine and the real function), locate the real
3740 function. That's what tells us (a) whether we want to step
3741 into it at all, and (b) what prologue we want to run to the
3742 end of, if we do step into it. */
3743 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3744 if (real_stop_pc == 0)
3745 real_stop_pc = gdbarch_skip_trampoline_code
3746 (current_gdbarch, get_current_frame (), stop_pc);
3747 if (real_stop_pc != 0)
3748 ecs->stop_func_start = real_stop_pc;
3750 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3752 struct symtab_and_line sr_sal;
3754 sr_sal.pc = ecs->stop_func_start;
3756 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3761 /* If we have line number information for the function we are
3762 thinking of stepping into, step into it.
3764 If there are several symtabs at that PC (e.g. with include
3765 files), just want to know whether *any* of them have line
3766 numbers. find_pc_line handles this. */
3768 struct symtab_and_line tmp_sal;
3770 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3771 if (tmp_sal.line != 0)
3773 if (execution_direction == EXEC_REVERSE)
3774 handle_step_into_function_backward (ecs);
3776 handle_step_into_function (ecs);
3781 /* If we have no line number and the step-stop-if-no-debug is
3782 set, we stop the step so that the user has a chance to switch
3783 in assembly mode. */
3784 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3785 && step_stop_if_no_debug)
3787 ecs->event_thread->stop_step = 1;
3788 print_stop_reason (END_STEPPING_RANGE, 0);
3789 stop_stepping (ecs);
3793 if (execution_direction == EXEC_REVERSE)
3795 /* Set a breakpoint at callee's start address.
3796 From there we can step once and be back in the caller. */
3797 struct symtab_and_line sr_sal;
3799 sr_sal.pc = ecs->stop_func_start;
3800 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3803 /* Set a breakpoint at callee's return address (the address
3804 at which the caller will resume). */
3805 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3811 /* If we're in the return path from a shared library trampoline,
3812 we want to proceed through the trampoline when stepping. */
3813 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3814 stop_pc, ecs->stop_func_name))
3816 /* Determine where this trampoline returns. */
3817 CORE_ADDR real_stop_pc;
3818 real_stop_pc = gdbarch_skip_trampoline_code
3819 (current_gdbarch, get_current_frame (), stop_pc);
3822 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3824 /* Only proceed through if we know where it's going. */
3827 /* And put the step-breakpoint there and go until there. */
3828 struct symtab_and_line sr_sal;
3830 init_sal (&sr_sal); /* initialize to zeroes */
3831 sr_sal.pc = real_stop_pc;
3832 sr_sal.section = find_pc_overlay (sr_sal.pc);
3834 /* Do not specify what the fp should be when we stop since
3835 on some machines the prologue is where the new fp value
3837 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3839 /* Restart without fiddling with the step ranges or
3846 stop_pc_sal = find_pc_line (stop_pc, 0);
3848 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3849 the trampoline processing logic, however, there are some trampolines
3850 that have no names, so we should do trampoline handling first. */
3851 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3852 && ecs->stop_func_name == NULL
3853 && stop_pc_sal.line == 0)
3856 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3858 /* The inferior just stepped into, or returned to, an
3859 undebuggable function (where there is no debugging information
3860 and no line number corresponding to the address where the
3861 inferior stopped). Since we want to skip this kind of code,
3862 we keep going until the inferior returns from this
3863 function - unless the user has asked us not to (via
3864 set step-mode) or we no longer know how to get back
3865 to the call site. */
3866 if (step_stop_if_no_debug
3867 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3869 /* If we have no line number and the step-stop-if-no-debug
3870 is set, we stop the step so that the user has a chance to
3871 switch in assembly mode. */
3872 ecs->event_thread->stop_step = 1;
3873 print_stop_reason (END_STEPPING_RANGE, 0);
3874 stop_stepping (ecs);
3879 /* Set a breakpoint at callee's return address (the address
3880 at which the caller will resume). */
3881 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3887 if (ecs->event_thread->step_range_end == 1)
3889 /* It is stepi or nexti. We always want to stop stepping after
3892 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3893 ecs->event_thread->stop_step = 1;
3894 print_stop_reason (END_STEPPING_RANGE, 0);
3895 stop_stepping (ecs);
3899 if (stop_pc_sal.line == 0)
3901 /* We have no line number information. That means to stop
3902 stepping (does this always happen right after one instruction,
3903 when we do "s" in a function with no line numbers,
3904 or can this happen as a result of a return or longjmp?). */
3906 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3907 ecs->event_thread->stop_step = 1;
3908 print_stop_reason (END_STEPPING_RANGE, 0);
3909 stop_stepping (ecs);
3913 if ((stop_pc == stop_pc_sal.pc)
3914 && (ecs->event_thread->current_line != stop_pc_sal.line
3915 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3917 /* We are at the start of a different line. So stop. Note that
3918 we don't stop if we step into the middle of a different line.
3919 That is said to make things like for (;;) statements work
3922 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3923 ecs->event_thread->stop_step = 1;
3924 print_stop_reason (END_STEPPING_RANGE, 0);
3925 stop_stepping (ecs);
3929 /* We aren't done stepping.
3931 Optimize by setting the stepping range to the line.
3932 (We might not be in the original line, but if we entered a
3933 new line in mid-statement, we continue stepping. This makes
3934 things like for(;;) statements work better.) */
3936 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3937 ecs->event_thread->step_range_end = stop_pc_sal.end;
3938 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3939 ecs->event_thread->current_line = stop_pc_sal.line;
3940 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3943 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3947 /* Is thread TP in the middle of single-stepping? */
3950 currently_stepping (struct thread_info *tp)
3952 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3953 || tp->trap_expected
3954 || tp->stepping_through_solib_after_catch
3955 || bpstat_should_step ());
3958 /* Returns true if any thread *but* the one passed in "data" is in the
3959 middle of stepping or of handling a "next". */
3962 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
3967 return (tp->step_range_end
3968 || tp->trap_expected
3969 || tp->stepping_through_solib_after_catch);
3972 /* Inferior has stepped into a subroutine call with source code that
3973 we should not step over. Do step to the first line of code in
3977 handle_step_into_function (struct execution_control_state *ecs)
3980 struct symtab_and_line stop_func_sal, sr_sal;
3982 s = find_pc_symtab (stop_pc);
3983 if (s && s->language != language_asm)
3984 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3985 ecs->stop_func_start);
3987 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3988 /* Use the step_resume_break to step until the end of the prologue,
3989 even if that involves jumps (as it seems to on the vax under
3991 /* If the prologue ends in the middle of a source line, continue to
3992 the end of that source line (if it is still within the function).
3993 Otherwise, just go to end of prologue. */
3994 if (stop_func_sal.end
3995 && stop_func_sal.pc != ecs->stop_func_start
3996 && stop_func_sal.end < ecs->stop_func_end)
3997 ecs->stop_func_start = stop_func_sal.end;
3999 /* Architectures which require breakpoint adjustment might not be able
4000 to place a breakpoint at the computed address. If so, the test
4001 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4002 ecs->stop_func_start to an address at which a breakpoint may be
4003 legitimately placed.
4005 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4006 made, GDB will enter an infinite loop when stepping through
4007 optimized code consisting of VLIW instructions which contain
4008 subinstructions corresponding to different source lines. On
4009 FR-V, it's not permitted to place a breakpoint on any but the
4010 first subinstruction of a VLIW instruction. When a breakpoint is
4011 set, GDB will adjust the breakpoint address to the beginning of
4012 the VLIW instruction. Thus, we need to make the corresponding
4013 adjustment here when computing the stop address. */
4015 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
4017 ecs->stop_func_start
4018 = gdbarch_adjust_breakpoint_address (current_gdbarch,
4019 ecs->stop_func_start);
4022 if (ecs->stop_func_start == stop_pc)
4024 /* We are already there: stop now. */
4025 ecs->event_thread->stop_step = 1;
4026 print_stop_reason (END_STEPPING_RANGE, 0);
4027 stop_stepping (ecs);
4032 /* Put the step-breakpoint there and go until there. */
4033 init_sal (&sr_sal); /* initialize to zeroes */
4034 sr_sal.pc = ecs->stop_func_start;
4035 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4037 /* Do not specify what the fp should be when we stop since on
4038 some machines the prologue is where the new fp value is
4040 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
4042 /* And make sure stepping stops right away then. */
4043 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4048 /* Inferior has stepped backward into a subroutine call with source
4049 code that we should not step over. Do step to the beginning of the
4050 last line of code in it. */
4053 handle_step_into_function_backward (struct execution_control_state *ecs)
4056 struct symtab_and_line stop_func_sal, sr_sal;
4058 s = find_pc_symtab (stop_pc);
4059 if (s && s->language != language_asm)
4060 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
4061 ecs->stop_func_start);
4063 stop_func_sal = find_pc_line (stop_pc, 0);
4065 /* OK, we're just going to keep stepping here. */
4066 if (stop_func_sal.pc == stop_pc)
4068 /* We're there already. Just stop stepping now. */
4069 ecs->event_thread->stop_step = 1;
4070 print_stop_reason (END_STEPPING_RANGE, 0);
4071 stop_stepping (ecs);
4075 /* Else just reset the step range and keep going.
4076 No step-resume breakpoint, they don't work for
4077 epilogues, which can have multiple entry paths. */
4078 ecs->event_thread->step_range_start = stop_func_sal.pc;
4079 ecs->event_thread->step_range_end = stop_func_sal.end;
4085 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4086 This is used to both functions and to skip over code. */
4089 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4090 struct frame_id sr_id)
4092 /* There should never be more than one step-resume or longjmp-resume
4093 breakpoint per thread, so we should never be setting a new
4094 step_resume_breakpoint when one is already active. */
4095 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4098 fprintf_unfiltered (gdb_stdlog,
4099 "infrun: inserting step-resume breakpoint at 0x%s\n",
4100 paddr_nz (sr_sal.pc));
4102 inferior_thread ()->step_resume_breakpoint
4103 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
4106 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4107 to skip a potential signal handler.
4109 This is called with the interrupted function's frame. The signal
4110 handler, when it returns, will resume the interrupted function at
4114 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4116 struct symtab_and_line sr_sal;
4118 gdb_assert (return_frame != NULL);
4119 init_sal (&sr_sal); /* initialize to zeros */
4121 sr_sal.pc = gdbarch_addr_bits_remove
4122 (current_gdbarch, get_frame_pc (return_frame));
4123 sr_sal.section = find_pc_overlay (sr_sal.pc);
4125 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
4128 /* Similar to insert_step_resume_breakpoint_at_frame, except
4129 but a breakpoint at the previous frame's PC. This is used to
4130 skip a function after stepping into it (for "next" or if the called
4131 function has no debugging information).
4133 The current function has almost always been reached by single
4134 stepping a call or return instruction. NEXT_FRAME belongs to the
4135 current function, and the breakpoint will be set at the caller's
4138 This is a separate function rather than reusing
4139 insert_step_resume_breakpoint_at_frame in order to avoid
4140 get_prev_frame, which may stop prematurely (see the implementation
4141 of frame_unwind_id for an example). */
4144 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4146 struct symtab_and_line sr_sal;
4148 /* We shouldn't have gotten here if we don't know where the call site
4150 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
4152 init_sal (&sr_sal); /* initialize to zeros */
4154 sr_sal.pc = gdbarch_addr_bits_remove
4155 (current_gdbarch, frame_pc_unwind (next_frame));
4156 sr_sal.section = find_pc_overlay (sr_sal.pc);
4158 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
4161 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4162 new breakpoint at the target of a jmp_buf. The handling of
4163 longjmp-resume uses the same mechanisms used for handling
4164 "step-resume" breakpoints. */
4167 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4169 /* There should never be more than one step-resume or longjmp-resume
4170 breakpoint per thread, so we should never be setting a new
4171 longjmp_resume_breakpoint when one is already active. */
4172 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4175 fprintf_unfiltered (gdb_stdlog,
4176 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4179 inferior_thread ()->step_resume_breakpoint =
4180 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4184 stop_stepping (struct execution_control_state *ecs)
4187 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4189 /* Let callers know we don't want to wait for the inferior anymore. */
4190 ecs->wait_some_more = 0;
4193 /* This function handles various cases where we need to continue
4194 waiting for the inferior. */
4195 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4198 keep_going (struct execution_control_state *ecs)
4200 /* Save the pc before execution, to compare with pc after stop. */
4201 ecs->event_thread->prev_pc
4202 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4204 /* If we did not do break;, it means we should keep running the
4205 inferior and not return to debugger. */
4207 if (ecs->event_thread->trap_expected
4208 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4210 /* We took a signal (which we are supposed to pass through to
4211 the inferior, else we'd not get here) and we haven't yet
4212 gotten our trap. Simply continue. */
4213 resume (currently_stepping (ecs->event_thread),
4214 ecs->event_thread->stop_signal);
4218 /* Either the trap was not expected, but we are continuing
4219 anyway (the user asked that this signal be passed to the
4222 The signal was SIGTRAP, e.g. it was our signal, but we
4223 decided we should resume from it.
4225 We're going to run this baby now!
4227 Note that insert_breakpoints won't try to re-insert
4228 already inserted breakpoints. Therefore, we don't
4229 care if breakpoints were already inserted, or not. */
4231 if (ecs->event_thread->stepping_over_breakpoint)
4233 if (! use_displaced_stepping (current_gdbarch))
4234 /* Since we can't do a displaced step, we have to remove
4235 the breakpoint while we step it. To keep things
4236 simple, we remove them all. */
4237 remove_breakpoints ();
4241 struct gdb_exception e;
4242 /* Stop stepping when inserting breakpoints
4244 TRY_CATCH (e, RETURN_MASK_ERROR)
4246 insert_breakpoints ();
4250 stop_stepping (ecs);
4255 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4257 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4258 specifies that such a signal should be delivered to the
4261 Typically, this would occure when a user is debugging a
4262 target monitor on a simulator: the target monitor sets a
4263 breakpoint; the simulator encounters this break-point and
4264 halts the simulation handing control to GDB; GDB, noteing
4265 that the break-point isn't valid, returns control back to the
4266 simulator; the simulator then delivers the hardware
4267 equivalent of a SIGNAL_TRAP to the program being debugged. */
4269 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4270 && !signal_program[ecs->event_thread->stop_signal])
4271 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4273 resume (currently_stepping (ecs->event_thread),
4274 ecs->event_thread->stop_signal);
4277 prepare_to_wait (ecs);
4280 /* This function normally comes after a resume, before
4281 handle_inferior_event exits. It takes care of any last bits of
4282 housekeeping, and sets the all-important wait_some_more flag. */
4285 prepare_to_wait (struct execution_control_state *ecs)
4288 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4289 if (infwait_state == infwait_normal_state)
4291 overlay_cache_invalid = 1;
4293 /* We have to invalidate the registers BEFORE calling
4294 target_wait because they can be loaded from the target while
4295 in target_wait. This makes remote debugging a bit more
4296 efficient for those targets that provide critical registers
4297 as part of their normal status mechanism. */
4299 registers_changed ();
4300 waiton_ptid = pid_to_ptid (-1);
4302 /* This is the old end of the while loop. Let everybody know we
4303 want to wait for the inferior some more and get called again
4305 ecs->wait_some_more = 1;
4308 /* Print why the inferior has stopped. We always print something when
4309 the inferior exits, or receives a signal. The rest of the cases are
4310 dealt with later on in normal_stop() and print_it_typical(). Ideally
4311 there should be a call to this function from handle_inferior_event()
4312 each time stop_stepping() is called.*/
4314 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4316 switch (stop_reason)
4318 case END_STEPPING_RANGE:
4319 /* We are done with a step/next/si/ni command. */
4320 /* For now print nothing. */
4321 /* Print a message only if not in the middle of doing a "step n"
4322 operation for n > 1 */
4323 if (!inferior_thread ()->step_multi
4324 || !inferior_thread ()->stop_step)
4325 if (ui_out_is_mi_like_p (uiout))
4328 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4331 /* The inferior was terminated by a signal. */
4332 annotate_signalled ();
4333 if (ui_out_is_mi_like_p (uiout))
4336 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4337 ui_out_text (uiout, "\nProgram terminated with signal ");
4338 annotate_signal_name ();
4339 ui_out_field_string (uiout, "signal-name",
4340 target_signal_to_name (stop_info));
4341 annotate_signal_name_end ();
4342 ui_out_text (uiout, ", ");
4343 annotate_signal_string ();
4344 ui_out_field_string (uiout, "signal-meaning",
4345 target_signal_to_string (stop_info));
4346 annotate_signal_string_end ();
4347 ui_out_text (uiout, ".\n");
4348 ui_out_text (uiout, "The program no longer exists.\n");
4351 /* The inferior program is finished. */
4352 annotate_exited (stop_info);
4355 if (ui_out_is_mi_like_p (uiout))
4356 ui_out_field_string (uiout, "reason",
4357 async_reason_lookup (EXEC_ASYNC_EXITED));
4358 ui_out_text (uiout, "\nProgram exited with code ");
4359 ui_out_field_fmt (uiout, "exit-code", "0%o",
4360 (unsigned int) stop_info);
4361 ui_out_text (uiout, ".\n");
4365 if (ui_out_is_mi_like_p (uiout))
4368 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4369 ui_out_text (uiout, "\nProgram exited normally.\n");
4371 /* Support the --return-child-result option. */
4372 return_child_result_value = stop_info;
4374 case SIGNAL_RECEIVED:
4375 /* Signal received. The signal table tells us to print about
4379 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4381 struct thread_info *t = inferior_thread ();
4383 ui_out_text (uiout, "\n[");
4384 ui_out_field_string (uiout, "thread-name",
4385 target_pid_to_str (t->ptid));
4386 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4387 ui_out_text (uiout, " stopped");
4391 ui_out_text (uiout, "\nProgram received signal ");
4392 annotate_signal_name ();
4393 if (ui_out_is_mi_like_p (uiout))
4395 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4396 ui_out_field_string (uiout, "signal-name",
4397 target_signal_to_name (stop_info));
4398 annotate_signal_name_end ();
4399 ui_out_text (uiout, ", ");
4400 annotate_signal_string ();
4401 ui_out_field_string (uiout, "signal-meaning",
4402 target_signal_to_string (stop_info));
4403 annotate_signal_string_end ();
4405 ui_out_text (uiout, ".\n");
4408 /* Reverse execution: target ran out of history info. */
4409 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4412 internal_error (__FILE__, __LINE__,
4413 _("print_stop_reason: unrecognized enum value"));
4419 /* Here to return control to GDB when the inferior stops for real.
4420 Print appropriate messages, remove breakpoints, give terminal our modes.
4422 STOP_PRINT_FRAME nonzero means print the executing frame
4423 (pc, function, args, file, line number and line text).
4424 BREAKPOINTS_FAILED nonzero means stop was due to error
4425 attempting to insert breakpoints. */
4430 struct target_waitstatus last;
4432 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4434 get_last_target_status (&last_ptid, &last);
4436 /* If an exception is thrown from this point on, make sure to
4437 propagate GDB's knowledge of the executing state to the
4438 frontend/user running state. A QUIT is an easy exception to see
4439 here, so do this before any filtered output. */
4441 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4442 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4443 && last.kind != TARGET_WAITKIND_EXITED)
4444 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4446 /* In non-stop mode, we don't want GDB to switch threads behind the
4447 user's back, to avoid races where the user is typing a command to
4448 apply to thread x, but GDB switches to thread y before the user
4449 finishes entering the command. */
4451 /* As with the notification of thread events, we want to delay
4452 notifying the user that we've switched thread context until
4453 the inferior actually stops.
4455 There's no point in saying anything if the inferior has exited.
4456 Note that SIGNALLED here means "exited with a signal", not
4457 "received a signal". */
4459 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4460 && target_has_execution
4461 && last.kind != TARGET_WAITKIND_SIGNALLED
4462 && last.kind != TARGET_WAITKIND_EXITED)
4464 target_terminal_ours_for_output ();
4465 printf_filtered (_("[Switching to %s]\n"),
4466 target_pid_to_str (inferior_ptid));
4467 annotate_thread_changed ();
4468 previous_inferior_ptid = inferior_ptid;
4471 if (!breakpoints_always_inserted_mode () && target_has_execution)
4473 if (remove_breakpoints ())
4475 target_terminal_ours_for_output ();
4476 printf_filtered (_("\
4477 Cannot remove breakpoints because program is no longer writable.\n\
4478 Further execution is probably impossible.\n"));
4482 /* If an auto-display called a function and that got a signal,
4483 delete that auto-display to avoid an infinite recursion. */
4485 if (stopped_by_random_signal)
4486 disable_current_display ();
4488 /* Don't print a message if in the middle of doing a "step n"
4489 operation for n > 1 */
4490 if (target_has_execution
4491 && last.kind != TARGET_WAITKIND_SIGNALLED
4492 && last.kind != TARGET_WAITKIND_EXITED
4493 && inferior_thread ()->step_multi
4494 && inferior_thread ()->stop_step)
4497 target_terminal_ours ();
4499 /* Set the current source location. This will also happen if we
4500 display the frame below, but the current SAL will be incorrect
4501 during a user hook-stop function. */
4502 if (has_stack_frames () && !stop_stack_dummy)
4503 set_current_sal_from_frame (get_current_frame (), 1);
4505 /* Let the user/frontend see the threads as stopped. */
4506 do_cleanups (old_chain);
4508 /* Look up the hook_stop and run it (CLI internally handles problem
4509 of stop_command's pre-hook not existing). */
4511 catch_errors (hook_stop_stub, stop_command,
4512 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4514 if (!has_stack_frames ())
4517 if (last.kind == TARGET_WAITKIND_SIGNALLED
4518 || last.kind == TARGET_WAITKIND_EXITED)
4521 /* Select innermost stack frame - i.e., current frame is frame 0,
4522 and current location is based on that.
4523 Don't do this on return from a stack dummy routine,
4524 or if the program has exited. */
4526 if (!stop_stack_dummy)
4528 select_frame (get_current_frame ());
4530 /* Print current location without a level number, if
4531 we have changed functions or hit a breakpoint.
4532 Print source line if we have one.
4533 bpstat_print() contains the logic deciding in detail
4534 what to print, based on the event(s) that just occurred. */
4536 /* If --batch-silent is enabled then there's no need to print the current
4537 source location, and to try risks causing an error message about
4538 missing source files. */
4539 if (stop_print_frame && !batch_silent)
4543 int do_frame_printing = 1;
4544 struct thread_info *tp = inferior_thread ();
4546 bpstat_ret = bpstat_print (tp->stop_bpstat);
4550 /* If we had hit a shared library event breakpoint,
4551 bpstat_print would print out this message. If we hit
4552 an OS-level shared library event, do the same
4554 if (last.kind == TARGET_WAITKIND_LOADED)
4556 printf_filtered (_("Stopped due to shared library event\n"));
4557 source_flag = SRC_LINE; /* something bogus */
4558 do_frame_printing = 0;
4562 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4563 (or should) carry around the function and does (or
4564 should) use that when doing a frame comparison. */
4566 && frame_id_eq (tp->step_frame_id,
4567 get_frame_id (get_current_frame ()))
4568 && step_start_function == find_pc_function (stop_pc))
4569 source_flag = SRC_LINE; /* finished step, just print source line */
4571 source_flag = SRC_AND_LOC; /* print location and source line */
4573 case PRINT_SRC_AND_LOC:
4574 source_flag = SRC_AND_LOC; /* print location and source line */
4576 case PRINT_SRC_ONLY:
4577 source_flag = SRC_LINE;
4580 source_flag = SRC_LINE; /* something bogus */
4581 do_frame_printing = 0;
4584 internal_error (__FILE__, __LINE__, _("Unknown value."));
4587 /* The behavior of this routine with respect to the source
4589 SRC_LINE: Print only source line
4590 LOCATION: Print only location
4591 SRC_AND_LOC: Print location and source line */
4592 if (do_frame_printing)
4593 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4595 /* Display the auto-display expressions. */
4600 /* Save the function value return registers, if we care.
4601 We might be about to restore their previous contents. */
4602 if (inferior_thread ()->proceed_to_finish)
4604 /* This should not be necessary. */
4606 regcache_xfree (stop_registers);
4608 /* NB: The copy goes through to the target picking up the value of
4609 all the registers. */
4610 stop_registers = regcache_dup (get_current_regcache ());
4613 if (stop_stack_dummy)
4615 /* Pop the empty frame that contains the stack dummy.
4616 This also restores inferior state prior to the call
4617 (struct inferior_thread_state). */
4618 struct frame_info *frame = get_current_frame ();
4619 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4621 /* frame_pop() calls reinit_frame_cache as the last thing it does
4622 which means there's currently no selected frame. We don't need
4623 to re-establish a selected frame if the dummy call returns normally,
4624 that will be done by restore_inferior_status. However, we do have
4625 to handle the case where the dummy call is returning after being
4626 stopped (e.g. the dummy call previously hit a breakpoint). We
4627 can't know which case we have so just always re-establish a
4628 selected frame here. */
4629 select_frame (get_current_frame ());
4633 annotate_stopped ();
4635 /* Suppress the stop observer if we're in the middle of:
4637 - a step n (n > 1), as there still more steps to be done.
4639 - a "finish" command, as the observer will be called in
4640 finish_command_continuation, so it can include the inferior
4641 function's return value.
4643 - calling an inferior function, as we pretend we inferior didn't
4644 run at all. The return value of the call is handled by the
4645 expression evaluator, through call_function_by_hand. */
4647 if (!target_has_execution
4648 || last.kind == TARGET_WAITKIND_SIGNALLED
4649 || last.kind == TARGET_WAITKIND_EXITED
4650 || (!inferior_thread ()->step_multi
4651 && !(inferior_thread ()->stop_bpstat
4652 && inferior_thread ()->proceed_to_finish)
4653 && !inferior_thread ()->in_infcall))
4655 if (!ptid_equal (inferior_ptid, null_ptid))
4656 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4659 observer_notify_normal_stop (NULL, stop_print_frame);
4662 if (target_has_execution)
4664 if (last.kind != TARGET_WAITKIND_SIGNALLED
4665 && last.kind != TARGET_WAITKIND_EXITED)
4666 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4667 Delete any breakpoint that is to be deleted at the next stop. */
4668 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4673 hook_stop_stub (void *cmd)
4675 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4680 signal_stop_state (int signo)
4682 return signal_stop[signo];
4686 signal_print_state (int signo)
4688 return signal_print[signo];
4692 signal_pass_state (int signo)
4694 return signal_program[signo];
4698 signal_stop_update (int signo, int state)
4700 int ret = signal_stop[signo];
4701 signal_stop[signo] = state;
4706 signal_print_update (int signo, int state)
4708 int ret = signal_print[signo];
4709 signal_print[signo] = state;
4714 signal_pass_update (int signo, int state)
4716 int ret = signal_program[signo];
4717 signal_program[signo] = state;
4722 sig_print_header (void)
4724 printf_filtered (_("\
4725 Signal Stop\tPrint\tPass to program\tDescription\n"));
4729 sig_print_info (enum target_signal oursig)
4731 const char *name = target_signal_to_name (oursig);
4732 int name_padding = 13 - strlen (name);
4734 if (name_padding <= 0)
4737 printf_filtered ("%s", name);
4738 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4739 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4740 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4741 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4742 printf_filtered ("%s\n", target_signal_to_string (oursig));
4745 /* Specify how various signals in the inferior should be handled. */
4748 handle_command (char *args, int from_tty)
4751 int digits, wordlen;
4752 int sigfirst, signum, siglast;
4753 enum target_signal oursig;
4756 unsigned char *sigs;
4757 struct cleanup *old_chain;
4761 error_no_arg (_("signal to handle"));
4764 /* Allocate and zero an array of flags for which signals to handle. */
4766 nsigs = (int) TARGET_SIGNAL_LAST;
4767 sigs = (unsigned char *) alloca (nsigs);
4768 memset (sigs, 0, nsigs);
4770 /* Break the command line up into args. */
4772 argv = gdb_buildargv (args);
4773 old_chain = make_cleanup_freeargv (argv);
4775 /* Walk through the args, looking for signal oursigs, signal names, and
4776 actions. Signal numbers and signal names may be interspersed with
4777 actions, with the actions being performed for all signals cumulatively
4778 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4780 while (*argv != NULL)
4782 wordlen = strlen (*argv);
4783 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4787 sigfirst = siglast = -1;
4789 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4791 /* Apply action to all signals except those used by the
4792 debugger. Silently skip those. */
4795 siglast = nsigs - 1;
4797 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4799 SET_SIGS (nsigs, sigs, signal_stop);
4800 SET_SIGS (nsigs, sigs, signal_print);
4802 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4804 UNSET_SIGS (nsigs, sigs, signal_program);
4806 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4808 SET_SIGS (nsigs, sigs, signal_print);
4810 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4812 SET_SIGS (nsigs, sigs, signal_program);
4814 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4816 UNSET_SIGS (nsigs, sigs, signal_stop);
4818 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4820 SET_SIGS (nsigs, sigs, signal_program);
4822 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4824 UNSET_SIGS (nsigs, sigs, signal_print);
4825 UNSET_SIGS (nsigs, sigs, signal_stop);
4827 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4829 UNSET_SIGS (nsigs, sigs, signal_program);
4831 else if (digits > 0)
4833 /* It is numeric. The numeric signal refers to our own
4834 internal signal numbering from target.h, not to host/target
4835 signal number. This is a feature; users really should be
4836 using symbolic names anyway, and the common ones like
4837 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4839 sigfirst = siglast = (int)
4840 target_signal_from_command (atoi (*argv));
4841 if ((*argv)[digits] == '-')
4844 target_signal_from_command (atoi ((*argv) + digits + 1));
4846 if (sigfirst > siglast)
4848 /* Bet he didn't figure we'd think of this case... */
4856 oursig = target_signal_from_name (*argv);
4857 if (oursig != TARGET_SIGNAL_UNKNOWN)
4859 sigfirst = siglast = (int) oursig;
4863 /* Not a number and not a recognized flag word => complain. */
4864 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4868 /* If any signal numbers or symbol names were found, set flags for
4869 which signals to apply actions to. */
4871 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4873 switch ((enum target_signal) signum)
4875 case TARGET_SIGNAL_TRAP:
4876 case TARGET_SIGNAL_INT:
4877 if (!allsigs && !sigs[signum])
4879 if (query (_("%s is used by the debugger.\n\
4880 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
4886 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4887 gdb_flush (gdb_stdout);
4891 case TARGET_SIGNAL_0:
4892 case TARGET_SIGNAL_DEFAULT:
4893 case TARGET_SIGNAL_UNKNOWN:
4894 /* Make sure that "all" doesn't print these. */
4905 for (signum = 0; signum < nsigs; signum++)
4908 target_notice_signals (inferior_ptid);
4912 /* Show the results. */
4913 sig_print_header ();
4914 for (; signum < nsigs; signum++)
4916 sig_print_info (signum);
4922 do_cleanups (old_chain);
4926 xdb_handle_command (char *args, int from_tty)
4929 struct cleanup *old_chain;
4932 error_no_arg (_("xdb command"));
4934 /* Break the command line up into args. */
4936 argv = gdb_buildargv (args);
4937 old_chain = make_cleanup_freeargv (argv);
4938 if (argv[1] != (char *) NULL)
4943 bufLen = strlen (argv[0]) + 20;
4944 argBuf = (char *) xmalloc (bufLen);
4948 enum target_signal oursig;
4950 oursig = target_signal_from_name (argv[0]);
4951 memset (argBuf, 0, bufLen);
4952 if (strcmp (argv[1], "Q") == 0)
4953 sprintf (argBuf, "%s %s", argv[0], "noprint");
4956 if (strcmp (argv[1], "s") == 0)
4958 if (!signal_stop[oursig])
4959 sprintf (argBuf, "%s %s", argv[0], "stop");
4961 sprintf (argBuf, "%s %s", argv[0], "nostop");
4963 else if (strcmp (argv[1], "i") == 0)
4965 if (!signal_program[oursig])
4966 sprintf (argBuf, "%s %s", argv[0], "pass");
4968 sprintf (argBuf, "%s %s", argv[0], "nopass");
4970 else if (strcmp (argv[1], "r") == 0)
4972 if (!signal_print[oursig])
4973 sprintf (argBuf, "%s %s", argv[0], "print");
4975 sprintf (argBuf, "%s %s", argv[0], "noprint");
4981 handle_command (argBuf, from_tty);
4983 printf_filtered (_("Invalid signal handling flag.\n"));
4988 do_cleanups (old_chain);
4991 /* Print current contents of the tables set by the handle command.
4992 It is possible we should just be printing signals actually used
4993 by the current target (but for things to work right when switching
4994 targets, all signals should be in the signal tables). */
4997 signals_info (char *signum_exp, int from_tty)
4999 enum target_signal oursig;
5000 sig_print_header ();
5004 /* First see if this is a symbol name. */
5005 oursig = target_signal_from_name (signum_exp);
5006 if (oursig == TARGET_SIGNAL_UNKNOWN)
5008 /* No, try numeric. */
5010 target_signal_from_command (parse_and_eval_long (signum_exp));
5012 sig_print_info (oursig);
5016 printf_filtered ("\n");
5017 /* These ugly casts brought to you by the native VAX compiler. */
5018 for (oursig = TARGET_SIGNAL_FIRST;
5019 (int) oursig < (int) TARGET_SIGNAL_LAST;
5020 oursig = (enum target_signal) ((int) oursig + 1))
5024 if (oursig != TARGET_SIGNAL_UNKNOWN
5025 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5026 sig_print_info (oursig);
5029 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5032 /* The $_siginfo convenience variable is a bit special. We don't know
5033 for sure the type of the value until we actually have a chance to
5034 fetch the data. The type can change depending on gdbarch, so it it
5035 also dependent on which thread you have selected.
5037 1. making $_siginfo be an internalvar that creates a new value on
5040 2. making the value of $_siginfo be an lval_computed value. */
5042 /* This function implements the lval_computed support for reading a
5046 siginfo_value_read (struct value *v)
5048 LONGEST transferred;
5051 target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO,
5053 value_contents_all_raw (v),
5055 TYPE_LENGTH (value_type (v)));
5057 if (transferred != TYPE_LENGTH (value_type (v)))
5058 error (_("Unable to read siginfo"));
5061 /* This function implements the lval_computed support for writing a
5065 siginfo_value_write (struct value *v, struct value *fromval)
5067 LONGEST transferred;
5069 transferred = target_write (¤t_target,
5070 TARGET_OBJECT_SIGNAL_INFO,
5072 value_contents_all_raw (fromval),
5074 TYPE_LENGTH (value_type (fromval)));
5076 if (transferred != TYPE_LENGTH (value_type (fromval)))
5077 error (_("Unable to write siginfo"));
5080 static struct lval_funcs siginfo_value_funcs =
5086 /* Return a new value with the correct type for the siginfo object of
5087 the current thread. Return a void value if there's no object
5090 static struct value *
5091 siginfo_make_value (struct internalvar *var)
5094 struct gdbarch *gdbarch;
5096 if (target_has_stack
5097 && !ptid_equal (inferior_ptid, null_ptid))
5099 gdbarch = get_frame_arch (get_current_frame ());
5101 if (gdbarch_get_siginfo_type_p (gdbarch))
5103 type = gdbarch_get_siginfo_type (gdbarch);
5105 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5109 return allocate_value (builtin_type_void);
5113 /* Inferior thread state.
5114 These are details related to the inferior itself, and don't include
5115 things like what frame the user had selected or what gdb was doing
5116 with the target at the time.
5117 For inferior function calls these are things we want to restore
5118 regardless of whether the function call successfully completes
5119 or the dummy frame has to be manually popped. */
5121 struct inferior_thread_state
5123 enum target_signal stop_signal;
5125 struct regcache *registers;
5128 struct inferior_thread_state *
5129 save_inferior_thread_state (void)
5131 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5132 struct thread_info *tp = inferior_thread ();
5134 inf_state->stop_signal = tp->stop_signal;
5135 inf_state->stop_pc = stop_pc;
5137 inf_state->registers = regcache_dup (get_current_regcache ());
5142 /* Restore inferior session state to INF_STATE. */
5145 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5147 struct thread_info *tp = inferior_thread ();
5149 tp->stop_signal = inf_state->stop_signal;
5150 stop_pc = inf_state->stop_pc;
5152 /* The inferior can be gone if the user types "print exit(0)"
5153 (and perhaps other times). */
5154 if (target_has_execution)
5155 /* NB: The register write goes through to the target. */
5156 regcache_cpy (get_current_regcache (), inf_state->registers);
5157 regcache_xfree (inf_state->registers);
5162 do_restore_inferior_thread_state_cleanup (void *state)
5164 restore_inferior_thread_state (state);
5168 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5170 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5174 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5176 regcache_xfree (inf_state->registers);
5181 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5183 return inf_state->registers;
5186 /* Session related state for inferior function calls.
5187 These are the additional bits of state that need to be restored
5188 when an inferior function call successfully completes. */
5190 struct inferior_status
5194 int stop_stack_dummy;
5195 int stopped_by_random_signal;
5196 int stepping_over_breakpoint;
5197 CORE_ADDR step_range_start;
5198 CORE_ADDR step_range_end;
5199 struct frame_id step_frame_id;
5200 enum step_over_calls_kind step_over_calls;
5201 CORE_ADDR step_resume_break_address;
5202 int stop_after_trap;
5205 /* ID if the selected frame when the inferior function call was made. */
5206 struct frame_id selected_frame_id;
5208 int proceed_to_finish;
5212 /* Save all of the information associated with the inferior<==>gdb
5215 struct inferior_status *
5216 save_inferior_status (void)
5218 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5219 struct thread_info *tp = inferior_thread ();
5220 struct inferior *inf = current_inferior ();
5222 inf_status->stop_step = tp->stop_step;
5223 inf_status->stop_stack_dummy = stop_stack_dummy;
5224 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5225 inf_status->stepping_over_breakpoint = tp->trap_expected;
5226 inf_status->step_range_start = tp->step_range_start;
5227 inf_status->step_range_end = tp->step_range_end;
5228 inf_status->step_frame_id = tp->step_frame_id;
5229 inf_status->step_over_calls = tp->step_over_calls;
5230 inf_status->stop_after_trap = stop_after_trap;
5231 inf_status->stop_soon = inf->stop_soon;
5232 /* Save original bpstat chain here; replace it with copy of chain.
5233 If caller's caller is walking the chain, they'll be happier if we
5234 hand them back the original chain when restore_inferior_status is
5236 inf_status->stop_bpstat = tp->stop_bpstat;
5237 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5238 inf_status->proceed_to_finish = tp->proceed_to_finish;
5239 inf_status->in_infcall = tp->in_infcall;
5241 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5247 restore_selected_frame (void *args)
5249 struct frame_id *fid = (struct frame_id *) args;
5250 struct frame_info *frame;
5252 frame = frame_find_by_id (*fid);
5254 /* If inf_status->selected_frame_id is NULL, there was no previously
5258 warning (_("Unable to restore previously selected frame."));
5262 select_frame (frame);
5267 /* Restore inferior session state to INF_STATUS. */
5270 restore_inferior_status (struct inferior_status *inf_status)
5272 struct thread_info *tp = inferior_thread ();
5273 struct inferior *inf = current_inferior ();
5275 tp->stop_step = inf_status->stop_step;
5276 stop_stack_dummy = inf_status->stop_stack_dummy;
5277 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5278 tp->trap_expected = inf_status->stepping_over_breakpoint;
5279 tp->step_range_start = inf_status->step_range_start;
5280 tp->step_range_end = inf_status->step_range_end;
5281 tp->step_frame_id = inf_status->step_frame_id;
5282 tp->step_over_calls = inf_status->step_over_calls;
5283 stop_after_trap = inf_status->stop_after_trap;
5284 inf->stop_soon = inf_status->stop_soon;
5285 bpstat_clear (&tp->stop_bpstat);
5286 tp->stop_bpstat = inf_status->stop_bpstat;
5287 inf_status->stop_bpstat = NULL;
5288 tp->proceed_to_finish = inf_status->proceed_to_finish;
5289 tp->in_infcall = inf_status->in_infcall;
5291 if (target_has_stack)
5293 /* The point of catch_errors is that if the stack is clobbered,
5294 walking the stack might encounter a garbage pointer and
5295 error() trying to dereference it. */
5297 (restore_selected_frame, &inf_status->selected_frame_id,
5298 "Unable to restore previously selected frame:\n",
5299 RETURN_MASK_ERROR) == 0)
5300 /* Error in restoring the selected frame. Select the innermost
5302 select_frame (get_current_frame ());
5309 do_restore_inferior_status_cleanup (void *sts)
5311 restore_inferior_status (sts);
5315 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5317 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5321 discard_inferior_status (struct inferior_status *inf_status)
5323 /* See save_inferior_status for info on stop_bpstat. */
5324 bpstat_clear (&inf_status->stop_bpstat);
5329 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5331 struct target_waitstatus last;
5334 get_last_target_status (&last_ptid, &last);
5336 if (last.kind != TARGET_WAITKIND_FORKED)
5339 if (!ptid_equal (last_ptid, pid))
5342 *child_pid = last.value.related_pid;
5347 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5349 struct target_waitstatus last;
5352 get_last_target_status (&last_ptid, &last);
5354 if (last.kind != TARGET_WAITKIND_VFORKED)
5357 if (!ptid_equal (last_ptid, pid))
5360 *child_pid = last.value.related_pid;
5365 inferior_has_execd (ptid_t pid, char **execd_pathname)
5367 struct target_waitstatus last;
5370 get_last_target_status (&last_ptid, &last);
5372 if (last.kind != TARGET_WAITKIND_EXECD)
5375 if (!ptid_equal (last_ptid, pid))
5378 *execd_pathname = xstrdup (last.value.execd_pathname);
5382 /* Oft used ptids */
5384 ptid_t minus_one_ptid;
5386 /* Create a ptid given the necessary PID, LWP, and TID components. */
5389 ptid_build (int pid, long lwp, long tid)
5399 /* Create a ptid from just a pid. */
5402 pid_to_ptid (int pid)
5404 return ptid_build (pid, 0, 0);
5407 /* Fetch the pid (process id) component from a ptid. */
5410 ptid_get_pid (ptid_t ptid)
5415 /* Fetch the lwp (lightweight process) component from a ptid. */
5418 ptid_get_lwp (ptid_t ptid)
5423 /* Fetch the tid (thread id) component from a ptid. */
5426 ptid_get_tid (ptid_t ptid)
5431 /* ptid_equal() is used to test equality of two ptids. */
5434 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5436 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5437 && ptid1.tid == ptid2.tid);
5440 /* Returns true if PTID represents a process. */
5443 ptid_is_pid (ptid_t ptid)
5445 if (ptid_equal (minus_one_ptid, ptid))
5447 if (ptid_equal (null_ptid, ptid))
5450 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5453 /* restore_inferior_ptid() will be used by the cleanup machinery
5454 to restore the inferior_ptid value saved in a call to
5455 save_inferior_ptid(). */
5458 restore_inferior_ptid (void *arg)
5460 ptid_t *saved_ptid_ptr = arg;
5461 inferior_ptid = *saved_ptid_ptr;
5465 /* Save the value of inferior_ptid so that it may be restored by a
5466 later call to do_cleanups(). Returns the struct cleanup pointer
5467 needed for later doing the cleanup. */
5470 save_inferior_ptid (void)
5472 ptid_t *saved_ptid_ptr;
5474 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5475 *saved_ptid_ptr = inferior_ptid;
5476 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5480 /* User interface for reverse debugging:
5481 Set exec-direction / show exec-direction commands
5482 (returns error unless target implements to_set_exec_direction method). */
5484 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5485 static const char exec_forward[] = "forward";
5486 static const char exec_reverse[] = "reverse";
5487 static const char *exec_direction = exec_forward;
5488 static const char *exec_direction_names[] = {
5495 set_exec_direction_func (char *args, int from_tty,
5496 struct cmd_list_element *cmd)
5498 if (target_can_execute_reverse)
5500 if (!strcmp (exec_direction, exec_forward))
5501 execution_direction = EXEC_FORWARD;
5502 else if (!strcmp (exec_direction, exec_reverse))
5503 execution_direction = EXEC_REVERSE;
5508 show_exec_direction_func (struct ui_file *out, int from_tty,
5509 struct cmd_list_element *cmd, const char *value)
5511 switch (execution_direction) {
5513 fprintf_filtered (out, _("Forward.\n"));
5516 fprintf_filtered (out, _("Reverse.\n"));
5520 fprintf_filtered (out,
5521 _("Forward (target `%s' does not support exec-direction).\n"),
5527 /* User interface for non-stop mode. */
5530 static int non_stop_1 = 0;
5533 set_non_stop (char *args, int from_tty,
5534 struct cmd_list_element *c)
5536 if (target_has_execution)
5538 non_stop_1 = non_stop;
5539 error (_("Cannot change this setting while the inferior is running."));
5542 non_stop = non_stop_1;
5546 show_non_stop (struct ui_file *file, int from_tty,
5547 struct cmd_list_element *c, const char *value)
5549 fprintf_filtered (file,
5550 _("Controlling the inferior in non-stop mode is %s.\n"),
5556 _initialize_infrun (void)
5560 struct cmd_list_element *c;
5562 add_info ("signals", signals_info, _("\
5563 What debugger does when program gets various signals.\n\
5564 Specify a signal as argument to print info on that signal only."));
5565 add_info_alias ("handle", "signals", 0);
5567 add_com ("handle", class_run, handle_command, _("\
5568 Specify how to handle a signal.\n\
5569 Args are signals and actions to apply to those signals.\n\
5570 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5571 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5572 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5573 The special arg \"all\" is recognized to mean all signals except those\n\
5574 used by the debugger, typically SIGTRAP and SIGINT.\n\
5575 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5576 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5577 Stop means reenter debugger if this signal happens (implies print).\n\
5578 Print means print a message if this signal happens.\n\
5579 Pass means let program see this signal; otherwise program doesn't know.\n\
5580 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5581 Pass and Stop may be combined."));
5584 add_com ("lz", class_info, signals_info, _("\
5585 What debugger does when program gets various signals.\n\
5586 Specify a signal as argument to print info on that signal only."));
5587 add_com ("z", class_run, xdb_handle_command, _("\
5588 Specify how to handle a signal.\n\
5589 Args are signals and actions to apply to those signals.\n\
5590 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5591 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5592 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5593 The special arg \"all\" is recognized to mean all signals except those\n\
5594 used by the debugger, typically SIGTRAP and SIGINT.\n\
5595 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5596 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5597 nopass), \"Q\" (noprint)\n\
5598 Stop means reenter debugger if this signal happens (implies print).\n\
5599 Print means print a message if this signal happens.\n\
5600 Pass means let program see this signal; otherwise program doesn't know.\n\
5601 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5602 Pass and Stop may be combined."));
5606 stop_command = add_cmd ("stop", class_obscure,
5607 not_just_help_class_command, _("\
5608 There is no `stop' command, but you can set a hook on `stop'.\n\
5609 This allows you to set a list of commands to be run each time execution\n\
5610 of the program stops."), &cmdlist);
5612 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5613 Set inferior debugging."), _("\
5614 Show inferior debugging."), _("\
5615 When non-zero, inferior specific debugging is enabled."),
5618 &setdebuglist, &showdebuglist);
5620 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5621 Set displaced stepping debugging."), _("\
5622 Show displaced stepping debugging."), _("\
5623 When non-zero, displaced stepping specific debugging is enabled."),
5625 show_debug_displaced,
5626 &setdebuglist, &showdebuglist);
5628 add_setshow_boolean_cmd ("non-stop", no_class,
5630 Set whether gdb controls the inferior in non-stop mode."), _("\
5631 Show whether gdb controls the inferior in non-stop mode."), _("\
5632 When debugging a multi-threaded program and this setting is\n\
5633 off (the default, also called all-stop mode), when one thread stops\n\
5634 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5635 all other threads in the program while you interact with the thread of\n\
5636 interest. When you continue or step a thread, you can allow the other\n\
5637 threads to run, or have them remain stopped, but while you inspect any\n\
5638 thread's state, all threads stop.\n\
5640 In non-stop mode, when one thread stops, other threads can continue\n\
5641 to run freely. You'll be able to step each thread independently,\n\
5642 leave it stopped or free to run as needed."),
5648 numsigs = (int) TARGET_SIGNAL_LAST;
5649 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5650 signal_print = (unsigned char *)
5651 xmalloc (sizeof (signal_print[0]) * numsigs);
5652 signal_program = (unsigned char *)
5653 xmalloc (sizeof (signal_program[0]) * numsigs);
5654 for (i = 0; i < numsigs; i++)
5657 signal_print[i] = 1;
5658 signal_program[i] = 1;
5661 /* Signals caused by debugger's own actions
5662 should not be given to the program afterwards. */
5663 signal_program[TARGET_SIGNAL_TRAP] = 0;
5664 signal_program[TARGET_SIGNAL_INT] = 0;
5666 /* Signals that are not errors should not normally enter the debugger. */
5667 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5668 signal_print[TARGET_SIGNAL_ALRM] = 0;
5669 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5670 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5671 signal_stop[TARGET_SIGNAL_PROF] = 0;
5672 signal_print[TARGET_SIGNAL_PROF] = 0;
5673 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5674 signal_print[TARGET_SIGNAL_CHLD] = 0;
5675 signal_stop[TARGET_SIGNAL_IO] = 0;
5676 signal_print[TARGET_SIGNAL_IO] = 0;
5677 signal_stop[TARGET_SIGNAL_POLL] = 0;
5678 signal_print[TARGET_SIGNAL_POLL] = 0;
5679 signal_stop[TARGET_SIGNAL_URG] = 0;
5680 signal_print[TARGET_SIGNAL_URG] = 0;
5681 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5682 signal_print[TARGET_SIGNAL_WINCH] = 0;
5684 /* These signals are used internally by user-level thread
5685 implementations. (See signal(5) on Solaris.) Like the above
5686 signals, a healthy program receives and handles them as part of
5687 its normal operation. */
5688 signal_stop[TARGET_SIGNAL_LWP] = 0;
5689 signal_print[TARGET_SIGNAL_LWP] = 0;
5690 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5691 signal_print[TARGET_SIGNAL_WAITING] = 0;
5692 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5693 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5695 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5696 &stop_on_solib_events, _("\
5697 Set stopping for shared library events."), _("\
5698 Show stopping for shared library events."), _("\
5699 If nonzero, gdb will give control to the user when the dynamic linker\n\
5700 notifies gdb of shared library events. The most common event of interest\n\
5701 to the user would be loading/unloading of a new library."),
5703 show_stop_on_solib_events,
5704 &setlist, &showlist);
5706 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5707 follow_fork_mode_kind_names,
5708 &follow_fork_mode_string, _("\
5709 Set debugger response to a program call of fork or vfork."), _("\
5710 Show debugger response to a program call of fork or vfork."), _("\
5711 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5712 parent - the original process is debugged after a fork\n\
5713 child - the new process is debugged after a fork\n\
5714 The unfollowed process will continue to run.\n\
5715 By default, the debugger will follow the parent process."),
5717 show_follow_fork_mode_string,
5718 &setlist, &showlist);
5720 add_setshow_enum_cmd ("scheduler-locking", class_run,
5721 scheduler_enums, &scheduler_mode, _("\
5722 Set mode for locking scheduler during execution."), _("\
5723 Show mode for locking scheduler during execution."), _("\
5724 off == no locking (threads may preempt at any time)\n\
5725 on == full locking (no thread except the current thread may run)\n\
5726 step == scheduler locked during every single-step operation.\n\
5727 In this mode, no other thread may run during a step command.\n\
5728 Other threads may run while stepping over a function call ('next')."),
5729 set_schedlock_func, /* traps on target vector */
5730 show_scheduler_mode,
5731 &setlist, &showlist);
5733 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5734 Set mode of the step operation."), _("\
5735 Show mode of the step operation."), _("\
5736 When set, doing a step over a function without debug line information\n\
5737 will stop at the first instruction of that function. Otherwise, the\n\
5738 function is skipped and the step command stops at a different source line."),
5740 show_step_stop_if_no_debug,
5741 &setlist, &showlist);
5743 add_setshow_enum_cmd ("displaced-stepping", class_run,
5744 can_use_displaced_stepping_enum,
5745 &can_use_displaced_stepping, _("\
5746 Set debugger's willingness to use displaced stepping."), _("\
5747 Show debugger's willingness to use displaced stepping."), _("\
5748 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5749 supported by the target architecture. If off, gdb will not use displaced\n\
5750 stepping to step over breakpoints, even if such is supported by the target\n\
5751 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5752 if the target architecture supports it and non-stop mode is active, but will not\n\
5753 use it in all-stop mode (see help set non-stop)."),
5755 show_can_use_displaced_stepping,
5756 &setlist, &showlist);
5758 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5759 &exec_direction, _("Set direction of execution.\n\
5760 Options are 'forward' or 'reverse'."),
5761 _("Show direction of execution (forward/reverse)."),
5762 _("Tells gdb whether to execute forward or backward."),
5763 set_exec_direction_func, show_exec_direction_func,
5764 &setlist, &showlist);
5766 /* ptid initializations */
5767 null_ptid = ptid_build (0, 0, 0);
5768 minus_one_ptid = ptid_build (-1, 0, 0);
5769 inferior_ptid = null_ptid;
5770 target_last_wait_ptid = minus_one_ptid;
5771 displaced_step_ptid = null_ptid;
5773 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5774 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5775 observer_attach_thread_exit (infrun_thread_thread_exit);
5777 /* Explicitly create without lookup, since that tries to create a
5778 value with a void typed value, and when we get here, gdbarch
5779 isn't initialized yet. At this point, we're quite sure there
5780 isn't another convenience variable of the same name. */
5781 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);