1 \input texinfo @c -*-texinfo-*-
2 @c Copyright (C) 1988-1996, 1998-2012 Free Software Foundation, Inc.
5 @c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
6 @c of @set vars. However, you can override filename with makeinfo -o.
11 @settitle Debugging with @value{GDBN}
12 @setchapternewpage odd
24 @c readline appendices use @vindex, @findex and @ftable,
25 @c annotate.texi and gdbmi use @findex.
29 @c !!set GDB manual's edition---not the same as GDB version!
30 @c This is updated by GNU Press.
33 @c !!set GDB edit command default editor
36 @c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
38 @c This is a dir.info fragment to support semi-automated addition of
39 @c manuals to an info tree.
40 @dircategory Software development
42 * Gdb: (gdb). The GNU debugger.
46 Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
47 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
48 Free Software Foundation, Inc.
50 Permission is granted to copy, distribute and/or modify this document
51 under the terms of the GNU Free Documentation License, Version 1.3 or
52 any later version published by the Free Software Foundation; with the
53 Invariant Sections being ``Free Software'' and ``Free Software Needs
54 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
55 and with the Back-Cover Texts as in (a) below.
57 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
58 this GNU Manual. Buying copies from GNU Press supports the FSF in
59 developing GNU and promoting software freedom.''
63 This file documents the @sc{gnu} debugger @value{GDBN}.
65 This is the @value{EDITION} Edition, of @cite{Debugging with
66 @value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
67 @ifset VERSION_PACKAGE
68 @value{VERSION_PACKAGE}
70 Version @value{GDBVN}.
76 @title Debugging with @value{GDBN}
77 @subtitle The @sc{gnu} Source-Level Debugger
79 @subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
80 @ifset VERSION_PACKAGE
82 @subtitle @value{VERSION_PACKAGE}
84 @author Richard Stallman, Roland Pesch, Stan Shebs, et al.
88 \hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
89 \hfill {\it Debugging with @value{GDBN}}\par
90 \hfill \TeX{}info \texinfoversion\par
94 @vskip 0pt plus 1filll
95 Published by the Free Software Foundation @*
96 51 Franklin Street, Fifth Floor,
97 Boston, MA 02110-1301, USA@*
98 ISBN 978-0-9831592-3-0 @*
105 @node Top, Summary, (dir), (dir)
107 @top Debugging with @value{GDBN}
109 This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
111 This is the @value{EDITION} Edition, for @value{GDBN}
112 @ifset VERSION_PACKAGE
113 @value{VERSION_PACKAGE}
115 Version @value{GDBVN}.
117 Copyright (C) 1988-2010 Free Software Foundation, Inc.
119 This edition of the GDB manual is dedicated to the memory of Fred
120 Fish. Fred was a long-standing contributor to GDB and to Free
121 software in general. We will miss him.
124 * Summary:: Summary of @value{GDBN}
125 * Sample Session:: A sample @value{GDBN} session
127 * Invocation:: Getting in and out of @value{GDBN}
128 * Commands:: @value{GDBN} commands
129 * Running:: Running programs under @value{GDBN}
130 * Stopping:: Stopping and continuing
131 * Reverse Execution:: Running programs backward
132 * Process Record and Replay:: Recording inferior's execution and replaying it
133 * Stack:: Examining the stack
134 * Source:: Examining source files
135 * Data:: Examining data
136 * Optimized Code:: Debugging optimized code
137 * Macros:: Preprocessor Macros
138 * Tracepoints:: Debugging remote targets non-intrusively
139 * Overlays:: Debugging programs that use overlays
141 * Languages:: Using @value{GDBN} with different languages
143 * Symbols:: Examining the symbol table
144 * Altering:: Altering execution
145 * GDB Files:: @value{GDBN} files
146 * Targets:: Specifying a debugging target
147 * Remote Debugging:: Debugging remote programs
148 * Configurations:: Configuration-specific information
149 * Controlling GDB:: Controlling @value{GDBN}
150 * Extending GDB:: Extending @value{GDBN}
151 * Interpreters:: Command Interpreters
152 * TUI:: @value{GDBN} Text User Interface
153 * Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
154 * GDB/MI:: @value{GDBN}'s Machine Interface.
155 * Annotations:: @value{GDBN}'s annotation interface.
156 * JIT Interface:: Using the JIT debugging interface.
157 * In-Process Agent:: In-Process Agent
159 * GDB Bugs:: Reporting bugs in @value{GDBN}
161 @ifset SYSTEM_READLINE
162 * Command Line Editing: (rluserman). Command Line Editing
163 * Using History Interactively: (history). Using History Interactively
165 @ifclear SYSTEM_READLINE
166 * Command Line Editing:: Command Line Editing
167 * Using History Interactively:: Using History Interactively
169 * In Memoriam:: In Memoriam
170 * Formatting Documentation:: How to format and print @value{GDBN} documentation
171 * Installing GDB:: Installing GDB
172 * Maintenance Commands:: Maintenance Commands
173 * Remote Protocol:: GDB Remote Serial Protocol
174 * Agent Expressions:: The GDB Agent Expression Mechanism
175 * Target Descriptions:: How targets can describe themselves to
177 * Operating System Information:: Getting additional information from
179 * Trace File Format:: GDB trace file format
180 * Index Section Format:: .gdb_index section format
181 * Copying:: GNU General Public License says
182 how you can copy and share GDB
183 * GNU Free Documentation License:: The license for this documentation
192 @unnumbered Summary of @value{GDBN}
194 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
195 going on ``inside'' another program while it executes---or what another
196 program was doing at the moment it crashed.
198 @value{GDBN} can do four main kinds of things (plus other things in support of
199 these) to help you catch bugs in the act:
203 Start your program, specifying anything that might affect its behavior.
206 Make your program stop on specified conditions.
209 Examine what has happened, when your program has stopped.
212 Change things in your program, so you can experiment with correcting the
213 effects of one bug and go on to learn about another.
216 You can use @value{GDBN} to debug programs written in C and C@t{++}.
217 For more information, see @ref{Supported Languages,,Supported Languages}.
218 For more information, see @ref{C,,C and C++}.
220 Support for D is partial. For information on D, see
224 Support for Modula-2 is partial. For information on Modula-2, see
225 @ref{Modula-2,,Modula-2}.
227 Support for OpenCL C is partial. For information on OpenCL C, see
228 @ref{OpenCL C,,OpenCL C}.
231 Debugging Pascal programs which use sets, subranges, file variables, or
232 nested functions does not currently work. @value{GDBN} does not support
233 entering expressions, printing values, or similar features using Pascal
237 @value{GDBN} can be used to debug programs written in Fortran, although
238 it may be necessary to refer to some variables with a trailing
241 @value{GDBN} can be used to debug programs written in Objective-C,
242 using either the Apple/NeXT or the GNU Objective-C runtime.
245 * Free Software:: Freely redistributable software
246 * Contributors:: Contributors to GDB
250 @unnumberedsec Free Software
252 @value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
253 General Public License
254 (GPL). The GPL gives you the freedom to copy or adapt a licensed
255 program---but every person getting a copy also gets with it the
256 freedom to modify that copy (which means that they must get access to
257 the source code), and the freedom to distribute further copies.
258 Typical software companies use copyrights to limit your freedoms; the
259 Free Software Foundation uses the GPL to preserve these freedoms.
261 Fundamentally, the General Public License is a license which says that
262 you have these freedoms and that you cannot take these freedoms away
265 @unnumberedsec Free Software Needs Free Documentation
267 The biggest deficiency in the free software community today is not in
268 the software---it is the lack of good free documentation that we can
269 include with the free software. Many of our most important
270 programs do not come with free reference manuals and free introductory
271 texts. Documentation is an essential part of any software package;
272 when an important free software package does not come with a free
273 manual and a free tutorial, that is a major gap. We have many such
276 Consider Perl, for instance. The tutorial manuals that people
277 normally use are non-free. How did this come about? Because the
278 authors of those manuals published them with restrictive terms---no
279 copying, no modification, source files not available---which exclude
280 them from the free software world.
282 That wasn't the first time this sort of thing happened, and it was far
283 from the last. Many times we have heard a GNU user eagerly describe a
284 manual that he is writing, his intended contribution to the community,
285 only to learn that he had ruined everything by signing a publication
286 contract to make it non-free.
288 Free documentation, like free software, is a matter of freedom, not
289 price. The problem with the non-free manual is not that publishers
290 charge a price for printed copies---that in itself is fine. (The Free
291 Software Foundation sells printed copies of manuals, too.) The
292 problem is the restrictions on the use of the manual. Free manuals
293 are available in source code form, and give you permission to copy and
294 modify. Non-free manuals do not allow this.
296 The criteria of freedom for a free manual are roughly the same as for
297 free software. Redistribution (including the normal kinds of
298 commercial redistribution) must be permitted, so that the manual can
299 accompany every copy of the program, both on-line and on paper.
301 Permission for modification of the technical content is crucial too.
302 When people modify the software, adding or changing features, if they
303 are conscientious they will change the manual too---so they can
304 provide accurate and clear documentation for the modified program. A
305 manual that leaves you no choice but to write a new manual to document
306 a changed version of the program is not really available to our
309 Some kinds of limits on the way modification is handled are
310 acceptable. For example, requirements to preserve the original
311 author's copyright notice, the distribution terms, or the list of
312 authors, are ok. It is also no problem to require modified versions
313 to include notice that they were modified. Even entire sections that
314 may not be deleted or changed are acceptable, as long as they deal
315 with nontechnical topics (like this one). These kinds of restrictions
316 are acceptable because they don't obstruct the community's normal use
319 However, it must be possible to modify all the @emph{technical}
320 content of the manual, and then distribute the result in all the usual
321 media, through all the usual channels. Otherwise, the restrictions
322 obstruct the use of the manual, it is not free, and we need another
323 manual to replace it.
325 Please spread the word about this issue. Our community continues to
326 lose manuals to proprietary publishing. If we spread the word that
327 free software needs free reference manuals and free tutorials, perhaps
328 the next person who wants to contribute by writing documentation will
329 realize, before it is too late, that only free manuals contribute to
330 the free software community.
332 If you are writing documentation, please insist on publishing it under
333 the GNU Free Documentation License or another free documentation
334 license. Remember that this decision requires your approval---you
335 don't have to let the publisher decide. Some commercial publishers
336 will use a free license if you insist, but they will not propose the
337 option; it is up to you to raise the issue and say firmly that this is
338 what you want. If the publisher you are dealing with refuses, please
339 try other publishers. If you're not sure whether a proposed license
340 is free, write to @email{licensing@@gnu.org}.
342 You can encourage commercial publishers to sell more free, copylefted
343 manuals and tutorials by buying them, and particularly by buying
344 copies from the publishers that paid for their writing or for major
345 improvements. Meanwhile, try to avoid buying non-free documentation
346 at all. Check the distribution terms of a manual before you buy it,
347 and insist that whoever seeks your business must respect your freedom.
348 Check the history of the book, and try to reward the publishers that
349 have paid or pay the authors to work on it.
351 The Free Software Foundation maintains a list of free documentation
352 published by other publishers, at
353 @url{http://www.fsf.org/doc/other-free-books.html}.
356 @unnumberedsec Contributors to @value{GDBN}
358 Richard Stallman was the original author of @value{GDBN}, and of many
359 other @sc{gnu} programs. Many others have contributed to its
360 development. This section attempts to credit major contributors. One
361 of the virtues of free software is that everyone is free to contribute
362 to it; with regret, we cannot actually acknowledge everyone here. The
363 file @file{ChangeLog} in the @value{GDBN} distribution approximates a
364 blow-by-blow account.
366 Changes much prior to version 2.0 are lost in the mists of time.
369 @emph{Plea:} Additions to this section are particularly welcome. If you
370 or your friends (or enemies, to be evenhanded) have been unfairly
371 omitted from this list, we would like to add your names!
374 So that they may not regard their many labors as thankless, we
375 particularly thank those who shepherded @value{GDBN} through major
377 Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
378 Jim Blandy (release 4.18);
379 Jason Molenda (release 4.17);
380 Stan Shebs (release 4.14);
381 Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
382 Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
383 John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
384 Jim Kingdon (releases 3.5, 3.4, and 3.3);
385 and Randy Smith (releases 3.2, 3.1, and 3.0).
387 Richard Stallman, assisted at various times by Peter TerMaat, Chris
388 Hanson, and Richard Mlynarik, handled releases through 2.8.
390 Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
391 in @value{GDBN}, with significant additional contributions from Per
392 Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
393 demangler. Early work on C@t{++} was by Peter TerMaat (who also did
394 much general update work leading to release 3.0).
396 @value{GDBN} uses the BFD subroutine library to examine multiple
397 object-file formats; BFD was a joint project of David V.
398 Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
400 David Johnson wrote the original COFF support; Pace Willison did
401 the original support for encapsulated COFF.
403 Brent Benson of Harris Computer Systems contributed DWARF 2 support.
405 Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
406 Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
408 Jean-Daniel Fekete contributed Sun 386i support.
409 Chris Hanson improved the HP9000 support.
410 Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
411 David Johnson contributed Encore Umax support.
412 Jyrki Kuoppala contributed Altos 3068 support.
413 Jeff Law contributed HP PA and SOM support.
414 Keith Packard contributed NS32K support.
415 Doug Rabson contributed Acorn Risc Machine support.
416 Bob Rusk contributed Harris Nighthawk CX-UX support.
417 Chris Smith contributed Convex support (and Fortran debugging).
418 Jonathan Stone contributed Pyramid support.
419 Michael Tiemann contributed SPARC support.
420 Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
421 Pace Willison contributed Intel 386 support.
422 Jay Vosburgh contributed Symmetry support.
423 Marko Mlinar contributed OpenRISC 1000 support.
425 Andreas Schwab contributed M68K @sc{gnu}/Linux support.
427 Rich Schaefer and Peter Schauer helped with support of SunOS shared
430 Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
431 about several machine instruction sets.
433 Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
434 remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
435 contributed remote debugging modules for the i960, VxWorks, A29K UDI,
436 and RDI targets, respectively.
438 Brian Fox is the author of the readline libraries providing
439 command-line editing and command history.
441 Andrew Beers of SUNY Buffalo wrote the language-switching code, the
442 Modula-2 support, and contributed the Languages chapter of this manual.
444 Fred Fish wrote most of the support for Unix System Vr4.
445 He also enhanced the command-completion support to cover C@t{++} overloaded
448 Hitachi America (now Renesas America), Ltd. sponsored the support for
449 H8/300, H8/500, and Super-H processors.
451 NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
453 Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
456 Toshiba sponsored the support for the TX39 Mips processor.
458 Matsushita sponsored the support for the MN10200 and MN10300 processors.
460 Fujitsu sponsored the support for SPARClite and FR30 processors.
462 Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
465 Michael Snyder added support for tracepoints.
467 Stu Grossman wrote gdbserver.
469 Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
470 nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
472 The following people at the Hewlett-Packard Company contributed
473 support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
474 (narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
475 compiler, and the Text User Interface (nee Terminal User Interface):
476 Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
477 Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
478 provided HP-specific information in this manual.
480 DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
481 Robert Hoehne made significant contributions to the DJGPP port.
483 Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
484 development since 1991. Cygnus engineers who have worked on @value{GDBN}
485 fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
486 Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
487 Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
488 Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
489 Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
490 addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
491 JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
492 Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
493 Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
494 Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
495 Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
496 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
497 Zuhn have made contributions both large and small.
499 Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
500 Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
502 Jim Blandy added support for preprocessor macros, while working for Red
505 Andrew Cagney designed @value{GDBN}'s architecture vector. Many
506 people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
507 Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
508 Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
509 Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
510 with the migration of old architectures to this new framework.
512 Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
513 unwinder framework, this consisting of a fresh new design featuring
514 frame IDs, independent frame sniffers, and the sentinel frame. Mark
515 Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
516 libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
517 trad unwinders. The architecture-specific changes, each involving a
518 complete rewrite of the architecture's frame code, were carried out by
519 Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
520 Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
521 Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
522 Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
525 Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
526 Tensilica, Inc.@: contributed support for Xtensa processors. Others
527 who have worked on the Xtensa port of @value{GDBN} in the past include
528 Steve Tjiang, John Newlin, and Scott Foehner.
530 Michael Eager and staff of Xilinx, Inc., contributed support for the
531 Xilinx MicroBlaze architecture.
534 @chapter A Sample @value{GDBN} Session
536 You can use this manual at your leisure to read all about @value{GDBN}.
537 However, a handful of commands are enough to get started using the
538 debugger. This chapter illustrates those commands.
541 In this sample session, we emphasize user input like this: @b{input},
542 to make it easier to pick out from the surrounding output.
545 @c FIXME: this example may not be appropriate for some configs, where
546 @c FIXME...primary interest is in remote use.
548 One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
549 processor) exhibits the following bug: sometimes, when we change its
550 quote strings from the default, the commands used to capture one macro
551 definition within another stop working. In the following short @code{m4}
552 session, we define a macro @code{foo} which expands to @code{0000}; we
553 then use the @code{m4} built-in @code{defn} to define @code{bar} as the
554 same thing. However, when we change the open quote string to
555 @code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
556 procedure fails to define a new synonym @code{baz}:
565 @b{define(bar,defn(`foo'))}
569 @b{changequote(<QUOTE>,<UNQUOTE>)}
571 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
574 m4: End of input: 0: fatal error: EOF in string
578 Let us use @value{GDBN} to try to see what is going on.
581 $ @b{@value{GDBP} m4}
582 @c FIXME: this falsifies the exact text played out, to permit smallbook
583 @c FIXME... format to come out better.
584 @value{GDBN} is free software and you are welcome to distribute copies
585 of it under certain conditions; type "show copying" to see
587 There is absolutely no warranty for @value{GDBN}; type "show warranty"
590 @value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
595 @value{GDBN} reads only enough symbol data to know where to find the
596 rest when needed; as a result, the first prompt comes up very quickly.
597 We now tell @value{GDBN} to use a narrower display width than usual, so
598 that examples fit in this manual.
601 (@value{GDBP}) @b{set width 70}
605 We need to see how the @code{m4} built-in @code{changequote} works.
606 Having looked at the source, we know the relevant subroutine is
607 @code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
608 @code{break} command.
611 (@value{GDBP}) @b{break m4_changequote}
612 Breakpoint 1 at 0x62f4: file builtin.c, line 879.
616 Using the @code{run} command, we start @code{m4} running under @value{GDBN}
617 control; as long as control does not reach the @code{m4_changequote}
618 subroutine, the program runs as usual:
621 (@value{GDBP}) @b{run}
622 Starting program: /work/Editorial/gdb/gnu/m4/m4
630 To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
631 suspends execution of @code{m4}, displaying information about the
632 context where it stops.
635 @b{changequote(<QUOTE>,<UNQUOTE>)}
637 Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
639 879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
643 Now we use the command @code{n} (@code{next}) to advance execution to
644 the next line of the current function.
648 882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
653 @code{set_quotes} looks like a promising subroutine. We can go into it
654 by using the command @code{s} (@code{step}) instead of @code{next}.
655 @code{step} goes to the next line to be executed in @emph{any}
656 subroutine, so it steps into @code{set_quotes}.
660 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
662 530 if (lquote != def_lquote)
666 The display that shows the subroutine where @code{m4} is now
667 suspended (and its arguments) is called a stack frame display. It
668 shows a summary of the stack. We can use the @code{backtrace}
669 command (which can also be spelled @code{bt}), to see where we are
670 in the stack as a whole: the @code{backtrace} command displays a
671 stack frame for each active subroutine.
674 (@value{GDBP}) @b{bt}
675 #0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
677 #1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
679 #2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
680 #3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
682 #4 0x79dc in expand_input () at macro.c:40
683 #5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
687 We step through a few more lines to see what happens. The first two
688 times, we can use @samp{s}; the next two times we use @code{n} to avoid
689 falling into the @code{xstrdup} subroutine.
693 0x3b5c 532 if (rquote != def_rquote)
695 0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
696 def_lquote : xstrdup(lq);
698 536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
701 538 len_lquote = strlen(rquote);
705 The last line displayed looks a little odd; we can examine the variables
706 @code{lquote} and @code{rquote} to see if they are in fact the new left
707 and right quotes we specified. We use the command @code{p}
708 (@code{print}) to see their values.
711 (@value{GDBP}) @b{p lquote}
712 $1 = 0x35d40 "<QUOTE>"
713 (@value{GDBP}) @b{p rquote}
714 $2 = 0x35d50 "<UNQUOTE>"
718 @code{lquote} and @code{rquote} are indeed the new left and right quotes.
719 To look at some context, we can display ten lines of source
720 surrounding the current line with the @code{l} (@code{list}) command.
726 535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
728 536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
731 538 len_lquote = strlen(rquote);
732 539 len_rquote = strlen(lquote);
739 Let us step past the two lines that set @code{len_lquote} and
740 @code{len_rquote}, and then examine the values of those variables.
744 539 len_rquote = strlen(lquote);
747 (@value{GDBP}) @b{p len_lquote}
749 (@value{GDBP}) @b{p len_rquote}
754 That certainly looks wrong, assuming @code{len_lquote} and
755 @code{len_rquote} are meant to be the lengths of @code{lquote} and
756 @code{rquote} respectively. We can set them to better values using
757 the @code{p} command, since it can print the value of
758 any expression---and that expression can include subroutine calls and
762 (@value{GDBP}) @b{p len_lquote=strlen(lquote)}
764 (@value{GDBP}) @b{p len_rquote=strlen(rquote)}
769 Is that enough to fix the problem of using the new quotes with the
770 @code{m4} built-in @code{defn}? We can allow @code{m4} to continue
771 executing with the @code{c} (@code{continue}) command, and then try the
772 example that caused trouble initially:
778 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
785 Success! The new quotes now work just as well as the default ones. The
786 problem seems to have been just the two typos defining the wrong
787 lengths. We allow @code{m4} exit by giving it an EOF as input:
791 Program exited normally.
795 The message @samp{Program exited normally.} is from @value{GDBN}; it
796 indicates @code{m4} has finished executing. We can end our @value{GDBN}
797 session with the @value{GDBN} @code{quit} command.
800 (@value{GDBP}) @b{quit}
804 @chapter Getting In and Out of @value{GDBN}
806 This chapter discusses how to start @value{GDBN}, and how to get out of it.
810 type @samp{@value{GDBP}} to start @value{GDBN}.
812 type @kbd{quit} or @kbd{Ctrl-d} to exit.
816 * Invoking GDB:: How to start @value{GDBN}
817 * Quitting GDB:: How to quit @value{GDBN}
818 * Shell Commands:: How to use shell commands inside @value{GDBN}
819 * Logging Output:: How to log @value{GDBN}'s output to a file
823 @section Invoking @value{GDBN}
825 Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
826 @value{GDBN} reads commands from the terminal until you tell it to exit.
828 You can also run @code{@value{GDBP}} with a variety of arguments and options,
829 to specify more of your debugging environment at the outset.
831 The command-line options described here are designed
832 to cover a variety of situations; in some environments, some of these
833 options may effectively be unavailable.
835 The most usual way to start @value{GDBN} is with one argument,
836 specifying an executable program:
839 @value{GDBP} @var{program}
843 You can also start with both an executable program and a core file
847 @value{GDBP} @var{program} @var{core}
850 You can, instead, specify a process ID as a second argument, if you want
851 to debug a running process:
854 @value{GDBP} @var{program} 1234
858 would attach @value{GDBN} to process @code{1234} (unless you also have a file
859 named @file{1234}; @value{GDBN} does check for a core file first).
861 Taking advantage of the second command-line argument requires a fairly
862 complete operating system; when you use @value{GDBN} as a remote
863 debugger attached to a bare board, there may not be any notion of
864 ``process'', and there is often no way to get a core dump. @value{GDBN}
865 will warn you if it is unable to attach or to read core dumps.
867 You can optionally have @code{@value{GDBP}} pass any arguments after the
868 executable file to the inferior using @code{--args}. This option stops
871 @value{GDBP} --args gcc -O2 -c foo.c
873 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
874 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
876 You can run @code{@value{GDBP}} without printing the front material, which describes
877 @value{GDBN}'s non-warranty, by specifying @code{-silent}:
884 You can further control how @value{GDBN} starts up by using command-line
885 options. @value{GDBN} itself can remind you of the options available.
895 to display all available options and briefly describe their use
896 (@samp{@value{GDBP} -h} is a shorter equivalent).
898 All options and command line arguments you give are processed
899 in sequential order. The order makes a difference when the
900 @samp{-x} option is used.
904 * File Options:: Choosing files
905 * Mode Options:: Choosing modes
906 * Startup:: What @value{GDBN} does during startup
910 @subsection Choosing Files
912 When @value{GDBN} starts, it reads any arguments other than options as
913 specifying an executable file and core file (or process ID). This is
914 the same as if the arguments were specified by the @samp{-se} and
915 @samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
916 first argument that does not have an associated option flag as
917 equivalent to the @samp{-se} option followed by that argument; and the
918 second argument that does not have an associated option flag, if any, as
919 equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
920 If the second argument begins with a decimal digit, @value{GDBN} will
921 first attempt to attach to it as a process, and if that fails, attempt
922 to open it as a corefile. If you have a corefile whose name begins with
923 a digit, you can prevent @value{GDBN} from treating it as a pid by
924 prefixing it with @file{./}, e.g.@: @file{./12345}.
926 If @value{GDBN} has not been configured to included core file support,
927 such as for most embedded targets, then it will complain about a second
928 argument and ignore it.
930 Many options have both long and short forms; both are shown in the
931 following list. @value{GDBN} also recognizes the long forms if you truncate
932 them, so long as enough of the option is present to be unambiguous.
933 (If you prefer, you can flag option arguments with @samp{--} rather
934 than @samp{-}, though we illustrate the more usual convention.)
936 @c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
937 @c way, both those who look for -foo and --foo in the index, will find
941 @item -symbols @var{file}
943 @cindex @code{--symbols}
945 Read symbol table from file @var{file}.
947 @item -exec @var{file}
949 @cindex @code{--exec}
951 Use file @var{file} as the executable file to execute when appropriate,
952 and for examining pure data in conjunction with a core dump.
956 Read symbol table from file @var{file} and use it as the executable
959 @item -core @var{file}
961 @cindex @code{--core}
963 Use file @var{file} as a core dump to examine.
965 @item -pid @var{number}
966 @itemx -p @var{number}
969 Connect to process ID @var{number}, as with the @code{attach} command.
971 @item -command @var{file}
973 @cindex @code{--command}
975 Execute commands from file @var{file}. The contents of this file is
976 evaluated exactly as the @code{source} command would.
977 @xref{Command Files,, Command files}.
979 @item -eval-command @var{command}
980 @itemx -ex @var{command}
981 @cindex @code{--eval-command}
983 Execute a single @value{GDBN} command.
985 This option may be used multiple times to call multiple commands. It may
986 also be interleaved with @samp{-command} as required.
989 @value{GDBP} -ex 'target sim' -ex 'load' \
990 -x setbreakpoints -ex 'run' a.out
993 @item -init-command @var{file}
994 @itemx -ix @var{file}
995 @cindex @code{--init-command}
997 Execute commands from file @var{file} before loading gdbinit files or the
1001 @item -init-eval-command @var{command}
1002 @itemx -iex @var{command}
1003 @cindex @code{--init-eval-command}
1005 Execute a single @value{GDBN} command before loading gdbinit files or the
1009 @item -directory @var{directory}
1010 @itemx -d @var{directory}
1011 @cindex @code{--directory}
1013 Add @var{directory} to the path to search for source and script files.
1017 @cindex @code{--readnow}
1019 Read each symbol file's entire symbol table immediately, rather than
1020 the default, which is to read it incrementally as it is needed.
1021 This makes startup slower, but makes future operations faster.
1026 @subsection Choosing Modes
1028 You can run @value{GDBN} in various alternative modes---for example, in
1029 batch mode or quiet mode.
1037 Do not execute commands found in any initialization files. Normally,
1038 @value{GDBN} executes the commands in these files after all the command
1039 options and arguments have been processed. @xref{Command Files,,Command
1045 @cindex @code{--quiet}
1046 @cindex @code{--silent}
1048 ``Quiet''. Do not print the introductory and copyright messages. These
1049 messages are also suppressed in batch mode.
1052 @cindex @code{--batch}
1053 Run in batch mode. Exit with status @code{0} after processing all the
1054 command files specified with @samp{-x} (and all commands from
1055 initialization files, if not inhibited with @samp{-n}). Exit with
1056 nonzero status if an error occurs in executing the @value{GDBN} commands
1057 in the command files. Batch mode also disables pagination, sets unlimited
1058 terminal width and height @pxref{Screen Size}, and acts as if @kbd{set confirm
1059 off} were in effect (@pxref{Messages/Warnings}).
1061 Batch mode may be useful for running @value{GDBN} as a filter, for
1062 example to download and run a program on another computer; in order to
1063 make this more useful, the message
1066 Program exited normally.
1070 (which is ordinarily issued whenever a program running under
1071 @value{GDBN} control terminates) is not issued when running in batch
1075 @cindex @code{--batch-silent}
1076 Run in batch mode exactly like @samp{-batch}, but totally silently. All
1077 @value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1078 unaffected). This is much quieter than @samp{-silent} and would be useless
1079 for an interactive session.
1081 This is particularly useful when using targets that give @samp{Loading section}
1082 messages, for example.
1084 Note that targets that give their output via @value{GDBN}, as opposed to
1085 writing directly to @code{stdout}, will also be made silent.
1087 @item -return-child-result
1088 @cindex @code{--return-child-result}
1089 The return code from @value{GDBN} will be the return code from the child
1090 process (the process being debugged), with the following exceptions:
1094 @value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1095 internal error. In this case the exit code is the same as it would have been
1096 without @samp{-return-child-result}.
1098 The user quits with an explicit value. E.g., @samp{quit 1}.
1100 The child process never runs, or is not allowed to terminate, in which case
1101 the exit code will be -1.
1104 This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1105 when @value{GDBN} is being used as a remote program loader or simulator
1110 @cindex @code{--nowindows}
1112 ``No windows''. If @value{GDBN} comes with a graphical user interface
1113 (GUI) built in, then this option tells @value{GDBN} to only use the command-line
1114 interface. If no GUI is available, this option has no effect.
1118 @cindex @code{--windows}
1120 If @value{GDBN} includes a GUI, then this option requires it to be
1123 @item -cd @var{directory}
1125 Run @value{GDBN} using @var{directory} as its working directory,
1126 instead of the current directory.
1128 @item -data-directory @var{directory}
1129 @cindex @code{--data-directory}
1130 Run @value{GDBN} using @var{directory} as its data directory.
1131 The data directory is where @value{GDBN} searches for its
1132 auxiliary files. @xref{Data Files}.
1136 @cindex @code{--fullname}
1138 @sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1139 subprocess. It tells @value{GDBN} to output the full file name and line
1140 number in a standard, recognizable fashion each time a stack frame is
1141 displayed (which includes each time your program stops). This
1142 recognizable format looks like two @samp{\032} characters, followed by
1143 the file name, line number and character position separated by colons,
1144 and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1145 @samp{\032} characters as a signal to display the source code for the
1149 @cindex @code{--epoch}
1150 The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1151 @value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1152 routines so as to allow Epoch to display values of expressions in a
1155 @item -annotate @var{level}
1156 @cindex @code{--annotate}
1157 This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1158 effect is identical to using @samp{set annotate @var{level}}
1159 (@pxref{Annotations}). The annotation @var{level} controls how much
1160 information @value{GDBN} prints together with its prompt, values of
1161 expressions, source lines, and other types of output. Level 0 is the
1162 normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1163 @sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1164 that control @value{GDBN}, and level 2 has been deprecated.
1166 The annotation mechanism has largely been superseded by @sc{gdb/mi}
1170 @cindex @code{--args}
1171 Change interpretation of command line so that arguments following the
1172 executable file are passed as command line arguments to the inferior.
1173 This option stops option processing.
1175 @item -baud @var{bps}
1177 @cindex @code{--baud}
1179 Set the line speed (baud rate or bits per second) of any serial
1180 interface used by @value{GDBN} for remote debugging.
1182 @item -l @var{timeout}
1184 Set the timeout (in seconds) of any communication used by @value{GDBN}
1185 for remote debugging.
1187 @item -tty @var{device}
1188 @itemx -t @var{device}
1189 @cindex @code{--tty}
1191 Run using @var{device} for your program's standard input and output.
1192 @c FIXME: kingdon thinks there is more to -tty. Investigate.
1194 @c resolve the situation of these eventually
1196 @cindex @code{--tui}
1197 Activate the @dfn{Text User Interface} when starting. The Text User
1198 Interface manages several text windows on the terminal, showing
1199 source, assembly, registers and @value{GDBN} command outputs
1200 (@pxref{TUI, ,@value{GDBN} Text User Interface}). Do not use this
1201 option if you run @value{GDBN} from Emacs (@pxref{Emacs, ,
1202 Using @value{GDBN} under @sc{gnu} Emacs}).
1205 @c @cindex @code{--xdb}
1206 @c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1207 @c For information, see the file @file{xdb_trans.html}, which is usually
1208 @c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1211 @item -interpreter @var{interp}
1212 @cindex @code{--interpreter}
1213 Use the interpreter @var{interp} for interface with the controlling
1214 program or device. This option is meant to be set by programs which
1215 communicate with @value{GDBN} using it as a back end.
1216 @xref{Interpreters, , Command Interpreters}.
1218 @samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
1219 @value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
1220 The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
1221 previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1222 selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1223 @sc{gdb/mi} interfaces are no longer supported.
1226 @cindex @code{--write}
1227 Open the executable and core files for both reading and writing. This
1228 is equivalent to the @samp{set write on} command inside @value{GDBN}
1232 @cindex @code{--statistics}
1233 This option causes @value{GDBN} to print statistics about time and
1234 memory usage after it completes each command and returns to the prompt.
1237 @cindex @code{--version}
1238 This option causes @value{GDBN} to print its version number and
1239 no-warranty blurb, and exit.
1241 @item -use-deprecated-index-sections
1242 @cindex @code{--use-deprecated-index-sections}
1243 This option causes @value{GDBN} to read and use deprecated
1244 @samp{.gdb_index} sections from symbol files. This can speed up
1245 startup, but may result in some functionality being lost.
1246 @xref{Index Section Format}.
1251 @subsection What @value{GDBN} Does During Startup
1252 @cindex @value{GDBN} startup
1254 Here's the description of what @value{GDBN} does during session startup:
1258 Sets up the command interpreter as specified by the command line
1259 (@pxref{Mode Options, interpreter}).
1261 @anchor{Option -init-eval-command}
1263 Executes commands and command files specified by the @samp{-iex} and
1264 @samp{-ix} options in their specified order. Usually you should use the
1265 @samp{-ex} and @samp{-x} options instead, but this way you can apply
1266 settings before @value{GDBN} init files get executed and before inferior
1271 Reads the system-wide @dfn{init file} (if @option{--with-system-gdbinit} was
1272 used when building @value{GDBN}; @pxref{System-wide configuration,
1273 ,System-wide configuration and settings}) and executes all the commands in
1276 @anchor{Home Directory Init File}
1278 Reads the init file (if any) in your home directory@footnote{On
1279 DOS/Windows systems, the home directory is the one pointed to by the
1280 @code{HOME} environment variable.} and executes all the commands in
1284 Processes command line options and operands.
1286 @anchor{Init File in the Current Directory during Startup}
1288 Reads and executes the commands from init file (if any) in the current
1289 working directory as long as @samp{set auto-load local-gdbinit} is set to
1290 @samp{on} (@pxref{Init File in the Current Directory}).
1291 This is only done if the current directory is
1292 different from your home directory. Thus, you can have more than one
1293 init file, one generic in your home directory, and another, specific
1294 to the program you are debugging, in the directory where you invoke
1298 If the command line specified a program to debug, or a process to
1299 attach to, or a core file, @value{GDBN} loads any auto-loaded
1300 scripts provided for the program or for its loaded shared libraries.
1301 @xref{Auto-loading}.
1303 If you wish to disable the auto-loading during startup,
1304 you must do something like the following:
1307 $ gdb -iex "set auto-load python-scripts off" myprogram
1310 Option @samp{-ex} does not work because the auto-loading is then turned
1314 Executes commands and command files specified by the @samp{-ex} and
1315 @samp{-x} options in their specified order. @xref{Command Files}, for
1316 more details about @value{GDBN} command files.
1319 Reads the command history recorded in the @dfn{history file}.
1320 @xref{Command History}, for more details about the command history and the
1321 files where @value{GDBN} records it.
1324 Init files use the same syntax as @dfn{command files} (@pxref{Command
1325 Files}) and are processed by @value{GDBN} in the same way. The init
1326 file in your home directory can set options (such as @samp{set
1327 complaints}) that affect subsequent processing of command line options
1328 and operands. Init files are not executed if you use the @samp{-nx}
1329 option (@pxref{Mode Options, ,Choosing Modes}).
1331 To display the list of init files loaded by gdb at startup, you
1332 can use @kbd{gdb --help}.
1334 @cindex init file name
1335 @cindex @file{.gdbinit}
1336 @cindex @file{gdb.ini}
1337 The @value{GDBN} init files are normally called @file{.gdbinit}.
1338 The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1339 the limitations of file names imposed by DOS filesystems. The Windows
1340 ports of @value{GDBN} use the standard name, but if they find a
1341 @file{gdb.ini} file, they warn you about that and suggest to rename
1342 the file to the standard name.
1346 @section Quitting @value{GDBN}
1347 @cindex exiting @value{GDBN}
1348 @cindex leaving @value{GDBN}
1351 @kindex quit @r{[}@var{expression}@r{]}
1352 @kindex q @r{(@code{quit})}
1353 @item quit @r{[}@var{expression}@r{]}
1355 To exit @value{GDBN}, use the @code{quit} command (abbreviated
1356 @code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
1357 do not supply @var{expression}, @value{GDBN} will terminate normally;
1358 otherwise it will terminate using the result of @var{expression} as the
1363 An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
1364 terminates the action of any @value{GDBN} command that is in progress and
1365 returns to @value{GDBN} command level. It is safe to type the interrupt
1366 character at any time because @value{GDBN} does not allow it to take effect
1367 until a time when it is safe.
1369 If you have been using @value{GDBN} to control an attached process or
1370 device, you can release it with the @code{detach} command
1371 (@pxref{Attach, ,Debugging an Already-running Process}).
1373 @node Shell Commands
1374 @section Shell Commands
1376 If you need to execute occasional shell commands during your
1377 debugging session, there is no need to leave or suspend @value{GDBN}; you can
1378 just use the @code{shell} command.
1383 @cindex shell escape
1384 @item shell @var{command-string}
1385 @itemx !@var{command-string}
1386 Invoke a standard shell to execute @var{command-string}.
1387 Note that no space is needed between @code{!} and @var{command-string}.
1388 If it exists, the environment variable @code{SHELL} determines which
1389 shell to run. Otherwise @value{GDBN} uses the default shell
1390 (@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
1393 The utility @code{make} is often needed in development environments.
1394 You do not have to use the @code{shell} command for this purpose in
1399 @cindex calling make
1400 @item make @var{make-args}
1401 Execute the @code{make} program with the specified
1402 arguments. This is equivalent to @samp{shell make @var{make-args}}.
1405 @node Logging Output
1406 @section Logging Output
1407 @cindex logging @value{GDBN} output
1408 @cindex save @value{GDBN} output to a file
1410 You may want to save the output of @value{GDBN} commands to a file.
1411 There are several commands to control @value{GDBN}'s logging.
1415 @item set logging on
1417 @item set logging off
1419 @cindex logging file name
1420 @item set logging file @var{file}
1421 Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1422 @item set logging overwrite [on|off]
1423 By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1424 you want @code{set logging on} to overwrite the logfile instead.
1425 @item set logging redirect [on|off]
1426 By default, @value{GDBN} output will go to both the terminal and the logfile.
1427 Set @code{redirect} if you want output to go only to the log file.
1428 @kindex show logging
1430 Show the current values of the logging settings.
1434 @chapter @value{GDBN} Commands
1436 You can abbreviate a @value{GDBN} command to the first few letters of the command
1437 name, if that abbreviation is unambiguous; and you can repeat certain
1438 @value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1439 key to get @value{GDBN} to fill out the rest of a word in a command (or to
1440 show you the alternatives available, if there is more than one possibility).
1443 * Command Syntax:: How to give commands to @value{GDBN}
1444 * Completion:: Command completion
1445 * Help:: How to ask @value{GDBN} for help
1448 @node Command Syntax
1449 @section Command Syntax
1451 A @value{GDBN} command is a single line of input. There is no limit on
1452 how long it can be. It starts with a command name, which is followed by
1453 arguments whose meaning depends on the command name. For example, the
1454 command @code{step} accepts an argument which is the number of times to
1455 step, as in @samp{step 5}. You can also use the @code{step} command
1456 with no arguments. Some commands do not allow any arguments.
1458 @cindex abbreviation
1459 @value{GDBN} command names may always be truncated if that abbreviation is
1460 unambiguous. Other possible command abbreviations are listed in the
1461 documentation for individual commands. In some cases, even ambiguous
1462 abbreviations are allowed; for example, @code{s} is specially defined as
1463 equivalent to @code{step} even though there are other commands whose
1464 names start with @code{s}. You can test abbreviations by using them as
1465 arguments to the @code{help} command.
1467 @cindex repeating commands
1468 @kindex RET @r{(repeat last command)}
1469 A blank line as input to @value{GDBN} (typing just @key{RET}) means to
1470 repeat the previous command. Certain commands (for example, @code{run})
1471 will not repeat this way; these are commands whose unintentional
1472 repetition might cause trouble and which you are unlikely to want to
1473 repeat. User-defined commands can disable this feature; see
1474 @ref{Define, dont-repeat}.
1476 The @code{list} and @code{x} commands, when you repeat them with
1477 @key{RET}, construct new arguments rather than repeating
1478 exactly as typed. This permits easy scanning of source or memory.
1480 @value{GDBN} can also use @key{RET} in another way: to partition lengthy
1481 output, in a way similar to the common utility @code{more}
1482 (@pxref{Screen Size,,Screen Size}). Since it is easy to press one
1483 @key{RET} too many in this situation, @value{GDBN} disables command
1484 repetition after any command that generates this sort of display.
1486 @kindex # @r{(a comment)}
1488 Any text from a @kbd{#} to the end of the line is a comment; it does
1489 nothing. This is useful mainly in command files (@pxref{Command
1490 Files,,Command Files}).
1492 @cindex repeating command sequences
1493 @kindex Ctrl-o @r{(operate-and-get-next)}
1494 The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
1495 commands. This command accepts the current line, like @key{RET}, and
1496 then fetches the next line relative to the current line from the history
1500 @section Command Completion
1503 @cindex word completion
1504 @value{GDBN} can fill in the rest of a word in a command for you, if there is
1505 only one possibility; it can also show you what the valid possibilities
1506 are for the next word in a command, at any time. This works for @value{GDBN}
1507 commands, @value{GDBN} subcommands, and the names of symbols in your program.
1509 Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1510 of a word. If there is only one possibility, @value{GDBN} fills in the
1511 word, and waits for you to finish the command (or press @key{RET} to
1512 enter it). For example, if you type
1514 @c FIXME "@key" does not distinguish its argument sufficiently to permit
1515 @c complete accuracy in these examples; space introduced for clarity.
1516 @c If texinfo enhancements make it unnecessary, it would be nice to
1517 @c replace " @key" by "@key" in the following...
1519 (@value{GDBP}) info bre @key{TAB}
1523 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1524 the only @code{info} subcommand beginning with @samp{bre}:
1527 (@value{GDBP}) info breakpoints
1531 You can either press @key{RET} at this point, to run the @code{info
1532 breakpoints} command, or backspace and enter something else, if
1533 @samp{breakpoints} does not look like the command you expected. (If you
1534 were sure you wanted @code{info breakpoints} in the first place, you
1535 might as well just type @key{RET} immediately after @samp{info bre},
1536 to exploit command abbreviations rather than command completion).
1538 If there is more than one possibility for the next word when you press
1539 @key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1540 characters and try again, or just press @key{TAB} a second time;
1541 @value{GDBN} displays all the possible completions for that word. For
1542 example, you might want to set a breakpoint on a subroutine whose name
1543 begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1544 just sounds the bell. Typing @key{TAB} again displays all the
1545 function names in your program that begin with those characters, for
1549 (@value{GDBP}) b make_ @key{TAB}
1550 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
1551 make_a_section_from_file make_environ
1552 make_abs_section make_function_type
1553 make_blockvector make_pointer_type
1554 make_cleanup make_reference_type
1555 make_command make_symbol_completion_list
1556 (@value{GDBP}) b make_
1560 After displaying the available possibilities, @value{GDBN} copies your
1561 partial input (@samp{b make_} in the example) so you can finish the
1564 If you just want to see the list of alternatives in the first place, you
1565 can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
1566 means @kbd{@key{META} ?}. You can type this either by holding down a
1567 key designated as the @key{META} shift on your keyboard (if there is
1568 one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
1570 @cindex quotes in commands
1571 @cindex completion of quoted strings
1572 Sometimes the string you need, while logically a ``word'', may contain
1573 parentheses or other characters that @value{GDBN} normally excludes from
1574 its notion of a word. To permit word completion to work in this
1575 situation, you may enclose words in @code{'} (single quote marks) in
1576 @value{GDBN} commands.
1578 The most likely situation where you might need this is in typing the
1579 name of a C@t{++} function. This is because C@t{++} allows function
1580 overloading (multiple definitions of the same function, distinguished
1581 by argument type). For example, when you want to set a breakpoint you
1582 may need to distinguish whether you mean the version of @code{name}
1583 that takes an @code{int} parameter, @code{name(int)}, or the version
1584 that takes a @code{float} parameter, @code{name(float)}. To use the
1585 word-completion facilities in this situation, type a single quote
1586 @code{'} at the beginning of the function name. This alerts
1587 @value{GDBN} that it may need to consider more information than usual
1588 when you press @key{TAB} or @kbd{M-?} to request word completion:
1591 (@value{GDBP}) b 'bubble( @kbd{M-?}
1592 bubble(double,double) bubble(int,int)
1593 (@value{GDBP}) b 'bubble(
1596 In some cases, @value{GDBN} can tell that completing a name requires using
1597 quotes. When this happens, @value{GDBN} inserts the quote for you (while
1598 completing as much as it can) if you do not type the quote in the first
1602 (@value{GDBP}) b bub @key{TAB}
1603 @exdent @value{GDBN} alters your input line to the following, and rings a bell:
1604 (@value{GDBP}) b 'bubble(
1608 In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1609 you have not yet started typing the argument list when you ask for
1610 completion on an overloaded symbol.
1612 For more information about overloaded functions, see @ref{C Plus Plus
1613 Expressions, ,C@t{++} Expressions}. You can use the command @code{set
1614 overload-resolution off} to disable overload resolution;
1615 see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
1617 @cindex completion of structure field names
1618 @cindex structure field name completion
1619 @cindex completion of union field names
1620 @cindex union field name completion
1621 When completing in an expression which looks up a field in a
1622 structure, @value{GDBN} also tries@footnote{The completer can be
1623 confused by certain kinds of invalid expressions. Also, it only
1624 examines the static type of the expression, not the dynamic type.} to
1625 limit completions to the field names available in the type of the
1629 (@value{GDBP}) p gdb_stdout.@kbd{M-?}
1630 magic to_fputs to_rewind
1631 to_data to_isatty to_write
1632 to_delete to_put to_write_async_safe
1637 This is because the @code{gdb_stdout} is a variable of the type
1638 @code{struct ui_file} that is defined in @value{GDBN} sources as
1645 ui_file_flush_ftype *to_flush;
1646 ui_file_write_ftype *to_write;
1647 ui_file_write_async_safe_ftype *to_write_async_safe;
1648 ui_file_fputs_ftype *to_fputs;
1649 ui_file_read_ftype *to_read;
1650 ui_file_delete_ftype *to_delete;
1651 ui_file_isatty_ftype *to_isatty;
1652 ui_file_rewind_ftype *to_rewind;
1653 ui_file_put_ftype *to_put;
1660 @section Getting Help
1661 @cindex online documentation
1664 You can always ask @value{GDBN} itself for information on its commands,
1665 using the command @code{help}.
1668 @kindex h @r{(@code{help})}
1671 You can use @code{help} (abbreviated @code{h}) with no arguments to
1672 display a short list of named classes of commands:
1676 List of classes of commands:
1678 aliases -- Aliases of other commands
1679 breakpoints -- Making program stop at certain points
1680 data -- Examining data
1681 files -- Specifying and examining files
1682 internals -- Maintenance commands
1683 obscure -- Obscure features
1684 running -- Running the program
1685 stack -- Examining the stack
1686 status -- Status inquiries
1687 support -- Support facilities
1688 tracepoints -- Tracing of program execution without
1689 stopping the program
1690 user-defined -- User-defined commands
1692 Type "help" followed by a class name for a list of
1693 commands in that class.
1694 Type "help" followed by command name for full
1696 Command name abbreviations are allowed if unambiguous.
1699 @c the above line break eliminates huge line overfull...
1701 @item help @var{class}
1702 Using one of the general help classes as an argument, you can get a
1703 list of the individual commands in that class. For example, here is the
1704 help display for the class @code{status}:
1707 (@value{GDBP}) help status
1712 @c Line break in "show" line falsifies real output, but needed
1713 @c to fit in smallbook page size.
1714 info -- Generic command for showing things
1715 about the program being debugged
1716 show -- Generic command for showing things
1719 Type "help" followed by command name for full
1721 Command name abbreviations are allowed if unambiguous.
1725 @item help @var{command}
1726 With a command name as @code{help} argument, @value{GDBN} displays a
1727 short paragraph on how to use that command.
1730 @item apropos @var{args}
1731 The @code{apropos} command searches through all of the @value{GDBN}
1732 commands, and their documentation, for the regular expression specified in
1733 @var{args}. It prints out all matches found. For example:
1744 alias -- Define a new command that is an alias of an existing command
1745 aliases -- Aliases of other commands
1746 d -- Delete some breakpoints or auto-display expressions
1747 del -- Delete some breakpoints or auto-display expressions
1748 delete -- Delete some breakpoints or auto-display expressions
1753 @item complete @var{args}
1754 The @code{complete @var{args}} command lists all the possible completions
1755 for the beginning of a command. Use @var{args} to specify the beginning of the
1756 command you want completed. For example:
1762 @noindent results in:
1773 @noindent This is intended for use by @sc{gnu} Emacs.
1776 In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1777 and @code{show} to inquire about the state of your program, or the state
1778 of @value{GDBN} itself. Each command supports many topics of inquiry; this
1779 manual introduces each of them in the appropriate context. The listings
1780 under @code{info} and under @code{show} in the Index point to
1781 all the sub-commands. @xref{Index}.
1786 @kindex i @r{(@code{info})}
1788 This command (abbreviated @code{i}) is for describing the state of your
1789 program. For example, you can show the arguments passed to a function
1790 with @code{info args}, list the registers currently in use with @code{info
1791 registers}, or list the breakpoints you have set with @code{info breakpoints}.
1792 You can get a complete list of the @code{info} sub-commands with
1793 @w{@code{help info}}.
1797 You can assign the result of an expression to an environment variable with
1798 @code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1799 @code{set prompt $}.
1803 In contrast to @code{info}, @code{show} is for describing the state of
1804 @value{GDBN} itself.
1805 You can change most of the things you can @code{show}, by using the
1806 related command @code{set}; for example, you can control what number
1807 system is used for displays with @code{set radix}, or simply inquire
1808 which is currently in use with @code{show radix}.
1811 To display all the settable parameters and their current
1812 values, you can use @code{show} with no arguments; you may also use
1813 @code{info set}. Both commands produce the same display.
1814 @c FIXME: "info set" violates the rule that "info" is for state of
1815 @c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1816 @c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1820 Here are three miscellaneous @code{show} subcommands, all of which are
1821 exceptional in lacking corresponding @code{set} commands:
1824 @kindex show version
1825 @cindex @value{GDBN} version number
1827 Show what version of @value{GDBN} is running. You should include this
1828 information in @value{GDBN} bug-reports. If multiple versions of
1829 @value{GDBN} are in use at your site, you may need to determine which
1830 version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1831 commands are introduced, and old ones may wither away. Also, many
1832 system vendors ship variant versions of @value{GDBN}, and there are
1833 variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
1834 The version number is the same as the one announced when you start
1837 @kindex show copying
1838 @kindex info copying
1839 @cindex display @value{GDBN} copyright
1842 Display information about permission for copying @value{GDBN}.
1844 @kindex show warranty
1845 @kindex info warranty
1847 @itemx info warranty
1848 Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
1849 if your version of @value{GDBN} comes with one.
1854 @chapter Running Programs Under @value{GDBN}
1856 When you run a program under @value{GDBN}, you must first generate
1857 debugging information when you compile it.
1859 You may start @value{GDBN} with its arguments, if any, in an environment
1860 of your choice. If you are doing native debugging, you may redirect
1861 your program's input and output, debug an already running process, or
1862 kill a child process.
1865 * Compilation:: Compiling for debugging
1866 * Starting:: Starting your program
1867 * Arguments:: Your program's arguments
1868 * Environment:: Your program's environment
1870 * Working Directory:: Your program's working directory
1871 * Input/Output:: Your program's input and output
1872 * Attach:: Debugging an already-running process
1873 * Kill Process:: Killing the child process
1875 * Inferiors and Programs:: Debugging multiple inferiors and programs
1876 * Threads:: Debugging programs with multiple threads
1877 * Forks:: Debugging forks
1878 * Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
1882 @section Compiling for Debugging
1884 In order to debug a program effectively, you need to generate
1885 debugging information when you compile it. This debugging information
1886 is stored in the object file; it describes the data type of each
1887 variable or function and the correspondence between source line numbers
1888 and addresses in the executable code.
1890 To request debugging information, specify the @samp{-g} option when you run
1893 Programs that are to be shipped to your customers are compiled with
1894 optimizations, using the @samp{-O} compiler option. However, some
1895 compilers are unable to handle the @samp{-g} and @samp{-O} options
1896 together. Using those compilers, you cannot generate optimized
1897 executables containing debugging information.
1899 @value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
1900 without @samp{-O}, making it possible to debug optimized code. We
1901 recommend that you @emph{always} use @samp{-g} whenever you compile a
1902 program. You may think your program is correct, but there is no sense
1903 in pushing your luck. For more information, see @ref{Optimized Code}.
1905 Older versions of the @sc{gnu} C compiler permitted a variant option
1906 @w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1907 format; if your @sc{gnu} C compiler has this option, do not use it.
1909 @value{GDBN} knows about preprocessor macros and can show you their
1910 expansion (@pxref{Macros}). Most compilers do not include information
1911 about preprocessor macros in the debugging information if you specify
1912 the @option{-g} flag alone. Version 3.1 and later of @value{NGCC},
1913 the @sc{gnu} C compiler, provides macro information if you are using
1914 the DWARF debugging format, and specify the option @option{-g3}.
1916 @xref{Debugging Options,,Options for Debugging Your Program or GCC,
1917 gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}, for more
1918 information on @value{NGCC} options affecting debug information.
1920 You will have the best debugging experience if you use the latest
1921 version of the DWARF debugging format that your compiler supports.
1922 DWARF is currently the most expressive and best supported debugging
1923 format in @value{GDBN}.
1927 @section Starting your Program
1933 @kindex r @r{(@code{run})}
1936 Use the @code{run} command to start your program under @value{GDBN}.
1937 You must first specify the program name (except on VxWorks) with an
1938 argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1939 @value{GDBN}}), or by using the @code{file} or @code{exec-file} command
1940 (@pxref{Files, ,Commands to Specify Files}).
1944 If you are running your program in an execution environment that
1945 supports processes, @code{run} creates an inferior process and makes
1946 that process run your program. In some environments without processes,
1947 @code{run} jumps to the start of your program. Other targets,
1948 like @samp{remote}, are always running. If you get an error
1949 message like this one:
1952 The "remote" target does not support "run".
1953 Try "help target" or "continue".
1957 then use @code{continue} to run your program. You may need @code{load}
1958 first (@pxref{load}).
1960 The execution of a program is affected by certain information it
1961 receives from its superior. @value{GDBN} provides ways to specify this
1962 information, which you must do @emph{before} starting your program. (You
1963 can change it after starting your program, but such changes only affect
1964 your program the next time you start it.) This information may be
1965 divided into four categories:
1968 @item The @emph{arguments.}
1969 Specify the arguments to give your program as the arguments of the
1970 @code{run} command. If a shell is available on your target, the shell
1971 is used to pass the arguments, so that you may use normal conventions
1972 (such as wildcard expansion or variable substitution) in describing
1974 In Unix systems, you can control which shell is used with the
1975 @code{SHELL} environment variable.
1976 @xref{Arguments, ,Your Program's Arguments}.
1978 @item The @emph{environment.}
1979 Your program normally inherits its environment from @value{GDBN}, but you can
1980 use the @value{GDBN} commands @code{set environment} and @code{unset
1981 environment} to change parts of the environment that affect
1982 your program. @xref{Environment, ,Your Program's Environment}.
1984 @item The @emph{working directory.}
1985 Your program inherits its working directory from @value{GDBN}. You can set
1986 the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
1987 @xref{Working Directory, ,Your Program's Working Directory}.
1989 @item The @emph{standard input and output.}
1990 Your program normally uses the same device for standard input and
1991 standard output as @value{GDBN} is using. You can redirect input and output
1992 in the @code{run} command line, or you can use the @code{tty} command to
1993 set a different device for your program.
1994 @xref{Input/Output, ,Your Program's Input and Output}.
1997 @emph{Warning:} While input and output redirection work, you cannot use
1998 pipes to pass the output of the program you are debugging to another
1999 program; if you attempt this, @value{GDBN} is likely to wind up debugging the
2003 When you issue the @code{run} command, your program begins to execute
2004 immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
2005 of how to arrange for your program to stop. Once your program has
2006 stopped, you may call functions in your program, using the @code{print}
2007 or @code{call} commands. @xref{Data, ,Examining Data}.
2009 If the modification time of your symbol file has changed since the last
2010 time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
2011 table, and reads it again. When it does this, @value{GDBN} tries to retain
2012 your current breakpoints.
2017 @cindex run to main procedure
2018 The name of the main procedure can vary from language to language.
2019 With C or C@t{++}, the main procedure name is always @code{main}, but
2020 other languages such as Ada do not require a specific name for their
2021 main procedure. The debugger provides a convenient way to start the
2022 execution of the program and to stop at the beginning of the main
2023 procedure, depending on the language used.
2025 The @samp{start} command does the equivalent of setting a temporary
2026 breakpoint at the beginning of the main procedure and then invoking
2027 the @samp{run} command.
2029 @cindex elaboration phase
2030 Some programs contain an @dfn{elaboration} phase where some startup code is
2031 executed before the main procedure is called. This depends on the
2032 languages used to write your program. In C@t{++}, for instance,
2033 constructors for static and global objects are executed before
2034 @code{main} is called. It is therefore possible that the debugger stops
2035 before reaching the main procedure. However, the temporary breakpoint
2036 will remain to halt execution.
2038 Specify the arguments to give to your program as arguments to the
2039 @samp{start} command. These arguments will be given verbatim to the
2040 underlying @samp{run} command. Note that the same arguments will be
2041 reused if no argument is provided during subsequent calls to
2042 @samp{start} or @samp{run}.
2044 It is sometimes necessary to debug the program during elaboration. In
2045 these cases, using the @code{start} command would stop the execution of
2046 your program too late, as the program would have already completed the
2047 elaboration phase. Under these circumstances, insert breakpoints in your
2048 elaboration code before running your program.
2050 @kindex set exec-wrapper
2051 @item set exec-wrapper @var{wrapper}
2052 @itemx show exec-wrapper
2053 @itemx unset exec-wrapper
2054 When @samp{exec-wrapper} is set, the specified wrapper is used to
2055 launch programs for debugging. @value{GDBN} starts your program
2056 with a shell command of the form @kbd{exec @var{wrapper}
2057 @var{program}}. Quoting is added to @var{program} and its
2058 arguments, but not to @var{wrapper}, so you should add quotes if
2059 appropriate for your shell. The wrapper runs until it executes
2060 your program, and then @value{GDBN} takes control.
2062 You can use any program that eventually calls @code{execve} with
2063 its arguments as a wrapper. Several standard Unix utilities do
2064 this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
2065 with @code{exec "$@@"} will also work.
2067 For example, you can use @code{env} to pass an environment variable to
2068 the debugged program, without setting the variable in your shell's
2072 (@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
2076 This command is available when debugging locally on most targets, excluding
2077 @sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
2079 @kindex set disable-randomization
2080 @item set disable-randomization
2081 @itemx set disable-randomization on
2082 This option (enabled by default in @value{GDBN}) will turn off the native
2083 randomization of the virtual address space of the started program. This option
2084 is useful for multiple debugging sessions to make the execution better
2085 reproducible and memory addresses reusable across debugging sessions.
2087 This feature is implemented only on certain targets, including @sc{gnu}/Linux.
2088 On @sc{gnu}/Linux you can get the same behavior using
2091 (@value{GDBP}) set exec-wrapper setarch `uname -m` -R
2094 @item set disable-randomization off
2095 Leave the behavior of the started executable unchanged. Some bugs rear their
2096 ugly heads only when the program is loaded at certain addresses. If your bug
2097 disappears when you run the program under @value{GDBN}, that might be because
2098 @value{GDBN} by default disables the address randomization on platforms, such
2099 as @sc{gnu}/Linux, which do that for stand-alone programs. Use @kbd{set
2100 disable-randomization off} to try to reproduce such elusive bugs.
2102 On targets where it is available, virtual address space randomization
2103 protects the programs against certain kinds of security attacks. In these
2104 cases the attacker needs to know the exact location of a concrete executable
2105 code. Randomizing its location makes it impossible to inject jumps misusing
2106 a code at its expected addresses.
2108 Prelinking shared libraries provides a startup performance advantage but it
2109 makes addresses in these libraries predictable for privileged processes by
2110 having just unprivileged access at the target system. Reading the shared
2111 library binary gives enough information for assembling the malicious code
2112 misusing it. Still even a prelinked shared library can get loaded at a new
2113 random address just requiring the regular relocation process during the
2114 startup. Shared libraries not already prelinked are always loaded at
2115 a randomly chosen address.
2117 Position independent executables (PIE) contain position independent code
2118 similar to the shared libraries and therefore such executables get loaded at
2119 a randomly chosen address upon startup. PIE executables always load even
2120 already prelinked shared libraries at a random address. You can build such
2121 executable using @command{gcc -fPIE -pie}.
2123 Heap (malloc storage), stack and custom mmap areas are always placed randomly
2124 (as long as the randomization is enabled).
2126 @item show disable-randomization
2127 Show the current setting of the explicit disable of the native randomization of
2128 the virtual address space of the started program.
2133 @section Your Program's Arguments
2135 @cindex arguments (to your program)
2136 The arguments to your program can be specified by the arguments of the
2138 They are passed to a shell, which expands wildcard characters and
2139 performs redirection of I/O, and thence to your program. Your
2140 @code{SHELL} environment variable (if it exists) specifies what shell
2141 @value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
2142 the default shell (@file{/bin/sh} on Unix).
2144 On non-Unix systems, the program is usually invoked directly by
2145 @value{GDBN}, which emulates I/O redirection via the appropriate system
2146 calls, and the wildcard characters are expanded by the startup code of
2147 the program, not by the shell.
2149 @code{run} with no arguments uses the same arguments used by the previous
2150 @code{run}, or those set by the @code{set args} command.
2155 Specify the arguments to be used the next time your program is run. If
2156 @code{set args} has no arguments, @code{run} executes your program
2157 with no arguments. Once you have run your program with arguments,
2158 using @code{set args} before the next @code{run} is the only way to run
2159 it again without arguments.
2163 Show the arguments to give your program when it is started.
2167 @section Your Program's Environment
2169 @cindex environment (of your program)
2170 The @dfn{environment} consists of a set of environment variables and
2171 their values. Environment variables conventionally record such things as
2172 your user name, your home directory, your terminal type, and your search
2173 path for programs to run. Usually you set up environment variables with
2174 the shell and they are inherited by all the other programs you run. When
2175 debugging, it can be useful to try running your program with a modified
2176 environment without having to start @value{GDBN} over again.
2180 @item path @var{directory}
2181 Add @var{directory} to the front of the @code{PATH} environment variable
2182 (the search path for executables) that will be passed to your program.
2183 The value of @code{PATH} used by @value{GDBN} does not change.
2184 You may specify several directory names, separated by whitespace or by a
2185 system-dependent separator character (@samp{:} on Unix, @samp{;} on
2186 MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2187 is moved to the front, so it is searched sooner.
2189 You can use the string @samp{$cwd} to refer to whatever is the current
2190 working directory at the time @value{GDBN} searches the path. If you
2191 use @samp{.} instead, it refers to the directory where you executed the
2192 @code{path} command. @value{GDBN} replaces @samp{.} in the
2193 @var{directory} argument (with the current path) before adding
2194 @var{directory} to the search path.
2195 @c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2196 @c document that, since repeating it would be a no-op.
2200 Display the list of search paths for executables (the @code{PATH}
2201 environment variable).
2203 @kindex show environment
2204 @item show environment @r{[}@var{varname}@r{]}
2205 Print the value of environment variable @var{varname} to be given to
2206 your program when it starts. If you do not supply @var{varname},
2207 print the names and values of all environment variables to be given to
2208 your program. You can abbreviate @code{environment} as @code{env}.
2210 @kindex set environment
2211 @item set environment @var{varname} @r{[}=@var{value}@r{]}
2212 Set environment variable @var{varname} to @var{value}. The value
2213 changes for your program only, not for @value{GDBN} itself. @var{value} may
2214 be any string; the values of environment variables are just strings, and
2215 any interpretation is supplied by your program itself. The @var{value}
2216 parameter is optional; if it is eliminated, the variable is set to a
2218 @c "any string" here does not include leading, trailing
2219 @c blanks. Gnu asks: does anyone care?
2221 For example, this command:
2228 tells the debugged program, when subsequently run, that its user is named
2229 @samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2230 are not actually required.)
2232 @kindex unset environment
2233 @item unset environment @var{varname}
2234 Remove variable @var{varname} from the environment to be passed to your
2235 program. This is different from @samp{set env @var{varname} =};
2236 @code{unset environment} removes the variable from the environment,
2237 rather than assigning it an empty value.
2240 @emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2242 by your @code{SHELL} environment variable if it exists (or
2243 @code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2244 that runs an initialization file---such as @file{.cshrc} for C-shell, or
2245 @file{.bashrc} for BASH---any variables you set in that file affect
2246 your program. You may wish to move setting of environment variables to
2247 files that are only run when you sign on, such as @file{.login} or
2250 @node Working Directory
2251 @section Your Program's Working Directory
2253 @cindex working directory (of your program)
2254 Each time you start your program with @code{run}, it inherits its
2255 working directory from the current working directory of @value{GDBN}.
2256 The @value{GDBN} working directory is initially whatever it inherited
2257 from its parent process (typically the shell), but you can specify a new
2258 working directory in @value{GDBN} with the @code{cd} command.
2260 The @value{GDBN} working directory also serves as a default for the commands
2261 that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
2266 @cindex change working directory
2267 @item cd @var{directory}
2268 Set the @value{GDBN} working directory to @var{directory}.
2272 Print the @value{GDBN} working directory.
2275 It is generally impossible to find the current working directory of
2276 the process being debugged (since a program can change its directory
2277 during its run). If you work on a system where @value{GDBN} is
2278 configured with the @file{/proc} support, you can use the @code{info
2279 proc} command (@pxref{SVR4 Process Information}) to find out the
2280 current working directory of the debuggee.
2283 @section Your Program's Input and Output
2288 By default, the program you run under @value{GDBN} does input and output to
2289 the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
2290 to its own terminal modes to interact with you, but it records the terminal
2291 modes your program was using and switches back to them when you continue
2292 running your program.
2295 @kindex info terminal
2297 Displays information recorded by @value{GDBN} about the terminal modes your
2301 You can redirect your program's input and/or output using shell
2302 redirection with the @code{run} command. For example,
2309 starts your program, diverting its output to the file @file{outfile}.
2312 @cindex controlling terminal
2313 Another way to specify where your program should do input and output is
2314 with the @code{tty} command. This command accepts a file name as
2315 argument, and causes this file to be the default for future @code{run}
2316 commands. It also resets the controlling terminal for the child
2317 process, for future @code{run} commands. For example,
2324 directs that processes started with subsequent @code{run} commands
2325 default to do input and output on the terminal @file{/dev/ttyb} and have
2326 that as their controlling terminal.
2328 An explicit redirection in @code{run} overrides the @code{tty} command's
2329 effect on the input/output device, but not its effect on the controlling
2332 When you use the @code{tty} command or redirect input in the @code{run}
2333 command, only the input @emph{for your program} is affected. The input
2334 for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2335 for @code{set inferior-tty}.
2337 @cindex inferior tty
2338 @cindex set inferior controlling terminal
2339 You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2340 display the name of the terminal that will be used for future runs of your
2344 @item set inferior-tty /dev/ttyb
2345 @kindex set inferior-tty
2346 Set the tty for the program being debugged to /dev/ttyb.
2348 @item show inferior-tty
2349 @kindex show inferior-tty
2350 Show the current tty for the program being debugged.
2354 @section Debugging an Already-running Process
2359 @item attach @var{process-id}
2360 This command attaches to a running process---one that was started
2361 outside @value{GDBN}. (@code{info files} shows your active
2362 targets.) The command takes as argument a process ID. The usual way to
2363 find out the @var{process-id} of a Unix process is with the @code{ps} utility,
2364 or with the @samp{jobs -l} shell command.
2366 @code{attach} does not repeat if you press @key{RET} a second time after
2367 executing the command.
2370 To use @code{attach}, your program must be running in an environment
2371 which supports processes; for example, @code{attach} does not work for
2372 programs on bare-board targets that lack an operating system. You must
2373 also have permission to send the process a signal.
2375 When you use @code{attach}, the debugger finds the program running in
2376 the process first by looking in the current working directory, then (if
2377 the program is not found) by using the source file search path
2378 (@pxref{Source Path, ,Specifying Source Directories}). You can also use
2379 the @code{file} command to load the program. @xref{Files, ,Commands to
2382 The first thing @value{GDBN} does after arranging to debug the specified
2383 process is to stop it. You can examine and modify an attached process
2384 with all the @value{GDBN} commands that are ordinarily available when
2385 you start processes with @code{run}. You can insert breakpoints; you
2386 can step and continue; you can modify storage. If you would rather the
2387 process continue running, you may use the @code{continue} command after
2388 attaching @value{GDBN} to the process.
2393 When you have finished debugging the attached process, you can use the
2394 @code{detach} command to release it from @value{GDBN} control. Detaching
2395 the process continues its execution. After the @code{detach} command,
2396 that process and @value{GDBN} become completely independent once more, and you
2397 are ready to @code{attach} another process or start one with @code{run}.
2398 @code{detach} does not repeat if you press @key{RET} again after
2399 executing the command.
2402 If you exit @value{GDBN} while you have an attached process, you detach
2403 that process. If you use the @code{run} command, you kill that process.
2404 By default, @value{GDBN} asks for confirmation if you try to do either of these
2405 things; you can control whether or not you need to confirm by using the
2406 @code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
2410 @section Killing the Child Process
2415 Kill the child process in which your program is running under @value{GDBN}.
2418 This command is useful if you wish to debug a core dump instead of a
2419 running process. @value{GDBN} ignores any core dump file while your program
2422 On some operating systems, a program cannot be executed outside @value{GDBN}
2423 while you have breakpoints set on it inside @value{GDBN}. You can use the
2424 @code{kill} command in this situation to permit running your program
2425 outside the debugger.
2427 The @code{kill} command is also useful if you wish to recompile and
2428 relink your program, since on many systems it is impossible to modify an
2429 executable file while it is running in a process. In this case, when you
2430 next type @code{run}, @value{GDBN} notices that the file has changed, and
2431 reads the symbol table again (while trying to preserve your current
2432 breakpoint settings).
2434 @node Inferiors and Programs
2435 @section Debugging Multiple Inferiors and Programs
2437 @value{GDBN} lets you run and debug multiple programs in a single
2438 session. In addition, @value{GDBN} on some systems may let you run
2439 several programs simultaneously (otherwise you have to exit from one
2440 before starting another). In the most general case, you can have
2441 multiple threads of execution in each of multiple processes, launched
2442 from multiple executables.
2445 @value{GDBN} represents the state of each program execution with an
2446 object called an @dfn{inferior}. An inferior typically corresponds to
2447 a process, but is more general and applies also to targets that do not
2448 have processes. Inferiors may be created before a process runs, and
2449 may be retained after a process exits. Inferiors have unique
2450 identifiers that are different from process ids. Usually each
2451 inferior will also have its own distinct address space, although some
2452 embedded targets may have several inferiors running in different parts
2453 of a single address space. Each inferior may in turn have multiple
2454 threads running in it.
2456 To find out what inferiors exist at any moment, use @w{@code{info
2460 @kindex info inferiors
2461 @item info inferiors
2462 Print a list of all inferiors currently being managed by @value{GDBN}.
2464 @value{GDBN} displays for each inferior (in this order):
2468 the inferior number assigned by @value{GDBN}
2471 the target system's inferior identifier
2474 the name of the executable the inferior is running.
2479 An asterisk @samp{*} preceding the @value{GDBN} inferior number
2480 indicates the current inferior.
2484 @c end table here to get a little more width for example
2487 (@value{GDBP}) info inferiors
2488 Num Description Executable
2489 2 process 2307 hello
2490 * 1 process 3401 goodbye
2493 To switch focus between inferiors, use the @code{inferior} command:
2496 @kindex inferior @var{infno}
2497 @item inferior @var{infno}
2498 Make inferior number @var{infno} the current inferior. The argument
2499 @var{infno} is the inferior number assigned by @value{GDBN}, as shown
2500 in the first field of the @samp{info inferiors} display.
2504 You can get multiple executables into a debugging session via the
2505 @code{add-inferior} and @w{@code{clone-inferior}} commands. On some
2506 systems @value{GDBN} can add inferiors to the debug session
2507 automatically by following calls to @code{fork} and @code{exec}. To
2508 remove inferiors from the debugging session use the
2509 @w{@code{remove-inferiors}} command.
2512 @kindex add-inferior
2513 @item add-inferior [ -copies @var{n} ] [ -exec @var{executable} ]
2514 Adds @var{n} inferiors to be run using @var{executable} as the
2515 executable. @var{n} defaults to 1. If no executable is specified,
2516 the inferiors begins empty, with no program. You can still assign or
2517 change the program assigned to the inferior at any time by using the
2518 @code{file} command with the executable name as its argument.
2520 @kindex clone-inferior
2521 @item clone-inferior [ -copies @var{n} ] [ @var{infno} ]
2522 Adds @var{n} inferiors ready to execute the same program as inferior
2523 @var{infno}. @var{n} defaults to 1. @var{infno} defaults to the
2524 number of the current inferior. This is a convenient command when you
2525 want to run another instance of the inferior you are debugging.
2528 (@value{GDBP}) info inferiors
2529 Num Description Executable
2530 * 1 process 29964 helloworld
2531 (@value{GDBP}) clone-inferior
2534 (@value{GDBP}) info inferiors
2535 Num Description Executable
2537 * 1 process 29964 helloworld
2540 You can now simply switch focus to inferior 2 and run it.
2542 @kindex remove-inferiors
2543 @item remove-inferiors @var{infno}@dots{}
2544 Removes the inferior or inferiors @var{infno}@dots{}. It is not
2545 possible to remove an inferior that is running with this command. For
2546 those, use the @code{kill} or @code{detach} command first.
2550 To quit debugging one of the running inferiors that is not the current
2551 inferior, you can either detach from it by using the @w{@code{detach
2552 inferior}} command (allowing it to run independently), or kill it
2553 using the @w{@code{kill inferiors}} command:
2556 @kindex detach inferiors @var{infno}@dots{}
2557 @item detach inferior @var{infno}@dots{}
2558 Detach from the inferior or inferiors identified by @value{GDBN}
2559 inferior number(s) @var{infno}@dots{}. Note that the inferior's entry
2560 still stays on the list of inferiors shown by @code{info inferiors},
2561 but its Description will show @samp{<null>}.
2563 @kindex kill inferiors @var{infno}@dots{}
2564 @item kill inferiors @var{infno}@dots{}
2565 Kill the inferior or inferiors identified by @value{GDBN} inferior
2566 number(s) @var{infno}@dots{}. Note that the inferior's entry still
2567 stays on the list of inferiors shown by @code{info inferiors}, but its
2568 Description will show @samp{<null>}.
2571 After the successful completion of a command such as @code{detach},
2572 @code{detach inferiors}, @code{kill} or @code{kill inferiors}, or after
2573 a normal process exit, the inferior is still valid and listed with
2574 @code{info inferiors}, ready to be restarted.
2577 To be notified when inferiors are started or exit under @value{GDBN}'s
2578 control use @w{@code{set print inferior-events}}:
2581 @kindex set print inferior-events
2582 @cindex print messages on inferior start and exit
2583 @item set print inferior-events
2584 @itemx set print inferior-events on
2585 @itemx set print inferior-events off
2586 The @code{set print inferior-events} command allows you to enable or
2587 disable printing of messages when @value{GDBN} notices that new
2588 inferiors have started or that inferiors have exited or have been
2589 detached. By default, these messages will not be printed.
2591 @kindex show print inferior-events
2592 @item show print inferior-events
2593 Show whether messages will be printed when @value{GDBN} detects that
2594 inferiors have started, exited or have been detached.
2597 Many commands will work the same with multiple programs as with a
2598 single program: e.g., @code{print myglobal} will simply display the
2599 value of @code{myglobal} in the current inferior.
2602 Occasionaly, when debugging @value{GDBN} itself, it may be useful to
2603 get more info about the relationship of inferiors, programs, address
2604 spaces in a debug session. You can do that with the @w{@code{maint
2605 info program-spaces}} command.
2608 @kindex maint info program-spaces
2609 @item maint info program-spaces
2610 Print a list of all program spaces currently being managed by
2613 @value{GDBN} displays for each program space (in this order):
2617 the program space number assigned by @value{GDBN}
2620 the name of the executable loaded into the program space, with e.g.,
2621 the @code{file} command.
2626 An asterisk @samp{*} preceding the @value{GDBN} program space number
2627 indicates the current program space.
2629 In addition, below each program space line, @value{GDBN} prints extra
2630 information that isn't suitable to display in tabular form. For
2631 example, the list of inferiors bound to the program space.
2634 (@value{GDBP}) maint info program-spaces
2637 Bound inferiors: ID 1 (process 21561)
2641 Here we can see that no inferior is running the program @code{hello},
2642 while @code{process 21561} is running the program @code{goodbye}. On
2643 some targets, it is possible that multiple inferiors are bound to the
2644 same program space. The most common example is that of debugging both
2645 the parent and child processes of a @code{vfork} call. For example,
2648 (@value{GDBP}) maint info program-spaces
2651 Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)
2654 Here, both inferior 2 and inferior 1 are running in the same program
2655 space as a result of inferior 1 having executed a @code{vfork} call.
2659 @section Debugging Programs with Multiple Threads
2661 @cindex threads of execution
2662 @cindex multiple threads
2663 @cindex switching threads
2664 In some operating systems, such as HP-UX and Solaris, a single program
2665 may have more than one @dfn{thread} of execution. The precise semantics
2666 of threads differ from one operating system to another, but in general
2667 the threads of a single program are akin to multiple processes---except
2668 that they share one address space (that is, they can all examine and
2669 modify the same variables). On the other hand, each thread has its own
2670 registers and execution stack, and perhaps private memory.
2672 @value{GDBN} provides these facilities for debugging multi-thread
2676 @item automatic notification of new threads
2677 @item @samp{thread @var{threadno}}, a command to switch among threads
2678 @item @samp{info threads}, a command to inquire about existing threads
2679 @item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
2680 a command to apply a command to a list of threads
2681 @item thread-specific breakpoints
2682 @item @samp{set print thread-events}, which controls printing of
2683 messages on thread start and exit.
2684 @item @samp{set libthread-db-search-path @var{path}}, which lets
2685 the user specify which @code{libthread_db} to use if the default choice
2686 isn't compatible with the program.
2690 @emph{Warning:} These facilities are not yet available on every
2691 @value{GDBN} configuration where the operating system supports threads.
2692 If your @value{GDBN} does not support threads, these commands have no
2693 effect. For example, a system without thread support shows no output
2694 from @samp{info threads}, and always rejects the @code{thread} command,
2698 (@value{GDBP}) info threads
2699 (@value{GDBP}) thread 1
2700 Thread ID 1 not known. Use the "info threads" command to
2701 see the IDs of currently known threads.
2703 @c FIXME to implementors: how hard would it be to say "sorry, this GDB
2704 @c doesn't support threads"?
2707 @cindex focus of debugging
2708 @cindex current thread
2709 The @value{GDBN} thread debugging facility allows you to observe all
2710 threads while your program runs---but whenever @value{GDBN} takes
2711 control, one thread in particular is always the focus of debugging.
2712 This thread is called the @dfn{current thread}. Debugging commands show
2713 program information from the perspective of the current thread.
2715 @cindex @code{New} @var{systag} message
2716 @cindex thread identifier (system)
2717 @c FIXME-implementors!! It would be more helpful if the [New...] message
2718 @c included GDB's numeric thread handle, so you could just go to that
2719 @c thread without first checking `info threads'.
2720 Whenever @value{GDBN} detects a new thread in your program, it displays
2721 the target system's identification for the thread with a message in the
2722 form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2723 whose form varies depending on the particular system. For example, on
2724 @sc{gnu}/Linux, you might see
2727 [New Thread 0x41e02940 (LWP 25582)]
2731 when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2732 the @var{systag} is simply something like @samp{process 368}, with no
2735 @c FIXME!! (1) Does the [New...] message appear even for the very first
2736 @c thread of a program, or does it only appear for the
2737 @c second---i.e.@: when it becomes obvious we have a multithread
2739 @c (2) *Is* there necessarily a first thread always? Or do some
2740 @c multithread systems permit starting a program with multiple
2741 @c threads ab initio?
2743 @cindex thread number
2744 @cindex thread identifier (GDB)
2745 For debugging purposes, @value{GDBN} associates its own thread
2746 number---always a single integer---with each thread in your program.
2749 @kindex info threads
2750 @item info threads @r{[}@var{id}@dots{}@r{]}
2751 Display a summary of all threads currently in your program. Optional
2752 argument @var{id}@dots{} is one or more thread ids separated by spaces, and
2753 means to print information only about the specified thread or threads.
2754 @value{GDBN} displays for each thread (in this order):
2758 the thread number assigned by @value{GDBN}
2761 the target system's thread identifier (@var{systag})
2764 the thread's name, if one is known. A thread can either be named by
2765 the user (see @code{thread name}, below), or, in some cases, by the
2769 the current stack frame summary for that thread
2773 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2774 indicates the current thread.
2778 @c end table here to get a little more width for example
2781 (@value{GDBP}) info threads
2783 3 process 35 thread 27 0x34e5 in sigpause ()
2784 2 process 35 thread 23 0x34e5 in sigpause ()
2785 * 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2789 On Solaris, you can display more information about user threads with a
2790 Solaris-specific command:
2793 @item maint info sol-threads
2794 @kindex maint info sol-threads
2795 @cindex thread info (Solaris)
2796 Display info on Solaris user threads.
2800 @kindex thread @var{threadno}
2801 @item thread @var{threadno}
2802 Make thread number @var{threadno} the current thread. The command
2803 argument @var{threadno} is the internal @value{GDBN} thread number, as
2804 shown in the first field of the @samp{info threads} display.
2805 @value{GDBN} responds by displaying the system identifier of the thread
2806 you selected, and its current stack frame summary:
2809 (@value{GDBP}) thread 2
2810 [Switching to thread 2 (Thread 0xb7fdab70 (LWP 12747))]
2811 #0 some_function (ignore=0x0) at example.c:8
2812 8 printf ("hello\n");
2816 As with the @samp{[New @dots{}]} message, the form of the text after
2817 @samp{Switching to} depends on your system's conventions for identifying
2820 @vindex $_thread@r{, convenience variable}
2821 The debugger convenience variable @samp{$_thread} contains the number
2822 of the current thread. You may find this useful in writing breakpoint
2823 conditional expressions, command scripts, and so forth. See
2824 @xref{Convenience Vars,, Convenience Variables}, for general
2825 information on convenience variables.
2827 @kindex thread apply
2828 @cindex apply command to several threads
2829 @item thread apply [@var{threadno} | all] @var{command}
2830 The @code{thread apply} command allows you to apply the named
2831 @var{command} to one or more threads. Specify the numbers of the
2832 threads that you want affected with the command argument
2833 @var{threadno}. It can be a single thread number, one of the numbers
2834 shown in the first field of the @samp{info threads} display; or it
2835 could be a range of thread numbers, as in @code{2-4}. To apply a
2836 command to all threads, type @kbd{thread apply all @var{command}}.
2839 @cindex name a thread
2840 @item thread name [@var{name}]
2841 This command assigns a name to the current thread. If no argument is
2842 given, any existing user-specified name is removed. The thread name
2843 appears in the @samp{info threads} display.
2845 On some systems, such as @sc{gnu}/Linux, @value{GDBN} is able to
2846 determine the name of the thread as given by the OS. On these
2847 systems, a name specified with @samp{thread name} will override the
2848 system-give name, and removing the user-specified name will cause
2849 @value{GDBN} to once again display the system-specified name.
2852 @cindex search for a thread
2853 @item thread find [@var{regexp}]
2854 Search for and display thread ids whose name or @var{systag}
2855 matches the supplied regular expression.
2857 As well as being the complement to the @samp{thread name} command,
2858 this command also allows you to identify a thread by its target
2859 @var{systag}. For instance, on @sc{gnu}/Linux, the target @var{systag}
2863 (@value{GDBN}) thread find 26688
2864 Thread 4 has target id 'Thread 0x41e02940 (LWP 26688)'
2865 (@value{GDBN}) info thread 4
2867 4 Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()
2870 @kindex set print thread-events
2871 @cindex print messages on thread start and exit
2872 @item set print thread-events
2873 @itemx set print thread-events on
2874 @itemx set print thread-events off
2875 The @code{set print thread-events} command allows you to enable or
2876 disable printing of messages when @value{GDBN} notices that new threads have
2877 started or that threads have exited. By default, these messages will
2878 be printed if detection of these events is supported by the target.
2879 Note that these messages cannot be disabled on all targets.
2881 @kindex show print thread-events
2882 @item show print thread-events
2883 Show whether messages will be printed when @value{GDBN} detects that threads
2884 have started and exited.
2887 @xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
2888 more information about how @value{GDBN} behaves when you stop and start
2889 programs with multiple threads.
2891 @xref{Set Watchpoints,,Setting Watchpoints}, for information about
2892 watchpoints in programs with multiple threads.
2894 @anchor{set libthread-db-search-path}
2896 @kindex set libthread-db-search-path
2897 @cindex search path for @code{libthread_db}
2898 @item set libthread-db-search-path @r{[}@var{path}@r{]}
2899 If this variable is set, @var{path} is a colon-separated list of
2900 directories @value{GDBN} will use to search for @code{libthread_db}.
2901 If you omit @var{path}, @samp{libthread-db-search-path} will be reset to
2902 its default value (@code{$sdir:$pdir} on @sc{gnu}/Linux and Solaris systems).
2903 Internally, the default value comes from the @code{LIBTHREAD_DB_SEARCH_PATH}
2906 On @sc{gnu}/Linux and Solaris systems, @value{GDBN} uses a ``helper''
2907 @code{libthread_db} library to obtain information about threads in the
2908 inferior process. @value{GDBN} will use @samp{libthread-db-search-path}
2909 to find @code{libthread_db}. @value{GDBN} also consults first if inferior
2910 specific thread debugging library loading is enabled
2911 by @samp{set auto-load libthread-db} (@pxref{libthread_db.so.1 file}).
2913 A special entry @samp{$sdir} for @samp{libthread-db-search-path}
2914 refers to the default system directories that are
2915 normally searched for loading shared libraries. The @samp{$sdir} entry
2916 is the only kind not needing to be enabled by @samp{set auto-load libthread-db}
2917 (@pxref{libthread_db.so.1 file}).
2919 A special entry @samp{$pdir} for @samp{libthread-db-search-path}
2920 refers to the directory from which @code{libpthread}
2921 was loaded in the inferior process.
2923 For any @code{libthread_db} library @value{GDBN} finds in above directories,
2924 @value{GDBN} attempts to initialize it with the current inferior process.
2925 If this initialization fails (which could happen because of a version
2926 mismatch between @code{libthread_db} and @code{libpthread}), @value{GDBN}
2927 will unload @code{libthread_db}, and continue with the next directory.
2928 If none of @code{libthread_db} libraries initialize successfully,
2929 @value{GDBN} will issue a warning and thread debugging will be disabled.
2931 Setting @code{libthread-db-search-path} is currently implemented
2932 only on some platforms.
2934 @kindex show libthread-db-search-path
2935 @item show libthread-db-search-path
2936 Display current libthread_db search path.
2938 @kindex set debug libthread-db
2939 @kindex show debug libthread-db
2940 @cindex debugging @code{libthread_db}
2941 @item set debug libthread-db
2942 @itemx show debug libthread-db
2943 Turns on or off display of @code{libthread_db}-related events.
2944 Use @code{1} to enable, @code{0} to disable.
2948 @section Debugging Forks
2950 @cindex fork, debugging programs which call
2951 @cindex multiple processes
2952 @cindex processes, multiple
2953 On most systems, @value{GDBN} has no special support for debugging
2954 programs which create additional processes using the @code{fork}
2955 function. When a program forks, @value{GDBN} will continue to debug the
2956 parent process and the child process will run unimpeded. If you have
2957 set a breakpoint in any code which the child then executes, the child
2958 will get a @code{SIGTRAP} signal which (unless it catches the signal)
2959 will cause it to terminate.
2961 However, if you want to debug the child process there is a workaround
2962 which isn't too painful. Put a call to @code{sleep} in the code which
2963 the child process executes after the fork. It may be useful to sleep
2964 only if a certain environment variable is set, or a certain file exists,
2965 so that the delay need not occur when you don't want to run @value{GDBN}
2966 on the child. While the child is sleeping, use the @code{ps} program to
2967 get its process ID. Then tell @value{GDBN} (a new invocation of
2968 @value{GDBN} if you are also debugging the parent process) to attach to
2969 the child process (@pxref{Attach}). From that point on you can debug
2970 the child process just like any other process which you attached to.
2972 On some systems, @value{GDBN} provides support for debugging programs that
2973 create additional processes using the @code{fork} or @code{vfork} functions.
2974 Currently, the only platforms with this feature are HP-UX (11.x and later
2975 only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
2977 By default, when a program forks, @value{GDBN} will continue to debug
2978 the parent process and the child process will run unimpeded.
2980 If you want to follow the child process instead of the parent process,
2981 use the command @w{@code{set follow-fork-mode}}.
2984 @kindex set follow-fork-mode
2985 @item set follow-fork-mode @var{mode}
2986 Set the debugger response to a program call of @code{fork} or
2987 @code{vfork}. A call to @code{fork} or @code{vfork} creates a new
2988 process. The @var{mode} argument can be:
2992 The original process is debugged after a fork. The child process runs
2993 unimpeded. This is the default.
2996 The new process is debugged after a fork. The parent process runs
3001 @kindex show follow-fork-mode
3002 @item show follow-fork-mode
3003 Display the current debugger response to a @code{fork} or @code{vfork} call.
3006 @cindex debugging multiple processes
3007 On Linux, if you want to debug both the parent and child processes, use the
3008 command @w{@code{set detach-on-fork}}.
3011 @kindex set detach-on-fork
3012 @item set detach-on-fork @var{mode}
3013 Tells gdb whether to detach one of the processes after a fork, or
3014 retain debugger control over them both.
3018 The child process (or parent process, depending on the value of
3019 @code{follow-fork-mode}) will be detached and allowed to run
3020 independently. This is the default.
3023 Both processes will be held under the control of @value{GDBN}.
3024 One process (child or parent, depending on the value of
3025 @code{follow-fork-mode}) is debugged as usual, while the other
3030 @kindex show detach-on-fork
3031 @item show detach-on-fork
3032 Show whether detach-on-fork mode is on/off.
3035 If you choose to set @samp{detach-on-fork} mode off, then @value{GDBN}
3036 will retain control of all forked processes (including nested forks).
3037 You can list the forked processes under the control of @value{GDBN} by
3038 using the @w{@code{info inferiors}} command, and switch from one fork
3039 to another by using the @code{inferior} command (@pxref{Inferiors and
3040 Programs, ,Debugging Multiple Inferiors and Programs}).
3042 To quit debugging one of the forked processes, you can either detach
3043 from it by using the @w{@code{detach inferiors}} command (allowing it
3044 to run independently), or kill it using the @w{@code{kill inferiors}}
3045 command. @xref{Inferiors and Programs, ,Debugging Multiple Inferiors
3048 If you ask to debug a child process and a @code{vfork} is followed by an
3049 @code{exec}, @value{GDBN} executes the new target up to the first
3050 breakpoint in the new target. If you have a breakpoint set on
3051 @code{main} in your original program, the breakpoint will also be set on
3052 the child process's @code{main}.
3054 On some systems, when a child process is spawned by @code{vfork}, you
3055 cannot debug the child or parent until an @code{exec} call completes.
3057 If you issue a @code{run} command to @value{GDBN} after an @code{exec}
3058 call executes, the new target restarts. To restart the parent
3059 process, use the @code{file} command with the parent executable name
3060 as its argument. By default, after an @code{exec} call executes,
3061 @value{GDBN} discards the symbols of the previous executable image.
3062 You can change this behaviour with the @w{@code{set follow-exec-mode}}
3066 @kindex set follow-exec-mode
3067 @item set follow-exec-mode @var{mode}
3069 Set debugger response to a program call of @code{exec}. An
3070 @code{exec} call replaces the program image of a process.
3072 @code{follow-exec-mode} can be:
3076 @value{GDBN} creates a new inferior and rebinds the process to this
3077 new inferior. The program the process was running before the
3078 @code{exec} call can be restarted afterwards by restarting the
3084 (@value{GDBP}) info inferiors
3086 Id Description Executable
3089 process 12020 is executing new program: prog2
3090 Program exited normally.
3091 (@value{GDBP}) info inferiors
3092 Id Description Executable
3098 @value{GDBN} keeps the process bound to the same inferior. The new
3099 executable image replaces the previous executable loaded in the
3100 inferior. Restarting the inferior after the @code{exec} call, with
3101 e.g., the @code{run} command, restarts the executable the process was
3102 running after the @code{exec} call. This is the default mode.
3107 (@value{GDBP}) info inferiors
3108 Id Description Executable
3111 process 12020 is executing new program: prog2
3112 Program exited normally.
3113 (@value{GDBP}) info inferiors
3114 Id Description Executable
3121 You can use the @code{catch} command to make @value{GDBN} stop whenever
3122 a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
3123 Catchpoints, ,Setting Catchpoints}.
3125 @node Checkpoint/Restart
3126 @section Setting a @emph{Bookmark} to Return to Later
3131 @cindex snapshot of a process
3132 @cindex rewind program state
3134 On certain operating systems@footnote{Currently, only
3135 @sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
3136 program's state, called a @dfn{checkpoint}, and come back to it
3139 Returning to a checkpoint effectively undoes everything that has
3140 happened in the program since the @code{checkpoint} was saved. This
3141 includes changes in memory, registers, and even (within some limits)
3142 system state. Effectively, it is like going back in time to the
3143 moment when the checkpoint was saved.
3145 Thus, if you're stepping thru a program and you think you're
3146 getting close to the point where things go wrong, you can save
3147 a checkpoint. Then, if you accidentally go too far and miss
3148 the critical statement, instead of having to restart your program
3149 from the beginning, you can just go back to the checkpoint and
3150 start again from there.
3152 This can be especially useful if it takes a lot of time or
3153 steps to reach the point where you think the bug occurs.
3155 To use the @code{checkpoint}/@code{restart} method of debugging:
3160 Save a snapshot of the debugged program's current execution state.
3161 The @code{checkpoint} command takes no arguments, but each checkpoint
3162 is assigned a small integer id, similar to a breakpoint id.
3164 @kindex info checkpoints
3165 @item info checkpoints
3166 List the checkpoints that have been saved in the current debugging
3167 session. For each checkpoint, the following information will be
3174 @item Source line, or label
3177 @kindex restart @var{checkpoint-id}
3178 @item restart @var{checkpoint-id}
3179 Restore the program state that was saved as checkpoint number
3180 @var{checkpoint-id}. All program variables, registers, stack frames
3181 etc.@: will be returned to the values that they had when the checkpoint
3182 was saved. In essence, gdb will ``wind back the clock'' to the point
3183 in time when the checkpoint was saved.
3185 Note that breakpoints, @value{GDBN} variables, command history etc.
3186 are not affected by restoring a checkpoint. In general, a checkpoint
3187 only restores things that reside in the program being debugged, not in
3190 @kindex delete checkpoint @var{checkpoint-id}
3191 @item delete checkpoint @var{checkpoint-id}
3192 Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
3196 Returning to a previously saved checkpoint will restore the user state
3197 of the program being debugged, plus a significant subset of the system
3198 (OS) state, including file pointers. It won't ``un-write'' data from
3199 a file, but it will rewind the file pointer to the previous location,
3200 so that the previously written data can be overwritten. For files
3201 opened in read mode, the pointer will also be restored so that the
3202 previously read data can be read again.
3204 Of course, characters that have been sent to a printer (or other
3205 external device) cannot be ``snatched back'', and characters received
3206 from eg.@: a serial device can be removed from internal program buffers,
3207 but they cannot be ``pushed back'' into the serial pipeline, ready to
3208 be received again. Similarly, the actual contents of files that have
3209 been changed cannot be restored (at this time).
3211 However, within those constraints, you actually can ``rewind'' your
3212 program to a previously saved point in time, and begin debugging it
3213 again --- and you can change the course of events so as to debug a
3214 different execution path this time.
3216 @cindex checkpoints and process id
3217 Finally, there is one bit of internal program state that will be
3218 different when you return to a checkpoint --- the program's process
3219 id. Each checkpoint will have a unique process id (or @var{pid}),
3220 and each will be different from the program's original @var{pid}.
3221 If your program has saved a local copy of its process id, this could
3222 potentially pose a problem.
3224 @subsection A Non-obvious Benefit of Using Checkpoints
3226 On some systems such as @sc{gnu}/Linux, address space randomization
3227 is performed on new processes for security reasons. This makes it
3228 difficult or impossible to set a breakpoint, or watchpoint, on an
3229 absolute address if you have to restart the program, since the
3230 absolute location of a symbol will change from one execution to the
3233 A checkpoint, however, is an @emph{identical} copy of a process.
3234 Therefore if you create a checkpoint at (eg.@:) the start of main,
3235 and simply return to that checkpoint instead of restarting the
3236 process, you can avoid the effects of address randomization and
3237 your symbols will all stay in the same place.
3240 @chapter Stopping and Continuing
3242 The principal purposes of using a debugger are so that you can stop your
3243 program before it terminates; or so that, if your program runs into
3244 trouble, you can investigate and find out why.
3246 Inside @value{GDBN}, your program may stop for any of several reasons,
3247 such as a signal, a breakpoint, or reaching a new line after a
3248 @value{GDBN} command such as @code{step}. You may then examine and
3249 change variables, set new breakpoints or remove old ones, and then
3250 continue execution. Usually, the messages shown by @value{GDBN} provide
3251 ample explanation of the status of your program---but you can also
3252 explicitly request this information at any time.
3255 @kindex info program
3257 Display information about the status of your program: whether it is
3258 running or not, what process it is, and why it stopped.
3262 * Breakpoints:: Breakpoints, watchpoints, and catchpoints
3263 * Continuing and Stepping:: Resuming execution
3264 * Skipping Over Functions and Files::
3265 Skipping over functions and files
3267 * Thread Stops:: Stopping and starting multi-thread programs
3271 @section Breakpoints, Watchpoints, and Catchpoints
3274 A @dfn{breakpoint} makes your program stop whenever a certain point in
3275 the program is reached. For each breakpoint, you can add conditions to
3276 control in finer detail whether your program stops. You can set
3277 breakpoints with the @code{break} command and its variants (@pxref{Set
3278 Breaks, ,Setting Breakpoints}), to specify the place where your program
3279 should stop by line number, function name or exact address in the
3282 On some systems, you can set breakpoints in shared libraries before
3283 the executable is run. There is a minor limitation on HP-UX systems:
3284 you must wait until the executable is run in order to set breakpoints
3285 in shared library routines that are not called directly by the program
3286 (for example, routines that are arguments in a @code{pthread_create}
3290 @cindex data breakpoints
3291 @cindex memory tracing
3292 @cindex breakpoint on memory address
3293 @cindex breakpoint on variable modification
3294 A @dfn{watchpoint} is a special breakpoint that stops your program
3295 when the value of an expression changes. The expression may be a value
3296 of a variable, or it could involve values of one or more variables
3297 combined by operators, such as @samp{a + b}. This is sometimes called
3298 @dfn{data breakpoints}. You must use a different command to set
3299 watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
3300 from that, you can manage a watchpoint like any other breakpoint: you
3301 enable, disable, and delete both breakpoints and watchpoints using the
3304 You can arrange to have values from your program displayed automatically
3305 whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
3309 @cindex breakpoint on events
3310 A @dfn{catchpoint} is another special breakpoint that stops your program
3311 when a certain kind of event occurs, such as the throwing of a C@t{++}
3312 exception or the loading of a library. As with watchpoints, you use a
3313 different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
3314 Catchpoints}), but aside from that, you can manage a catchpoint like any
3315 other breakpoint. (To stop when your program receives a signal, use the
3316 @code{handle} command; see @ref{Signals, ,Signals}.)
3318 @cindex breakpoint numbers
3319 @cindex numbers for breakpoints
3320 @value{GDBN} assigns a number to each breakpoint, watchpoint, or
3321 catchpoint when you create it; these numbers are successive integers
3322 starting with one. In many of the commands for controlling various
3323 features of breakpoints you use the breakpoint number to say which
3324 breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
3325 @dfn{disabled}; if disabled, it has no effect on your program until you
3328 @cindex breakpoint ranges
3329 @cindex ranges of breakpoints
3330 Some @value{GDBN} commands accept a range of breakpoints on which to
3331 operate. A breakpoint range is either a single breakpoint number, like
3332 @samp{5}, or two such numbers, in increasing order, separated by a
3333 hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
3334 all breakpoints in that range are operated on.
3337 * Set Breaks:: Setting breakpoints
3338 * Set Watchpoints:: Setting watchpoints
3339 * Set Catchpoints:: Setting catchpoints
3340 * Delete Breaks:: Deleting breakpoints
3341 * Disabling:: Disabling breakpoints
3342 * Conditions:: Break conditions
3343 * Break Commands:: Breakpoint command lists
3344 * Save Breakpoints:: How to save breakpoints in a file
3345 * Error in Breakpoints:: ``Cannot insert breakpoints''
3346 * Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
3350 @subsection Setting Breakpoints
3352 @c FIXME LMB what does GDB do if no code on line of breakpt?
3353 @c consider in particular declaration with/without initialization.
3355 @c FIXME 2 is there stuff on this already? break at fun start, already init?
3358 @kindex b @r{(@code{break})}
3359 @vindex $bpnum@r{, convenience variable}
3360 @cindex latest breakpoint
3361 Breakpoints are set with the @code{break} command (abbreviated
3362 @code{b}). The debugger convenience variable @samp{$bpnum} records the
3363 number of the breakpoint you've set most recently; see @ref{Convenience
3364 Vars,, Convenience Variables}, for a discussion of what you can do with
3365 convenience variables.
3368 @item break @var{location}
3369 Set a breakpoint at the given @var{location}, which can specify a
3370 function name, a line number, or an address of an instruction.
3371 (@xref{Specify Location}, for a list of all the possible ways to
3372 specify a @var{location}.) The breakpoint will stop your program just
3373 before it executes any of the code in the specified @var{location}.
3375 When using source languages that permit overloading of symbols, such as
3376 C@t{++}, a function name may refer to more than one possible place to break.
3377 @xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
3380 It is also possible to insert a breakpoint that will stop the program
3381 only if a specific thread (@pxref{Thread-Specific Breakpoints})
3382 or a specific task (@pxref{Ada Tasks}) hits that breakpoint.
3385 When called without any arguments, @code{break} sets a breakpoint at
3386 the next instruction to be executed in the selected stack frame
3387 (@pxref{Stack, ,Examining the Stack}). In any selected frame but the
3388 innermost, this makes your program stop as soon as control
3389 returns to that frame. This is similar to the effect of a
3390 @code{finish} command in the frame inside the selected frame---except
3391 that @code{finish} does not leave an active breakpoint. If you use
3392 @code{break} without an argument in the innermost frame, @value{GDBN} stops
3393 the next time it reaches the current location; this may be useful
3396 @value{GDBN} normally ignores breakpoints when it resumes execution, until at
3397 least one instruction has been executed. If it did not do this, you
3398 would be unable to proceed past a breakpoint without first disabling the
3399 breakpoint. This rule applies whether or not the breakpoint already
3400 existed when your program stopped.
3402 @item break @dots{} if @var{cond}
3403 Set a breakpoint with condition @var{cond}; evaluate the expression
3404 @var{cond} each time the breakpoint is reached, and stop only if the
3405 value is nonzero---that is, if @var{cond} evaluates as true.
3406 @samp{@dots{}} stands for one of the possible arguments described
3407 above (or no argument) specifying where to break. @xref{Conditions,
3408 ,Break Conditions}, for more information on breakpoint conditions.
3411 @item tbreak @var{args}
3412 Set a breakpoint enabled only for one stop. @var{args} are the
3413 same as for the @code{break} command, and the breakpoint is set in the same
3414 way, but the breakpoint is automatically deleted after the first time your
3415 program stops there. @xref{Disabling, ,Disabling Breakpoints}.
3418 @cindex hardware breakpoints
3419 @item hbreak @var{args}
3420 Set a hardware-assisted breakpoint. @var{args} are the same as for the
3421 @code{break} command and the breakpoint is set in the same way, but the
3422 breakpoint requires hardware support and some target hardware may not
3423 have this support. The main purpose of this is EPROM/ROM code
3424 debugging, so you can set a breakpoint at an instruction without
3425 changing the instruction. This can be used with the new trap-generation
3426 provided by SPARClite DSU and most x86-based targets. These targets
3427 will generate traps when a program accesses some data or instruction
3428 address that is assigned to the debug registers. However the hardware
3429 breakpoint registers can take a limited number of breakpoints. For
3430 example, on the DSU, only two data breakpoints can be set at a time, and
3431 @value{GDBN} will reject this command if more than two are used. Delete
3432 or disable unused hardware breakpoints before setting new ones
3433 (@pxref{Disabling, ,Disabling Breakpoints}).
3434 @xref{Conditions, ,Break Conditions}.
3435 For remote targets, you can restrict the number of hardware
3436 breakpoints @value{GDBN} will use, see @ref{set remote
3437 hardware-breakpoint-limit}.
3440 @item thbreak @var{args}
3441 Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
3442 are the same as for the @code{hbreak} command and the breakpoint is set in
3443 the same way. However, like the @code{tbreak} command,
3444 the breakpoint is automatically deleted after the
3445 first time your program stops there. Also, like the @code{hbreak}
3446 command, the breakpoint requires hardware support and some target hardware
3447 may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
3448 See also @ref{Conditions, ,Break Conditions}.
3451 @cindex regular expression
3452 @cindex breakpoints at functions matching a regexp
3453 @cindex set breakpoints in many functions
3454 @item rbreak @var{regex}
3455 Set breakpoints on all functions matching the regular expression
3456 @var{regex}. This command sets an unconditional breakpoint on all
3457 matches, printing a list of all breakpoints it set. Once these
3458 breakpoints are set, they are treated just like the breakpoints set with
3459 the @code{break} command. You can delete them, disable them, or make
3460 them conditional the same way as any other breakpoint.
3462 The syntax of the regular expression is the standard one used with tools
3463 like @file{grep}. Note that this is different from the syntax used by
3464 shells, so for instance @code{foo*} matches all functions that include
3465 an @code{fo} followed by zero or more @code{o}s. There is an implicit
3466 @code{.*} leading and trailing the regular expression you supply, so to
3467 match only functions that begin with @code{foo}, use @code{^foo}.
3469 @cindex non-member C@t{++} functions, set breakpoint in
3470 When debugging C@t{++} programs, @code{rbreak} is useful for setting
3471 breakpoints on overloaded functions that are not members of any special
3474 @cindex set breakpoints on all functions
3475 The @code{rbreak} command can be used to set breakpoints in
3476 @strong{all} the functions in a program, like this:
3479 (@value{GDBP}) rbreak .
3482 @item rbreak @var{file}:@var{regex}
3483 If @code{rbreak} is called with a filename qualification, it limits
3484 the search for functions matching the given regular expression to the
3485 specified @var{file}. This can be used, for example, to set breakpoints on
3486 every function in a given file:
3489 (@value{GDBP}) rbreak file.c:.
3492 The colon separating the filename qualifier from the regex may
3493 optionally be surrounded by spaces.
3495 @kindex info breakpoints
3496 @cindex @code{$_} and @code{info breakpoints}
3497 @item info breakpoints @r{[}@var{n}@dots{}@r{]}
3498 @itemx info break @r{[}@var{n}@dots{}@r{]}
3499 Print a table of all breakpoints, watchpoints, and catchpoints set and
3500 not deleted. Optional argument @var{n} means print information only
3501 about the specified breakpoint(s) (or watchpoint(s) or catchpoint(s)).
3502 For each breakpoint, following columns are printed:
3505 @item Breakpoint Numbers
3507 Breakpoint, watchpoint, or catchpoint.
3509 Whether the breakpoint is marked to be disabled or deleted when hit.
3510 @item Enabled or Disabled
3511 Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
3512 that are not enabled.
3514 Where the breakpoint is in your program, as a memory address. For a
3515 pending breakpoint whose address is not yet known, this field will
3516 contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3517 library that has the symbol or line referred by breakpoint is loaded.
3518 See below for details. A breakpoint with several locations will
3519 have @samp{<MULTIPLE>} in this field---see below for details.
3521 Where the breakpoint is in the source for your program, as a file and
3522 line number. For a pending breakpoint, the original string passed to
3523 the breakpoint command will be listed as it cannot be resolved until
3524 the appropriate shared library is loaded in the future.
3528 If a breakpoint is conditional, there are two evaluation modes: ``host'' and
3529 ``target''. If mode is ``host'', breakpoint condition evaluation is done by
3530 @value{GDBN} on the host's side. If it is ``target'', then the condition
3531 is evaluated by the target. The @code{info break} command shows
3532 the condition on the line following the affected breakpoint, together with
3533 its condition evaluation mode in between parentheses.
3535 Breakpoint commands, if any, are listed after that. A pending breakpoint is
3536 allowed to have a condition specified for it. The condition is not parsed for
3537 validity until a shared library is loaded that allows the pending
3538 breakpoint to resolve to a valid location.
3541 @code{info break} with a breakpoint
3542 number @var{n} as argument lists only that breakpoint. The
3543 convenience variable @code{$_} and the default examining-address for
3544 the @code{x} command are set to the address of the last breakpoint
3545 listed (@pxref{Memory, ,Examining Memory}).
3548 @code{info break} displays a count of the number of times the breakpoint
3549 has been hit. This is especially useful in conjunction with the
3550 @code{ignore} command. You can ignore a large number of breakpoint
3551 hits, look at the breakpoint info to see how many times the breakpoint
3552 was hit, and then run again, ignoring one less than that number. This
3553 will get you quickly to the last hit of that breakpoint.
3556 For a breakpoints with an enable count (xref) greater than 1,
3557 @code{info break} also displays that count.
3561 @value{GDBN} allows you to set any number of breakpoints at the same place in
3562 your program. There is nothing silly or meaningless about this. When
3563 the breakpoints are conditional, this is even useful
3564 (@pxref{Conditions, ,Break Conditions}).
3566 @cindex multiple locations, breakpoints
3567 @cindex breakpoints, multiple locations
3568 It is possible that a breakpoint corresponds to several locations
3569 in your program. Examples of this situation are:
3573 Multiple functions in the program may have the same name.
3576 For a C@t{++} constructor, the @value{NGCC} compiler generates several
3577 instances of the function body, used in different cases.
3580 For a C@t{++} template function, a given line in the function can
3581 correspond to any number of instantiations.
3584 For an inlined function, a given source line can correspond to
3585 several places where that function is inlined.
3588 In all those cases, @value{GDBN} will insert a breakpoint at all
3589 the relevant locations.
3591 A breakpoint with multiple locations is displayed in the breakpoint
3592 table using several rows---one header row, followed by one row for
3593 each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3594 address column. The rows for individual locations contain the actual
3595 addresses for locations, and show the functions to which those
3596 locations belong. The number column for a location is of the form
3597 @var{breakpoint-number}.@var{location-number}.
3602 Num Type Disp Enb Address What
3603 1 breakpoint keep y <MULTIPLE>
3605 breakpoint already hit 1 time
3606 1.1 y 0x080486a2 in void foo<int>() at t.cc:8
3607 1.2 y 0x080486ca in void foo<double>() at t.cc:8
3610 Each location can be individually enabled or disabled by passing
3611 @var{breakpoint-number}.@var{location-number} as argument to the
3612 @code{enable} and @code{disable} commands. Note that you cannot
3613 delete the individual locations from the list, you can only delete the
3614 entire list of locations that belong to their parent breakpoint (with
3615 the @kbd{delete @var{num}} command, where @var{num} is the number of
3616 the parent breakpoint, 1 in the above example). Disabling or enabling
3617 the parent breakpoint (@pxref{Disabling}) affects all of the locations
3618 that belong to that breakpoint.
3620 @cindex pending breakpoints
3621 It's quite common to have a breakpoint inside a shared library.
3622 Shared libraries can be loaded and unloaded explicitly,
3623 and possibly repeatedly, as the program is executed. To support
3624 this use case, @value{GDBN} updates breakpoint locations whenever
3625 any shared library is loaded or unloaded. Typically, you would
3626 set a breakpoint in a shared library at the beginning of your
3627 debugging session, when the library is not loaded, and when the
3628 symbols from the library are not available. When you try to set
3629 breakpoint, @value{GDBN} will ask you if you want to set
3630 a so called @dfn{pending breakpoint}---breakpoint whose address
3631 is not yet resolved.
3633 After the program is run, whenever a new shared library is loaded,
3634 @value{GDBN} reevaluates all the breakpoints. When a newly loaded
3635 shared library contains the symbol or line referred to by some
3636 pending breakpoint, that breakpoint is resolved and becomes an
3637 ordinary breakpoint. When a library is unloaded, all breakpoints
3638 that refer to its symbols or source lines become pending again.
3640 This logic works for breakpoints with multiple locations, too. For
3641 example, if you have a breakpoint in a C@t{++} template function, and
3642 a newly loaded shared library has an instantiation of that template,
3643 a new location is added to the list of locations for the breakpoint.
3645 Except for having unresolved address, pending breakpoints do not
3646 differ from regular breakpoints. You can set conditions or commands,
3647 enable and disable them and perform other breakpoint operations.
3649 @value{GDBN} provides some additional commands for controlling what
3650 happens when the @samp{break} command cannot resolve breakpoint
3651 address specification to an address:
3653 @kindex set breakpoint pending
3654 @kindex show breakpoint pending
3656 @item set breakpoint pending auto
3657 This is the default behavior. When @value{GDBN} cannot find the breakpoint
3658 location, it queries you whether a pending breakpoint should be created.
3660 @item set breakpoint pending on
3661 This indicates that an unrecognized breakpoint location should automatically
3662 result in a pending breakpoint being created.
3664 @item set breakpoint pending off
3665 This indicates that pending breakpoints are not to be created. Any
3666 unrecognized breakpoint location results in an error. This setting does
3667 not affect any pending breakpoints previously created.
3669 @item show breakpoint pending
3670 Show the current behavior setting for creating pending breakpoints.
3673 The settings above only affect the @code{break} command and its
3674 variants. Once breakpoint is set, it will be automatically updated
3675 as shared libraries are loaded and unloaded.
3677 @cindex automatic hardware breakpoints
3678 For some targets, @value{GDBN} can automatically decide if hardware or
3679 software breakpoints should be used, depending on whether the
3680 breakpoint address is read-only or read-write. This applies to
3681 breakpoints set with the @code{break} command as well as to internal
3682 breakpoints set by commands like @code{next} and @code{finish}. For
3683 breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
3686 You can control this automatic behaviour with the following commands::
3688 @kindex set breakpoint auto-hw
3689 @kindex show breakpoint auto-hw
3691 @item set breakpoint auto-hw on
3692 This is the default behavior. When @value{GDBN} sets a breakpoint, it
3693 will try to use the target memory map to decide if software or hardware
3694 breakpoint must be used.
3696 @item set breakpoint auto-hw off
3697 This indicates @value{GDBN} should not automatically select breakpoint
3698 type. If the target provides a memory map, @value{GDBN} will warn when
3699 trying to set software breakpoint at a read-only address.
3702 @value{GDBN} normally implements breakpoints by replacing the program code
3703 at the breakpoint address with a special instruction, which, when
3704 executed, given control to the debugger. By default, the program
3705 code is so modified only when the program is resumed. As soon as
3706 the program stops, @value{GDBN} restores the original instructions. This
3707 behaviour guards against leaving breakpoints inserted in the
3708 target should gdb abrubptly disconnect. However, with slow remote
3709 targets, inserting and removing breakpoint can reduce the performance.
3710 This behavior can be controlled with the following commands::
3712 @kindex set breakpoint always-inserted
3713 @kindex show breakpoint always-inserted
3715 @item set breakpoint always-inserted off
3716 All breakpoints, including newly added by the user, are inserted in
3717 the target only when the target is resumed. All breakpoints are
3718 removed from the target when it stops.
3720 @item set breakpoint always-inserted on
3721 Causes all breakpoints to be inserted in the target at all times. If
3722 the user adds a new breakpoint, or changes an existing breakpoint, the
3723 breakpoints in the target are updated immediately. A breakpoint is
3724 removed from the target only when breakpoint itself is removed.
3726 @cindex non-stop mode, and @code{breakpoint always-inserted}
3727 @item set breakpoint always-inserted auto
3728 This is the default mode. If @value{GDBN} is controlling the inferior
3729 in non-stop mode (@pxref{Non-Stop Mode}), gdb behaves as if
3730 @code{breakpoint always-inserted} mode is on. If @value{GDBN} is
3731 controlling the inferior in all-stop mode, @value{GDBN} behaves as if
3732 @code{breakpoint always-inserted} mode is off.
3735 @value{GDBN} handles conditional breakpoints by evaluating these conditions
3736 when a breakpoint breaks. If the condition is true, then the process being
3737 debugged stops, otherwise the process is resumed.
3739 If the target supports evaluating conditions on its end, @value{GDBN} may
3740 download the breakpoint, together with its conditions, to it.
3742 This feature can be controlled via the following commands:
3744 @kindex set breakpoint condition-evaluation
3745 @kindex show breakpoint condition-evaluation
3747 @item set breakpoint condition-evaluation host
3748 This option commands @value{GDBN} to evaluate the breakpoint
3749 conditions on the host's side. Unconditional breakpoints are sent to
3750 the target which in turn receives the triggers and reports them back to GDB
3751 for condition evaluation. This is the standard evaluation mode.
3753 @item set breakpoint condition-evaluation target
3754 This option commands @value{GDBN} to download breakpoint conditions
3755 to the target at the moment of their insertion. The target
3756 is responsible for evaluating the conditional expression and reporting
3757 breakpoint stop events back to @value{GDBN} whenever the condition
3758 is true. Due to limitations of target-side evaluation, some conditions
3759 cannot be evaluated there, e.g., conditions that depend on local data
3760 that is only known to the host. Examples include
3761 conditional expressions involving convenience variables, complex types
3762 that cannot be handled by the agent expression parser and expressions
3763 that are too long to be sent over to the target, specially when the
3764 target is a remote system. In these cases, the conditions will be
3765 evaluated by @value{GDBN}.
3767 @item set breakpoint condition-evaluation auto
3768 This is the default mode. If the target supports evaluating breakpoint
3769 conditions on its end, @value{GDBN} will download breakpoint conditions to
3770 the target (limitations mentioned previously apply). If the target does
3771 not support breakpoint condition evaluation, then @value{GDBN} will fallback
3772 to evaluating all these conditions on the host's side.
3776 @cindex negative breakpoint numbers
3777 @cindex internal @value{GDBN} breakpoints
3778 @value{GDBN} itself sometimes sets breakpoints in your program for
3779 special purposes, such as proper handling of @code{longjmp} (in C
3780 programs). These internal breakpoints are assigned negative numbers,
3781 starting with @code{-1}; @samp{info breakpoints} does not display them.
3782 You can see these breakpoints with the @value{GDBN} maintenance command
3783 @samp{maint info breakpoints} (@pxref{maint info breakpoints}).
3786 @node Set Watchpoints
3787 @subsection Setting Watchpoints
3789 @cindex setting watchpoints
3790 You can use a watchpoint to stop execution whenever the value of an
3791 expression changes, without having to predict a particular place where
3792 this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3793 The expression may be as simple as the value of a single variable, or
3794 as complex as many variables combined by operators. Examples include:
3798 A reference to the value of a single variable.
3801 An address cast to an appropriate data type. For example,
3802 @samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3803 address (assuming an @code{int} occupies 4 bytes).
3806 An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3807 expression can use any operators valid in the program's native
3808 language (@pxref{Languages}).
3811 You can set a watchpoint on an expression even if the expression can
3812 not be evaluated yet. For instance, you can set a watchpoint on
3813 @samp{*global_ptr} before @samp{global_ptr} is initialized.
3814 @value{GDBN} will stop when your program sets @samp{global_ptr} and
3815 the expression produces a valid value. If the expression becomes
3816 valid in some other way than changing a variable (e.g.@: if the memory
3817 pointed to by @samp{*global_ptr} becomes readable as the result of a
3818 @code{malloc} call), @value{GDBN} may not stop until the next time
3819 the expression changes.
3821 @cindex software watchpoints
3822 @cindex hardware watchpoints
3823 Depending on your system, watchpoints may be implemented in software or
3824 hardware. @value{GDBN} does software watchpointing by single-stepping your
3825 program and testing the variable's value each time, which is hundreds of
3826 times slower than normal execution. (But this may still be worth it, to
3827 catch errors where you have no clue what part of your program is the
3830 On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
3831 x86-based targets, @value{GDBN} includes support for hardware
3832 watchpoints, which do not slow down the running of your program.
3836 @item watch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
3837 Set a watchpoint for an expression. @value{GDBN} will break when the
3838 expression @var{expr} is written into by the program and its value
3839 changes. The simplest (and the most popular) use of this command is
3840 to watch the value of a single variable:
3843 (@value{GDBP}) watch foo
3846 If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3847 argument, @value{GDBN} breaks only when the thread identified by
3848 @var{threadnum} changes the value of @var{expr}. If any other threads
3849 change the value of @var{expr}, @value{GDBN} will not break. Note
3850 that watchpoints restricted to a single thread in this way only work
3851 with Hardware Watchpoints.
3853 Ordinarily a watchpoint respects the scope of variables in @var{expr}
3854 (see below). The @code{-location} argument tells @value{GDBN} to
3855 instead watch the memory referred to by @var{expr}. In this case,
3856 @value{GDBN} will evaluate @var{expr}, take the address of the result,
3857 and watch the memory at that address. The type of the result is used
3858 to determine the size of the watched memory. If the expression's
3859 result does not have an address, then @value{GDBN} will print an
3862 The @code{@r{[}mask @var{maskvalue}@r{]}} argument allows creation
3863 of masked watchpoints, if the current architecture supports this
3864 feature (e.g., PowerPC Embedded architecture, see @ref{PowerPC
3865 Embedded}.) A @dfn{masked watchpoint} specifies a mask in addition
3866 to an address to watch. The mask specifies that some bits of an address
3867 (the bits which are reset in the mask) should be ignored when matching
3868 the address accessed by the inferior against the watchpoint address.
3869 Thus, a masked watchpoint watches many addresses simultaneously---those
3870 addresses whose unmasked bits are identical to the unmasked bits in the
3871 watchpoint address. The @code{mask} argument implies @code{-location}.
3875 (@value{GDBP}) watch foo mask 0xffff00ff
3876 (@value{GDBP}) watch *0xdeadbeef mask 0xffffff00
3880 @item rwatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
3881 Set a watchpoint that will break when the value of @var{expr} is read
3885 @item awatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
3886 Set a watchpoint that will break when @var{expr} is either read from
3887 or written into by the program.
3889 @kindex info watchpoints @r{[}@var{n}@dots{}@r{]}
3890 @item info watchpoints @r{[}@var{n}@dots{}@r{]}
3891 This command prints a list of watchpoints, using the same format as
3892 @code{info break} (@pxref{Set Breaks}).
3895 If you watch for a change in a numerically entered address you need to
3896 dereference it, as the address itself is just a constant number which will
3897 never change. @value{GDBN} refuses to create a watchpoint that watches
3898 a never-changing value:
3901 (@value{GDBP}) watch 0x600850
3902 Cannot watch constant value 0x600850.
3903 (@value{GDBP}) watch *(int *) 0x600850
3904 Watchpoint 1: *(int *) 6293584
3907 @value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3908 watchpoints execute very quickly, and the debugger reports a change in
3909 value at the exact instruction where the change occurs. If @value{GDBN}
3910 cannot set a hardware watchpoint, it sets a software watchpoint, which
3911 executes more slowly and reports the change in value at the next
3912 @emph{statement}, not the instruction, after the change occurs.
3914 @cindex use only software watchpoints
3915 You can force @value{GDBN} to use only software watchpoints with the
3916 @kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3917 zero, @value{GDBN} will never try to use hardware watchpoints, even if
3918 the underlying system supports them. (Note that hardware-assisted
3919 watchpoints that were set @emph{before} setting
3920 @code{can-use-hw-watchpoints} to zero will still use the hardware
3921 mechanism of watching expression values.)
3924 @item set can-use-hw-watchpoints
3925 @kindex set can-use-hw-watchpoints
3926 Set whether or not to use hardware watchpoints.
3928 @item show can-use-hw-watchpoints
3929 @kindex show can-use-hw-watchpoints
3930 Show the current mode of using hardware watchpoints.
3933 For remote targets, you can restrict the number of hardware
3934 watchpoints @value{GDBN} will use, see @ref{set remote
3935 hardware-breakpoint-limit}.
3937 When you issue the @code{watch} command, @value{GDBN} reports
3940 Hardware watchpoint @var{num}: @var{expr}
3944 if it was able to set a hardware watchpoint.
3946 Currently, the @code{awatch} and @code{rwatch} commands can only set
3947 hardware watchpoints, because accesses to data that don't change the
3948 value of the watched expression cannot be detected without examining
3949 every instruction as it is being executed, and @value{GDBN} does not do
3950 that currently. If @value{GDBN} finds that it is unable to set a
3951 hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3952 will print a message like this:
3955 Expression cannot be implemented with read/access watchpoint.
3958 Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3959 data type of the watched expression is wider than what a hardware
3960 watchpoint on the target machine can handle. For example, some systems
3961 can only watch regions that are up to 4 bytes wide; on such systems you
3962 cannot set hardware watchpoints for an expression that yields a
3963 double-precision floating-point number (which is typically 8 bytes
3964 wide). As a work-around, it might be possible to break the large region
3965 into a series of smaller ones and watch them with separate watchpoints.
3967 If you set too many hardware watchpoints, @value{GDBN} might be unable
3968 to insert all of them when you resume the execution of your program.
3969 Since the precise number of active watchpoints is unknown until such
3970 time as the program is about to be resumed, @value{GDBN} might not be
3971 able to warn you about this when you set the watchpoints, and the
3972 warning will be printed only when the program is resumed:
3975 Hardware watchpoint @var{num}: Could not insert watchpoint
3979 If this happens, delete or disable some of the watchpoints.
3981 Watching complex expressions that reference many variables can also
3982 exhaust the resources available for hardware-assisted watchpoints.
3983 That's because @value{GDBN} needs to watch every variable in the
3984 expression with separately allocated resources.
3986 If you call a function interactively using @code{print} or @code{call},
3987 any watchpoints you have set will be inactive until @value{GDBN} reaches another
3988 kind of breakpoint or the call completes.
3990 @value{GDBN} automatically deletes watchpoints that watch local
3991 (automatic) variables, or expressions that involve such variables, when
3992 they go out of scope, that is, when the execution leaves the block in
3993 which these variables were defined. In particular, when the program
3994 being debugged terminates, @emph{all} local variables go out of scope,
3995 and so only watchpoints that watch global variables remain set. If you
3996 rerun the program, you will need to set all such watchpoints again. One
3997 way of doing that would be to set a code breakpoint at the entry to the
3998 @code{main} function and when it breaks, set all the watchpoints.
4000 @cindex watchpoints and threads
4001 @cindex threads and watchpoints
4002 In multi-threaded programs, watchpoints will detect changes to the
4003 watched expression from every thread.
4006 @emph{Warning:} In multi-threaded programs, software watchpoints
4007 have only limited usefulness. If @value{GDBN} creates a software
4008 watchpoint, it can only watch the value of an expression @emph{in a
4009 single thread}. If you are confident that the expression can only
4010 change due to the current thread's activity (and if you are also
4011 confident that no other thread can become current), then you can use
4012 software watchpoints as usual. However, @value{GDBN} may not notice
4013 when a non-current thread's activity changes the expression. (Hardware
4014 watchpoints, in contrast, watch an expression in all threads.)
4017 @xref{set remote hardware-watchpoint-limit}.
4019 @node Set Catchpoints
4020 @subsection Setting Catchpoints
4021 @cindex catchpoints, setting
4022 @cindex exception handlers
4023 @cindex event handling
4025 You can use @dfn{catchpoints} to cause the debugger to stop for certain
4026 kinds of program events, such as C@t{++} exceptions or the loading of a
4027 shared library. Use the @code{catch} command to set a catchpoint.
4031 @item catch @var{event}
4032 Stop when @var{event} occurs. @var{event} can be any of the following:
4035 @cindex stop on C@t{++} exceptions
4036 The throwing of a C@t{++} exception.
4039 The catching of a C@t{++} exception.
4042 @cindex Ada exception catching
4043 @cindex catch Ada exceptions
4044 An Ada exception being raised. If an exception name is specified
4045 at the end of the command (eg @code{catch exception Program_Error}),
4046 the debugger will stop only when this specific exception is raised.
4047 Otherwise, the debugger stops execution when any Ada exception is raised.
4049 When inserting an exception catchpoint on a user-defined exception whose
4050 name is identical to one of the exceptions defined by the language, the
4051 fully qualified name must be used as the exception name. Otherwise,
4052 @value{GDBN} will assume that it should stop on the pre-defined exception
4053 rather than the user-defined one. For instance, assuming an exception
4054 called @code{Constraint_Error} is defined in package @code{Pck}, then
4055 the command to use to catch such exceptions is @kbd{catch exception
4056 Pck.Constraint_Error}.
4058 @item exception unhandled
4059 An exception that was raised but is not handled by the program.
4062 A failed Ada assertion.
4065 @cindex break on fork/exec
4066 A call to @code{exec}. This is currently only available for HP-UX
4070 @itemx syscall @r{[}@var{name} @r{|} @var{number}@r{]} @dots{}
4071 @cindex break on a system call.
4072 A call to or return from a system call, a.k.a.@: @dfn{syscall}. A
4073 syscall is a mechanism for application programs to request a service
4074 from the operating system (OS) or one of the OS system services.
4075 @value{GDBN} can catch some or all of the syscalls issued by the
4076 debuggee, and show the related information for each syscall. If no
4077 argument is specified, calls to and returns from all system calls
4080 @var{name} can be any system call name that is valid for the
4081 underlying OS. Just what syscalls are valid depends on the OS. On
4082 GNU and Unix systems, you can find the full list of valid syscall
4083 names on @file{/usr/include/asm/unistd.h}.
4085 @c For MS-Windows, the syscall names and the corresponding numbers
4086 @c can be found, e.g., on this URL:
4087 @c http://www.metasploit.com/users/opcode/syscalls.html
4088 @c but we don't support Windows syscalls yet.
4090 Normally, @value{GDBN} knows in advance which syscalls are valid for
4091 each OS, so you can use the @value{GDBN} command-line completion
4092 facilities (@pxref{Completion,, command completion}) to list the
4095 You may also specify the system call numerically. A syscall's
4096 number is the value passed to the OS's syscall dispatcher to
4097 identify the requested service. When you specify the syscall by its
4098 name, @value{GDBN} uses its database of syscalls to convert the name
4099 into the corresponding numeric code, but using the number directly
4100 may be useful if @value{GDBN}'s database does not have the complete
4101 list of syscalls on your system (e.g., because @value{GDBN} lags
4102 behind the OS upgrades).
4104 The example below illustrates how this command works if you don't provide
4108 (@value{GDBP}) catch syscall
4109 Catchpoint 1 (syscall)
4111 Starting program: /tmp/catch-syscall
4113 Catchpoint 1 (call to syscall 'close'), \
4114 0xffffe424 in __kernel_vsyscall ()
4118 Catchpoint 1 (returned from syscall 'close'), \
4119 0xffffe424 in __kernel_vsyscall ()
4123 Here is an example of catching a system call by name:
4126 (@value{GDBP}) catch syscall chroot
4127 Catchpoint 1 (syscall 'chroot' [61])
4129 Starting program: /tmp/catch-syscall
4131 Catchpoint 1 (call to syscall 'chroot'), \
4132 0xffffe424 in __kernel_vsyscall ()
4136 Catchpoint 1 (returned from syscall 'chroot'), \
4137 0xffffe424 in __kernel_vsyscall ()
4141 An example of specifying a system call numerically. In the case
4142 below, the syscall number has a corresponding entry in the XML
4143 file, so @value{GDBN} finds its name and prints it:
4146 (@value{GDBP}) catch syscall 252
4147 Catchpoint 1 (syscall(s) 'exit_group')
4149 Starting program: /tmp/catch-syscall
4151 Catchpoint 1 (call to syscall 'exit_group'), \
4152 0xffffe424 in __kernel_vsyscall ()
4156 Program exited normally.
4160 However, there can be situations when there is no corresponding name
4161 in XML file for that syscall number. In this case, @value{GDBN} prints
4162 a warning message saying that it was not able to find the syscall name,
4163 but the catchpoint will be set anyway. See the example below:
4166 (@value{GDBP}) catch syscall 764
4167 warning: The number '764' does not represent a known syscall.
4168 Catchpoint 2 (syscall 764)
4172 If you configure @value{GDBN} using the @samp{--without-expat} option,
4173 it will not be able to display syscall names. Also, if your
4174 architecture does not have an XML file describing its system calls,
4175 you will not be able to see the syscall names. It is important to
4176 notice that these two features are used for accessing the syscall
4177 name database. In either case, you will see a warning like this:
4180 (@value{GDBP}) catch syscall
4181 warning: Could not open "syscalls/i386-linux.xml"
4182 warning: Could not load the syscall XML file 'syscalls/i386-linux.xml'.
4183 GDB will not be able to display syscall names.
4184 Catchpoint 1 (syscall)
4188 Of course, the file name will change depending on your architecture and system.
4190 Still using the example above, you can also try to catch a syscall by its
4191 number. In this case, you would see something like:
4194 (@value{GDBP}) catch syscall 252
4195 Catchpoint 1 (syscall(s) 252)
4198 Again, in this case @value{GDBN} would not be able to display syscall's names.
4201 A call to @code{fork}. This is currently only available for HP-UX
4205 A call to @code{vfork}. This is currently only available for HP-UX
4208 @item load @r{[}regexp@r{]}
4209 @itemx unload @r{[}regexp@r{]}
4210 The loading or unloading of a shared library. If @var{regexp} is
4211 given, then the catchpoint will stop only if the regular expression
4212 matches one of the affected libraries.
4216 @item tcatch @var{event}
4217 Set a catchpoint that is enabled only for one stop. The catchpoint is
4218 automatically deleted after the first time the event is caught.
4222 Use the @code{info break} command to list the current catchpoints.
4224 There are currently some limitations to C@t{++} exception handling
4225 (@code{catch throw} and @code{catch catch}) in @value{GDBN}:
4229 If you call a function interactively, @value{GDBN} normally returns
4230 control to you when the function has finished executing. If the call
4231 raises an exception, however, the call may bypass the mechanism that
4232 returns control to you and cause your program either to abort or to
4233 simply continue running until it hits a breakpoint, catches a signal
4234 that @value{GDBN} is listening for, or exits. This is the case even if
4235 you set a catchpoint for the exception; catchpoints on exceptions are
4236 disabled within interactive calls.
4239 You cannot raise an exception interactively.
4242 You cannot install an exception handler interactively.
4245 @cindex raise exceptions
4246 Sometimes @code{catch} is not the best way to debug exception handling:
4247 if you need to know exactly where an exception is raised, it is better to
4248 stop @emph{before} the exception handler is called, since that way you
4249 can see the stack before any unwinding takes place. If you set a
4250 breakpoint in an exception handler instead, it may not be easy to find
4251 out where the exception was raised.
4253 To stop just before an exception handler is called, you need some
4254 knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
4255 raised by calling a library function named @code{__raise_exception}
4256 which has the following ANSI C interface:
4259 /* @var{addr} is where the exception identifier is stored.
4260 @var{id} is the exception identifier. */
4261 void __raise_exception (void **addr, void *id);
4265 To make the debugger catch all exceptions before any stack
4266 unwinding takes place, set a breakpoint on @code{__raise_exception}
4267 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
4269 With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
4270 that depends on the value of @var{id}, you can stop your program when
4271 a specific exception is raised. You can use multiple conditional
4272 breakpoints to stop your program when any of a number of exceptions are
4277 @subsection Deleting Breakpoints
4279 @cindex clearing breakpoints, watchpoints, catchpoints
4280 @cindex deleting breakpoints, watchpoints, catchpoints
4281 It is often necessary to eliminate a breakpoint, watchpoint, or
4282 catchpoint once it has done its job and you no longer want your program
4283 to stop there. This is called @dfn{deleting} the breakpoint. A
4284 breakpoint that has been deleted no longer exists; it is forgotten.
4286 With the @code{clear} command you can delete breakpoints according to
4287 where they are in your program. With the @code{delete} command you can
4288 delete individual breakpoints, watchpoints, or catchpoints by specifying
4289 their breakpoint numbers.
4291 It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
4292 automatically ignores breakpoints on the first instruction to be executed
4293 when you continue execution without changing the execution address.
4298 Delete any breakpoints at the next instruction to be executed in the
4299 selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
4300 the innermost frame is selected, this is a good way to delete a
4301 breakpoint where your program just stopped.
4303 @item clear @var{location}
4304 Delete any breakpoints set at the specified @var{location}.
4305 @xref{Specify Location}, for the various forms of @var{location}; the
4306 most useful ones are listed below:
4309 @item clear @var{function}
4310 @itemx clear @var{filename}:@var{function}
4311 Delete any breakpoints set at entry to the named @var{function}.
4313 @item clear @var{linenum}
4314 @itemx clear @var{filename}:@var{linenum}
4315 Delete any breakpoints set at or within the code of the specified
4316 @var{linenum} of the specified @var{filename}.
4319 @cindex delete breakpoints
4321 @kindex d @r{(@code{delete})}
4322 @item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
4323 Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
4324 ranges specified as arguments. If no argument is specified, delete all
4325 breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
4326 confirm off}). You can abbreviate this command as @code{d}.
4330 @subsection Disabling Breakpoints
4332 @cindex enable/disable a breakpoint
4333 Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
4334 prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
4335 it had been deleted, but remembers the information on the breakpoint so
4336 that you can @dfn{enable} it again later.
4338 You disable and enable breakpoints, watchpoints, and catchpoints with
4339 the @code{enable} and @code{disable} commands, optionally specifying
4340 one or more breakpoint numbers as arguments. Use @code{info break} to
4341 print a list of all breakpoints, watchpoints, and catchpoints if you
4342 do not know which numbers to use.
4344 Disabling and enabling a breakpoint that has multiple locations
4345 affects all of its locations.
4347 A breakpoint, watchpoint, or catchpoint can have any of several
4348 different states of enablement:
4352 Enabled. The breakpoint stops your program. A breakpoint set
4353 with the @code{break} command starts out in this state.
4355 Disabled. The breakpoint has no effect on your program.
4357 Enabled once. The breakpoint stops your program, but then becomes
4360 Enabled for a count. The breakpoint stops your program for the next
4361 N times, then becomes disabled.
4363 Enabled for deletion. The breakpoint stops your program, but
4364 immediately after it does so it is deleted permanently. A breakpoint
4365 set with the @code{tbreak} command starts out in this state.
4368 You can use the following commands to enable or disable breakpoints,
4369 watchpoints, and catchpoints:
4373 @kindex dis @r{(@code{disable})}
4374 @item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
4375 Disable the specified breakpoints---or all breakpoints, if none are
4376 listed. A disabled breakpoint has no effect but is not forgotten. All
4377 options such as ignore-counts, conditions and commands are remembered in
4378 case the breakpoint is enabled again later. You may abbreviate
4379 @code{disable} as @code{dis}.
4382 @item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
4383 Enable the specified breakpoints (or all defined breakpoints). They
4384 become effective once again in stopping your program.
4386 @item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
4387 Enable the specified breakpoints temporarily. @value{GDBN} disables any
4388 of these breakpoints immediately after stopping your program.
4390 @item enable @r{[}breakpoints@r{]} count @var{count} @var{range}@dots{}
4391 Enable the specified breakpoints temporarily. @value{GDBN} records
4392 @var{count} with each of the specified breakpoints, and decrements a
4393 breakpoint's count when it is hit. When any count reaches 0,
4394 @value{GDBN} disables that breakpoint. If a breakpoint has an ignore
4395 count (@pxref{Conditions, ,Break Conditions}), that will be
4396 decremented to 0 before @var{count} is affected.
4398 @item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
4399 Enable the specified breakpoints to work once, then die. @value{GDBN}
4400 deletes any of these breakpoints as soon as your program stops there.
4401 Breakpoints set by the @code{tbreak} command start out in this state.
4404 @c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
4405 @c confusing: tbreak is also initially enabled.
4406 Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
4407 ,Setting Breakpoints}), breakpoints that you set are initially enabled;
4408 subsequently, they become disabled or enabled only when you use one of
4409 the commands above. (The command @code{until} can set and delete a
4410 breakpoint of its own, but it does not change the state of your other
4411 breakpoints; see @ref{Continuing and Stepping, ,Continuing and
4415 @subsection Break Conditions
4416 @cindex conditional breakpoints
4417 @cindex breakpoint conditions
4419 @c FIXME what is scope of break condition expr? Context where wanted?
4420 @c in particular for a watchpoint?
4421 The simplest sort of breakpoint breaks every time your program reaches a
4422 specified place. You can also specify a @dfn{condition} for a
4423 breakpoint. A condition is just a Boolean expression in your
4424 programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
4425 a condition evaluates the expression each time your program reaches it,
4426 and your program stops only if the condition is @emph{true}.
4428 This is the converse of using assertions for program validation; in that
4429 situation, you want to stop when the assertion is violated---that is,
4430 when the condition is false. In C, if you want to test an assertion expressed
4431 by the condition @var{assert}, you should set the condition
4432 @samp{! @var{assert}} on the appropriate breakpoint.
4434 Conditions are also accepted for watchpoints; you may not need them,
4435 since a watchpoint is inspecting the value of an expression anyhow---but
4436 it might be simpler, say, to just set a watchpoint on a variable name,
4437 and specify a condition that tests whether the new value is an interesting
4440 Break conditions can have side effects, and may even call functions in
4441 your program. This can be useful, for example, to activate functions
4442 that log program progress, or to use your own print functions to
4443 format special data structures. The effects are completely predictable
4444 unless there is another enabled breakpoint at the same address. (In
4445 that case, @value{GDBN} might see the other breakpoint first and stop your
4446 program without checking the condition of this one.) Note that
4447 breakpoint commands are usually more convenient and flexible than break
4449 purpose of performing side effects when a breakpoint is reached
4450 (@pxref{Break Commands, ,Breakpoint Command Lists}).
4452 Breakpoint conditions can also be evaluated on the target's side if
4453 the target supports it. Instead of evaluating the conditions locally,
4454 @value{GDBN} encodes the expression into an agent expression
4455 (@pxref{Agent Expressions}) suitable for execution on the target,
4456 independently of @value{GDBN}. Global variables become raw memory
4457 locations, locals become stack accesses, and so forth.
4459 In this case, @value{GDBN} will only be notified of a breakpoint trigger
4460 when its condition evaluates to true. This mechanism may provide faster
4461 response times depending on the performance characteristics of the target
4462 since it does not need to keep @value{GDBN} informed about
4463 every breakpoint trigger, even those with false conditions.
4465 Break conditions can be specified when a breakpoint is set, by using
4466 @samp{if} in the arguments to the @code{break} command. @xref{Set
4467 Breaks, ,Setting Breakpoints}. They can also be changed at any time
4468 with the @code{condition} command.
4470 You can also use the @code{if} keyword with the @code{watch} command.
4471 The @code{catch} command does not recognize the @code{if} keyword;
4472 @code{condition} is the only way to impose a further condition on a
4477 @item condition @var{bnum} @var{expression}
4478 Specify @var{expression} as the break condition for breakpoint,
4479 watchpoint, or catchpoint number @var{bnum}. After you set a condition,
4480 breakpoint @var{bnum} stops your program only if the value of
4481 @var{expression} is true (nonzero, in C). When you use
4482 @code{condition}, @value{GDBN} checks @var{expression} immediately for
4483 syntactic correctness, and to determine whether symbols in it have
4484 referents in the context of your breakpoint. If @var{expression} uses
4485 symbols not referenced in the context of the breakpoint, @value{GDBN}
4486 prints an error message:
4489 No symbol "foo" in current context.
4494 not actually evaluate @var{expression} at the time the @code{condition}
4495 command (or a command that sets a breakpoint with a condition, like
4496 @code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
4498 @item condition @var{bnum}
4499 Remove the condition from breakpoint number @var{bnum}. It becomes
4500 an ordinary unconditional breakpoint.
4503 @cindex ignore count (of breakpoint)
4504 A special case of a breakpoint condition is to stop only when the
4505 breakpoint has been reached a certain number of times. This is so
4506 useful that there is a special way to do it, using the @dfn{ignore
4507 count} of the breakpoint. Every breakpoint has an ignore count, which
4508 is an integer. Most of the time, the ignore count is zero, and
4509 therefore has no effect. But if your program reaches a breakpoint whose
4510 ignore count is positive, then instead of stopping, it just decrements
4511 the ignore count by one and continues. As a result, if the ignore count
4512 value is @var{n}, the breakpoint does not stop the next @var{n} times
4513 your program reaches it.
4517 @item ignore @var{bnum} @var{count}
4518 Set the ignore count of breakpoint number @var{bnum} to @var{count}.
4519 The next @var{count} times the breakpoint is reached, your program's
4520 execution does not stop; other than to decrement the ignore count, @value{GDBN}
4523 To make the breakpoint stop the next time it is reached, specify
4526 When you use @code{continue} to resume execution of your program from a
4527 breakpoint, you can specify an ignore count directly as an argument to
4528 @code{continue}, rather than using @code{ignore}. @xref{Continuing and
4529 Stepping,,Continuing and Stepping}.
4531 If a breakpoint has a positive ignore count and a condition, the
4532 condition is not checked. Once the ignore count reaches zero,
4533 @value{GDBN} resumes checking the condition.
4535 You could achieve the effect of the ignore count with a condition such
4536 as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
4537 is decremented each time. @xref{Convenience Vars, ,Convenience
4541 Ignore counts apply to breakpoints, watchpoints, and catchpoints.
4544 @node Break Commands
4545 @subsection Breakpoint Command Lists
4547 @cindex breakpoint commands
4548 You can give any breakpoint (or watchpoint or catchpoint) a series of
4549 commands to execute when your program stops due to that breakpoint. For
4550 example, you might want to print the values of certain expressions, or
4551 enable other breakpoints.
4555 @kindex end@r{ (breakpoint commands)}
4556 @item commands @r{[}@var{range}@dots{}@r{]}
4557 @itemx @dots{} @var{command-list} @dots{}
4559 Specify a list of commands for the given breakpoints. The commands
4560 themselves appear on the following lines. Type a line containing just
4561 @code{end} to terminate the commands.
4563 To remove all commands from a breakpoint, type @code{commands} and
4564 follow it immediately with @code{end}; that is, give no commands.
4566 With no argument, @code{commands} refers to the last breakpoint,
4567 watchpoint, or catchpoint set (not to the breakpoint most recently
4568 encountered). If the most recent breakpoints were set with a single
4569 command, then the @code{commands} will apply to all the breakpoints
4570 set by that command. This applies to breakpoints set by
4571 @code{rbreak}, and also applies when a single @code{break} command
4572 creates multiple breakpoints (@pxref{Ambiguous Expressions,,Ambiguous
4576 Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
4577 disabled within a @var{command-list}.
4579 You can use breakpoint commands to start your program up again. Simply
4580 use the @code{continue} command, or @code{step}, or any other command
4581 that resumes execution.
4583 Any other commands in the command list, after a command that resumes
4584 execution, are ignored. This is because any time you resume execution
4585 (even with a simple @code{next} or @code{step}), you may encounter
4586 another breakpoint---which could have its own command list, leading to
4587 ambiguities about which list to execute.
4590 If the first command you specify in a command list is @code{silent}, the
4591 usual message about stopping at a breakpoint is not printed. This may
4592 be desirable for breakpoints that are to print a specific message and
4593 then continue. If none of the remaining commands print anything, you
4594 see no sign that the breakpoint was reached. @code{silent} is
4595 meaningful only at the beginning of a breakpoint command list.
4597 The commands @code{echo}, @code{output}, and @code{printf} allow you to
4598 print precisely controlled output, and are often useful in silent
4599 breakpoints. @xref{Output, ,Commands for Controlled Output}.
4601 For example, here is how you could use breakpoint commands to print the
4602 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
4608 printf "x is %d\n",x
4613 One application for breakpoint commands is to compensate for one bug so
4614 you can test for another. Put a breakpoint just after the erroneous line
4615 of code, give it a condition to detect the case in which something
4616 erroneous has been done, and give it commands to assign correct values
4617 to any variables that need them. End with the @code{continue} command
4618 so that your program does not stop, and start with the @code{silent}
4619 command so that no output is produced. Here is an example:
4630 @node Save Breakpoints
4631 @subsection How to save breakpoints to a file
4633 To save breakpoint definitions to a file use the @w{@code{save
4634 breakpoints}} command.
4637 @kindex save breakpoints
4638 @cindex save breakpoints to a file for future sessions
4639 @item save breakpoints [@var{filename}]
4640 This command saves all current breakpoint definitions together with
4641 their commands and ignore counts, into a file @file{@var{filename}}
4642 suitable for use in a later debugging session. This includes all
4643 types of breakpoints (breakpoints, watchpoints, catchpoints,
4644 tracepoints). To read the saved breakpoint definitions, use the
4645 @code{source} command (@pxref{Command Files}). Note that watchpoints
4646 with expressions involving local variables may fail to be recreated
4647 because it may not be possible to access the context where the
4648 watchpoint is valid anymore. Because the saved breakpoint definitions
4649 are simply a sequence of @value{GDBN} commands that recreate the
4650 breakpoints, you can edit the file in your favorite editing program,
4651 and remove the breakpoint definitions you're not interested in, or
4652 that can no longer be recreated.
4655 @c @ifclear BARETARGET
4656 @node Error in Breakpoints
4657 @subsection ``Cannot insert breakpoints''
4659 If you request too many active hardware-assisted breakpoints and
4660 watchpoints, you will see this error message:
4662 @c FIXME: the precise wording of this message may change; the relevant
4663 @c source change is not committed yet (Sep 3, 1999).
4665 Stopped; cannot insert breakpoints.
4666 You may have requested too many hardware breakpoints and watchpoints.
4670 This message is printed when you attempt to resume the program, since
4671 only then @value{GDBN} knows exactly how many hardware breakpoints and
4672 watchpoints it needs to insert.
4674 When this message is printed, you need to disable or remove some of the
4675 hardware-assisted breakpoints and watchpoints, and then continue.
4677 @node Breakpoint-related Warnings
4678 @subsection ``Breakpoint address adjusted...''
4679 @cindex breakpoint address adjusted
4681 Some processor architectures place constraints on the addresses at
4682 which breakpoints may be placed. For architectures thus constrained,
4683 @value{GDBN} will attempt to adjust the breakpoint's address to comply
4684 with the constraints dictated by the architecture.
4686 One example of such an architecture is the Fujitsu FR-V. The FR-V is
4687 a VLIW architecture in which a number of RISC-like instructions may be
4688 bundled together for parallel execution. The FR-V architecture
4689 constrains the location of a breakpoint instruction within such a
4690 bundle to the instruction with the lowest address. @value{GDBN}
4691 honors this constraint by adjusting a breakpoint's address to the
4692 first in the bundle.
4694 It is not uncommon for optimized code to have bundles which contain
4695 instructions from different source statements, thus it may happen that
4696 a breakpoint's address will be adjusted from one source statement to
4697 another. Since this adjustment may significantly alter @value{GDBN}'s
4698 breakpoint related behavior from what the user expects, a warning is
4699 printed when the breakpoint is first set and also when the breakpoint
4702 A warning like the one below is printed when setting a breakpoint
4703 that's been subject to address adjustment:
4706 warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
4709 Such warnings are printed both for user settable and @value{GDBN}'s
4710 internal breakpoints. If you see one of these warnings, you should
4711 verify that a breakpoint set at the adjusted address will have the
4712 desired affect. If not, the breakpoint in question may be removed and
4713 other breakpoints may be set which will have the desired behavior.
4714 E.g., it may be sufficient to place the breakpoint at a later
4715 instruction. A conditional breakpoint may also be useful in some
4716 cases to prevent the breakpoint from triggering too often.
4718 @value{GDBN} will also issue a warning when stopping at one of these
4719 adjusted breakpoints:
4722 warning: Breakpoint 1 address previously adjusted from 0x00010414
4726 When this warning is encountered, it may be too late to take remedial
4727 action except in cases where the breakpoint is hit earlier or more
4728 frequently than expected.
4730 @node Continuing and Stepping
4731 @section Continuing and Stepping
4735 @cindex resuming execution
4736 @dfn{Continuing} means resuming program execution until your program
4737 completes normally. In contrast, @dfn{stepping} means executing just
4738 one more ``step'' of your program, where ``step'' may mean either one
4739 line of source code, or one machine instruction (depending on what
4740 particular command you use). Either when continuing or when stepping,
4741 your program may stop even sooner, due to a breakpoint or a signal. (If
4742 it stops due to a signal, you may want to use @code{handle}, or use
4743 @samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
4747 @kindex c @r{(@code{continue})}
4748 @kindex fg @r{(resume foreground execution)}
4749 @item continue @r{[}@var{ignore-count}@r{]}
4750 @itemx c @r{[}@var{ignore-count}@r{]}
4751 @itemx fg @r{[}@var{ignore-count}@r{]}
4752 Resume program execution, at the address where your program last stopped;
4753 any breakpoints set at that address are bypassed. The optional argument
4754 @var{ignore-count} allows you to specify a further number of times to
4755 ignore a breakpoint at this location; its effect is like that of
4756 @code{ignore} (@pxref{Conditions, ,Break Conditions}).
4758 The argument @var{ignore-count} is meaningful only when your program
4759 stopped due to a breakpoint. At other times, the argument to
4760 @code{continue} is ignored.
4762 The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4763 debugged program is deemed to be the foreground program) are provided
4764 purely for convenience, and have exactly the same behavior as
4768 To resume execution at a different place, you can use @code{return}
4769 (@pxref{Returning, ,Returning from a Function}) to go back to the
4770 calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
4771 Different Address}) to go to an arbitrary location in your program.
4773 A typical technique for using stepping is to set a breakpoint
4774 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
4775 beginning of the function or the section of your program where a problem
4776 is believed to lie, run your program until it stops at that breakpoint,
4777 and then step through the suspect area, examining the variables that are
4778 interesting, until you see the problem happen.
4782 @kindex s @r{(@code{step})}
4784 Continue running your program until control reaches a different source
4785 line, then stop it and return control to @value{GDBN}. This command is
4786 abbreviated @code{s}.
4789 @c "without debugging information" is imprecise; actually "without line
4790 @c numbers in the debugging information". (gcc -g1 has debugging info but
4791 @c not line numbers). But it seems complex to try to make that
4792 @c distinction here.
4793 @emph{Warning:} If you use the @code{step} command while control is
4794 within a function that was compiled without debugging information,
4795 execution proceeds until control reaches a function that does have
4796 debugging information. Likewise, it will not step into a function which
4797 is compiled without debugging information. To step through functions
4798 without debugging information, use the @code{stepi} command, described
4802 The @code{step} command only stops at the first instruction of a source
4803 line. This prevents the multiple stops that could otherwise occur in
4804 @code{switch} statements, @code{for} loops, etc. @code{step} continues
4805 to stop if a function that has debugging information is called within
4806 the line. In other words, @code{step} @emph{steps inside} any functions
4807 called within the line.
4809 Also, the @code{step} command only enters a function if there is line
4810 number information for the function. Otherwise it acts like the
4811 @code{next} command. This avoids problems when using @code{cc -gl}
4812 on MIPS machines. Previously, @code{step} entered subroutines if there
4813 was any debugging information about the routine.
4815 @item step @var{count}
4816 Continue running as in @code{step}, but do so @var{count} times. If a
4817 breakpoint is reached, or a signal not related to stepping occurs before
4818 @var{count} steps, stepping stops right away.
4821 @kindex n @r{(@code{next})}
4822 @item next @r{[}@var{count}@r{]}
4823 Continue to the next source line in the current (innermost) stack frame.
4824 This is similar to @code{step}, but function calls that appear within
4825 the line of code are executed without stopping. Execution stops when
4826 control reaches a different line of code at the original stack level
4827 that was executing when you gave the @code{next} command. This command
4828 is abbreviated @code{n}.
4830 An argument @var{count} is a repeat count, as for @code{step}.
4833 @c FIX ME!! Do we delete this, or is there a way it fits in with
4834 @c the following paragraph? --- Vctoria
4836 @c @code{next} within a function that lacks debugging information acts like
4837 @c @code{step}, but any function calls appearing within the code of the
4838 @c function are executed without stopping.
4840 The @code{next} command only stops at the first instruction of a
4841 source line. This prevents multiple stops that could otherwise occur in
4842 @code{switch} statements, @code{for} loops, etc.
4844 @kindex set step-mode
4846 @cindex functions without line info, and stepping
4847 @cindex stepping into functions with no line info
4848 @itemx set step-mode on
4849 The @code{set step-mode on} command causes the @code{step} command to
4850 stop at the first instruction of a function which contains no debug line
4851 information rather than stepping over it.
4853 This is useful in cases where you may be interested in inspecting the
4854 machine instructions of a function which has no symbolic info and do not
4855 want @value{GDBN} to automatically skip over this function.
4857 @item set step-mode off
4858 Causes the @code{step} command to step over any functions which contains no
4859 debug information. This is the default.
4861 @item show step-mode
4862 Show whether @value{GDBN} will stop in or step over functions without
4863 source line debug information.
4866 @kindex fin @r{(@code{finish})}
4868 Continue running until just after function in the selected stack frame
4869 returns. Print the returned value (if any). This command can be
4870 abbreviated as @code{fin}.
4872 Contrast this with the @code{return} command (@pxref{Returning,
4873 ,Returning from a Function}).
4876 @kindex u @r{(@code{until})}
4877 @cindex run until specified location
4880 Continue running until a source line past the current line, in the
4881 current stack frame, is reached. This command is used to avoid single
4882 stepping through a loop more than once. It is like the @code{next}
4883 command, except that when @code{until} encounters a jump, it
4884 automatically continues execution until the program counter is greater
4885 than the address of the jump.
4887 This means that when you reach the end of a loop after single stepping
4888 though it, @code{until} makes your program continue execution until it
4889 exits the loop. In contrast, a @code{next} command at the end of a loop
4890 simply steps back to the beginning of the loop, which forces you to step
4891 through the next iteration.
4893 @code{until} always stops your program if it attempts to exit the current
4896 @code{until} may produce somewhat counterintuitive results if the order
4897 of machine code does not match the order of the source lines. For
4898 example, in the following excerpt from a debugging session, the @code{f}
4899 (@code{frame}) command shows that execution is stopped at line
4900 @code{206}; yet when we use @code{until}, we get to line @code{195}:
4904 #0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4906 (@value{GDBP}) until
4907 195 for ( ; argc > 0; NEXTARG) @{
4910 This happened because, for execution efficiency, the compiler had
4911 generated code for the loop closure test at the end, rather than the
4912 start, of the loop---even though the test in a C @code{for}-loop is
4913 written before the body of the loop. The @code{until} command appeared
4914 to step back to the beginning of the loop when it advanced to this
4915 expression; however, it has not really gone to an earlier
4916 statement---not in terms of the actual machine code.
4918 @code{until} with no argument works by means of single
4919 instruction stepping, and hence is slower than @code{until} with an
4922 @item until @var{location}
4923 @itemx u @var{location}
4924 Continue running your program until either the specified location is
4925 reached, or the current stack frame returns. @var{location} is any of
4926 the forms described in @ref{Specify Location}.
4927 This form of the command uses temporary breakpoints, and
4928 hence is quicker than @code{until} without an argument. The specified
4929 location is actually reached only if it is in the current frame. This
4930 implies that @code{until} can be used to skip over recursive function
4931 invocations. For instance in the code below, if the current location is
4932 line @code{96}, issuing @code{until 99} will execute the program up to
4933 line @code{99} in the same invocation of factorial, i.e., after the inner
4934 invocations have returned.
4937 94 int factorial (int value)
4939 96 if (value > 1) @{
4940 97 value *= factorial (value - 1);
4947 @kindex advance @var{location}
4948 @itemx advance @var{location}
4949 Continue running the program up to the given @var{location}. An argument is
4950 required, which should be of one of the forms described in
4951 @ref{Specify Location}.
4952 Execution will also stop upon exit from the current stack
4953 frame. This command is similar to @code{until}, but @code{advance} will
4954 not skip over recursive function calls, and the target location doesn't
4955 have to be in the same frame as the current one.
4959 @kindex si @r{(@code{stepi})}
4961 @itemx stepi @var{arg}
4963 Execute one machine instruction, then stop and return to the debugger.
4965 It is often useful to do @samp{display/i $pc} when stepping by machine
4966 instructions. This makes @value{GDBN} automatically display the next
4967 instruction to be executed, each time your program stops. @xref{Auto
4968 Display,, Automatic Display}.
4970 An argument is a repeat count, as in @code{step}.
4974 @kindex ni @r{(@code{nexti})}
4976 @itemx nexti @var{arg}
4978 Execute one machine instruction, but if it is a function call,
4979 proceed until the function returns.
4981 An argument is a repeat count, as in @code{next}.
4984 @node Skipping Over Functions and Files
4985 @section Skipping Over Functions and Files
4986 @cindex skipping over functions and files
4988 The program you are debugging may contain some functions which are
4989 uninteresting to debug. The @code{skip} comand lets you tell @value{GDBN} to
4990 skip a function or all functions in a file when stepping.
4992 For example, consider the following C function:
5003 Suppose you wish to step into the functions @code{foo} and @code{bar}, but you
5004 are not interested in stepping through @code{boring}. If you run @code{step}
5005 at line 103, you'll enter @code{boring()}, but if you run @code{next}, you'll
5006 step over both @code{foo} and @code{boring}!
5008 One solution is to @code{step} into @code{boring} and use the @code{finish}
5009 command to immediately exit it. But this can become tedious if @code{boring}
5010 is called from many places.
5012 A more flexible solution is to execute @kbd{skip boring}. This instructs
5013 @value{GDBN} never to step into @code{boring}. Now when you execute
5014 @code{step} at line 103, you'll step over @code{boring} and directly into
5017 You can also instruct @value{GDBN} to skip all functions in a file, with, for
5018 example, @code{skip file boring.c}.
5021 @kindex skip function
5022 @item skip @r{[}@var{linespec}@r{]}
5023 @itemx skip function @r{[}@var{linespec}@r{]}
5024 After running this command, the function named by @var{linespec} or the
5025 function containing the line named by @var{linespec} will be skipped over when
5026 stepping. @xref{Specify Location}.
5028 If you do not specify @var{linespec}, the function you're currently debugging
5031 (If you have a function called @code{file} that you want to skip, use
5032 @kbd{skip function file}.)
5035 @item skip file @r{[}@var{filename}@r{]}
5036 After running this command, any function whose source lives in @var{filename}
5037 will be skipped over when stepping.
5039 If you do not specify @var{filename}, functions whose source lives in the file
5040 you're currently debugging will be skipped.
5043 Skips can be listed, deleted, disabled, and enabled, much like breakpoints.
5044 These are the commands for managing your list of skips:
5048 @item info skip @r{[}@var{range}@r{]}
5049 Print details about the specified skip(s). If @var{range} is not specified,
5050 print a table with details about all functions and files marked for skipping.
5051 @code{info skip} prints the following information about each skip:
5055 A number identifying this skip.
5057 The type of this skip, either @samp{function} or @samp{file}.
5058 @item Enabled or Disabled
5059 Enabled skips are marked with @samp{y}. Disabled skips are marked with @samp{n}.
5061 For function skips, this column indicates the address in memory of the function
5062 being skipped. If you've set a function skip on a function which has not yet
5063 been loaded, this field will contain @samp{<PENDING>}. Once a shared library
5064 which has the function is loaded, @code{info skip} will show the function's
5067 For file skips, this field contains the filename being skipped. For functions
5068 skips, this field contains the function name and its line number in the file
5069 where it is defined.
5073 @item skip delete @r{[}@var{range}@r{]}
5074 Delete the specified skip(s). If @var{range} is not specified, delete all
5078 @item skip enable @r{[}@var{range}@r{]}
5079 Enable the specified skip(s). If @var{range} is not specified, enable all
5082 @kindex skip disable
5083 @item skip disable @r{[}@var{range}@r{]}
5084 Disable the specified skip(s). If @var{range} is not specified, disable all
5093 A signal is an asynchronous event that can happen in a program. The
5094 operating system defines the possible kinds of signals, and gives each
5095 kind a name and a number. For example, in Unix @code{SIGINT} is the
5096 signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
5097 @code{SIGSEGV} is the signal a program gets from referencing a place in
5098 memory far away from all the areas in use; @code{SIGALRM} occurs when
5099 the alarm clock timer goes off (which happens only if your program has
5100 requested an alarm).
5102 @cindex fatal signals
5103 Some signals, including @code{SIGALRM}, are a normal part of the
5104 functioning of your program. Others, such as @code{SIGSEGV}, indicate
5105 errors; these signals are @dfn{fatal} (they kill your program immediately) if the
5106 program has not specified in advance some other way to handle the signal.
5107 @code{SIGINT} does not indicate an error in your program, but it is normally
5108 fatal so it can carry out the purpose of the interrupt: to kill the program.
5110 @value{GDBN} has the ability to detect any occurrence of a signal in your
5111 program. You can tell @value{GDBN} in advance what to do for each kind of
5114 @cindex handling signals
5115 Normally, @value{GDBN} is set up to let the non-erroneous signals like
5116 @code{SIGALRM} be silently passed to your program
5117 (so as not to interfere with their role in the program's functioning)
5118 but to stop your program immediately whenever an error signal happens.
5119 You can change these settings with the @code{handle} command.
5122 @kindex info signals
5126 Print a table of all the kinds of signals and how @value{GDBN} has been told to
5127 handle each one. You can use this to see the signal numbers of all
5128 the defined types of signals.
5130 @item info signals @var{sig}
5131 Similar, but print information only about the specified signal number.
5133 @code{info handle} is an alias for @code{info signals}.
5136 @item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5137 Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
5138 can be the number of a signal or its name (with or without the
5139 @samp{SIG} at the beginning); a list of signal numbers of the form
5140 @samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
5141 known signals. Optional arguments @var{keywords}, described below,
5142 say what change to make.
5146 The keywords allowed by the @code{handle} command can be abbreviated.
5147 Their full names are:
5151 @value{GDBN} should not stop your program when this signal happens. It may
5152 still print a message telling you that the signal has come in.
5155 @value{GDBN} should stop your program when this signal happens. This implies
5156 the @code{print} keyword as well.
5159 @value{GDBN} should print a message when this signal happens.
5162 @value{GDBN} should not mention the occurrence of the signal at all. This
5163 implies the @code{nostop} keyword as well.
5167 @value{GDBN} should allow your program to see this signal; your program
5168 can handle the signal, or else it may terminate if the signal is fatal
5169 and not handled. @code{pass} and @code{noignore} are synonyms.
5173 @value{GDBN} should not allow your program to see this signal.
5174 @code{nopass} and @code{ignore} are synonyms.
5178 When a signal stops your program, the signal is not visible to the
5180 continue. Your program sees the signal then, if @code{pass} is in
5181 effect for the signal in question @emph{at that time}. In other words,
5182 after @value{GDBN} reports a signal, you can use the @code{handle}
5183 command with @code{pass} or @code{nopass} to control whether your
5184 program sees that signal when you continue.
5186 The default is set to @code{nostop}, @code{noprint}, @code{pass} for
5187 non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
5188 @code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
5191 You can also use the @code{signal} command to prevent your program from
5192 seeing a signal, or cause it to see a signal it normally would not see,
5193 or to give it any signal at any time. For example, if your program stopped
5194 due to some sort of memory reference error, you might store correct
5195 values into the erroneous variables and continue, hoping to see more
5196 execution; but your program would probably terminate immediately as
5197 a result of the fatal signal once it saw the signal. To prevent this,
5198 you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
5201 @cindex extra signal information
5202 @anchor{extra signal information}
5204 On some targets, @value{GDBN} can inspect extra signal information
5205 associated with the intercepted signal, before it is actually
5206 delivered to the program being debugged. This information is exported
5207 by the convenience variable @code{$_siginfo}, and consists of data
5208 that is passed by the kernel to the signal handler at the time of the
5209 receipt of a signal. The data type of the information itself is
5210 target dependent. You can see the data type using the @code{ptype
5211 $_siginfo} command. On Unix systems, it typically corresponds to the
5212 standard @code{siginfo_t} type, as defined in the @file{signal.h}
5215 Here's an example, on a @sc{gnu}/Linux system, printing the stray
5216 referenced address that raised a segmentation fault.
5220 (@value{GDBP}) continue
5221 Program received signal SIGSEGV, Segmentation fault.
5222 0x0000000000400766 in main ()
5224 (@value{GDBP}) ptype $_siginfo
5231 struct @{...@} _kill;
5232 struct @{...@} _timer;
5234 struct @{...@} _sigchld;
5235 struct @{...@} _sigfault;
5236 struct @{...@} _sigpoll;
5239 (@value{GDBP}) ptype $_siginfo._sifields._sigfault
5243 (@value{GDBP}) p $_siginfo._sifields._sigfault.si_addr
5244 $1 = (void *) 0x7ffff7ff7000
5248 Depending on target support, @code{$_siginfo} may also be writable.
5251 @section Stopping and Starting Multi-thread Programs
5253 @cindex stopped threads
5254 @cindex threads, stopped
5256 @cindex continuing threads
5257 @cindex threads, continuing
5259 @value{GDBN} supports debugging programs with multiple threads
5260 (@pxref{Threads,, Debugging Programs with Multiple Threads}). There
5261 are two modes of controlling execution of your program within the
5262 debugger. In the default mode, referred to as @dfn{all-stop mode},
5263 when any thread in your program stops (for example, at a breakpoint
5264 or while being stepped), all other threads in the program are also stopped by
5265 @value{GDBN}. On some targets, @value{GDBN} also supports
5266 @dfn{non-stop mode}, in which other threads can continue to run freely while
5267 you examine the stopped thread in the debugger.
5270 * All-Stop Mode:: All threads stop when GDB takes control
5271 * Non-Stop Mode:: Other threads continue to execute
5272 * Background Execution:: Running your program asynchronously
5273 * Thread-Specific Breakpoints:: Controlling breakpoints
5274 * Interrupted System Calls:: GDB may interfere with system calls
5275 * Observer Mode:: GDB does not alter program behavior
5279 @subsection All-Stop Mode
5281 @cindex all-stop mode
5283 In all-stop mode, whenever your program stops under @value{GDBN} for any reason,
5284 @emph{all} threads of execution stop, not just the current thread. This
5285 allows you to examine the overall state of the program, including
5286 switching between threads, without worrying that things may change
5289 Conversely, whenever you restart the program, @emph{all} threads start
5290 executing. @emph{This is true even when single-stepping} with commands
5291 like @code{step} or @code{next}.
5293 In particular, @value{GDBN} cannot single-step all threads in lockstep.
5294 Since thread scheduling is up to your debugging target's operating
5295 system (not controlled by @value{GDBN}), other threads may
5296 execute more than one statement while the current thread completes a
5297 single step. Moreover, in general other threads stop in the middle of a
5298 statement, rather than at a clean statement boundary, when the program
5301 You might even find your program stopped in another thread after
5302 continuing or even single-stepping. This happens whenever some other
5303 thread runs into a breakpoint, a signal, or an exception before the
5304 first thread completes whatever you requested.
5306 @cindex automatic thread selection
5307 @cindex switching threads automatically
5308 @cindex threads, automatic switching
5309 Whenever @value{GDBN} stops your program, due to a breakpoint or a
5310 signal, it automatically selects the thread where that breakpoint or
5311 signal happened. @value{GDBN} alerts you to the context switch with a
5312 message such as @samp{[Switching to Thread @var{n}]} to identify the
5315 On some OSes, you can modify @value{GDBN}'s default behavior by
5316 locking the OS scheduler to allow only a single thread to run.
5319 @item set scheduler-locking @var{mode}
5320 @cindex scheduler locking mode
5321 @cindex lock scheduler
5322 Set the scheduler locking mode. If it is @code{off}, then there is no
5323 locking and any thread may run at any time. If @code{on}, then only the
5324 current thread may run when the inferior is resumed. The @code{step}
5325 mode optimizes for single-stepping; it prevents other threads
5326 from preempting the current thread while you are stepping, so that
5327 the focus of debugging does not change unexpectedly.
5328 Other threads only rarely (or never) get a chance to run
5329 when you step. They are more likely to run when you @samp{next} over a
5330 function call, and they are completely free to run when you use commands
5331 like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
5332 thread hits a breakpoint during its timeslice, @value{GDBN} does not change
5333 the current thread away from the thread that you are debugging.
5335 @item show scheduler-locking
5336 Display the current scheduler locking mode.
5339 @cindex resume threads of multiple processes simultaneously
5340 By default, when you issue one of the execution commands such as
5341 @code{continue}, @code{next} or @code{step}, @value{GDBN} allows only
5342 threads of the current inferior to run. For example, if @value{GDBN}
5343 is attached to two inferiors, each with two threads, the
5344 @code{continue} command resumes only the two threads of the current
5345 inferior. This is useful, for example, when you debug a program that
5346 forks and you want to hold the parent stopped (so that, for instance,
5347 it doesn't run to exit), while you debug the child. In other
5348 situations, you may not be interested in inspecting the current state
5349 of any of the processes @value{GDBN} is attached to, and you may want
5350 to resume them all until some breakpoint is hit. In the latter case,
5351 you can instruct @value{GDBN} to allow all threads of all the
5352 inferiors to run with the @w{@code{set schedule-multiple}} command.
5355 @kindex set schedule-multiple
5356 @item set schedule-multiple
5357 Set the mode for allowing threads of multiple processes to be resumed
5358 when an execution command is issued. When @code{on}, all threads of
5359 all processes are allowed to run. When @code{off}, only the threads
5360 of the current process are resumed. The default is @code{off}. The
5361 @code{scheduler-locking} mode takes precedence when set to @code{on},
5362 or while you are stepping and set to @code{step}.
5364 @item show schedule-multiple
5365 Display the current mode for resuming the execution of threads of
5370 @subsection Non-Stop Mode
5372 @cindex non-stop mode
5374 @c This section is really only a place-holder, and needs to be expanded
5375 @c with more details.
5377 For some multi-threaded targets, @value{GDBN} supports an optional
5378 mode of operation in which you can examine stopped program threads in
5379 the debugger while other threads continue to execute freely. This
5380 minimizes intrusion when debugging live systems, such as programs
5381 where some threads have real-time constraints or must continue to
5382 respond to external events. This is referred to as @dfn{non-stop} mode.
5384 In non-stop mode, when a thread stops to report a debugging event,
5385 @emph{only} that thread is stopped; @value{GDBN} does not stop other
5386 threads as well, in contrast to the all-stop mode behavior. Additionally,
5387 execution commands such as @code{continue} and @code{step} apply by default
5388 only to the current thread in non-stop mode, rather than all threads as
5389 in all-stop mode. This allows you to control threads explicitly in
5390 ways that are not possible in all-stop mode --- for example, stepping
5391 one thread while allowing others to run freely, stepping
5392 one thread while holding all others stopped, or stepping several threads
5393 independently and simultaneously.
5395 To enter non-stop mode, use this sequence of commands before you run
5396 or attach to your program:
5399 # Enable the async interface.
5402 # If using the CLI, pagination breaks non-stop.
5405 # Finally, turn it on!
5409 You can use these commands to manipulate the non-stop mode setting:
5412 @kindex set non-stop
5413 @item set non-stop on
5414 Enable selection of non-stop mode.
5415 @item set non-stop off
5416 Disable selection of non-stop mode.
5417 @kindex show non-stop
5419 Show the current non-stop enablement setting.
5422 Note these commands only reflect whether non-stop mode is enabled,
5423 not whether the currently-executing program is being run in non-stop mode.
5424 In particular, the @code{set non-stop} preference is only consulted when
5425 @value{GDBN} starts or connects to the target program, and it is generally
5426 not possible to switch modes once debugging has started. Furthermore,
5427 since not all targets support non-stop mode, even when you have enabled
5428 non-stop mode, @value{GDBN} may still fall back to all-stop operation by
5431 In non-stop mode, all execution commands apply only to the current thread
5432 by default. That is, @code{continue} only continues one thread.
5433 To continue all threads, issue @code{continue -a} or @code{c -a}.
5435 You can use @value{GDBN}'s background execution commands
5436 (@pxref{Background Execution}) to run some threads in the background
5437 while you continue to examine or step others from @value{GDBN}.
5438 The MI execution commands (@pxref{GDB/MI Program Execution}) are
5439 always executed asynchronously in non-stop mode.
5441 Suspending execution is done with the @code{interrupt} command when
5442 running in the background, or @kbd{Ctrl-c} during foreground execution.
5443 In all-stop mode, this stops the whole process;
5444 but in non-stop mode the interrupt applies only to the current thread.
5445 To stop the whole program, use @code{interrupt -a}.
5447 Other execution commands do not currently support the @code{-a} option.
5449 In non-stop mode, when a thread stops, @value{GDBN} doesn't automatically make
5450 that thread current, as it does in all-stop mode. This is because the
5451 thread stop notifications are asynchronous with respect to @value{GDBN}'s
5452 command interpreter, and it would be confusing if @value{GDBN} unexpectedly
5453 changed to a different thread just as you entered a command to operate on the
5454 previously current thread.
5456 @node Background Execution
5457 @subsection Background Execution
5459 @cindex foreground execution
5460 @cindex background execution
5461 @cindex asynchronous execution
5462 @cindex execution, foreground, background and asynchronous
5464 @value{GDBN}'s execution commands have two variants: the normal
5465 foreground (synchronous) behavior, and a background
5466 (asynchronous) behavior. In foreground execution, @value{GDBN} waits for
5467 the program to report that some thread has stopped before prompting for
5468 another command. In background execution, @value{GDBN} immediately gives
5469 a command prompt so that you can issue other commands while your program runs.
5471 You need to explicitly enable asynchronous mode before you can use
5472 background execution commands. You can use these commands to
5473 manipulate the asynchronous mode setting:
5476 @kindex set target-async
5477 @item set target-async on
5478 Enable asynchronous mode.
5479 @item set target-async off
5480 Disable asynchronous mode.
5481 @kindex show target-async
5482 @item show target-async
5483 Show the current target-async setting.
5486 If the target doesn't support async mode, @value{GDBN} issues an error
5487 message if you attempt to use the background execution commands.
5489 To specify background execution, add a @code{&} to the command. For example,
5490 the background form of the @code{continue} command is @code{continue&}, or
5491 just @code{c&}. The execution commands that accept background execution
5497 @xref{Starting, , Starting your Program}.
5501 @xref{Attach, , Debugging an Already-running Process}.
5505 @xref{Continuing and Stepping, step}.
5509 @xref{Continuing and Stepping, stepi}.
5513 @xref{Continuing and Stepping, next}.
5517 @xref{Continuing and Stepping, nexti}.
5521 @xref{Continuing and Stepping, continue}.
5525 @xref{Continuing and Stepping, finish}.
5529 @xref{Continuing and Stepping, until}.
5533 Background execution is especially useful in conjunction with non-stop
5534 mode for debugging programs with multiple threads; see @ref{Non-Stop Mode}.
5535 However, you can also use these commands in the normal all-stop mode with
5536 the restriction that you cannot issue another execution command until the
5537 previous one finishes. Examples of commands that are valid in all-stop
5538 mode while the program is running include @code{help} and @code{info break}.
5540 You can interrupt your program while it is running in the background by
5541 using the @code{interrupt} command.
5548 Suspend execution of the running program. In all-stop mode,
5549 @code{interrupt} stops the whole process, but in non-stop mode, it stops
5550 only the current thread. To stop the whole program in non-stop mode,
5551 use @code{interrupt -a}.
5554 @node Thread-Specific Breakpoints
5555 @subsection Thread-Specific Breakpoints
5557 When your program has multiple threads (@pxref{Threads,, Debugging
5558 Programs with Multiple Threads}), you can choose whether to set
5559 breakpoints on all threads, or on a particular thread.
5562 @cindex breakpoints and threads
5563 @cindex thread breakpoints
5564 @kindex break @dots{} thread @var{threadno}
5565 @item break @var{linespec} thread @var{threadno}
5566 @itemx break @var{linespec} thread @var{threadno} if @dots{}
5567 @var{linespec} specifies source lines; there are several ways of
5568 writing them (@pxref{Specify Location}), but the effect is always to
5569 specify some source line.
5571 Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
5572 to specify that you only want @value{GDBN} to stop the program when a
5573 particular thread reaches this breakpoint. @var{threadno} is one of the
5574 numeric thread identifiers assigned by @value{GDBN}, shown in the first
5575 column of the @samp{info threads} display.
5577 If you do not specify @samp{thread @var{threadno}} when you set a
5578 breakpoint, the breakpoint applies to @emph{all} threads of your
5581 You can use the @code{thread} qualifier on conditional breakpoints as
5582 well; in this case, place @samp{thread @var{threadno}} before or
5583 after the breakpoint condition, like this:
5586 (@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
5591 @node Interrupted System Calls
5592 @subsection Interrupted System Calls
5594 @cindex thread breakpoints and system calls
5595 @cindex system calls and thread breakpoints
5596 @cindex premature return from system calls
5597 There is an unfortunate side effect when using @value{GDBN} to debug
5598 multi-threaded programs. If one thread stops for a
5599 breakpoint, or for some other reason, and another thread is blocked in a
5600 system call, then the system call may return prematurely. This is a
5601 consequence of the interaction between multiple threads and the signals
5602 that @value{GDBN} uses to implement breakpoints and other events that
5605 To handle this problem, your program should check the return value of
5606 each system call and react appropriately. This is good programming
5609 For example, do not write code like this:
5615 The call to @code{sleep} will return early if a different thread stops
5616 at a breakpoint or for some other reason.
5618 Instead, write this:
5623 unslept = sleep (unslept);
5626 A system call is allowed to return early, so the system is still
5627 conforming to its specification. But @value{GDBN} does cause your
5628 multi-threaded program to behave differently than it would without
5631 Also, @value{GDBN} uses internal breakpoints in the thread library to
5632 monitor certain events such as thread creation and thread destruction.
5633 When such an event happens, a system call in another thread may return
5634 prematurely, even though your program does not appear to stop.
5637 @subsection Observer Mode
5639 If you want to build on non-stop mode and observe program behavior
5640 without any chance of disruption by @value{GDBN}, you can set
5641 variables to disable all of the debugger's attempts to modify state,
5642 whether by writing memory, inserting breakpoints, etc. These operate
5643 at a low level, intercepting operations from all commands.
5645 When all of these are set to @code{off}, then @value{GDBN} is said to
5646 be @dfn{observer mode}. As a convenience, the variable
5647 @code{observer} can be set to disable these, plus enable non-stop
5650 Note that @value{GDBN} will not prevent you from making nonsensical
5651 combinations of these settings. For instance, if you have enabled
5652 @code{may-insert-breakpoints} but disabled @code{may-write-memory},
5653 then breakpoints that work by writing trap instructions into the code
5654 stream will still not be able to be placed.
5659 @item set observer on
5660 @itemx set observer off
5661 When set to @code{on}, this disables all the permission variables
5662 below (except for @code{insert-fast-tracepoints}), plus enables
5663 non-stop debugging. Setting this to @code{off} switches back to
5664 normal debugging, though remaining in non-stop mode.
5667 Show whether observer mode is on or off.
5669 @kindex may-write-registers
5670 @item set may-write-registers on
5671 @itemx set may-write-registers off
5672 This controls whether @value{GDBN} will attempt to alter the values of
5673 registers, such as with assignment expressions in @code{print}, or the
5674 @code{jump} command. It defaults to @code{on}.
5676 @item show may-write-registers
5677 Show the current permission to write registers.
5679 @kindex may-write-memory
5680 @item set may-write-memory on
5681 @itemx set may-write-memory off
5682 This controls whether @value{GDBN} will attempt to alter the contents
5683 of memory, such as with assignment expressions in @code{print}. It
5684 defaults to @code{on}.
5686 @item show may-write-memory
5687 Show the current permission to write memory.
5689 @kindex may-insert-breakpoints
5690 @item set may-insert-breakpoints on
5691 @itemx set may-insert-breakpoints off
5692 This controls whether @value{GDBN} will attempt to insert breakpoints.
5693 This affects all breakpoints, including internal breakpoints defined
5694 by @value{GDBN}. It defaults to @code{on}.
5696 @item show may-insert-breakpoints
5697 Show the current permission to insert breakpoints.
5699 @kindex may-insert-tracepoints
5700 @item set may-insert-tracepoints on
5701 @itemx set may-insert-tracepoints off
5702 This controls whether @value{GDBN} will attempt to insert (regular)
5703 tracepoints at the beginning of a tracing experiment. It affects only
5704 non-fast tracepoints, fast tracepoints being under the control of
5705 @code{may-insert-fast-tracepoints}. It defaults to @code{on}.
5707 @item show may-insert-tracepoints
5708 Show the current permission to insert tracepoints.
5710 @kindex may-insert-fast-tracepoints
5711 @item set may-insert-fast-tracepoints on
5712 @itemx set may-insert-fast-tracepoints off
5713 This controls whether @value{GDBN} will attempt to insert fast
5714 tracepoints at the beginning of a tracing experiment. It affects only
5715 fast tracepoints, regular (non-fast) tracepoints being under the
5716 control of @code{may-insert-tracepoints}. It defaults to @code{on}.
5718 @item show may-insert-fast-tracepoints
5719 Show the current permission to insert fast tracepoints.
5721 @kindex may-interrupt
5722 @item set may-interrupt on
5723 @itemx set may-interrupt off
5724 This controls whether @value{GDBN} will attempt to interrupt or stop
5725 program execution. When this variable is @code{off}, the
5726 @code{interrupt} command will have no effect, nor will
5727 @kbd{Ctrl-c}. It defaults to @code{on}.
5729 @item show may-interrupt
5730 Show the current permission to interrupt or stop the program.
5734 @node Reverse Execution
5735 @chapter Running programs backward
5736 @cindex reverse execution
5737 @cindex running programs backward
5739 When you are debugging a program, it is not unusual to realize that
5740 you have gone too far, and some event of interest has already happened.
5741 If the target environment supports it, @value{GDBN} can allow you to
5742 ``rewind'' the program by running it backward.
5744 A target environment that supports reverse execution should be able
5745 to ``undo'' the changes in machine state that have taken place as the
5746 program was executing normally. Variables, registers etc.@: should
5747 revert to their previous values. Obviously this requires a great
5748 deal of sophistication on the part of the target environment; not
5749 all target environments can support reverse execution.
5751 When a program is executed in reverse, the instructions that
5752 have most recently been executed are ``un-executed'', in reverse
5753 order. The program counter runs backward, following the previous
5754 thread of execution in reverse. As each instruction is ``un-executed'',
5755 the values of memory and/or registers that were changed by that
5756 instruction are reverted to their previous states. After executing
5757 a piece of source code in reverse, all side effects of that code
5758 should be ``undone'', and all variables should be returned to their
5759 prior values@footnote{
5760 Note that some side effects are easier to undo than others. For instance,
5761 memory and registers are relatively easy, but device I/O is hard. Some
5762 targets may be able undo things like device I/O, and some may not.
5764 The contract between @value{GDBN} and the reverse executing target
5765 requires only that the target do something reasonable when
5766 @value{GDBN} tells it to execute backwards, and then report the
5767 results back to @value{GDBN}. Whatever the target reports back to
5768 @value{GDBN}, @value{GDBN} will report back to the user. @value{GDBN}
5769 assumes that the memory and registers that the target reports are in a
5770 consistant state, but @value{GDBN} accepts whatever it is given.
5773 If you are debugging in a target environment that supports
5774 reverse execution, @value{GDBN} provides the following commands.
5777 @kindex reverse-continue
5778 @kindex rc @r{(@code{reverse-continue})}
5779 @item reverse-continue @r{[}@var{ignore-count}@r{]}
5780 @itemx rc @r{[}@var{ignore-count}@r{]}
5781 Beginning at the point where your program last stopped, start executing
5782 in reverse. Reverse execution will stop for breakpoints and synchronous
5783 exceptions (signals), just like normal execution. Behavior of
5784 asynchronous signals depends on the target environment.
5786 @kindex reverse-step
5787 @kindex rs @r{(@code{step})}
5788 @item reverse-step @r{[}@var{count}@r{]}
5789 Run the program backward until control reaches the start of a
5790 different source line; then stop it, and return control to @value{GDBN}.
5792 Like the @code{step} command, @code{reverse-step} will only stop
5793 at the beginning of a source line. It ``un-executes'' the previously
5794 executed source line. If the previous source line included calls to
5795 debuggable functions, @code{reverse-step} will step (backward) into
5796 the called function, stopping at the beginning of the @emph{last}
5797 statement in the called function (typically a return statement).
5799 Also, as with the @code{step} command, if non-debuggable functions are
5800 called, @code{reverse-step} will run thru them backward without stopping.
5802 @kindex reverse-stepi
5803 @kindex rsi @r{(@code{reverse-stepi})}
5804 @item reverse-stepi @r{[}@var{count}@r{]}
5805 Reverse-execute one machine instruction. Note that the instruction
5806 to be reverse-executed is @emph{not} the one pointed to by the program
5807 counter, but the instruction executed prior to that one. For instance,
5808 if the last instruction was a jump, @code{reverse-stepi} will take you
5809 back from the destination of the jump to the jump instruction itself.
5811 @kindex reverse-next
5812 @kindex rn @r{(@code{reverse-next})}
5813 @item reverse-next @r{[}@var{count}@r{]}
5814 Run backward to the beginning of the previous line executed in
5815 the current (innermost) stack frame. If the line contains function
5816 calls, they will be ``un-executed'' without stopping. Starting from
5817 the first line of a function, @code{reverse-next} will take you back
5818 to the caller of that function, @emph{before} the function was called,
5819 just as the normal @code{next} command would take you from the last
5820 line of a function back to its return to its caller
5821 @footnote{Unless the code is too heavily optimized.}.
5823 @kindex reverse-nexti
5824 @kindex rni @r{(@code{reverse-nexti})}
5825 @item reverse-nexti @r{[}@var{count}@r{]}
5826 Like @code{nexti}, @code{reverse-nexti} executes a single instruction
5827 in reverse, except that called functions are ``un-executed'' atomically.
5828 That is, if the previously executed instruction was a return from
5829 another function, @code{reverse-nexti} will continue to execute
5830 in reverse until the call to that function (from the current stack
5833 @kindex reverse-finish
5834 @item reverse-finish
5835 Just as the @code{finish} command takes you to the point where the
5836 current function returns, @code{reverse-finish} takes you to the point
5837 where it was called. Instead of ending up at the end of the current
5838 function invocation, you end up at the beginning.
5840 @kindex set exec-direction
5841 @item set exec-direction
5842 Set the direction of target execution.
5843 @itemx set exec-direction reverse
5844 @cindex execute forward or backward in time
5845 @value{GDBN} will perform all execution commands in reverse, until the
5846 exec-direction mode is changed to ``forward''. Affected commands include
5847 @code{step, stepi, next, nexti, continue, and finish}. The @code{return}
5848 command cannot be used in reverse mode.
5849 @item set exec-direction forward
5850 @value{GDBN} will perform all execution commands in the normal fashion.
5851 This is the default.
5855 @node Process Record and Replay
5856 @chapter Recording Inferior's Execution and Replaying It
5857 @cindex process record and replay
5858 @cindex recording inferior's execution and replaying it
5860 On some platforms, @value{GDBN} provides a special @dfn{process record
5861 and replay} target that can record a log of the process execution, and
5862 replay it later with both forward and reverse execution commands.
5865 When this target is in use, if the execution log includes the record
5866 for the next instruction, @value{GDBN} will debug in @dfn{replay
5867 mode}. In the replay mode, the inferior does not really execute code
5868 instructions. Instead, all the events that normally happen during
5869 code execution are taken from the execution log. While code is not
5870 really executed in replay mode, the values of registers (including the
5871 program counter register) and the memory of the inferior are still
5872 changed as they normally would. Their contents are taken from the
5876 If the record for the next instruction is not in the execution log,
5877 @value{GDBN} will debug in @dfn{record mode}. In this mode, the
5878 inferior executes normally, and @value{GDBN} records the execution log
5881 The process record and replay target supports reverse execution
5882 (@pxref{Reverse Execution}), even if the platform on which the
5883 inferior runs does not. However, the reverse execution is limited in
5884 this case by the range of the instructions recorded in the execution
5885 log. In other words, reverse execution on platforms that don't
5886 support it directly can only be done in the replay mode.
5888 When debugging in the reverse direction, @value{GDBN} will work in
5889 replay mode as long as the execution log includes the record for the
5890 previous instruction; otherwise, it will work in record mode, if the
5891 platform supports reverse execution, or stop if not.
5893 For architecture environments that support process record and replay,
5894 @value{GDBN} provides the following commands:
5897 @kindex target record
5901 This command starts the process record and replay target. The process
5902 record and replay target can only debug a process that is already
5903 running. Therefore, you need first to start the process with the
5904 @kbd{run} or @kbd{start} commands, and then start the recording with
5905 the @kbd{target record} command.
5907 Both @code{record} and @code{rec} are aliases of @code{target record}.
5909 @cindex displaced stepping, and process record and replay
5910 Displaced stepping (@pxref{Maintenance Commands,, displaced stepping})
5911 will be automatically disabled when process record and replay target
5912 is started. That's because the process record and replay target
5913 doesn't support displaced stepping.
5915 @cindex non-stop mode, and process record and replay
5916 @cindex asynchronous execution, and process record and replay
5917 If the inferior is in the non-stop mode (@pxref{Non-Stop Mode}) or in
5918 the asynchronous execution mode (@pxref{Background Execution}), the
5919 process record and replay target cannot be started because it doesn't
5920 support these two modes.
5925 Stop the process record and replay target. When process record and
5926 replay target stops, the entire execution log will be deleted and the
5927 inferior will either be terminated, or will remain in its final state.
5929 When you stop the process record and replay target in record mode (at
5930 the end of the execution log), the inferior will be stopped at the
5931 next instruction that would have been recorded. In other words, if
5932 you record for a while and then stop recording, the inferior process
5933 will be left in the same state as if the recording never happened.
5935 On the other hand, if the process record and replay target is stopped
5936 while in replay mode (that is, not at the end of the execution log,
5937 but at some earlier point), the inferior process will become ``live''
5938 at that earlier state, and it will then be possible to continue the
5939 usual ``live'' debugging of the process from that state.
5941 When the inferior process exits, or @value{GDBN} detaches from it,
5942 process record and replay target will automatically stop itself.
5945 @item record save @var{filename}
5946 Save the execution log to a file @file{@var{filename}}.
5947 Default filename is @file{gdb_record.@var{process_id}}, where
5948 @var{process_id} is the process ID of the inferior.
5950 @kindex record restore
5951 @item record restore @var{filename}
5952 Restore the execution log from a file @file{@var{filename}}.
5953 File must have been created with @code{record save}.
5955 @kindex set record insn-number-max
5956 @item set record insn-number-max @var{limit}
5957 Set the limit of instructions to be recorded. Default value is 200000.
5959 If @var{limit} is a positive number, then @value{GDBN} will start
5960 deleting instructions from the log once the number of the record
5961 instructions becomes greater than @var{limit}. For every new recorded
5962 instruction, @value{GDBN} will delete the earliest recorded
5963 instruction to keep the number of recorded instructions at the limit.
5964 (Since deleting recorded instructions loses information, @value{GDBN}
5965 lets you control what happens when the limit is reached, by means of
5966 the @code{stop-at-limit} option, described below.)
5968 If @var{limit} is zero, @value{GDBN} will never delete recorded
5969 instructions from the execution log. The number of recorded
5970 instructions is unlimited in this case.
5972 @kindex show record insn-number-max
5973 @item show record insn-number-max
5974 Show the limit of instructions to be recorded.
5976 @kindex set record stop-at-limit
5977 @item set record stop-at-limit
5978 Control the behavior when the number of recorded instructions reaches
5979 the limit. If ON (the default), @value{GDBN} will stop when the limit
5980 is reached for the first time and ask you whether you want to stop the
5981 inferior or continue running it and recording the execution log. If
5982 you decide to continue recording, each new recorded instruction will
5983 cause the oldest one to be deleted.
5985 If this option is OFF, @value{GDBN} will automatically delete the
5986 oldest record to make room for each new one, without asking.
5988 @kindex show record stop-at-limit
5989 @item show record stop-at-limit
5990 Show the current setting of @code{stop-at-limit}.
5992 @kindex set record memory-query
5993 @item set record memory-query
5994 Control the behavior when @value{GDBN} is unable to record memory
5995 changes caused by an instruction. If ON, @value{GDBN} will query
5996 whether to stop the inferior in that case.
5998 If this option is OFF (the default), @value{GDBN} will automatically
5999 ignore the effect of such instructions on memory. Later, when
6000 @value{GDBN} replays this execution log, it will mark the log of this
6001 instruction as not accessible, and it will not affect the replay
6004 @kindex show record memory-query
6005 @item show record memory-query
6006 Show the current setting of @code{memory-query}.
6010 Show various statistics about the state of process record and its
6011 in-memory execution log buffer, including:
6015 Whether in record mode or replay mode.
6017 Lowest recorded instruction number (counting from when the current execution log started recording instructions).
6019 Highest recorded instruction number.
6021 Current instruction about to be replayed (if in replay mode).
6023 Number of instructions contained in the execution log.
6025 Maximum number of instructions that may be contained in the execution log.
6028 @kindex record delete
6031 When record target runs in replay mode (``in the past''), delete the
6032 subsequent execution log and begin to record a new execution log starting
6033 from the current address. This means you will abandon the previously
6034 recorded ``future'' and begin recording a new ``future''.
6039 @chapter Examining the Stack
6041 When your program has stopped, the first thing you need to know is where it
6042 stopped and how it got there.
6045 Each time your program performs a function call, information about the call
6047 That information includes the location of the call in your program,
6048 the arguments of the call,
6049 and the local variables of the function being called.
6050 The information is saved in a block of data called a @dfn{stack frame}.
6051 The stack frames are allocated in a region of memory called the @dfn{call
6054 When your program stops, the @value{GDBN} commands for examining the
6055 stack allow you to see all of this information.
6057 @cindex selected frame
6058 One of the stack frames is @dfn{selected} by @value{GDBN} and many
6059 @value{GDBN} commands refer implicitly to the selected frame. In
6060 particular, whenever you ask @value{GDBN} for the value of a variable in
6061 your program, the value is found in the selected frame. There are
6062 special @value{GDBN} commands to select whichever frame you are
6063 interested in. @xref{Selection, ,Selecting a Frame}.
6065 When your program stops, @value{GDBN} automatically selects the
6066 currently executing frame and describes it briefly, similar to the
6067 @code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
6070 * Frames:: Stack frames
6071 * Backtrace:: Backtraces
6072 * Selection:: Selecting a frame
6073 * Frame Info:: Information on a frame
6078 @section Stack Frames
6080 @cindex frame, definition
6082 The call stack is divided up into contiguous pieces called @dfn{stack
6083 frames}, or @dfn{frames} for short; each frame is the data associated
6084 with one call to one function. The frame contains the arguments given
6085 to the function, the function's local variables, and the address at
6086 which the function is executing.
6088 @cindex initial frame
6089 @cindex outermost frame
6090 @cindex innermost frame
6091 When your program is started, the stack has only one frame, that of the
6092 function @code{main}. This is called the @dfn{initial} frame or the
6093 @dfn{outermost} frame. Each time a function is called, a new frame is
6094 made. Each time a function returns, the frame for that function invocation
6095 is eliminated. If a function is recursive, there can be many frames for
6096 the same function. The frame for the function in which execution is
6097 actually occurring is called the @dfn{innermost} frame. This is the most
6098 recently created of all the stack frames that still exist.
6100 @cindex frame pointer
6101 Inside your program, stack frames are identified by their addresses. A
6102 stack frame consists of many bytes, each of which has its own address; each
6103 kind of computer has a convention for choosing one byte whose
6104 address serves as the address of the frame. Usually this address is kept
6105 in a register called the @dfn{frame pointer register}
6106 (@pxref{Registers, $fp}) while execution is going on in that frame.
6108 @cindex frame number
6109 @value{GDBN} assigns numbers to all existing stack frames, starting with
6110 zero for the innermost frame, one for the frame that called it,
6111 and so on upward. These numbers do not really exist in your program;
6112 they are assigned by @value{GDBN} to give you a way of designating stack
6113 frames in @value{GDBN} commands.
6115 @c The -fomit-frame-pointer below perennially causes hbox overflow
6116 @c underflow problems.
6117 @cindex frameless execution
6118 Some compilers provide a way to compile functions so that they operate
6119 without stack frames. (For example, the @value{NGCC} option
6121 @samp{-fomit-frame-pointer}
6123 generates functions without a frame.)
6124 This is occasionally done with heavily used library functions to save
6125 the frame setup time. @value{GDBN} has limited facilities for dealing
6126 with these function invocations. If the innermost function invocation
6127 has no stack frame, @value{GDBN} nevertheless regards it as though
6128 it had a separate frame, which is numbered zero as usual, allowing
6129 correct tracing of the function call chain. However, @value{GDBN} has
6130 no provision for frameless functions elsewhere in the stack.
6133 @kindex frame@r{, command}
6134 @cindex current stack frame
6135 @item frame @var{args}
6136 The @code{frame} command allows you to move from one stack frame to another,
6137 and to print the stack frame you select. @var{args} may be either the
6138 address of the frame or the stack frame number. Without an argument,
6139 @code{frame} prints the current stack frame.
6141 @kindex select-frame
6142 @cindex selecting frame silently
6144 The @code{select-frame} command allows you to move from one stack frame
6145 to another without printing the frame. This is the silent version of
6153 @cindex call stack traces
6154 A backtrace is a summary of how your program got where it is. It shows one
6155 line per frame, for many frames, starting with the currently executing
6156 frame (frame zero), followed by its caller (frame one), and on up the
6161 @kindex bt @r{(@code{backtrace})}
6164 Print a backtrace of the entire stack: one line per frame for all
6165 frames in the stack.
6167 You can stop the backtrace at any time by typing the system interrupt
6168 character, normally @kbd{Ctrl-c}.
6170 @item backtrace @var{n}
6172 Similar, but print only the innermost @var{n} frames.
6174 @item backtrace -@var{n}
6176 Similar, but print only the outermost @var{n} frames.
6178 @item backtrace full
6180 @itemx bt full @var{n}
6181 @itemx bt full -@var{n}
6182 Print the values of the local variables also. @var{n} specifies the
6183 number of frames to print, as described above.
6188 The names @code{where} and @code{info stack} (abbreviated @code{info s})
6189 are additional aliases for @code{backtrace}.
6191 @cindex multiple threads, backtrace
6192 In a multi-threaded program, @value{GDBN} by default shows the
6193 backtrace only for the current thread. To display the backtrace for
6194 several or all of the threads, use the command @code{thread apply}
6195 (@pxref{Threads, thread apply}). For example, if you type @kbd{thread
6196 apply all backtrace}, @value{GDBN} will display the backtrace for all
6197 the threads; this is handy when you debug a core dump of a
6198 multi-threaded program.
6200 Each line in the backtrace shows the frame number and the function name.
6201 The program counter value is also shown---unless you use @code{set
6202 print address off}. The backtrace also shows the source file name and
6203 line number, as well as the arguments to the function. The program
6204 counter value is omitted if it is at the beginning of the code for that
6207 Here is an example of a backtrace. It was made with the command
6208 @samp{bt 3}, so it shows the innermost three frames.
6212 #0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
6214 #1 0x6e38 in expand_macro (sym=0x2b600, data=...) at macro.c:242
6215 #2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
6217 (More stack frames follow...)
6222 The display for frame zero does not begin with a program counter
6223 value, indicating that your program has stopped at the beginning of the
6224 code for line @code{993} of @code{builtin.c}.
6227 The value of parameter @code{data} in frame 1 has been replaced by
6228 @code{@dots{}}. By default, @value{GDBN} prints the value of a parameter
6229 only if it is a scalar (integer, pointer, enumeration, etc). See command
6230 @kbd{set print frame-arguments} in @ref{Print Settings} for more details
6231 on how to configure the way function parameter values are printed.
6233 @cindex optimized out, in backtrace
6234 @cindex function call arguments, optimized out
6235 If your program was compiled with optimizations, some compilers will
6236 optimize away arguments passed to functions if those arguments are
6237 never used after the call. Such optimizations generate code that
6238 passes arguments through registers, but doesn't store those arguments
6239 in the stack frame. @value{GDBN} has no way of displaying such
6240 arguments in stack frames other than the innermost one. Here's what
6241 such a backtrace might look like:
6245 #0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
6247 #1 0x6e38 in expand_macro (sym=<optimized out>) at macro.c:242
6248 #2 0x6840 in expand_token (obs=0x0, t=<optimized out>, td=0xf7fffb08)
6250 (More stack frames follow...)
6255 The values of arguments that were not saved in their stack frames are
6256 shown as @samp{<optimized out>}.
6258 If you need to display the values of such optimized-out arguments,
6259 either deduce that from other variables whose values depend on the one
6260 you are interested in, or recompile without optimizations.
6262 @cindex backtrace beyond @code{main} function
6263 @cindex program entry point
6264 @cindex startup code, and backtrace
6265 Most programs have a standard user entry point---a place where system
6266 libraries and startup code transition into user code. For C this is
6267 @code{main}@footnote{
6268 Note that embedded programs (the so-called ``free-standing''
6269 environment) are not required to have a @code{main} function as the
6270 entry point. They could even have multiple entry points.}.
6271 When @value{GDBN} finds the entry function in a backtrace
6272 it will terminate the backtrace, to avoid tracing into highly
6273 system-specific (and generally uninteresting) code.
6275 If you need to examine the startup code, or limit the number of levels
6276 in a backtrace, you can change this behavior:
6279 @item set backtrace past-main
6280 @itemx set backtrace past-main on
6281 @kindex set backtrace
6282 Backtraces will continue past the user entry point.
6284 @item set backtrace past-main off
6285 Backtraces will stop when they encounter the user entry point. This is the
6288 @item show backtrace past-main
6289 @kindex show backtrace
6290 Display the current user entry point backtrace policy.
6292 @item set backtrace past-entry
6293 @itemx set backtrace past-entry on
6294 Backtraces will continue past the internal entry point of an application.
6295 This entry point is encoded by the linker when the application is built,
6296 and is likely before the user entry point @code{main} (or equivalent) is called.
6298 @item set backtrace past-entry off
6299 Backtraces will stop when they encounter the internal entry point of an
6300 application. This is the default.
6302 @item show backtrace past-entry
6303 Display the current internal entry point backtrace policy.
6305 @item set backtrace limit @var{n}
6306 @itemx set backtrace limit 0
6307 @cindex backtrace limit
6308 Limit the backtrace to @var{n} levels. A value of zero means
6311 @item show backtrace limit
6312 Display the current limit on backtrace levels.
6316 @section Selecting a Frame
6318 Most commands for examining the stack and other data in your program work on
6319 whichever stack frame is selected at the moment. Here are the commands for
6320 selecting a stack frame; all of them finish by printing a brief description
6321 of the stack frame just selected.
6324 @kindex frame@r{, selecting}
6325 @kindex f @r{(@code{frame})}
6328 Select frame number @var{n}. Recall that frame zero is the innermost
6329 (currently executing) frame, frame one is the frame that called the
6330 innermost one, and so on. The highest-numbered frame is the one for
6333 @item frame @var{addr}
6335 Select the frame at address @var{addr}. This is useful mainly if the
6336 chaining of stack frames has been damaged by a bug, making it
6337 impossible for @value{GDBN} to assign numbers properly to all frames. In
6338 addition, this can be useful when your program has multiple stacks and
6339 switches between them.
6341 On the SPARC architecture, @code{frame} needs two addresses to
6342 select an arbitrary frame: a frame pointer and a stack pointer.
6344 On the MIPS and Alpha architecture, it needs two addresses: a stack
6345 pointer and a program counter.
6347 On the 29k architecture, it needs three addresses: a register stack
6348 pointer, a program counter, and a memory stack pointer.
6352 Move @var{n} frames up the stack. For positive numbers @var{n}, this
6353 advances toward the outermost frame, to higher frame numbers, to frames
6354 that have existed longer. @var{n} defaults to one.
6357 @kindex do @r{(@code{down})}
6359 Move @var{n} frames down the stack. For positive numbers @var{n}, this
6360 advances toward the innermost frame, to lower frame numbers, to frames
6361 that were created more recently. @var{n} defaults to one. You may
6362 abbreviate @code{down} as @code{do}.
6365 All of these commands end by printing two lines of output describing the
6366 frame. The first line shows the frame number, the function name, the
6367 arguments, and the source file and line number of execution in that
6368 frame. The second line shows the text of that source line.
6376 #1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
6378 10 read_input_file (argv[i]);
6382 After such a printout, the @code{list} command with no arguments
6383 prints ten lines centered on the point of execution in the frame.
6384 You can also edit the program at the point of execution with your favorite
6385 editing program by typing @code{edit}.
6386 @xref{List, ,Printing Source Lines},
6390 @kindex down-silently
6392 @item up-silently @var{n}
6393 @itemx down-silently @var{n}
6394 These two commands are variants of @code{up} and @code{down},
6395 respectively; they differ in that they do their work silently, without
6396 causing display of the new frame. They are intended primarily for use
6397 in @value{GDBN} command scripts, where the output might be unnecessary and
6402 @section Information About a Frame
6404 There are several other commands to print information about the selected
6410 When used without any argument, this command does not change which
6411 frame is selected, but prints a brief description of the currently
6412 selected stack frame. It can be abbreviated @code{f}. With an
6413 argument, this command is used to select a stack frame.
6414 @xref{Selection, ,Selecting a Frame}.
6417 @kindex info f @r{(@code{info frame})}
6420 This command prints a verbose description of the selected stack frame,
6425 the address of the frame
6427 the address of the next frame down (called by this frame)
6429 the address of the next frame up (caller of this frame)
6431 the language in which the source code corresponding to this frame is written
6433 the address of the frame's arguments
6435 the address of the frame's local variables
6437 the program counter saved in it (the address of execution in the caller frame)
6439 which registers were saved in the frame
6442 @noindent The verbose description is useful when
6443 something has gone wrong that has made the stack format fail to fit
6444 the usual conventions.
6446 @item info frame @var{addr}
6447 @itemx info f @var{addr}
6448 Print a verbose description of the frame at address @var{addr}, without
6449 selecting that frame. The selected frame remains unchanged by this
6450 command. This requires the same kind of address (more than one for some
6451 architectures) that you specify in the @code{frame} command.
6452 @xref{Selection, ,Selecting a Frame}.
6456 Print the arguments of the selected frame, each on a separate line.
6460 Print the local variables of the selected frame, each on a separate
6461 line. These are all variables (declared either static or automatic)
6462 accessible at the point of execution of the selected frame.
6468 @chapter Examining Source Files
6470 @value{GDBN} can print parts of your program's source, since the debugging
6471 information recorded in the program tells @value{GDBN} what source files were
6472 used to build it. When your program stops, @value{GDBN} spontaneously prints
6473 the line where it stopped. Likewise, when you select a stack frame
6474 (@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
6475 execution in that frame has stopped. You can print other portions of
6476 source files by explicit command.
6478 If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
6479 prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
6480 @value{GDBN} under @sc{gnu} Emacs}.
6483 * List:: Printing source lines
6484 * Specify Location:: How to specify code locations
6485 * Edit:: Editing source files
6486 * Search:: Searching source files
6487 * Source Path:: Specifying source directories
6488 * Machine Code:: Source and machine code
6492 @section Printing Source Lines
6495 @kindex l @r{(@code{list})}
6496 To print lines from a source file, use the @code{list} command
6497 (abbreviated @code{l}). By default, ten lines are printed.
6498 There are several ways to specify what part of the file you want to
6499 print; see @ref{Specify Location}, for the full list.
6501 Here are the forms of the @code{list} command most commonly used:
6504 @item list @var{linenum}
6505 Print lines centered around line number @var{linenum} in the
6506 current source file.
6508 @item list @var{function}
6509 Print lines centered around the beginning of function
6513 Print more lines. If the last lines printed were printed with a
6514 @code{list} command, this prints lines following the last lines
6515 printed; however, if the last line printed was a solitary line printed
6516 as part of displaying a stack frame (@pxref{Stack, ,Examining the
6517 Stack}), this prints lines centered around that line.
6520 Print lines just before the lines last printed.
6523 @cindex @code{list}, how many lines to display
6524 By default, @value{GDBN} prints ten source lines with any of these forms of
6525 the @code{list} command. You can change this using @code{set listsize}:
6528 @kindex set listsize
6529 @item set listsize @var{count}
6530 Make the @code{list} command display @var{count} source lines (unless
6531 the @code{list} argument explicitly specifies some other number).
6533 @kindex show listsize
6535 Display the number of lines that @code{list} prints.
6538 Repeating a @code{list} command with @key{RET} discards the argument,
6539 so it is equivalent to typing just @code{list}. This is more useful
6540 than listing the same lines again. An exception is made for an
6541 argument of @samp{-}; that argument is preserved in repetition so that
6542 each repetition moves up in the source file.
6544 In general, the @code{list} command expects you to supply zero, one or two
6545 @dfn{linespecs}. Linespecs specify source lines; there are several ways
6546 of writing them (@pxref{Specify Location}), but the effect is always
6547 to specify some source line.
6549 Here is a complete description of the possible arguments for @code{list}:
6552 @item list @var{linespec}
6553 Print lines centered around the line specified by @var{linespec}.
6555 @item list @var{first},@var{last}
6556 Print lines from @var{first} to @var{last}. Both arguments are
6557 linespecs. When a @code{list} command has two linespecs, and the
6558 source file of the second linespec is omitted, this refers to
6559 the same source file as the first linespec.
6561 @item list ,@var{last}
6562 Print lines ending with @var{last}.
6564 @item list @var{first},
6565 Print lines starting with @var{first}.
6568 Print lines just after the lines last printed.
6571 Print lines just before the lines last printed.
6574 As described in the preceding table.
6577 @node Specify Location
6578 @section Specifying a Location
6579 @cindex specifying location
6582 Several @value{GDBN} commands accept arguments that specify a location
6583 of your program's code. Since @value{GDBN} is a source-level
6584 debugger, a location usually specifies some line in the source code;
6585 for that reason, locations are also known as @dfn{linespecs}.
6587 Here are all the different ways of specifying a code location that
6588 @value{GDBN} understands:
6592 Specifies the line number @var{linenum} of the current source file.
6595 @itemx +@var{offset}
6596 Specifies the line @var{offset} lines before or after the @dfn{current
6597 line}. For the @code{list} command, the current line is the last one
6598 printed; for the breakpoint commands, this is the line at which
6599 execution stopped in the currently selected @dfn{stack frame}
6600 (@pxref{Frames, ,Frames}, for a description of stack frames.) When
6601 used as the second of the two linespecs in a @code{list} command,
6602 this specifies the line @var{offset} lines up or down from the first
6605 @item @var{filename}:@var{linenum}
6606 Specifies the line @var{linenum} in the source file @var{filename}.
6607 If @var{filename} is a relative file name, then it will match any
6608 source file name with the same trailing components. For example, if
6609 @var{filename} is @samp{gcc/expr.c}, then it will match source file
6610 name of @file{/build/trunk/gcc/expr.c}, but not
6611 @file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
6613 @item @var{function}
6614 Specifies the line that begins the body of the function @var{function}.
6615 For example, in C, this is the line with the open brace.
6617 @item @var{function}:@var{label}
6618 Specifies the line where @var{label} appears in @var{function}.
6620 @item @var{filename}:@var{function}
6621 Specifies the line that begins the body of the function @var{function}
6622 in the file @var{filename}. You only need the file name with a
6623 function name to avoid ambiguity when there are identically named
6624 functions in different source files.
6627 Specifies the line at which the label named @var{label} appears.
6628 @value{GDBN} searches for the label in the function corresponding to
6629 the currently selected stack frame. If there is no current selected
6630 stack frame (for instance, if the inferior is not running), then
6631 @value{GDBN} will not search for a label.
6633 @item *@var{address}
6634 Specifies the program address @var{address}. For line-oriented
6635 commands, such as @code{list} and @code{edit}, this specifies a source
6636 line that contains @var{address}. For @code{break} and other
6637 breakpoint oriented commands, this can be used to set breakpoints in
6638 parts of your program which do not have debugging information or
6641 Here @var{address} may be any expression valid in the current working
6642 language (@pxref{Languages, working language}) that specifies a code
6643 address. In addition, as a convenience, @value{GDBN} extends the
6644 semantics of expressions used in locations to cover the situations
6645 that frequently happen during debugging. Here are the various forms
6649 @item @var{expression}
6650 Any expression valid in the current working language.
6652 @item @var{funcaddr}
6653 An address of a function or procedure derived from its name. In C,
6654 C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
6655 simply the function's name @var{function} (and actually a special case
6656 of a valid expression). In Pascal and Modula-2, this is
6657 @code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
6658 (although the Pascal form also works).
6660 This form specifies the address of the function's first instruction,
6661 before the stack frame and arguments have been set up.
6663 @item '@var{filename}'::@var{funcaddr}
6664 Like @var{funcaddr} above, but also specifies the name of the source
6665 file explicitly. This is useful if the name of the function does not
6666 specify the function unambiguously, e.g., if there are several
6667 functions with identical names in different source files.
6674 @section Editing Source Files
6675 @cindex editing source files
6678 @kindex e @r{(@code{edit})}
6679 To edit the lines in a source file, use the @code{edit} command.
6680 The editing program of your choice
6681 is invoked with the current line set to
6682 the active line in the program.
6683 Alternatively, there are several ways to specify what part of the file you
6684 want to print if you want to see other parts of the program:
6687 @item edit @var{location}
6688 Edit the source file specified by @code{location}. Editing starts at
6689 that @var{location}, e.g., at the specified source line of the
6690 specified file. @xref{Specify Location}, for all the possible forms
6691 of the @var{location} argument; here are the forms of the @code{edit}
6692 command most commonly used:
6695 @item edit @var{number}
6696 Edit the current source file with @var{number} as the active line number.
6698 @item edit @var{function}
6699 Edit the file containing @var{function} at the beginning of its definition.
6704 @subsection Choosing your Editor
6705 You can customize @value{GDBN} to use any editor you want
6707 The only restriction is that your editor (say @code{ex}), recognizes the
6708 following command-line syntax:
6710 ex +@var{number} file
6712 The optional numeric value +@var{number} specifies the number of the line in
6713 the file where to start editing.}.
6714 By default, it is @file{@value{EDITOR}}, but you can change this
6715 by setting the environment variable @code{EDITOR} before using
6716 @value{GDBN}. For example, to configure @value{GDBN} to use the
6717 @code{vi} editor, you could use these commands with the @code{sh} shell:
6723 or in the @code{csh} shell,
6725 setenv EDITOR /usr/bin/vi
6730 @section Searching Source Files
6731 @cindex searching source files
6733 There are two commands for searching through the current source file for a
6738 @kindex forward-search
6739 @item forward-search @var{regexp}
6740 @itemx search @var{regexp}
6741 The command @samp{forward-search @var{regexp}} checks each line,
6742 starting with the one following the last line listed, for a match for
6743 @var{regexp}. It lists the line that is found. You can use the
6744 synonym @samp{search @var{regexp}} or abbreviate the command name as
6747 @kindex reverse-search
6748 @item reverse-search @var{regexp}
6749 The command @samp{reverse-search @var{regexp}} checks each line, starting
6750 with the one before the last line listed and going backward, for a match
6751 for @var{regexp}. It lists the line that is found. You can abbreviate
6752 this command as @code{rev}.
6756 @section Specifying Source Directories
6759 @cindex directories for source files
6760 Executable programs sometimes do not record the directories of the source
6761 files from which they were compiled, just the names. Even when they do,
6762 the directories could be moved between the compilation and your debugging
6763 session. @value{GDBN} has a list of directories to search for source files;
6764 this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
6765 it tries all the directories in the list, in the order they are present
6766 in the list, until it finds a file with the desired name.
6768 For example, suppose an executable references the file
6769 @file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
6770 @file{/mnt/cross}. The file is first looked up literally; if this
6771 fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
6772 fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
6773 message is printed. @value{GDBN} does not look up the parts of the
6774 source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
6775 Likewise, the subdirectories of the source path are not searched: if
6776 the source path is @file{/mnt/cross}, and the binary refers to
6777 @file{foo.c}, @value{GDBN} would not find it under
6778 @file{/mnt/cross/usr/src/foo-1.0/lib}.
6780 Plain file names, relative file names with leading directories, file
6781 names containing dots, etc.@: are all treated as described above; for
6782 instance, if the source path is @file{/mnt/cross}, and the source file
6783 is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
6784 @file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
6785 that---@file{/mnt/cross/foo.c}.
6787 Note that the executable search path is @emph{not} used to locate the
6790 Whenever you reset or rearrange the source path, @value{GDBN} clears out
6791 any information it has cached about where source files are found and where
6792 each line is in the file.
6796 When you start @value{GDBN}, its source path includes only @samp{cdir}
6797 and @samp{cwd}, in that order.
6798 To add other directories, use the @code{directory} command.
6800 The search path is used to find both program source files and @value{GDBN}
6801 script files (read using the @samp{-command} option and @samp{source} command).
6803 In addition to the source path, @value{GDBN} provides a set of commands
6804 that manage a list of source path substitution rules. A @dfn{substitution
6805 rule} specifies how to rewrite source directories stored in the program's
6806 debug information in case the sources were moved to a different
6807 directory between compilation and debugging. A rule is made of
6808 two strings, the first specifying what needs to be rewritten in
6809 the path, and the second specifying how it should be rewritten.
6810 In @ref{set substitute-path}, we name these two parts @var{from} and
6811 @var{to} respectively. @value{GDBN} does a simple string replacement
6812 of @var{from} with @var{to} at the start of the directory part of the
6813 source file name, and uses that result instead of the original file
6814 name to look up the sources.
6816 Using the previous example, suppose the @file{foo-1.0} tree has been
6817 moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
6818 @value{GDBN} to replace @file{/usr/src} in all source path names with
6819 @file{/mnt/cross}. The first lookup will then be
6820 @file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
6821 of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
6822 substitution rule, use the @code{set substitute-path} command
6823 (@pxref{set substitute-path}).
6825 To avoid unexpected substitution results, a rule is applied only if the
6826 @var{from} part of the directory name ends at a directory separator.
6827 For instance, a rule substituting @file{/usr/source} into
6828 @file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
6829 not to @file{/usr/sourceware/foo-2.0}. And because the substitution
6830 is applied only at the beginning of the directory name, this rule will
6831 not be applied to @file{/root/usr/source/baz.c} either.
6833 In many cases, you can achieve the same result using the @code{directory}
6834 command. However, @code{set substitute-path} can be more efficient in
6835 the case where the sources are organized in a complex tree with multiple
6836 subdirectories. With the @code{directory} command, you need to add each
6837 subdirectory of your project. If you moved the entire tree while
6838 preserving its internal organization, then @code{set substitute-path}
6839 allows you to direct the debugger to all the sources with one single
6842 @code{set substitute-path} is also more than just a shortcut command.
6843 The source path is only used if the file at the original location no
6844 longer exists. On the other hand, @code{set substitute-path} modifies
6845 the debugger behavior to look at the rewritten location instead. So, if
6846 for any reason a source file that is not relevant to your executable is
6847 located at the original location, a substitution rule is the only
6848 method available to point @value{GDBN} at the new location.
6850 @cindex @samp{--with-relocated-sources}
6851 @cindex default source path substitution
6852 You can configure a default source path substitution rule by
6853 configuring @value{GDBN} with the
6854 @samp{--with-relocated-sources=@var{dir}} option. The @var{dir}
6855 should be the name of a directory under @value{GDBN}'s configured
6856 prefix (set with @samp{--prefix} or @samp{--exec-prefix}), and
6857 directory names in debug information under @var{dir} will be adjusted
6858 automatically if the installed @value{GDBN} is moved to a new
6859 location. This is useful if @value{GDBN}, libraries or executables
6860 with debug information and corresponding source code are being moved
6864 @item directory @var{dirname} @dots{}
6865 @item dir @var{dirname} @dots{}
6866 Add directory @var{dirname} to the front of the source path. Several
6867 directory names may be given to this command, separated by @samp{:}
6868 (@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
6869 part of absolute file names) or
6870 whitespace. You may specify a directory that is already in the source
6871 path; this moves it forward, so @value{GDBN} searches it sooner.
6875 @vindex $cdir@r{, convenience variable}
6876 @vindex $cwd@r{, convenience variable}
6877 @cindex compilation directory
6878 @cindex current directory
6879 @cindex working directory
6880 @cindex directory, current
6881 @cindex directory, compilation
6882 You can use the string @samp{$cdir} to refer to the compilation
6883 directory (if one is recorded), and @samp{$cwd} to refer to the current
6884 working directory. @samp{$cwd} is not the same as @samp{.}---the former
6885 tracks the current working directory as it changes during your @value{GDBN}
6886 session, while the latter is immediately expanded to the current
6887 directory at the time you add an entry to the source path.
6890 Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
6892 @c RET-repeat for @code{directory} is explicitly disabled, but since
6893 @c repeating it would be a no-op we do not say that. (thanks to RMS)
6895 @item set directories @var{path-list}
6896 @kindex set directories
6897 Set the source path to @var{path-list}.
6898 @samp{$cdir:$cwd} are added if missing.
6900 @item show directories
6901 @kindex show directories
6902 Print the source path: show which directories it contains.
6904 @anchor{set substitute-path}
6905 @item set substitute-path @var{from} @var{to}
6906 @kindex set substitute-path
6907 Define a source path substitution rule, and add it at the end of the
6908 current list of existing substitution rules. If a rule with the same
6909 @var{from} was already defined, then the old rule is also deleted.
6911 For example, if the file @file{/foo/bar/baz.c} was moved to
6912 @file{/mnt/cross/baz.c}, then the command
6915 (@value{GDBP}) set substitute-path /usr/src /mnt/cross
6919 will tell @value{GDBN} to replace @samp{/usr/src} with
6920 @samp{/mnt/cross}, which will allow @value{GDBN} to find the file
6921 @file{baz.c} even though it was moved.
6923 In the case when more than one substitution rule have been defined,
6924 the rules are evaluated one by one in the order where they have been
6925 defined. The first one matching, if any, is selected to perform
6928 For instance, if we had entered the following commands:
6931 (@value{GDBP}) set substitute-path /usr/src/include /mnt/include
6932 (@value{GDBP}) set substitute-path /usr/src /mnt/src
6936 @value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
6937 @file{/mnt/include/defs.h} by using the first rule. However, it would
6938 use the second rule to rewrite @file{/usr/src/lib/foo.c} into
6939 @file{/mnt/src/lib/foo.c}.
6942 @item unset substitute-path [path]
6943 @kindex unset substitute-path
6944 If a path is specified, search the current list of substitution rules
6945 for a rule that would rewrite that path. Delete that rule if found.
6946 A warning is emitted by the debugger if no rule could be found.
6948 If no path is specified, then all substitution rules are deleted.
6950 @item show substitute-path [path]
6951 @kindex show substitute-path
6952 If a path is specified, then print the source path substitution rule
6953 which would rewrite that path, if any.
6955 If no path is specified, then print all existing source path substitution
6960 If your source path is cluttered with directories that are no longer of
6961 interest, @value{GDBN} may sometimes cause confusion by finding the wrong
6962 versions of source. You can correct the situation as follows:
6966 Use @code{directory} with no argument to reset the source path to its default value.
6969 Use @code{directory} with suitable arguments to reinstall the
6970 directories you want in the source path. You can add all the
6971 directories in one command.
6975 @section Source and Machine Code
6976 @cindex source line and its code address
6978 You can use the command @code{info line} to map source lines to program
6979 addresses (and vice versa), and the command @code{disassemble} to display
6980 a range of addresses as machine instructions. You can use the command
6981 @code{set disassemble-next-line} to set whether to disassemble next
6982 source line when execution stops. When run under @sc{gnu} Emacs
6983 mode, the @code{info line} command causes the arrow to point to the
6984 line specified. Also, @code{info line} prints addresses in symbolic form as
6989 @item info line @var{linespec}
6990 Print the starting and ending addresses of the compiled code for
6991 source line @var{linespec}. You can specify source lines in any of
6992 the ways documented in @ref{Specify Location}.
6995 For example, we can use @code{info line} to discover the location of
6996 the object code for the first line of function
6997 @code{m4_changequote}:
6999 @c FIXME: I think this example should also show the addresses in
7000 @c symbolic form, as they usually would be displayed.
7002 (@value{GDBP}) info line m4_changequote
7003 Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
7007 @cindex code address and its source line
7008 We can also inquire (using @code{*@var{addr}} as the form for
7009 @var{linespec}) what source line covers a particular address:
7011 (@value{GDBP}) info line *0x63ff
7012 Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
7015 @cindex @code{$_} and @code{info line}
7016 @cindex @code{x} command, default address
7017 @kindex x@r{(examine), and} info line
7018 After @code{info line}, the default address for the @code{x} command
7019 is changed to the starting address of the line, so that @samp{x/i} is
7020 sufficient to begin examining the machine code (@pxref{Memory,
7021 ,Examining Memory}). Also, this address is saved as the value of the
7022 convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
7027 @cindex assembly instructions
7028 @cindex instructions, assembly
7029 @cindex machine instructions
7030 @cindex listing machine instructions
7032 @itemx disassemble /m
7033 @itemx disassemble /r
7034 This specialized command dumps a range of memory as machine
7035 instructions. It can also print mixed source+disassembly by specifying
7036 the @code{/m} modifier and print the raw instructions in hex as well as
7037 in symbolic form by specifying the @code{/r}.
7038 The default memory range is the function surrounding the
7039 program counter of the selected frame. A single argument to this
7040 command is a program counter value; @value{GDBN} dumps the function
7041 surrounding this value. When two arguments are given, they should
7042 be separated by a comma, possibly surrounded by whitespace. The
7043 arguments specify a range of addresses to dump, in one of two forms:
7046 @item @var{start},@var{end}
7047 the addresses from @var{start} (inclusive) to @var{end} (exclusive)
7048 @item @var{start},+@var{length}
7049 the addresses from @var{start} (inclusive) to
7050 @code{@var{start}+@var{length}} (exclusive).
7054 When 2 arguments are specified, the name of the function is also
7055 printed (since there could be several functions in the given range).
7057 The argument(s) can be any expression yielding a numeric value, such as
7058 @samp{0x32c4}, @samp{&main+10} or @samp{$pc - 8}.
7060 If the range of memory being disassembled contains current program counter,
7061 the instruction at that location is shown with a @code{=>} marker.
7064 The following example shows the disassembly of a range of addresses of
7065 HP PA-RISC 2.0 code:
7068 (@value{GDBP}) disas 0x32c4, 0x32e4
7069 Dump of assembler code from 0x32c4 to 0x32e4:
7070 0x32c4 <main+204>: addil 0,dp
7071 0x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
7072 0x32cc <main+212>: ldil 0x3000,r31
7073 0x32d0 <main+216>: ble 0x3f8(sr4,r31)
7074 0x32d4 <main+220>: ldo 0(r31),rp
7075 0x32d8 <main+224>: addil -0x800,dp
7076 0x32dc <main+228>: ldo 0x588(r1),r26
7077 0x32e0 <main+232>: ldil 0x3000,r31
7078 End of assembler dump.
7081 Here is an example showing mixed source+assembly for Intel x86, when the
7082 program is stopped just after function prologue:
7085 (@value{GDBP}) disas /m main
7086 Dump of assembler code for function main:
7088 0x08048330 <+0>: push %ebp
7089 0x08048331 <+1>: mov %esp,%ebp
7090 0x08048333 <+3>: sub $0x8,%esp
7091 0x08048336 <+6>: and $0xfffffff0,%esp
7092 0x08048339 <+9>: sub $0x10,%esp
7094 6 printf ("Hello.\n");
7095 => 0x0804833c <+12>: movl $0x8048440,(%esp)
7096 0x08048343 <+19>: call 0x8048284 <puts@@plt>
7100 0x08048348 <+24>: mov $0x0,%eax
7101 0x0804834d <+29>: leave
7102 0x0804834e <+30>: ret
7104 End of assembler dump.
7107 Here is another example showing raw instructions in hex for AMD x86-64,
7110 (gdb) disas /r 0x400281,+10
7111 Dump of assembler code from 0x400281 to 0x40028b:
7112 0x0000000000400281: 38 36 cmp %dh,(%rsi)
7113 0x0000000000400283: 2d 36 34 2e 73 sub $0x732e3436,%eax
7114 0x0000000000400288: 6f outsl %ds:(%rsi),(%dx)
7115 0x0000000000400289: 2e 32 00 xor %cs:(%rax),%al
7116 End of assembler dump.
7119 Some architectures have more than one commonly-used set of instruction
7120 mnemonics or other syntax.
7122 For programs that were dynamically linked and use shared libraries,
7123 instructions that call functions or branch to locations in the shared
7124 libraries might show a seemingly bogus location---it's actually a
7125 location of the relocation table. On some architectures, @value{GDBN}
7126 might be able to resolve these to actual function names.
7129 @kindex set disassembly-flavor
7130 @cindex Intel disassembly flavor
7131 @cindex AT&T disassembly flavor
7132 @item set disassembly-flavor @var{instruction-set}
7133 Select the instruction set to use when disassembling the
7134 program via the @code{disassemble} or @code{x/i} commands.
7136 Currently this command is only defined for the Intel x86 family. You
7137 can set @var{instruction-set} to either @code{intel} or @code{att}.
7138 The default is @code{att}, the AT&T flavor used by default by Unix
7139 assemblers for x86-based targets.
7141 @kindex show disassembly-flavor
7142 @item show disassembly-flavor
7143 Show the current setting of the disassembly flavor.
7147 @kindex set disassemble-next-line
7148 @kindex show disassemble-next-line
7149 @item set disassemble-next-line
7150 @itemx show disassemble-next-line
7151 Control whether or not @value{GDBN} will disassemble the next source
7152 line or instruction when execution stops. If ON, @value{GDBN} will
7153 display disassembly of the next source line when execution of the
7154 program being debugged stops. This is @emph{in addition} to
7155 displaying the source line itself, which @value{GDBN} always does if
7156 possible. If the next source line cannot be displayed for some reason
7157 (e.g., if @value{GDBN} cannot find the source file, or there's no line
7158 info in the debug info), @value{GDBN} will display disassembly of the
7159 next @emph{instruction} instead of showing the next source line. If
7160 AUTO, @value{GDBN} will display disassembly of next instruction only
7161 if the source line cannot be displayed. This setting causes
7162 @value{GDBN} to display some feedback when you step through a function
7163 with no line info or whose source file is unavailable. The default is
7164 OFF, which means never display the disassembly of the next line or
7170 @chapter Examining Data
7172 @cindex printing data
7173 @cindex examining data
7176 @c "inspect" is not quite a synonym if you are using Epoch, which we do not
7177 @c document because it is nonstandard... Under Epoch it displays in a
7178 @c different window or something like that.
7179 The usual way to examine data in your program is with the @code{print}
7180 command (abbreviated @code{p}), or its synonym @code{inspect}. It
7181 evaluates and prints the value of an expression of the language your
7182 program is written in (@pxref{Languages, ,Using @value{GDBN} with
7183 Different Languages}). It may also print the expression using a
7184 Python-based pretty-printer (@pxref{Pretty Printing}).
7187 @item print @var{expr}
7188 @itemx print /@var{f} @var{expr}
7189 @var{expr} is an expression (in the source language). By default the
7190 value of @var{expr} is printed in a format appropriate to its data type;
7191 you can choose a different format by specifying @samp{/@var{f}}, where
7192 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
7196 @itemx print /@var{f}
7197 @cindex reprint the last value
7198 If you omit @var{expr}, @value{GDBN} displays the last value again (from the
7199 @dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
7200 conveniently inspect the same value in an alternative format.
7203 A more low-level way of examining data is with the @code{x} command.
7204 It examines data in memory at a specified address and prints it in a
7205 specified format. @xref{Memory, ,Examining Memory}.
7207 If you are interested in information about types, or about how the
7208 fields of a struct or a class are declared, use the @code{ptype @var{exp}}
7209 command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7212 @cindex exploring hierarchical data structures
7214 Another way of examining values of expressions and type information is
7215 through the Python extension command @code{explore} (available only if
7216 the @value{GDBN} build is configured with @code{--with-python}). It
7217 offers an interactive way to start at the highest level (or, the most
7218 abstract level) of the data type of an expression (or, the data type
7219 itself) and explore all the way down to leaf scalar values/fields
7220 embedded in the higher level data types.
7223 @item explore @var{arg}
7224 @var{arg} is either an expression (in the source language), or a type
7225 visible in the current context of the program being debugged.
7228 The working of the @code{explore} command can be illustrated with an
7229 example. If a data type @code{struct ComplexStruct} is defined in your
7239 struct ComplexStruct
7241 struct SimpleStruct *ss_p;
7247 followed by variable declarations as
7250 struct SimpleStruct ss = @{ 10, 1.11 @};
7251 struct ComplexStruct cs = @{ &ss, @{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 @} @};
7255 then, the value of the variable @code{cs} can be explored using the
7256 @code{explore} command as follows.
7260 The value of `cs' is a struct/class of type `struct ComplexStruct' with
7261 the following fields:
7263 ss_p = <Enter 0 to explore this field of type `struct SimpleStruct *'>
7264 arr = <Enter 1 to explore this field of type `int [10]'>
7266 Enter the field number of choice:
7270 Since the fields of @code{cs} are not scalar values, you are being
7271 prompted to chose the field you want to explore. Let's say you choose
7272 the field @code{ss_p} by entering @code{0}. Then, since this field is a
7273 pointer, you will be asked if it is pointing to a single value. From
7274 the declaration of @code{cs} above, it is indeed pointing to a single
7275 value, hence you enter @code{y}. If you enter @code{n}, then you will
7276 be asked if it were pointing to an array of values, in which case this
7277 field will be explored as if it were an array.
7280 `cs.ss_p' is a pointer to a value of type `struct SimpleStruct'
7281 Continue exploring it as a pointer to a single value [y/n]: y
7282 The value of `*(cs.ss_p)' is a struct/class of type `struct
7283 SimpleStruct' with the following fields:
7285 i = 10 .. (Value of type `int')
7286 d = 1.1100000000000001 .. (Value of type `double')
7288 Press enter to return to parent value:
7292 If the field @code{arr} of @code{cs} was chosen for exploration by
7293 entering @code{1} earlier, then since it is as array, you will be
7294 prompted to enter the index of the element in the array that you want
7298 `cs.arr' is an array of `int'.
7299 Enter the index of the element you want to explore in `cs.arr': 5
7301 `(cs.arr)[5]' is a scalar value of type `int'.
7305 Press enter to return to parent value:
7308 In general, at any stage of exploration, you can go deeper towards the
7309 leaf values by responding to the prompts appropriately, or hit the
7310 return key to return to the enclosing data structure (the @i{higher}
7311 level data structure).
7313 Similar to exploring values, you can use the @code{explore} command to
7314 explore types. Instead of specifying a value (which is typically a
7315 variable name or an expression valid in the current context of the
7316 program being debugged), you specify a type name. If you consider the
7317 same example as above, your can explore the type
7318 @code{struct ComplexStruct} by passing the argument
7319 @code{struct ComplexStruct} to the @code{explore} command.
7322 (gdb) explore struct ComplexStruct
7326 By responding to the prompts appropriately in the subsequent interactive
7327 session, you can explore the type @code{struct ComplexStruct} in a
7328 manner similar to how the value @code{cs} was explored in the above
7331 The @code{explore} command also has two sub-commands,
7332 @code{explore value} and @code{explore type}. The former sub-command is
7333 a way to explicitly specify that value exploration of the argument is
7334 being invoked, while the latter is a way to explicitly specify that type
7335 exploration of the argument is being invoked.
7338 @item explore value @var{expr}
7339 @cindex explore value
7340 This sub-command of @code{explore} explores the value of the
7341 expression @var{expr} (if @var{expr} is an expression valid in the
7342 current context of the program being debugged). The behavior of this
7343 command is identical to that of the behavior of the @code{explore}
7344 command being passed the argument @var{expr}.
7346 @item explore type @var{arg}
7347 @cindex explore type
7348 This sub-command of @code{explore} explores the type of @var{arg} (if
7349 @var{arg} is a type visible in the current context of program being
7350 debugged), or the type of the value/expression @var{arg} (if @var{arg}
7351 is an expression valid in the current context of the program being
7352 debugged). If @var{arg} is a type, then the behavior of this command is
7353 identical to that of the @code{explore} command being passed the
7354 argument @var{arg}. If @var{arg} is an expression, then the behavior of
7355 this command will be identical to that of the @code{explore} command
7356 being passed the type of @var{arg} as the argument.
7360 * Expressions:: Expressions
7361 * Ambiguous Expressions:: Ambiguous Expressions
7362 * Variables:: Program variables
7363 * Arrays:: Artificial arrays
7364 * Output Formats:: Output formats
7365 * Memory:: Examining memory
7366 * Auto Display:: Automatic display
7367 * Print Settings:: Print settings
7368 * Pretty Printing:: Python pretty printing
7369 * Value History:: Value history
7370 * Convenience Vars:: Convenience variables
7371 * Registers:: Registers
7372 * Floating Point Hardware:: Floating point hardware
7373 * Vector Unit:: Vector Unit
7374 * OS Information:: Auxiliary data provided by operating system
7375 * Memory Region Attributes:: Memory region attributes
7376 * Dump/Restore Files:: Copy between memory and a file
7377 * Core File Generation:: Cause a program dump its core
7378 * Character Sets:: Debugging programs that use a different
7379 character set than GDB does
7380 * Caching Remote Data:: Data caching for remote targets
7381 * Searching Memory:: Searching memory for a sequence of bytes
7385 @section Expressions
7388 @code{print} and many other @value{GDBN} commands accept an expression and
7389 compute its value. Any kind of constant, variable or operator defined
7390 by the programming language you are using is valid in an expression in
7391 @value{GDBN}. This includes conditional expressions, function calls,
7392 casts, and string constants. It also includes preprocessor macros, if
7393 you compiled your program to include this information; see
7396 @cindex arrays in expressions
7397 @value{GDBN} supports array constants in expressions input by
7398 the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
7399 you can use the command @code{print @{1, 2, 3@}} to create an array
7400 of three integers. If you pass an array to a function or assign it
7401 to a program variable, @value{GDBN} copies the array to memory that
7402 is @code{malloc}ed in the target program.
7404 Because C is so widespread, most of the expressions shown in examples in
7405 this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
7406 Languages}, for information on how to use expressions in other
7409 In this section, we discuss operators that you can use in @value{GDBN}
7410 expressions regardless of your programming language.
7412 @cindex casts, in expressions
7413 Casts are supported in all languages, not just in C, because it is so
7414 useful to cast a number into a pointer in order to examine a structure
7415 at that address in memory.
7416 @c FIXME: casts supported---Mod2 true?
7418 @value{GDBN} supports these operators, in addition to those common
7419 to programming languages:
7423 @samp{@@} is a binary operator for treating parts of memory as arrays.
7424 @xref{Arrays, ,Artificial Arrays}, for more information.
7427 @samp{::} allows you to specify a variable in terms of the file or
7428 function where it is defined. @xref{Variables, ,Program Variables}.
7430 @cindex @{@var{type}@}
7431 @cindex type casting memory
7432 @cindex memory, viewing as typed object
7433 @cindex casts, to view memory
7434 @item @{@var{type}@} @var{addr}
7435 Refers to an object of type @var{type} stored at address @var{addr} in
7436 memory. @var{addr} may be any expression whose value is an integer or
7437 pointer (but parentheses are required around binary operators, just as in
7438 a cast). This construct is allowed regardless of what kind of data is
7439 normally supposed to reside at @var{addr}.
7442 @node Ambiguous Expressions
7443 @section Ambiguous Expressions
7444 @cindex ambiguous expressions
7446 Expressions can sometimes contain some ambiguous elements. For instance,
7447 some programming languages (notably Ada, C@t{++} and Objective-C) permit
7448 a single function name to be defined several times, for application in
7449 different contexts. This is called @dfn{overloading}. Another example
7450 involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
7451 templates and is typically instantiated several times, resulting in
7452 the same function name being defined in different contexts.
7454 In some cases and depending on the language, it is possible to adjust
7455 the expression to remove the ambiguity. For instance in C@t{++}, you
7456 can specify the signature of the function you want to break on, as in
7457 @kbd{break @var{function}(@var{types})}. In Ada, using the fully
7458 qualified name of your function often makes the expression unambiguous
7461 When an ambiguity that needs to be resolved is detected, the debugger
7462 has the capability to display a menu of numbered choices for each
7463 possibility, and then waits for the selection with the prompt @samp{>}.
7464 The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
7465 aborts the current command. If the command in which the expression was
7466 used allows more than one choice to be selected, the next option in the
7467 menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
7470 For example, the following session excerpt shows an attempt to set a
7471 breakpoint at the overloaded symbol @code{String::after}.
7472 We choose three particular definitions of that function name:
7474 @c FIXME! This is likely to change to show arg type lists, at least
7477 (@value{GDBP}) b String::after
7480 [2] file:String.cc; line number:867
7481 [3] file:String.cc; line number:860
7482 [4] file:String.cc; line number:875
7483 [5] file:String.cc; line number:853
7484 [6] file:String.cc; line number:846
7485 [7] file:String.cc; line number:735
7487 Breakpoint 1 at 0xb26c: file String.cc, line 867.
7488 Breakpoint 2 at 0xb344: file String.cc, line 875.
7489 Breakpoint 3 at 0xafcc: file String.cc, line 846.
7490 Multiple breakpoints were set.
7491 Use the "delete" command to delete unwanted
7498 @kindex set multiple-symbols
7499 @item set multiple-symbols @var{mode}
7500 @cindex multiple-symbols menu
7502 This option allows you to adjust the debugger behavior when an expression
7505 By default, @var{mode} is set to @code{all}. If the command with which
7506 the expression is used allows more than one choice, then @value{GDBN}
7507 automatically selects all possible choices. For instance, inserting
7508 a breakpoint on a function using an ambiguous name results in a breakpoint
7509 inserted on each possible match. However, if a unique choice must be made,
7510 then @value{GDBN} uses the menu to help you disambiguate the expression.
7511 For instance, printing the address of an overloaded function will result
7512 in the use of the menu.
7514 When @var{mode} is set to @code{ask}, the debugger always uses the menu
7515 when an ambiguity is detected.
7517 Finally, when @var{mode} is set to @code{cancel}, the debugger reports
7518 an error due to the ambiguity and the command is aborted.
7520 @kindex show multiple-symbols
7521 @item show multiple-symbols
7522 Show the current value of the @code{multiple-symbols} setting.
7526 @section Program Variables
7528 The most common kind of expression to use is the name of a variable
7531 Variables in expressions are understood in the selected stack frame
7532 (@pxref{Selection, ,Selecting a Frame}); they must be either:
7536 global (or file-static)
7543 visible according to the scope rules of the
7544 programming language from the point of execution in that frame
7547 @noindent This means that in the function
7562 you can examine and use the variable @code{a} whenever your program is
7563 executing within the function @code{foo}, but you can only use or
7564 examine the variable @code{b} while your program is executing inside
7565 the block where @code{b} is declared.
7567 @cindex variable name conflict
7568 There is an exception: you can refer to a variable or function whose
7569 scope is a single source file even if the current execution point is not
7570 in this file. But it is possible to have more than one such variable or
7571 function with the same name (in different source files). If that
7572 happens, referring to that name has unpredictable effects. If you wish,
7573 you can specify a static variable in a particular function or file by
7574 using the colon-colon (@code{::}) notation:
7576 @cindex colon-colon, context for variables/functions
7578 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
7579 @cindex @code{::}, context for variables/functions
7582 @var{file}::@var{variable}
7583 @var{function}::@var{variable}
7587 Here @var{file} or @var{function} is the name of the context for the
7588 static @var{variable}. In the case of file names, you can use quotes to
7589 make sure @value{GDBN} parses the file name as a single word---for example,
7590 to print a global value of @code{x} defined in @file{f2.c}:
7593 (@value{GDBP}) p 'f2.c'::x
7596 The @code{::} notation is normally used for referring to
7597 static variables, since you typically disambiguate uses of local variables
7598 in functions by selecting the appropriate frame and using the
7599 simple name of the variable. However, you may also use this notation
7600 to refer to local variables in frames enclosing the selected frame:
7609 process (a); /* Stop here */
7620 For example, if there is a breakpoint at the commented line,
7621 here is what you might see
7622 when the program stops after executing the call @code{bar(0)}:
7627 (@value{GDBP}) p bar::a
7630 #2 0x080483d0 in foo (a=5) at foobar.c:12
7633 (@value{GDBP}) p bar::a
7637 @cindex C@t{++} scope resolution
7638 These uses of @samp{::} are very rarely in conflict with the very similar
7639 use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
7640 scope resolution operator in @value{GDBN} expressions.
7641 @c FIXME: Um, so what happens in one of those rare cases where it's in
7644 @cindex wrong values
7645 @cindex variable values, wrong
7646 @cindex function entry/exit, wrong values of variables
7647 @cindex optimized code, wrong values of variables
7649 @emph{Warning:} Occasionally, a local variable may appear to have the
7650 wrong value at certain points in a function---just after entry to a new
7651 scope, and just before exit.
7653 You may see this problem when you are stepping by machine instructions.
7654 This is because, on most machines, it takes more than one instruction to
7655 set up a stack frame (including local variable definitions); if you are
7656 stepping by machine instructions, variables may appear to have the wrong
7657 values until the stack frame is completely built. On exit, it usually
7658 also takes more than one machine instruction to destroy a stack frame;
7659 after you begin stepping through that group of instructions, local
7660 variable definitions may be gone.
7662 This may also happen when the compiler does significant optimizations.
7663 To be sure of always seeing accurate values, turn off all optimization
7666 @cindex ``No symbol "foo" in current context''
7667 Another possible effect of compiler optimizations is to optimize
7668 unused variables out of existence, or assign variables to registers (as
7669 opposed to memory addresses). Depending on the support for such cases
7670 offered by the debug info format used by the compiler, @value{GDBN}
7671 might not be able to display values for such local variables. If that
7672 happens, @value{GDBN} will print a message like this:
7675 No symbol "foo" in current context.
7678 To solve such problems, either recompile without optimizations, or use a
7679 different debug info format, if the compiler supports several such
7680 formats. @xref{Compilation}, for more information on choosing compiler
7681 options. @xref{C, ,C and C@t{++}}, for more information about debug
7682 info formats that are best suited to C@t{++} programs.
7684 If you ask to print an object whose contents are unknown to
7685 @value{GDBN}, e.g., because its data type is not completely specified
7686 by the debug information, @value{GDBN} will say @samp{<incomplete
7687 type>}. @xref{Symbols, incomplete type}, for more about this.
7689 If you append @kbd{@@entry} string to a function parameter name you get its
7690 value at the time the function got called. If the value is not available an
7691 error message is printed. Entry values are available only with some compilers.
7692 Entry values are normally also printed at the function parameter list according
7693 to @ref{set print entry-values}.
7696 Breakpoint 1, d (i=30) at gdb.base/entry-value.c:29
7702 (gdb) print i@@entry
7706 Strings are identified as arrays of @code{char} values without specified
7707 signedness. Arrays of either @code{signed char} or @code{unsigned char} get
7708 printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
7709 @code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
7710 defines literal string type @code{"char"} as @code{char} without a sign.
7715 signed char var1[] = "A";
7718 You get during debugging
7723 $2 = @{65 'A', 0 '\0'@}
7727 @section Artificial Arrays
7729 @cindex artificial array
7731 @kindex @@@r{, referencing memory as an array}
7732 It is often useful to print out several successive objects of the
7733 same type in memory; a section of an array, or an array of
7734 dynamically determined size for which only a pointer exists in the
7737 You can do this by referring to a contiguous span of memory as an
7738 @dfn{artificial array}, using the binary operator @samp{@@}. The left
7739 operand of @samp{@@} should be the first element of the desired array
7740 and be an individual object. The right operand should be the desired length
7741 of the array. The result is an array value whose elements are all of
7742 the type of the left argument. The first element is actually the left
7743 argument; the second element comes from bytes of memory immediately
7744 following those that hold the first element, and so on. Here is an
7745 example. If a program says
7748 int *array = (int *) malloc (len * sizeof (int));
7752 you can print the contents of @code{array} with
7758 The left operand of @samp{@@} must reside in memory. Array values made
7759 with @samp{@@} in this way behave just like other arrays in terms of
7760 subscripting, and are coerced to pointers when used in expressions.
7761 Artificial arrays most often appear in expressions via the value history
7762 (@pxref{Value History, ,Value History}), after printing one out.
7764 Another way to create an artificial array is to use a cast.
7765 This re-interprets a value as if it were an array.
7766 The value need not be in memory:
7768 (@value{GDBP}) p/x (short[2])0x12345678
7769 $1 = @{0x1234, 0x5678@}
7772 As a convenience, if you leave the array length out (as in
7773 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
7774 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
7776 (@value{GDBP}) p/x (short[])0x12345678
7777 $2 = @{0x1234, 0x5678@}
7780 Sometimes the artificial array mechanism is not quite enough; in
7781 moderately complex data structures, the elements of interest may not
7782 actually be adjacent---for example, if you are interested in the values
7783 of pointers in an array. One useful work-around in this situation is
7784 to use a convenience variable (@pxref{Convenience Vars, ,Convenience
7785 Variables}) as a counter in an expression that prints the first
7786 interesting value, and then repeat that expression via @key{RET}. For
7787 instance, suppose you have an array @code{dtab} of pointers to
7788 structures, and you are interested in the values of a field @code{fv}
7789 in each structure. Here is an example of what you might type:
7799 @node Output Formats
7800 @section Output Formats
7802 @cindex formatted output
7803 @cindex output formats
7804 By default, @value{GDBN} prints a value according to its data type. Sometimes
7805 this is not what you want. For example, you might want to print a number
7806 in hex, or a pointer in decimal. Or you might want to view data in memory
7807 at a certain address as a character string or as an instruction. To do
7808 these things, specify an @dfn{output format} when you print a value.
7810 The simplest use of output formats is to say how to print a value
7811 already computed. This is done by starting the arguments of the
7812 @code{print} command with a slash and a format letter. The format
7813 letters supported are:
7817 Regard the bits of the value as an integer, and print the integer in
7821 Print as integer in signed decimal.
7824 Print as integer in unsigned decimal.
7827 Print as integer in octal.
7830 Print as integer in binary. The letter @samp{t} stands for ``two''.
7831 @footnote{@samp{b} cannot be used because these format letters are also
7832 used with the @code{x} command, where @samp{b} stands for ``byte'';
7833 see @ref{Memory,,Examining Memory}.}
7836 @cindex unknown address, locating
7837 @cindex locate address
7838 Print as an address, both absolute in hexadecimal and as an offset from
7839 the nearest preceding symbol. You can use this format used to discover
7840 where (in what function) an unknown address is located:
7843 (@value{GDBP}) p/a 0x54320
7844 $3 = 0x54320 <_initialize_vx+396>
7848 The command @code{info symbol 0x54320} yields similar results.
7849 @xref{Symbols, info symbol}.
7852 Regard as an integer and print it as a character constant. This
7853 prints both the numerical value and its character representation. The
7854 character representation is replaced with the octal escape @samp{\nnn}
7855 for characters outside the 7-bit @sc{ascii} range.
7857 Without this format, @value{GDBN} displays @code{char},
7858 @w{@code{unsigned char}}, and @w{@code{signed char}} data as character
7859 constants. Single-byte members of vectors are displayed as integer
7863 Regard the bits of the value as a floating point number and print
7864 using typical floating point syntax.
7867 @cindex printing strings
7868 @cindex printing byte arrays
7869 Regard as a string, if possible. With this format, pointers to single-byte
7870 data are displayed as null-terminated strings and arrays of single-byte data
7871 are displayed as fixed-length strings. Other values are displayed in their
7874 Without this format, @value{GDBN} displays pointers to and arrays of
7875 @code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
7876 strings. Single-byte members of a vector are displayed as an integer
7880 @cindex raw printing
7881 Print using the @samp{raw} formatting. By default, @value{GDBN} will
7882 use a Python-based pretty-printer, if one is available (@pxref{Pretty
7883 Printing}). This typically results in a higher-level display of the
7884 value's contents. The @samp{r} format bypasses any Python
7885 pretty-printer which might exist.
7888 For example, to print the program counter in hex (@pxref{Registers}), type
7895 Note that no space is required before the slash; this is because command
7896 names in @value{GDBN} cannot contain a slash.
7898 To reprint the last value in the value history with a different format,
7899 you can use the @code{print} command with just a format and no
7900 expression. For example, @samp{p/x} reprints the last value in hex.
7903 @section Examining Memory
7905 You can use the command @code{x} (for ``examine'') to examine memory in
7906 any of several formats, independently of your program's data types.
7908 @cindex examining memory
7910 @kindex x @r{(examine memory)}
7911 @item x/@var{nfu} @var{addr}
7914 Use the @code{x} command to examine memory.
7917 @var{n}, @var{f}, and @var{u} are all optional parameters that specify how
7918 much memory to display and how to format it; @var{addr} is an
7919 expression giving the address where you want to start displaying memory.
7920 If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
7921 Several commands set convenient defaults for @var{addr}.
7924 @item @var{n}, the repeat count
7925 The repeat count is a decimal integer; the default is 1. It specifies
7926 how much memory (counting by units @var{u}) to display.
7927 @c This really is **decimal**; unaffected by 'set radix' as of GDB
7930 @item @var{f}, the display format
7931 The display format is one of the formats used by @code{print}
7932 (@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
7933 @samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
7934 The default is @samp{x} (hexadecimal) initially. The default changes
7935 each time you use either @code{x} or @code{print}.
7937 @item @var{u}, the unit size
7938 The unit size is any of
7944 Halfwords (two bytes).
7946 Words (four bytes). This is the initial default.
7948 Giant words (eight bytes).
7951 Each time you specify a unit size with @code{x}, that size becomes the
7952 default unit the next time you use @code{x}. For the @samp{i} format,
7953 the unit size is ignored and is normally not written. For the @samp{s} format,
7954 the unit size defaults to @samp{b}, unless it is explicitly given.
7955 Use @kbd{x /hs} to display 16-bit char strings and @kbd{x /ws} to display
7956 32-bit strings. The next use of @kbd{x /s} will again display 8-bit strings.
7957 Note that the results depend on the programming language of the
7958 current compilation unit. If the language is C, the @samp{s}
7959 modifier will use the UTF-16 encoding while @samp{w} will use
7960 UTF-32. The encoding is set by the programming language and cannot
7963 @item @var{addr}, starting display address
7964 @var{addr} is the address where you want @value{GDBN} to begin displaying
7965 memory. The expression need not have a pointer value (though it may);
7966 it is always interpreted as an integer address of a byte of memory.
7967 @xref{Expressions, ,Expressions}, for more information on expressions. The default for
7968 @var{addr} is usually just after the last address examined---but several
7969 other commands also set the default address: @code{info breakpoints} (to
7970 the address of the last breakpoint listed), @code{info line} (to the
7971 starting address of a line), and @code{print} (if you use it to display
7972 a value from memory).
7975 For example, @samp{x/3uh 0x54320} is a request to display three halfwords
7976 (@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
7977 starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
7978 words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
7979 @pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
7981 Since the letters indicating unit sizes are all distinct from the
7982 letters specifying output formats, you do not have to remember whether
7983 unit size or format comes first; either order works. The output
7984 specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
7985 (However, the count @var{n} must come first; @samp{wx4} does not work.)
7987 Even though the unit size @var{u} is ignored for the formats @samp{s}
7988 and @samp{i}, you might still want to use a count @var{n}; for example,
7989 @samp{3i} specifies that you want to see three machine instructions,
7990 including any operands. For convenience, especially when used with
7991 the @code{display} command, the @samp{i} format also prints branch delay
7992 slot instructions, if any, beyond the count specified, which immediately
7993 follow the last instruction that is within the count. The command
7994 @code{disassemble} gives an alternative way of inspecting machine
7995 instructions; see @ref{Machine Code,,Source and Machine Code}.
7997 All the defaults for the arguments to @code{x} are designed to make it
7998 easy to continue scanning memory with minimal specifications each time
7999 you use @code{x}. For example, after you have inspected three machine
8000 instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
8001 with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
8002 the repeat count @var{n} is used again; the other arguments default as
8003 for successive uses of @code{x}.
8005 When examining machine instructions, the instruction at current program
8006 counter is shown with a @code{=>} marker. For example:
8009 (@value{GDBP}) x/5i $pc-6
8010 0x804837f <main+11>: mov %esp,%ebp
8011 0x8048381 <main+13>: push %ecx
8012 0x8048382 <main+14>: sub $0x4,%esp
8013 => 0x8048385 <main+17>: movl $0x8048460,(%esp)
8014 0x804838c <main+24>: call 0x80482d4 <puts@@plt>
8017 @cindex @code{$_}, @code{$__}, and value history
8018 The addresses and contents printed by the @code{x} command are not saved
8019 in the value history because there is often too much of them and they
8020 would get in the way. Instead, @value{GDBN} makes these values available for
8021 subsequent use in expressions as values of the convenience variables
8022 @code{$_} and @code{$__}. After an @code{x} command, the last address
8023 examined is available for use in expressions in the convenience variable
8024 @code{$_}. The contents of that address, as examined, are available in
8025 the convenience variable @code{$__}.
8027 If the @code{x} command has a repeat count, the address and contents saved
8028 are from the last memory unit printed; this is not the same as the last
8029 address printed if several units were printed on the last line of output.
8031 @cindex remote memory comparison
8032 @cindex verify remote memory image
8033 When you are debugging a program running on a remote target machine
8034 (@pxref{Remote Debugging}), you may wish to verify the program's image in the
8035 remote machine's memory against the executable file you downloaded to
8036 the target. The @code{compare-sections} command is provided for such
8040 @kindex compare-sections
8041 @item compare-sections @r{[}@var{section-name}@r{]}
8042 Compare the data of a loadable section @var{section-name} in the
8043 executable file of the program being debugged with the same section in
8044 the remote machine's memory, and report any mismatches. With no
8045 arguments, compares all loadable sections. This command's
8046 availability depends on the target's support for the @code{"qCRC"}
8051 @section Automatic Display
8052 @cindex automatic display
8053 @cindex display of expressions
8055 If you find that you want to print the value of an expression frequently
8056 (to see how it changes), you might want to add it to the @dfn{automatic
8057 display list} so that @value{GDBN} prints its value each time your program stops.
8058 Each expression added to the list is given a number to identify it;
8059 to remove an expression from the list, you specify that number.
8060 The automatic display looks like this:
8064 3: bar[5] = (struct hack *) 0x3804
8068 This display shows item numbers, expressions and their current values. As with
8069 displays you request manually using @code{x} or @code{print}, you can
8070 specify the output format you prefer; in fact, @code{display} decides
8071 whether to use @code{print} or @code{x} depending your format
8072 specification---it uses @code{x} if you specify either the @samp{i}
8073 or @samp{s} format, or a unit size; otherwise it uses @code{print}.
8077 @item display @var{expr}
8078 Add the expression @var{expr} to the list of expressions to display
8079 each time your program stops. @xref{Expressions, ,Expressions}.
8081 @code{display} does not repeat if you press @key{RET} again after using it.
8083 @item display/@var{fmt} @var{expr}
8084 For @var{fmt} specifying only a display format and not a size or
8085 count, add the expression @var{expr} to the auto-display list but
8086 arrange to display it each time in the specified format @var{fmt}.
8087 @xref{Output Formats,,Output Formats}.
8089 @item display/@var{fmt} @var{addr}
8090 For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
8091 number of units, add the expression @var{addr} as a memory address to
8092 be examined each time your program stops. Examining means in effect
8093 doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
8096 For example, @samp{display/i $pc} can be helpful, to see the machine
8097 instruction about to be executed each time execution stops (@samp{$pc}
8098 is a common name for the program counter; @pxref{Registers, ,Registers}).
8101 @kindex delete display
8103 @item undisplay @var{dnums}@dots{}
8104 @itemx delete display @var{dnums}@dots{}
8105 Remove items from the list of expressions to display. Specify the
8106 numbers of the displays that you want affected with the command
8107 argument @var{dnums}. It can be a single display number, one of the
8108 numbers shown in the first field of the @samp{info display} display;
8109 or it could be a range of display numbers, as in @code{2-4}.
8111 @code{undisplay} does not repeat if you press @key{RET} after using it.
8112 (Otherwise you would just get the error @samp{No display number @dots{}}.)
8114 @kindex disable display
8115 @item disable display @var{dnums}@dots{}
8116 Disable the display of item numbers @var{dnums}. A disabled display
8117 item is not printed automatically, but is not forgotten. It may be
8118 enabled again later. Specify the numbers of the displays that you
8119 want affected with the command argument @var{dnums}. It can be a
8120 single display number, one of the numbers shown in the first field of
8121 the @samp{info display} display; or it could be a range of display
8122 numbers, as in @code{2-4}.
8124 @kindex enable display
8125 @item enable display @var{dnums}@dots{}
8126 Enable display of item numbers @var{dnums}. It becomes effective once
8127 again in auto display of its expression, until you specify otherwise.
8128 Specify the numbers of the displays that you want affected with the
8129 command argument @var{dnums}. It can be a single display number, one
8130 of the numbers shown in the first field of the @samp{info display}
8131 display; or it could be a range of display numbers, as in @code{2-4}.
8134 Display the current values of the expressions on the list, just as is
8135 done when your program stops.
8137 @kindex info display
8139 Print the list of expressions previously set up to display
8140 automatically, each one with its item number, but without showing the
8141 values. This includes disabled expressions, which are marked as such.
8142 It also includes expressions which would not be displayed right now
8143 because they refer to automatic variables not currently available.
8146 @cindex display disabled out of scope
8147 If a display expression refers to local variables, then it does not make
8148 sense outside the lexical context for which it was set up. Such an
8149 expression is disabled when execution enters a context where one of its
8150 variables is not defined. For example, if you give the command
8151 @code{display last_char} while inside a function with an argument
8152 @code{last_char}, @value{GDBN} displays this argument while your program
8153 continues to stop inside that function. When it stops elsewhere---where
8154 there is no variable @code{last_char}---the display is disabled
8155 automatically. The next time your program stops where @code{last_char}
8156 is meaningful, you can enable the display expression once again.
8158 @node Print Settings
8159 @section Print Settings
8161 @cindex format options
8162 @cindex print settings
8163 @value{GDBN} provides the following ways to control how arrays, structures,
8164 and symbols are printed.
8167 These settings are useful for debugging programs in any language:
8171 @item set print address
8172 @itemx set print address on
8173 @cindex print/don't print memory addresses
8174 @value{GDBN} prints memory addresses showing the location of stack
8175 traces, structure values, pointer values, breakpoints, and so forth,
8176 even when it also displays the contents of those addresses. The default
8177 is @code{on}. For example, this is what a stack frame display looks like with
8178 @code{set print address on}:
8183 #0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
8185 530 if (lquote != def_lquote)
8189 @item set print address off
8190 Do not print addresses when displaying their contents. For example,
8191 this is the same stack frame displayed with @code{set print address off}:
8195 (@value{GDBP}) set print addr off
8197 #0 set_quotes (lq="<<", rq=">>") at input.c:530
8198 530 if (lquote != def_lquote)
8202 You can use @samp{set print address off} to eliminate all machine
8203 dependent displays from the @value{GDBN} interface. For example, with
8204 @code{print address off}, you should get the same text for backtraces on
8205 all machines---whether or not they involve pointer arguments.
8208 @item show print address
8209 Show whether or not addresses are to be printed.
8212 When @value{GDBN} prints a symbolic address, it normally prints the
8213 closest earlier symbol plus an offset. If that symbol does not uniquely
8214 identify the address (for example, it is a name whose scope is a single
8215 source file), you may need to clarify. One way to do this is with
8216 @code{info line}, for example @samp{info line *0x4537}. Alternately,
8217 you can set @value{GDBN} to print the source file and line number when
8218 it prints a symbolic address:
8221 @item set print symbol-filename on
8222 @cindex source file and line of a symbol
8223 @cindex symbol, source file and line
8224 Tell @value{GDBN} to print the source file name and line number of a
8225 symbol in the symbolic form of an address.
8227 @item set print symbol-filename off
8228 Do not print source file name and line number of a symbol. This is the
8231 @item show print symbol-filename
8232 Show whether or not @value{GDBN} will print the source file name and
8233 line number of a symbol in the symbolic form of an address.
8236 Another situation where it is helpful to show symbol filenames and line
8237 numbers is when disassembling code; @value{GDBN} shows you the line
8238 number and source file that corresponds to each instruction.
8240 Also, you may wish to see the symbolic form only if the address being
8241 printed is reasonably close to the closest earlier symbol:
8244 @item set print max-symbolic-offset @var{max-offset}
8245 @cindex maximum value for offset of closest symbol
8246 Tell @value{GDBN} to only display the symbolic form of an address if the
8247 offset between the closest earlier symbol and the address is less than
8248 @var{max-offset}. The default is 0, which tells @value{GDBN}
8249 to always print the symbolic form of an address if any symbol precedes it.
8251 @item show print max-symbolic-offset
8252 Ask how large the maximum offset is that @value{GDBN} prints in a
8256 @cindex wild pointer, interpreting
8257 @cindex pointer, finding referent
8258 If you have a pointer and you are not sure where it points, try
8259 @samp{set print symbol-filename on}. Then you can determine the name
8260 and source file location of the variable where it points, using
8261 @samp{p/a @var{pointer}}. This interprets the address in symbolic form.
8262 For example, here @value{GDBN} shows that a variable @code{ptt} points
8263 at another variable @code{t}, defined in @file{hi2.c}:
8266 (@value{GDBP}) set print symbol-filename on
8267 (@value{GDBP}) p/a ptt
8268 $4 = 0xe008 <t in hi2.c>
8272 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
8273 does not show the symbol name and filename of the referent, even with
8274 the appropriate @code{set print} options turned on.
8277 Other settings control how different kinds of objects are printed:
8280 @item set print array
8281 @itemx set print array on
8282 @cindex pretty print arrays
8283 Pretty print arrays. This format is more convenient to read,
8284 but uses more space. The default is off.
8286 @item set print array off
8287 Return to compressed format for arrays.
8289 @item show print array
8290 Show whether compressed or pretty format is selected for displaying
8293 @cindex print array indexes
8294 @item set print array-indexes
8295 @itemx set print array-indexes on
8296 Print the index of each element when displaying arrays. May be more
8297 convenient to locate a given element in the array or quickly find the
8298 index of a given element in that printed array. The default is off.
8300 @item set print array-indexes off
8301 Stop printing element indexes when displaying arrays.
8303 @item show print array-indexes
8304 Show whether the index of each element is printed when displaying
8307 @item set print elements @var{number-of-elements}
8308 @cindex number of array elements to print
8309 @cindex limit on number of printed array elements
8310 Set a limit on how many elements of an array @value{GDBN} will print.
8311 If @value{GDBN} is printing a large array, it stops printing after it has
8312 printed the number of elements set by the @code{set print elements} command.
8313 This limit also applies to the display of strings.
8314 When @value{GDBN} starts, this limit is set to 200.
8315 Setting @var{number-of-elements} to zero means that the printing is unlimited.
8317 @item show print elements
8318 Display the number of elements of a large array that @value{GDBN} will print.
8319 If the number is 0, then the printing is unlimited.
8321 @item set print frame-arguments @var{value}
8322 @kindex set print frame-arguments
8323 @cindex printing frame argument values
8324 @cindex print all frame argument values
8325 @cindex print frame argument values for scalars only
8326 @cindex do not print frame argument values
8327 This command allows to control how the values of arguments are printed
8328 when the debugger prints a frame (@pxref{Frames}). The possible
8333 The values of all arguments are printed.
8336 Print the value of an argument only if it is a scalar. The value of more
8337 complex arguments such as arrays, structures, unions, etc, is replaced
8338 by @code{@dots{}}. This is the default. Here is an example where
8339 only scalar arguments are shown:
8342 #1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
8347 None of the argument values are printed. Instead, the value of each argument
8348 is replaced by @code{@dots{}}. In this case, the example above now becomes:
8351 #1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
8356 By default, only scalar arguments are printed. This command can be used
8357 to configure the debugger to print the value of all arguments, regardless
8358 of their type. However, it is often advantageous to not print the value
8359 of more complex parameters. For instance, it reduces the amount of
8360 information printed in each frame, making the backtrace more readable.
8361 Also, it improves performance when displaying Ada frames, because
8362 the computation of large arguments can sometimes be CPU-intensive,
8363 especially in large applications. Setting @code{print frame-arguments}
8364 to @code{scalars} (the default) or @code{none} avoids this computation,
8365 thus speeding up the display of each Ada frame.
8367 @item show print frame-arguments
8368 Show how the value of arguments should be displayed when printing a frame.
8370 @anchor{set print entry-values}
8371 @item set print entry-values @var{value}
8372 @kindex set print entry-values
8373 Set printing of frame argument values at function entry. In some cases
8374 @value{GDBN} can determine the value of function argument which was passed by
8375 the function caller, even if the value was modified inside the called function
8376 and therefore is different. With optimized code, the current value could be
8377 unavailable, but the entry value may still be known.
8379 The default value is @code{default} (see below for its description). Older
8380 @value{GDBN} behaved as with the setting @code{no}. Compilers not supporting
8381 this feature will behave in the @code{default} setting the same way as with the
8384 This functionality is currently supported only by DWARF 2 debugging format and
8385 the compiler has to produce @samp{DW_TAG_GNU_call_site} tags. With
8386 @value{NGCC}, you need to specify @option{-O -g} during compilation, to get
8389 The @var{value} parameter can be one of the following:
8393 Print only actual parameter values, never print values from function entry
8397 #0 different (val=6)
8398 #0 lost (val=<optimized out>)
8400 #0 invalid (val=<optimized out>)
8404 Print only parameter values from function entry point. The actual parameter
8405 values are never printed.
8407 #0 equal (val@@entry=5)
8408 #0 different (val@@entry=5)
8409 #0 lost (val@@entry=5)
8410 #0 born (val@@entry=<optimized out>)
8411 #0 invalid (val@@entry=<optimized out>)
8415 Print only parameter values from function entry point. If value from function
8416 entry point is not known while the actual value is known, print the actual
8417 value for such parameter.
8419 #0 equal (val@@entry=5)
8420 #0 different (val@@entry=5)
8421 #0 lost (val@@entry=5)
8423 #0 invalid (val@@entry=<optimized out>)
8427 Print actual parameter values. If actual parameter value is not known while
8428 value from function entry point is known, print the entry point value for such
8432 #0 different (val=6)
8433 #0 lost (val@@entry=5)
8435 #0 invalid (val=<optimized out>)
8439 Always print both the actual parameter value and its value from function entry
8440 point, even if values of one or both are not available due to compiler
8443 #0 equal (val=5, val@@entry=5)
8444 #0 different (val=6, val@@entry=5)
8445 #0 lost (val=<optimized out>, val@@entry=5)
8446 #0 born (val=10, val@@entry=<optimized out>)
8447 #0 invalid (val=<optimized out>, val@@entry=<optimized out>)
8451 Print the actual parameter value if it is known and also its value from
8452 function entry point if it is known. If neither is known, print for the actual
8453 value @code{<optimized out>}. If not in MI mode (@pxref{GDB/MI}) and if both
8454 values are known and identical, print the shortened
8455 @code{param=param@@entry=VALUE} notation.
8457 #0 equal (val=val@@entry=5)
8458 #0 different (val=6, val@@entry=5)
8459 #0 lost (val@@entry=5)
8461 #0 invalid (val=<optimized out>)
8465 Always print the actual parameter value. Print also its value from function
8466 entry point, but only if it is known. If not in MI mode (@pxref{GDB/MI}) and
8467 if both values are known and identical, print the shortened
8468 @code{param=param@@entry=VALUE} notation.
8470 #0 equal (val=val@@entry=5)
8471 #0 different (val=6, val@@entry=5)
8472 #0 lost (val=<optimized out>, val@@entry=5)
8474 #0 invalid (val=<optimized out>)
8478 For analysis messages on possible failures of frame argument values at function
8479 entry resolution see @ref{set debug entry-values}.
8481 @item show print entry-values
8482 Show the method being used for printing of frame argument values at function
8485 @item set print repeats
8486 @cindex repeated array elements
8487 Set the threshold for suppressing display of repeated array
8488 elements. When the number of consecutive identical elements of an
8489 array exceeds the threshold, @value{GDBN} prints the string
8490 @code{"<repeats @var{n} times>"}, where @var{n} is the number of
8491 identical repetitions, instead of displaying the identical elements
8492 themselves. Setting the threshold to zero will cause all elements to
8493 be individually printed. The default threshold is 10.
8495 @item show print repeats
8496 Display the current threshold for printing repeated identical
8499 @item set print null-stop
8500 @cindex @sc{null} elements in arrays
8501 Cause @value{GDBN} to stop printing the characters of an array when the first
8502 @sc{null} is encountered. This is useful when large arrays actually
8503 contain only short strings.
8506 @item show print null-stop
8507 Show whether @value{GDBN} stops printing an array on the first
8508 @sc{null} character.
8510 @item set print pretty on
8511 @cindex print structures in indented form
8512 @cindex indentation in structure display
8513 Cause @value{GDBN} to print structures in an indented format with one member
8514 per line, like this:
8529 @item set print pretty off
8530 Cause @value{GDBN} to print structures in a compact format, like this:
8534 $1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
8535 meat = 0x54 "Pork"@}
8540 This is the default format.
8542 @item show print pretty
8543 Show which format @value{GDBN} is using to print structures.
8545 @item set print sevenbit-strings on
8546 @cindex eight-bit characters in strings
8547 @cindex octal escapes in strings
8548 Print using only seven-bit characters; if this option is set,
8549 @value{GDBN} displays any eight-bit characters (in strings or
8550 character values) using the notation @code{\}@var{nnn}. This setting is
8551 best if you are working in English (@sc{ascii}) and you use the
8552 high-order bit of characters as a marker or ``meta'' bit.
8554 @item set print sevenbit-strings off
8555 Print full eight-bit characters. This allows the use of more
8556 international character sets, and is the default.
8558 @item show print sevenbit-strings
8559 Show whether or not @value{GDBN} is printing only seven-bit characters.
8561 @item set print union on
8562 @cindex unions in structures, printing
8563 Tell @value{GDBN} to print unions which are contained in structures
8564 and other unions. This is the default setting.
8566 @item set print union off
8567 Tell @value{GDBN} not to print unions which are contained in
8568 structures and other unions. @value{GDBN} will print @code{"@{...@}"}
8571 @item show print union
8572 Ask @value{GDBN} whether or not it will print unions which are contained in
8573 structures and other unions.
8575 For example, given the declarations
8578 typedef enum @{Tree, Bug@} Species;
8579 typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
8580 typedef enum @{Caterpillar, Cocoon, Butterfly@}
8591 struct thing foo = @{Tree, @{Acorn@}@};
8595 with @code{set print union on} in effect @samp{p foo} would print
8598 $1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
8602 and with @code{set print union off} in effect it would print
8605 $1 = @{it = Tree, form = @{...@}@}
8609 @code{set print union} affects programs written in C-like languages
8615 These settings are of interest when debugging C@t{++} programs:
8618 @cindex demangling C@t{++} names
8619 @item set print demangle
8620 @itemx set print demangle on
8621 Print C@t{++} names in their source form rather than in the encoded
8622 (``mangled'') form passed to the assembler and linker for type-safe
8623 linkage. The default is on.
8625 @item show print demangle
8626 Show whether C@t{++} names are printed in mangled or demangled form.
8628 @item set print asm-demangle
8629 @itemx set print asm-demangle on
8630 Print C@t{++} names in their source form rather than their mangled form, even
8631 in assembler code printouts such as instruction disassemblies.
8634 @item show print asm-demangle
8635 Show whether C@t{++} names in assembly listings are printed in mangled
8638 @cindex C@t{++} symbol decoding style
8639 @cindex symbol decoding style, C@t{++}
8640 @kindex set demangle-style
8641 @item set demangle-style @var{style}
8642 Choose among several encoding schemes used by different compilers to
8643 represent C@t{++} names. The choices for @var{style} are currently:
8647 Allow @value{GDBN} to choose a decoding style by inspecting your program.
8650 Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
8651 This is the default.
8654 Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
8657 Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
8660 Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
8661 @strong{Warning:} this setting alone is not sufficient to allow
8662 debugging @code{cfront}-generated executables. @value{GDBN} would
8663 require further enhancement to permit that.
8666 If you omit @var{style}, you will see a list of possible formats.
8668 @item show demangle-style
8669 Display the encoding style currently in use for decoding C@t{++} symbols.
8671 @item set print object
8672 @itemx set print object on
8673 @cindex derived type of an object, printing
8674 @cindex display derived types
8675 When displaying a pointer to an object, identify the @emph{actual}
8676 (derived) type of the object rather than the @emph{declared} type, using
8677 the virtual function table. Note that the virtual function table is
8678 required---this feature can only work for objects that have run-time
8679 type identification; a single virtual method in the object's declared
8680 type is sufficient. Note that this setting is also taken into account when
8681 working with variable objects via MI (@pxref{GDB/MI}).
8683 @item set print object off
8684 Display only the declared type of objects, without reference to the
8685 virtual function table. This is the default setting.
8687 @item show print object
8688 Show whether actual, or declared, object types are displayed.
8690 @item set print static-members
8691 @itemx set print static-members on
8692 @cindex static members of C@t{++} objects
8693 Print static members when displaying a C@t{++} object. The default is on.
8695 @item set print static-members off
8696 Do not print static members when displaying a C@t{++} object.
8698 @item show print static-members
8699 Show whether C@t{++} static members are printed or not.
8701 @item set print pascal_static-members
8702 @itemx set print pascal_static-members on
8703 @cindex static members of Pascal objects
8704 @cindex Pascal objects, static members display
8705 Print static members when displaying a Pascal object. The default is on.
8707 @item set print pascal_static-members off
8708 Do not print static members when displaying a Pascal object.
8710 @item show print pascal_static-members
8711 Show whether Pascal static members are printed or not.
8713 @c These don't work with HP ANSI C++ yet.
8714 @item set print vtbl
8715 @itemx set print vtbl on
8716 @cindex pretty print C@t{++} virtual function tables
8717 @cindex virtual functions (C@t{++}) display
8718 @cindex VTBL display
8719 Pretty print C@t{++} virtual function tables. The default is off.
8720 (The @code{vtbl} commands do not work on programs compiled with the HP
8721 ANSI C@t{++} compiler (@code{aCC}).)
8723 @item set print vtbl off
8724 Do not pretty print C@t{++} virtual function tables.
8726 @item show print vtbl
8727 Show whether C@t{++} virtual function tables are pretty printed, or not.
8730 @node Pretty Printing
8731 @section Pretty Printing
8733 @value{GDBN} provides a mechanism to allow pretty-printing of values using
8734 Python code. It greatly simplifies the display of complex objects. This
8735 mechanism works for both MI and the CLI.
8738 * Pretty-Printer Introduction:: Introduction to pretty-printers
8739 * Pretty-Printer Example:: An example pretty-printer
8740 * Pretty-Printer Commands:: Pretty-printer commands
8743 @node Pretty-Printer Introduction
8744 @subsection Pretty-Printer Introduction
8746 When @value{GDBN} prints a value, it first sees if there is a pretty-printer
8747 registered for the value. If there is then @value{GDBN} invokes the
8748 pretty-printer to print the value. Otherwise the value is printed normally.
8750 Pretty-printers are normally named. This makes them easy to manage.
8751 The @samp{info pretty-printer} command will list all the installed
8752 pretty-printers with their names.
8753 If a pretty-printer can handle multiple data types, then its
8754 @dfn{subprinters} are the printers for the individual data types.
8755 Each such subprinter has its own name.
8756 The format of the name is @var{printer-name};@var{subprinter-name}.
8758 Pretty-printers are installed by @dfn{registering} them with @value{GDBN}.
8759 Typically they are automatically loaded and registered when the corresponding
8760 debug information is loaded, thus making them available without having to
8761 do anything special.
8763 There are three places where a pretty-printer can be registered.
8767 Pretty-printers registered globally are available when debugging
8771 Pretty-printers registered with a program space are available only
8772 when debugging that program.
8773 @xref{Progspaces In Python}, for more details on program spaces in Python.
8776 Pretty-printers registered with an objfile are loaded and unloaded
8777 with the corresponding objfile (e.g., shared library).
8778 @xref{Objfiles In Python}, for more details on objfiles in Python.
8781 @xref{Selecting Pretty-Printers}, for further information on how
8782 pretty-printers are selected,
8784 @xref{Writing a Pretty-Printer}, for implementing pretty printers
8787 @node Pretty-Printer Example
8788 @subsection Pretty-Printer Example
8790 Here is how a C@t{++} @code{std::string} looks without a pretty-printer:
8793 (@value{GDBP}) print s
8795 static npos = 4294967295,
8797 <std::allocator<char>> = @{
8798 <__gnu_cxx::new_allocator<char>> = @{
8799 <No data fields>@}, <No data fields>
8801 members of std::basic_string<char, std::char_traits<char>,
8802 std::allocator<char> >::_Alloc_hider:
8803 _M_p = 0x804a014 "abcd"
8808 With a pretty-printer for @code{std::string} only the contents are printed:
8811 (@value{GDBP}) print s
8815 @node Pretty-Printer Commands
8816 @subsection Pretty-Printer Commands
8817 @cindex pretty-printer commands
8820 @kindex info pretty-printer
8821 @item info pretty-printer [@var{object-regexp} [@var{name-regexp}]]
8822 Print the list of installed pretty-printers.
8823 This includes disabled pretty-printers, which are marked as such.
8825 @var{object-regexp} is a regular expression matching the objects
8826 whose pretty-printers to list.
8827 Objects can be @code{global}, the program space's file
8828 (@pxref{Progspaces In Python}),
8829 and the object files within that program space (@pxref{Objfiles In Python}).
8830 @xref{Selecting Pretty-Printers}, for details on how @value{GDBN}
8831 looks up a printer from these three objects.
8833 @var{name-regexp} is a regular expression matching the name of the printers
8836 @kindex disable pretty-printer
8837 @item disable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
8838 Disable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
8839 A disabled pretty-printer is not forgotten, it may be enabled again later.
8841 @kindex enable pretty-printer
8842 @item enable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
8843 Enable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
8848 Suppose we have three pretty-printers installed: one from library1.so
8849 named @code{foo} that prints objects of type @code{foo}, and
8850 another from library2.so named @code{bar} that prints two types of objects,
8851 @code{bar1} and @code{bar2}.
8854 (gdb) info pretty-printer
8861 (gdb) info pretty-printer library2
8866 (gdb) disable pretty-printer library1
8868 2 of 3 printers enabled
8869 (gdb) info pretty-printer
8876 (gdb) disable pretty-printer library2 bar:bar1
8878 1 of 3 printers enabled
8879 (gdb) info pretty-printer library2
8886 (gdb) disable pretty-printer library2 bar
8888 0 of 3 printers enabled
8889 (gdb) info pretty-printer library2
8898 Note that for @code{bar} the entire printer can be disabled,
8899 as can each individual subprinter.
8902 @section Value History
8904 @cindex value history
8905 @cindex history of values printed by @value{GDBN}
8906 Values printed by the @code{print} command are saved in the @value{GDBN}
8907 @dfn{value history}. This allows you to refer to them in other expressions.
8908 Values are kept until the symbol table is re-read or discarded
8909 (for example with the @code{file} or @code{symbol-file} commands).
8910 When the symbol table changes, the value history is discarded,
8911 since the values may contain pointers back to the types defined in the
8916 @cindex history number
8917 The values printed are given @dfn{history numbers} by which you can
8918 refer to them. These are successive integers starting with one.
8919 @code{print} shows you the history number assigned to a value by
8920 printing @samp{$@var{num} = } before the value; here @var{num} is the
8923 To refer to any previous value, use @samp{$} followed by the value's
8924 history number. The way @code{print} labels its output is designed to
8925 remind you of this. Just @code{$} refers to the most recent value in
8926 the history, and @code{$$} refers to the value before that.
8927 @code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
8928 is the value just prior to @code{$$}, @code{$$1} is equivalent to
8929 @code{$$}, and @code{$$0} is equivalent to @code{$}.
8931 For example, suppose you have just printed a pointer to a structure and
8932 want to see the contents of the structure. It suffices to type
8938 If you have a chain of structures where the component @code{next} points
8939 to the next one, you can print the contents of the next one with this:
8946 You can print successive links in the chain by repeating this
8947 command---which you can do by just typing @key{RET}.
8949 Note that the history records values, not expressions. If the value of
8950 @code{x} is 4 and you type these commands:
8958 then the value recorded in the value history by the @code{print} command
8959 remains 4 even though the value of @code{x} has changed.
8964 Print the last ten values in the value history, with their item numbers.
8965 This is like @samp{p@ $$9} repeated ten times, except that @code{show
8966 values} does not change the history.
8968 @item show values @var{n}
8969 Print ten history values centered on history item number @var{n}.
8972 Print ten history values just after the values last printed. If no more
8973 values are available, @code{show values +} produces no display.
8976 Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
8977 same effect as @samp{show values +}.
8979 @node Convenience Vars
8980 @section Convenience Variables
8982 @cindex convenience variables
8983 @cindex user-defined variables
8984 @value{GDBN} provides @dfn{convenience variables} that you can use within
8985 @value{GDBN} to hold on to a value and refer to it later. These variables
8986 exist entirely within @value{GDBN}; they are not part of your program, and
8987 setting a convenience variable has no direct effect on further execution
8988 of your program. That is why you can use them freely.
8990 Convenience variables are prefixed with @samp{$}. Any name preceded by
8991 @samp{$} can be used for a convenience variable, unless it is one of
8992 the predefined machine-specific register names (@pxref{Registers, ,Registers}).
8993 (Value history references, in contrast, are @emph{numbers} preceded
8994 by @samp{$}. @xref{Value History, ,Value History}.)
8996 You can save a value in a convenience variable with an assignment
8997 expression, just as you would set a variable in your program.
9001 set $foo = *object_ptr
9005 would save in @code{$foo} the value contained in the object pointed to by
9008 Using a convenience variable for the first time creates it, but its
9009 value is @code{void} until you assign a new value. You can alter the
9010 value with another assignment at any time.
9012 Convenience variables have no fixed types. You can assign a convenience
9013 variable any type of value, including structures and arrays, even if
9014 that variable already has a value of a different type. The convenience
9015 variable, when used as an expression, has the type of its current value.
9018 @kindex show convenience
9019 @cindex show all user variables
9020 @item show convenience
9021 Print a list of convenience variables used so far, and their values.
9022 Abbreviated @code{show conv}.
9024 @kindex init-if-undefined
9025 @cindex convenience variables, initializing
9026 @item init-if-undefined $@var{variable} = @var{expression}
9027 Set a convenience variable if it has not already been set. This is useful
9028 for user-defined commands that keep some state. It is similar, in concept,
9029 to using local static variables with initializers in C (except that
9030 convenience variables are global). It can also be used to allow users to
9031 override default values used in a command script.
9033 If the variable is already defined then the expression is not evaluated so
9034 any side-effects do not occur.
9037 One of the ways to use a convenience variable is as a counter to be
9038 incremented or a pointer to be advanced. For example, to print
9039 a field from successive elements of an array of structures:
9043 print bar[$i++]->contents
9047 Repeat that command by typing @key{RET}.
9049 Some convenience variables are created automatically by @value{GDBN} and given
9050 values likely to be useful.
9053 @vindex $_@r{, convenience variable}
9055 The variable @code{$_} is automatically set by the @code{x} command to
9056 the last address examined (@pxref{Memory, ,Examining Memory}). Other
9057 commands which provide a default address for @code{x} to examine also
9058 set @code{$_} to that address; these commands include @code{info line}
9059 and @code{info breakpoint}. The type of @code{$_} is @code{void *}
9060 except when set by the @code{x} command, in which case it is a pointer
9061 to the type of @code{$__}.
9063 @vindex $__@r{, convenience variable}
9065 The variable @code{$__} is automatically set by the @code{x} command
9066 to the value found in the last address examined. Its type is chosen
9067 to match the format in which the data was printed.
9070 @vindex $_exitcode@r{, convenience variable}
9071 The variable @code{$_exitcode} is automatically set to the exit code when
9072 the program being debugged terminates.
9075 @vindex $_sdata@r{, inspect, convenience variable}
9076 The variable @code{$_sdata} contains extra collected static tracepoint
9077 data. @xref{Tracepoint Actions,,Tracepoint Action Lists}. Note that
9078 @code{$_sdata} could be empty, if not inspecting a trace buffer, or
9079 if extra static tracepoint data has not been collected.
9082 @vindex $_siginfo@r{, convenience variable}
9083 The variable @code{$_siginfo} contains extra signal information
9084 (@pxref{extra signal information}). Note that @code{$_siginfo}
9085 could be empty, if the application has not yet received any signals.
9086 For example, it will be empty before you execute the @code{run} command.
9089 @vindex $_tlb@r{, convenience variable}
9090 The variable @code{$_tlb} is automatically set when debugging
9091 applications running on MS-Windows in native mode or connected to
9092 gdbserver that supports the @code{qGetTIBAddr} request.
9093 @xref{General Query Packets}.
9094 This variable contains the address of the thread information block.
9098 On HP-UX systems, if you refer to a function or variable name that
9099 begins with a dollar sign, @value{GDBN} searches for a user or system
9100 name first, before it searches for a convenience variable.
9102 @cindex convenience functions
9103 @value{GDBN} also supplies some @dfn{convenience functions}. These
9104 have a syntax similar to convenience variables. A convenience
9105 function can be used in an expression just like an ordinary function;
9106 however, a convenience function is implemented internally to
9111 @kindex help function
9112 @cindex show all convenience functions
9113 Print a list of all convenience functions.
9120 You can refer to machine register contents, in expressions, as variables
9121 with names starting with @samp{$}. The names of registers are different
9122 for each machine; use @code{info registers} to see the names used on
9126 @kindex info registers
9127 @item info registers
9128 Print the names and values of all registers except floating-point
9129 and vector registers (in the selected stack frame).
9131 @kindex info all-registers
9132 @cindex floating point registers
9133 @item info all-registers
9134 Print the names and values of all registers, including floating-point
9135 and vector registers (in the selected stack frame).
9137 @item info registers @var{regname} @dots{}
9138 Print the @dfn{relativized} value of each specified register @var{regname}.
9139 As discussed in detail below, register values are normally relative to
9140 the selected stack frame. @var{regname} may be any register name valid on
9141 the machine you are using, with or without the initial @samp{$}.
9144 @cindex stack pointer register
9145 @cindex program counter register
9146 @cindex process status register
9147 @cindex frame pointer register
9148 @cindex standard registers
9149 @value{GDBN} has four ``standard'' register names that are available (in
9150 expressions) on most machines---whenever they do not conflict with an
9151 architecture's canonical mnemonics for registers. The register names
9152 @code{$pc} and @code{$sp} are used for the program counter register and
9153 the stack pointer. @code{$fp} is used for a register that contains a
9154 pointer to the current stack frame, and @code{$ps} is used for a
9155 register that contains the processor status. For example,
9156 you could print the program counter in hex with
9163 or print the instruction to be executed next with
9170 or add four to the stack pointer@footnote{This is a way of removing
9171 one word from the stack, on machines where stacks grow downward in
9172 memory (most machines, nowadays). This assumes that the innermost
9173 stack frame is selected; setting @code{$sp} is not allowed when other
9174 stack frames are selected. To pop entire frames off the stack,
9175 regardless of machine architecture, use @code{return};
9176 see @ref{Returning, ,Returning from a Function}.} with
9182 Whenever possible, these four standard register names are available on
9183 your machine even though the machine has different canonical mnemonics,
9184 so long as there is no conflict. The @code{info registers} command
9185 shows the canonical names. For example, on the SPARC, @code{info
9186 registers} displays the processor status register as @code{$psr} but you
9187 can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
9188 is an alias for the @sc{eflags} register.
9190 @value{GDBN} always considers the contents of an ordinary register as an
9191 integer when the register is examined in this way. Some machines have
9192 special registers which can hold nothing but floating point; these
9193 registers are considered to have floating point values. There is no way
9194 to refer to the contents of an ordinary register as floating point value
9195 (although you can @emph{print} it as a floating point value with
9196 @samp{print/f $@var{regname}}).
9198 Some registers have distinct ``raw'' and ``virtual'' data formats. This
9199 means that the data format in which the register contents are saved by
9200 the operating system is not the same one that your program normally
9201 sees. For example, the registers of the 68881 floating point
9202 coprocessor are always saved in ``extended'' (raw) format, but all C
9203 programs expect to work with ``double'' (virtual) format. In such
9204 cases, @value{GDBN} normally works with the virtual format only (the format
9205 that makes sense for your program), but the @code{info registers} command
9206 prints the data in both formats.
9208 @cindex SSE registers (x86)
9209 @cindex MMX registers (x86)
9210 Some machines have special registers whose contents can be interpreted
9211 in several different ways. For example, modern x86-based machines
9212 have SSE and MMX registers that can hold several values packed
9213 together in several different formats. @value{GDBN} refers to such
9214 registers in @code{struct} notation:
9217 (@value{GDBP}) print $xmm1
9219 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
9220 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
9221 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
9222 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
9223 v4_int32 = @{0, 20657912, 11, 13@},
9224 v2_int64 = @{88725056443645952, 55834574859@},
9225 uint128 = 0x0000000d0000000b013b36f800000000
9230 To set values of such registers, you need to tell @value{GDBN} which
9231 view of the register you wish to change, as if you were assigning
9232 value to a @code{struct} member:
9235 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
9238 Normally, register values are relative to the selected stack frame
9239 (@pxref{Selection, ,Selecting a Frame}). This means that you get the
9240 value that the register would contain if all stack frames farther in
9241 were exited and their saved registers restored. In order to see the
9242 true contents of hardware registers, you must select the innermost
9243 frame (with @samp{frame 0}).
9245 However, @value{GDBN} must deduce where registers are saved, from the machine
9246 code generated by your compiler. If some registers are not saved, or if
9247 @value{GDBN} is unable to locate the saved registers, the selected stack
9248 frame makes no difference.
9250 @node Floating Point Hardware
9251 @section Floating Point Hardware
9252 @cindex floating point
9254 Depending on the configuration, @value{GDBN} may be able to give
9255 you more information about the status of the floating point hardware.
9260 Display hardware-dependent information about the floating
9261 point unit. The exact contents and layout vary depending on the
9262 floating point chip. Currently, @samp{info float} is supported on
9263 the ARM and x86 machines.
9267 @section Vector Unit
9270 Depending on the configuration, @value{GDBN} may be able to give you
9271 more information about the status of the vector unit.
9276 Display information about the vector unit. The exact contents and
9277 layout vary depending on the hardware.
9280 @node OS Information
9281 @section Operating System Auxiliary Information
9282 @cindex OS information
9284 @value{GDBN} provides interfaces to useful OS facilities that can help
9285 you debug your program.
9287 @cindex @code{ptrace} system call
9288 @cindex @code{struct user} contents
9289 When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
9290 machines), it interfaces with the inferior via the @code{ptrace}
9291 system call. The operating system creates a special sata structure,
9292 called @code{struct user}, for this interface. You can use the
9293 command @code{info udot} to display the contents of this data
9299 Display the contents of the @code{struct user} maintained by the OS
9300 kernel for the program being debugged. @value{GDBN} displays the
9301 contents of @code{struct user} as a list of hex numbers, similar to
9302 the @code{examine} command.
9305 @cindex auxiliary vector
9306 @cindex vector, auxiliary
9307 Some operating systems supply an @dfn{auxiliary vector} to programs at
9308 startup. This is akin to the arguments and environment that you
9309 specify for a program, but contains a system-dependent variety of
9310 binary values that tell system libraries important details about the
9311 hardware, operating system, and process. Each value's purpose is
9312 identified by an integer tag; the meanings are well-known but system-specific.
9313 Depending on the configuration and operating system facilities,
9314 @value{GDBN} may be able to show you this information. For remote
9315 targets, this functionality may further depend on the remote stub's
9316 support of the @samp{qXfer:auxv:read} packet, see
9317 @ref{qXfer auxiliary vector read}.
9322 Display the auxiliary vector of the inferior, which can be either a
9323 live process or a core dump file. @value{GDBN} prints each tag value
9324 numerically, and also shows names and text descriptions for recognized
9325 tags. Some values in the vector are numbers, some bit masks, and some
9326 pointers to strings or other data. @value{GDBN} displays each value in the
9327 most appropriate form for a recognized tag, and in hexadecimal for
9328 an unrecognized tag.
9331 On some targets, @value{GDBN} can access operating-system-specific information
9332 and display it to user, without interpretation. For remote targets,
9333 this functionality depends on the remote stub's support of the
9334 @samp{qXfer:osdata:read} packet, see @ref{qXfer osdata read}.
9339 List the types of OS information available for the target. If the
9340 target does not return a list of possible types, this command will
9343 @kindex info os processes
9344 @item info os processes
9345 Display the list of processes on the target. For each process,
9346 @value{GDBN} prints the process identifier, the name of the user, and
9347 the command corresponding to the process.
9350 @node Memory Region Attributes
9351 @section Memory Region Attributes
9352 @cindex memory region attributes
9354 @dfn{Memory region attributes} allow you to describe special handling
9355 required by regions of your target's memory. @value{GDBN} uses
9356 attributes to determine whether to allow certain types of memory
9357 accesses; whether to use specific width accesses; and whether to cache
9358 target memory. By default the description of memory regions is
9359 fetched from the target (if the current target supports this), but the
9360 user can override the fetched regions.
9362 Defined memory regions can be individually enabled and disabled. When a
9363 memory region is disabled, @value{GDBN} uses the default attributes when
9364 accessing memory in that region. Similarly, if no memory regions have
9365 been defined, @value{GDBN} uses the default attributes when accessing
9368 When a memory region is defined, it is given a number to identify it;
9369 to enable, disable, or remove a memory region, you specify that number.
9373 @item mem @var{lower} @var{upper} @var{attributes}@dots{}
9374 Define a memory region bounded by @var{lower} and @var{upper} with
9375 attributes @var{attributes}@dots{}, and add it to the list of regions
9376 monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
9377 case: it is treated as the target's maximum memory address.
9378 (0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
9381 Discard any user changes to the memory regions and use target-supplied
9382 regions, if available, or no regions if the target does not support.
9385 @item delete mem @var{nums}@dots{}
9386 Remove memory regions @var{nums}@dots{} from the list of regions
9387 monitored by @value{GDBN}.
9390 @item disable mem @var{nums}@dots{}
9391 Disable monitoring of memory regions @var{nums}@dots{}.
9392 A disabled memory region is not forgotten.
9393 It may be enabled again later.
9396 @item enable mem @var{nums}@dots{}
9397 Enable monitoring of memory regions @var{nums}@dots{}.
9401 Print a table of all defined memory regions, with the following columns
9405 @item Memory Region Number
9406 @item Enabled or Disabled.
9407 Enabled memory regions are marked with @samp{y}.
9408 Disabled memory regions are marked with @samp{n}.
9411 The address defining the inclusive lower bound of the memory region.
9414 The address defining the exclusive upper bound of the memory region.
9417 The list of attributes set for this memory region.
9422 @subsection Attributes
9424 @subsubsection Memory Access Mode
9425 The access mode attributes set whether @value{GDBN} may make read or
9426 write accesses to a memory region.
9428 While these attributes prevent @value{GDBN} from performing invalid
9429 memory accesses, they do nothing to prevent the target system, I/O DMA,
9430 etc.@: from accessing memory.
9434 Memory is read only.
9436 Memory is write only.
9438 Memory is read/write. This is the default.
9441 @subsubsection Memory Access Size
9442 The access size attribute tells @value{GDBN} to use specific sized
9443 accesses in the memory region. Often memory mapped device registers
9444 require specific sized accesses. If no access size attribute is
9445 specified, @value{GDBN} may use accesses of any size.
9449 Use 8 bit memory accesses.
9451 Use 16 bit memory accesses.
9453 Use 32 bit memory accesses.
9455 Use 64 bit memory accesses.
9458 @c @subsubsection Hardware/Software Breakpoints
9459 @c The hardware/software breakpoint attributes set whether @value{GDBN}
9460 @c will use hardware or software breakpoints for the internal breakpoints
9461 @c used by the step, next, finish, until, etc. commands.
9465 @c Always use hardware breakpoints
9466 @c @item swbreak (default)
9469 @subsubsection Data Cache
9470 The data cache attributes set whether @value{GDBN} will cache target
9471 memory. While this generally improves performance by reducing debug
9472 protocol overhead, it can lead to incorrect results because @value{GDBN}
9473 does not know about volatile variables or memory mapped device
9478 Enable @value{GDBN} to cache target memory.
9480 Disable @value{GDBN} from caching target memory. This is the default.
9483 @subsection Memory Access Checking
9484 @value{GDBN} can be instructed to refuse accesses to memory that is
9485 not explicitly described. This can be useful if accessing such
9486 regions has undesired effects for a specific target, or to provide
9487 better error checking. The following commands control this behaviour.
9490 @kindex set mem inaccessible-by-default
9491 @item set mem inaccessible-by-default [on|off]
9492 If @code{on} is specified, make @value{GDBN} treat memory not
9493 explicitly described by the memory ranges as non-existent and refuse accesses
9494 to such memory. The checks are only performed if there's at least one
9495 memory range defined. If @code{off} is specified, make @value{GDBN}
9496 treat the memory not explicitly described by the memory ranges as RAM.
9497 The default value is @code{on}.
9498 @kindex show mem inaccessible-by-default
9499 @item show mem inaccessible-by-default
9500 Show the current handling of accesses to unknown memory.
9504 @c @subsubsection Memory Write Verification
9505 @c The memory write verification attributes set whether @value{GDBN}
9506 @c will re-reads data after each write to verify the write was successful.
9510 @c @item noverify (default)
9513 @node Dump/Restore Files
9514 @section Copy Between Memory and a File
9515 @cindex dump/restore files
9516 @cindex append data to a file
9517 @cindex dump data to a file
9518 @cindex restore data from a file
9520 You can use the commands @code{dump}, @code{append}, and
9521 @code{restore} to copy data between target memory and a file. The
9522 @code{dump} and @code{append} commands write data to a file, and the
9523 @code{restore} command reads data from a file back into the inferior's
9524 memory. Files may be in binary, Motorola S-record, Intel hex, or
9525 Tektronix Hex format; however, @value{GDBN} can only append to binary
9531 @item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
9532 @itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
9533 Dump the contents of memory from @var{start_addr} to @var{end_addr},
9534 or the value of @var{expr}, to @var{filename} in the given format.
9536 The @var{format} parameter may be any one of:
9543 Motorola S-record format.
9545 Tektronix Hex format.
9548 @value{GDBN} uses the same definitions of these formats as the
9549 @sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
9550 @var{format} is omitted, @value{GDBN} dumps the data in raw binary
9554 @item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
9555 @itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
9556 Append the contents of memory from @var{start_addr} to @var{end_addr},
9557 or the value of @var{expr}, to the file @var{filename}, in raw binary form.
9558 (@value{GDBN} can only append data to files in raw binary form.)
9561 @item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
9562 Restore the contents of file @var{filename} into memory. The
9563 @code{restore} command can automatically recognize any known @sc{bfd}
9564 file format, except for raw binary. To restore a raw binary file you
9565 must specify the optional keyword @code{binary} after the filename.
9567 If @var{bias} is non-zero, its value will be added to the addresses
9568 contained in the file. Binary files always start at address zero, so
9569 they will be restored at address @var{bias}. Other bfd files have
9570 a built-in location; they will be restored at offset @var{bias}
9573 If @var{start} and/or @var{end} are non-zero, then only data between
9574 file offset @var{start} and file offset @var{end} will be restored.
9575 These offsets are relative to the addresses in the file, before
9576 the @var{bias} argument is applied.
9580 @node Core File Generation
9581 @section How to Produce a Core File from Your Program
9582 @cindex dump core from inferior
9584 A @dfn{core file} or @dfn{core dump} is a file that records the memory
9585 image of a running process and its process status (register values
9586 etc.). Its primary use is post-mortem debugging of a program that
9587 crashed while it ran outside a debugger. A program that crashes
9588 automatically produces a core file, unless this feature is disabled by
9589 the user. @xref{Files}, for information on invoking @value{GDBN} in
9590 the post-mortem debugging mode.
9592 Occasionally, you may wish to produce a core file of the program you
9593 are debugging in order to preserve a snapshot of its state.
9594 @value{GDBN} has a special command for that.
9598 @kindex generate-core-file
9599 @item generate-core-file [@var{file}]
9600 @itemx gcore [@var{file}]
9601 Produce a core dump of the inferior process. The optional argument
9602 @var{file} specifies the file name where to put the core dump. If not
9603 specified, the file name defaults to @file{core.@var{pid}}, where
9604 @var{pid} is the inferior process ID.
9606 Note that this command is implemented only for some systems (as of
9607 this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
9610 @node Character Sets
9611 @section Character Sets
9612 @cindex character sets
9614 @cindex translating between character sets
9615 @cindex host character set
9616 @cindex target character set
9618 If the program you are debugging uses a different character set to
9619 represent characters and strings than the one @value{GDBN} uses itself,
9620 @value{GDBN} can automatically translate between the character sets for
9621 you. The character set @value{GDBN} uses we call the @dfn{host
9622 character set}; the one the inferior program uses we call the
9623 @dfn{target character set}.
9625 For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
9626 uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
9627 remote protocol (@pxref{Remote Debugging}) to debug a program
9628 running on an IBM mainframe, which uses the @sc{ebcdic} character set,
9629 then the host character set is Latin-1, and the target character set is
9630 @sc{ebcdic}. If you give @value{GDBN} the command @code{set
9631 target-charset EBCDIC-US}, then @value{GDBN} translates between
9632 @sc{ebcdic} and Latin 1 as you print character or string values, or use
9633 character and string literals in expressions.
9635 @value{GDBN} has no way to automatically recognize which character set
9636 the inferior program uses; you must tell it, using the @code{set
9637 target-charset} command, described below.
9639 Here are the commands for controlling @value{GDBN}'s character set
9643 @item set target-charset @var{charset}
9644 @kindex set target-charset
9645 Set the current target character set to @var{charset}. To display the
9646 list of supported target character sets, type
9647 @kbd{@w{set target-charset @key{TAB}@key{TAB}}}.
9649 @item set host-charset @var{charset}
9650 @kindex set host-charset
9651 Set the current host character set to @var{charset}.
9653 By default, @value{GDBN} uses a host character set appropriate to the
9654 system it is running on; you can override that default using the
9655 @code{set host-charset} command. On some systems, @value{GDBN} cannot
9656 automatically determine the appropriate host character set. In this
9657 case, @value{GDBN} uses @samp{UTF-8}.
9659 @value{GDBN} can only use certain character sets as its host character
9660 set. If you type @kbd{@w{set host-charset @key{TAB}@key{TAB}}},
9661 @value{GDBN} will list the host character sets it supports.
9663 @item set charset @var{charset}
9665 Set the current host and target character sets to @var{charset}. As
9666 above, if you type @kbd{@w{set charset @key{TAB}@key{TAB}}},
9667 @value{GDBN} will list the names of the character sets that can be used
9668 for both host and target.
9671 @kindex show charset
9672 Show the names of the current host and target character sets.
9674 @item show host-charset
9675 @kindex show host-charset
9676 Show the name of the current host character set.
9678 @item show target-charset
9679 @kindex show target-charset
9680 Show the name of the current target character set.
9682 @item set target-wide-charset @var{charset}
9683 @kindex set target-wide-charset
9684 Set the current target's wide character set to @var{charset}. This is
9685 the character set used by the target's @code{wchar_t} type. To
9686 display the list of supported wide character sets, type
9687 @kbd{@w{set target-wide-charset @key{TAB}@key{TAB}}}.
9689 @item show target-wide-charset
9690 @kindex show target-wide-charset
9691 Show the name of the current target's wide character set.
9694 Here is an example of @value{GDBN}'s character set support in action.
9695 Assume that the following source code has been placed in the file
9696 @file{charset-test.c}:
9702 = @{72, 101, 108, 108, 111, 44, 32, 119,
9703 111, 114, 108, 100, 33, 10, 0@};
9704 char ibm1047_hello[]
9705 = @{200, 133, 147, 147, 150, 107, 64, 166,
9706 150, 153, 147, 132, 90, 37, 0@};
9710 printf ("Hello, world!\n");
9714 In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
9715 containing the string @samp{Hello, world!} followed by a newline,
9716 encoded in the @sc{ascii} and @sc{ibm1047} character sets.
9718 We compile the program, and invoke the debugger on it:
9721 $ gcc -g charset-test.c -o charset-test
9722 $ gdb -nw charset-test
9723 GNU gdb 2001-12-19-cvs
9724 Copyright 2001 Free Software Foundation, Inc.
9729 We can use the @code{show charset} command to see what character sets
9730 @value{GDBN} is currently using to interpret and display characters and
9734 (@value{GDBP}) show charset
9735 The current host and target character set is `ISO-8859-1'.
9739 For the sake of printing this manual, let's use @sc{ascii} as our
9740 initial character set:
9742 (@value{GDBP}) set charset ASCII
9743 (@value{GDBP}) show charset
9744 The current host and target character set is `ASCII'.
9748 Let's assume that @sc{ascii} is indeed the correct character set for our
9749 host system --- in other words, let's assume that if @value{GDBN} prints
9750 characters using the @sc{ascii} character set, our terminal will display
9751 them properly. Since our current target character set is also
9752 @sc{ascii}, the contents of @code{ascii_hello} print legibly:
9755 (@value{GDBP}) print ascii_hello
9756 $1 = 0x401698 "Hello, world!\n"
9757 (@value{GDBP}) print ascii_hello[0]
9762 @value{GDBN} uses the target character set for character and string
9763 literals you use in expressions:
9766 (@value{GDBP}) print '+'
9771 The @sc{ascii} character set uses the number 43 to encode the @samp{+}
9774 @value{GDBN} relies on the user to tell it which character set the
9775 target program uses. If we print @code{ibm1047_hello} while our target
9776 character set is still @sc{ascii}, we get jibberish:
9779 (@value{GDBP}) print ibm1047_hello
9780 $4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
9781 (@value{GDBP}) print ibm1047_hello[0]
9786 If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
9787 @value{GDBN} tells us the character sets it supports:
9790 (@value{GDBP}) set target-charset
9791 ASCII EBCDIC-US IBM1047 ISO-8859-1
9792 (@value{GDBP}) set target-charset
9795 We can select @sc{ibm1047} as our target character set, and examine the
9796 program's strings again. Now the @sc{ascii} string is wrong, but
9797 @value{GDBN} translates the contents of @code{ibm1047_hello} from the
9798 target character set, @sc{ibm1047}, to the host character set,
9799 @sc{ascii}, and they display correctly:
9802 (@value{GDBP}) set target-charset IBM1047
9803 (@value{GDBP}) show charset
9804 The current host character set is `ASCII'.
9805 The current target character set is `IBM1047'.
9806 (@value{GDBP}) print ascii_hello
9807 $6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
9808 (@value{GDBP}) print ascii_hello[0]
9810 (@value{GDBP}) print ibm1047_hello
9811 $8 = 0x4016a8 "Hello, world!\n"
9812 (@value{GDBP}) print ibm1047_hello[0]
9817 As above, @value{GDBN} uses the target character set for character and
9818 string literals you use in expressions:
9821 (@value{GDBP}) print '+'
9826 The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
9829 @node Caching Remote Data
9830 @section Caching Data of Remote Targets
9831 @cindex caching data of remote targets
9833 @value{GDBN} caches data exchanged between the debugger and a
9834 remote target (@pxref{Remote Debugging}). Such caching generally improves
9835 performance, because it reduces the overhead of the remote protocol by
9836 bundling memory reads and writes into large chunks. Unfortunately, simply
9837 caching everything would lead to incorrect results, since @value{GDBN}
9838 does not necessarily know anything about volatile values, memory-mapped I/O
9839 addresses, etc. Furthermore, in non-stop mode (@pxref{Non-Stop Mode})
9840 memory can be changed @emph{while} a gdb command is executing.
9841 Therefore, by default, @value{GDBN} only caches data
9842 known to be on the stack@footnote{In non-stop mode, it is moderately
9843 rare for a running thread to modify the stack of a stopped thread
9844 in a way that would interfere with a backtrace, and caching of
9845 stack reads provides a significant speed up of remote backtraces.}.
9846 Other regions of memory can be explicitly marked as
9847 cacheable; see @pxref{Memory Region Attributes}.
9850 @kindex set remotecache
9851 @item set remotecache on
9852 @itemx set remotecache off
9853 This option no longer does anything; it exists for compatibility
9856 @kindex show remotecache
9857 @item show remotecache
9858 Show the current state of the obsolete remotecache flag.
9860 @kindex set stack-cache
9861 @item set stack-cache on
9862 @itemx set stack-cache off
9863 Enable or disable caching of stack accesses. When @code{ON}, use
9864 caching. By default, this option is @code{ON}.
9866 @kindex show stack-cache
9867 @item show stack-cache
9868 Show the current state of data caching for memory accesses.
9871 @item info dcache @r{[}line@r{]}
9872 Print the information about the data cache performance. The
9873 information displayed includes the dcache width and depth, and for
9874 each cache line, its number, address, and how many times it was
9875 referenced. This command is useful for debugging the data cache
9878 If a line number is specified, the contents of that line will be
9881 @item set dcache size @var{size}
9883 @kindex set dcache size
9884 Set maximum number of entries in dcache (dcache depth above).
9886 @item set dcache line-size @var{line-size}
9887 @cindex dcache line-size
9888 @kindex set dcache line-size
9889 Set number of bytes each dcache entry caches (dcache width above).
9890 Must be a power of 2.
9892 @item show dcache size
9893 @kindex show dcache size
9894 Show maximum number of dcache entries. See also @ref{Caching Remote Data, info dcache}.
9896 @item show dcache line-size
9897 @kindex show dcache line-size
9898 Show default size of dcache lines. See also @ref{Caching Remote Data, info dcache}.
9902 @node Searching Memory
9903 @section Search Memory
9904 @cindex searching memory
9906 Memory can be searched for a particular sequence of bytes with the
9907 @code{find} command.
9911 @item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
9912 @itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
9913 Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
9914 etc. The search begins at address @var{start_addr} and continues for either
9915 @var{len} bytes or through to @var{end_addr} inclusive.
9918 @var{s} and @var{n} are optional parameters.
9919 They may be specified in either order, apart or together.
9922 @item @var{s}, search query size
9923 The size of each search query value.
9929 halfwords (two bytes)
9933 giant words (eight bytes)
9936 All values are interpreted in the current language.
9937 This means, for example, that if the current source language is C/C@t{++}
9938 then searching for the string ``hello'' includes the trailing '\0'.
9940 If the value size is not specified, it is taken from the
9941 value's type in the current language.
9942 This is useful when one wants to specify the search
9943 pattern as a mixture of types.
9944 Note that this means, for example, that in the case of C-like languages
9945 a search for an untyped 0x42 will search for @samp{(int) 0x42}
9946 which is typically four bytes.
9948 @item @var{n}, maximum number of finds
9949 The maximum number of matches to print. The default is to print all finds.
9952 You can use strings as search values. Quote them with double-quotes
9954 The string value is copied into the search pattern byte by byte,
9955 regardless of the endianness of the target and the size specification.
9957 The address of each match found is printed as well as a count of the
9958 number of matches found.
9960 The address of the last value found is stored in convenience variable
9962 A count of the number of matches is stored in @samp{$numfound}.
9964 For example, if stopped at the @code{printf} in this function:
9970 static char hello[] = "hello-hello";
9971 static struct @{ char c; short s; int i; @}
9972 __attribute__ ((packed)) mixed
9973 = @{ 'c', 0x1234, 0x87654321 @};
9974 printf ("%s\n", hello);
9979 you get during debugging:
9982 (gdb) find &hello[0], +sizeof(hello), "hello"
9983 0x804956d <hello.1620+6>
9985 (gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
9986 0x8049567 <hello.1620>
9987 0x804956d <hello.1620+6>
9989 (gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
9990 0x8049567 <hello.1620>
9992 (gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
9993 0x8049560 <mixed.1625>
9995 (gdb) print $numfound
9998 $2 = (void *) 0x8049560
10001 @node Optimized Code
10002 @chapter Debugging Optimized Code
10003 @cindex optimized code, debugging
10004 @cindex debugging optimized code
10006 Almost all compilers support optimization. With optimization
10007 disabled, the compiler generates assembly code that corresponds
10008 directly to your source code, in a simplistic way. As the compiler
10009 applies more powerful optimizations, the generated assembly code
10010 diverges from your original source code. With help from debugging
10011 information generated by the compiler, @value{GDBN} can map from
10012 the running program back to constructs from your original source.
10014 @value{GDBN} is more accurate with optimization disabled. If you
10015 can recompile without optimization, it is easier to follow the
10016 progress of your program during debugging. But, there are many cases
10017 where you may need to debug an optimized version.
10019 When you debug a program compiled with @samp{-g -O}, remember that the
10020 optimizer has rearranged your code; the debugger shows you what is
10021 really there. Do not be too surprised when the execution path does not
10022 exactly match your source file! An extreme example: if you define a
10023 variable, but never use it, @value{GDBN} never sees that
10024 variable---because the compiler optimizes it out of existence.
10026 Some things do not work as well with @samp{-g -O} as with just
10027 @samp{-g}, particularly on machines with instruction scheduling. If in
10028 doubt, recompile with @samp{-g} alone, and if this fixes the problem,
10029 please report it to us as a bug (including a test case!).
10030 @xref{Variables}, for more information about debugging optimized code.
10033 * Inline Functions:: How @value{GDBN} presents inlining
10034 * Tail Call Frames:: @value{GDBN} analysis of jumps to functions
10037 @node Inline Functions
10038 @section Inline Functions
10039 @cindex inline functions, debugging
10041 @dfn{Inlining} is an optimization that inserts a copy of the function
10042 body directly at each call site, instead of jumping to a shared
10043 routine. @value{GDBN} displays inlined functions just like
10044 non-inlined functions. They appear in backtraces. You can view their
10045 arguments and local variables, step into them with @code{step}, skip
10046 them with @code{next}, and escape from them with @code{finish}.
10047 You can check whether a function was inlined by using the
10048 @code{info frame} command.
10050 For @value{GDBN} to support inlined functions, the compiler must
10051 record information about inlining in the debug information ---
10052 @value{NGCC} using the @sc{dwarf 2} format does this, and several
10053 other compilers do also. @value{GDBN} only supports inlined functions
10054 when using @sc{dwarf 2}. Versions of @value{NGCC} before 4.1
10055 do not emit two required attributes (@samp{DW_AT_call_file} and
10056 @samp{DW_AT_call_line}); @value{GDBN} does not display inlined
10057 function calls with earlier versions of @value{NGCC}. It instead
10058 displays the arguments and local variables of inlined functions as
10059 local variables in the caller.
10061 The body of an inlined function is directly included at its call site;
10062 unlike a non-inlined function, there are no instructions devoted to
10063 the call. @value{GDBN} still pretends that the call site and the
10064 start of the inlined function are different instructions. Stepping to
10065 the call site shows the call site, and then stepping again shows
10066 the first line of the inlined function, even though no additional
10067 instructions are executed.
10069 This makes source-level debugging much clearer; you can see both the
10070 context of the call and then the effect of the call. Only stepping by
10071 a single instruction using @code{stepi} or @code{nexti} does not do
10072 this; single instruction steps always show the inlined body.
10074 There are some ways that @value{GDBN} does not pretend that inlined
10075 function calls are the same as normal calls:
10079 Setting breakpoints at the call site of an inlined function may not
10080 work, because the call site does not contain any code. @value{GDBN}
10081 may incorrectly move the breakpoint to the next line of the enclosing
10082 function, after the call. This limitation will be removed in a future
10083 version of @value{GDBN}; until then, set a breakpoint on an earlier line
10084 or inside the inlined function instead.
10087 @value{GDBN} cannot locate the return value of inlined calls after
10088 using the @code{finish} command. This is a limitation of compiler-generated
10089 debugging information; after @code{finish}, you can step to the next line
10090 and print a variable where your program stored the return value.
10094 @node Tail Call Frames
10095 @section Tail Call Frames
10096 @cindex tail call frames, debugging
10098 Function @code{B} can call function @code{C} in its very last statement. In
10099 unoptimized compilation the call of @code{C} is immediately followed by return
10100 instruction at the end of @code{B} code. Optimizing compiler may replace the
10101 call and return in function @code{B} into one jump to function @code{C}
10102 instead. Such use of a jump instruction is called @dfn{tail call}.
10104 During execution of function @code{C}, there will be no indication in the
10105 function call stack frames that it was tail-called from @code{B}. If function
10106 @code{A} regularly calls function @code{B} which tail-calls function @code{C},
10107 then @value{GDBN} will see @code{A} as the caller of @code{C}. However, in
10108 some cases @value{GDBN} can determine that @code{C} was tail-called from
10109 @code{B}, and it will then create fictitious call frame for that, with the
10110 return address set up as if @code{B} called @code{C} normally.
10112 This functionality is currently supported only by DWARF 2 debugging format and
10113 the compiler has to produce @samp{DW_TAG_GNU_call_site} tags. With
10114 @value{NGCC}, you need to specify @option{-O -g} during compilation, to get
10117 @kbd{info frame} command (@pxref{Frame Info}) will indicate the tail call frame
10118 kind by text @code{tail call frame} such as in this sample @value{GDBN} output:
10122 0x40066b <b(int, double)+11>: jmp 0x400640 <c(int, double)>
10124 Stack level 1, frame at 0x7fffffffda30:
10125 rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
10126 tail call frame, caller of frame at 0x7fffffffda30
10127 source language c++.
10128 Arglist at unknown address.
10129 Locals at unknown address, Previous frame's sp is 0x7fffffffda30
10132 The detection of all the possible code path executions can find them ambiguous.
10133 There is no execution history stored (possible @ref{Reverse Execution} is never
10134 used for this purpose) and the last known caller could have reached the known
10135 callee by multiple different jump sequences. In such case @value{GDBN} still
10136 tries to show at least all the unambiguous top tail callers and all the
10137 unambiguous bottom tail calees, if any.
10140 @anchor{set debug entry-values}
10141 @item set debug entry-values
10142 @kindex set debug entry-values
10143 When set to on, enables printing of analysis messages for both frame argument
10144 values at function entry and tail calls. It will show all the possible valid
10145 tail calls code paths it has considered. It will also print the intersection
10146 of them with the final unambiguous (possibly partial or even empty) code path
10149 @item show debug entry-values
10150 @kindex show debug entry-values
10151 Show the current state of analysis messages printing for both frame argument
10152 values at function entry and tail calls.
10155 The analysis messages for tail calls can for example show why the virtual tail
10156 call frame for function @code{c} has not been recognized (due to the indirect
10157 reference by variable @code{x}):
10160 static void __attribute__((noinline, noclone)) c (void);
10161 void (*x) (void) = c;
10162 static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
10163 static void __attribute__((noinline, noclone)) c (void) @{ a (); @}
10164 int main (void) @{ x (); return 0; @}
10166 Breakpoint 1, DW_OP_GNU_entry_value resolving cannot find
10167 DW_TAG_GNU_call_site 0x40039a in main
10169 3 static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
10172 #1 0x000000000040039a in main () at t.c:5
10175 Another possibility is an ambiguous virtual tail call frames resolution:
10179 static void __attribute__((noinline, noclone)) f (void) @{ i++; @}
10180 static void __attribute__((noinline, noclone)) e (void) @{ f (); @}
10181 static void __attribute__((noinline, noclone)) d (void) @{ f (); @}
10182 static void __attribute__((noinline, noclone)) c (void) @{ d (); @}
10183 static void __attribute__((noinline, noclone)) b (void)
10184 @{ if (i) c (); else e (); @}
10185 static void __attribute__((noinline, noclone)) a (void) @{ b (); @}
10186 int main (void) @{ a (); return 0; @}
10188 tailcall: initial: 0x4004d2(a) 0x4004ce(b) 0x4004b2(c) 0x4004a2(d)
10189 tailcall: compare: 0x4004d2(a) 0x4004cc(b) 0x400492(e)
10190 tailcall: reduced: 0x4004d2(a) |
10193 #1 0x00000000004004d2 in a () at t.c:8
10194 #2 0x0000000000400395 in main () at t.c:9
10197 @set CALLSEQ1A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}c@value{ARROW}d@value{ARROW}f}
10198 @set CALLSEQ2A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}e@value{ARROW}f}
10200 @c Convert CALLSEQ#A to CALLSEQ#B depending on HAVE_MAKEINFO_CLICK.
10201 @ifset HAVE_MAKEINFO_CLICK
10202 @set ARROW @click{}
10203 @set CALLSEQ1B @clicksequence{@value{CALLSEQ1A}}
10204 @set CALLSEQ2B @clicksequence{@value{CALLSEQ2A}}
10206 @ifclear HAVE_MAKEINFO_CLICK
10208 @set CALLSEQ1B @value{CALLSEQ1A}
10209 @set CALLSEQ2B @value{CALLSEQ2A}
10212 Frames #0 and #2 are real, #1 is a virtual tail call frame.
10213 The code can have possible execution paths @value{CALLSEQ1B} or
10214 @value{CALLSEQ2B}, @value{GDBN} cannot find which one from the inferior state.
10216 @code{initial:} state shows some random possible calling sequence @value{GDBN}
10217 has found. It then finds another possible calling sequcen - that one is
10218 prefixed by @code{compare:}. The non-ambiguous intersection of these two is
10219 printed as the @code{reduced:} calling sequence. That one could have many
10220 futher @code{compare:} and @code{reduced:} statements as long as there remain
10221 any non-ambiguous sequence entries.
10223 For the frame of function @code{b} in both cases there are different possible
10224 @code{$pc} values (@code{0x4004cc} or @code{0x4004ce}), therefore this frame is
10225 also ambigous. The only non-ambiguous frame is the one for function @code{a},
10226 therefore this one is displayed to the user while the ambiguous frames are
10229 There can be also reasons why printing of frame argument values at function
10234 static void __attribute__((noinline, noclone)) c (int i) @{ v++; @}
10235 static void __attribute__((noinline, noclone)) a (int i);
10236 static void __attribute__((noinline, noclone)) b (int i) @{ a (i); @}
10237 static void __attribute__((noinline, noclone)) a (int i)
10238 @{ if (i) b (i - 1); else c (0); @}
10239 int main (void) @{ a (5); return 0; @}
10242 #0 c (i=i@@entry=0) at t.c:2
10243 #1 0x0000000000400428 in a (DW_OP_GNU_entry_value resolving has found
10244 function "a" at 0x400420 can call itself via tail calls
10245 i=<optimized out>) at t.c:6
10246 #2 0x000000000040036e in main () at t.c:7
10249 @value{GDBN} cannot find out from the inferior state if and how many times did
10250 function @code{a} call itself (via function @code{b}) as these calls would be
10251 tail calls. Such tail calls would modify thue @code{i} variable, therefore
10252 @value{GDBN} cannot be sure the value it knows would be right - @value{GDBN}
10253 prints @code{<optimized out>} instead.
10256 @chapter C Preprocessor Macros
10258 Some languages, such as C and C@t{++}, provide a way to define and invoke
10259 ``preprocessor macros'' which expand into strings of tokens.
10260 @value{GDBN} can evaluate expressions containing macro invocations, show
10261 the result of macro expansion, and show a macro's definition, including
10262 where it was defined.
10264 You may need to compile your program specially to provide @value{GDBN}
10265 with information about preprocessor macros. Most compilers do not
10266 include macros in their debugging information, even when you compile
10267 with the @option{-g} flag. @xref{Compilation}.
10269 A program may define a macro at one point, remove that definition later,
10270 and then provide a different definition after that. Thus, at different
10271 points in the program, a macro may have different definitions, or have
10272 no definition at all. If there is a current stack frame, @value{GDBN}
10273 uses the macros in scope at that frame's source code line. Otherwise,
10274 @value{GDBN} uses the macros in scope at the current listing location;
10277 Whenever @value{GDBN} evaluates an expression, it always expands any
10278 macro invocations present in the expression. @value{GDBN} also provides
10279 the following commands for working with macros explicitly.
10283 @kindex macro expand
10284 @cindex macro expansion, showing the results of preprocessor
10285 @cindex preprocessor macro expansion, showing the results of
10286 @cindex expanding preprocessor macros
10287 @item macro expand @var{expression}
10288 @itemx macro exp @var{expression}
10289 Show the results of expanding all preprocessor macro invocations in
10290 @var{expression}. Since @value{GDBN} simply expands macros, but does
10291 not parse the result, @var{expression} need not be a valid expression;
10292 it can be any string of tokens.
10295 @item macro expand-once @var{expression}
10296 @itemx macro exp1 @var{expression}
10297 @cindex expand macro once
10298 @i{(This command is not yet implemented.)} Show the results of
10299 expanding those preprocessor macro invocations that appear explicitly in
10300 @var{expression}. Macro invocations appearing in that expansion are
10301 left unchanged. This command allows you to see the effect of a
10302 particular macro more clearly, without being confused by further
10303 expansions. Since @value{GDBN} simply expands macros, but does not
10304 parse the result, @var{expression} need not be a valid expression; it
10305 can be any string of tokens.
10308 @cindex macro definition, showing
10309 @cindex definition of a macro, showing
10310 @cindex macros, from debug info
10311 @item info macro [-a|-all] [--] @var{macro}
10312 Show the current definition or all definitions of the named @var{macro},
10313 and describe the source location or compiler command-line where that
10314 definition was established. The optional double dash is to signify the end of
10315 argument processing and the beginning of @var{macro} for non C-like macros where
10316 the macro may begin with a hyphen.
10318 @kindex info macros
10319 @item info macros @var{linespec}
10320 Show all macro definitions that are in effect at the location specified
10321 by @var{linespec}, and describe the source location or compiler
10322 command-line where those definitions were established.
10324 @kindex macro define
10325 @cindex user-defined macros
10326 @cindex defining macros interactively
10327 @cindex macros, user-defined
10328 @item macro define @var{macro} @var{replacement-list}
10329 @itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
10330 Introduce a definition for a preprocessor macro named @var{macro},
10331 invocations of which are replaced by the tokens given in
10332 @var{replacement-list}. The first form of this command defines an
10333 ``object-like'' macro, which takes no arguments; the second form
10334 defines a ``function-like'' macro, which takes the arguments given in
10337 A definition introduced by this command is in scope in every
10338 expression evaluated in @value{GDBN}, until it is removed with the
10339 @code{macro undef} command, described below. The definition overrides
10340 all definitions for @var{macro} present in the program being debugged,
10341 as well as any previous user-supplied definition.
10343 @kindex macro undef
10344 @item macro undef @var{macro}
10345 Remove any user-supplied definition for the macro named @var{macro}.
10346 This command only affects definitions provided with the @code{macro
10347 define} command, described above; it cannot remove definitions present
10348 in the program being debugged.
10352 List all the macros defined using the @code{macro define} command.
10355 @cindex macros, example of debugging with
10356 Here is a transcript showing the above commands in action. First, we
10357 show our source files:
10362 #include "sample.h"
10365 #define ADD(x) (M + x)
10370 printf ("Hello, world!\n");
10372 printf ("We're so creative.\n");
10374 printf ("Goodbye, world!\n");
10381 Now, we compile the program using the @sc{gnu} C compiler,
10382 @value{NGCC}. We pass the @option{-gdwarf-2}@footnote{This is the
10383 minimum. Recent versions of @value{NGCC} support @option{-gdwarf-3}
10384 and @option{-gdwarf-4}; we recommend always choosing the most recent
10385 version of DWARF.} @emph{and} @option{-g3} flags to ensure the compiler
10386 includes information about preprocessor macros in the debugging
10390 $ gcc -gdwarf-2 -g3 sample.c -o sample
10394 Now, we start @value{GDBN} on our sample program:
10398 GNU gdb 2002-05-06-cvs
10399 Copyright 2002 Free Software Foundation, Inc.
10400 GDB is free software, @dots{}
10404 We can expand macros and examine their definitions, even when the
10405 program is not running. @value{GDBN} uses the current listing position
10406 to decide which macro definitions are in scope:
10409 (@value{GDBP}) list main
10412 5 #define ADD(x) (M + x)
10417 10 printf ("Hello, world!\n");
10419 12 printf ("We're so creative.\n");
10420 (@value{GDBP}) info macro ADD
10421 Defined at /home/jimb/gdb/macros/play/sample.c:5
10422 #define ADD(x) (M + x)
10423 (@value{GDBP}) info macro Q
10424 Defined at /home/jimb/gdb/macros/play/sample.h:1
10425 included at /home/jimb/gdb/macros/play/sample.c:2
10427 (@value{GDBP}) macro expand ADD(1)
10428 expands to: (42 + 1)
10429 (@value{GDBP}) macro expand-once ADD(1)
10430 expands to: once (M + 1)
10434 In the example above, note that @code{macro expand-once} expands only
10435 the macro invocation explicit in the original text --- the invocation of
10436 @code{ADD} --- but does not expand the invocation of the macro @code{M},
10437 which was introduced by @code{ADD}.
10439 Once the program is running, @value{GDBN} uses the macro definitions in
10440 force at the source line of the current stack frame:
10443 (@value{GDBP}) break main
10444 Breakpoint 1 at 0x8048370: file sample.c, line 10.
10446 Starting program: /home/jimb/gdb/macros/play/sample
10448 Breakpoint 1, main () at sample.c:10
10449 10 printf ("Hello, world!\n");
10453 At line 10, the definition of the macro @code{N} at line 9 is in force:
10456 (@value{GDBP}) info macro N
10457 Defined at /home/jimb/gdb/macros/play/sample.c:9
10459 (@value{GDBP}) macro expand N Q M
10460 expands to: 28 < 42
10461 (@value{GDBP}) print N Q M
10466 As we step over directives that remove @code{N}'s definition, and then
10467 give it a new definition, @value{GDBN} finds the definition (or lack
10468 thereof) in force at each point:
10471 (@value{GDBP}) next
10473 12 printf ("We're so creative.\n");
10474 (@value{GDBP}) info macro N
10475 The symbol `N' has no definition as a C/C++ preprocessor macro
10476 at /home/jimb/gdb/macros/play/sample.c:12
10477 (@value{GDBP}) next
10479 14 printf ("Goodbye, world!\n");
10480 (@value{GDBP}) info macro N
10481 Defined at /home/jimb/gdb/macros/play/sample.c:13
10483 (@value{GDBP}) macro expand N Q M
10484 expands to: 1729 < 42
10485 (@value{GDBP}) print N Q M
10490 In addition to source files, macros can be defined on the compilation command
10491 line using the @option{-D@var{name}=@var{value}} syntax. For macros defined in
10492 such a way, @value{GDBN} displays the location of their definition as line zero
10493 of the source file submitted to the compiler.
10496 (@value{GDBP}) info macro __STDC__
10497 Defined at /home/jimb/gdb/macros/play/sample.c:0
10504 @chapter Tracepoints
10505 @c This chapter is based on the documentation written by Michael
10506 @c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
10508 @cindex tracepoints
10509 In some applications, it is not feasible for the debugger to interrupt
10510 the program's execution long enough for the developer to learn
10511 anything helpful about its behavior. If the program's correctness
10512 depends on its real-time behavior, delays introduced by a debugger
10513 might cause the program to change its behavior drastically, or perhaps
10514 fail, even when the code itself is correct. It is useful to be able
10515 to observe the program's behavior without interrupting it.
10517 Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
10518 specify locations in the program, called @dfn{tracepoints}, and
10519 arbitrary expressions to evaluate when those tracepoints are reached.
10520 Later, using the @code{tfind} command, you can examine the values
10521 those expressions had when the program hit the tracepoints. The
10522 expressions may also denote objects in memory---structures or arrays,
10523 for example---whose values @value{GDBN} should record; while visiting
10524 a particular tracepoint, you may inspect those objects as if they were
10525 in memory at that moment. However, because @value{GDBN} records these
10526 values without interacting with you, it can do so quickly and
10527 unobtrusively, hopefully not disturbing the program's behavior.
10529 The tracepoint facility is currently available only for remote
10530 targets. @xref{Targets}. In addition, your remote target must know
10531 how to collect trace data. This functionality is implemented in the
10532 remote stub; however, none of the stubs distributed with @value{GDBN}
10533 support tracepoints as of this writing. The format of the remote
10534 packets used to implement tracepoints are described in @ref{Tracepoint
10537 It is also possible to get trace data from a file, in a manner reminiscent
10538 of corefiles; you specify the filename, and use @code{tfind} to search
10539 through the file. @xref{Trace Files}, for more details.
10541 This chapter describes the tracepoint commands and features.
10544 * Set Tracepoints::
10545 * Analyze Collected Data::
10546 * Tracepoint Variables::
10550 @node Set Tracepoints
10551 @section Commands to Set Tracepoints
10553 Before running such a @dfn{trace experiment}, an arbitrary number of
10554 tracepoints can be set. A tracepoint is actually a special type of
10555 breakpoint (@pxref{Set Breaks}), so you can manipulate it using
10556 standard breakpoint commands. For instance, as with breakpoints,
10557 tracepoint numbers are successive integers starting from one, and many
10558 of the commands associated with tracepoints take the tracepoint number
10559 as their argument, to identify which tracepoint to work on.
10561 For each tracepoint, you can specify, in advance, some arbitrary set
10562 of data that you want the target to collect in the trace buffer when
10563 it hits that tracepoint. The collected data can include registers,
10564 local variables, or global data. Later, you can use @value{GDBN}
10565 commands to examine the values these data had at the time the
10566 tracepoint was hit.
10568 Tracepoints do not support every breakpoint feature. Ignore counts on
10569 tracepoints have no effect, and tracepoints cannot run @value{GDBN}
10570 commands when they are hit. Tracepoints may not be thread-specific
10573 @cindex fast tracepoints
10574 Some targets may support @dfn{fast tracepoints}, which are inserted in
10575 a different way (such as with a jump instead of a trap), that is
10576 faster but possibly restricted in where they may be installed.
10578 @cindex static tracepoints
10579 @cindex markers, static tracepoints
10580 @cindex probing markers, static tracepoints
10581 Regular and fast tracepoints are dynamic tracing facilities, meaning
10582 that they can be used to insert tracepoints at (almost) any location
10583 in the target. Some targets may also support controlling @dfn{static
10584 tracepoints} from @value{GDBN}. With static tracing, a set of
10585 instrumentation points, also known as @dfn{markers}, are embedded in
10586 the target program, and can be activated or deactivated by name or
10587 address. These are usually placed at locations which facilitate
10588 investigating what the target is actually doing. @value{GDBN}'s
10589 support for static tracing includes being able to list instrumentation
10590 points, and attach them with @value{GDBN} defined high level
10591 tracepoints that expose the whole range of convenience of
10592 @value{GDBN}'s tracepoints support. Namely, support for collecting
10593 registers values and values of global or local (to the instrumentation
10594 point) variables; tracepoint conditions and trace state variables.
10595 The act of installing a @value{GDBN} static tracepoint on an
10596 instrumentation point, or marker, is referred to as @dfn{probing} a
10597 static tracepoint marker.
10599 @code{gdbserver} supports tracepoints on some target systems.
10600 @xref{Server,,Tracepoints support in @code{gdbserver}}.
10602 This section describes commands to set tracepoints and associated
10603 conditions and actions.
10606 * Create and Delete Tracepoints::
10607 * Enable and Disable Tracepoints::
10608 * Tracepoint Passcounts::
10609 * Tracepoint Conditions::
10610 * Trace State Variables::
10611 * Tracepoint Actions::
10612 * Listing Tracepoints::
10613 * Listing Static Tracepoint Markers::
10614 * Starting and Stopping Trace Experiments::
10615 * Tracepoint Restrictions::
10618 @node Create and Delete Tracepoints
10619 @subsection Create and Delete Tracepoints
10622 @cindex set tracepoint
10624 @item trace @var{location}
10625 The @code{trace} command is very similar to the @code{break} command.
10626 Its argument @var{location} can be a source line, a function name, or
10627 an address in the target program. @xref{Specify Location}. The
10628 @code{trace} command defines a tracepoint, which is a point in the
10629 target program where the debugger will briefly stop, collect some
10630 data, and then allow the program to continue. Setting a tracepoint or
10631 changing its actions takes effect immediately if the remote stub
10632 supports the @samp{InstallInTrace} feature (@pxref{install tracepoint
10634 If remote stub doesn't support the @samp{InstallInTrace} feature, all
10635 these changes don't take effect until the next @code{tstart}
10636 command, and once a trace experiment is running, further changes will
10637 not have any effect until the next trace experiment starts. In addition,
10638 @value{GDBN} supports @dfn{pending tracepoints}---tracepoints whose
10639 address is not yet resolved. (This is similar to pending breakpoints.)
10640 Pending tracepoints are not downloaded to the target and not installed
10641 until they are resolved. The resolution of pending tracepoints requires
10642 @value{GDBN} support---when debugging with the remote target, and
10643 @value{GDBN} disconnects from the remote stub (@pxref{disconnected
10644 tracing}), pending tracepoints can not be resolved (and downloaded to
10645 the remote stub) while @value{GDBN} is disconnected.
10647 Here are some examples of using the @code{trace} command:
10650 (@value{GDBP}) @b{trace foo.c:121} // a source file and line number
10652 (@value{GDBP}) @b{trace +2} // 2 lines forward
10654 (@value{GDBP}) @b{trace my_function} // first source line of function
10656 (@value{GDBP}) @b{trace *my_function} // EXACT start address of function
10658 (@value{GDBP}) @b{trace *0x2117c4} // an address
10662 You can abbreviate @code{trace} as @code{tr}.
10664 @item trace @var{location} if @var{cond}
10665 Set a tracepoint with condition @var{cond}; evaluate the expression
10666 @var{cond} each time the tracepoint is reached, and collect data only
10667 if the value is nonzero---that is, if @var{cond} evaluates as true.
10668 @xref{Tracepoint Conditions, ,Tracepoint Conditions}, for more
10669 information on tracepoint conditions.
10671 @item ftrace @var{location} [ if @var{cond} ]
10672 @cindex set fast tracepoint
10673 @cindex fast tracepoints, setting
10675 The @code{ftrace} command sets a fast tracepoint. For targets that
10676 support them, fast tracepoints will use a more efficient but possibly
10677 less general technique to trigger data collection, such as a jump
10678 instruction instead of a trap, or some sort of hardware support. It
10679 may not be possible to create a fast tracepoint at the desired
10680 location, in which case the command will exit with an explanatory
10683 @value{GDBN} handles arguments to @code{ftrace} exactly as for
10686 On 32-bit x86-architecture systems, fast tracepoints normally need to
10687 be placed at an instruction that is 5 bytes or longer, but can be
10688 placed at 4-byte instructions if the low 64K of memory of the target
10689 program is available to install trampolines. Some Unix-type systems,
10690 such as @sc{gnu}/Linux, exclude low addresses from the program's
10691 address space; but for instance with the Linux kernel it is possible
10692 to let @value{GDBN} use this area by doing a @command{sysctl} command
10693 to set the @code{mmap_min_addr} kernel parameter, as in
10696 sudo sysctl -w vm.mmap_min_addr=32768
10700 which sets the low address to 32K, which leaves plenty of room for
10701 trampolines. The minimum address should be set to a page boundary.
10703 @item strace @var{location} [ if @var{cond} ]
10704 @cindex set static tracepoint
10705 @cindex static tracepoints, setting
10706 @cindex probe static tracepoint marker
10708 The @code{strace} command sets a static tracepoint. For targets that
10709 support it, setting a static tracepoint probes a static
10710 instrumentation point, or marker, found at @var{location}. It may not
10711 be possible to set a static tracepoint at the desired location, in
10712 which case the command will exit with an explanatory message.
10714 @value{GDBN} handles arguments to @code{strace} exactly as for
10715 @code{trace}, with the addition that the user can also specify
10716 @code{-m @var{marker}} as @var{location}. This probes the marker
10717 identified by the @var{marker} string identifier. This identifier
10718 depends on the static tracepoint backend library your program is
10719 using. You can find all the marker identifiers in the @samp{ID} field
10720 of the @code{info static-tracepoint-markers} command output.
10721 @xref{Listing Static Tracepoint Markers,,Listing Static Tracepoint
10722 Markers}. For example, in the following small program using the UST
10728 trace_mark(ust, bar33, "str %s", "FOOBAZ");
10733 the marker id is composed of joining the first two arguments to the
10734 @code{trace_mark} call with a slash, which translates to:
10737 (@value{GDBP}) info static-tracepoint-markers
10738 Cnt Enb ID Address What
10739 1 n ust/bar33 0x0000000000400ddc in main at stexample.c:22
10745 so you may probe the marker above with:
10748 (@value{GDBP}) strace -m ust/bar33
10751 Static tracepoints accept an extra collect action --- @code{collect
10752 $_sdata}. This collects arbitrary user data passed in the probe point
10753 call to the tracing library. In the UST example above, you'll see
10754 that the third argument to @code{trace_mark} is a printf-like format
10755 string. The user data is then the result of running that formating
10756 string against the following arguments. Note that @code{info
10757 static-tracepoint-markers} command output lists that format string in
10758 the @samp{Data:} field.
10760 You can inspect this data when analyzing the trace buffer, by printing
10761 the $_sdata variable like any other variable available to
10762 @value{GDBN}. @xref{Tracepoint Actions,,Tracepoint Action Lists}.
10765 @cindex last tracepoint number
10766 @cindex recent tracepoint number
10767 @cindex tracepoint number
10768 The convenience variable @code{$tpnum} records the tracepoint number
10769 of the most recently set tracepoint.
10771 @kindex delete tracepoint
10772 @cindex tracepoint deletion
10773 @item delete tracepoint @r{[}@var{num}@r{]}
10774 Permanently delete one or more tracepoints. With no argument, the
10775 default is to delete all tracepoints. Note that the regular
10776 @code{delete} command can remove tracepoints also.
10781 (@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
10783 (@value{GDBP}) @b{delete trace} // remove all tracepoints
10787 You can abbreviate this command as @code{del tr}.
10790 @node Enable and Disable Tracepoints
10791 @subsection Enable and Disable Tracepoints
10793 These commands are deprecated; they are equivalent to plain @code{disable} and @code{enable}.
10796 @kindex disable tracepoint
10797 @item disable tracepoint @r{[}@var{num}@r{]}
10798 Disable tracepoint @var{num}, or all tracepoints if no argument
10799 @var{num} is given. A disabled tracepoint will have no effect during
10800 a trace experiment, but it is not forgotten. You can re-enable
10801 a disabled tracepoint using the @code{enable tracepoint} command.
10802 If the command is issued during a trace experiment and the debug target
10803 has support for disabling tracepoints during a trace experiment, then the
10804 change will be effective immediately. Otherwise, it will be applied to the
10805 next trace experiment.
10807 @kindex enable tracepoint
10808 @item enable tracepoint @r{[}@var{num}@r{]}
10809 Enable tracepoint @var{num}, or all tracepoints. If this command is
10810 issued during a trace experiment and the debug target supports enabling
10811 tracepoints during a trace experiment, then the enabled tracepoints will
10812 become effective immediately. Otherwise, they will become effective the
10813 next time a trace experiment is run.
10816 @node Tracepoint Passcounts
10817 @subsection Tracepoint Passcounts
10821 @cindex tracepoint pass count
10822 @item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
10823 Set the @dfn{passcount} of a tracepoint. The passcount is a way to
10824 automatically stop a trace experiment. If a tracepoint's passcount is
10825 @var{n}, then the trace experiment will be automatically stopped on
10826 the @var{n}'th time that tracepoint is hit. If the tracepoint number
10827 @var{num} is not specified, the @code{passcount} command sets the
10828 passcount of the most recently defined tracepoint. If no passcount is
10829 given, the trace experiment will run until stopped explicitly by the
10835 (@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
10836 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
10838 (@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
10839 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
10840 (@value{GDBP}) @b{trace foo}
10841 (@value{GDBP}) @b{pass 3}
10842 (@value{GDBP}) @b{trace bar}
10843 (@value{GDBP}) @b{pass 2}
10844 (@value{GDBP}) @b{trace baz}
10845 (@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
10846 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
10847 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
10848 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
10852 @node Tracepoint Conditions
10853 @subsection Tracepoint Conditions
10854 @cindex conditional tracepoints
10855 @cindex tracepoint conditions
10857 The simplest sort of tracepoint collects data every time your program
10858 reaches a specified place. You can also specify a @dfn{condition} for
10859 a tracepoint. A condition is just a Boolean expression in your
10860 programming language (@pxref{Expressions, ,Expressions}). A
10861 tracepoint with a condition evaluates the expression each time your
10862 program reaches it, and data collection happens only if the condition
10865 Tracepoint conditions can be specified when a tracepoint is set, by
10866 using @samp{if} in the arguments to the @code{trace} command.
10867 @xref{Create and Delete Tracepoints, ,Setting Tracepoints}. They can
10868 also be set or changed at any time with the @code{condition} command,
10869 just as with breakpoints.
10871 Unlike breakpoint conditions, @value{GDBN} does not actually evaluate
10872 the conditional expression itself. Instead, @value{GDBN} encodes the
10873 expression into an agent expression (@pxref{Agent Expressions})
10874 suitable for execution on the target, independently of @value{GDBN}.
10875 Global variables become raw memory locations, locals become stack
10876 accesses, and so forth.
10878 For instance, suppose you have a function that is usually called
10879 frequently, but should not be called after an error has occurred. You
10880 could use the following tracepoint command to collect data about calls
10881 of that function that happen while the error code is propagating
10882 through the program; an unconditional tracepoint could end up
10883 collecting thousands of useless trace frames that you would have to
10887 (@value{GDBP}) @kbd{trace normal_operation if errcode > 0}
10890 @node Trace State Variables
10891 @subsection Trace State Variables
10892 @cindex trace state variables
10894 A @dfn{trace state variable} is a special type of variable that is
10895 created and managed by target-side code. The syntax is the same as
10896 that for GDB's convenience variables (a string prefixed with ``$''),
10897 but they are stored on the target. They must be created explicitly,
10898 using a @code{tvariable} command. They are always 64-bit signed
10901 Trace state variables are remembered by @value{GDBN}, and downloaded
10902 to the target along with tracepoint information when the trace
10903 experiment starts. There are no intrinsic limits on the number of
10904 trace state variables, beyond memory limitations of the target.
10906 @cindex convenience variables, and trace state variables
10907 Although trace state variables are managed by the target, you can use
10908 them in print commands and expressions as if they were convenience
10909 variables; @value{GDBN} will get the current value from the target
10910 while the trace experiment is running. Trace state variables share
10911 the same namespace as other ``$'' variables, which means that you
10912 cannot have trace state variables with names like @code{$23} or
10913 @code{$pc}, nor can you have a trace state variable and a convenience
10914 variable with the same name.
10918 @item tvariable $@var{name} [ = @var{expression} ]
10920 The @code{tvariable} command creates a new trace state variable named
10921 @code{$@var{name}}, and optionally gives it an initial value of
10922 @var{expression}. @var{expression} is evaluated when this command is
10923 entered; the result will be converted to an integer if possible,
10924 otherwise @value{GDBN} will report an error. A subsequent
10925 @code{tvariable} command specifying the same name does not create a
10926 variable, but instead assigns the supplied initial value to the
10927 existing variable of that name, overwriting any previous initial
10928 value. The default initial value is 0.
10930 @item info tvariables
10931 @kindex info tvariables
10932 List all the trace state variables along with their initial values.
10933 Their current values may also be displayed, if the trace experiment is
10936 @item delete tvariable @r{[} $@var{name} @dots{} @r{]}
10937 @kindex delete tvariable
10938 Delete the given trace state variables, or all of them if no arguments
10943 @node Tracepoint Actions
10944 @subsection Tracepoint Action Lists
10948 @cindex tracepoint actions
10949 @item actions @r{[}@var{num}@r{]}
10950 This command will prompt for a list of actions to be taken when the
10951 tracepoint is hit. If the tracepoint number @var{num} is not
10952 specified, this command sets the actions for the one that was most
10953 recently defined (so that you can define a tracepoint and then say
10954 @code{actions} without bothering about its number). You specify the
10955 actions themselves on the following lines, one action at a time, and
10956 terminate the actions list with a line containing just @code{end}. So
10957 far, the only defined actions are @code{collect}, @code{teval}, and
10958 @code{while-stepping}.
10960 @code{actions} is actually equivalent to @code{commands} (@pxref{Break
10961 Commands, ,Breakpoint Command Lists}), except that only the defined
10962 actions are allowed; any other @value{GDBN} command is rejected.
10964 @cindex remove actions from a tracepoint
10965 To remove all actions from a tracepoint, type @samp{actions @var{num}}
10966 and follow it immediately with @samp{end}.
10969 (@value{GDBP}) @b{collect @var{data}} // collect some data
10971 (@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
10973 (@value{GDBP}) @b{end} // signals the end of actions.
10976 In the following example, the action list begins with @code{collect}
10977 commands indicating the things to be collected when the tracepoint is
10978 hit. Then, in order to single-step and collect additional data
10979 following the tracepoint, a @code{while-stepping} command is used,
10980 followed by the list of things to be collected after each step in a
10981 sequence of single steps. The @code{while-stepping} command is
10982 terminated by its own separate @code{end} command. Lastly, the action
10983 list is terminated by an @code{end} command.
10986 (@value{GDBP}) @b{trace foo}
10987 (@value{GDBP}) @b{actions}
10988 Enter actions for tracepoint 1, one per line:
10991 > while-stepping 12
10992 > collect $pc, arr[i]
10997 @kindex collect @r{(tracepoints)}
10998 @item collect@r{[}/@var{mods}@r{]} @var{expr1}, @var{expr2}, @dots{}
10999 Collect values of the given expressions when the tracepoint is hit.
11000 This command accepts a comma-separated list of any valid expressions.
11001 In addition to global, static, or local variables, the following
11002 special arguments are supported:
11006 Collect all registers.
11009 Collect all function arguments.
11012 Collect all local variables.
11015 Collect the return address. This is helpful if you want to see more
11019 @vindex $_sdata@r{, collect}
11020 Collect static tracepoint marker specific data. Only available for
11021 static tracepoints. @xref{Tracepoint Actions,,Tracepoint Action
11022 Lists}. On the UST static tracepoints library backend, an
11023 instrumentation point resembles a @code{printf} function call. The
11024 tracing library is able to collect user specified data formatted to a
11025 character string using the format provided by the programmer that
11026 instrumented the program. Other backends have similar mechanisms.
11027 Here's an example of a UST marker call:
11030 const char master_name[] = "$your_name";
11031 trace_mark(channel1, marker1, "hello %s", master_name)
11034 In this case, collecting @code{$_sdata} collects the string
11035 @samp{hello $yourname}. When analyzing the trace buffer, you can
11036 inspect @samp{$_sdata} like any other variable available to
11040 You can give several consecutive @code{collect} commands, each one
11041 with a single argument, or one @code{collect} command with several
11042 arguments separated by commas; the effect is the same.
11044 The optional @var{mods} changes the usual handling of the arguments.
11045 @code{s} requests that pointers to chars be handled as strings, in
11046 particular collecting the contents of the memory being pointed at, up
11047 to the first zero. The upper bound is by default the value of the
11048 @code{print elements} variable; if @code{s} is followed by a decimal
11049 number, that is the upper bound instead. So for instance
11050 @samp{collect/s25 mystr} collects as many as 25 characters at
11053 The command @code{info scope} (@pxref{Symbols, info scope}) is
11054 particularly useful for figuring out what data to collect.
11056 @kindex teval @r{(tracepoints)}
11057 @item teval @var{expr1}, @var{expr2}, @dots{}
11058 Evaluate the given expressions when the tracepoint is hit. This
11059 command accepts a comma-separated list of expressions. The results
11060 are discarded, so this is mainly useful for assigning values to trace
11061 state variables (@pxref{Trace State Variables}) without adding those
11062 values to the trace buffer, as would be the case if the @code{collect}
11065 @kindex while-stepping @r{(tracepoints)}
11066 @item while-stepping @var{n}
11067 Perform @var{n} single-step instruction traces after the tracepoint,
11068 collecting new data after each step. The @code{while-stepping}
11069 command is followed by the list of what to collect while stepping
11070 (followed by its own @code{end} command):
11073 > while-stepping 12
11074 > collect $regs, myglobal
11080 Note that @code{$pc} is not automatically collected by
11081 @code{while-stepping}; you need to explicitly collect that register if
11082 you need it. You may abbreviate @code{while-stepping} as @code{ws} or
11085 @item set default-collect @var{expr1}, @var{expr2}, @dots{}
11086 @kindex set default-collect
11087 @cindex default collection action
11088 This variable is a list of expressions to collect at each tracepoint
11089 hit. It is effectively an additional @code{collect} action prepended
11090 to every tracepoint action list. The expressions are parsed
11091 individually for each tracepoint, so for instance a variable named
11092 @code{xyz} may be interpreted as a global for one tracepoint, and a
11093 local for another, as appropriate to the tracepoint's location.
11095 @item show default-collect
11096 @kindex show default-collect
11097 Show the list of expressions that are collected by default at each
11102 @node Listing Tracepoints
11103 @subsection Listing Tracepoints
11106 @kindex info tracepoints @r{[}@var{n}@dots{}@r{]}
11107 @kindex info tp @r{[}@var{n}@dots{}@r{]}
11108 @cindex information about tracepoints
11109 @item info tracepoints @r{[}@var{num}@dots{}@r{]}
11110 Display information about the tracepoint @var{num}. If you don't
11111 specify a tracepoint number, displays information about all the
11112 tracepoints defined so far. The format is similar to that used for
11113 @code{info breakpoints}; in fact, @code{info tracepoints} is the same
11114 command, simply restricting itself to tracepoints.
11116 A tracepoint's listing may include additional information specific to
11121 its passcount as given by the @code{passcount @var{n}} command
11125 (@value{GDBP}) @b{info trace}
11126 Num Type Disp Enb Address What
11127 1 tracepoint keep y 0x0804ab57 in foo() at main.cxx:7
11129 collect globfoo, $regs
11138 This command can be abbreviated @code{info tp}.
11141 @node Listing Static Tracepoint Markers
11142 @subsection Listing Static Tracepoint Markers
11145 @kindex info static-tracepoint-markers
11146 @cindex information about static tracepoint markers
11147 @item info static-tracepoint-markers
11148 Display information about all static tracepoint markers defined in the
11151 For each marker, the following columns are printed:
11155 An incrementing counter, output to help readability. This is not a
11158 The marker ID, as reported by the target.
11159 @item Enabled or Disabled
11160 Probed markers are tagged with @samp{y}. @samp{n} identifies marks
11161 that are not enabled.
11163 Where the marker is in your program, as a memory address.
11165 Where the marker is in the source for your program, as a file and line
11166 number. If the debug information included in the program does not
11167 allow @value{GDBN} to locate the source of the marker, this column
11168 will be left blank.
11172 In addition, the following information may be printed for each marker:
11176 User data passed to the tracing library by the marker call. In the
11177 UST backend, this is the format string passed as argument to the
11179 @item Static tracepoints probing the marker
11180 The list of static tracepoints attached to the marker.
11184 (@value{GDBP}) info static-tracepoint-markers
11185 Cnt ID Enb Address What
11186 1 ust/bar2 y 0x0000000000400e1a in main at stexample.c:25
11187 Data: number1 %d number2 %d
11188 Probed by static tracepoints: #2
11189 2 ust/bar33 n 0x0000000000400c87 in main at stexample.c:24
11195 @node Starting and Stopping Trace Experiments
11196 @subsection Starting and Stopping Trace Experiments
11199 @kindex tstart [ @var{notes} ]
11200 @cindex start a new trace experiment
11201 @cindex collected data discarded
11203 This command starts the trace experiment, and begins collecting data.
11204 It has the side effect of discarding all the data collected in the
11205 trace buffer during the previous trace experiment. If any arguments
11206 are supplied, they are taken as a note and stored with the trace
11207 experiment's state. The notes may be arbitrary text, and are
11208 especially useful with disconnected tracing in a multi-user context;
11209 the notes can explain what the trace is doing, supply user contact
11210 information, and so forth.
11212 @kindex tstop [ @var{notes} ]
11213 @cindex stop a running trace experiment
11215 This command stops the trace experiment. If any arguments are
11216 supplied, they are recorded with the experiment as a note. This is
11217 useful if you are stopping a trace started by someone else, for
11218 instance if the trace is interfering with the system's behavior and
11219 needs to be stopped quickly.
11221 @strong{Note}: a trace experiment and data collection may stop
11222 automatically if any tracepoint's passcount is reached
11223 (@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
11226 @cindex status of trace data collection
11227 @cindex trace experiment, status of
11229 This command displays the status of the current trace data
11233 Here is an example of the commands we described so far:
11236 (@value{GDBP}) @b{trace gdb_c_test}
11237 (@value{GDBP}) @b{actions}
11238 Enter actions for tracepoint #1, one per line.
11239 > collect $regs,$locals,$args
11240 > while-stepping 11
11244 (@value{GDBP}) @b{tstart}
11245 [time passes @dots{}]
11246 (@value{GDBP}) @b{tstop}
11249 @anchor{disconnected tracing}
11250 @cindex disconnected tracing
11251 You can choose to continue running the trace experiment even if
11252 @value{GDBN} disconnects from the target, voluntarily or
11253 involuntarily. For commands such as @code{detach}, the debugger will
11254 ask what you want to do with the trace. But for unexpected
11255 terminations (@value{GDBN} crash, network outage), it would be
11256 unfortunate to lose hard-won trace data, so the variable
11257 @code{disconnected-tracing} lets you decide whether the trace should
11258 continue running without @value{GDBN}.
11261 @item set disconnected-tracing on
11262 @itemx set disconnected-tracing off
11263 @kindex set disconnected-tracing
11264 Choose whether a tracing run should continue to run if @value{GDBN}
11265 has disconnected from the target. Note that @code{detach} or
11266 @code{quit} will ask you directly what to do about a running trace no
11267 matter what this variable's setting, so the variable is mainly useful
11268 for handling unexpected situations, such as loss of the network.
11270 @item show disconnected-tracing
11271 @kindex show disconnected-tracing
11272 Show the current choice for disconnected tracing.
11276 When you reconnect to the target, the trace experiment may or may not
11277 still be running; it might have filled the trace buffer in the
11278 meantime, or stopped for one of the other reasons. If it is running,
11279 it will continue after reconnection.
11281 Upon reconnection, the target will upload information about the
11282 tracepoints in effect. @value{GDBN} will then compare that
11283 information to the set of tracepoints currently defined, and attempt
11284 to match them up, allowing for the possibility that the numbers may
11285 have changed due to creation and deletion in the meantime. If one of
11286 the target's tracepoints does not match any in @value{GDBN}, the
11287 debugger will create a new tracepoint, so that you have a number with
11288 which to specify that tracepoint. This matching-up process is
11289 necessarily heuristic, and it may result in useless tracepoints being
11290 created; you may simply delete them if they are of no use.
11292 @cindex circular trace buffer
11293 If your target agent supports a @dfn{circular trace buffer}, then you
11294 can run a trace experiment indefinitely without filling the trace
11295 buffer; when space runs out, the agent deletes already-collected trace
11296 frames, oldest first, until there is enough room to continue
11297 collecting. This is especially useful if your tracepoints are being
11298 hit too often, and your trace gets terminated prematurely because the
11299 buffer is full. To ask for a circular trace buffer, simply set
11300 @samp{circular-trace-buffer} to on. You can set this at any time,
11301 including during tracing; if the agent can do it, it will change
11302 buffer handling on the fly, otherwise it will not take effect until
11306 @item set circular-trace-buffer on
11307 @itemx set circular-trace-buffer off
11308 @kindex set circular-trace-buffer
11309 Choose whether a tracing run should use a linear or circular buffer
11310 for trace data. A linear buffer will not lose any trace data, but may
11311 fill up prematurely, while a circular buffer will discard old trace
11312 data, but it will have always room for the latest tracepoint hits.
11314 @item show circular-trace-buffer
11315 @kindex show circular-trace-buffer
11316 Show the current choice for the trace buffer. Note that this may not
11317 match the agent's current buffer handling, nor is it guaranteed to
11318 match the setting that might have been in effect during a past run,
11319 for instance if you are looking at frames from a trace file.
11324 @item set trace-user @var{text}
11325 @kindex set trace-user
11327 @item show trace-user
11328 @kindex show trace-user
11330 @item set trace-notes @var{text}
11331 @kindex set trace-notes
11332 Set the trace run's notes.
11334 @item show trace-notes
11335 @kindex show trace-notes
11336 Show the trace run's notes.
11338 @item set trace-stop-notes @var{text}
11339 @kindex set trace-stop-notes
11340 Set the trace run's stop notes. The handling of the note is as for
11341 @code{tstop} arguments; the set command is convenient way to fix a
11342 stop note that is mistaken or incomplete.
11344 @item show trace-stop-notes
11345 @kindex show trace-stop-notes
11346 Show the trace run's stop notes.
11350 @node Tracepoint Restrictions
11351 @subsection Tracepoint Restrictions
11353 @cindex tracepoint restrictions
11354 There are a number of restrictions on the use of tracepoints. As
11355 described above, tracepoint data gathering occurs on the target
11356 without interaction from @value{GDBN}. Thus the full capabilities of
11357 the debugger are not available during data gathering, and then at data
11358 examination time, you will be limited by only having what was
11359 collected. The following items describe some common problems, but it
11360 is not exhaustive, and you may run into additional difficulties not
11366 Tracepoint expressions are intended to gather objects (lvalues). Thus
11367 the full flexibility of GDB's expression evaluator is not available.
11368 You cannot call functions, cast objects to aggregate types, access
11369 convenience variables or modify values (except by assignment to trace
11370 state variables). Some language features may implicitly call
11371 functions (for instance Objective-C fields with accessors), and therefore
11372 cannot be collected either.
11375 Collection of local variables, either individually or in bulk with
11376 @code{$locals} or @code{$args}, during @code{while-stepping} may
11377 behave erratically. The stepping action may enter a new scope (for
11378 instance by stepping into a function), or the location of the variable
11379 may change (for instance it is loaded into a register). The
11380 tracepoint data recorded uses the location information for the
11381 variables that is correct for the tracepoint location. When the
11382 tracepoint is created, it is not possible, in general, to determine
11383 where the steps of a @code{while-stepping} sequence will advance the
11384 program---particularly if a conditional branch is stepped.
11387 Collection of an incompletely-initialized or partially-destroyed object
11388 may result in something that @value{GDBN} cannot display, or displays
11389 in a misleading way.
11392 When @value{GDBN} displays a pointer to character it automatically
11393 dereferences the pointer to also display characters of the string
11394 being pointed to. However, collecting the pointer during tracing does
11395 not automatically collect the string. You need to explicitly
11396 dereference the pointer and provide size information if you want to
11397 collect not only the pointer, but the memory pointed to. For example,
11398 @code{*ptr@@50} can be used to collect the 50 element array pointed to
11402 It is not possible to collect a complete stack backtrace at a
11403 tracepoint. Instead, you may collect the registers and a few hundred
11404 bytes from the stack pointer with something like @code{*(unsigned char *)$esp@@300}
11405 (adjust to use the name of the actual stack pointer register on your
11406 target architecture, and the amount of stack you wish to capture).
11407 Then the @code{backtrace} command will show a partial backtrace when
11408 using a trace frame. The number of stack frames that can be examined
11409 depends on the sizes of the frames in the collected stack. Note that
11410 if you ask for a block so large that it goes past the bottom of the
11411 stack, the target agent may report an error trying to read from an
11415 If you do not collect registers at a tracepoint, @value{GDBN} can
11416 infer that the value of @code{$pc} must be the same as the address of
11417 the tracepoint and use that when you are looking at a trace frame
11418 for that tracepoint. However, this cannot work if the tracepoint has
11419 multiple locations (for instance if it was set in a function that was
11420 inlined), or if it has a @code{while-stepping} loop. In those cases
11421 @value{GDBN} will warn you that it can't infer @code{$pc}, and default
11426 @node Analyze Collected Data
11427 @section Using the Collected Data
11429 After the tracepoint experiment ends, you use @value{GDBN} commands
11430 for examining the trace data. The basic idea is that each tracepoint
11431 collects a trace @dfn{snapshot} every time it is hit and another
11432 snapshot every time it single-steps. All these snapshots are
11433 consecutively numbered from zero and go into a buffer, and you can
11434 examine them later. The way you examine them is to @dfn{focus} on a
11435 specific trace snapshot. When the remote stub is focused on a trace
11436 snapshot, it will respond to all @value{GDBN} requests for memory and
11437 registers by reading from the buffer which belongs to that snapshot,
11438 rather than from @emph{real} memory or registers of the program being
11439 debugged. This means that @strong{all} @value{GDBN} commands
11440 (@code{print}, @code{info registers}, @code{backtrace}, etc.) will
11441 behave as if we were currently debugging the program state as it was
11442 when the tracepoint occurred. Any requests for data that are not in
11443 the buffer will fail.
11446 * tfind:: How to select a trace snapshot
11447 * tdump:: How to display all data for a snapshot
11448 * save tracepoints:: How to save tracepoints for a future run
11452 @subsection @code{tfind @var{n}}
11455 @cindex select trace snapshot
11456 @cindex find trace snapshot
11457 The basic command for selecting a trace snapshot from the buffer is
11458 @code{tfind @var{n}}, which finds trace snapshot number @var{n},
11459 counting from zero. If no argument @var{n} is given, the next
11460 snapshot is selected.
11462 Here are the various forms of using the @code{tfind} command.
11466 Find the first snapshot in the buffer. This is a synonym for
11467 @code{tfind 0} (since 0 is the number of the first snapshot).
11470 Stop debugging trace snapshots, resume @emph{live} debugging.
11473 Same as @samp{tfind none}.
11476 No argument means find the next trace snapshot.
11479 Find the previous trace snapshot before the current one. This permits
11480 retracing earlier steps.
11482 @item tfind tracepoint @var{num}
11483 Find the next snapshot associated with tracepoint @var{num}. Search
11484 proceeds forward from the last examined trace snapshot. If no
11485 argument @var{num} is given, it means find the next snapshot collected
11486 for the same tracepoint as the current snapshot.
11488 @item tfind pc @var{addr}
11489 Find the next snapshot associated with the value @var{addr} of the
11490 program counter. Search proceeds forward from the last examined trace
11491 snapshot. If no argument @var{addr} is given, it means find the next
11492 snapshot with the same value of PC as the current snapshot.
11494 @item tfind outside @var{addr1}, @var{addr2}
11495 Find the next snapshot whose PC is outside the given range of
11496 addresses (exclusive).
11498 @item tfind range @var{addr1}, @var{addr2}
11499 Find the next snapshot whose PC is between @var{addr1} and
11500 @var{addr2} (inclusive).
11502 @item tfind line @r{[}@var{file}:@r{]}@var{n}
11503 Find the next snapshot associated with the source line @var{n}. If
11504 the optional argument @var{file} is given, refer to line @var{n} in
11505 that source file. Search proceeds forward from the last examined
11506 trace snapshot. If no argument @var{n} is given, it means find the
11507 next line other than the one currently being examined; thus saying
11508 @code{tfind line} repeatedly can appear to have the same effect as
11509 stepping from line to line in a @emph{live} debugging session.
11512 The default arguments for the @code{tfind} commands are specifically
11513 designed to make it easy to scan through the trace buffer. For
11514 instance, @code{tfind} with no argument selects the next trace
11515 snapshot, and @code{tfind -} with no argument selects the previous
11516 trace snapshot. So, by giving one @code{tfind} command, and then
11517 simply hitting @key{RET} repeatedly you can examine all the trace
11518 snapshots in order. Or, by saying @code{tfind -} and then hitting
11519 @key{RET} repeatedly you can examine the snapshots in reverse order.
11520 The @code{tfind line} command with no argument selects the snapshot
11521 for the next source line executed. The @code{tfind pc} command with
11522 no argument selects the next snapshot with the same program counter
11523 (PC) as the current frame. The @code{tfind tracepoint} command with
11524 no argument selects the next trace snapshot collected by the same
11525 tracepoint as the current one.
11527 In addition to letting you scan through the trace buffer manually,
11528 these commands make it easy to construct @value{GDBN} scripts that
11529 scan through the trace buffer and print out whatever collected data
11530 you are interested in. Thus, if we want to examine the PC, FP, and SP
11531 registers from each trace frame in the buffer, we can say this:
11534 (@value{GDBP}) @b{tfind start}
11535 (@value{GDBP}) @b{while ($trace_frame != -1)}
11536 > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
11537 $trace_frame, $pc, $sp, $fp
11541 Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
11542 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
11543 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
11544 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
11545 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
11546 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
11547 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
11548 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
11549 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
11550 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
11551 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
11554 Or, if we want to examine the variable @code{X} at each source line in
11558 (@value{GDBP}) @b{tfind start}
11559 (@value{GDBP}) @b{while ($trace_frame != -1)}
11560 > printf "Frame %d, X == %d\n", $trace_frame, X
11570 @subsection @code{tdump}
11572 @cindex dump all data collected at tracepoint
11573 @cindex tracepoint data, display
11575 This command takes no arguments. It prints all the data collected at
11576 the current trace snapshot.
11579 (@value{GDBP}) @b{trace 444}
11580 (@value{GDBP}) @b{actions}
11581 Enter actions for tracepoint #2, one per line:
11582 > collect $regs, $locals, $args, gdb_long_test
11585 (@value{GDBP}) @b{tstart}
11587 (@value{GDBP}) @b{tfind line 444}
11588 #0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
11590 444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
11592 (@value{GDBP}) @b{tdump}
11593 Data collected at tracepoint 2, trace frame 1:
11594 d0 0xc4aa0085 -995491707
11598 d4 0x71aea3d 119204413
11601 d7 0x380035 3670069
11602 a0 0x19e24a 1696330
11603 a1 0x3000668 50333288
11605 a3 0x322000 3284992
11606 a4 0x3000698 50333336
11607 a5 0x1ad3cc 1758156
11608 fp 0x30bf3c 0x30bf3c
11609 sp 0x30bf34 0x30bf34
11611 pc 0x20b2c8 0x20b2c8
11615 p = 0x20e5b4 "gdb-test"
11622 gdb_long_test = 17 '\021'
11627 @code{tdump} works by scanning the tracepoint's current collection
11628 actions and printing the value of each expression listed. So
11629 @code{tdump} can fail, if after a run, you change the tracepoint's
11630 actions to mention variables that were not collected during the run.
11632 Also, for tracepoints with @code{while-stepping} loops, @code{tdump}
11633 uses the collected value of @code{$pc} to distinguish between trace
11634 frames that were collected at the tracepoint hit, and frames that were
11635 collected while stepping. This allows it to correctly choose whether
11636 to display the basic list of collections, or the collections from the
11637 body of the while-stepping loop. However, if @code{$pc} was not collected,
11638 then @code{tdump} will always attempt to dump using the basic collection
11639 list, and may fail if a while-stepping frame does not include all the
11640 same data that is collected at the tracepoint hit.
11641 @c This is getting pretty arcane, example would be good.
11643 @node save tracepoints
11644 @subsection @code{save tracepoints @var{filename}}
11645 @kindex save tracepoints
11646 @kindex save-tracepoints
11647 @cindex save tracepoints for future sessions
11649 This command saves all current tracepoint definitions together with
11650 their actions and passcounts, into a file @file{@var{filename}}
11651 suitable for use in a later debugging session. To read the saved
11652 tracepoint definitions, use the @code{source} command (@pxref{Command
11653 Files}). The @w{@code{save-tracepoints}} command is a deprecated
11654 alias for @w{@code{save tracepoints}}
11656 @node Tracepoint Variables
11657 @section Convenience Variables for Tracepoints
11658 @cindex tracepoint variables
11659 @cindex convenience variables for tracepoints
11662 @vindex $trace_frame
11663 @item (int) $trace_frame
11664 The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
11665 snapshot is selected.
11667 @vindex $tracepoint
11668 @item (int) $tracepoint
11669 The tracepoint for the current trace snapshot.
11671 @vindex $trace_line
11672 @item (int) $trace_line
11673 The line number for the current trace snapshot.
11675 @vindex $trace_file
11676 @item (char []) $trace_file
11677 The source file for the current trace snapshot.
11679 @vindex $trace_func
11680 @item (char []) $trace_func
11681 The name of the function containing @code{$tracepoint}.
11684 Note: @code{$trace_file} is not suitable for use in @code{printf},
11685 use @code{output} instead.
11687 Here's a simple example of using these convenience variables for
11688 stepping through all the trace snapshots and printing some of their
11689 data. Note that these are not the same as trace state variables,
11690 which are managed by the target.
11693 (@value{GDBP}) @b{tfind start}
11695 (@value{GDBP}) @b{while $trace_frame != -1}
11696 > output $trace_file
11697 > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
11703 @section Using Trace Files
11704 @cindex trace files
11706 In some situations, the target running a trace experiment may no
11707 longer be available; perhaps it crashed, or the hardware was needed
11708 for a different activity. To handle these cases, you can arrange to
11709 dump the trace data into a file, and later use that file as a source
11710 of trace data, via the @code{target tfile} command.
11715 @item tsave [ -r ] @var{filename}
11716 Save the trace data to @var{filename}. By default, this command
11717 assumes that @var{filename} refers to the host filesystem, so if
11718 necessary @value{GDBN} will copy raw trace data up from the target and
11719 then save it. If the target supports it, you can also supply the
11720 optional argument @code{-r} (``remote'') to direct the target to save
11721 the data directly into @var{filename} in its own filesystem, which may be
11722 more efficient if the trace buffer is very large. (Note, however, that
11723 @code{target tfile} can only read from files accessible to the host.)
11725 @kindex target tfile
11727 @item target tfile @var{filename}
11728 Use the file named @var{filename} as a source of trace data. Commands
11729 that examine data work as they do with a live target, but it is not
11730 possible to run any new trace experiments. @code{tstatus} will report
11731 the state of the trace run at the moment the data was saved, as well
11732 as the current trace frame you are examining. @var{filename} must be
11733 on a filesystem accessible to the host.
11738 @chapter Debugging Programs That Use Overlays
11741 If your program is too large to fit completely in your target system's
11742 memory, you can sometimes use @dfn{overlays} to work around this
11743 problem. @value{GDBN} provides some support for debugging programs that
11747 * How Overlays Work:: A general explanation of overlays.
11748 * Overlay Commands:: Managing overlays in @value{GDBN}.
11749 * Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
11750 mapped by asking the inferior.
11751 * Overlay Sample Program:: A sample program using overlays.
11754 @node How Overlays Work
11755 @section How Overlays Work
11756 @cindex mapped overlays
11757 @cindex unmapped overlays
11758 @cindex load address, overlay's
11759 @cindex mapped address
11760 @cindex overlay area
11762 Suppose you have a computer whose instruction address space is only 64
11763 kilobytes long, but which has much more memory which can be accessed by
11764 other means: special instructions, segment registers, or memory
11765 management hardware, for example. Suppose further that you want to
11766 adapt a program which is larger than 64 kilobytes to run on this system.
11768 One solution is to identify modules of your program which are relatively
11769 independent, and need not call each other directly; call these modules
11770 @dfn{overlays}. Separate the overlays from the main program, and place
11771 their machine code in the larger memory. Place your main program in
11772 instruction memory, but leave at least enough space there to hold the
11773 largest overlay as well.
11775 Now, to call a function located in an overlay, you must first copy that
11776 overlay's machine code from the large memory into the space set aside
11777 for it in the instruction memory, and then jump to its entry point
11780 @c NB: In the below the mapped area's size is greater or equal to the
11781 @c size of all overlays. This is intentional to remind the developer
11782 @c that overlays don't necessarily need to be the same size.
11786 Data Instruction Larger
11787 Address Space Address Space Address Space
11788 +-----------+ +-----------+ +-----------+
11790 +-----------+ +-----------+ +-----------+<-- overlay 1
11791 | program | | main | .----| overlay 1 | load address
11792 | variables | | program | | +-----------+
11793 | and heap | | | | | |
11794 +-----------+ | | | +-----------+<-- overlay 2
11795 | | +-----------+ | | | load address
11796 +-----------+ | | | .-| overlay 2 |
11798 mapped --->+-----------+ | | +-----------+
11799 address | | | | | |
11800 | overlay | <-' | | |
11801 | area | <---' +-----------+<-- overlay 3
11802 | | <---. | | load address
11803 +-----------+ `--| overlay 3 |
11810 @anchor{A code overlay}A code overlay
11814 The diagram (@pxref{A code overlay}) shows a system with separate data
11815 and instruction address spaces. To map an overlay, the program copies
11816 its code from the larger address space to the instruction address space.
11817 Since the overlays shown here all use the same mapped address, only one
11818 may be mapped at a time. For a system with a single address space for
11819 data and instructions, the diagram would be similar, except that the
11820 program variables and heap would share an address space with the main
11821 program and the overlay area.
11823 An overlay loaded into instruction memory and ready for use is called a
11824 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
11825 instruction memory. An overlay not present (or only partially present)
11826 in instruction memory is called @dfn{unmapped}; its @dfn{load address}
11827 is its address in the larger memory. The mapped address is also called
11828 the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
11829 called the @dfn{load memory address}, or @dfn{LMA}.
11831 Unfortunately, overlays are not a completely transparent way to adapt a
11832 program to limited instruction memory. They introduce a new set of
11833 global constraints you must keep in mind as you design your program:
11838 Before calling or returning to a function in an overlay, your program
11839 must make sure that overlay is actually mapped. Otherwise, the call or
11840 return will transfer control to the right address, but in the wrong
11841 overlay, and your program will probably crash.
11844 If the process of mapping an overlay is expensive on your system, you
11845 will need to choose your overlays carefully to minimize their effect on
11846 your program's performance.
11849 The executable file you load onto your system must contain each
11850 overlay's instructions, appearing at the overlay's load address, not its
11851 mapped address. However, each overlay's instructions must be relocated
11852 and its symbols defined as if the overlay were at its mapped address.
11853 You can use GNU linker scripts to specify different load and relocation
11854 addresses for pieces of your program; see @ref{Overlay Description,,,
11855 ld.info, Using ld: the GNU linker}.
11858 The procedure for loading executable files onto your system must be able
11859 to load their contents into the larger address space as well as the
11860 instruction and data spaces.
11864 The overlay system described above is rather simple, and could be
11865 improved in many ways:
11870 If your system has suitable bank switch registers or memory management
11871 hardware, you could use those facilities to make an overlay's load area
11872 contents simply appear at their mapped address in instruction space.
11873 This would probably be faster than copying the overlay to its mapped
11874 area in the usual way.
11877 If your overlays are small enough, you could set aside more than one
11878 overlay area, and have more than one overlay mapped at a time.
11881 You can use overlays to manage data, as well as instructions. In
11882 general, data overlays are even less transparent to your design than
11883 code overlays: whereas code overlays only require care when you call or
11884 return to functions, data overlays require care every time you access
11885 the data. Also, if you change the contents of a data overlay, you
11886 must copy its contents back out to its load address before you can copy a
11887 different data overlay into the same mapped area.
11892 @node Overlay Commands
11893 @section Overlay Commands
11895 To use @value{GDBN}'s overlay support, each overlay in your program must
11896 correspond to a separate section of the executable file. The section's
11897 virtual memory address and load memory address must be the overlay's
11898 mapped and load addresses. Identifying overlays with sections allows
11899 @value{GDBN} to determine the appropriate address of a function or
11900 variable, depending on whether the overlay is mapped or not.
11902 @value{GDBN}'s overlay commands all start with the word @code{overlay};
11903 you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
11908 Disable @value{GDBN}'s overlay support. When overlay support is
11909 disabled, @value{GDBN} assumes that all functions and variables are
11910 always present at their mapped addresses. By default, @value{GDBN}'s
11911 overlay support is disabled.
11913 @item overlay manual
11914 @cindex manual overlay debugging
11915 Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
11916 relies on you to tell it which overlays are mapped, and which are not,
11917 using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
11918 commands described below.
11920 @item overlay map-overlay @var{overlay}
11921 @itemx overlay map @var{overlay}
11922 @cindex map an overlay
11923 Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
11924 be the name of the object file section containing the overlay. When an
11925 overlay is mapped, @value{GDBN} assumes it can find the overlay's
11926 functions and variables at their mapped addresses. @value{GDBN} assumes
11927 that any other overlays whose mapped ranges overlap that of
11928 @var{overlay} are now unmapped.
11930 @item overlay unmap-overlay @var{overlay}
11931 @itemx overlay unmap @var{overlay}
11932 @cindex unmap an overlay
11933 Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
11934 must be the name of the object file section containing the overlay.
11935 When an overlay is unmapped, @value{GDBN} assumes it can find the
11936 overlay's functions and variables at their load addresses.
11939 Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
11940 consults a data structure the overlay manager maintains in the inferior
11941 to see which overlays are mapped. For details, see @ref{Automatic
11942 Overlay Debugging}.
11944 @item overlay load-target
11945 @itemx overlay load
11946 @cindex reloading the overlay table
11947 Re-read the overlay table from the inferior. Normally, @value{GDBN}
11948 re-reads the table @value{GDBN} automatically each time the inferior
11949 stops, so this command should only be necessary if you have changed the
11950 overlay mapping yourself using @value{GDBN}. This command is only
11951 useful when using automatic overlay debugging.
11953 @item overlay list-overlays
11954 @itemx overlay list
11955 @cindex listing mapped overlays
11956 Display a list of the overlays currently mapped, along with their mapped
11957 addresses, load addresses, and sizes.
11961 Normally, when @value{GDBN} prints a code address, it includes the name
11962 of the function the address falls in:
11965 (@value{GDBP}) print main
11966 $3 = @{int ()@} 0x11a0 <main>
11969 When overlay debugging is enabled, @value{GDBN} recognizes code in
11970 unmapped overlays, and prints the names of unmapped functions with
11971 asterisks around them. For example, if @code{foo} is a function in an
11972 unmapped overlay, @value{GDBN} prints it this way:
11975 (@value{GDBP}) overlay list
11976 No sections are mapped.
11977 (@value{GDBP}) print foo
11978 $5 = @{int (int)@} 0x100000 <*foo*>
11981 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
11985 (@value{GDBP}) overlay list
11986 Section .ov.foo.text, loaded at 0x100000 - 0x100034,
11987 mapped at 0x1016 - 0x104a
11988 (@value{GDBP}) print foo
11989 $6 = @{int (int)@} 0x1016 <foo>
11992 When overlay debugging is enabled, @value{GDBN} can find the correct
11993 address for functions and variables in an overlay, whether or not the
11994 overlay is mapped. This allows most @value{GDBN} commands, like
11995 @code{break} and @code{disassemble}, to work normally, even on unmapped
11996 code. However, @value{GDBN}'s breakpoint support has some limitations:
12000 @cindex breakpoints in overlays
12001 @cindex overlays, setting breakpoints in
12002 You can set breakpoints in functions in unmapped overlays, as long as
12003 @value{GDBN} can write to the overlay at its load address.
12005 @value{GDBN} can not set hardware or simulator-based breakpoints in
12006 unmapped overlays. However, if you set a breakpoint at the end of your
12007 overlay manager (and tell @value{GDBN} which overlays are now mapped, if
12008 you are using manual overlay management), @value{GDBN} will re-set its
12009 breakpoints properly.
12013 @node Automatic Overlay Debugging
12014 @section Automatic Overlay Debugging
12015 @cindex automatic overlay debugging
12017 @value{GDBN} can automatically track which overlays are mapped and which
12018 are not, given some simple co-operation from the overlay manager in the
12019 inferior. If you enable automatic overlay debugging with the
12020 @code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
12021 looks in the inferior's memory for certain variables describing the
12022 current state of the overlays.
12024 Here are the variables your overlay manager must define to support
12025 @value{GDBN}'s automatic overlay debugging:
12029 @item @code{_ovly_table}:
12030 This variable must be an array of the following structures:
12035 /* The overlay's mapped address. */
12038 /* The size of the overlay, in bytes. */
12039 unsigned long size;
12041 /* The overlay's load address. */
12044 /* Non-zero if the overlay is currently mapped;
12046 unsigned long mapped;
12050 @item @code{_novlys}:
12051 This variable must be a four-byte signed integer, holding the total
12052 number of elements in @code{_ovly_table}.
12056 To decide whether a particular overlay is mapped or not, @value{GDBN}
12057 looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
12058 @code{lma} members equal the VMA and LMA of the overlay's section in the
12059 executable file. When @value{GDBN} finds a matching entry, it consults
12060 the entry's @code{mapped} member to determine whether the overlay is
12063 In addition, your overlay manager may define a function called
12064 @code{_ovly_debug_event}. If this function is defined, @value{GDBN}
12065 will silently set a breakpoint there. If the overlay manager then
12066 calls this function whenever it has changed the overlay table, this
12067 will enable @value{GDBN} to accurately keep track of which overlays
12068 are in program memory, and update any breakpoints that may be set
12069 in overlays. This will allow breakpoints to work even if the
12070 overlays are kept in ROM or other non-writable memory while they
12071 are not being executed.
12073 @node Overlay Sample Program
12074 @section Overlay Sample Program
12075 @cindex overlay example program
12077 When linking a program which uses overlays, you must place the overlays
12078 at their load addresses, while relocating them to run at their mapped
12079 addresses. To do this, you must write a linker script (@pxref{Overlay
12080 Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
12081 since linker scripts are specific to a particular host system, target
12082 architecture, and target memory layout, this manual cannot provide
12083 portable sample code demonstrating @value{GDBN}'s overlay support.
12085 However, the @value{GDBN} source distribution does contain an overlaid
12086 program, with linker scripts for a few systems, as part of its test
12087 suite. The program consists of the following files from
12088 @file{gdb/testsuite/gdb.base}:
12092 The main program file.
12094 A simple overlay manager, used by @file{overlays.c}.
12099 Overlay modules, loaded and used by @file{overlays.c}.
12102 Linker scripts for linking the test program on the @code{d10v-elf}
12103 and @code{m32r-elf} targets.
12106 You can build the test program using the @code{d10v-elf} GCC
12107 cross-compiler like this:
12110 $ d10v-elf-gcc -g -c overlays.c
12111 $ d10v-elf-gcc -g -c ovlymgr.c
12112 $ d10v-elf-gcc -g -c foo.c
12113 $ d10v-elf-gcc -g -c bar.c
12114 $ d10v-elf-gcc -g -c baz.c
12115 $ d10v-elf-gcc -g -c grbx.c
12116 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
12117 baz.o grbx.o -Wl,-Td10v.ld -o overlays
12120 The build process is identical for any other architecture, except that
12121 you must substitute the appropriate compiler and linker script for the
12122 target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
12126 @chapter Using @value{GDBN} with Different Languages
12129 Although programming languages generally have common aspects, they are
12130 rarely expressed in the same manner. For instance, in ANSI C,
12131 dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
12132 Modula-2, it is accomplished by @code{p^}. Values can also be
12133 represented (and displayed) differently. Hex numbers in C appear as
12134 @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
12136 @cindex working language
12137 Language-specific information is built into @value{GDBN} for some languages,
12138 allowing you to express operations like the above in your program's
12139 native language, and allowing @value{GDBN} to output values in a manner
12140 consistent with the syntax of your program's native language. The
12141 language you use to build expressions is called the @dfn{working
12145 * Setting:: Switching between source languages
12146 * Show:: Displaying the language
12147 * Checks:: Type and range checks
12148 * Supported Languages:: Supported languages
12149 * Unsupported Languages:: Unsupported languages
12153 @section Switching Between Source Languages
12155 There are two ways to control the working language---either have @value{GDBN}
12156 set it automatically, or select it manually yourself. You can use the
12157 @code{set language} command for either purpose. On startup, @value{GDBN}
12158 defaults to setting the language automatically. The working language is
12159 used to determine how expressions you type are interpreted, how values
12162 In addition to the working language, every source file that
12163 @value{GDBN} knows about has its own working language. For some object
12164 file formats, the compiler might indicate which language a particular
12165 source file is in. However, most of the time @value{GDBN} infers the
12166 language from the name of the file. The language of a source file
12167 controls whether C@t{++} names are demangled---this way @code{backtrace} can
12168 show each frame appropriately for its own language. There is no way to
12169 set the language of a source file from within @value{GDBN}, but you can
12170 set the language associated with a filename extension. @xref{Show, ,
12171 Displaying the Language}.
12173 This is most commonly a problem when you use a program, such
12174 as @code{cfront} or @code{f2c}, that generates C but is written in
12175 another language. In that case, make the
12176 program use @code{#line} directives in its C output; that way
12177 @value{GDBN} will know the correct language of the source code of the original
12178 program, and will display that source code, not the generated C code.
12181 * Filenames:: Filename extensions and languages.
12182 * Manually:: Setting the working language manually
12183 * Automatically:: Having @value{GDBN} infer the source language
12187 @subsection List of Filename Extensions and Languages
12189 If a source file name ends in one of the following extensions, then
12190 @value{GDBN} infers that its language is the one indicated.
12208 C@t{++} source file
12214 Objective-C source file
12218 Fortran source file
12221 Modula-2 source file
12225 Assembler source file. This actually behaves almost like C, but
12226 @value{GDBN} does not skip over function prologues when stepping.
12229 In addition, you may set the language associated with a filename
12230 extension. @xref{Show, , Displaying the Language}.
12233 @subsection Setting the Working Language
12235 If you allow @value{GDBN} to set the language automatically,
12236 expressions are interpreted the same way in your debugging session and
12239 @kindex set language
12240 If you wish, you may set the language manually. To do this, issue the
12241 command @samp{set language @var{lang}}, where @var{lang} is the name of
12242 a language, such as
12243 @code{c} or @code{modula-2}.
12244 For a list of the supported languages, type @samp{set language}.
12246 Setting the language manually prevents @value{GDBN} from updating the working
12247 language automatically. This can lead to confusion if you try
12248 to debug a program when the working language is not the same as the
12249 source language, when an expression is acceptable to both
12250 languages---but means different things. For instance, if the current
12251 source file were written in C, and @value{GDBN} was parsing Modula-2, a
12259 might not have the effect you intended. In C, this means to add
12260 @code{b} and @code{c} and place the result in @code{a}. The result
12261 printed would be the value of @code{a}. In Modula-2, this means to compare
12262 @code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
12264 @node Automatically
12265 @subsection Having @value{GDBN} Infer the Source Language
12267 To have @value{GDBN} set the working language automatically, use
12268 @samp{set language local} or @samp{set language auto}. @value{GDBN}
12269 then infers the working language. That is, when your program stops in a
12270 frame (usually by encountering a breakpoint), @value{GDBN} sets the
12271 working language to the language recorded for the function in that
12272 frame. If the language for a frame is unknown (that is, if the function
12273 or block corresponding to the frame was defined in a source file that
12274 does not have a recognized extension), the current working language is
12275 not changed, and @value{GDBN} issues a warning.
12277 This may not seem necessary for most programs, which are written
12278 entirely in one source language. However, program modules and libraries
12279 written in one source language can be used by a main program written in
12280 a different source language. Using @samp{set language auto} in this
12281 case frees you from having to set the working language manually.
12284 @section Displaying the Language
12286 The following commands help you find out which language is the
12287 working language, and also what language source files were written in.
12290 @item show language
12291 @kindex show language
12292 Display the current working language. This is the
12293 language you can use with commands such as @code{print} to
12294 build and compute expressions that may involve variables in your program.
12297 @kindex info frame@r{, show the source language}
12298 Display the source language for this frame. This language becomes the
12299 working language if you use an identifier from this frame.
12300 @xref{Frame Info, ,Information about a Frame}, to identify the other
12301 information listed here.
12304 @kindex info source@r{, show the source language}
12305 Display the source language of this source file.
12306 @xref{Symbols, ,Examining the Symbol Table}, to identify the other
12307 information listed here.
12310 In unusual circumstances, you may have source files with extensions
12311 not in the standard list. You can then set the extension associated
12312 with a language explicitly:
12315 @item set extension-language @var{ext} @var{language}
12316 @kindex set extension-language
12317 Tell @value{GDBN} that source files with extension @var{ext} are to be
12318 assumed as written in the source language @var{language}.
12320 @item info extensions
12321 @kindex info extensions
12322 List all the filename extensions and the associated languages.
12326 @section Type and Range Checking
12329 @emph{Warning:} In this release, the @value{GDBN} commands for type and range
12330 checking are included, but they do not yet have any effect. This
12331 section documents the intended facilities.
12333 @c FIXME remove warning when type/range code added
12335 Some languages are designed to guard you against making seemingly common
12336 errors through a series of compile- and run-time checks. These include
12337 checking the type of arguments to functions and operators, and making
12338 sure mathematical overflows are caught at run time. Checks such as
12339 these help to ensure a program's correctness once it has been compiled
12340 by eliminating type mismatches, and providing active checks for range
12341 errors when your program is running.
12343 @value{GDBN} can check for conditions like the above if you wish.
12344 Although @value{GDBN} does not check the statements in your program,
12345 it can check expressions entered directly into @value{GDBN} for
12346 evaluation via the @code{print} command, for example. As with the
12347 working language, @value{GDBN} can also decide whether or not to check
12348 automatically based on your program's source language.
12349 @xref{Supported Languages, ,Supported Languages}, for the default
12350 settings of supported languages.
12353 * Type Checking:: An overview of type checking
12354 * Range Checking:: An overview of range checking
12357 @cindex type checking
12358 @cindex checks, type
12359 @node Type Checking
12360 @subsection An Overview of Type Checking
12362 Some languages, such as Modula-2, are strongly typed, meaning that the
12363 arguments to operators and functions have to be of the correct type,
12364 otherwise an error occurs. These checks prevent type mismatch
12365 errors from ever causing any run-time problems. For example,
12373 The second example fails because the @code{CARDINAL} 1 is not
12374 type-compatible with the @code{REAL} 2.3.
12376 For the expressions you use in @value{GDBN} commands, you can tell the
12377 @value{GDBN} type checker to skip checking;
12378 to treat any mismatches as errors and abandon the expression;
12379 or to only issue warnings when type mismatches occur,
12380 but evaluate the expression anyway. When you choose the last of
12381 these, @value{GDBN} evaluates expressions like the second example above, but
12382 also issues a warning.
12384 Even if you turn type checking off, there may be other reasons
12385 related to type that prevent @value{GDBN} from evaluating an expression.
12386 For instance, @value{GDBN} does not know how to add an @code{int} and
12387 a @code{struct foo}. These particular type errors have nothing to do
12388 with the language in use, and usually arise from expressions, such as
12389 the one described above, which make little sense to evaluate anyway.
12391 Each language defines to what degree it is strict about type. For
12392 instance, both Modula-2 and C require the arguments to arithmetical
12393 operators to be numbers. In C, enumerated types and pointers can be
12394 represented as numbers, so that they are valid arguments to mathematical
12395 operators. @xref{Supported Languages, ,Supported Languages}, for further
12396 details on specific languages.
12398 @value{GDBN} provides some additional commands for controlling the type checker:
12400 @kindex set check type
12401 @kindex show check type
12403 @item set check type auto
12404 Set type checking on or off based on the current working language.
12405 @xref{Supported Languages, ,Supported Languages}, for the default settings for
12408 @item set check type on
12409 @itemx set check type off
12410 Set type checking on or off, overriding the default setting for the
12411 current working language. Issue a warning if the setting does not
12412 match the language default. If any type mismatches occur in
12413 evaluating an expression while type checking is on, @value{GDBN} prints a
12414 message and aborts evaluation of the expression.
12416 @item set check type warn
12417 Cause the type checker to issue warnings, but to always attempt to
12418 evaluate the expression. Evaluating the expression may still
12419 be impossible for other reasons. For example, @value{GDBN} cannot add
12420 numbers and structures.
12423 Show the current setting of the type checker, and whether or not @value{GDBN}
12424 is setting it automatically.
12427 @cindex range checking
12428 @cindex checks, range
12429 @node Range Checking
12430 @subsection An Overview of Range Checking
12432 In some languages (such as Modula-2), it is an error to exceed the
12433 bounds of a type; this is enforced with run-time checks. Such range
12434 checking is meant to ensure program correctness by making sure
12435 computations do not overflow, or indices on an array element access do
12436 not exceed the bounds of the array.
12438 For expressions you use in @value{GDBN} commands, you can tell
12439 @value{GDBN} to treat range errors in one of three ways: ignore them,
12440 always treat them as errors and abandon the expression, or issue
12441 warnings but evaluate the expression anyway.
12443 A range error can result from numerical overflow, from exceeding an
12444 array index bound, or when you type a constant that is not a member
12445 of any type. Some languages, however, do not treat overflows as an
12446 error. In many implementations of C, mathematical overflow causes the
12447 result to ``wrap around'' to lower values---for example, if @var{m} is
12448 the largest integer value, and @var{s} is the smallest, then
12451 @var{m} + 1 @result{} @var{s}
12454 This, too, is specific to individual languages, and in some cases
12455 specific to individual compilers or machines. @xref{Supported Languages, ,
12456 Supported Languages}, for further details on specific languages.
12458 @value{GDBN} provides some additional commands for controlling the range checker:
12460 @kindex set check range
12461 @kindex show check range
12463 @item set check range auto
12464 Set range checking on or off based on the current working language.
12465 @xref{Supported Languages, ,Supported Languages}, for the default settings for
12468 @item set check range on
12469 @itemx set check range off
12470 Set range checking on or off, overriding the default setting for the
12471 current working language. A warning is issued if the setting does not
12472 match the language default. If a range error occurs and range checking is on,
12473 then a message is printed and evaluation of the expression is aborted.
12475 @item set check range warn
12476 Output messages when the @value{GDBN} range checker detects a range error,
12477 but attempt to evaluate the expression anyway. Evaluating the
12478 expression may still be impossible for other reasons, such as accessing
12479 memory that the process does not own (a typical example from many Unix
12483 Show the current setting of the range checker, and whether or not it is
12484 being set automatically by @value{GDBN}.
12487 @node Supported Languages
12488 @section Supported Languages
12490 @value{GDBN} supports C, C@t{++}, D, Objective-C, Fortran, Java, OpenCL C, Pascal,
12491 assembly, Modula-2, and Ada.
12492 @c This is false ...
12493 Some @value{GDBN} features may be used in expressions regardless of the
12494 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
12495 and the @samp{@{type@}addr} construct (@pxref{Expressions,
12496 ,Expressions}) can be used with the constructs of any supported
12499 The following sections detail to what degree each source language is
12500 supported by @value{GDBN}. These sections are not meant to be language
12501 tutorials or references, but serve only as a reference guide to what the
12502 @value{GDBN} expression parser accepts, and what input and output
12503 formats should look like for different languages. There are many good
12504 books written on each of these languages; please look to these for a
12505 language reference or tutorial.
12508 * C:: C and C@t{++}
12510 * Objective-C:: Objective-C
12511 * OpenCL C:: OpenCL C
12512 * Fortran:: Fortran
12514 * Modula-2:: Modula-2
12519 @subsection C and C@t{++}
12521 @cindex C and C@t{++}
12522 @cindex expressions in C or C@t{++}
12524 Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
12525 to both languages. Whenever this is the case, we discuss those languages
12529 @cindex @code{g++}, @sc{gnu} C@t{++} compiler
12530 @cindex @sc{gnu} C@t{++}
12531 The C@t{++} debugging facilities are jointly implemented by the C@t{++}
12532 compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
12533 effectively, you must compile your C@t{++} programs with a supported
12534 C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
12535 compiler (@code{aCC}).
12538 * C Operators:: C and C@t{++} operators
12539 * C Constants:: C and C@t{++} constants
12540 * C Plus Plus Expressions:: C@t{++} expressions
12541 * C Defaults:: Default settings for C and C@t{++}
12542 * C Checks:: C and C@t{++} type and range checks
12543 * Debugging C:: @value{GDBN} and C
12544 * Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
12545 * Decimal Floating Point:: Numbers in Decimal Floating Point format
12549 @subsubsection C and C@t{++} Operators
12551 @cindex C and C@t{++} operators
12553 Operators must be defined on values of specific types. For instance,
12554 @code{+} is defined on numbers, but not on structures. Operators are
12555 often defined on groups of types.
12557 For the purposes of C and C@t{++}, the following definitions hold:
12562 @emph{Integral types} include @code{int} with any of its storage-class
12563 specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
12566 @emph{Floating-point types} include @code{float}, @code{double}, and
12567 @code{long double} (if supported by the target platform).
12570 @emph{Pointer types} include all types defined as @code{(@var{type} *)}.
12573 @emph{Scalar types} include all of the above.
12578 The following operators are supported. They are listed here
12579 in order of increasing precedence:
12583 The comma or sequencing operator. Expressions in a comma-separated list
12584 are evaluated from left to right, with the result of the entire
12585 expression being the last expression evaluated.
12588 Assignment. The value of an assignment expression is the value
12589 assigned. Defined on scalar types.
12592 Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
12593 and translated to @w{@code{@var{a} = @var{a op b}}}.
12594 @w{@code{@var{op}=}} and @code{=} have the same precedence.
12595 @var{op} is any one of the operators @code{|}, @code{^}, @code{&},
12596 @code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
12599 The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
12600 of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
12604 Logical @sc{or}. Defined on integral types.
12607 Logical @sc{and}. Defined on integral types.
12610 Bitwise @sc{or}. Defined on integral types.
12613 Bitwise exclusive-@sc{or}. Defined on integral types.
12616 Bitwise @sc{and}. Defined on integral types.
12619 Equality and inequality. Defined on scalar types. The value of these
12620 expressions is 0 for false and non-zero for true.
12622 @item <@r{, }>@r{, }<=@r{, }>=
12623 Less than, greater than, less than or equal, greater than or equal.
12624 Defined on scalar types. The value of these expressions is 0 for false
12625 and non-zero for true.
12628 left shift, and right shift. Defined on integral types.
12631 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
12634 Addition and subtraction. Defined on integral types, floating-point types and
12637 @item *@r{, }/@r{, }%
12638 Multiplication, division, and modulus. Multiplication and division are
12639 defined on integral and floating-point types. Modulus is defined on
12643 Increment and decrement. When appearing before a variable, the
12644 operation is performed before the variable is used in an expression;
12645 when appearing after it, the variable's value is used before the
12646 operation takes place.
12649 Pointer dereferencing. Defined on pointer types. Same precedence as
12653 Address operator. Defined on variables. Same precedence as @code{++}.
12655 For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
12656 allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
12657 to examine the address
12658 where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
12662 Negative. Defined on integral and floating-point types. Same
12663 precedence as @code{++}.
12666 Logical negation. Defined on integral types. Same precedence as
12670 Bitwise complement operator. Defined on integral types. Same precedence as
12675 Structure member, and pointer-to-structure member. For convenience,
12676 @value{GDBN} regards the two as equivalent, choosing whether to dereference a
12677 pointer based on the stored type information.
12678 Defined on @code{struct} and @code{union} data.
12681 Dereferences of pointers to members.
12684 Array indexing. @code{@var{a}[@var{i}]} is defined as
12685 @code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
12688 Function parameter list. Same precedence as @code{->}.
12691 C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
12692 and @code{class} types.
12695 Doubled colons also represent the @value{GDBN} scope operator
12696 (@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
12700 If an operator is redefined in the user code, @value{GDBN} usually
12701 attempts to invoke the redefined version instead of using the operator's
12702 predefined meaning.
12705 @subsubsection C and C@t{++} Constants
12707 @cindex C and C@t{++} constants
12709 @value{GDBN} allows you to express the constants of C and C@t{++} in the
12714 Integer constants are a sequence of digits. Octal constants are
12715 specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
12716 by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
12717 @samp{l}, specifying that the constant should be treated as a
12721 Floating point constants are a sequence of digits, followed by a decimal
12722 point, followed by a sequence of digits, and optionally followed by an
12723 exponent. An exponent is of the form:
12724 @samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
12725 sequence of digits. The @samp{+} is optional for positive exponents.
12726 A floating-point constant may also end with a letter @samp{f} or
12727 @samp{F}, specifying that the constant should be treated as being of
12728 the @code{float} (as opposed to the default @code{double}) type; or with
12729 a letter @samp{l} or @samp{L}, which specifies a @code{long double}
12733 Enumerated constants consist of enumerated identifiers, or their
12734 integral equivalents.
12737 Character constants are a single character surrounded by single quotes
12738 (@code{'}), or a number---the ordinal value of the corresponding character
12739 (usually its @sc{ascii} value). Within quotes, the single character may
12740 be represented by a letter or by @dfn{escape sequences}, which are of
12741 the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
12742 of the character's ordinal value; or of the form @samp{\@var{x}}, where
12743 @samp{@var{x}} is a predefined special character---for example,
12744 @samp{\n} for newline.
12746 Wide character constants can be written by prefixing a character
12747 constant with @samp{L}, as in C. For example, @samp{L'x'} is the wide
12748 form of @samp{x}. The target wide character set is used when
12749 computing the value of this constant (@pxref{Character Sets}).
12752 String constants are a sequence of character constants surrounded by
12753 double quotes (@code{"}). Any valid character constant (as described
12754 above) may appear. Double quotes within the string must be preceded by
12755 a backslash, so for instance @samp{"a\"b'c"} is a string of five
12758 Wide string constants can be written by prefixing a string constant
12759 with @samp{L}, as in C. The target wide character set is used when
12760 computing the value of this constant (@pxref{Character Sets}).
12763 Pointer constants are an integral value. You can also write pointers
12764 to constants using the C operator @samp{&}.
12767 Array constants are comma-separated lists surrounded by braces @samp{@{}
12768 and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
12769 integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
12770 and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
12773 @node C Plus Plus Expressions
12774 @subsubsection C@t{++} Expressions
12776 @cindex expressions in C@t{++}
12777 @value{GDBN} expression handling can interpret most C@t{++} expressions.
12779 @cindex debugging C@t{++} programs
12780 @cindex C@t{++} compilers
12781 @cindex debug formats and C@t{++}
12782 @cindex @value{NGCC} and C@t{++}
12784 @emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use
12785 the proper compiler and the proper debug format. Currently,
12786 @value{GDBN} works best when debugging C@t{++} code that is compiled
12787 with the most recent version of @value{NGCC} possible. The DWARF
12788 debugging format is preferred; @value{NGCC} defaults to this on most
12789 popular platforms. Other compilers and/or debug formats are likely to
12790 work badly or not at all when using @value{GDBN} to debug C@t{++}
12791 code. @xref{Compilation}.
12796 @cindex member functions
12798 Member function calls are allowed; you can use expressions like
12801 count = aml->GetOriginal(x, y)
12804 @vindex this@r{, inside C@t{++} member functions}
12805 @cindex namespace in C@t{++}
12807 While a member function is active (in the selected stack frame), your
12808 expressions have the same namespace available as the member function;
12809 that is, @value{GDBN} allows implicit references to the class instance
12810 pointer @code{this} following the same rules as C@t{++}. @code{using}
12811 declarations in the current scope are also respected by @value{GDBN}.
12813 @cindex call overloaded functions
12814 @cindex overloaded functions, calling
12815 @cindex type conversions in C@t{++}
12817 You can call overloaded functions; @value{GDBN} resolves the function
12818 call to the right definition, with some restrictions. @value{GDBN} does not
12819 perform overload resolution involving user-defined type conversions,
12820 calls to constructors, or instantiations of templates that do not exist
12821 in the program. It also cannot handle ellipsis argument lists or
12824 It does perform integral conversions and promotions, floating-point
12825 promotions, arithmetic conversions, pointer conversions, conversions of
12826 class objects to base classes, and standard conversions such as those of
12827 functions or arrays to pointers; it requires an exact match on the
12828 number of function arguments.
12830 Overload resolution is always performed, unless you have specified
12831 @code{set overload-resolution off}. @xref{Debugging C Plus Plus,
12832 ,@value{GDBN} Features for C@t{++}}.
12834 You must specify @code{set overload-resolution off} in order to use an
12835 explicit function signature to call an overloaded function, as in
12837 p 'foo(char,int)'('x', 13)
12840 The @value{GDBN} command-completion facility can simplify this;
12841 see @ref{Completion, ,Command Completion}.
12843 @cindex reference declarations
12845 @value{GDBN} understands variables declared as C@t{++} references; you can use
12846 them in expressions just as you do in C@t{++} source---they are automatically
12849 In the parameter list shown when @value{GDBN} displays a frame, the values of
12850 reference variables are not displayed (unlike other variables); this
12851 avoids clutter, since references are often used for large structures.
12852 The @emph{address} of a reference variable is always shown, unless
12853 you have specified @samp{set print address off}.
12856 @value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
12857 expressions can use it just as expressions in your program do. Since
12858 one scope may be defined in another, you can use @code{::} repeatedly if
12859 necessary, for example in an expression like
12860 @samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
12861 resolving name scope by reference to source files, in both C and C@t{++}
12862 debugging (@pxref{Variables, ,Program Variables}).
12865 @value{GDBN} performs argument-dependent lookup, following the C@t{++}
12870 @subsubsection C and C@t{++} Defaults
12872 @cindex C and C@t{++} defaults
12874 If you allow @value{GDBN} to set type and range checking automatically, they
12875 both default to @code{off} whenever the working language changes to
12876 C or C@t{++}. This happens regardless of whether you or @value{GDBN}
12877 selects the working language.
12879 If you allow @value{GDBN} to set the language automatically, it
12880 recognizes source files whose names end with @file{.c}, @file{.C}, or
12881 @file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
12882 these files, it sets the working language to C or C@t{++}.
12883 @xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
12884 for further details.
12886 @c Type checking is (a) primarily motivated by Modula-2, and (b)
12887 @c unimplemented. If (b) changes, it might make sense to let this node
12888 @c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
12891 @subsubsection C and C@t{++} Type and Range Checks
12893 @cindex C and C@t{++} checks
12895 By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
12896 is not used. However, if you turn type checking on, @value{GDBN}
12897 considers two variables type equivalent if:
12901 The two variables are structured and have the same structure, union, or
12905 The two variables have the same type name, or types that have been
12906 declared equivalent through @code{typedef}.
12909 @c leaving this out because neither J Gilmore nor R Pesch understand it.
12912 The two @code{struct}, @code{union}, or @code{enum} variables are
12913 declared in the same declaration. (Note: this may not be true for all C
12918 Range checking, if turned on, is done on mathematical operations. Array
12919 indices are not checked, since they are often used to index a pointer
12920 that is not itself an array.
12923 @subsubsection @value{GDBN} and C
12925 The @code{set print union} and @code{show print union} commands apply to
12926 the @code{union} type. When set to @samp{on}, any @code{union} that is
12927 inside a @code{struct} or @code{class} is also printed. Otherwise, it
12928 appears as @samp{@{...@}}.
12930 The @code{@@} operator aids in the debugging of dynamic arrays, formed
12931 with pointers and a memory allocation function. @xref{Expressions,
12934 @node Debugging C Plus Plus
12935 @subsubsection @value{GDBN} Features for C@t{++}
12937 @cindex commands for C@t{++}
12939 Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
12940 designed specifically for use with C@t{++}. Here is a summary:
12943 @cindex break in overloaded functions
12944 @item @r{breakpoint menus}
12945 When you want a breakpoint in a function whose name is overloaded,
12946 @value{GDBN} has the capability to display a menu of possible breakpoint
12947 locations to help you specify which function definition you want.
12948 @xref{Ambiguous Expressions,,Ambiguous Expressions}.
12950 @cindex overloading in C@t{++}
12951 @item rbreak @var{regex}
12952 Setting breakpoints using regular expressions is helpful for setting
12953 breakpoints on overloaded functions that are not members of any special
12955 @xref{Set Breaks, ,Setting Breakpoints}.
12957 @cindex C@t{++} exception handling
12960 Debug C@t{++} exception handling using these commands. @xref{Set
12961 Catchpoints, , Setting Catchpoints}.
12963 @cindex inheritance
12964 @item ptype @var{typename}
12965 Print inheritance relationships as well as other information for type
12967 @xref{Symbols, ,Examining the Symbol Table}.
12969 @item info vtbl @var{expression}.
12970 The @code{info vtbl} command can be used to display the virtual
12971 method tables of the object computed by @var{expression}. This shows
12972 one entry per virtual table; there may be multiple virtual tables when
12973 multiple inheritance is in use.
12975 @cindex C@t{++} symbol display
12976 @item set print demangle
12977 @itemx show print demangle
12978 @itemx set print asm-demangle
12979 @itemx show print asm-demangle
12980 Control whether C@t{++} symbols display in their source form, both when
12981 displaying code as C@t{++} source and when displaying disassemblies.
12982 @xref{Print Settings, ,Print Settings}.
12984 @item set print object
12985 @itemx show print object
12986 Choose whether to print derived (actual) or declared types of objects.
12987 @xref{Print Settings, ,Print Settings}.
12989 @item set print vtbl
12990 @itemx show print vtbl
12991 Control the format for printing virtual function tables.
12992 @xref{Print Settings, ,Print Settings}.
12993 (The @code{vtbl} commands do not work on programs compiled with the HP
12994 ANSI C@t{++} compiler (@code{aCC}).)
12996 @kindex set overload-resolution
12997 @cindex overloaded functions, overload resolution
12998 @item set overload-resolution on
12999 Enable overload resolution for C@t{++} expression evaluation. The default
13000 is on. For overloaded functions, @value{GDBN} evaluates the arguments
13001 and searches for a function whose signature matches the argument types,
13002 using the standard C@t{++} conversion rules (see @ref{C Plus Plus
13003 Expressions, ,C@t{++} Expressions}, for details).
13004 If it cannot find a match, it emits a message.
13006 @item set overload-resolution off
13007 Disable overload resolution for C@t{++} expression evaluation. For
13008 overloaded functions that are not class member functions, @value{GDBN}
13009 chooses the first function of the specified name that it finds in the
13010 symbol table, whether or not its arguments are of the correct type. For
13011 overloaded functions that are class member functions, @value{GDBN}
13012 searches for a function whose signature @emph{exactly} matches the
13015 @kindex show overload-resolution
13016 @item show overload-resolution
13017 Show the current setting of overload resolution.
13019 @item @r{Overloaded symbol names}
13020 You can specify a particular definition of an overloaded symbol, using
13021 the same notation that is used to declare such symbols in C@t{++}: type
13022 @code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
13023 also use the @value{GDBN} command-line word completion facilities to list the
13024 available choices, or to finish the type list for you.
13025 @xref{Completion,, Command Completion}, for details on how to do this.
13028 @node Decimal Floating Point
13029 @subsubsection Decimal Floating Point format
13030 @cindex decimal floating point format
13032 @value{GDBN} can examine, set and perform computations with numbers in
13033 decimal floating point format, which in the C language correspond to the
13034 @code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
13035 specified by the extension to support decimal floating-point arithmetic.
13037 There are two encodings in use, depending on the architecture: BID (Binary
13038 Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
13039 PowerPC. @value{GDBN} will use the appropriate encoding for the configured
13042 Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
13043 to manipulate decimal floating point numbers, it is not possible to convert
13044 (using a cast, for example) integers wider than 32-bit to decimal float.
13046 In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
13047 point computations, error checking in decimal float operations ignores
13048 underflow, overflow and divide by zero exceptions.
13050 In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
13051 to inspect @code{_Decimal128} values stored in floating point registers.
13052 See @ref{PowerPC,,PowerPC} for more details.
13058 @value{GDBN} can be used to debug programs written in D and compiled with
13059 GDC, LDC or DMD compilers. Currently @value{GDBN} supports only one D
13060 specific feature --- dynamic arrays.
13063 @subsection Objective-C
13065 @cindex Objective-C
13066 This section provides information about some commands and command
13067 options that are useful for debugging Objective-C code. See also
13068 @ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
13069 few more commands specific to Objective-C support.
13072 * Method Names in Commands::
13073 * The Print Command with Objective-C::
13076 @node Method Names in Commands
13077 @subsubsection Method Names in Commands
13079 The following commands have been extended to accept Objective-C method
13080 names as line specifications:
13082 @kindex clear@r{, and Objective-C}
13083 @kindex break@r{, and Objective-C}
13084 @kindex info line@r{, and Objective-C}
13085 @kindex jump@r{, and Objective-C}
13086 @kindex list@r{, and Objective-C}
13090 @item @code{info line}
13095 A fully qualified Objective-C method name is specified as
13098 -[@var{Class} @var{methodName}]
13101 where the minus sign is used to indicate an instance method and a
13102 plus sign (not shown) is used to indicate a class method. The class
13103 name @var{Class} and method name @var{methodName} are enclosed in
13104 brackets, similar to the way messages are specified in Objective-C
13105 source code. For example, to set a breakpoint at the @code{create}
13106 instance method of class @code{Fruit} in the program currently being
13110 break -[Fruit create]
13113 To list ten program lines around the @code{initialize} class method,
13117 list +[NSText initialize]
13120 In the current version of @value{GDBN}, the plus or minus sign is
13121 required. In future versions of @value{GDBN}, the plus or minus
13122 sign will be optional, but you can use it to narrow the search. It
13123 is also possible to specify just a method name:
13129 You must specify the complete method name, including any colons. If
13130 your program's source files contain more than one @code{create} method,
13131 you'll be presented with a numbered list of classes that implement that
13132 method. Indicate your choice by number, or type @samp{0} to exit if
13135 As another example, to clear a breakpoint established at the
13136 @code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
13139 clear -[NSWindow makeKeyAndOrderFront:]
13142 @node The Print Command with Objective-C
13143 @subsubsection The Print Command With Objective-C
13144 @cindex Objective-C, print objects
13145 @kindex print-object
13146 @kindex po @r{(@code{print-object})}
13148 The print command has also been extended to accept methods. For example:
13151 print -[@var{object} hash]
13154 @cindex print an Objective-C object description
13155 @cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
13157 will tell @value{GDBN} to send the @code{hash} message to @var{object}
13158 and print the result. Also, an additional command has been added,
13159 @code{print-object} or @code{po} for short, which is meant to print
13160 the description of an object. However, this command may only work
13161 with certain Objective-C libraries that have a particular hook
13162 function, @code{_NSPrintForDebugger}, defined.
13165 @subsection OpenCL C
13168 This section provides information about @value{GDBN}s OpenCL C support.
13171 * OpenCL C Datatypes::
13172 * OpenCL C Expressions::
13173 * OpenCL C Operators::
13176 @node OpenCL C Datatypes
13177 @subsubsection OpenCL C Datatypes
13179 @cindex OpenCL C Datatypes
13180 @value{GDBN} supports the builtin scalar and vector datatypes specified
13181 by OpenCL 1.1. In addition the half- and double-precision floating point
13182 data types of the @code{cl_khr_fp16} and @code{cl_khr_fp64} OpenCL
13183 extensions are also known to @value{GDBN}.
13185 @node OpenCL C Expressions
13186 @subsubsection OpenCL C Expressions
13188 @cindex OpenCL C Expressions
13189 @value{GDBN} supports accesses to vector components including the access as
13190 lvalue where possible. Since OpenCL C is based on C99 most C expressions
13191 supported by @value{GDBN} can be used as well.
13193 @node OpenCL C Operators
13194 @subsubsection OpenCL C Operators
13196 @cindex OpenCL C Operators
13197 @value{GDBN} supports the operators specified by OpenCL 1.1 for scalar and
13201 @subsection Fortran
13202 @cindex Fortran-specific support in @value{GDBN}
13204 @value{GDBN} can be used to debug programs written in Fortran, but it
13205 currently supports only the features of Fortran 77 language.
13207 @cindex trailing underscore, in Fortran symbols
13208 Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
13209 among them) append an underscore to the names of variables and
13210 functions. When you debug programs compiled by those compilers, you
13211 will need to refer to variables and functions with a trailing
13215 * Fortran Operators:: Fortran operators and expressions
13216 * Fortran Defaults:: Default settings for Fortran
13217 * Special Fortran Commands:: Special @value{GDBN} commands for Fortran
13220 @node Fortran Operators
13221 @subsubsection Fortran Operators and Expressions
13223 @cindex Fortran operators and expressions
13225 Operators must be defined on values of specific types. For instance,
13226 @code{+} is defined on numbers, but not on characters or other non-
13227 arithmetic types. Operators are often defined on groups of types.
13231 The exponentiation operator. It raises the first operand to the power
13235 The range operator. Normally used in the form of array(low:high) to
13236 represent a section of array.
13239 The access component operator. Normally used to access elements in derived
13240 types. Also suitable for unions. As unions aren't part of regular Fortran,
13241 this can only happen when accessing a register that uses a gdbarch-defined
13245 @node Fortran Defaults
13246 @subsubsection Fortran Defaults
13248 @cindex Fortran Defaults
13250 Fortran symbols are usually case-insensitive, so @value{GDBN} by
13251 default uses case-insensitive matches for Fortran symbols. You can
13252 change that with the @samp{set case-insensitive} command, see
13253 @ref{Symbols}, for the details.
13255 @node Special Fortran Commands
13256 @subsubsection Special Fortran Commands
13258 @cindex Special Fortran commands
13260 @value{GDBN} has some commands to support Fortran-specific features,
13261 such as displaying common blocks.
13264 @cindex @code{COMMON} blocks, Fortran
13265 @kindex info common
13266 @item info common @r{[}@var{common-name}@r{]}
13267 This command prints the values contained in the Fortran @code{COMMON}
13268 block whose name is @var{common-name}. With no argument, the names of
13269 all @code{COMMON} blocks visible at the current program location are
13276 @cindex Pascal support in @value{GDBN}, limitations
13277 Debugging Pascal programs which use sets, subranges, file variables, or
13278 nested functions does not currently work. @value{GDBN} does not support
13279 entering expressions, printing values, or similar features using Pascal
13282 The Pascal-specific command @code{set print pascal_static-members}
13283 controls whether static members of Pascal objects are displayed.
13284 @xref{Print Settings, pascal_static-members}.
13287 @subsection Modula-2
13289 @cindex Modula-2, @value{GDBN} support
13291 The extensions made to @value{GDBN} to support Modula-2 only support
13292 output from the @sc{gnu} Modula-2 compiler (which is currently being
13293 developed). Other Modula-2 compilers are not currently supported, and
13294 attempting to debug executables produced by them is most likely
13295 to give an error as @value{GDBN} reads in the executable's symbol
13298 @cindex expressions in Modula-2
13300 * M2 Operators:: Built-in operators
13301 * Built-In Func/Proc:: Built-in functions and procedures
13302 * M2 Constants:: Modula-2 constants
13303 * M2 Types:: Modula-2 types
13304 * M2 Defaults:: Default settings for Modula-2
13305 * Deviations:: Deviations from standard Modula-2
13306 * M2 Checks:: Modula-2 type and range checks
13307 * M2 Scope:: The scope operators @code{::} and @code{.}
13308 * GDB/M2:: @value{GDBN} and Modula-2
13312 @subsubsection Operators
13313 @cindex Modula-2 operators
13315 Operators must be defined on values of specific types. For instance,
13316 @code{+} is defined on numbers, but not on structures. Operators are
13317 often defined on groups of types. For the purposes of Modula-2, the
13318 following definitions hold:
13323 @emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
13327 @emph{Character types} consist of @code{CHAR} and its subranges.
13330 @emph{Floating-point types} consist of @code{REAL}.
13333 @emph{Pointer types} consist of anything declared as @code{POINTER TO
13337 @emph{Scalar types} consist of all of the above.
13340 @emph{Set types} consist of @code{SET} and @code{BITSET} types.
13343 @emph{Boolean types} consist of @code{BOOLEAN}.
13347 The following operators are supported, and appear in order of
13348 increasing precedence:
13352 Function argument or array index separator.
13355 Assignment. The value of @var{var} @code{:=} @var{value} is
13359 Less than, greater than on integral, floating-point, or enumerated
13363 Less than or equal to, greater than or equal to
13364 on integral, floating-point and enumerated types, or set inclusion on
13365 set types. Same precedence as @code{<}.
13367 @item =@r{, }<>@r{, }#
13368 Equality and two ways of expressing inequality, valid on scalar types.
13369 Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
13370 available for inequality, since @code{#} conflicts with the script
13374 Set membership. Defined on set types and the types of their members.
13375 Same precedence as @code{<}.
13378 Boolean disjunction. Defined on boolean types.
13381 Boolean conjunction. Defined on boolean types.
13384 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
13387 Addition and subtraction on integral and floating-point types, or union
13388 and difference on set types.
13391 Multiplication on integral and floating-point types, or set intersection
13395 Division on floating-point types, or symmetric set difference on set
13396 types. Same precedence as @code{*}.
13399 Integer division and remainder. Defined on integral types. Same
13400 precedence as @code{*}.
13403 Negative. Defined on @code{INTEGER} and @code{REAL} data.
13406 Pointer dereferencing. Defined on pointer types.
13409 Boolean negation. Defined on boolean types. Same precedence as
13413 @code{RECORD} field selector. Defined on @code{RECORD} data. Same
13414 precedence as @code{^}.
13417 Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
13420 Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
13424 @value{GDBN} and Modula-2 scope operators.
13428 @emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
13429 treats the use of the operator @code{IN}, or the use of operators
13430 @code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
13431 @code{<=}, and @code{>=} on sets as an error.
13435 @node Built-In Func/Proc
13436 @subsubsection Built-in Functions and Procedures
13437 @cindex Modula-2 built-ins
13439 Modula-2 also makes available several built-in procedures and functions.
13440 In describing these, the following metavariables are used:
13445 represents an @code{ARRAY} variable.
13448 represents a @code{CHAR} constant or variable.
13451 represents a variable or constant of integral type.
13454 represents an identifier that belongs to a set. Generally used in the
13455 same function with the metavariable @var{s}. The type of @var{s} should
13456 be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
13459 represents a variable or constant of integral or floating-point type.
13462 represents a variable or constant of floating-point type.
13468 represents a variable.
13471 represents a variable or constant of one of many types. See the
13472 explanation of the function for details.
13475 All Modula-2 built-in procedures also return a result, described below.
13479 Returns the absolute value of @var{n}.
13482 If @var{c} is a lower case letter, it returns its upper case
13483 equivalent, otherwise it returns its argument.
13486 Returns the character whose ordinal value is @var{i}.
13489 Decrements the value in the variable @var{v} by one. Returns the new value.
13491 @item DEC(@var{v},@var{i})
13492 Decrements the value in the variable @var{v} by @var{i}. Returns the
13495 @item EXCL(@var{m},@var{s})
13496 Removes the element @var{m} from the set @var{s}. Returns the new
13499 @item FLOAT(@var{i})
13500 Returns the floating point equivalent of the integer @var{i}.
13502 @item HIGH(@var{a})
13503 Returns the index of the last member of @var{a}.
13506 Increments the value in the variable @var{v} by one. Returns the new value.
13508 @item INC(@var{v},@var{i})
13509 Increments the value in the variable @var{v} by @var{i}. Returns the
13512 @item INCL(@var{m},@var{s})
13513 Adds the element @var{m} to the set @var{s} if it is not already
13514 there. Returns the new set.
13517 Returns the maximum value of the type @var{t}.
13520 Returns the minimum value of the type @var{t}.
13523 Returns boolean TRUE if @var{i} is an odd number.
13526 Returns the ordinal value of its argument. For example, the ordinal
13527 value of a character is its @sc{ascii} value (on machines supporting the
13528 @sc{ascii} character set). @var{x} must be of an ordered type, which include
13529 integral, character and enumerated types.
13531 @item SIZE(@var{x})
13532 Returns the size of its argument. @var{x} can be a variable or a type.
13534 @item TRUNC(@var{r})
13535 Returns the integral part of @var{r}.
13537 @item TSIZE(@var{x})
13538 Returns the size of its argument. @var{x} can be a variable or a type.
13540 @item VAL(@var{t},@var{i})
13541 Returns the member of the type @var{t} whose ordinal value is @var{i}.
13545 @emph{Warning:} Sets and their operations are not yet supported, so
13546 @value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
13550 @cindex Modula-2 constants
13552 @subsubsection Constants
13554 @value{GDBN} allows you to express the constants of Modula-2 in the following
13560 Integer constants are simply a sequence of digits. When used in an
13561 expression, a constant is interpreted to be type-compatible with the
13562 rest of the expression. Hexadecimal integers are specified by a
13563 trailing @samp{H}, and octal integers by a trailing @samp{B}.
13566 Floating point constants appear as a sequence of digits, followed by a
13567 decimal point and another sequence of digits. An optional exponent can
13568 then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
13569 @samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
13570 digits of the floating point constant must be valid decimal (base 10)
13574 Character constants consist of a single character enclosed by a pair of
13575 like quotes, either single (@code{'}) or double (@code{"}). They may
13576 also be expressed by their ordinal value (their @sc{ascii} value, usually)
13577 followed by a @samp{C}.
13580 String constants consist of a sequence of characters enclosed by a
13581 pair of like quotes, either single (@code{'}) or double (@code{"}).
13582 Escape sequences in the style of C are also allowed. @xref{C
13583 Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
13587 Enumerated constants consist of an enumerated identifier.
13590 Boolean constants consist of the identifiers @code{TRUE} and
13594 Pointer constants consist of integral values only.
13597 Set constants are not yet supported.
13601 @subsubsection Modula-2 Types
13602 @cindex Modula-2 types
13604 Currently @value{GDBN} can print the following data types in Modula-2
13605 syntax: array types, record types, set types, pointer types, procedure
13606 types, enumerated types, subrange types and base types. You can also
13607 print the contents of variables declared using these type.
13608 This section gives a number of simple source code examples together with
13609 sample @value{GDBN} sessions.
13611 The first example contains the following section of code:
13620 and you can request @value{GDBN} to interrogate the type and value of
13621 @code{r} and @code{s}.
13624 (@value{GDBP}) print s
13626 (@value{GDBP}) ptype s
13628 (@value{GDBP}) print r
13630 (@value{GDBP}) ptype r
13635 Likewise if your source code declares @code{s} as:
13639 s: SET ['A'..'Z'] ;
13643 then you may query the type of @code{s} by:
13646 (@value{GDBP}) ptype s
13647 type = SET ['A'..'Z']
13651 Note that at present you cannot interactively manipulate set
13652 expressions using the debugger.
13654 The following example shows how you might declare an array in Modula-2
13655 and how you can interact with @value{GDBN} to print its type and contents:
13659 s: ARRAY [-10..10] OF CHAR ;
13663 (@value{GDBP}) ptype s
13664 ARRAY [-10..10] OF CHAR
13667 Note that the array handling is not yet complete and although the type
13668 is printed correctly, expression handling still assumes that all
13669 arrays have a lower bound of zero and not @code{-10} as in the example
13672 Here are some more type related Modula-2 examples:
13676 colour = (blue, red, yellow, green) ;
13677 t = [blue..yellow] ;
13685 The @value{GDBN} interaction shows how you can query the data type
13686 and value of a variable.
13689 (@value{GDBP}) print s
13691 (@value{GDBP}) ptype t
13692 type = [blue..yellow]
13696 In this example a Modula-2 array is declared and its contents
13697 displayed. Observe that the contents are written in the same way as
13698 their @code{C} counterparts.
13702 s: ARRAY [1..5] OF CARDINAL ;
13708 (@value{GDBP}) print s
13709 $1 = @{1, 0, 0, 0, 0@}
13710 (@value{GDBP}) ptype s
13711 type = ARRAY [1..5] OF CARDINAL
13714 The Modula-2 language interface to @value{GDBN} also understands
13715 pointer types as shown in this example:
13719 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
13726 and you can request that @value{GDBN} describes the type of @code{s}.
13729 (@value{GDBP}) ptype s
13730 type = POINTER TO ARRAY [1..5] OF CARDINAL
13733 @value{GDBN} handles compound types as we can see in this example.
13734 Here we combine array types, record types, pointer types and subrange
13745 myarray = ARRAY myrange OF CARDINAL ;
13746 myrange = [-2..2] ;
13748 s: POINTER TO ARRAY myrange OF foo ;
13752 and you can ask @value{GDBN} to describe the type of @code{s} as shown
13756 (@value{GDBP}) ptype s
13757 type = POINTER TO ARRAY [-2..2] OF foo = RECORD
13760 f3 : ARRAY [-2..2] OF CARDINAL;
13765 @subsubsection Modula-2 Defaults
13766 @cindex Modula-2 defaults
13768 If type and range checking are set automatically by @value{GDBN}, they
13769 both default to @code{on} whenever the working language changes to
13770 Modula-2. This happens regardless of whether you or @value{GDBN}
13771 selected the working language.
13773 If you allow @value{GDBN} to set the language automatically, then entering
13774 code compiled from a file whose name ends with @file{.mod} sets the
13775 working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
13776 Infer the Source Language}, for further details.
13779 @subsubsection Deviations from Standard Modula-2
13780 @cindex Modula-2, deviations from
13782 A few changes have been made to make Modula-2 programs easier to debug.
13783 This is done primarily via loosening its type strictness:
13787 Unlike in standard Modula-2, pointer constants can be formed by
13788 integers. This allows you to modify pointer variables during
13789 debugging. (In standard Modula-2, the actual address contained in a
13790 pointer variable is hidden from you; it can only be modified
13791 through direct assignment to another pointer variable or expression that
13792 returned a pointer.)
13795 C escape sequences can be used in strings and characters to represent
13796 non-printable characters. @value{GDBN} prints out strings with these
13797 escape sequences embedded. Single non-printable characters are
13798 printed using the @samp{CHR(@var{nnn})} format.
13801 The assignment operator (@code{:=}) returns the value of its right-hand
13805 All built-in procedures both modify @emph{and} return their argument.
13809 @subsubsection Modula-2 Type and Range Checks
13810 @cindex Modula-2 checks
13813 @emph{Warning:} in this release, @value{GDBN} does not yet perform type or
13816 @c FIXME remove warning when type/range checks added
13818 @value{GDBN} considers two Modula-2 variables type equivalent if:
13822 They are of types that have been declared equivalent via a @code{TYPE
13823 @var{t1} = @var{t2}} statement
13826 They have been declared on the same line. (Note: This is true of the
13827 @sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
13830 As long as type checking is enabled, any attempt to combine variables
13831 whose types are not equivalent is an error.
13833 Range checking is done on all mathematical operations, assignment, array
13834 index bounds, and all built-in functions and procedures.
13837 @subsubsection The Scope Operators @code{::} and @code{.}
13839 @cindex @code{.}, Modula-2 scope operator
13840 @cindex colon, doubled as scope operator
13842 @vindex colon-colon@r{, in Modula-2}
13843 @c Info cannot handle :: but TeX can.
13846 @vindex ::@r{, in Modula-2}
13849 There are a few subtle differences between the Modula-2 scope operator
13850 (@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
13855 @var{module} . @var{id}
13856 @var{scope} :: @var{id}
13860 where @var{scope} is the name of a module or a procedure,
13861 @var{module} the name of a module, and @var{id} is any declared
13862 identifier within your program, except another module.
13864 Using the @code{::} operator makes @value{GDBN} search the scope
13865 specified by @var{scope} for the identifier @var{id}. If it is not
13866 found in the specified scope, then @value{GDBN} searches all scopes
13867 enclosing the one specified by @var{scope}.
13869 Using the @code{.} operator makes @value{GDBN} search the current scope for
13870 the identifier specified by @var{id} that was imported from the
13871 definition module specified by @var{module}. With this operator, it is
13872 an error if the identifier @var{id} was not imported from definition
13873 module @var{module}, or if @var{id} is not an identifier in
13877 @subsubsection @value{GDBN} and Modula-2
13879 Some @value{GDBN} commands have little use when debugging Modula-2 programs.
13880 Five subcommands of @code{set print} and @code{show print} apply
13881 specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
13882 @samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
13883 apply to C@t{++}, and the last to the C @code{union} type, which has no direct
13884 analogue in Modula-2.
13886 The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
13887 with any language, is not useful with Modula-2. Its
13888 intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
13889 created in Modula-2 as they can in C or C@t{++}. However, because an
13890 address can be specified by an integral constant, the construct
13891 @samp{@{@var{type}@}@var{adrexp}} is still useful.
13893 @cindex @code{#} in Modula-2
13894 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
13895 interpreted as the beginning of a comment. Use @code{<>} instead.
13901 The extensions made to @value{GDBN} for Ada only support
13902 output from the @sc{gnu} Ada (GNAT) compiler.
13903 Other Ada compilers are not currently supported, and
13904 attempting to debug executables produced by them is most likely
13908 @cindex expressions in Ada
13910 * Ada Mode Intro:: General remarks on the Ada syntax
13911 and semantics supported by Ada mode
13913 * Omissions from Ada:: Restrictions on the Ada expression syntax.
13914 * Additions to Ada:: Extensions of the Ada expression syntax.
13915 * Stopping Before Main Program:: Debugging the program during elaboration.
13916 * Ada Tasks:: Listing and setting breakpoints in tasks.
13917 * Ada Tasks and Core Files:: Tasking Support when Debugging Core Files
13918 * Ravenscar Profile:: Tasking Support when using the Ravenscar
13920 * Ada Glitches:: Known peculiarities of Ada mode.
13923 @node Ada Mode Intro
13924 @subsubsection Introduction
13925 @cindex Ada mode, general
13927 The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
13928 syntax, with some extensions.
13929 The philosophy behind the design of this subset is
13933 That @value{GDBN} should provide basic literals and access to operations for
13934 arithmetic, dereferencing, field selection, indexing, and subprogram calls,
13935 leaving more sophisticated computations to subprograms written into the
13936 program (which therefore may be called from @value{GDBN}).
13939 That type safety and strict adherence to Ada language restrictions
13940 are not particularly important to the @value{GDBN} user.
13943 That brevity is important to the @value{GDBN} user.
13946 Thus, for brevity, the debugger acts as if all names declared in
13947 user-written packages are directly visible, even if they are not visible
13948 according to Ada rules, thus making it unnecessary to fully qualify most
13949 names with their packages, regardless of context. Where this causes
13950 ambiguity, @value{GDBN} asks the user's intent.
13952 The debugger will start in Ada mode if it detects an Ada main program.
13953 As for other languages, it will enter Ada mode when stopped in a program that
13954 was translated from an Ada source file.
13956 While in Ada mode, you may use `@t{--}' for comments. This is useful
13957 mostly for documenting command files. The standard @value{GDBN} comment
13958 (@samp{#}) still works at the beginning of a line in Ada mode, but not in the
13959 middle (to allow based literals).
13961 The debugger supports limited overloading. Given a subprogram call in which
13962 the function symbol has multiple definitions, it will use the number of
13963 actual parameters and some information about their types to attempt to narrow
13964 the set of definitions. It also makes very limited use of context, preferring
13965 procedures to functions in the context of the @code{call} command, and
13966 functions to procedures elsewhere.
13968 @node Omissions from Ada
13969 @subsubsection Omissions from Ada
13970 @cindex Ada, omissions from
13972 Here are the notable omissions from the subset:
13976 Only a subset of the attributes are supported:
13980 @t{'First}, @t{'Last}, and @t{'Length}
13981 on array objects (not on types and subtypes).
13984 @t{'Min} and @t{'Max}.
13987 @t{'Pos} and @t{'Val}.
13993 @t{'Range} on array objects (not subtypes), but only as the right
13994 operand of the membership (@code{in}) operator.
13997 @t{'Access}, @t{'Unchecked_Access}, and
13998 @t{'Unrestricted_Access} (a GNAT extension).
14006 @code{Characters.Latin_1} are not available and
14007 concatenation is not implemented. Thus, escape characters in strings are
14008 not currently available.
14011 Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
14012 equality of representations. They will generally work correctly
14013 for strings and arrays whose elements have integer or enumeration types.
14014 They may not work correctly for arrays whose element
14015 types have user-defined equality, for arrays of real values
14016 (in particular, IEEE-conformant floating point, because of negative
14017 zeroes and NaNs), and for arrays whose elements contain unused bits with
14018 indeterminate values.
14021 The other component-by-component array operations (@code{and}, @code{or},
14022 @code{xor}, @code{not}, and relational tests other than equality)
14023 are not implemented.
14026 @cindex array aggregates (Ada)
14027 @cindex record aggregates (Ada)
14028 @cindex aggregates (Ada)
14029 There is limited support for array and record aggregates. They are
14030 permitted only on the right sides of assignments, as in these examples:
14033 (@value{GDBP}) set An_Array := (1, 2, 3, 4, 5, 6)
14034 (@value{GDBP}) set An_Array := (1, others => 0)
14035 (@value{GDBP}) set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
14036 (@value{GDBP}) set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
14037 (@value{GDBP}) set A_Record := (1, "Peter", True);
14038 (@value{GDBP}) set A_Record := (Name => "Peter", Id => 1, Alive => True)
14042 discriminant's value by assigning an aggregate has an
14043 undefined effect if that discriminant is used within the record.
14044 However, you can first modify discriminants by directly assigning to
14045 them (which normally would not be allowed in Ada), and then performing an
14046 aggregate assignment. For example, given a variable @code{A_Rec}
14047 declared to have a type such as:
14050 type Rec (Len : Small_Integer := 0) is record
14052 Vals : IntArray (1 .. Len);
14056 you can assign a value with a different size of @code{Vals} with two
14060 (@value{GDBP}) set A_Rec.Len := 4
14061 (@value{GDBP}) set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
14064 As this example also illustrates, @value{GDBN} is very loose about the usual
14065 rules concerning aggregates. You may leave out some of the
14066 components of an array or record aggregate (such as the @code{Len}
14067 component in the assignment to @code{A_Rec} above); they will retain their
14068 original values upon assignment. You may freely use dynamic values as
14069 indices in component associations. You may even use overlapping or
14070 redundant component associations, although which component values are
14071 assigned in such cases is not defined.
14074 Calls to dispatching subprograms are not implemented.
14077 The overloading algorithm is much more limited (i.e., less selective)
14078 than that of real Ada. It makes only limited use of the context in
14079 which a subexpression appears to resolve its meaning, and it is much
14080 looser in its rules for allowing type matches. As a result, some
14081 function calls will be ambiguous, and the user will be asked to choose
14082 the proper resolution.
14085 The @code{new} operator is not implemented.
14088 Entry calls are not implemented.
14091 Aside from printing, arithmetic operations on the native VAX floating-point
14092 formats are not supported.
14095 It is not possible to slice a packed array.
14098 The names @code{True} and @code{False}, when not part of a qualified name,
14099 are interpreted as if implicitly prefixed by @code{Standard}, regardless of
14101 Should your program
14102 redefine these names in a package or procedure (at best a dubious practice),
14103 you will have to use fully qualified names to access their new definitions.
14106 @node Additions to Ada
14107 @subsubsection Additions to Ada
14108 @cindex Ada, deviations from
14110 As it does for other languages, @value{GDBN} makes certain generic
14111 extensions to Ada (@pxref{Expressions}):
14115 If the expression @var{E} is a variable residing in memory (typically
14116 a local variable or array element) and @var{N} is a positive integer,
14117 then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
14118 @var{N}-1 adjacent variables following it in memory as an array. In
14119 Ada, this operator is generally not necessary, since its prime use is
14120 in displaying parts of an array, and slicing will usually do this in
14121 Ada. However, there are occasional uses when debugging programs in
14122 which certain debugging information has been optimized away.
14125 @code{@var{B}::@var{var}} means ``the variable named @var{var} that
14126 appears in function or file @var{B}.'' When @var{B} is a file name,
14127 you must typically surround it in single quotes.
14130 The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
14131 @var{type} that appears at address @var{addr}.''
14134 A name starting with @samp{$} is a convenience variable
14135 (@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
14138 In addition, @value{GDBN} provides a few other shortcuts and outright
14139 additions specific to Ada:
14143 The assignment statement is allowed as an expression, returning
14144 its right-hand operand as its value. Thus, you may enter
14147 (@value{GDBP}) set x := y + 3
14148 (@value{GDBP}) print A(tmp := y + 1)
14152 The semicolon is allowed as an ``operator,'' returning as its value
14153 the value of its right-hand operand.
14154 This allows, for example,
14155 complex conditional breaks:
14158 (@value{GDBP}) break f
14159 (@value{GDBP}) condition 1 (report(i); k += 1; A(k) > 100)
14163 Rather than use catenation and symbolic character names to introduce special
14164 characters into strings, one may instead use a special bracket notation,
14165 which is also used to print strings. A sequence of characters of the form
14166 @samp{["@var{XX}"]} within a string or character literal denotes the
14167 (single) character whose numeric encoding is @var{XX} in hexadecimal. The
14168 sequence of characters @samp{["""]} also denotes a single quotation mark
14169 in strings. For example,
14171 "One line.["0a"]Next line.["0a"]"
14174 contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
14178 The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
14179 @t{'Max} is optional (and is ignored in any case). For example, it is valid
14183 (@value{GDBP}) print 'max(x, y)
14187 When printing arrays, @value{GDBN} uses positional notation when the
14188 array has a lower bound of 1, and uses a modified named notation otherwise.
14189 For example, a one-dimensional array of three integers with a lower bound
14190 of 3 might print as
14197 That is, in contrast to valid Ada, only the first component has a @code{=>}
14201 You may abbreviate attributes in expressions with any unique,
14202 multi-character subsequence of
14203 their names (an exact match gets preference).
14204 For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
14205 in place of @t{a'length}.
14208 @cindex quoting Ada internal identifiers
14209 Since Ada is case-insensitive, the debugger normally maps identifiers you type
14210 to lower case. The GNAT compiler uses upper-case characters for
14211 some of its internal identifiers, which are normally of no interest to users.
14212 For the rare occasions when you actually have to look at them,
14213 enclose them in angle brackets to avoid the lower-case mapping.
14216 (@value{GDBP}) print <JMPBUF_SAVE>[0]
14220 Printing an object of class-wide type or dereferencing an
14221 access-to-class-wide value will display all the components of the object's
14222 specific type (as indicated by its run-time tag). Likewise, component
14223 selection on such a value will operate on the specific type of the
14228 @node Stopping Before Main Program
14229 @subsubsection Stopping at the Very Beginning
14231 @cindex breakpointing Ada elaboration code
14232 It is sometimes necessary to debug the program during elaboration, and
14233 before reaching the main procedure.
14234 As defined in the Ada Reference
14235 Manual, the elaboration code is invoked from a procedure called
14236 @code{adainit}. To run your program up to the beginning of
14237 elaboration, simply use the following two commands:
14238 @code{tbreak adainit} and @code{run}.
14241 @subsubsection Extensions for Ada Tasks
14242 @cindex Ada, tasking
14244 Support for Ada tasks is analogous to that for threads (@pxref{Threads}).
14245 @value{GDBN} provides the following task-related commands:
14250 This command shows a list of current Ada tasks, as in the following example:
14257 (@value{GDBP}) info tasks
14258 ID TID P-ID Pri State Name
14259 1 8088000 0 15 Child Activation Wait main_task
14260 2 80a4000 1 15 Accept Statement b
14261 3 809a800 1 15 Child Activation Wait a
14262 * 4 80ae800 3 15 Runnable c
14267 In this listing, the asterisk before the last task indicates it to be the
14268 task currently being inspected.
14272 Represents @value{GDBN}'s internal task number.
14278 The parent's task ID (@value{GDBN}'s internal task number).
14281 The base priority of the task.
14284 Current state of the task.
14288 The task has been created but has not been activated. It cannot be
14292 The task is not blocked for any reason known to Ada. (It may be waiting
14293 for a mutex, though.) It is conceptually "executing" in normal mode.
14296 The task is terminated, in the sense of ARM 9.3 (5). Any dependents
14297 that were waiting on terminate alternatives have been awakened and have
14298 terminated themselves.
14300 @item Child Activation Wait
14301 The task is waiting for created tasks to complete activation.
14303 @item Accept Statement
14304 The task is waiting on an accept or selective wait statement.
14306 @item Waiting on entry call
14307 The task is waiting on an entry call.
14309 @item Async Select Wait
14310 The task is waiting to start the abortable part of an asynchronous
14314 The task is waiting on a select statement with only a delay
14317 @item Child Termination Wait
14318 The task is sleeping having completed a master within itself, and is
14319 waiting for the tasks dependent on that master to become terminated or
14320 waiting on a terminate Phase.
14322 @item Wait Child in Term Alt
14323 The task is sleeping waiting for tasks on terminate alternatives to
14324 finish terminating.
14326 @item Accepting RV with @var{taskno}
14327 The task is accepting a rendez-vous with the task @var{taskno}.
14331 Name of the task in the program.
14335 @kindex info task @var{taskno}
14336 @item info task @var{taskno}
14337 This command shows detailled informations on the specified task, as in
14338 the following example:
14343 (@value{GDBP}) info tasks
14344 ID TID P-ID Pri State Name
14345 1 8077880 0 15 Child Activation Wait main_task
14346 * 2 807c468 1 15 Runnable task_1
14347 (@value{GDBP}) info task 2
14348 Ada Task: 0x807c468
14351 Parent: 1 (main_task)
14357 @kindex task@r{ (Ada)}
14358 @cindex current Ada task ID
14359 This command prints the ID of the current task.
14365 (@value{GDBP}) info tasks
14366 ID TID P-ID Pri State Name
14367 1 8077870 0 15 Child Activation Wait main_task
14368 * 2 807c458 1 15 Runnable t
14369 (@value{GDBP}) task
14370 [Current task is 2]
14373 @item task @var{taskno}
14374 @cindex Ada task switching
14375 This command is like the @code{thread @var{threadno}}
14376 command (@pxref{Threads}). It switches the context of debugging
14377 from the current task to the given task.
14383 (@value{GDBP}) info tasks
14384 ID TID P-ID Pri State Name
14385 1 8077870 0 15 Child Activation Wait main_task
14386 * 2 807c458 1 15 Runnable t
14387 (@value{GDBP}) task 1
14388 [Switching to task 1]
14389 #0 0x8067726 in pthread_cond_wait ()
14391 #0 0x8067726 in pthread_cond_wait ()
14392 #1 0x8056714 in system.os_interface.pthread_cond_wait ()
14393 #2 0x805cb63 in system.task_primitives.operations.sleep ()
14394 #3 0x806153e in system.tasking.stages.activate_tasks ()
14395 #4 0x804aacc in un () at un.adb:5
14398 @item break @var{linespec} task @var{taskno}
14399 @itemx break @var{linespec} task @var{taskno} if @dots{}
14400 @cindex breakpoints and tasks, in Ada
14401 @cindex task breakpoints, in Ada
14402 @kindex break @dots{} task @var{taskno}@r{ (Ada)}
14403 These commands are like the @code{break @dots{} thread @dots{}}
14404 command (@pxref{Thread Stops}).
14405 @var{linespec} specifies source lines, as described
14406 in @ref{Specify Location}.
14408 Use the qualifier @samp{task @var{taskno}} with a breakpoint command
14409 to specify that you only want @value{GDBN} to stop the program when a
14410 particular Ada task reaches this breakpoint. @var{taskno} is one of the
14411 numeric task identifiers assigned by @value{GDBN}, shown in the first
14412 column of the @samp{info tasks} display.
14414 If you do not specify @samp{task @var{taskno}} when you set a
14415 breakpoint, the breakpoint applies to @emph{all} tasks of your
14418 You can use the @code{task} qualifier on conditional breakpoints as
14419 well; in this case, place @samp{task @var{taskno}} before the
14420 breakpoint condition (before the @code{if}).
14428 (@value{GDBP}) info tasks
14429 ID TID P-ID Pri State Name
14430 1 140022020 0 15 Child Activation Wait main_task
14431 2 140045060 1 15 Accept/Select Wait t2
14432 3 140044840 1 15 Runnable t1
14433 * 4 140056040 1 15 Runnable t3
14434 (@value{GDBP}) b 15 task 2
14435 Breakpoint 5 at 0x120044cb0: file test_task_debug.adb, line 15.
14436 (@value{GDBP}) cont
14441 Breakpoint 5, test_task_debug () at test_task_debug.adb:15
14443 (@value{GDBP}) info tasks
14444 ID TID P-ID Pri State Name
14445 1 140022020 0 15 Child Activation Wait main_task
14446 * 2 140045060 1 15 Runnable t2
14447 3 140044840 1 15 Runnable t1
14448 4 140056040 1 15 Delay Sleep t3
14452 @node Ada Tasks and Core Files
14453 @subsubsection Tasking Support when Debugging Core Files
14454 @cindex Ada tasking and core file debugging
14456 When inspecting a core file, as opposed to debugging a live program,
14457 tasking support may be limited or even unavailable, depending on
14458 the platform being used.
14459 For instance, on x86-linux, the list of tasks is available, but task
14460 switching is not supported. On Tru64, however, task switching will work
14463 On certain platforms, including Tru64, the debugger needs to perform some
14464 memory writes in order to provide Ada tasking support. When inspecting
14465 a core file, this means that the core file must be opened with read-write
14466 privileges, using the command @samp{"set write on"} (@pxref{Patching}).
14467 Under these circumstances, you should make a backup copy of the core
14468 file before inspecting it with @value{GDBN}.
14470 @node Ravenscar Profile
14471 @subsubsection Tasking Support when using the Ravenscar Profile
14472 @cindex Ravenscar Profile
14474 The @dfn{Ravenscar Profile} is a subset of the Ada tasking features,
14475 specifically designed for systems with safety-critical real-time
14479 @kindex set ravenscar task-switching on
14480 @cindex task switching with program using Ravenscar Profile
14481 @item set ravenscar task-switching on
14482 Allows task switching when debugging a program that uses the Ravenscar
14483 Profile. This is the default.
14485 @kindex set ravenscar task-switching off
14486 @item set ravenscar task-switching off
14487 Turn off task switching when debugging a program that uses the Ravenscar
14488 Profile. This is mostly intended to disable the code that adds support
14489 for the Ravenscar Profile, in case a bug in either @value{GDBN} or in
14490 the Ravenscar runtime is preventing @value{GDBN} from working properly.
14491 To be effective, this command should be run before the program is started.
14493 @kindex show ravenscar task-switching
14494 @item show ravenscar task-switching
14495 Show whether it is possible to switch from task to task in a program
14496 using the Ravenscar Profile.
14501 @subsubsection Known Peculiarities of Ada Mode
14502 @cindex Ada, problems
14504 Besides the omissions listed previously (@pxref{Omissions from Ada}),
14505 we know of several problems with and limitations of Ada mode in
14507 some of which will be fixed with planned future releases of the debugger
14508 and the GNU Ada compiler.
14512 Static constants that the compiler chooses not to materialize as objects in
14513 storage are invisible to the debugger.
14516 Named parameter associations in function argument lists are ignored (the
14517 argument lists are treated as positional).
14520 Many useful library packages are currently invisible to the debugger.
14523 Fixed-point arithmetic, conversions, input, and output is carried out using
14524 floating-point arithmetic, and may give results that only approximate those on
14528 The GNAT compiler never generates the prefix @code{Standard} for any of
14529 the standard symbols defined by the Ada language. @value{GDBN} knows about
14530 this: it will strip the prefix from names when you use it, and will never
14531 look for a name you have so qualified among local symbols, nor match against
14532 symbols in other packages or subprograms. If you have
14533 defined entities anywhere in your program other than parameters and
14534 local variables whose simple names match names in @code{Standard},
14535 GNAT's lack of qualification here can cause confusion. When this happens,
14536 you can usually resolve the confusion
14537 by qualifying the problematic names with package
14538 @code{Standard} explicitly.
14541 Older versions of the compiler sometimes generate erroneous debugging
14542 information, resulting in the debugger incorrectly printing the value
14543 of affected entities. In some cases, the debugger is able to work
14544 around an issue automatically. In other cases, the debugger is able
14545 to work around the issue, but the work-around has to be specifically
14548 @kindex set ada trust-PAD-over-XVS
14549 @kindex show ada trust-PAD-over-XVS
14552 @item set ada trust-PAD-over-XVS on
14553 Configure GDB to strictly follow the GNAT encoding when computing the
14554 value of Ada entities, particularly when @code{PAD} and @code{PAD___XVS}
14555 types are involved (see @code{ada/exp_dbug.ads} in the GCC sources for
14556 a complete description of the encoding used by the GNAT compiler).
14557 This is the default.
14559 @item set ada trust-PAD-over-XVS off
14560 This is related to the encoding using by the GNAT compiler. If @value{GDBN}
14561 sometimes prints the wrong value for certain entities, changing @code{ada
14562 trust-PAD-over-XVS} to @code{off} activates a work-around which may fix
14563 the issue. It is always safe to set @code{ada trust-PAD-over-XVS} to
14564 @code{off}, but this incurs a slight performance penalty, so it is
14565 recommended to leave this setting to @code{on} unless necessary.
14569 @node Unsupported Languages
14570 @section Unsupported Languages
14572 @cindex unsupported languages
14573 @cindex minimal language
14574 In addition to the other fully-supported programming languages,
14575 @value{GDBN} also provides a pseudo-language, called @code{minimal}.
14576 It does not represent a real programming language, but provides a set
14577 of capabilities close to what the C or assembly languages provide.
14578 This should allow most simple operations to be performed while debugging
14579 an application that uses a language currently not supported by @value{GDBN}.
14581 If the language is set to @code{auto}, @value{GDBN} will automatically
14582 select this language if the current frame corresponds to an unsupported
14586 @chapter Examining the Symbol Table
14588 The commands described in this chapter allow you to inquire about the
14589 symbols (names of variables, functions and types) defined in your
14590 program. This information is inherent in the text of your program and
14591 does not change as your program executes. @value{GDBN} finds it in your
14592 program's symbol table, in the file indicated when you started @value{GDBN}
14593 (@pxref{File Options, ,Choosing Files}), or by one of the
14594 file-management commands (@pxref{Files, ,Commands to Specify Files}).
14596 @cindex symbol names
14597 @cindex names of symbols
14598 @cindex quoting names
14599 Occasionally, you may need to refer to symbols that contain unusual
14600 characters, which @value{GDBN} ordinarily treats as word delimiters. The
14601 most frequent case is in referring to static variables in other
14602 source files (@pxref{Variables,,Program Variables}). File names
14603 are recorded in object files as debugging symbols, but @value{GDBN} would
14604 ordinarily parse a typical file name, like @file{foo.c}, as the three words
14605 @samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
14606 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
14613 looks up the value of @code{x} in the scope of the file @file{foo.c}.
14616 @cindex case-insensitive symbol names
14617 @cindex case sensitivity in symbol names
14618 @kindex set case-sensitive
14619 @item set case-sensitive on
14620 @itemx set case-sensitive off
14621 @itemx set case-sensitive auto
14622 Normally, when @value{GDBN} looks up symbols, it matches their names
14623 with case sensitivity determined by the current source language.
14624 Occasionally, you may wish to control that. The command @code{set
14625 case-sensitive} lets you do that by specifying @code{on} for
14626 case-sensitive matches or @code{off} for case-insensitive ones. If
14627 you specify @code{auto}, case sensitivity is reset to the default
14628 suitable for the source language. The default is case-sensitive
14629 matches for all languages except for Fortran, for which the default is
14630 case-insensitive matches.
14632 @kindex show case-sensitive
14633 @item show case-sensitive
14634 This command shows the current setting of case sensitivity for symbols
14637 @kindex info address
14638 @cindex address of a symbol
14639 @item info address @var{symbol}
14640 Describe where the data for @var{symbol} is stored. For a register
14641 variable, this says which register it is kept in. For a non-register
14642 local variable, this prints the stack-frame offset at which the variable
14645 Note the contrast with @samp{print &@var{symbol}}, which does not work
14646 at all for a register variable, and for a stack local variable prints
14647 the exact address of the current instantiation of the variable.
14649 @kindex info symbol
14650 @cindex symbol from address
14651 @cindex closest symbol and offset for an address
14652 @item info symbol @var{addr}
14653 Print the name of a symbol which is stored at the address @var{addr}.
14654 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
14655 nearest symbol and an offset from it:
14658 (@value{GDBP}) info symbol 0x54320
14659 _initialize_vx + 396 in section .text
14663 This is the opposite of the @code{info address} command. You can use
14664 it to find out the name of a variable or a function given its address.
14666 For dynamically linked executables, the name of executable or shared
14667 library containing the symbol is also printed:
14670 (@value{GDBP}) info symbol 0x400225
14671 _start + 5 in section .text of /tmp/a.out
14672 (@value{GDBP}) info symbol 0x2aaaac2811cf
14673 __read_nocancel + 6 in section .text of /usr/lib64/libc.so.6
14677 @item whatis [@var{arg}]
14678 Print the data type of @var{arg}, which can be either an expression
14679 or a name of a data type. With no argument, print the data type of
14680 @code{$}, the last value in the value history.
14682 If @var{arg} is an expression (@pxref{Expressions, ,Expressions}), it
14683 is not actually evaluated, and any side-effecting operations (such as
14684 assignments or function calls) inside it do not take place.
14686 If @var{arg} is a variable or an expression, @code{whatis} prints its
14687 literal type as it is used in the source code. If the type was
14688 defined using a @code{typedef}, @code{whatis} will @emph{not} print
14689 the data type underlying the @code{typedef}. If the type of the
14690 variable or the expression is a compound data type, such as
14691 @code{struct} or @code{class}, @code{whatis} never prints their
14692 fields or methods. It just prints the @code{struct}/@code{class}
14693 name (a.k.a.@: its @dfn{tag}). If you want to see the members of
14694 such a compound data type, use @code{ptype}.
14696 If @var{arg} is a type name that was defined using @code{typedef},
14697 @code{whatis} @dfn{unrolls} only one level of that @code{typedef}.
14698 Unrolling means that @code{whatis} will show the underlying type used
14699 in the @code{typedef} declaration of @var{arg}. However, if that
14700 underlying type is also a @code{typedef}, @code{whatis} will not
14703 For C code, the type names may also have the form @samp{class
14704 @var{class-name}}, @samp{struct @var{struct-tag}}, @samp{union
14705 @var{union-tag}} or @samp{enum @var{enum-tag}}.
14708 @item ptype [@var{arg}]
14709 @code{ptype} accepts the same arguments as @code{whatis}, but prints a
14710 detailed description of the type, instead of just the name of the type.
14711 @xref{Expressions, ,Expressions}.
14713 Contrary to @code{whatis}, @code{ptype} always unrolls any
14714 @code{typedef}s in its argument declaration, whether the argument is
14715 a variable, expression, or a data type. This means that @code{ptype}
14716 of a variable or an expression will not print literally its type as
14717 present in the source code---use @code{whatis} for that. @code{typedef}s at
14718 the pointer or reference targets are also unrolled. Only @code{typedef}s of
14719 fields, methods and inner @code{class typedef}s of @code{struct}s,
14720 @code{class}es and @code{union}s are not unrolled even with @code{ptype}.
14722 For example, for this variable declaration:
14725 typedef double real_t;
14726 struct complex @{ real_t real; double imag; @};
14727 typedef struct complex complex_t;
14729 real_t *real_pointer_var;
14733 the two commands give this output:
14737 (@value{GDBP}) whatis var
14739 (@value{GDBP}) ptype var
14740 type = struct complex @{
14744 (@value{GDBP}) whatis complex_t
14745 type = struct complex
14746 (@value{GDBP}) whatis struct complex
14747 type = struct complex
14748 (@value{GDBP}) ptype struct complex
14749 type = struct complex @{
14753 (@value{GDBP}) whatis real_pointer_var
14755 (@value{GDBP}) ptype real_pointer_var
14761 As with @code{whatis}, using @code{ptype} without an argument refers to
14762 the type of @code{$}, the last value in the value history.
14764 @cindex incomplete type
14765 Sometimes, programs use opaque data types or incomplete specifications
14766 of complex data structure. If the debug information included in the
14767 program does not allow @value{GDBN} to display a full declaration of
14768 the data type, it will say @samp{<incomplete type>}. For example,
14769 given these declarations:
14773 struct foo *fooptr;
14777 but no definition for @code{struct foo} itself, @value{GDBN} will say:
14780 (@value{GDBP}) ptype foo
14781 $1 = <incomplete type>
14785 ``Incomplete type'' is C terminology for data types that are not
14786 completely specified.
14789 @item info types @var{regexp}
14791 Print a brief description of all types whose names match the regular
14792 expression @var{regexp} (or all types in your program, if you supply
14793 no argument). Each complete typename is matched as though it were a
14794 complete line; thus, @samp{i type value} gives information on all
14795 types in your program whose names include the string @code{value}, but
14796 @samp{i type ^value$} gives information only on types whose complete
14797 name is @code{value}.
14799 This command differs from @code{ptype} in two ways: first, like
14800 @code{whatis}, it does not print a detailed description; second, it
14801 lists all source files where a type is defined.
14804 @cindex local variables
14805 @item info scope @var{location}
14806 List all the variables local to a particular scope. This command
14807 accepts a @var{location} argument---a function name, a source line, or
14808 an address preceded by a @samp{*}, and prints all the variables local
14809 to the scope defined by that location. (@xref{Specify Location}, for
14810 details about supported forms of @var{location}.) For example:
14813 (@value{GDBP}) @b{info scope command_line_handler}
14814 Scope for command_line_handler:
14815 Symbol rl is an argument at stack/frame offset 8, length 4.
14816 Symbol linebuffer is in static storage at address 0x150a18, length 4.
14817 Symbol linelength is in static storage at address 0x150a1c, length 4.
14818 Symbol p is a local variable in register $esi, length 4.
14819 Symbol p1 is a local variable in register $ebx, length 4.
14820 Symbol nline is a local variable in register $edx, length 4.
14821 Symbol repeat is a local variable at frame offset -8, length 4.
14825 This command is especially useful for determining what data to collect
14826 during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
14829 @kindex info source
14831 Show information about the current source file---that is, the source file for
14832 the function containing the current point of execution:
14835 the name of the source file, and the directory containing it,
14837 the directory it was compiled in,
14839 its length, in lines,
14841 which programming language it is written in,
14843 whether the executable includes debugging information for that file, and
14844 if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
14846 whether the debugging information includes information about
14847 preprocessor macros.
14851 @kindex info sources
14853 Print the names of all source files in your program for which there is
14854 debugging information, organized into two lists: files whose symbols
14855 have already been read, and files whose symbols will be read when needed.
14857 @kindex info functions
14858 @item info functions
14859 Print the names and data types of all defined functions.
14861 @item info functions @var{regexp}
14862 Print the names and data types of all defined functions
14863 whose names contain a match for regular expression @var{regexp}.
14864 Thus, @samp{info fun step} finds all functions whose names
14865 include @code{step}; @samp{info fun ^step} finds those whose names
14866 start with @code{step}. If a function name contains characters
14867 that conflict with the regular expression language (e.g.@:
14868 @samp{operator*()}), they may be quoted with a backslash.
14870 @kindex info variables
14871 @item info variables
14872 Print the names and data types of all variables that are defined
14873 outside of functions (i.e.@: excluding local variables).
14875 @item info variables @var{regexp}
14876 Print the names and data types of all variables (except for local
14877 variables) whose names contain a match for regular expression
14880 @kindex info classes
14881 @cindex Objective-C, classes and selectors
14883 @itemx info classes @var{regexp}
14884 Display all Objective-C classes in your program, or
14885 (with the @var{regexp} argument) all those matching a particular regular
14888 @kindex info selectors
14889 @item info selectors
14890 @itemx info selectors @var{regexp}
14891 Display all Objective-C selectors in your program, or
14892 (with the @var{regexp} argument) all those matching a particular regular
14896 This was never implemented.
14897 @kindex info methods
14899 @itemx info methods @var{regexp}
14900 The @code{info methods} command permits the user to examine all defined
14901 methods within C@t{++} program, or (with the @var{regexp} argument) a
14902 specific set of methods found in the various C@t{++} classes. Many
14903 C@t{++} classes provide a large number of methods. Thus, the output
14904 from the @code{ptype} command can be overwhelming and hard to use. The
14905 @code{info-methods} command filters the methods, printing only those
14906 which match the regular-expression @var{regexp}.
14909 @cindex opaque data types
14910 @kindex set opaque-type-resolution
14911 @item set opaque-type-resolution on
14912 Tell @value{GDBN} to resolve opaque types. An opaque type is a type
14913 declared as a pointer to a @code{struct}, @code{class}, or
14914 @code{union}---for example, @code{struct MyType *}---that is used in one
14915 source file although the full declaration of @code{struct MyType} is in
14916 another source file. The default is on.
14918 A change in the setting of this subcommand will not take effect until
14919 the next time symbols for a file are loaded.
14921 @item set opaque-type-resolution off
14922 Tell @value{GDBN} not to resolve opaque types. In this case, the type
14923 is printed as follows:
14925 @{<no data fields>@}
14928 @kindex show opaque-type-resolution
14929 @item show opaque-type-resolution
14930 Show whether opaque types are resolved or not.
14932 @kindex maint print symbols
14933 @cindex symbol dump
14934 @kindex maint print psymbols
14935 @cindex partial symbol dump
14936 @item maint print symbols @var{filename}
14937 @itemx maint print psymbols @var{filename}
14938 @itemx maint print msymbols @var{filename}
14939 Write a dump of debugging symbol data into the file @var{filename}.
14940 These commands are used to debug the @value{GDBN} symbol-reading code. Only
14941 symbols with debugging data are included. If you use @samp{maint print
14942 symbols}, @value{GDBN} includes all the symbols for which it has already
14943 collected full details: that is, @var{filename} reflects symbols for
14944 only those files whose symbols @value{GDBN} has read. You can use the
14945 command @code{info sources} to find out which files these are. If you
14946 use @samp{maint print psymbols} instead, the dump shows information about
14947 symbols that @value{GDBN} only knows partially---that is, symbols defined in
14948 files that @value{GDBN} has skimmed, but not yet read completely. Finally,
14949 @samp{maint print msymbols} dumps just the minimal symbol information
14950 required for each object file from which @value{GDBN} has read some symbols.
14951 @xref{Files, ,Commands to Specify Files}, for a discussion of how
14952 @value{GDBN} reads symbols (in the description of @code{symbol-file}).
14954 @kindex maint info symtabs
14955 @kindex maint info psymtabs
14956 @cindex listing @value{GDBN}'s internal symbol tables
14957 @cindex symbol tables, listing @value{GDBN}'s internal
14958 @cindex full symbol tables, listing @value{GDBN}'s internal
14959 @cindex partial symbol tables, listing @value{GDBN}'s internal
14960 @item maint info symtabs @r{[} @var{regexp} @r{]}
14961 @itemx maint info psymtabs @r{[} @var{regexp} @r{]}
14963 List the @code{struct symtab} or @code{struct partial_symtab}
14964 structures whose names match @var{regexp}. If @var{regexp} is not
14965 given, list them all. The output includes expressions which you can
14966 copy into a @value{GDBN} debugging this one to examine a particular
14967 structure in more detail. For example:
14970 (@value{GDBP}) maint info psymtabs dwarf2read
14971 @{ objfile /home/gnu/build/gdb/gdb
14972 ((struct objfile *) 0x82e69d0)
14973 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
14974 ((struct partial_symtab *) 0x8474b10)
14977 text addresses 0x814d3c8 -- 0x8158074
14978 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
14979 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
14980 dependencies (none)
14983 (@value{GDBP}) maint info symtabs
14987 We see that there is one partial symbol table whose filename contains
14988 the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
14989 and we see that @value{GDBN} has not read in any symtabs yet at all.
14990 If we set a breakpoint on a function, that will cause @value{GDBN} to
14991 read the symtab for the compilation unit containing that function:
14994 (@value{GDBP}) break dwarf2_psymtab_to_symtab
14995 Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
14997 (@value{GDBP}) maint info symtabs
14998 @{ objfile /home/gnu/build/gdb/gdb
14999 ((struct objfile *) 0x82e69d0)
15000 @{ symtab /home/gnu/src/gdb/dwarf2read.c
15001 ((struct symtab *) 0x86c1f38)
15004 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
15005 linetable ((struct linetable *) 0x8370fa0)
15006 debugformat DWARF 2
15015 @chapter Altering Execution
15017 Once you think you have found an error in your program, you might want to
15018 find out for certain whether correcting the apparent error would lead to
15019 correct results in the rest of the run. You can find the answer by
15020 experiment, using the @value{GDBN} features for altering execution of the
15023 For example, you can store new values into variables or memory
15024 locations, give your program a signal, restart it at a different
15025 address, or even return prematurely from a function.
15028 * Assignment:: Assignment to variables
15029 * Jumping:: Continuing at a different address
15030 * Signaling:: Giving your program a signal
15031 * Returning:: Returning from a function
15032 * Calling:: Calling your program's functions
15033 * Patching:: Patching your program
15037 @section Assignment to Variables
15040 @cindex setting variables
15041 To alter the value of a variable, evaluate an assignment expression.
15042 @xref{Expressions, ,Expressions}. For example,
15049 stores the value 4 into the variable @code{x}, and then prints the
15050 value of the assignment expression (which is 4).
15051 @xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
15052 information on operators in supported languages.
15054 @kindex set variable
15055 @cindex variables, setting
15056 If you are not interested in seeing the value of the assignment, use the
15057 @code{set} command instead of the @code{print} command. @code{set} is
15058 really the same as @code{print} except that the expression's value is
15059 not printed and is not put in the value history (@pxref{Value History,
15060 ,Value History}). The expression is evaluated only for its effects.
15062 If the beginning of the argument string of the @code{set} command
15063 appears identical to a @code{set} subcommand, use the @code{set
15064 variable} command instead of just @code{set}. This command is identical
15065 to @code{set} except for its lack of subcommands. For example, if your
15066 program has a variable @code{width}, you get an error if you try to set
15067 a new value with just @samp{set width=13}, because @value{GDBN} has the
15068 command @code{set width}:
15071 (@value{GDBP}) whatis width
15073 (@value{GDBP}) p width
15075 (@value{GDBP}) set width=47
15076 Invalid syntax in expression.
15080 The invalid expression, of course, is @samp{=47}. In
15081 order to actually set the program's variable @code{width}, use
15084 (@value{GDBP}) set var width=47
15087 Because the @code{set} command has many subcommands that can conflict
15088 with the names of program variables, it is a good idea to use the
15089 @code{set variable} command instead of just @code{set}. For example, if
15090 your program has a variable @code{g}, you run into problems if you try
15091 to set a new value with just @samp{set g=4}, because @value{GDBN} has
15092 the command @code{set gnutarget}, abbreviated @code{set g}:
15096 (@value{GDBP}) whatis g
15100 (@value{GDBP}) set g=4
15104 The program being debugged has been started already.
15105 Start it from the beginning? (y or n) y
15106 Starting program: /home/smith/cc_progs/a.out
15107 "/home/smith/cc_progs/a.out": can't open to read symbols:
15108 Invalid bfd target.
15109 (@value{GDBP}) show g
15110 The current BFD target is "=4".
15115 The program variable @code{g} did not change, and you silently set the
15116 @code{gnutarget} to an invalid value. In order to set the variable
15120 (@value{GDBP}) set var g=4
15123 @value{GDBN} allows more implicit conversions in assignments than C; you can
15124 freely store an integer value into a pointer variable or vice versa,
15125 and you can convert any structure to any other structure that is the
15126 same length or shorter.
15127 @comment FIXME: how do structs align/pad in these conversions?
15130 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
15131 construct to generate a value of specified type at a specified address
15132 (@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
15133 to memory location @code{0x83040} as an integer (which implies a certain size
15134 and representation in memory), and
15137 set @{int@}0x83040 = 4
15141 stores the value 4 into that memory location.
15144 @section Continuing at a Different Address
15146 Ordinarily, when you continue your program, you do so at the place where
15147 it stopped, with the @code{continue} command. You can instead continue at
15148 an address of your own choosing, with the following commands:
15152 @item jump @var{linespec}
15153 @itemx jump @var{location}
15154 Resume execution at line @var{linespec} or at address given by
15155 @var{location}. Execution stops again immediately if there is a
15156 breakpoint there. @xref{Specify Location}, for a description of the
15157 different forms of @var{linespec} and @var{location}. It is common
15158 practice to use the @code{tbreak} command in conjunction with
15159 @code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
15161 The @code{jump} command does not change the current stack frame, or
15162 the stack pointer, or the contents of any memory location or any
15163 register other than the program counter. If line @var{linespec} is in
15164 a different function from the one currently executing, the results may
15165 be bizarre if the two functions expect different patterns of arguments or
15166 of local variables. For this reason, the @code{jump} command requests
15167 confirmation if the specified line is not in the function currently
15168 executing. However, even bizarre results are predictable if you are
15169 well acquainted with the machine-language code of your program.
15172 @c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
15173 On many systems, you can get much the same effect as the @code{jump}
15174 command by storing a new value into the register @code{$pc}. The
15175 difference is that this does not start your program running; it only
15176 changes the address of where it @emph{will} run when you continue. For
15184 makes the next @code{continue} command or stepping command execute at
15185 address @code{0x485}, rather than at the address where your program stopped.
15186 @xref{Continuing and Stepping, ,Continuing and Stepping}.
15188 The most common occasion to use the @code{jump} command is to back
15189 up---perhaps with more breakpoints set---over a portion of a program
15190 that has already executed, in order to examine its execution in more
15195 @section Giving your Program a Signal
15196 @cindex deliver a signal to a program
15200 @item signal @var{signal}
15201 Resume execution where your program stopped, but immediately give it the
15202 signal @var{signal}. @var{signal} can be the name or the number of a
15203 signal. For example, on many systems @code{signal 2} and @code{signal
15204 SIGINT} are both ways of sending an interrupt signal.
15206 Alternatively, if @var{signal} is zero, continue execution without
15207 giving a signal. This is useful when your program stopped on account of
15208 a signal and would ordinary see the signal when resumed with the
15209 @code{continue} command; @samp{signal 0} causes it to resume without a
15212 @code{signal} does not repeat when you press @key{RET} a second time
15213 after executing the command.
15217 Invoking the @code{signal} command is not the same as invoking the
15218 @code{kill} utility from the shell. Sending a signal with @code{kill}
15219 causes @value{GDBN} to decide what to do with the signal depending on
15220 the signal handling tables (@pxref{Signals}). The @code{signal} command
15221 passes the signal directly to your program.
15225 @section Returning from a Function
15228 @cindex returning from a function
15231 @itemx return @var{expression}
15232 You can cancel execution of a function call with the @code{return}
15233 command. If you give an
15234 @var{expression} argument, its value is used as the function's return
15238 When you use @code{return}, @value{GDBN} discards the selected stack frame
15239 (and all frames within it). You can think of this as making the
15240 discarded frame return prematurely. If you wish to specify a value to
15241 be returned, give that value as the argument to @code{return}.
15243 This pops the selected stack frame (@pxref{Selection, ,Selecting a
15244 Frame}), and any other frames inside of it, leaving its caller as the
15245 innermost remaining frame. That frame becomes selected. The
15246 specified value is stored in the registers used for returning values
15249 The @code{return} command does not resume execution; it leaves the
15250 program stopped in the state that would exist if the function had just
15251 returned. In contrast, the @code{finish} command (@pxref{Continuing
15252 and Stepping, ,Continuing and Stepping}) resumes execution until the
15253 selected stack frame returns naturally.
15255 @value{GDBN} needs to know how the @var{expression} argument should be set for
15256 the inferior. The concrete registers assignment depends on the OS ABI and the
15257 type being returned by the selected stack frame. For example it is common for
15258 OS ABI to return floating point values in FPU registers while integer values in
15259 CPU registers. Still some ABIs return even floating point values in CPU
15260 registers. Larger integer widths (such as @code{long long int}) also have
15261 specific placement rules. @value{GDBN} already knows the OS ABI from its
15262 current target so it needs to find out also the type being returned to make the
15263 assignment into the right register(s).
15265 Normally, the selected stack frame has debug info. @value{GDBN} will always
15266 use the debug info instead of the implicit type of @var{expression} when the
15267 debug info is available. For example, if you type @kbd{return -1}, and the
15268 function in the current stack frame is declared to return a @code{long long
15269 int}, @value{GDBN} transparently converts the implicit @code{int} value of -1
15270 into a @code{long long int}:
15273 Breakpoint 1, func () at gdb.base/return-nodebug.c:29
15275 (@value{GDBP}) return -1
15276 Make func return now? (y or n) y
15277 #0 0x004004f6 in main () at gdb.base/return-nodebug.c:43
15278 43 printf ("result=%lld\n", func ());
15282 However, if the selected stack frame does not have a debug info, e.g., if the
15283 function was compiled without debug info, @value{GDBN} has to find out the type
15284 to return from user. Specifying a different type by mistake may set the value
15285 in different inferior registers than the caller code expects. For example,
15286 typing @kbd{return -1} with its implicit type @code{int} would set only a part
15287 of a @code{long long int} result for a debug info less function (on 32-bit
15288 architectures). Therefore the user is required to specify the return type by
15289 an appropriate cast explicitly:
15292 Breakpoint 2, 0x0040050b in func ()
15293 (@value{GDBP}) return -1
15294 Return value type not available for selected stack frame.
15295 Please use an explicit cast of the value to return.
15296 (@value{GDBP}) return (long long int) -1
15297 Make selected stack frame return now? (y or n) y
15298 #0 0x00400526 in main ()
15303 @section Calling Program Functions
15306 @cindex calling functions
15307 @cindex inferior functions, calling
15308 @item print @var{expr}
15309 Evaluate the expression @var{expr} and display the resulting value.
15310 @var{expr} may include calls to functions in the program being
15314 @item call @var{expr}
15315 Evaluate the expression @var{expr} without displaying @code{void}
15318 You can use this variant of the @code{print} command if you want to
15319 execute a function from your program that does not return anything
15320 (a.k.a.@: @dfn{a void function}), but without cluttering the output
15321 with @code{void} returned values that @value{GDBN} will otherwise
15322 print. If the result is not void, it is printed and saved in the
15326 It is possible for the function you call via the @code{print} or
15327 @code{call} command to generate a signal (e.g., if there's a bug in
15328 the function, or if you passed it incorrect arguments). What happens
15329 in that case is controlled by the @code{set unwindonsignal} command.
15331 Similarly, with a C@t{++} program it is possible for the function you
15332 call via the @code{print} or @code{call} command to generate an
15333 exception that is not handled due to the constraints of the dummy
15334 frame. In this case, any exception that is raised in the frame, but has
15335 an out-of-frame exception handler will not be found. GDB builds a
15336 dummy-frame for the inferior function call, and the unwinder cannot
15337 seek for exception handlers outside of this dummy-frame. What happens
15338 in that case is controlled by the
15339 @code{set unwind-on-terminating-exception} command.
15342 @item set unwindonsignal
15343 @kindex set unwindonsignal
15344 @cindex unwind stack in called functions
15345 @cindex call dummy stack unwinding
15346 Set unwinding of the stack if a signal is received while in a function
15347 that @value{GDBN} called in the program being debugged. If set to on,
15348 @value{GDBN} unwinds the stack it created for the call and restores
15349 the context to what it was before the call. If set to off (the
15350 default), @value{GDBN} stops in the frame where the signal was
15353 @item show unwindonsignal
15354 @kindex show unwindonsignal
15355 Show the current setting of stack unwinding in the functions called by
15358 @item set unwind-on-terminating-exception
15359 @kindex set unwind-on-terminating-exception
15360 @cindex unwind stack in called functions with unhandled exceptions
15361 @cindex call dummy stack unwinding on unhandled exception.
15362 Set unwinding of the stack if a C@t{++} exception is raised, but left
15363 unhandled while in a function that @value{GDBN} called in the program being
15364 debugged. If set to on (the default), @value{GDBN} unwinds the stack
15365 it created for the call and restores the context to what it was before
15366 the call. If set to off, @value{GDBN} the exception is delivered to
15367 the default C@t{++} exception handler and the inferior terminated.
15369 @item show unwind-on-terminating-exception
15370 @kindex show unwind-on-terminating-exception
15371 Show the current setting of stack unwinding in the functions called by
15376 @cindex weak alias functions
15377 Sometimes, a function you wish to call is actually a @dfn{weak alias}
15378 for another function. In such case, @value{GDBN} might not pick up
15379 the type information, including the types of the function arguments,
15380 which causes @value{GDBN} to call the inferior function incorrectly.
15381 As a result, the called function will function erroneously and may
15382 even crash. A solution to that is to use the name of the aliased
15386 @section Patching Programs
15388 @cindex patching binaries
15389 @cindex writing into executables
15390 @cindex writing into corefiles
15392 By default, @value{GDBN} opens the file containing your program's
15393 executable code (or the corefile) read-only. This prevents accidental
15394 alterations to machine code; but it also prevents you from intentionally
15395 patching your program's binary.
15397 If you'd like to be able to patch the binary, you can specify that
15398 explicitly with the @code{set write} command. For example, you might
15399 want to turn on internal debugging flags, or even to make emergency
15405 @itemx set write off
15406 If you specify @samp{set write on}, @value{GDBN} opens executable and
15407 core files for both reading and writing; if you specify @kbd{set write
15408 off} (the default), @value{GDBN} opens them read-only.
15410 If you have already loaded a file, you must load it again (using the
15411 @code{exec-file} or @code{core-file} command) after changing @code{set
15412 write}, for your new setting to take effect.
15416 Display whether executable files and core files are opened for writing
15417 as well as reading.
15421 @chapter @value{GDBN} Files
15423 @value{GDBN} needs to know the file name of the program to be debugged,
15424 both in order to read its symbol table and in order to start your
15425 program. To debug a core dump of a previous run, you must also tell
15426 @value{GDBN} the name of the core dump file.
15429 * Files:: Commands to specify files
15430 * Separate Debug Files:: Debugging information in separate files
15431 * Index Files:: Index files speed up GDB
15432 * Symbol Errors:: Errors reading symbol files
15433 * Data Files:: GDB data files
15437 @section Commands to Specify Files
15439 @cindex symbol table
15440 @cindex core dump file
15442 You may want to specify executable and core dump file names. The usual
15443 way to do this is at start-up time, using the arguments to
15444 @value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
15445 Out of @value{GDBN}}).
15447 Occasionally it is necessary to change to a different file during a
15448 @value{GDBN} session. Or you may run @value{GDBN} and forget to
15449 specify a file you want to use. Or you are debugging a remote target
15450 via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
15451 Program}). In these situations the @value{GDBN} commands to specify
15452 new files are useful.
15455 @cindex executable file
15457 @item file @var{filename}
15458 Use @var{filename} as the program to be debugged. It is read for its
15459 symbols and for the contents of pure memory. It is also the program
15460 executed when you use the @code{run} command. If you do not specify a
15461 directory and the file is not found in the @value{GDBN} working directory,
15462 @value{GDBN} uses the environment variable @code{PATH} as a list of
15463 directories to search, just as the shell does when looking for a program
15464 to run. You can change the value of this variable, for both @value{GDBN}
15465 and your program, using the @code{path} command.
15467 @cindex unlinked object files
15468 @cindex patching object files
15469 You can load unlinked object @file{.o} files into @value{GDBN} using
15470 the @code{file} command. You will not be able to ``run'' an object
15471 file, but you can disassemble functions and inspect variables. Also,
15472 if the underlying BFD functionality supports it, you could use
15473 @kbd{gdb -write} to patch object files using this technique. Note
15474 that @value{GDBN} can neither interpret nor modify relocations in this
15475 case, so branches and some initialized variables will appear to go to
15476 the wrong place. But this feature is still handy from time to time.
15479 @code{file} with no argument makes @value{GDBN} discard any information it
15480 has on both executable file and the symbol table.
15483 @item exec-file @r{[} @var{filename} @r{]}
15484 Specify that the program to be run (but not the symbol table) is found
15485 in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
15486 if necessary to locate your program. Omitting @var{filename} means to
15487 discard information on the executable file.
15489 @kindex symbol-file
15490 @item symbol-file @r{[} @var{filename} @r{]}
15491 Read symbol table information from file @var{filename}. @code{PATH} is
15492 searched when necessary. Use the @code{file} command to get both symbol
15493 table and program to run from the same file.
15495 @code{symbol-file} with no argument clears out @value{GDBN} information on your
15496 program's symbol table.
15498 The @code{symbol-file} command causes @value{GDBN} to forget the contents of
15499 some breakpoints and auto-display expressions. This is because they may
15500 contain pointers to the internal data recording symbols and data types,
15501 which are part of the old symbol table data being discarded inside
15504 @code{symbol-file} does not repeat if you press @key{RET} again after
15507 When @value{GDBN} is configured for a particular environment, it
15508 understands debugging information in whatever format is the standard
15509 generated for that environment; you may use either a @sc{gnu} compiler, or
15510 other compilers that adhere to the local conventions.
15511 Best results are usually obtained from @sc{gnu} compilers; for example,
15512 using @code{@value{NGCC}} you can generate debugging information for
15515 For most kinds of object files, with the exception of old SVR3 systems
15516 using COFF, the @code{symbol-file} command does not normally read the
15517 symbol table in full right away. Instead, it scans the symbol table
15518 quickly to find which source files and which symbols are present. The
15519 details are read later, one source file at a time, as they are needed.
15521 The purpose of this two-stage reading strategy is to make @value{GDBN}
15522 start up faster. For the most part, it is invisible except for
15523 occasional pauses while the symbol table details for a particular source
15524 file are being read. (The @code{set verbose} command can turn these
15525 pauses into messages if desired. @xref{Messages/Warnings, ,Optional
15526 Warnings and Messages}.)
15528 We have not implemented the two-stage strategy for COFF yet. When the
15529 symbol table is stored in COFF format, @code{symbol-file} reads the
15530 symbol table data in full right away. Note that ``stabs-in-COFF''
15531 still does the two-stage strategy, since the debug info is actually
15535 @cindex reading symbols immediately
15536 @cindex symbols, reading immediately
15537 @item symbol-file @r{[} -readnow @r{]} @var{filename}
15538 @itemx file @r{[} -readnow @r{]} @var{filename}
15539 You can override the @value{GDBN} two-stage strategy for reading symbol
15540 tables by using the @samp{-readnow} option with any of the commands that
15541 load symbol table information, if you want to be sure @value{GDBN} has the
15542 entire symbol table available.
15544 @c FIXME: for now no mention of directories, since this seems to be in
15545 @c flux. 13mar1992 status is that in theory GDB would look either in
15546 @c current dir or in same dir as myprog; but issues like competing
15547 @c GDB's, or clutter in system dirs, mean that in practice right now
15548 @c only current dir is used. FFish says maybe a special GDB hierarchy
15549 @c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
15553 @item core-file @r{[}@var{filename}@r{]}
15555 Specify the whereabouts of a core dump file to be used as the ``contents
15556 of memory''. Traditionally, core files contain only some parts of the
15557 address space of the process that generated them; @value{GDBN} can access the
15558 executable file itself for other parts.
15560 @code{core-file} with no argument specifies that no core file is
15563 Note that the core file is ignored when your program is actually running
15564 under @value{GDBN}. So, if you have been running your program and you
15565 wish to debug a core file instead, you must kill the subprocess in which
15566 the program is running. To do this, use the @code{kill} command
15567 (@pxref{Kill Process, ,Killing the Child Process}).
15569 @kindex add-symbol-file
15570 @cindex dynamic linking
15571 @item add-symbol-file @var{filename} @var{address}
15572 @itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
15573 @itemx add-symbol-file @var{filename} @var{address} -s @var{section} @var{address} @dots{}
15574 The @code{add-symbol-file} command reads additional symbol table
15575 information from the file @var{filename}. You would use this command
15576 when @var{filename} has been dynamically loaded (by some other means)
15577 into the program that is running. @var{address} should be the memory
15578 address at which the file has been loaded; @value{GDBN} cannot figure
15579 this out for itself. You can additionally specify an arbitrary number
15580 of @samp{-s @var{section} @var{address}} pairs, to give an explicit
15581 section name and base address for that section. You can specify any
15582 @var{address} as an expression.
15584 The symbol table of the file @var{filename} is added to the symbol table
15585 originally read with the @code{symbol-file} command. You can use the
15586 @code{add-symbol-file} command any number of times; the new symbol data
15587 thus read keeps adding to the old. To discard all old symbol data
15588 instead, use the @code{symbol-file} command without any arguments.
15590 @cindex relocatable object files, reading symbols from
15591 @cindex object files, relocatable, reading symbols from
15592 @cindex reading symbols from relocatable object files
15593 @cindex symbols, reading from relocatable object files
15594 @cindex @file{.o} files, reading symbols from
15595 Although @var{filename} is typically a shared library file, an
15596 executable file, or some other object file which has been fully
15597 relocated for loading into a process, you can also load symbolic
15598 information from relocatable @file{.o} files, as long as:
15602 the file's symbolic information refers only to linker symbols defined in
15603 that file, not to symbols defined by other object files,
15605 every section the file's symbolic information refers to has actually
15606 been loaded into the inferior, as it appears in the file, and
15608 you can determine the address at which every section was loaded, and
15609 provide these to the @code{add-symbol-file} command.
15613 Some embedded operating systems, like Sun Chorus and VxWorks, can load
15614 relocatable files into an already running program; such systems
15615 typically make the requirements above easy to meet. However, it's
15616 important to recognize that many native systems use complex link
15617 procedures (@code{.linkonce} section factoring and C@t{++} constructor table
15618 assembly, for example) that make the requirements difficult to meet. In
15619 general, one cannot assume that using @code{add-symbol-file} to read a
15620 relocatable object file's symbolic information will have the same effect
15621 as linking the relocatable object file into the program in the normal
15624 @code{add-symbol-file} does not repeat if you press @key{RET} after using it.
15626 @kindex add-symbol-file-from-memory
15627 @cindex @code{syscall DSO}
15628 @cindex load symbols from memory
15629 @item add-symbol-file-from-memory @var{address}
15630 Load symbols from the given @var{address} in a dynamically loaded
15631 object file whose image is mapped directly into the inferior's memory.
15632 For example, the Linux kernel maps a @code{syscall DSO} into each
15633 process's address space; this DSO provides kernel-specific code for
15634 some system calls. The argument can be any expression whose
15635 evaluation yields the address of the file's shared object file header.
15636 For this command to work, you must have used @code{symbol-file} or
15637 @code{exec-file} commands in advance.
15639 @kindex add-shared-symbol-files
15641 @item add-shared-symbol-files @var{library-file}
15642 @itemx assf @var{library-file}
15643 The @code{add-shared-symbol-files} command can currently be used only
15644 in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
15645 alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
15646 @value{GDBN} automatically looks for shared libraries, however if
15647 @value{GDBN} does not find yours, you can invoke
15648 @code{add-shared-symbol-files}. It takes one argument: the shared
15649 library's file name. @code{assf} is a shorthand alias for
15650 @code{add-shared-symbol-files}.
15653 @item section @var{section} @var{addr}
15654 The @code{section} command changes the base address of the named
15655 @var{section} of the exec file to @var{addr}. This can be used if the
15656 exec file does not contain section addresses, (such as in the
15657 @code{a.out} format), or when the addresses specified in the file
15658 itself are wrong. Each section must be changed separately. The
15659 @code{info files} command, described below, lists all the sections and
15663 @kindex info target
15666 @code{info files} and @code{info target} are synonymous; both print the
15667 current target (@pxref{Targets, ,Specifying a Debugging Target}),
15668 including the names of the executable and core dump files currently in
15669 use by @value{GDBN}, and the files from which symbols were loaded. The
15670 command @code{help target} lists all possible targets rather than
15673 @kindex maint info sections
15674 @item maint info sections
15675 Another command that can give you extra information about program sections
15676 is @code{maint info sections}. In addition to the section information
15677 displayed by @code{info files}, this command displays the flags and file
15678 offset of each section in the executable and core dump files. In addition,
15679 @code{maint info sections} provides the following command options (which
15680 may be arbitrarily combined):
15684 Display sections for all loaded object files, including shared libraries.
15685 @item @var{sections}
15686 Display info only for named @var{sections}.
15687 @item @var{section-flags}
15688 Display info only for sections for which @var{section-flags} are true.
15689 The section flags that @value{GDBN} currently knows about are:
15692 Section will have space allocated in the process when loaded.
15693 Set for all sections except those containing debug information.
15695 Section will be loaded from the file into the child process memory.
15696 Set for pre-initialized code and data, clear for @code{.bss} sections.
15698 Section needs to be relocated before loading.
15700 Section cannot be modified by the child process.
15702 Section contains executable code only.
15704 Section contains data only (no executable code).
15706 Section will reside in ROM.
15708 Section contains data for constructor/destructor lists.
15710 Section is not empty.
15712 An instruction to the linker to not output the section.
15713 @item COFF_SHARED_LIBRARY
15714 A notification to the linker that the section contains
15715 COFF shared library information.
15717 Section contains common symbols.
15720 @kindex set trust-readonly-sections
15721 @cindex read-only sections
15722 @item set trust-readonly-sections on
15723 Tell @value{GDBN} that readonly sections in your object file
15724 really are read-only (i.e.@: that their contents will not change).
15725 In that case, @value{GDBN} can fetch values from these sections
15726 out of the object file, rather than from the target program.
15727 For some targets (notably embedded ones), this can be a significant
15728 enhancement to debugging performance.
15730 The default is off.
15732 @item set trust-readonly-sections off
15733 Tell @value{GDBN} not to trust readonly sections. This means that
15734 the contents of the section might change while the program is running,
15735 and must therefore be fetched from the target when needed.
15737 @item show trust-readonly-sections
15738 Show the current setting of trusting readonly sections.
15741 All file-specifying commands allow both absolute and relative file names
15742 as arguments. @value{GDBN} always converts the file name to an absolute file
15743 name and remembers it that way.
15745 @cindex shared libraries
15746 @anchor{Shared Libraries}
15747 @value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
15748 and IBM RS/6000 AIX shared libraries.
15750 On MS-Windows @value{GDBN} must be linked with the Expat library to support
15751 shared libraries. @xref{Expat}.
15753 @value{GDBN} automatically loads symbol definitions from shared libraries
15754 when you use the @code{run} command, or when you examine a core file.
15755 (Before you issue the @code{run} command, @value{GDBN} does not understand
15756 references to a function in a shared library, however---unless you are
15757 debugging a core file).
15759 On HP-UX, if the program loads a library explicitly, @value{GDBN}
15760 automatically loads the symbols at the time of the @code{shl_load} call.
15762 @c FIXME: some @value{GDBN} release may permit some refs to undef
15763 @c FIXME...symbols---eg in a break cmd---assuming they are from a shared
15764 @c FIXME...lib; check this from time to time when updating manual
15766 There are times, however, when you may wish to not automatically load
15767 symbol definitions from shared libraries, such as when they are
15768 particularly large or there are many of them.
15770 To control the automatic loading of shared library symbols, use the
15774 @kindex set auto-solib-add
15775 @item set auto-solib-add @var{mode}
15776 If @var{mode} is @code{on}, symbols from all shared object libraries
15777 will be loaded automatically when the inferior begins execution, you
15778 attach to an independently started inferior, or when the dynamic linker
15779 informs @value{GDBN} that a new library has been loaded. If @var{mode}
15780 is @code{off}, symbols must be loaded manually, using the
15781 @code{sharedlibrary} command. The default value is @code{on}.
15783 @cindex memory used for symbol tables
15784 If your program uses lots of shared libraries with debug info that
15785 takes large amounts of memory, you can decrease the @value{GDBN}
15786 memory footprint by preventing it from automatically loading the
15787 symbols from shared libraries. To that end, type @kbd{set
15788 auto-solib-add off} before running the inferior, then load each
15789 library whose debug symbols you do need with @kbd{sharedlibrary
15790 @var{regexp}}, where @var{regexp} is a regular expression that matches
15791 the libraries whose symbols you want to be loaded.
15793 @kindex show auto-solib-add
15794 @item show auto-solib-add
15795 Display the current autoloading mode.
15798 @cindex load shared library
15799 To explicitly load shared library symbols, use the @code{sharedlibrary}
15803 @kindex info sharedlibrary
15805 @item info share @var{regex}
15806 @itemx info sharedlibrary @var{regex}
15807 Print the names of the shared libraries which are currently loaded
15808 that match @var{regex}. If @var{regex} is omitted then print
15809 all shared libraries that are loaded.
15811 @kindex sharedlibrary
15813 @item sharedlibrary @var{regex}
15814 @itemx share @var{regex}
15815 Load shared object library symbols for files matching a
15816 Unix regular expression.
15817 As with files loaded automatically, it only loads shared libraries
15818 required by your program for a core file or after typing @code{run}. If
15819 @var{regex} is omitted all shared libraries required by your program are
15822 @item nosharedlibrary
15823 @kindex nosharedlibrary
15824 @cindex unload symbols from shared libraries
15825 Unload all shared object library symbols. This discards all symbols
15826 that have been loaded from all shared libraries. Symbols from shared
15827 libraries that were loaded by explicit user requests are not
15831 Sometimes you may wish that @value{GDBN} stops and gives you control
15832 when any of shared library events happen. The best way to do this is
15833 to use @code{catch load} and @code{catch unload} (@pxref{Set
15836 @value{GDBN} also supports the the @code{set stop-on-solib-events}
15837 command for this. This command exists for historical reasons. It is
15838 less useful than setting a catchpoint, because it does not allow for
15839 conditions or commands as a catchpoint does.
15842 @item set stop-on-solib-events
15843 @kindex set stop-on-solib-events
15844 This command controls whether @value{GDBN} should give you control
15845 when the dynamic linker notifies it about some shared library event.
15846 The most common event of interest is loading or unloading of a new
15849 @item show stop-on-solib-events
15850 @kindex show stop-on-solib-events
15851 Show whether @value{GDBN} stops and gives you control when shared
15852 library events happen.
15855 Shared libraries are also supported in many cross or remote debugging
15856 configurations. @value{GDBN} needs to have access to the target's libraries;
15857 this can be accomplished either by providing copies of the libraries
15858 on the host system, or by asking @value{GDBN} to automatically retrieve the
15859 libraries from the target. If copies of the target libraries are
15860 provided, they need to be the same as the target libraries, although the
15861 copies on the target can be stripped as long as the copies on the host are
15864 @cindex where to look for shared libraries
15865 For remote debugging, you need to tell @value{GDBN} where the target
15866 libraries are, so that it can load the correct copies---otherwise, it
15867 may try to load the host's libraries. @value{GDBN} has two variables
15868 to specify the search directories for target libraries.
15871 @cindex prefix for shared library file names
15872 @cindex system root, alternate
15873 @kindex set solib-absolute-prefix
15874 @kindex set sysroot
15875 @item set sysroot @var{path}
15876 Use @var{path} as the system root for the program being debugged. Any
15877 absolute shared library paths will be prefixed with @var{path}; many
15878 runtime loaders store the absolute paths to the shared library in the
15879 target program's memory. If you use @code{set sysroot} to find shared
15880 libraries, they need to be laid out in the same way that they are on
15881 the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
15884 If @var{path} starts with the sequence @file{remote:}, @value{GDBN} will
15885 retrieve the target libraries from the remote system. This is only
15886 supported when using a remote target that supports the @code{remote get}
15887 command (@pxref{File Transfer,,Sending files to a remote system}).
15888 The part of @var{path} following the initial @file{remote:}
15889 (if present) is used as system root prefix on the remote file system.
15890 @footnote{If you want to specify a local system root using a directory
15891 that happens to be named @file{remote:}, you need to use some equivalent
15892 variant of the name like @file{./remote:}.}
15894 For targets with an MS-DOS based filesystem, such as MS-Windows and
15895 SymbianOS, @value{GDBN} tries prefixing a few variants of the target
15896 absolute file name with @var{path}. But first, on Unix hosts,
15897 @value{GDBN} converts all backslash directory separators into forward
15898 slashes, because the backslash is not a directory separator on Unix:
15901 c:\foo\bar.dll @result{} c:/foo/bar.dll
15904 Then, @value{GDBN} attempts prefixing the target file name with
15905 @var{path}, and looks for the resulting file name in the host file
15909 c:/foo/bar.dll @result{} /path/to/sysroot/c:/foo/bar.dll
15912 If that does not find the shared library, @value{GDBN} tries removing
15913 the @samp{:} character from the drive spec, both for convenience, and,
15914 for the case of the host file system not supporting file names with
15918 c:/foo/bar.dll @result{} /path/to/sysroot/c/foo/bar.dll
15921 This makes it possible to have a system root that mirrors a target
15922 with more than one drive. E.g., you may want to setup your local
15923 copies of the target system shared libraries like so (note @samp{c} vs
15927 @file{/path/to/sysroot/c/sys/bin/foo.dll}
15928 @file{/path/to/sysroot/c/sys/bin/bar.dll}
15929 @file{/path/to/sysroot/z/sys/bin/bar.dll}
15933 and point the system root at @file{/path/to/sysroot}, so that
15934 @value{GDBN} can find the correct copies of both
15935 @file{c:\sys\bin\foo.dll}, and @file{z:\sys\bin\bar.dll}.
15937 If that still does not find the shared library, @value{GDBN} tries
15938 removing the whole drive spec from the target file name:
15941 c:/foo/bar.dll @result{} /path/to/sysroot/foo/bar.dll
15944 This last lookup makes it possible to not care about the drive name,
15945 if you don't want or need to.
15947 The @code{set solib-absolute-prefix} command is an alias for @code{set
15950 @cindex default system root
15951 @cindex @samp{--with-sysroot}
15952 You can set the default system root by using the configure-time
15953 @samp{--with-sysroot} option. If the system root is inside
15954 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
15955 @samp{--exec-prefix}), then the default system root will be updated
15956 automatically if the installed @value{GDBN} is moved to a new
15959 @kindex show sysroot
15961 Display the current shared library prefix.
15963 @kindex set solib-search-path
15964 @item set solib-search-path @var{path}
15965 If this variable is set, @var{path} is a colon-separated list of
15966 directories to search for shared libraries. @samp{solib-search-path}
15967 is used after @samp{sysroot} fails to locate the library, or if the
15968 path to the library is relative instead of absolute. If you want to
15969 use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
15970 @samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
15971 finding your host's libraries. @samp{sysroot} is preferred; setting
15972 it to a nonexistent directory may interfere with automatic loading
15973 of shared library symbols.
15975 @kindex show solib-search-path
15976 @item show solib-search-path
15977 Display the current shared library search path.
15979 @cindex DOS file-name semantics of file names.
15980 @kindex set target-file-system-kind (unix|dos-based|auto)
15981 @kindex show target-file-system-kind
15982 @item set target-file-system-kind @var{kind}
15983 Set assumed file system kind for target reported file names.
15985 Shared library file names as reported by the target system may not
15986 make sense as is on the system @value{GDBN} is running on. For
15987 example, when remote debugging a target that has MS-DOS based file
15988 system semantics, from a Unix host, the target may be reporting to
15989 @value{GDBN} a list of loaded shared libraries with file names such as
15990 @file{c:\Windows\kernel32.dll}. On Unix hosts, there's no concept of
15991 drive letters, so the @samp{c:\} prefix is not normally understood as
15992 indicating an absolute file name, and neither is the backslash
15993 normally considered a directory separator character. In that case,
15994 the native file system would interpret this whole absolute file name
15995 as a relative file name with no directory components. This would make
15996 it impossible to point @value{GDBN} at a copy of the remote target's
15997 shared libraries on the host using @code{set sysroot}, and impractical
15998 with @code{set solib-search-path}. Setting
15999 @code{target-file-system-kind} to @code{dos-based} tells @value{GDBN}
16000 to interpret such file names similarly to how the target would, and to
16001 map them to file names valid on @value{GDBN}'s native file system
16002 semantics. The value of @var{kind} can be @code{"auto"}, in addition
16003 to one of the supported file system kinds. In that case, @value{GDBN}
16004 tries to determine the appropriate file system variant based on the
16005 current target's operating system (@pxref{ABI, ,Configuring the
16006 Current ABI}). The supported file system settings are:
16010 Instruct @value{GDBN} to assume the target file system is of Unix
16011 kind. Only file names starting the forward slash (@samp{/}) character
16012 are considered absolute, and the directory separator character is also
16016 Instruct @value{GDBN} to assume the target file system is DOS based.
16017 File names starting with either a forward slash, or a drive letter
16018 followed by a colon (e.g., @samp{c:}), are considered absolute, and
16019 both the slash (@samp{/}) and the backslash (@samp{\\}) characters are
16020 considered directory separators.
16023 Instruct @value{GDBN} to use the file system kind associated with the
16024 target operating system (@pxref{ABI, ,Configuring the Current ABI}).
16025 This is the default.
16029 @cindex file name canonicalization
16030 @cindex base name differences
16031 When processing file names provided by the user, @value{GDBN}
16032 frequently needs to compare them to the file names recorded in the
16033 program's debug info. Normally, @value{GDBN} compares just the
16034 @dfn{base names} of the files as strings, which is reasonably fast
16035 even for very large programs. (The base name of a file is the last
16036 portion of its name, after stripping all the leading directories.)
16037 This shortcut in comparison is based upon the assumption that files
16038 cannot have more than one base name. This is usually true, but
16039 references to files that use symlinks or similar filesystem
16040 facilities violate that assumption. If your program records files
16041 using such facilities, or if you provide file names to @value{GDBN}
16042 using symlinks etc., you can set @code{basenames-may-differ} to
16043 @code{true} to instruct @value{GDBN} to completely canonicalize each
16044 pair of file names it needs to compare. This will make file-name
16045 comparisons accurate, but at a price of a significant slowdown.
16048 @item set basenames-may-differ
16049 @kindex set basenames-may-differ
16050 Set whether a source file may have multiple base names.
16052 @item show basenames-may-differ
16053 @kindex show basenames-may-differ
16054 Show whether a source file may have multiple base names.
16057 @node Separate Debug Files
16058 @section Debugging Information in Separate Files
16059 @cindex separate debugging information files
16060 @cindex debugging information in separate files
16061 @cindex @file{.debug} subdirectories
16062 @cindex debugging information directory, global
16063 @cindex global debugging information directory
16064 @cindex build ID, and separate debugging files
16065 @cindex @file{.build-id} directory
16067 @value{GDBN} allows you to put a program's debugging information in a
16068 file separate from the executable itself, in a way that allows
16069 @value{GDBN} to find and load the debugging information automatically.
16070 Since debugging information can be very large---sometimes larger
16071 than the executable code itself---some systems distribute debugging
16072 information for their executables in separate files, which users can
16073 install only when they need to debug a problem.
16075 @value{GDBN} supports two ways of specifying the separate debug info
16080 The executable contains a @dfn{debug link} that specifies the name of
16081 the separate debug info file. The separate debug file's name is
16082 usually @file{@var{executable}.debug}, where @var{executable} is the
16083 name of the corresponding executable file without leading directories
16084 (e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
16085 debug link specifies a 32-bit @dfn{Cyclic Redundancy Check} (CRC)
16086 checksum for the debug file, which @value{GDBN} uses to validate that
16087 the executable and the debug file came from the same build.
16090 The executable contains a @dfn{build ID}, a unique bit string that is
16091 also present in the corresponding debug info file. (This is supported
16092 only on some operating systems, notably those which use the ELF format
16093 for binary files and the @sc{gnu} Binutils.) For more details about
16094 this feature, see the description of the @option{--build-id}
16095 command-line option in @ref{Options, , Command Line Options, ld.info,
16096 The GNU Linker}. The debug info file's name is not specified
16097 explicitly by the build ID, but can be computed from the build ID, see
16101 Depending on the way the debug info file is specified, @value{GDBN}
16102 uses two different methods of looking for the debug file:
16106 For the ``debug link'' method, @value{GDBN} looks up the named file in
16107 the directory of the executable file, then in a subdirectory of that
16108 directory named @file{.debug}, and finally under the global debug
16109 directory, in a subdirectory whose name is identical to the leading
16110 directories of the executable's absolute file name.
16113 For the ``build ID'' method, @value{GDBN} looks in the
16114 @file{.build-id} subdirectory of the global debug directory for a file
16115 named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
16116 first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
16117 are the rest of the bit string. (Real build ID strings are 32 or more
16118 hex characters, not 10.)
16121 So, for example, suppose you ask @value{GDBN} to debug
16122 @file{/usr/bin/ls}, which has a debug link that specifies the
16123 file @file{ls.debug}, and a build ID whose value in hex is
16124 @code{abcdef1234}. If the global debug directory is
16125 @file{/usr/lib/debug}, then @value{GDBN} will look for the following
16126 debug information files, in the indicated order:
16130 @file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
16132 @file{/usr/bin/ls.debug}
16134 @file{/usr/bin/.debug/ls.debug}
16136 @file{/usr/lib/debug/usr/bin/ls.debug}.
16139 You can set the global debugging info directory's name, and view the
16140 name @value{GDBN} is currently using.
16144 @kindex set debug-file-directory
16145 @item set debug-file-directory @var{directories}
16146 Set the directories which @value{GDBN} searches for separate debugging
16147 information files to @var{directory}. Multiple directory components can be set
16148 concatenating them by a directory separator.
16150 @kindex show debug-file-directory
16151 @item show debug-file-directory
16152 Show the directories @value{GDBN} searches for separate debugging
16157 @cindex @code{.gnu_debuglink} sections
16158 @cindex debug link sections
16159 A debug link is a special section of the executable file named
16160 @code{.gnu_debuglink}. The section must contain:
16164 A filename, with any leading directory components removed, followed by
16167 zero to three bytes of padding, as needed to reach the next four-byte
16168 boundary within the section, and
16170 a four-byte CRC checksum, stored in the same endianness used for the
16171 executable file itself. The checksum is computed on the debugging
16172 information file's full contents by the function given below, passing
16173 zero as the @var{crc} argument.
16176 Any executable file format can carry a debug link, as long as it can
16177 contain a section named @code{.gnu_debuglink} with the contents
16180 @cindex @code{.note.gnu.build-id} sections
16181 @cindex build ID sections
16182 The build ID is a special section in the executable file (and in other
16183 ELF binary files that @value{GDBN} may consider). This section is
16184 often named @code{.note.gnu.build-id}, but that name is not mandatory.
16185 It contains unique identification for the built files---the ID remains
16186 the same across multiple builds of the same build tree. The default
16187 algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
16188 content for the build ID string. The same section with an identical
16189 value is present in the original built binary with symbols, in its
16190 stripped variant, and in the separate debugging information file.
16192 The debugging information file itself should be an ordinary
16193 executable, containing a full set of linker symbols, sections, and
16194 debugging information. The sections of the debugging information file
16195 should have the same names, addresses, and sizes as the original file,
16196 but they need not contain any data---much like a @code{.bss} section
16197 in an ordinary executable.
16199 The @sc{gnu} binary utilities (Binutils) package includes the
16200 @samp{objcopy} utility that can produce
16201 the separated executable / debugging information file pairs using the
16202 following commands:
16205 @kbd{objcopy --only-keep-debug foo foo.debug}
16210 These commands remove the debugging
16211 information from the executable file @file{foo} and place it in the file
16212 @file{foo.debug}. You can use the first, second or both methods to link the
16217 The debug link method needs the following additional command to also leave
16218 behind a debug link in @file{foo}:
16221 @kbd{objcopy --add-gnu-debuglink=foo.debug foo}
16224 Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
16225 a version of the @code{strip} command such that the command @kbd{strip foo -f
16226 foo.debug} has the same functionality as the two @code{objcopy} commands and
16227 the @code{ln -s} command above, together.
16230 Build ID gets embedded into the main executable using @code{ld --build-id} or
16231 the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
16232 compatibility fixes for debug files separation are present in @sc{gnu} binary
16233 utilities (Binutils) package since version 2.18.
16238 @cindex CRC algorithm definition
16239 The CRC used in @code{.gnu_debuglink} is the CRC-32 defined in
16240 IEEE 802.3 using the polynomial:
16242 @c TexInfo requires naked braces for multi-digit exponents for Tex
16243 @c output, but this causes HTML output to barf. HTML has to be set using
16244 @c raw commands. So we end up having to specify this equation in 2
16249 <em>x</em><sup>32</sup> + <em>x</em><sup>26</sup> + <em>x</em><sup>23</sup> + <em>x</em><sup>22</sup> + <em>x</em><sup>16</sup> + <em>x</em><sup>12</sup> + <em>x</em><sup>11</sup>
16250 + <em>x</em><sup>10</sup> + <em>x</em><sup>8</sup> + <em>x</em><sup>7</sup> + <em>x</em><sup>5</sup> + <em>x</em><sup>4</sup> + <em>x</em><sup>2</sup> + <em>x</em> + 1
16256 @math{x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11}}
16257 @math{+ x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1}
16261 The function is computed byte at a time, taking the least
16262 significant bit of each byte first. The initial pattern
16263 @code{0xffffffff} is used, to ensure leading zeros affect the CRC and
16264 the final result is inverted to ensure trailing zeros also affect the
16267 @emph{Note:} This is the same CRC polynomial as used in handling the
16268 @dfn{Remote Serial Protocol} @code{qCRC} packet (@pxref{Remote Protocol,
16269 , @value{GDBN} Remote Serial Protocol}). However in the
16270 case of the Remote Serial Protocol, the CRC is computed @emph{most}
16271 significant bit first, and the result is not inverted, so trailing
16272 zeros have no effect on the CRC value.
16274 To complete the description, we show below the code of the function
16275 which produces the CRC used in @code{.gnu_debuglink}. Inverting the
16276 initially supplied @code{crc} argument means that an initial call to
16277 this function passing in zero will start computing the CRC using
16280 @kindex gnu_debuglink_crc32
16283 gnu_debuglink_crc32 (unsigned long crc,
16284 unsigned char *buf, size_t len)
16286 static const unsigned long crc32_table[256] =
16288 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
16289 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
16290 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
16291 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
16292 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
16293 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
16294 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
16295 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
16296 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
16297 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
16298 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
16299 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
16300 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
16301 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
16302 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
16303 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
16304 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
16305 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
16306 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
16307 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
16308 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
16309 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
16310 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
16311 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
16312 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
16313 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
16314 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
16315 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
16316 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
16317 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
16318 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
16319 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
16320 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
16321 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
16322 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
16323 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
16324 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
16325 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
16326 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
16327 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
16328 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
16329 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
16330 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
16331 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
16332 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
16333 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
16334 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
16335 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
16336 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
16337 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
16338 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
16341 unsigned char *end;
16343 crc = ~crc & 0xffffffff;
16344 for (end = buf + len; buf < end; ++buf)
16345 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
16346 return ~crc & 0xffffffff;
16351 This computation does not apply to the ``build ID'' method.
16355 @section Index Files Speed Up @value{GDBN}
16356 @cindex index files
16357 @cindex @samp{.gdb_index} section
16359 When @value{GDBN} finds a symbol file, it scans the symbols in the
16360 file in order to construct an internal symbol table. This lets most
16361 @value{GDBN} operations work quickly---at the cost of a delay early
16362 on. For large programs, this delay can be quite lengthy, so
16363 @value{GDBN} provides a way to build an index, which speeds up
16366 The index is stored as a section in the symbol file. @value{GDBN} can
16367 write the index to a file, then you can put it into the symbol file
16368 using @command{objcopy}.
16370 To create an index file, use the @code{save gdb-index} command:
16373 @item save gdb-index @var{directory}
16374 @kindex save gdb-index
16375 Create an index file for each symbol file currently known by
16376 @value{GDBN}. Each file is named after its corresponding symbol file,
16377 with @samp{.gdb-index} appended, and is written into the given
16381 Once you have created an index file you can merge it into your symbol
16382 file, here named @file{symfile}, using @command{objcopy}:
16385 $ objcopy --add-section .gdb_index=symfile.gdb-index \
16386 --set-section-flags .gdb_index=readonly symfile symfile
16389 There are currently some limitation on indices. They only work when
16390 for DWARF debugging information, not stabs. And, they do not
16391 currently work for programs using Ada.
16393 @node Symbol Errors
16394 @section Errors Reading Symbol Files
16396 While reading a symbol file, @value{GDBN} occasionally encounters problems,
16397 such as symbol types it does not recognize, or known bugs in compiler
16398 output. By default, @value{GDBN} does not notify you of such problems, since
16399 they are relatively common and primarily of interest to people
16400 debugging compilers. If you are interested in seeing information
16401 about ill-constructed symbol tables, you can either ask @value{GDBN} to print
16402 only one message about each such type of problem, no matter how many
16403 times the problem occurs; or you can ask @value{GDBN} to print more messages,
16404 to see how many times the problems occur, with the @code{set
16405 complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
16408 The messages currently printed, and their meanings, include:
16411 @item inner block not inside outer block in @var{symbol}
16413 The symbol information shows where symbol scopes begin and end
16414 (such as at the start of a function or a block of statements). This
16415 error indicates that an inner scope block is not fully contained
16416 in its outer scope blocks.
16418 @value{GDBN} circumvents the problem by treating the inner block as if it had
16419 the same scope as the outer block. In the error message, @var{symbol}
16420 may be shown as ``@code{(don't know)}'' if the outer block is not a
16423 @item block at @var{address} out of order
16425 The symbol information for symbol scope blocks should occur in
16426 order of increasing addresses. This error indicates that it does not
16429 @value{GDBN} does not circumvent this problem, and has trouble
16430 locating symbols in the source file whose symbols it is reading. (You
16431 can often determine what source file is affected by specifying
16432 @code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
16435 @item bad block start address patched
16437 The symbol information for a symbol scope block has a start address
16438 smaller than the address of the preceding source line. This is known
16439 to occur in the SunOS 4.1.1 (and earlier) C compiler.
16441 @value{GDBN} circumvents the problem by treating the symbol scope block as
16442 starting on the previous source line.
16444 @item bad string table offset in symbol @var{n}
16447 Symbol number @var{n} contains a pointer into the string table which is
16448 larger than the size of the string table.
16450 @value{GDBN} circumvents the problem by considering the symbol to have the
16451 name @code{foo}, which may cause other problems if many symbols end up
16454 @item unknown symbol type @code{0x@var{nn}}
16456 The symbol information contains new data types that @value{GDBN} does
16457 not yet know how to read. @code{0x@var{nn}} is the symbol type of the
16458 uncomprehended information, in hexadecimal.
16460 @value{GDBN} circumvents the error by ignoring this symbol information.
16461 This usually allows you to debug your program, though certain symbols
16462 are not accessible. If you encounter such a problem and feel like
16463 debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
16464 on @code{complain}, then go up to the function @code{read_dbx_symtab}
16465 and examine @code{*bufp} to see the symbol.
16467 @item stub type has NULL name
16469 @value{GDBN} could not find the full definition for a struct or class.
16471 @item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
16472 The symbol information for a C@t{++} member function is missing some
16473 information that recent versions of the compiler should have output for
16476 @item info mismatch between compiler and debugger
16478 @value{GDBN} could not parse a type specification output by the compiler.
16483 @section GDB Data Files
16485 @cindex prefix for data files
16486 @value{GDBN} will sometimes read an auxiliary data file. These files
16487 are kept in a directory known as the @dfn{data directory}.
16489 You can set the data directory's name, and view the name @value{GDBN}
16490 is currently using.
16493 @kindex set data-directory
16494 @item set data-directory @var{directory}
16495 Set the directory which @value{GDBN} searches for auxiliary data files
16496 to @var{directory}.
16498 @kindex show data-directory
16499 @item show data-directory
16500 Show the directory @value{GDBN} searches for auxiliary data files.
16503 @cindex default data directory
16504 @cindex @samp{--with-gdb-datadir}
16505 You can set the default data directory by using the configure-time
16506 @samp{--with-gdb-datadir} option. If the data directory is inside
16507 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
16508 @samp{--exec-prefix}), then the default data directory will be updated
16509 automatically if the installed @value{GDBN} is moved to a new
16512 The data directory may also be specified with the
16513 @code{--data-directory} command line option.
16514 @xref{Mode Options}.
16517 @chapter Specifying a Debugging Target
16519 @cindex debugging target
16520 A @dfn{target} is the execution environment occupied by your program.
16522 Often, @value{GDBN} runs in the same host environment as your program;
16523 in that case, the debugging target is specified as a side effect when
16524 you use the @code{file} or @code{core} commands. When you need more
16525 flexibility---for example, running @value{GDBN} on a physically separate
16526 host, or controlling a standalone system over a serial port or a
16527 realtime system over a TCP/IP connection---you can use the @code{target}
16528 command to specify one of the target types configured for @value{GDBN}
16529 (@pxref{Target Commands, ,Commands for Managing Targets}).
16531 @cindex target architecture
16532 It is possible to build @value{GDBN} for several different @dfn{target
16533 architectures}. When @value{GDBN} is built like that, you can choose
16534 one of the available architectures with the @kbd{set architecture}
16538 @kindex set architecture
16539 @kindex show architecture
16540 @item set architecture @var{arch}
16541 This command sets the current target architecture to @var{arch}. The
16542 value of @var{arch} can be @code{"auto"}, in addition to one of the
16543 supported architectures.
16545 @item show architecture
16546 Show the current target architecture.
16548 @item set processor
16550 @kindex set processor
16551 @kindex show processor
16552 These are alias commands for, respectively, @code{set architecture}
16553 and @code{show architecture}.
16557 * Active Targets:: Active targets
16558 * Target Commands:: Commands for managing targets
16559 * Byte Order:: Choosing target byte order
16562 @node Active Targets
16563 @section Active Targets
16565 @cindex stacking targets
16566 @cindex active targets
16567 @cindex multiple targets
16569 There are multiple classes of targets such as: processes, executable files or
16570 recording sessions. Core files belong to the process class, making core file
16571 and process mutually exclusive. Otherwise, @value{GDBN} can work concurrently
16572 on multiple active targets, one in each class. This allows you to (for
16573 example) start a process and inspect its activity, while still having access to
16574 the executable file after the process finishes. Or if you start process
16575 recording (@pxref{Reverse Execution}) and @code{reverse-step} there, you are
16576 presented a virtual layer of the recording target, while the process target
16577 remains stopped at the chronologically last point of the process execution.
16579 Use the @code{core-file} and @code{exec-file} commands to select a new core
16580 file or executable target (@pxref{Files, ,Commands to Specify Files}). To
16581 specify as a target a process that is already running, use the @code{attach}
16582 command (@pxref{Attach, ,Debugging an Already-running Process}).
16584 @node Target Commands
16585 @section Commands for Managing Targets
16588 @item target @var{type} @var{parameters}
16589 Connects the @value{GDBN} host environment to a target machine or
16590 process. A target is typically a protocol for talking to debugging
16591 facilities. You use the argument @var{type} to specify the type or
16592 protocol of the target machine.
16594 Further @var{parameters} are interpreted by the target protocol, but
16595 typically include things like device names or host names to connect
16596 with, process numbers, and baud rates.
16598 The @code{target} command does not repeat if you press @key{RET} again
16599 after executing the command.
16601 @kindex help target
16603 Displays the names of all targets available. To display targets
16604 currently selected, use either @code{info target} or @code{info files}
16605 (@pxref{Files, ,Commands to Specify Files}).
16607 @item help target @var{name}
16608 Describe a particular target, including any parameters necessary to
16611 @kindex set gnutarget
16612 @item set gnutarget @var{args}
16613 @value{GDBN} uses its own library BFD to read your files. @value{GDBN}
16614 knows whether it is reading an @dfn{executable},
16615 a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
16616 with the @code{set gnutarget} command. Unlike most @code{target} commands,
16617 with @code{gnutarget} the @code{target} refers to a program, not a machine.
16620 @emph{Warning:} To specify a file format with @code{set gnutarget},
16621 you must know the actual BFD name.
16625 @xref{Files, , Commands to Specify Files}.
16627 @kindex show gnutarget
16628 @item show gnutarget
16629 Use the @code{show gnutarget} command to display what file format
16630 @code{gnutarget} is set to read. If you have not set @code{gnutarget},
16631 @value{GDBN} will determine the file format for each file automatically,
16632 and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
16635 @cindex common targets
16636 Here are some common targets (available, or not, depending on the GDB
16641 @item target exec @var{program}
16642 @cindex executable file target
16643 An executable file. @samp{target exec @var{program}} is the same as
16644 @samp{exec-file @var{program}}.
16646 @item target core @var{filename}
16647 @cindex core dump file target
16648 A core dump file. @samp{target core @var{filename}} is the same as
16649 @samp{core-file @var{filename}}.
16651 @item target remote @var{medium}
16652 @cindex remote target
16653 A remote system connected to @value{GDBN} via a serial line or network
16654 connection. This command tells @value{GDBN} to use its own remote
16655 protocol over @var{medium} for debugging. @xref{Remote Debugging}.
16657 For example, if you have a board connected to @file{/dev/ttya} on the
16658 machine running @value{GDBN}, you could say:
16661 target remote /dev/ttya
16664 @code{target remote} supports the @code{load} command. This is only
16665 useful if you have some other way of getting the stub to the target
16666 system, and you can put it somewhere in memory where it won't get
16667 clobbered by the download.
16669 @item target sim @r{[}@var{simargs}@r{]} @dots{}
16670 @cindex built-in simulator target
16671 Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
16679 works; however, you cannot assume that a specific memory map, device
16680 drivers, or even basic I/O is available, although some simulators do
16681 provide these. For info about any processor-specific simulator details,
16682 see the appropriate section in @ref{Embedded Processors, ,Embedded
16687 Some configurations may include these targets as well:
16691 @item target nrom @var{dev}
16692 @cindex NetROM ROM emulator target
16693 NetROM ROM emulator. This target only supports downloading.
16697 Different targets are available on different configurations of @value{GDBN};
16698 your configuration may have more or fewer targets.
16700 Many remote targets require you to download the executable's code once
16701 you've successfully established a connection. You may wish to control
16702 various aspects of this process.
16707 @kindex set hash@r{, for remote monitors}
16708 @cindex hash mark while downloading
16709 This command controls whether a hash mark @samp{#} is displayed while
16710 downloading a file to the remote monitor. If on, a hash mark is
16711 displayed after each S-record is successfully downloaded to the
16715 @kindex show hash@r{, for remote monitors}
16716 Show the current status of displaying the hash mark.
16718 @item set debug monitor
16719 @kindex set debug monitor
16720 @cindex display remote monitor communications
16721 Enable or disable display of communications messages between
16722 @value{GDBN} and the remote monitor.
16724 @item show debug monitor
16725 @kindex show debug monitor
16726 Show the current status of displaying communications between
16727 @value{GDBN} and the remote monitor.
16732 @kindex load @var{filename}
16733 @item load @var{filename}
16735 Depending on what remote debugging facilities are configured into
16736 @value{GDBN}, the @code{load} command may be available. Where it exists, it
16737 is meant to make @var{filename} (an executable) available for debugging
16738 on the remote system---by downloading, or dynamic linking, for example.
16739 @code{load} also records the @var{filename} symbol table in @value{GDBN}, like
16740 the @code{add-symbol-file} command.
16742 If your @value{GDBN} does not have a @code{load} command, attempting to
16743 execute it gets the error message ``@code{You can't do that when your
16744 target is @dots{}}''
16746 The file is loaded at whatever address is specified in the executable.
16747 For some object file formats, you can specify the load address when you
16748 link the program; for other formats, like a.out, the object file format
16749 specifies a fixed address.
16750 @c FIXME! This would be a good place for an xref to the GNU linker doc.
16752 Depending on the remote side capabilities, @value{GDBN} may be able to
16753 load programs into flash memory.
16755 @code{load} does not repeat if you press @key{RET} again after using it.
16759 @section Choosing Target Byte Order
16761 @cindex choosing target byte order
16762 @cindex target byte order
16764 Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
16765 offer the ability to run either big-endian or little-endian byte
16766 orders. Usually the executable or symbol will include a bit to
16767 designate the endian-ness, and you will not need to worry about
16768 which to use. However, you may still find it useful to adjust
16769 @value{GDBN}'s idea of processor endian-ness manually.
16773 @item set endian big
16774 Instruct @value{GDBN} to assume the target is big-endian.
16776 @item set endian little
16777 Instruct @value{GDBN} to assume the target is little-endian.
16779 @item set endian auto
16780 Instruct @value{GDBN} to use the byte order associated with the
16784 Display @value{GDBN}'s current idea of the target byte order.
16788 Note that these commands merely adjust interpretation of symbolic
16789 data on the host, and that they have absolutely no effect on the
16793 @node Remote Debugging
16794 @chapter Debugging Remote Programs
16795 @cindex remote debugging
16797 If you are trying to debug a program running on a machine that cannot run
16798 @value{GDBN} in the usual way, it is often useful to use remote debugging.
16799 For example, you might use remote debugging on an operating system kernel,
16800 or on a small system which does not have a general purpose operating system
16801 powerful enough to run a full-featured debugger.
16803 Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
16804 to make this work with particular debugging targets. In addition,
16805 @value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
16806 but not specific to any particular target system) which you can use if you
16807 write the remote stubs---the code that runs on the remote system to
16808 communicate with @value{GDBN}.
16810 Other remote targets may be available in your
16811 configuration of @value{GDBN}; use @code{help target} to list them.
16814 * Connecting:: Connecting to a remote target
16815 * File Transfer:: Sending files to a remote system
16816 * Server:: Using the gdbserver program
16817 * Remote Configuration:: Remote configuration
16818 * Remote Stub:: Implementing a remote stub
16822 @section Connecting to a Remote Target
16824 On the @value{GDBN} host machine, you will need an unstripped copy of
16825 your program, since @value{GDBN} needs symbol and debugging information.
16826 Start up @value{GDBN} as usual, using the name of the local copy of your
16827 program as the first argument.
16829 @cindex @code{target remote}
16830 @value{GDBN} can communicate with the target over a serial line, or
16831 over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
16832 each case, @value{GDBN} uses the same protocol for debugging your
16833 program; only the medium carrying the debugging packets varies. The
16834 @code{target remote} command establishes a connection to the target.
16835 Its arguments indicate which medium to use:
16839 @item target remote @var{serial-device}
16840 @cindex serial line, @code{target remote}
16841 Use @var{serial-device} to communicate with the target. For example,
16842 to use a serial line connected to the device named @file{/dev/ttyb}:
16845 target remote /dev/ttyb
16848 If you're using a serial line, you may want to give @value{GDBN} the
16849 @w{@samp{--baud}} option, or use the @code{set remotebaud} command
16850 (@pxref{Remote Configuration, set remotebaud}) before the
16851 @code{target} command.
16853 @item target remote @code{@var{host}:@var{port}}
16854 @itemx target remote @code{tcp:@var{host}:@var{port}}
16855 @cindex @acronym{TCP} port, @code{target remote}
16856 Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
16857 The @var{host} may be either a host name or a numeric @acronym{IP}
16858 address; @var{port} must be a decimal number. The @var{host} could be
16859 the target machine itself, if it is directly connected to the net, or
16860 it might be a terminal server which in turn has a serial line to the
16863 For example, to connect to port 2828 on a terminal server named
16867 target remote manyfarms:2828
16870 If your remote target is actually running on the same machine as your
16871 debugger session (e.g.@: a simulator for your target running on the
16872 same host), you can omit the hostname. For example, to connect to
16873 port 1234 on your local machine:
16876 target remote :1234
16880 Note that the colon is still required here.
16882 @item target remote @code{udp:@var{host}:@var{port}}
16883 @cindex @acronym{UDP} port, @code{target remote}
16884 Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
16885 connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
16888 target remote udp:manyfarms:2828
16891 When using a @acronym{UDP} connection for remote debugging, you should
16892 keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
16893 can silently drop packets on busy or unreliable networks, which will
16894 cause havoc with your debugging session.
16896 @item target remote | @var{command}
16897 @cindex pipe, @code{target remote} to
16898 Run @var{command} in the background and communicate with it using a
16899 pipe. The @var{command} is a shell command, to be parsed and expanded
16900 by the system's command shell, @code{/bin/sh}; it should expect remote
16901 protocol packets on its standard input, and send replies on its
16902 standard output. You could use this to run a stand-alone simulator
16903 that speaks the remote debugging protocol, to make net connections
16904 using programs like @code{ssh}, or for other similar tricks.
16906 If @var{command} closes its standard output (perhaps by exiting),
16907 @value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
16908 program has already exited, this will have no effect.)
16912 Once the connection has been established, you can use all the usual
16913 commands to examine and change data. The remote program is already
16914 running; you can use @kbd{step} and @kbd{continue}, and you do not
16915 need to use @kbd{run}.
16917 @cindex interrupting remote programs
16918 @cindex remote programs, interrupting
16919 Whenever @value{GDBN} is waiting for the remote program, if you type the
16920 interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
16921 program. This may or may not succeed, depending in part on the hardware
16922 and the serial drivers the remote system uses. If you type the
16923 interrupt character once again, @value{GDBN} displays this prompt:
16926 Interrupted while waiting for the program.
16927 Give up (and stop debugging it)? (y or n)
16930 If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
16931 (If you decide you want to try again later, you can use @samp{target
16932 remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
16933 goes back to waiting.
16936 @kindex detach (remote)
16938 When you have finished debugging the remote program, you can use the
16939 @code{detach} command to release it from @value{GDBN} control.
16940 Detaching from the target normally resumes its execution, but the results
16941 will depend on your particular remote stub. After the @code{detach}
16942 command, @value{GDBN} is free to connect to another target.
16946 The @code{disconnect} command behaves like @code{detach}, except that
16947 the target is generally not resumed. It will wait for @value{GDBN}
16948 (this instance or another one) to connect and continue debugging. After
16949 the @code{disconnect} command, @value{GDBN} is again free to connect to
16952 @cindex send command to remote monitor
16953 @cindex extend @value{GDBN} for remote targets
16954 @cindex add new commands for external monitor
16956 @item monitor @var{cmd}
16957 This command allows you to send arbitrary commands directly to the
16958 remote monitor. Since @value{GDBN} doesn't care about the commands it
16959 sends like this, this command is the way to extend @value{GDBN}---you
16960 can add new commands that only the external monitor will understand
16964 @node File Transfer
16965 @section Sending files to a remote system
16966 @cindex remote target, file transfer
16967 @cindex file transfer
16968 @cindex sending files to remote systems
16970 Some remote targets offer the ability to transfer files over the same
16971 connection used to communicate with @value{GDBN}. This is convenient
16972 for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
16973 running @code{gdbserver} over a network interface. For other targets,
16974 e.g.@: embedded devices with only a single serial port, this may be
16975 the only way to upload or download files.
16977 Not all remote targets support these commands.
16981 @item remote put @var{hostfile} @var{targetfile}
16982 Copy file @var{hostfile} from the host system (the machine running
16983 @value{GDBN}) to @var{targetfile} on the target system.
16986 @item remote get @var{targetfile} @var{hostfile}
16987 Copy file @var{targetfile} from the target system to @var{hostfile}
16988 on the host system.
16990 @kindex remote delete
16991 @item remote delete @var{targetfile}
16992 Delete @var{targetfile} from the target system.
16997 @section Using the @code{gdbserver} Program
17000 @cindex remote connection without stubs
17001 @code{gdbserver} is a control program for Unix-like systems, which
17002 allows you to connect your program with a remote @value{GDBN} via
17003 @code{target remote}---but without linking in the usual debugging stub.
17005 @code{gdbserver} is not a complete replacement for the debugging stubs,
17006 because it requires essentially the same operating-system facilities
17007 that @value{GDBN} itself does. In fact, a system that can run
17008 @code{gdbserver} to connect to a remote @value{GDBN} could also run
17009 @value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
17010 because it is a much smaller program than @value{GDBN} itself. It is
17011 also easier to port than all of @value{GDBN}, so you may be able to get
17012 started more quickly on a new system by using @code{gdbserver}.
17013 Finally, if you develop code for real-time systems, you may find that
17014 the tradeoffs involved in real-time operation make it more convenient to
17015 do as much development work as possible on another system, for example
17016 by cross-compiling. You can use @code{gdbserver} to make a similar
17017 choice for debugging.
17019 @value{GDBN} and @code{gdbserver} communicate via either a serial line
17020 or a TCP connection, using the standard @value{GDBN} remote serial
17024 @emph{Warning:} @code{gdbserver} does not have any built-in security.
17025 Do not run @code{gdbserver} connected to any public network; a
17026 @value{GDBN} connection to @code{gdbserver} provides access to the
17027 target system with the same privileges as the user running
17031 @subsection Running @code{gdbserver}
17032 @cindex arguments, to @code{gdbserver}
17033 @cindex @code{gdbserver}, command-line arguments
17035 Run @code{gdbserver} on the target system. You need a copy of the
17036 program you want to debug, including any libraries it requires.
17037 @code{gdbserver} does not need your program's symbol table, so you can
17038 strip the program if necessary to save space. @value{GDBN} on the host
17039 system does all the symbol handling.
17041 To use the server, you must tell it how to communicate with @value{GDBN};
17042 the name of your program; and the arguments for your program. The usual
17046 target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
17049 @var{comm} is either a device name (to use a serial line), or a TCP
17050 hostname and portnumber, or @code{-} or @code{stdio} to use
17051 stdin/stdout of @code{gdbserver}.
17052 For example, to debug Emacs with the argument
17053 @samp{foo.txt} and communicate with @value{GDBN} over the serial port
17057 target> gdbserver /dev/com1 emacs foo.txt
17060 @code{gdbserver} waits passively for the host @value{GDBN} to communicate
17063 To use a TCP connection instead of a serial line:
17066 target> gdbserver host:2345 emacs foo.txt
17069 The only difference from the previous example is the first argument,
17070 specifying that you are communicating with the host @value{GDBN} via
17071 TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
17072 expect a TCP connection from machine @samp{host} to local TCP port 2345.
17073 (Currently, the @samp{host} part is ignored.) You can choose any number
17074 you want for the port number as long as it does not conflict with any
17075 TCP ports already in use on the target system (for example, @code{23} is
17076 reserved for @code{telnet}).@footnote{If you choose a port number that
17077 conflicts with another service, @code{gdbserver} prints an error message
17078 and exits.} You must use the same port number with the host @value{GDBN}
17079 @code{target remote} command.
17081 The @code{stdio} connection is useful when starting @code{gdbserver}
17085 (gdb) target remote | ssh -T hostname gdbserver - hello
17088 The @samp{-T} option to ssh is provided because we don't need a remote pty,
17089 and we don't want escape-character handling. Ssh does this by default when
17090 a command is provided, the flag is provided to make it explicit.
17091 You could elide it if you want to.
17093 Programs started with stdio-connected gdbserver have @file{/dev/null} for
17094 @code{stdin}, and @code{stdout},@code{stderr} are sent back to gdb for
17095 display through a pipe connected to gdbserver.
17096 Both @code{stdout} and @code{stderr} use the same pipe.
17098 @subsubsection Attaching to a Running Program
17099 @cindex attach to a program, @code{gdbserver}
17100 @cindex @option{--attach}, @code{gdbserver} option
17102 On some targets, @code{gdbserver} can also attach to running programs.
17103 This is accomplished via the @code{--attach} argument. The syntax is:
17106 target> gdbserver --attach @var{comm} @var{pid}
17109 @var{pid} is the process ID of a currently running process. It isn't necessary
17110 to point @code{gdbserver} at a binary for the running process.
17113 You can debug processes by name instead of process ID if your target has the
17114 @code{pidof} utility:
17117 target> gdbserver --attach @var{comm} `pidof @var{program}`
17120 In case more than one copy of @var{program} is running, or @var{program}
17121 has multiple threads, most versions of @code{pidof} support the
17122 @code{-s} option to only return the first process ID.
17124 @subsubsection Multi-Process Mode for @code{gdbserver}
17125 @cindex @code{gdbserver}, multiple processes
17126 @cindex multiple processes with @code{gdbserver}
17128 When you connect to @code{gdbserver} using @code{target remote},
17129 @code{gdbserver} debugs the specified program only once. When the
17130 program exits, or you detach from it, @value{GDBN} closes the connection
17131 and @code{gdbserver} exits.
17133 If you connect using @kbd{target extended-remote}, @code{gdbserver}
17134 enters multi-process mode. When the debugged program exits, or you
17135 detach from it, @value{GDBN} stays connected to @code{gdbserver} even
17136 though no program is running. The @code{run} and @code{attach}
17137 commands instruct @code{gdbserver} to run or attach to a new program.
17138 The @code{run} command uses @code{set remote exec-file} (@pxref{set
17139 remote exec-file}) to select the program to run. Command line
17140 arguments are supported, except for wildcard expansion and I/O
17141 redirection (@pxref{Arguments}).
17143 @cindex @option{--multi}, @code{gdbserver} option
17144 To start @code{gdbserver} without supplying an initial command to run
17145 or process ID to attach, use the @option{--multi} command line option.
17146 Then you can connect using @kbd{target extended-remote} and start
17147 the program you want to debug.
17149 In multi-process mode @code{gdbserver} does not automatically exit unless you
17150 use the option @option{--once}. You can terminate it by using
17151 @code{monitor exit} (@pxref{Monitor Commands for gdbserver}). Note that the
17152 conditions under which @code{gdbserver} terminates depend on how @value{GDBN}
17153 connects to it (@kbd{target remote} or @kbd{target extended-remote}). The
17154 @option{--multi} option to @code{gdbserver} has no influence on that.
17156 @subsubsection TCP port allocation lifecycle of @code{gdbserver}
17158 This section applies only when @code{gdbserver} is run to listen on a TCP port.
17160 @code{gdbserver} normally terminates after all of its debugged processes have
17161 terminated in @kbd{target remote} mode. On the other hand, for @kbd{target
17162 extended-remote}, @code{gdbserver} stays running even with no processes left.
17163 @value{GDBN} normally terminates the spawned debugged process on its exit,
17164 which normally also terminates @code{gdbserver} in the @kbd{target remote}
17165 mode. Therefore, when the connection drops unexpectedly, and @value{GDBN}
17166 cannot ask @code{gdbserver} to kill its debugged processes, @code{gdbserver}
17167 stays running even in the @kbd{target remote} mode.
17169 When @code{gdbserver} stays running, @value{GDBN} can connect to it again later.
17170 Such reconnecting is useful for features like @ref{disconnected tracing}. For
17171 completeness, at most one @value{GDBN} can be connected at a time.
17173 @cindex @option{--once}, @code{gdbserver} option
17174 By default, @code{gdbserver} keeps the listening TCP port open, so that
17175 additional connections are possible. However, if you start @code{gdbserver}
17176 with the @option{--once} option, it will stop listening for any further
17177 connection attempts after connecting to the first @value{GDBN} session. This
17178 means no further connections to @code{gdbserver} will be possible after the
17179 first one. It also means @code{gdbserver} will terminate after the first
17180 connection with remote @value{GDBN} has closed, even for unexpectedly closed
17181 connections and even in the @kbd{target extended-remote} mode. The
17182 @option{--once} option allows reusing the same port number for connecting to
17183 multiple instances of @code{gdbserver} running on the same host, since each
17184 instance closes its port after the first connection.
17186 @subsubsection Other Command-Line Arguments for @code{gdbserver}
17188 @cindex @option{--debug}, @code{gdbserver} option
17189 The @option{--debug} option tells @code{gdbserver} to display extra
17190 status information about the debugging process.
17191 @cindex @option{--remote-debug}, @code{gdbserver} option
17192 The @option{--remote-debug} option tells @code{gdbserver} to display
17193 remote protocol debug output. These options are intended for
17194 @code{gdbserver} development and for bug reports to the developers.
17196 @cindex @option{--wrapper}, @code{gdbserver} option
17197 The @option{--wrapper} option specifies a wrapper to launch programs
17198 for debugging. The option should be followed by the name of the
17199 wrapper, then any command-line arguments to pass to the wrapper, then
17200 @kbd{--} indicating the end of the wrapper arguments.
17202 @code{gdbserver} runs the specified wrapper program with a combined
17203 command line including the wrapper arguments, then the name of the
17204 program to debug, then any arguments to the program. The wrapper
17205 runs until it executes your program, and then @value{GDBN} gains control.
17207 You can use any program that eventually calls @code{execve} with
17208 its arguments as a wrapper. Several standard Unix utilities do
17209 this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
17210 with @code{exec "$@@"} will also work.
17212 For example, you can use @code{env} to pass an environment variable to
17213 the debugged program, without setting the variable in @code{gdbserver}'s
17217 $ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
17220 @subsection Connecting to @code{gdbserver}
17222 Run @value{GDBN} on the host system.
17224 First make sure you have the necessary symbol files. Load symbols for
17225 your application using the @code{file} command before you connect. Use
17226 @code{set sysroot} to locate target libraries (unless your @value{GDBN}
17227 was compiled with the correct sysroot using @code{--with-sysroot}).
17229 The symbol file and target libraries must exactly match the executable
17230 and libraries on the target, with one exception: the files on the host
17231 system should not be stripped, even if the files on the target system
17232 are. Mismatched or missing files will lead to confusing results
17233 during debugging. On @sc{gnu}/Linux targets, mismatched or missing
17234 files may also prevent @code{gdbserver} from debugging multi-threaded
17237 Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
17238 For TCP connections, you must start up @code{gdbserver} prior to using
17239 the @code{target remote} command. Otherwise you may get an error whose
17240 text depends on the host system, but which usually looks something like
17241 @samp{Connection refused}. Don't use the @code{load}
17242 command in @value{GDBN} when using @code{gdbserver}, since the program is
17243 already on the target.
17245 @subsection Monitor Commands for @code{gdbserver}
17246 @cindex monitor commands, for @code{gdbserver}
17247 @anchor{Monitor Commands for gdbserver}
17249 During a @value{GDBN} session using @code{gdbserver}, you can use the
17250 @code{monitor} command to send special requests to @code{gdbserver}.
17251 Here are the available commands.
17255 List the available monitor commands.
17257 @item monitor set debug 0
17258 @itemx monitor set debug 1
17259 Disable or enable general debugging messages.
17261 @item monitor set remote-debug 0
17262 @itemx monitor set remote-debug 1
17263 Disable or enable specific debugging messages associated with the remote
17264 protocol (@pxref{Remote Protocol}).
17266 @item monitor set libthread-db-search-path [PATH]
17267 @cindex gdbserver, search path for @code{libthread_db}
17268 When this command is issued, @var{path} is a colon-separated list of
17269 directories to search for @code{libthread_db} (@pxref{Threads,,set
17270 libthread-db-search-path}). If you omit @var{path},
17271 @samp{libthread-db-search-path} will be reset to its default value.
17273 The special entry @samp{$pdir} for @samp{libthread-db-search-path} is
17274 not supported in @code{gdbserver}.
17277 Tell gdbserver to exit immediately. This command should be followed by
17278 @code{disconnect} to close the debugging session. @code{gdbserver} will
17279 detach from any attached processes and kill any processes it created.
17280 Use @code{monitor exit} to terminate @code{gdbserver} at the end
17281 of a multi-process mode debug session.
17285 @subsection Tracepoints support in @code{gdbserver}
17286 @cindex tracepoints support in @code{gdbserver}
17288 On some targets, @code{gdbserver} supports tracepoints, fast
17289 tracepoints and static tracepoints.
17291 For fast or static tracepoints to work, a special library called the
17292 @dfn{in-process agent} (IPA), must be loaded in the inferior process.
17293 This library is built and distributed as an integral part of
17294 @code{gdbserver}. In addition, support for static tracepoints
17295 requires building the in-process agent library with static tracepoints
17296 support. At present, the UST (LTTng Userspace Tracer,
17297 @url{http://lttng.org/ust}) tracing engine is supported. This support
17298 is automatically available if UST development headers are found in the
17299 standard include path when @code{gdbserver} is built, or if
17300 @code{gdbserver} was explicitly configured using @option{--with-ust}
17301 to point at such headers. You can explicitly disable the support
17302 using @option{--with-ust=no}.
17304 There are several ways to load the in-process agent in your program:
17307 @item Specifying it as dependency at link time
17309 You can link your program dynamically with the in-process agent
17310 library. On most systems, this is accomplished by adding
17311 @code{-linproctrace} to the link command.
17313 @item Using the system's preloading mechanisms
17315 You can force loading the in-process agent at startup time by using
17316 your system's support for preloading shared libraries. Many Unixes
17317 support the concept of preloading user defined libraries. In most
17318 cases, you do that by specifying @code{LD_PRELOAD=libinproctrace.so}
17319 in the environment. See also the description of @code{gdbserver}'s
17320 @option{--wrapper} command line option.
17322 @item Using @value{GDBN} to force loading the agent at run time
17324 On some systems, you can force the inferior to load a shared library,
17325 by calling a dynamic loader function in the inferior that takes care
17326 of dynamically looking up and loading a shared library. On most Unix
17327 systems, the function is @code{dlopen}. You'll use the @code{call}
17328 command for that. For example:
17331 (@value{GDBP}) call dlopen ("libinproctrace.so", ...)
17334 Note that on most Unix systems, for the @code{dlopen} function to be
17335 available, the program needs to be linked with @code{-ldl}.
17338 On systems that have a userspace dynamic loader, like most Unix
17339 systems, when you connect to @code{gdbserver} using @code{target
17340 remote}, you'll find that the program is stopped at the dynamic
17341 loader's entry point, and no shared library has been loaded in the
17342 program's address space yet, including the in-process agent. In that
17343 case, before being able to use any of the fast or static tracepoints
17344 features, you need to let the loader run and load the shared
17345 libraries. The simplest way to do that is to run the program to the
17346 main procedure. E.g., if debugging a C or C@t{++} program, start
17347 @code{gdbserver} like so:
17350 $ gdbserver :9999 myprogram
17353 Start GDB and connect to @code{gdbserver} like so, and run to main:
17357 (@value{GDBP}) target remote myhost:9999
17358 0x00007f215893ba60 in ?? () from /lib64/ld-linux-x86-64.so.2
17359 (@value{GDBP}) b main
17360 (@value{GDBP}) continue
17363 The in-process tracing agent library should now be loaded into the
17364 process; you can confirm it with the @code{info sharedlibrary}
17365 command, which will list @file{libinproctrace.so} as loaded in the
17366 process. You are now ready to install fast tracepoints, list static
17367 tracepoint markers, probe static tracepoints markers, and start
17370 @node Remote Configuration
17371 @section Remote Configuration
17374 @kindex show remote
17375 This section documents the configuration options available when
17376 debugging remote programs. For the options related to the File I/O
17377 extensions of the remote protocol, see @ref{system,
17378 system-call-allowed}.
17381 @item set remoteaddresssize @var{bits}
17382 @cindex address size for remote targets
17383 @cindex bits in remote address
17384 Set the maximum size of address in a memory packet to the specified
17385 number of bits. @value{GDBN} will mask off the address bits above
17386 that number, when it passes addresses to the remote target. The
17387 default value is the number of bits in the target's address.
17389 @item show remoteaddresssize
17390 Show the current value of remote address size in bits.
17392 @item set remotebaud @var{n}
17393 @cindex baud rate for remote targets
17394 Set the baud rate for the remote serial I/O to @var{n} baud. The
17395 value is used to set the speed of the serial port used for debugging
17398 @item show remotebaud
17399 Show the current speed of the remote connection.
17401 @item set remotebreak
17402 @cindex interrupt remote programs
17403 @cindex BREAK signal instead of Ctrl-C
17404 @anchor{set remotebreak}
17405 If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
17406 when you type @kbd{Ctrl-c} to interrupt the program running
17407 on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
17408 character instead. The default is off, since most remote systems
17409 expect to see @samp{Ctrl-C} as the interrupt signal.
17411 @item show remotebreak
17412 Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
17413 interrupt the remote program.
17415 @item set remoteflow on
17416 @itemx set remoteflow off
17417 @kindex set remoteflow
17418 Enable or disable hardware flow control (@code{RTS}/@code{CTS})
17419 on the serial port used to communicate to the remote target.
17421 @item show remoteflow
17422 @kindex show remoteflow
17423 Show the current setting of hardware flow control.
17425 @item set remotelogbase @var{base}
17426 Set the base (a.k.a.@: radix) of logging serial protocol
17427 communications to @var{base}. Supported values of @var{base} are:
17428 @code{ascii}, @code{octal}, and @code{hex}. The default is
17431 @item show remotelogbase
17432 Show the current setting of the radix for logging remote serial
17435 @item set remotelogfile @var{file}
17436 @cindex record serial communications on file
17437 Record remote serial communications on the named @var{file}. The
17438 default is not to record at all.
17440 @item show remotelogfile.
17441 Show the current setting of the file name on which to record the
17442 serial communications.
17444 @item set remotetimeout @var{num}
17445 @cindex timeout for serial communications
17446 @cindex remote timeout
17447 Set the timeout limit to wait for the remote target to respond to
17448 @var{num} seconds. The default is 2 seconds.
17450 @item show remotetimeout
17451 Show the current number of seconds to wait for the remote target
17454 @cindex limit hardware breakpoints and watchpoints
17455 @cindex remote target, limit break- and watchpoints
17456 @anchor{set remote hardware-watchpoint-limit}
17457 @anchor{set remote hardware-breakpoint-limit}
17458 @item set remote hardware-watchpoint-limit @var{limit}
17459 @itemx set remote hardware-breakpoint-limit @var{limit}
17460 Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
17461 watchpoints. A limit of -1, the default, is treated as unlimited.
17463 @cindex limit hardware watchpoints length
17464 @cindex remote target, limit watchpoints length
17465 @anchor{set remote hardware-watchpoint-length-limit}
17466 @item set remote hardware-watchpoint-length-limit @var{limit}
17467 Restrict @value{GDBN} to using @var{limit} bytes for the maximum length of
17468 a remote hardware watchpoint. A limit of -1, the default, is treated
17471 @item show remote hardware-watchpoint-length-limit
17472 Show the current limit (in bytes) of the maximum length of
17473 a remote hardware watchpoint.
17475 @item set remote exec-file @var{filename}
17476 @itemx show remote exec-file
17477 @anchor{set remote exec-file}
17478 @cindex executable file, for remote target
17479 Select the file used for @code{run} with @code{target
17480 extended-remote}. This should be set to a filename valid on the
17481 target system. If it is not set, the target will use a default
17482 filename (e.g.@: the last program run).
17484 @item set remote interrupt-sequence
17485 @cindex interrupt remote programs
17486 @cindex select Ctrl-C, BREAK or BREAK-g
17487 Allow the user to select one of @samp{Ctrl-C}, a @code{BREAK} or
17488 @samp{BREAK-g} as the
17489 sequence to the remote target in order to interrupt the execution.
17490 @samp{Ctrl-C} is a default. Some system prefers @code{BREAK} which
17491 is high level of serial line for some certain time.
17492 Linux kernel prefers @samp{BREAK-g}, a.k.a Magic SysRq g.
17493 It is @code{BREAK} signal followed by character @code{g}.
17495 @item show interrupt-sequence
17496 Show which of @samp{Ctrl-C}, @code{BREAK} or @code{BREAK-g}
17497 is sent by @value{GDBN} to interrupt the remote program.
17498 @code{BREAK-g} is BREAK signal followed by @code{g} and
17499 also known as Magic SysRq g.
17501 @item set remote interrupt-on-connect
17502 @cindex send interrupt-sequence on start
17503 Specify whether interrupt-sequence is sent to remote target when
17504 @value{GDBN} connects to it. This is mostly needed when you debug
17505 Linux kernel. Linux kernel expects @code{BREAK} followed by @code{g}
17506 which is known as Magic SysRq g in order to connect @value{GDBN}.
17508 @item show interrupt-on-connect
17509 Show whether interrupt-sequence is sent
17510 to remote target when @value{GDBN} connects to it.
17514 @item set tcp auto-retry on
17515 @cindex auto-retry, for remote TCP target
17516 Enable auto-retry for remote TCP connections. This is useful if the remote
17517 debugging agent is launched in parallel with @value{GDBN}; there is a race
17518 condition because the agent may not become ready to accept the connection
17519 before @value{GDBN} attempts to connect. When auto-retry is
17520 enabled, if the initial attempt to connect fails, @value{GDBN} reattempts
17521 to establish the connection using the timeout specified by
17522 @code{set tcp connect-timeout}.
17524 @item set tcp auto-retry off
17525 Do not auto-retry failed TCP connections.
17527 @item show tcp auto-retry
17528 Show the current auto-retry setting.
17530 @item set tcp connect-timeout @var{seconds}
17531 @cindex connection timeout, for remote TCP target
17532 @cindex timeout, for remote target connection
17533 Set the timeout for establishing a TCP connection to the remote target to
17534 @var{seconds}. The timeout affects both polling to retry failed connections
17535 (enabled by @code{set tcp auto-retry on}) and waiting for connections
17536 that are merely slow to complete, and represents an approximate cumulative
17539 @item show tcp connect-timeout
17540 Show the current connection timeout setting.
17543 @cindex remote packets, enabling and disabling
17544 The @value{GDBN} remote protocol autodetects the packets supported by
17545 your debugging stub. If you need to override the autodetection, you
17546 can use these commands to enable or disable individual packets. Each
17547 packet can be set to @samp{on} (the remote target supports this
17548 packet), @samp{off} (the remote target does not support this packet),
17549 or @samp{auto} (detect remote target support for this packet). They
17550 all default to @samp{auto}. For more information about each packet,
17551 see @ref{Remote Protocol}.
17553 During normal use, you should not have to use any of these commands.
17554 If you do, that may be a bug in your remote debugging stub, or a bug
17555 in @value{GDBN}. You may want to report the problem to the
17556 @value{GDBN} developers.
17558 For each packet @var{name}, the command to enable or disable the
17559 packet is @code{set remote @var{name}-packet}. The available settings
17562 @multitable @columnfractions 0.28 0.32 0.25
17565 @tab Related Features
17567 @item @code{fetch-register}
17569 @tab @code{info registers}
17571 @item @code{set-register}
17575 @item @code{binary-download}
17577 @tab @code{load}, @code{set}
17579 @item @code{read-aux-vector}
17580 @tab @code{qXfer:auxv:read}
17581 @tab @code{info auxv}
17583 @item @code{symbol-lookup}
17584 @tab @code{qSymbol}
17585 @tab Detecting multiple threads
17587 @item @code{attach}
17588 @tab @code{vAttach}
17591 @item @code{verbose-resume}
17593 @tab Stepping or resuming multiple threads
17599 @item @code{software-breakpoint}
17603 @item @code{hardware-breakpoint}
17607 @item @code{write-watchpoint}
17611 @item @code{read-watchpoint}
17615 @item @code{access-watchpoint}
17619 @item @code{target-features}
17620 @tab @code{qXfer:features:read}
17621 @tab @code{set architecture}
17623 @item @code{library-info}
17624 @tab @code{qXfer:libraries:read}
17625 @tab @code{info sharedlibrary}
17627 @item @code{memory-map}
17628 @tab @code{qXfer:memory-map:read}
17629 @tab @code{info mem}
17631 @item @code{read-sdata-object}
17632 @tab @code{qXfer:sdata:read}
17633 @tab @code{print $_sdata}
17635 @item @code{read-spu-object}
17636 @tab @code{qXfer:spu:read}
17637 @tab @code{info spu}
17639 @item @code{write-spu-object}
17640 @tab @code{qXfer:spu:write}
17641 @tab @code{info spu}
17643 @item @code{read-siginfo-object}
17644 @tab @code{qXfer:siginfo:read}
17645 @tab @code{print $_siginfo}
17647 @item @code{write-siginfo-object}
17648 @tab @code{qXfer:siginfo:write}
17649 @tab @code{set $_siginfo}
17651 @item @code{threads}
17652 @tab @code{qXfer:threads:read}
17653 @tab @code{info threads}
17655 @item @code{get-thread-local-@*storage-address}
17656 @tab @code{qGetTLSAddr}
17657 @tab Displaying @code{__thread} variables
17659 @item @code{get-thread-information-block-address}
17660 @tab @code{qGetTIBAddr}
17661 @tab Display MS-Windows Thread Information Block.
17663 @item @code{search-memory}
17664 @tab @code{qSearch:memory}
17667 @item @code{supported-packets}
17668 @tab @code{qSupported}
17669 @tab Remote communications parameters
17671 @item @code{pass-signals}
17672 @tab @code{QPassSignals}
17673 @tab @code{handle @var{signal}}
17675 @item @code{program-signals}
17676 @tab @code{QProgramSignals}
17677 @tab @code{handle @var{signal}}
17679 @item @code{hostio-close-packet}
17680 @tab @code{vFile:close}
17681 @tab @code{remote get}, @code{remote put}
17683 @item @code{hostio-open-packet}
17684 @tab @code{vFile:open}
17685 @tab @code{remote get}, @code{remote put}
17687 @item @code{hostio-pread-packet}
17688 @tab @code{vFile:pread}
17689 @tab @code{remote get}, @code{remote put}
17691 @item @code{hostio-pwrite-packet}
17692 @tab @code{vFile:pwrite}
17693 @tab @code{remote get}, @code{remote put}
17695 @item @code{hostio-unlink-packet}
17696 @tab @code{vFile:unlink}
17697 @tab @code{remote delete}
17699 @item @code{hostio-readlink-packet}
17700 @tab @code{vFile:readlink}
17703 @item @code{noack-packet}
17704 @tab @code{QStartNoAckMode}
17705 @tab Packet acknowledgment
17707 @item @code{osdata}
17708 @tab @code{qXfer:osdata:read}
17709 @tab @code{info os}
17711 @item @code{query-attached}
17712 @tab @code{qAttached}
17713 @tab Querying remote process attach state.
17715 @item @code{traceframe-info}
17716 @tab @code{qXfer:traceframe-info:read}
17717 @tab Traceframe info
17719 @item @code{install-in-trace}
17720 @tab @code{InstallInTrace}
17721 @tab Install tracepoint in tracing
17723 @item @code{disable-randomization}
17724 @tab @code{QDisableRandomization}
17725 @tab @code{set disable-randomization}
17727 @item @code{conditional-breakpoints-packet}
17728 @tab @code{Z0 and Z1}
17729 @tab @code{Support for target-side breakpoint condition evaluation}
17733 @section Implementing a Remote Stub
17735 @cindex debugging stub, example
17736 @cindex remote stub, example
17737 @cindex stub example, remote debugging
17738 The stub files provided with @value{GDBN} implement the target side of the
17739 communication protocol, and the @value{GDBN} side is implemented in the
17740 @value{GDBN} source file @file{remote.c}. Normally, you can simply allow
17741 these subroutines to communicate, and ignore the details. (If you're
17742 implementing your own stub file, you can still ignore the details: start
17743 with one of the existing stub files. @file{sparc-stub.c} is the best
17744 organized, and therefore the easiest to read.)
17746 @cindex remote serial debugging, overview
17747 To debug a program running on another machine (the debugging
17748 @dfn{target} machine), you must first arrange for all the usual
17749 prerequisites for the program to run by itself. For example, for a C
17754 A startup routine to set up the C runtime environment; these usually
17755 have a name like @file{crt0}. The startup routine may be supplied by
17756 your hardware supplier, or you may have to write your own.
17759 A C subroutine library to support your program's
17760 subroutine calls, notably managing input and output.
17763 A way of getting your program to the other machine---for example, a
17764 download program. These are often supplied by the hardware
17765 manufacturer, but you may have to write your own from hardware
17769 The next step is to arrange for your program to use a serial port to
17770 communicate with the machine where @value{GDBN} is running (the @dfn{host}
17771 machine). In general terms, the scheme looks like this:
17775 @value{GDBN} already understands how to use this protocol; when everything
17776 else is set up, you can simply use the @samp{target remote} command
17777 (@pxref{Targets,,Specifying a Debugging Target}).
17779 @item On the target,
17780 you must link with your program a few special-purpose subroutines that
17781 implement the @value{GDBN} remote serial protocol. The file containing these
17782 subroutines is called a @dfn{debugging stub}.
17784 On certain remote targets, you can use an auxiliary program
17785 @code{gdbserver} instead of linking a stub into your program.
17786 @xref{Server,,Using the @code{gdbserver} Program}, for details.
17789 The debugging stub is specific to the architecture of the remote
17790 machine; for example, use @file{sparc-stub.c} to debug programs on
17793 @cindex remote serial stub list
17794 These working remote stubs are distributed with @value{GDBN}:
17799 @cindex @file{i386-stub.c}
17802 For Intel 386 and compatible architectures.
17805 @cindex @file{m68k-stub.c}
17806 @cindex Motorola 680x0
17808 For Motorola 680x0 architectures.
17811 @cindex @file{sh-stub.c}
17814 For Renesas SH architectures.
17817 @cindex @file{sparc-stub.c}
17819 For @sc{sparc} architectures.
17821 @item sparcl-stub.c
17822 @cindex @file{sparcl-stub.c}
17825 For Fujitsu @sc{sparclite} architectures.
17829 The @file{README} file in the @value{GDBN} distribution may list other
17830 recently added stubs.
17833 * Stub Contents:: What the stub can do for you
17834 * Bootstrapping:: What you must do for the stub
17835 * Debug Session:: Putting it all together
17838 @node Stub Contents
17839 @subsection What the Stub Can Do for You
17841 @cindex remote serial stub
17842 The debugging stub for your architecture supplies these three
17846 @item set_debug_traps
17847 @findex set_debug_traps
17848 @cindex remote serial stub, initialization
17849 This routine arranges for @code{handle_exception} to run when your
17850 program stops. You must call this subroutine explicitly in your
17851 program's startup code.
17853 @item handle_exception
17854 @findex handle_exception
17855 @cindex remote serial stub, main routine
17856 This is the central workhorse, but your program never calls it
17857 explicitly---the setup code arranges for @code{handle_exception} to
17858 run when a trap is triggered.
17860 @code{handle_exception} takes control when your program stops during
17861 execution (for example, on a breakpoint), and mediates communications
17862 with @value{GDBN} on the host machine. This is where the communications
17863 protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
17864 representative on the target machine. It begins by sending summary
17865 information on the state of your program, then continues to execute,
17866 retrieving and transmitting any information @value{GDBN} needs, until you
17867 execute a @value{GDBN} command that makes your program resume; at that point,
17868 @code{handle_exception} returns control to your own code on the target
17872 @cindex @code{breakpoint} subroutine, remote
17873 Use this auxiliary subroutine to make your program contain a
17874 breakpoint. Depending on the particular situation, this may be the only
17875 way for @value{GDBN} to get control. For instance, if your target
17876 machine has some sort of interrupt button, you won't need to call this;
17877 pressing the interrupt button transfers control to
17878 @code{handle_exception}---in effect, to @value{GDBN}. On some machines,
17879 simply receiving characters on the serial port may also trigger a trap;
17880 again, in that situation, you don't need to call @code{breakpoint} from
17881 your own program---simply running @samp{target remote} from the host
17882 @value{GDBN} session gets control.
17884 Call @code{breakpoint} if none of these is true, or if you simply want
17885 to make certain your program stops at a predetermined point for the
17886 start of your debugging session.
17889 @node Bootstrapping
17890 @subsection What You Must Do for the Stub
17892 @cindex remote stub, support routines
17893 The debugging stubs that come with @value{GDBN} are set up for a particular
17894 chip architecture, but they have no information about the rest of your
17895 debugging target machine.
17897 First of all you need to tell the stub how to communicate with the
17901 @item int getDebugChar()
17902 @findex getDebugChar
17903 Write this subroutine to read a single character from the serial port.
17904 It may be identical to @code{getchar} for your target system; a
17905 different name is used to allow you to distinguish the two if you wish.
17907 @item void putDebugChar(int)
17908 @findex putDebugChar
17909 Write this subroutine to write a single character to the serial port.
17910 It may be identical to @code{putchar} for your target system; a
17911 different name is used to allow you to distinguish the two if you wish.
17914 @cindex control C, and remote debugging
17915 @cindex interrupting remote targets
17916 If you want @value{GDBN} to be able to stop your program while it is
17917 running, you need to use an interrupt-driven serial driver, and arrange
17918 for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
17919 character). That is the character which @value{GDBN} uses to tell the
17920 remote system to stop.
17922 Getting the debugging target to return the proper status to @value{GDBN}
17923 probably requires changes to the standard stub; one quick and dirty way
17924 is to just execute a breakpoint instruction (the ``dirty'' part is that
17925 @value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
17927 Other routines you need to supply are:
17930 @item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
17931 @findex exceptionHandler
17932 Write this function to install @var{exception_address} in the exception
17933 handling tables. You need to do this because the stub does not have any
17934 way of knowing what the exception handling tables on your target system
17935 are like (for example, the processor's table might be in @sc{rom},
17936 containing entries which point to a table in @sc{ram}).
17937 @var{exception_number} is the exception number which should be changed;
17938 its meaning is architecture-dependent (for example, different numbers
17939 might represent divide by zero, misaligned access, etc). When this
17940 exception occurs, control should be transferred directly to
17941 @var{exception_address}, and the processor state (stack, registers,
17942 and so on) should be just as it is when a processor exception occurs. So if
17943 you want to use a jump instruction to reach @var{exception_address}, it
17944 should be a simple jump, not a jump to subroutine.
17946 For the 386, @var{exception_address} should be installed as an interrupt
17947 gate so that interrupts are masked while the handler runs. The gate
17948 should be at privilege level 0 (the most privileged level). The
17949 @sc{sparc} and 68k stubs are able to mask interrupts themselves without
17950 help from @code{exceptionHandler}.
17952 @item void flush_i_cache()
17953 @findex flush_i_cache
17954 On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
17955 instruction cache, if any, on your target machine. If there is no
17956 instruction cache, this subroutine may be a no-op.
17958 On target machines that have instruction caches, @value{GDBN} requires this
17959 function to make certain that the state of your program is stable.
17963 You must also make sure this library routine is available:
17966 @item void *memset(void *, int, int)
17968 This is the standard library function @code{memset} that sets an area of
17969 memory to a known value. If you have one of the free versions of
17970 @code{libc.a}, @code{memset} can be found there; otherwise, you must
17971 either obtain it from your hardware manufacturer, or write your own.
17974 If you do not use the GNU C compiler, you may need other standard
17975 library subroutines as well; this varies from one stub to another,
17976 but in general the stubs are likely to use any of the common library
17977 subroutines which @code{@value{NGCC}} generates as inline code.
17980 @node Debug Session
17981 @subsection Putting it All Together
17983 @cindex remote serial debugging summary
17984 In summary, when your program is ready to debug, you must follow these
17989 Make sure you have defined the supporting low-level routines
17990 (@pxref{Bootstrapping,,What You Must Do for the Stub}):
17992 @code{getDebugChar}, @code{putDebugChar},
17993 @code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
17997 Insert these lines in your program's startup code, before the main
17998 procedure is called:
18005 On some machines, when a breakpoint trap is raised, the hardware
18006 automatically makes the PC point to the instruction after the
18007 breakpoint. If your machine doesn't do that, you may need to adjust
18008 @code{handle_exception} to arrange for it to return to the instruction
18009 after the breakpoint on this first invocation, so that your program
18010 doesn't keep hitting the initial breakpoint instead of making
18014 For the 680x0 stub only, you need to provide a variable called
18015 @code{exceptionHook}. Normally you just use:
18018 void (*exceptionHook)() = 0;
18022 but if before calling @code{set_debug_traps}, you set it to point to a
18023 function in your program, that function is called when
18024 @code{@value{GDBN}} continues after stopping on a trap (for example, bus
18025 error). The function indicated by @code{exceptionHook} is called with
18026 one parameter: an @code{int} which is the exception number.
18029 Compile and link together: your program, the @value{GDBN} debugging stub for
18030 your target architecture, and the supporting subroutines.
18033 Make sure you have a serial connection between your target machine and
18034 the @value{GDBN} host, and identify the serial port on the host.
18037 @c The "remote" target now provides a `load' command, so we should
18038 @c document that. FIXME.
18039 Download your program to your target machine (or get it there by
18040 whatever means the manufacturer provides), and start it.
18043 Start @value{GDBN} on the host, and connect to the target
18044 (@pxref{Connecting,,Connecting to a Remote Target}).
18048 @node Configurations
18049 @chapter Configuration-Specific Information
18051 While nearly all @value{GDBN} commands are available for all native and
18052 cross versions of the debugger, there are some exceptions. This chapter
18053 describes things that are only available in certain configurations.
18055 There are three major categories of configurations: native
18056 configurations, where the host and target are the same, embedded
18057 operating system configurations, which are usually the same for several
18058 different processor architectures, and bare embedded processors, which
18059 are quite different from each other.
18064 * Embedded Processors::
18071 This section describes details specific to particular native
18076 * BSD libkvm Interface:: Debugging BSD kernel memory images
18077 * SVR4 Process Information:: SVR4 process information
18078 * DJGPP Native:: Features specific to the DJGPP port
18079 * Cygwin Native:: Features specific to the Cygwin port
18080 * Hurd Native:: Features specific to @sc{gnu} Hurd
18081 * Neutrino:: Features specific to QNX Neutrino
18082 * Darwin:: Features specific to Darwin
18088 On HP-UX systems, if you refer to a function or variable name that
18089 begins with a dollar sign, @value{GDBN} searches for a user or system
18090 name first, before it searches for a convenience variable.
18093 @node BSD libkvm Interface
18094 @subsection BSD libkvm Interface
18097 @cindex kernel memory image
18098 @cindex kernel crash dump
18100 BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
18101 interface that provides a uniform interface for accessing kernel virtual
18102 memory images, including live systems and crash dumps. @value{GDBN}
18103 uses this interface to allow you to debug live kernels and kernel crash
18104 dumps on many native BSD configurations. This is implemented as a
18105 special @code{kvm} debugging target. For debugging a live system, load
18106 the currently running kernel into @value{GDBN} and connect to the
18110 (@value{GDBP}) @b{target kvm}
18113 For debugging crash dumps, provide the file name of the crash dump as an
18117 (@value{GDBP}) @b{target kvm /var/crash/bsd.0}
18120 Once connected to the @code{kvm} target, the following commands are
18126 Set current context from the @dfn{Process Control Block} (PCB) address.
18129 Set current context from proc address. This command isn't available on
18130 modern FreeBSD systems.
18133 @node SVR4 Process Information
18134 @subsection SVR4 Process Information
18136 @cindex examine process image
18137 @cindex process info via @file{/proc}
18139 Many versions of SVR4 and compatible systems provide a facility called
18140 @samp{/proc} that can be used to examine the image of a running
18141 process using file-system subroutines. If @value{GDBN} is configured
18142 for an operating system with this facility, the command @code{info
18143 proc} is available to report information about the process running
18144 your program, or about any process running on your system. @code{info
18145 proc} works only on SVR4 systems that include the @code{procfs} code.
18146 This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
18147 Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
18153 @itemx info proc @var{process-id}
18154 Summarize available information about any running process. If a
18155 process ID is specified by @var{process-id}, display information about
18156 that process; otherwise display information about the program being
18157 debugged. The summary includes the debugged process ID, the command
18158 line used to invoke it, its current working directory, and its
18159 executable file's absolute file name.
18161 On some systems, @var{process-id} can be of the form
18162 @samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
18163 within a process. If the optional @var{pid} part is missing, it means
18164 a thread from the process being debugged (the leading @samp{/} still
18165 needs to be present, or else @value{GDBN} will interpret the number as
18166 a process ID rather than a thread ID).
18168 @item info proc mappings
18169 @cindex memory address space mappings
18170 Report the memory address space ranges accessible in the program, with
18171 information on whether the process has read, write, or execute access
18172 rights to each range. On @sc{gnu}/Linux systems, each memory range
18173 includes the object file which is mapped to that range, instead of the
18174 memory access rights to that range.
18176 @item info proc stat
18177 @itemx info proc status
18178 @cindex process detailed status information
18179 These subcommands are specific to @sc{gnu}/Linux systems. They show
18180 the process-related information, including the user ID and group ID;
18181 how many threads are there in the process; its virtual memory usage;
18182 the signals that are pending, blocked, and ignored; its TTY; its
18183 consumption of system and user time; its stack size; its @samp{nice}
18184 value; etc. For more information, see the @samp{proc} man page
18185 (type @kbd{man 5 proc} from your shell prompt).
18187 @item info proc all
18188 Show all the information about the process described under all of the
18189 above @code{info proc} subcommands.
18192 @comment These sub-options of 'info proc' were not included when
18193 @comment procfs.c was re-written. Keep their descriptions around
18194 @comment against the day when someone finds the time to put them back in.
18195 @kindex info proc times
18196 @item info proc times
18197 Starting time, user CPU time, and system CPU time for your program and
18200 @kindex info proc id
18202 Report on the process IDs related to your program: its own process ID,
18203 the ID of its parent, the process group ID, and the session ID.
18206 @item set procfs-trace
18207 @kindex set procfs-trace
18208 @cindex @code{procfs} API calls
18209 This command enables and disables tracing of @code{procfs} API calls.
18211 @item show procfs-trace
18212 @kindex show procfs-trace
18213 Show the current state of @code{procfs} API call tracing.
18215 @item set procfs-file @var{file}
18216 @kindex set procfs-file
18217 Tell @value{GDBN} to write @code{procfs} API trace to the named
18218 @var{file}. @value{GDBN} appends the trace info to the previous
18219 contents of the file. The default is to display the trace on the
18222 @item show procfs-file
18223 @kindex show procfs-file
18224 Show the file to which @code{procfs} API trace is written.
18226 @item proc-trace-entry
18227 @itemx proc-trace-exit
18228 @itemx proc-untrace-entry
18229 @itemx proc-untrace-exit
18230 @kindex proc-trace-entry
18231 @kindex proc-trace-exit
18232 @kindex proc-untrace-entry
18233 @kindex proc-untrace-exit
18234 These commands enable and disable tracing of entries into and exits
18235 from the @code{syscall} interface.
18238 @kindex info pidlist
18239 @cindex process list, QNX Neutrino
18240 For QNX Neutrino only, this command displays the list of all the
18241 processes and all the threads within each process.
18244 @kindex info meminfo
18245 @cindex mapinfo list, QNX Neutrino
18246 For QNX Neutrino only, this command displays the list of all mapinfos.
18250 @subsection Features for Debugging @sc{djgpp} Programs
18251 @cindex @sc{djgpp} debugging
18252 @cindex native @sc{djgpp} debugging
18253 @cindex MS-DOS-specific commands
18256 @sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
18257 MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
18258 that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
18259 top of real-mode DOS systems and their emulations.
18261 @value{GDBN} supports native debugging of @sc{djgpp} programs, and
18262 defines a few commands specific to the @sc{djgpp} port. This
18263 subsection describes those commands.
18268 This is a prefix of @sc{djgpp}-specific commands which print
18269 information about the target system and important OS structures.
18272 @cindex MS-DOS system info
18273 @cindex free memory information (MS-DOS)
18274 @item info dos sysinfo
18275 This command displays assorted information about the underlying
18276 platform: the CPU type and features, the OS version and flavor, the
18277 DPMI version, and the available conventional and DPMI memory.
18282 @cindex segment descriptor tables
18283 @cindex descriptor tables display
18285 @itemx info dos ldt
18286 @itemx info dos idt
18287 These 3 commands display entries from, respectively, Global, Local,
18288 and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
18289 tables are data structures which store a descriptor for each segment
18290 that is currently in use. The segment's selector is an index into a
18291 descriptor table; the table entry for that index holds the
18292 descriptor's base address and limit, and its attributes and access
18295 A typical @sc{djgpp} program uses 3 segments: a code segment, a data
18296 segment (used for both data and the stack), and a DOS segment (which
18297 allows access to DOS/BIOS data structures and absolute addresses in
18298 conventional memory). However, the DPMI host will usually define
18299 additional segments in order to support the DPMI environment.
18301 @cindex garbled pointers
18302 These commands allow to display entries from the descriptor tables.
18303 Without an argument, all entries from the specified table are
18304 displayed. An argument, which should be an integer expression, means
18305 display a single entry whose index is given by the argument. For
18306 example, here's a convenient way to display information about the
18307 debugged program's data segment:
18310 @exdent @code{(@value{GDBP}) info dos ldt $ds}
18311 @exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
18315 This comes in handy when you want to see whether a pointer is outside
18316 the data segment's limit (i.e.@: @dfn{garbled}).
18318 @cindex page tables display (MS-DOS)
18320 @itemx info dos pte
18321 These two commands display entries from, respectively, the Page
18322 Directory and the Page Tables. Page Directories and Page Tables are
18323 data structures which control how virtual memory addresses are mapped
18324 into physical addresses. A Page Table includes an entry for every
18325 page of memory that is mapped into the program's address space; there
18326 may be several Page Tables, each one holding up to 4096 entries. A
18327 Page Directory has up to 4096 entries, one each for every Page Table
18328 that is currently in use.
18330 Without an argument, @kbd{info dos pde} displays the entire Page
18331 Directory, and @kbd{info dos pte} displays all the entries in all of
18332 the Page Tables. An argument, an integer expression, given to the
18333 @kbd{info dos pde} command means display only that entry from the Page
18334 Directory table. An argument given to the @kbd{info dos pte} command
18335 means display entries from a single Page Table, the one pointed to by
18336 the specified entry in the Page Directory.
18338 @cindex direct memory access (DMA) on MS-DOS
18339 These commands are useful when your program uses @dfn{DMA} (Direct
18340 Memory Access), which needs physical addresses to program the DMA
18343 These commands are supported only with some DPMI servers.
18345 @cindex physical address from linear address
18346 @item info dos address-pte @var{addr}
18347 This command displays the Page Table entry for a specified linear
18348 address. The argument @var{addr} is a linear address which should
18349 already have the appropriate segment's base address added to it,
18350 because this command accepts addresses which may belong to @emph{any}
18351 segment. For example, here's how to display the Page Table entry for
18352 the page where a variable @code{i} is stored:
18355 @exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
18356 @exdent @code{Page Table entry for address 0x11a00d30:}
18357 @exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
18361 This says that @code{i} is stored at offset @code{0xd30} from the page
18362 whose physical base address is @code{0x02698000}, and shows all the
18363 attributes of that page.
18365 Note that you must cast the addresses of variables to a @code{char *},
18366 since otherwise the value of @code{__djgpp_base_address}, the base
18367 address of all variables and functions in a @sc{djgpp} program, will
18368 be added using the rules of C pointer arithmetics: if @code{i} is
18369 declared an @code{int}, @value{GDBN} will add 4 times the value of
18370 @code{__djgpp_base_address} to the address of @code{i}.
18372 Here's another example, it displays the Page Table entry for the
18376 @exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
18377 @exdent @code{Page Table entry for address 0x29110:}
18378 @exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
18382 (The @code{+ 3} offset is because the transfer buffer's address is the
18383 3rd member of the @code{_go32_info_block} structure.) The output
18384 clearly shows that this DPMI server maps the addresses in conventional
18385 memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
18386 linear (@code{0x29110}) addresses are identical.
18388 This command is supported only with some DPMI servers.
18391 @cindex DOS serial data link, remote debugging
18392 In addition to native debugging, the DJGPP port supports remote
18393 debugging via a serial data link. The following commands are specific
18394 to remote serial debugging in the DJGPP port of @value{GDBN}.
18397 @kindex set com1base
18398 @kindex set com1irq
18399 @kindex set com2base
18400 @kindex set com2irq
18401 @kindex set com3base
18402 @kindex set com3irq
18403 @kindex set com4base
18404 @kindex set com4irq
18405 @item set com1base @var{addr}
18406 This command sets the base I/O port address of the @file{COM1} serial
18409 @item set com1irq @var{irq}
18410 This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
18411 for the @file{COM1} serial port.
18413 There are similar commands @samp{set com2base}, @samp{set com3irq},
18414 etc.@: for setting the port address and the @code{IRQ} lines for the
18417 @kindex show com1base
18418 @kindex show com1irq
18419 @kindex show com2base
18420 @kindex show com2irq
18421 @kindex show com3base
18422 @kindex show com3irq
18423 @kindex show com4base
18424 @kindex show com4irq
18425 The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
18426 display the current settings of the base address and the @code{IRQ}
18427 lines used by the COM ports.
18430 @kindex info serial
18431 @cindex DOS serial port status
18432 This command prints the status of the 4 DOS serial ports. For each
18433 port, it prints whether it's active or not, its I/O base address and
18434 IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
18435 counts of various errors encountered so far.
18439 @node Cygwin Native
18440 @subsection Features for Debugging MS Windows PE Executables
18441 @cindex MS Windows debugging
18442 @cindex native Cygwin debugging
18443 @cindex Cygwin-specific commands
18445 @value{GDBN} supports native debugging of MS Windows programs, including
18446 DLLs with and without symbolic debugging information.
18448 @cindex Ctrl-BREAK, MS-Windows
18449 @cindex interrupt debuggee on MS-Windows
18450 MS-Windows programs that call @code{SetConsoleMode} to switch off the
18451 special meaning of the @samp{Ctrl-C} keystroke cannot be interrupted
18452 by typing @kbd{C-c}. For this reason, @value{GDBN} on MS-Windows
18453 supports @kbd{C-@key{BREAK}} as an alternative interrupt key
18454 sequence, which can be used to interrupt the debuggee even if it
18457 There are various additional Cygwin-specific commands, described in
18458 this section. Working with DLLs that have no debugging symbols is
18459 described in @ref{Non-debug DLL Symbols}.
18464 This is a prefix of MS Windows-specific commands which print
18465 information about the target system and important OS structures.
18467 @item info w32 selector
18468 This command displays information returned by
18469 the Win32 API @code{GetThreadSelectorEntry} function.
18470 It takes an optional argument that is evaluated to
18471 a long value to give the information about this given selector.
18472 Without argument, this command displays information
18473 about the six segment registers.
18475 @item info w32 thread-information-block
18476 This command displays thread specific information stored in the
18477 Thread Information Block (readable on the X86 CPU family using @code{$fs}
18478 selector for 32-bit programs and @code{$gs} for 64-bit programs).
18482 This is a Cygwin-specific alias of @code{info shared}.
18484 @kindex dll-symbols
18486 This command loads symbols from a dll similarly to
18487 add-sym command but without the need to specify a base address.
18489 @kindex set cygwin-exceptions
18490 @cindex debugging the Cygwin DLL
18491 @cindex Cygwin DLL, debugging
18492 @item set cygwin-exceptions @var{mode}
18493 If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
18494 happen inside the Cygwin DLL. If @var{mode} is @code{off},
18495 @value{GDBN} will delay recognition of exceptions, and may ignore some
18496 exceptions which seem to be caused by internal Cygwin DLL
18497 ``bookkeeping''. This option is meant primarily for debugging the
18498 Cygwin DLL itself; the default value is @code{off} to avoid annoying
18499 @value{GDBN} users with false @code{SIGSEGV} signals.
18501 @kindex show cygwin-exceptions
18502 @item show cygwin-exceptions
18503 Displays whether @value{GDBN} will break on exceptions that happen
18504 inside the Cygwin DLL itself.
18506 @kindex set new-console
18507 @item set new-console @var{mode}
18508 If @var{mode} is @code{on} the debuggee will
18509 be started in a new console on next start.
18510 If @var{mode} is @code{off}, the debuggee will
18511 be started in the same console as the debugger.
18513 @kindex show new-console
18514 @item show new-console
18515 Displays whether a new console is used
18516 when the debuggee is started.
18518 @kindex set new-group
18519 @item set new-group @var{mode}
18520 This boolean value controls whether the debuggee should
18521 start a new group or stay in the same group as the debugger.
18522 This affects the way the Windows OS handles
18525 @kindex show new-group
18526 @item show new-group
18527 Displays current value of new-group boolean.
18529 @kindex set debugevents
18530 @item set debugevents
18531 This boolean value adds debug output concerning kernel events related
18532 to the debuggee seen by the debugger. This includes events that
18533 signal thread and process creation and exit, DLL loading and
18534 unloading, console interrupts, and debugging messages produced by the
18535 Windows @code{OutputDebugString} API call.
18537 @kindex set debugexec
18538 @item set debugexec
18539 This boolean value adds debug output concerning execute events
18540 (such as resume thread) seen by the debugger.
18542 @kindex set debugexceptions
18543 @item set debugexceptions
18544 This boolean value adds debug output concerning exceptions in the
18545 debuggee seen by the debugger.
18547 @kindex set debugmemory
18548 @item set debugmemory
18549 This boolean value adds debug output concerning debuggee memory reads
18550 and writes by the debugger.
18554 This boolean values specifies whether the debuggee is called
18555 via a shell or directly (default value is on).
18559 Displays if the debuggee will be started with a shell.
18564 * Non-debug DLL Symbols:: Support for DLLs without debugging symbols
18567 @node Non-debug DLL Symbols
18568 @subsubsection Support for DLLs without Debugging Symbols
18569 @cindex DLLs with no debugging symbols
18570 @cindex Minimal symbols and DLLs
18572 Very often on windows, some of the DLLs that your program relies on do
18573 not include symbolic debugging information (for example,
18574 @file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
18575 symbols in a DLL, it relies on the minimal amount of symbolic
18576 information contained in the DLL's export table. This section
18577 describes working with such symbols, known internally to @value{GDBN} as
18578 ``minimal symbols''.
18580 Note that before the debugged program has started execution, no DLLs
18581 will have been loaded. The easiest way around this problem is simply to
18582 start the program --- either by setting a breakpoint or letting the
18583 program run once to completion. It is also possible to force
18584 @value{GDBN} to load a particular DLL before starting the executable ---
18585 see the shared library information in @ref{Files}, or the
18586 @code{dll-symbols} command in @ref{Cygwin Native}. Currently,
18587 explicitly loading symbols from a DLL with no debugging information will
18588 cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
18589 which may adversely affect symbol lookup performance.
18591 @subsubsection DLL Name Prefixes
18593 In keeping with the naming conventions used by the Microsoft debugging
18594 tools, DLL export symbols are made available with a prefix based on the
18595 DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
18596 also entered into the symbol table, so @code{CreateFileA} is often
18597 sufficient. In some cases there will be name clashes within a program
18598 (particularly if the executable itself includes full debugging symbols)
18599 necessitating the use of the fully qualified name when referring to the
18600 contents of the DLL. Use single-quotes around the name to avoid the
18601 exclamation mark (``!'') being interpreted as a language operator.
18603 Note that the internal name of the DLL may be all upper-case, even
18604 though the file name of the DLL is lower-case, or vice-versa. Since
18605 symbols within @value{GDBN} are @emph{case-sensitive} this may cause
18606 some confusion. If in doubt, try the @code{info functions} and
18607 @code{info variables} commands or even @code{maint print msymbols}
18608 (@pxref{Symbols}). Here's an example:
18611 (@value{GDBP}) info function CreateFileA
18612 All functions matching regular expression "CreateFileA":
18614 Non-debugging symbols:
18615 0x77e885f4 CreateFileA
18616 0x77e885f4 KERNEL32!CreateFileA
18620 (@value{GDBP}) info function !
18621 All functions matching regular expression "!":
18623 Non-debugging symbols:
18624 0x6100114c cygwin1!__assert
18625 0x61004034 cygwin1!_dll_crt0@@0
18626 0x61004240 cygwin1!dll_crt0(per_process *)
18630 @subsubsection Working with Minimal Symbols
18632 Symbols extracted from a DLL's export table do not contain very much
18633 type information. All that @value{GDBN} can do is guess whether a symbol
18634 refers to a function or variable depending on the linker section that
18635 contains the symbol. Also note that the actual contents of the memory
18636 contained in a DLL are not available unless the program is running. This
18637 means that you cannot examine the contents of a variable or disassemble
18638 a function within a DLL without a running program.
18640 Variables are generally treated as pointers and dereferenced
18641 automatically. For this reason, it is often necessary to prefix a
18642 variable name with the address-of operator (``&'') and provide explicit
18643 type information in the command. Here's an example of the type of
18647 (@value{GDBP}) print 'cygwin1!__argv'
18652 (@value{GDBP}) x 'cygwin1!__argv'
18653 0x10021610: "\230y\""
18656 And two possible solutions:
18659 (@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
18660 $2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
18664 (@value{GDBP}) x/2x &'cygwin1!__argv'
18665 0x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
18666 (@value{GDBP}) x/x 0x10021608
18667 0x10021608: 0x0022fd98
18668 (@value{GDBP}) x/s 0x0022fd98
18669 0x22fd98: "/cygdrive/c/mydirectory/myprogram"
18672 Setting a break point within a DLL is possible even before the program
18673 starts execution. However, under these circumstances, @value{GDBN} can't
18674 examine the initial instructions of the function in order to skip the
18675 function's frame set-up code. You can work around this by using ``*&''
18676 to set the breakpoint at a raw memory address:
18679 (@value{GDBP}) break *&'python22!PyOS_Readline'
18680 Breakpoint 1 at 0x1e04eff0
18683 The author of these extensions is not entirely convinced that setting a
18684 break point within a shared DLL like @file{kernel32.dll} is completely
18688 @subsection Commands Specific to @sc{gnu} Hurd Systems
18689 @cindex @sc{gnu} Hurd debugging
18691 This subsection describes @value{GDBN} commands specific to the
18692 @sc{gnu} Hurd native debugging.
18697 @kindex set signals@r{, Hurd command}
18698 @kindex set sigs@r{, Hurd command}
18699 This command toggles the state of inferior signal interception by
18700 @value{GDBN}. Mach exceptions, such as breakpoint traps, are not
18701 affected by this command. @code{sigs} is a shorthand alias for
18706 @kindex show signals@r{, Hurd command}
18707 @kindex show sigs@r{, Hurd command}
18708 Show the current state of intercepting inferior's signals.
18710 @item set signal-thread
18711 @itemx set sigthread
18712 @kindex set signal-thread
18713 @kindex set sigthread
18714 This command tells @value{GDBN} which thread is the @code{libc} signal
18715 thread. That thread is run when a signal is delivered to a running
18716 process. @code{set sigthread} is the shorthand alias of @code{set
18719 @item show signal-thread
18720 @itemx show sigthread
18721 @kindex show signal-thread
18722 @kindex show sigthread
18723 These two commands show which thread will run when the inferior is
18724 delivered a signal.
18727 @kindex set stopped@r{, Hurd command}
18728 This commands tells @value{GDBN} that the inferior process is stopped,
18729 as with the @code{SIGSTOP} signal. The stopped process can be
18730 continued by delivering a signal to it.
18733 @kindex show stopped@r{, Hurd command}
18734 This command shows whether @value{GDBN} thinks the debuggee is
18737 @item set exceptions
18738 @kindex set exceptions@r{, Hurd command}
18739 Use this command to turn off trapping of exceptions in the inferior.
18740 When exception trapping is off, neither breakpoints nor
18741 single-stepping will work. To restore the default, set exception
18744 @item show exceptions
18745 @kindex show exceptions@r{, Hurd command}
18746 Show the current state of trapping exceptions in the inferior.
18748 @item set task pause
18749 @kindex set task@r{, Hurd commands}
18750 @cindex task attributes (@sc{gnu} Hurd)
18751 @cindex pause current task (@sc{gnu} Hurd)
18752 This command toggles task suspension when @value{GDBN} has control.
18753 Setting it to on takes effect immediately, and the task is suspended
18754 whenever @value{GDBN} gets control. Setting it to off will take
18755 effect the next time the inferior is continued. If this option is set
18756 to off, you can use @code{set thread default pause on} or @code{set
18757 thread pause on} (see below) to pause individual threads.
18759 @item show task pause
18760 @kindex show task@r{, Hurd commands}
18761 Show the current state of task suspension.
18763 @item set task detach-suspend-count
18764 @cindex task suspend count
18765 @cindex detach from task, @sc{gnu} Hurd
18766 This command sets the suspend count the task will be left with when
18767 @value{GDBN} detaches from it.
18769 @item show task detach-suspend-count
18770 Show the suspend count the task will be left with when detaching.
18772 @item set task exception-port
18773 @itemx set task excp
18774 @cindex task exception port, @sc{gnu} Hurd
18775 This command sets the task exception port to which @value{GDBN} will
18776 forward exceptions. The argument should be the value of the @dfn{send
18777 rights} of the task. @code{set task excp} is a shorthand alias.
18779 @item set noninvasive
18780 @cindex noninvasive task options
18781 This command switches @value{GDBN} to a mode that is the least
18782 invasive as far as interfering with the inferior is concerned. This
18783 is the same as using @code{set task pause}, @code{set exceptions}, and
18784 @code{set signals} to values opposite to the defaults.
18786 @item info send-rights
18787 @itemx info receive-rights
18788 @itemx info port-rights
18789 @itemx info port-sets
18790 @itemx info dead-names
18793 @cindex send rights, @sc{gnu} Hurd
18794 @cindex receive rights, @sc{gnu} Hurd
18795 @cindex port rights, @sc{gnu} Hurd
18796 @cindex port sets, @sc{gnu} Hurd
18797 @cindex dead names, @sc{gnu} Hurd
18798 These commands display information about, respectively, send rights,
18799 receive rights, port rights, port sets, and dead names of a task.
18800 There are also shorthand aliases: @code{info ports} for @code{info
18801 port-rights} and @code{info psets} for @code{info port-sets}.
18803 @item set thread pause
18804 @kindex set thread@r{, Hurd command}
18805 @cindex thread properties, @sc{gnu} Hurd
18806 @cindex pause current thread (@sc{gnu} Hurd)
18807 This command toggles current thread suspension when @value{GDBN} has
18808 control. Setting it to on takes effect immediately, and the current
18809 thread is suspended whenever @value{GDBN} gets control. Setting it to
18810 off will take effect the next time the inferior is continued.
18811 Normally, this command has no effect, since when @value{GDBN} has
18812 control, the whole task is suspended. However, if you used @code{set
18813 task pause off} (see above), this command comes in handy to suspend
18814 only the current thread.
18816 @item show thread pause
18817 @kindex show thread@r{, Hurd command}
18818 This command shows the state of current thread suspension.
18820 @item set thread run
18821 This command sets whether the current thread is allowed to run.
18823 @item show thread run
18824 Show whether the current thread is allowed to run.
18826 @item set thread detach-suspend-count
18827 @cindex thread suspend count, @sc{gnu} Hurd
18828 @cindex detach from thread, @sc{gnu} Hurd
18829 This command sets the suspend count @value{GDBN} will leave on a
18830 thread when detaching. This number is relative to the suspend count
18831 found by @value{GDBN} when it notices the thread; use @code{set thread
18832 takeover-suspend-count} to force it to an absolute value.
18834 @item show thread detach-suspend-count
18835 Show the suspend count @value{GDBN} will leave on the thread when
18838 @item set thread exception-port
18839 @itemx set thread excp
18840 Set the thread exception port to which to forward exceptions. This
18841 overrides the port set by @code{set task exception-port} (see above).
18842 @code{set thread excp} is the shorthand alias.
18844 @item set thread takeover-suspend-count
18845 Normally, @value{GDBN}'s thread suspend counts are relative to the
18846 value @value{GDBN} finds when it notices each thread. This command
18847 changes the suspend counts to be absolute instead.
18849 @item set thread default
18850 @itemx show thread default
18851 @cindex thread default settings, @sc{gnu} Hurd
18852 Each of the above @code{set thread} commands has a @code{set thread
18853 default} counterpart (e.g., @code{set thread default pause}, @code{set
18854 thread default exception-port}, etc.). The @code{thread default}
18855 variety of commands sets the default thread properties for all
18856 threads; you can then change the properties of individual threads with
18857 the non-default commands.
18862 @subsection QNX Neutrino
18863 @cindex QNX Neutrino
18865 @value{GDBN} provides the following commands specific to the QNX
18869 @item set debug nto-debug
18870 @kindex set debug nto-debug
18871 When set to on, enables debugging messages specific to the QNX
18874 @item show debug nto-debug
18875 @kindex show debug nto-debug
18876 Show the current state of QNX Neutrino messages.
18883 @value{GDBN} provides the following commands specific to the Darwin target:
18886 @item set debug darwin @var{num}
18887 @kindex set debug darwin
18888 When set to a non zero value, enables debugging messages specific to
18889 the Darwin support. Higher values produce more verbose output.
18891 @item show debug darwin
18892 @kindex show debug darwin
18893 Show the current state of Darwin messages.
18895 @item set debug mach-o @var{num}
18896 @kindex set debug mach-o
18897 When set to a non zero value, enables debugging messages while
18898 @value{GDBN} is reading Darwin object files. (@dfn{Mach-O} is the
18899 file format used on Darwin for object and executable files.) Higher
18900 values produce more verbose output. This is a command to diagnose
18901 problems internal to @value{GDBN} and should not be needed in normal
18904 @item show debug mach-o
18905 @kindex show debug mach-o
18906 Show the current state of Mach-O file messages.
18908 @item set mach-exceptions on
18909 @itemx set mach-exceptions off
18910 @kindex set mach-exceptions
18911 On Darwin, faults are first reported as a Mach exception and are then
18912 mapped to a Posix signal. Use this command to turn on trapping of
18913 Mach exceptions in the inferior. This might be sometimes useful to
18914 better understand the cause of a fault. The default is off.
18916 @item show mach-exceptions
18917 @kindex show mach-exceptions
18918 Show the current state of exceptions trapping.
18923 @section Embedded Operating Systems
18925 This section describes configurations involving the debugging of
18926 embedded operating systems that are available for several different
18930 * VxWorks:: Using @value{GDBN} with VxWorks
18933 @value{GDBN} includes the ability to debug programs running on
18934 various real-time operating systems.
18937 @subsection Using @value{GDBN} with VxWorks
18943 @kindex target vxworks
18944 @item target vxworks @var{machinename}
18945 A VxWorks system, attached via TCP/IP. The argument @var{machinename}
18946 is the target system's machine name or IP address.
18950 On VxWorks, @code{load} links @var{filename} dynamically on the
18951 current target system as well as adding its symbols in @value{GDBN}.
18953 @value{GDBN} enables developers to spawn and debug tasks running on networked
18954 VxWorks targets from a Unix host. Already-running tasks spawned from
18955 the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
18956 both the Unix host and on the VxWorks target. The program
18957 @code{@value{GDBP}} is installed and executed on the Unix host. (It may be
18958 installed with the name @code{vxgdb}, to distinguish it from a
18959 @value{GDBN} for debugging programs on the host itself.)
18962 @item VxWorks-timeout @var{args}
18963 @kindex vxworks-timeout
18964 All VxWorks-based targets now support the option @code{vxworks-timeout}.
18965 This option is set by the user, and @var{args} represents the number of
18966 seconds @value{GDBN} waits for responses to rpc's. You might use this if
18967 your VxWorks target is a slow software simulator or is on the far side
18968 of a thin network line.
18971 The following information on connecting to VxWorks was current when
18972 this manual was produced; newer releases of VxWorks may use revised
18975 @findex INCLUDE_RDB
18976 To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
18977 to include the remote debugging interface routines in the VxWorks
18978 library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
18979 VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
18980 kernel. The resulting kernel contains @file{rdb.a}, and spawns the
18981 source debugging task @code{tRdbTask} when VxWorks is booted. For more
18982 information on configuring and remaking VxWorks, see the manufacturer's
18984 @c VxWorks, see the @cite{VxWorks Programmer's Guide}.
18986 Once you have included @file{rdb.a} in your VxWorks system image and set
18987 your Unix execution search path to find @value{GDBN}, you are ready to
18988 run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
18989 @code{vxgdb}, depending on your installation).
18991 @value{GDBN} comes up showing the prompt:
18998 * VxWorks Connection:: Connecting to VxWorks
18999 * VxWorks Download:: VxWorks download
19000 * VxWorks Attach:: Running tasks
19003 @node VxWorks Connection
19004 @subsubsection Connecting to VxWorks
19006 The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
19007 network. To connect to a target whose host name is ``@code{tt}'', type:
19010 (vxgdb) target vxworks tt
19014 @value{GDBN} displays messages like these:
19017 Attaching remote machine across net...
19022 @value{GDBN} then attempts to read the symbol tables of any object modules
19023 loaded into the VxWorks target since it was last booted. @value{GDBN} locates
19024 these files by searching the directories listed in the command search
19025 path (@pxref{Environment, ,Your Program's Environment}); if it fails
19026 to find an object file, it displays a message such as:
19029 prog.o: No such file or directory.
19032 When this happens, add the appropriate directory to the search path with
19033 the @value{GDBN} command @code{path}, and execute the @code{target}
19036 @node VxWorks Download
19037 @subsubsection VxWorks Download
19039 @cindex download to VxWorks
19040 If you have connected to the VxWorks target and you want to debug an
19041 object that has not yet been loaded, you can use the @value{GDBN}
19042 @code{load} command to download a file from Unix to VxWorks
19043 incrementally. The object file given as an argument to the @code{load}
19044 command is actually opened twice: first by the VxWorks target in order
19045 to download the code, then by @value{GDBN} in order to read the symbol
19046 table. This can lead to problems if the current working directories on
19047 the two systems differ. If both systems have NFS mounted the same
19048 filesystems, you can avoid these problems by using absolute paths.
19049 Otherwise, it is simplest to set the working directory on both systems
19050 to the directory in which the object file resides, and then to reference
19051 the file by its name, without any path. For instance, a program
19052 @file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
19053 and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
19054 program, type this on VxWorks:
19057 -> cd "@var{vxpath}/vw/demo/rdb"
19061 Then, in @value{GDBN}, type:
19064 (vxgdb) cd @var{hostpath}/vw/demo/rdb
19065 (vxgdb) load prog.o
19068 @value{GDBN} displays a response similar to this:
19071 Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
19074 You can also use the @code{load} command to reload an object module
19075 after editing and recompiling the corresponding source file. Note that
19076 this makes @value{GDBN} delete all currently-defined breakpoints,
19077 auto-displays, and convenience variables, and to clear the value
19078 history. (This is necessary in order to preserve the integrity of
19079 debugger's data structures that reference the target system's symbol
19082 @node VxWorks Attach
19083 @subsubsection Running Tasks
19085 @cindex running VxWorks tasks
19086 You can also attach to an existing task using the @code{attach} command as
19090 (vxgdb) attach @var{task}
19094 where @var{task} is the VxWorks hexadecimal task ID. The task can be running
19095 or suspended when you attach to it. Running tasks are suspended at
19096 the time of attachment.
19098 @node Embedded Processors
19099 @section Embedded Processors
19101 This section goes into details specific to particular embedded
19104 @cindex send command to simulator
19105 Whenever a specific embedded processor has a simulator, @value{GDBN}
19106 allows to send an arbitrary command to the simulator.
19109 @item sim @var{command}
19110 @kindex sim@r{, a command}
19111 Send an arbitrary @var{command} string to the simulator. Consult the
19112 documentation for the specific simulator in use for information about
19113 acceptable commands.
19119 * M32R/D:: Renesas M32R/D
19120 * M68K:: Motorola M68K
19121 * MicroBlaze:: Xilinx MicroBlaze
19122 * MIPS Embedded:: MIPS Embedded
19123 * OpenRISC 1000:: OpenRisc 1000
19124 * PA:: HP PA Embedded
19125 * PowerPC Embedded:: PowerPC Embedded
19126 * Sparclet:: Tsqware Sparclet
19127 * Sparclite:: Fujitsu Sparclite
19128 * Z8000:: Zilog Z8000
19131 * Super-H:: Renesas Super-H
19140 @item target rdi @var{dev}
19141 ARM Angel monitor, via RDI library interface to ADP protocol. You may
19142 use this target to communicate with both boards running the Angel
19143 monitor, or with the EmbeddedICE JTAG debug device.
19146 @item target rdp @var{dev}
19151 @value{GDBN} provides the following ARM-specific commands:
19154 @item set arm disassembler
19156 This commands selects from a list of disassembly styles. The
19157 @code{"std"} style is the standard style.
19159 @item show arm disassembler
19161 Show the current disassembly style.
19163 @item set arm apcs32
19164 @cindex ARM 32-bit mode
19165 This command toggles ARM operation mode between 32-bit and 26-bit.
19167 @item show arm apcs32
19168 Display the current usage of the ARM 32-bit mode.
19170 @item set arm fpu @var{fputype}
19171 This command sets the ARM floating-point unit (FPU) type. The
19172 argument @var{fputype} can be one of these:
19176 Determine the FPU type by querying the OS ABI.
19178 Software FPU, with mixed-endian doubles on little-endian ARM
19181 GCC-compiled FPA co-processor.
19183 Software FPU with pure-endian doubles.
19189 Show the current type of the FPU.
19192 This command forces @value{GDBN} to use the specified ABI.
19195 Show the currently used ABI.
19197 @item set arm fallback-mode (arm|thumb|auto)
19198 @value{GDBN} uses the symbol table, when available, to determine
19199 whether instructions are ARM or Thumb. This command controls
19200 @value{GDBN}'s default behavior when the symbol table is not
19201 available. The default is @samp{auto}, which causes @value{GDBN} to
19202 use the current execution mode (from the @code{T} bit in the @code{CPSR}
19205 @item show arm fallback-mode
19206 Show the current fallback instruction mode.
19208 @item set arm force-mode (arm|thumb|auto)
19209 This command overrides use of the symbol table to determine whether
19210 instructions are ARM or Thumb. The default is @samp{auto}, which
19211 causes @value{GDBN} to use the symbol table and then the setting
19212 of @samp{set arm fallback-mode}.
19214 @item show arm force-mode
19215 Show the current forced instruction mode.
19217 @item set debug arm
19218 Toggle whether to display ARM-specific debugging messages from the ARM
19219 target support subsystem.
19221 @item show debug arm
19222 Show whether ARM-specific debugging messages are enabled.
19225 The following commands are available when an ARM target is debugged
19226 using the RDI interface:
19229 @item rdilogfile @r{[}@var{file}@r{]}
19231 @cindex ADP (Angel Debugger Protocol) logging
19232 Set the filename for the ADP (Angel Debugger Protocol) packet log.
19233 With an argument, sets the log file to the specified @var{file}. With
19234 no argument, show the current log file name. The default log file is
19237 @item rdilogenable @r{[}@var{arg}@r{]}
19238 @kindex rdilogenable
19239 Control logging of ADP packets. With an argument of 1 or @code{"yes"}
19240 enables logging, with an argument 0 or @code{"no"} disables it. With
19241 no arguments displays the current setting. When logging is enabled,
19242 ADP packets exchanged between @value{GDBN} and the RDI target device
19243 are logged to a file.
19245 @item set rdiromatzero
19246 @kindex set rdiromatzero
19247 @cindex ROM at zero address, RDI
19248 Tell @value{GDBN} whether the target has ROM at address 0. If on,
19249 vector catching is disabled, so that zero address can be used. If off
19250 (the default), vector catching is enabled. For this command to take
19251 effect, it needs to be invoked prior to the @code{target rdi} command.
19253 @item show rdiromatzero
19254 @kindex show rdiromatzero
19255 Show the current setting of ROM at zero address.
19257 @item set rdiheartbeat
19258 @kindex set rdiheartbeat
19259 @cindex RDI heartbeat
19260 Enable or disable RDI heartbeat packets. It is not recommended to
19261 turn on this option, since it confuses ARM and EPI JTAG interface, as
19262 well as the Angel monitor.
19264 @item show rdiheartbeat
19265 @kindex show rdiheartbeat
19266 Show the setting of RDI heartbeat packets.
19270 @item target sim @r{[}@var{simargs}@r{]} @dots{}
19271 The @value{GDBN} ARM simulator accepts the following optional arguments.
19274 @item --swi-support=@var{type}
19275 Tell the simulator which SWI interfaces to support.
19276 @var{type} may be a comma separated list of the following values.
19277 The default value is @code{all}.
19290 @subsection Renesas M32R/D and M32R/SDI
19293 @kindex target m32r
19294 @item target m32r @var{dev}
19295 Renesas M32R/D ROM monitor.
19297 @kindex target m32rsdi
19298 @item target m32rsdi @var{dev}
19299 Renesas M32R SDI server, connected via parallel port to the board.
19302 The following @value{GDBN} commands are specific to the M32R monitor:
19305 @item set download-path @var{path}
19306 @kindex set download-path
19307 @cindex find downloadable @sc{srec} files (M32R)
19308 Set the default path for finding downloadable @sc{srec} files.
19310 @item show download-path
19311 @kindex show download-path
19312 Show the default path for downloadable @sc{srec} files.
19314 @item set board-address @var{addr}
19315 @kindex set board-address
19316 @cindex M32-EVA target board address
19317 Set the IP address for the M32R-EVA target board.
19319 @item show board-address
19320 @kindex show board-address
19321 Show the current IP address of the target board.
19323 @item set server-address @var{addr}
19324 @kindex set server-address
19325 @cindex download server address (M32R)
19326 Set the IP address for the download server, which is the @value{GDBN}'s
19329 @item show server-address
19330 @kindex show server-address
19331 Display the IP address of the download server.
19333 @item upload @r{[}@var{file}@r{]}
19334 @kindex upload@r{, M32R}
19335 Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
19336 upload capability. If no @var{file} argument is given, the current
19337 executable file is uploaded.
19339 @item tload @r{[}@var{file}@r{]}
19340 @kindex tload@r{, M32R}
19341 Test the @code{upload} command.
19344 The following commands are available for M32R/SDI:
19349 @cindex reset SDI connection, M32R
19350 This command resets the SDI connection.
19354 This command shows the SDI connection status.
19357 @kindex debug_chaos
19358 @cindex M32R/Chaos debugging
19359 Instructs the remote that M32R/Chaos debugging is to be used.
19361 @item use_debug_dma
19362 @kindex use_debug_dma
19363 Instructs the remote to use the DEBUG_DMA method of accessing memory.
19366 @kindex use_mon_code
19367 Instructs the remote to use the MON_CODE method of accessing memory.
19370 @kindex use_ib_break
19371 Instructs the remote to set breakpoints by IB break.
19373 @item use_dbt_break
19374 @kindex use_dbt_break
19375 Instructs the remote to set breakpoints by DBT.
19381 The Motorola m68k configuration includes ColdFire support, and a
19382 target command for the following ROM monitor.
19386 @kindex target dbug
19387 @item target dbug @var{dev}
19388 dBUG ROM monitor for Motorola ColdFire.
19393 @subsection MicroBlaze
19394 @cindex Xilinx MicroBlaze
19395 @cindex XMD, Xilinx Microprocessor Debugger
19397 The MicroBlaze is a soft-core processor supported on various Xilinx
19398 FPGAs, such as Spartan or Virtex series. Boards with these processors
19399 usually have JTAG ports which connect to a host system running the Xilinx
19400 Embedded Development Kit (EDK) or Software Development Kit (SDK).
19401 This host system is used to download the configuration bitstream to
19402 the target FPGA. The Xilinx Microprocessor Debugger (XMD) program
19403 communicates with the target board using the JTAG interface and
19404 presents a @code{gdbserver} interface to the board. By default
19405 @code{xmd} uses port @code{1234}. (While it is possible to change
19406 this default port, it requires the use of undocumented @code{xmd}
19407 commands. Contact Xilinx support if you need to do this.)
19409 Use these GDB commands to connect to the MicroBlaze target processor.
19412 @item target remote :1234
19413 Use this command to connect to the target if you are running @value{GDBN}
19414 on the same system as @code{xmd}.
19416 @item target remote @var{xmd-host}:1234
19417 Use this command to connect to the target if it is connected to @code{xmd}
19418 running on a different system named @var{xmd-host}.
19421 Use this command to download a program to the MicroBlaze target.
19423 @item set debug microblaze @var{n}
19424 Enable MicroBlaze-specific debugging messages if non-zero.
19426 @item show debug microblaze @var{n}
19427 Show MicroBlaze-specific debugging level.
19430 @node MIPS Embedded
19431 @subsection MIPS Embedded
19433 @cindex MIPS boards
19434 @value{GDBN} can use the MIPS remote debugging protocol to talk to a
19435 MIPS board attached to a serial line. This is available when
19436 you configure @value{GDBN} with @samp{--target=mips-elf}.
19439 Use these @value{GDBN} commands to specify the connection to your target board:
19442 @item target mips @var{port}
19443 @kindex target mips @var{port}
19444 To run a program on the board, start up @code{@value{GDBP}} with the
19445 name of your program as the argument. To connect to the board, use the
19446 command @samp{target mips @var{port}}, where @var{port} is the name of
19447 the serial port connected to the board. If the program has not already
19448 been downloaded to the board, you may use the @code{load} command to
19449 download it. You can then use all the usual @value{GDBN} commands.
19451 For example, this sequence connects to the target board through a serial
19452 port, and loads and runs a program called @var{prog} through the
19456 host$ @value{GDBP} @var{prog}
19457 @value{GDBN} is free software and @dots{}
19458 (@value{GDBP}) target mips /dev/ttyb
19459 (@value{GDBP}) load @var{prog}
19463 @item target mips @var{hostname}:@var{portnumber}
19464 On some @value{GDBN} host configurations, you can specify a TCP
19465 connection (for instance, to a serial line managed by a terminal
19466 concentrator) instead of a serial port, using the syntax
19467 @samp{@var{hostname}:@var{portnumber}}.
19469 @item target pmon @var{port}
19470 @kindex target pmon @var{port}
19473 @item target ddb @var{port}
19474 @kindex target ddb @var{port}
19475 NEC's DDB variant of PMON for Vr4300.
19477 @item target lsi @var{port}
19478 @kindex target lsi @var{port}
19479 LSI variant of PMON.
19481 @kindex target r3900
19482 @item target r3900 @var{dev}
19483 Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
19485 @kindex target array
19486 @item target array @var{dev}
19487 Array Tech LSI33K RAID controller board.
19493 @value{GDBN} also supports these special commands for MIPS targets:
19496 @item set mipsfpu double
19497 @itemx set mipsfpu single
19498 @itemx set mipsfpu none
19499 @itemx set mipsfpu auto
19500 @itemx show mipsfpu
19501 @kindex set mipsfpu
19502 @kindex show mipsfpu
19503 @cindex MIPS remote floating point
19504 @cindex floating point, MIPS remote
19505 If your target board does not support the MIPS floating point
19506 coprocessor, you should use the command @samp{set mipsfpu none} (if you
19507 need this, you may wish to put the command in your @value{GDBN} init
19508 file). This tells @value{GDBN} how to find the return value of
19509 functions which return floating point values. It also allows
19510 @value{GDBN} to avoid saving the floating point registers when calling
19511 functions on the board. If you are using a floating point coprocessor
19512 with only single precision floating point support, as on the @sc{r4650}
19513 processor, use the command @samp{set mipsfpu single}. The default
19514 double precision floating point coprocessor may be selected using
19515 @samp{set mipsfpu double}.
19517 In previous versions the only choices were double precision or no
19518 floating point, so @samp{set mipsfpu on} will select double precision
19519 and @samp{set mipsfpu off} will select no floating point.
19521 As usual, you can inquire about the @code{mipsfpu} variable with
19522 @samp{show mipsfpu}.
19524 @item set timeout @var{seconds}
19525 @itemx set retransmit-timeout @var{seconds}
19526 @itemx show timeout
19527 @itemx show retransmit-timeout
19528 @cindex @code{timeout}, MIPS protocol
19529 @cindex @code{retransmit-timeout}, MIPS protocol
19530 @kindex set timeout
19531 @kindex show timeout
19532 @kindex set retransmit-timeout
19533 @kindex show retransmit-timeout
19534 You can control the timeout used while waiting for a packet, in the MIPS
19535 remote protocol, with the @code{set timeout @var{seconds}} command. The
19536 default is 5 seconds. Similarly, you can control the timeout used while
19537 waiting for an acknowledgment of a packet with the @code{set
19538 retransmit-timeout @var{seconds}} command. The default is 3 seconds.
19539 You can inspect both values with @code{show timeout} and @code{show
19540 retransmit-timeout}. (These commands are @emph{only} available when
19541 @value{GDBN} is configured for @samp{--target=mips-elf}.)
19543 The timeout set by @code{set timeout} does not apply when @value{GDBN}
19544 is waiting for your program to stop. In that case, @value{GDBN} waits
19545 forever because it has no way of knowing how long the program is going
19546 to run before stopping.
19548 @item set syn-garbage-limit @var{num}
19549 @kindex set syn-garbage-limit@r{, MIPS remote}
19550 @cindex synchronize with remote MIPS target
19551 Limit the maximum number of characters @value{GDBN} should ignore when
19552 it tries to synchronize with the remote target. The default is 10
19553 characters. Setting the limit to -1 means there's no limit.
19555 @item show syn-garbage-limit
19556 @kindex show syn-garbage-limit@r{, MIPS remote}
19557 Show the current limit on the number of characters to ignore when
19558 trying to synchronize with the remote system.
19560 @item set monitor-prompt @var{prompt}
19561 @kindex set monitor-prompt@r{, MIPS remote}
19562 @cindex remote monitor prompt
19563 Tell @value{GDBN} to expect the specified @var{prompt} string from the
19564 remote monitor. The default depends on the target:
19574 @item show monitor-prompt
19575 @kindex show monitor-prompt@r{, MIPS remote}
19576 Show the current strings @value{GDBN} expects as the prompt from the
19579 @item set monitor-warnings
19580 @kindex set monitor-warnings@r{, MIPS remote}
19581 Enable or disable monitor warnings about hardware breakpoints. This
19582 has effect only for the @code{lsi} target. When on, @value{GDBN} will
19583 display warning messages whose codes are returned by the @code{lsi}
19584 PMON monitor for breakpoint commands.
19586 @item show monitor-warnings
19587 @kindex show monitor-warnings@r{, MIPS remote}
19588 Show the current setting of printing monitor warnings.
19590 @item pmon @var{command}
19591 @kindex pmon@r{, MIPS remote}
19592 @cindex send PMON command
19593 This command allows sending an arbitrary @var{command} string to the
19594 monitor. The monitor must be in debug mode for this to work.
19597 @node OpenRISC 1000
19598 @subsection OpenRISC 1000
19599 @cindex OpenRISC 1000
19601 @cindex or1k boards
19602 See OR1k Architecture document (@uref{www.opencores.org}) for more information
19603 about platform and commands.
19607 @kindex target jtag
19608 @item target jtag jtag://@var{host}:@var{port}
19610 Connects to remote JTAG server.
19611 JTAG remote server can be either an or1ksim or JTAG server,
19612 connected via parallel port to the board.
19614 Example: @code{target jtag jtag://localhost:9999}
19617 @item or1ksim @var{command}
19618 If connected to @code{or1ksim} OpenRISC 1000 Architectural
19619 Simulator, proprietary commands can be executed.
19621 @kindex info or1k spr
19622 @item info or1k spr
19623 Displays spr groups.
19625 @item info or1k spr @var{group}
19626 @itemx info or1k spr @var{groupno}
19627 Displays register names in selected group.
19629 @item info or1k spr @var{group} @var{register}
19630 @itemx info or1k spr @var{register}
19631 @itemx info or1k spr @var{groupno} @var{registerno}
19632 @itemx info or1k spr @var{registerno}
19633 Shows information about specified spr register.
19636 @item spr @var{group} @var{register} @var{value}
19637 @itemx spr @var{register @var{value}}
19638 @itemx spr @var{groupno} @var{registerno @var{value}}
19639 @itemx spr @var{registerno @var{value}}
19640 Writes @var{value} to specified spr register.
19643 Some implementations of OpenRISC 1000 Architecture also have hardware trace.
19644 It is very similar to @value{GDBN} trace, except it does not interfere with normal
19645 program execution and is thus much faster. Hardware breakpoints/watchpoint
19646 triggers can be set using:
19649 Load effective address/data
19651 Store effective address/data
19653 Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
19658 When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
19659 @code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
19661 @code{htrace} commands:
19662 @cindex OpenRISC 1000 htrace
19665 @item hwatch @var{conditional}
19666 Set hardware watchpoint on combination of Load/Store Effective Address(es)
19667 or Data. For example:
19669 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
19671 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
19675 Display information about current HW trace configuration.
19677 @item htrace trigger @var{conditional}
19678 Set starting criteria for HW trace.
19680 @item htrace qualifier @var{conditional}
19681 Set acquisition qualifier for HW trace.
19683 @item htrace stop @var{conditional}
19684 Set HW trace stopping criteria.
19686 @item htrace record [@var{data}]*
19687 Selects the data to be recorded, when qualifier is met and HW trace was
19690 @item htrace enable
19691 @itemx htrace disable
19692 Enables/disables the HW trace.
19694 @item htrace rewind [@var{filename}]
19695 Clears currently recorded trace data.
19697 If filename is specified, new trace file is made and any newly collected data
19698 will be written there.
19700 @item htrace print [@var{start} [@var{len}]]
19701 Prints trace buffer, using current record configuration.
19703 @item htrace mode continuous
19704 Set continuous trace mode.
19706 @item htrace mode suspend
19707 Set suspend trace mode.
19711 @node PowerPC Embedded
19712 @subsection PowerPC Embedded
19714 @cindex DVC register
19715 @value{GDBN} supports using the DVC (Data Value Compare) register to
19716 implement in hardware simple hardware watchpoint conditions of the form:
19719 (@value{GDBP}) watch @var{ADDRESS|VARIABLE} \
19720 if @var{ADDRESS|VARIABLE} == @var{CONSTANT EXPRESSION}
19723 The DVC register will be automatically used when @value{GDBN} detects
19724 such pattern in a condition expression, and the created watchpoint uses one
19725 debug register (either the @code{exact-watchpoints} option is on and the
19726 variable is scalar, or the variable has a length of one byte). This feature
19727 is available in native @value{GDBN} running on a Linux kernel version 2.6.34
19730 When running on PowerPC embedded processors, @value{GDBN} automatically uses
19731 ranged hardware watchpoints, unless the @code{exact-watchpoints} option is on,
19732 in which case watchpoints using only one debug register are created when
19733 watching variables of scalar types.
19735 You can create an artificial array to watch an arbitrary memory
19736 region using one of the following commands (@pxref{Expressions}):
19739 (@value{GDBP}) watch *((char *) @var{address})@@@var{length}
19740 (@value{GDBP}) watch @{char[@var{length}]@} @var{address}
19743 PowerPC embedded processors support masked watchpoints. See the discussion
19744 about the @code{mask} argument in @ref{Set Watchpoints}.
19746 @cindex ranged breakpoint
19747 PowerPC embedded processors support hardware accelerated
19748 @dfn{ranged breakpoints}. A ranged breakpoint stops execution of
19749 the inferior whenever it executes an instruction at any address within
19750 the range it specifies. To set a ranged breakpoint in @value{GDBN},
19751 use the @code{break-range} command.
19753 @value{GDBN} provides the following PowerPC-specific commands:
19756 @kindex break-range
19757 @item break-range @var{start-location}, @var{end-location}
19758 Set a breakpoint for an address range.
19759 @var{start-location} and @var{end-location} can specify a function name,
19760 a line number, an offset of lines from the current line or from the start
19761 location, or an address of an instruction (see @ref{Specify Location},
19762 for a list of all the possible ways to specify a @var{location}.)
19763 The breakpoint will stop execution of the inferior whenever it
19764 executes an instruction at any address within the specified range,
19765 (including @var{start-location} and @var{end-location}.)
19767 @kindex set powerpc
19768 @item set powerpc soft-float
19769 @itemx show powerpc soft-float
19770 Force @value{GDBN} to use (or not use) a software floating point calling
19771 convention. By default, @value{GDBN} selects the calling convention based
19772 on the selected architecture and the provided executable file.
19774 @item set powerpc vector-abi
19775 @itemx show powerpc vector-abi
19776 Force @value{GDBN} to use the specified calling convention for vector
19777 arguments and return values. The valid options are @samp{auto};
19778 @samp{generic}, to avoid vector registers even if they are present;
19779 @samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
19780 registers. By default, @value{GDBN} selects the calling convention
19781 based on the selected architecture and the provided executable file.
19783 @item set powerpc exact-watchpoints
19784 @itemx show powerpc exact-watchpoints
19785 Allow @value{GDBN} to use only one debug register when watching a variable
19786 of scalar type, thus assuming that the variable is accessed through the
19787 address of its first byte.
19789 @kindex target dink32
19790 @item target dink32 @var{dev}
19791 DINK32 ROM monitor.
19793 @kindex target ppcbug
19794 @item target ppcbug @var{dev}
19795 @kindex target ppcbug1
19796 @item target ppcbug1 @var{dev}
19797 PPCBUG ROM monitor for PowerPC.
19800 @item target sds @var{dev}
19801 SDS monitor, running on a PowerPC board (such as Motorola's ADS).
19804 @cindex SDS protocol
19805 The following commands specific to the SDS protocol are supported
19809 @item set sdstimeout @var{nsec}
19810 @kindex set sdstimeout
19811 Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
19812 default is 2 seconds.
19814 @item show sdstimeout
19815 @kindex show sdstimeout
19816 Show the current value of the SDS timeout.
19818 @item sds @var{command}
19819 @kindex sds@r{, a command}
19820 Send the specified @var{command} string to the SDS monitor.
19825 @subsection HP PA Embedded
19829 @kindex target op50n
19830 @item target op50n @var{dev}
19831 OP50N monitor, running on an OKI HPPA board.
19833 @kindex target w89k
19834 @item target w89k @var{dev}
19835 W89K monitor, running on a Winbond HPPA board.
19840 @subsection Tsqware Sparclet
19844 @value{GDBN} enables developers to debug tasks running on
19845 Sparclet targets from a Unix host.
19846 @value{GDBN} uses code that runs on
19847 both the Unix host and on the Sparclet target. The program
19848 @code{@value{GDBP}} is installed and executed on the Unix host.
19851 @item remotetimeout @var{args}
19852 @kindex remotetimeout
19853 @value{GDBN} supports the option @code{remotetimeout}.
19854 This option is set by the user, and @var{args} represents the number of
19855 seconds @value{GDBN} waits for responses.
19858 @cindex compiling, on Sparclet
19859 When compiling for debugging, include the options @samp{-g} to get debug
19860 information and @samp{-Ttext} to relocate the program to where you wish to
19861 load it on the target. You may also want to add the options @samp{-n} or
19862 @samp{-N} in order to reduce the size of the sections. Example:
19865 sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
19868 You can use @code{objdump} to verify that the addresses are what you intended:
19871 sparclet-aout-objdump --headers --syms prog
19874 @cindex running, on Sparclet
19876 your Unix execution search path to find @value{GDBN}, you are ready to
19877 run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
19878 (or @code{sparclet-aout-gdb}, depending on your installation).
19880 @value{GDBN} comes up showing the prompt:
19887 * Sparclet File:: Setting the file to debug
19888 * Sparclet Connection:: Connecting to Sparclet
19889 * Sparclet Download:: Sparclet download
19890 * Sparclet Execution:: Running and debugging
19893 @node Sparclet File
19894 @subsubsection Setting File to Debug
19896 The @value{GDBN} command @code{file} lets you choose with program to debug.
19899 (gdbslet) file prog
19903 @value{GDBN} then attempts to read the symbol table of @file{prog}.
19904 @value{GDBN} locates
19905 the file by searching the directories listed in the command search
19907 If the file was compiled with debug information (option @samp{-g}), source
19908 files will be searched as well.
19909 @value{GDBN} locates
19910 the source files by searching the directories listed in the directory search
19911 path (@pxref{Environment, ,Your Program's Environment}).
19913 to find a file, it displays a message such as:
19916 prog: No such file or directory.
19919 When this happens, add the appropriate directories to the search paths with
19920 the @value{GDBN} commands @code{path} and @code{dir}, and execute the
19921 @code{target} command again.
19923 @node Sparclet Connection
19924 @subsubsection Connecting to Sparclet
19926 The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
19927 To connect to a target on serial port ``@code{ttya}'', type:
19930 (gdbslet) target sparclet /dev/ttya
19931 Remote target sparclet connected to /dev/ttya
19932 main () at ../prog.c:3
19936 @value{GDBN} displays messages like these:
19942 @node Sparclet Download
19943 @subsubsection Sparclet Download
19945 @cindex download to Sparclet
19946 Once connected to the Sparclet target,
19947 you can use the @value{GDBN}
19948 @code{load} command to download the file from the host to the target.
19949 The file name and load offset should be given as arguments to the @code{load}
19951 Since the file format is aout, the program must be loaded to the starting
19952 address. You can use @code{objdump} to find out what this value is. The load
19953 offset is an offset which is added to the VMA (virtual memory address)
19954 of each of the file's sections.
19955 For instance, if the program
19956 @file{prog} was linked to text address 0x1201000, with data at 0x12010160
19957 and bss at 0x12010170, in @value{GDBN}, type:
19960 (gdbslet) load prog 0x12010000
19961 Loading section .text, size 0xdb0 vma 0x12010000
19964 If the code is loaded at a different address then what the program was linked
19965 to, you may need to use the @code{section} and @code{add-symbol-file} commands
19966 to tell @value{GDBN} where to map the symbol table.
19968 @node Sparclet Execution
19969 @subsubsection Running and Debugging
19971 @cindex running and debugging Sparclet programs
19972 You can now begin debugging the task using @value{GDBN}'s execution control
19973 commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
19974 manual for the list of commands.
19978 Breakpoint 1 at 0x12010000: file prog.c, line 3.
19980 Starting program: prog
19981 Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
19982 3 char *symarg = 0;
19984 4 char *execarg = "hello!";
19989 @subsection Fujitsu Sparclite
19993 @kindex target sparclite
19994 @item target sparclite @var{dev}
19995 Fujitsu sparclite boards, used only for the purpose of loading.
19996 You must use an additional command to debug the program.
19997 For example: target remote @var{dev} using @value{GDBN} standard
20003 @subsection Zilog Z8000
20006 @cindex simulator, Z8000
20007 @cindex Zilog Z8000 simulator
20009 When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
20012 For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
20013 unsegmented variant of the Z8000 architecture) or the Z8001 (the
20014 segmented variant). The simulator recognizes which architecture is
20015 appropriate by inspecting the object code.
20018 @item target sim @var{args}
20020 @kindex target sim@r{, with Z8000}
20021 Debug programs on a simulated CPU. If the simulator supports setup
20022 options, specify them via @var{args}.
20026 After specifying this target, you can debug programs for the simulated
20027 CPU in the same style as programs for your host computer; use the
20028 @code{file} command to load a new program image, the @code{run} command
20029 to run your program, and so on.
20031 As well as making available all the usual machine registers
20032 (@pxref{Registers, ,Registers}), the Z8000 simulator provides three
20033 additional items of information as specially named registers:
20038 Counts clock-ticks in the simulator.
20041 Counts instructions run in the simulator.
20044 Execution time in 60ths of a second.
20048 You can refer to these values in @value{GDBN} expressions with the usual
20049 conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
20050 conditional breakpoint that suspends only after at least 5000
20051 simulated clock ticks.
20054 @subsection Atmel AVR
20057 When configured for debugging the Atmel AVR, @value{GDBN} supports the
20058 following AVR-specific commands:
20061 @item info io_registers
20062 @kindex info io_registers@r{, AVR}
20063 @cindex I/O registers (Atmel AVR)
20064 This command displays information about the AVR I/O registers. For
20065 each register, @value{GDBN} prints its number and value.
20072 When configured for debugging CRIS, @value{GDBN} provides the
20073 following CRIS-specific commands:
20076 @item set cris-version @var{ver}
20077 @cindex CRIS version
20078 Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
20079 The CRIS version affects register names and sizes. This command is useful in
20080 case autodetection of the CRIS version fails.
20082 @item show cris-version
20083 Show the current CRIS version.
20085 @item set cris-dwarf2-cfi
20086 @cindex DWARF-2 CFI and CRIS
20087 Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
20088 Change to @samp{off} when using @code{gcc-cris} whose version is below
20091 @item show cris-dwarf2-cfi
20092 Show the current state of using DWARF-2 CFI.
20094 @item set cris-mode @var{mode}
20096 Set the current CRIS mode to @var{mode}. It should only be changed when
20097 debugging in guru mode, in which case it should be set to
20098 @samp{guru} (the default is @samp{normal}).
20100 @item show cris-mode
20101 Show the current CRIS mode.
20105 @subsection Renesas Super-H
20108 For the Renesas Super-H processor, @value{GDBN} provides these
20113 @kindex regs@r{, Super-H}
20114 Show the values of all Super-H registers.
20116 @item set sh calling-convention @var{convention}
20117 @kindex set sh calling-convention
20118 Set the calling-convention used when calling functions from @value{GDBN}.
20119 Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
20120 With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
20121 convention. If the DWARF-2 information of the called function specifies
20122 that the function follows the Renesas calling convention, the function
20123 is called using the Renesas calling convention. If the calling convention
20124 is set to @samp{renesas}, the Renesas calling convention is always used,
20125 regardless of the DWARF-2 information. This can be used to override the
20126 default of @samp{gcc} if debug information is missing, or the compiler
20127 does not emit the DWARF-2 calling convention entry for a function.
20129 @item show sh calling-convention
20130 @kindex show sh calling-convention
20131 Show the current calling convention setting.
20136 @node Architectures
20137 @section Architectures
20139 This section describes characteristics of architectures that affect
20140 all uses of @value{GDBN} with the architecture, both native and cross.
20147 * HPPA:: HP PA architecture
20148 * SPU:: Cell Broadband Engine SPU architecture
20153 @subsection x86 Architecture-specific Issues
20156 @item set struct-convention @var{mode}
20157 @kindex set struct-convention
20158 @cindex struct return convention
20159 @cindex struct/union returned in registers
20160 Set the convention used by the inferior to return @code{struct}s and
20161 @code{union}s from functions to @var{mode}. Possible values of
20162 @var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
20163 default). @code{"default"} or @code{"pcc"} means that @code{struct}s
20164 are returned on the stack, while @code{"reg"} means that a
20165 @code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
20166 be returned in a register.
20168 @item show struct-convention
20169 @kindex show struct-convention
20170 Show the current setting of the convention to return @code{struct}s
20179 @kindex set rstack_high_address
20180 @cindex AMD 29K register stack
20181 @cindex register stack, AMD29K
20182 @item set rstack_high_address @var{address}
20183 On AMD 29000 family processors, registers are saved in a separate
20184 @dfn{register stack}. There is no way for @value{GDBN} to determine the
20185 extent of this stack. Normally, @value{GDBN} just assumes that the
20186 stack is ``large enough''. This may result in @value{GDBN} referencing
20187 memory locations that do not exist. If necessary, you can get around
20188 this problem by specifying the ending address of the register stack with
20189 the @code{set rstack_high_address} command. The argument should be an
20190 address, which you probably want to precede with @samp{0x} to specify in
20193 @kindex show rstack_high_address
20194 @item show rstack_high_address
20195 Display the current limit of the register stack, on AMD 29000 family
20203 See the following section.
20208 @cindex stack on Alpha
20209 @cindex stack on MIPS
20210 @cindex Alpha stack
20212 Alpha- and MIPS-based computers use an unusual stack frame, which
20213 sometimes requires @value{GDBN} to search backward in the object code to
20214 find the beginning of a function.
20216 @cindex response time, MIPS debugging
20217 To improve response time (especially for embedded applications, where
20218 @value{GDBN} may be restricted to a slow serial line for this search)
20219 you may want to limit the size of this search, using one of these
20223 @cindex @code{heuristic-fence-post} (Alpha, MIPS)
20224 @item set heuristic-fence-post @var{limit}
20225 Restrict @value{GDBN} to examining at most @var{limit} bytes in its
20226 search for the beginning of a function. A value of @var{0} (the
20227 default) means there is no limit. However, except for @var{0}, the
20228 larger the limit the more bytes @code{heuristic-fence-post} must search
20229 and therefore the longer it takes to run. You should only need to use
20230 this command when debugging a stripped executable.
20232 @item show heuristic-fence-post
20233 Display the current limit.
20237 These commands are available @emph{only} when @value{GDBN} is configured
20238 for debugging programs on Alpha or MIPS processors.
20240 Several MIPS-specific commands are available when debugging MIPS
20244 @item set mips abi @var{arg}
20245 @kindex set mips abi
20246 @cindex set ABI for MIPS
20247 Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
20248 values of @var{arg} are:
20252 The default ABI associated with the current binary (this is the
20262 @item show mips abi
20263 @kindex show mips abi
20264 Show the MIPS ABI used by @value{GDBN} to debug the inferior.
20267 @itemx show mipsfpu
20268 @xref{MIPS Embedded, set mipsfpu}.
20270 @item set mips mask-address @var{arg}
20271 @kindex set mips mask-address
20272 @cindex MIPS addresses, masking
20273 This command determines whether the most-significant 32 bits of 64-bit
20274 MIPS addresses are masked off. The argument @var{arg} can be
20275 @samp{on}, @samp{off}, or @samp{auto}. The latter is the default
20276 setting, which lets @value{GDBN} determine the correct value.
20278 @item show mips mask-address
20279 @kindex show mips mask-address
20280 Show whether the upper 32 bits of MIPS addresses are masked off or
20283 @item set remote-mips64-transfers-32bit-regs
20284 @kindex set remote-mips64-transfers-32bit-regs
20285 This command controls compatibility with 64-bit MIPS targets that
20286 transfer data in 32-bit quantities. If you have an old MIPS 64 target
20287 that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
20288 and 64 bits for other registers, set this option to @samp{on}.
20290 @item show remote-mips64-transfers-32bit-regs
20291 @kindex show remote-mips64-transfers-32bit-regs
20292 Show the current setting of compatibility with older MIPS 64 targets.
20294 @item set debug mips
20295 @kindex set debug mips
20296 This command turns on and off debugging messages for the MIPS-specific
20297 target code in @value{GDBN}.
20299 @item show debug mips
20300 @kindex show debug mips
20301 Show the current setting of MIPS debugging messages.
20307 @cindex HPPA support
20309 When @value{GDBN} is debugging the HP PA architecture, it provides the
20310 following special commands:
20313 @item set debug hppa
20314 @kindex set debug hppa
20315 This command determines whether HPPA architecture-specific debugging
20316 messages are to be displayed.
20318 @item show debug hppa
20319 Show whether HPPA debugging messages are displayed.
20321 @item maint print unwind @var{address}
20322 @kindex maint print unwind@r{, HPPA}
20323 This command displays the contents of the unwind table entry at the
20324 given @var{address}.
20330 @subsection Cell Broadband Engine SPU architecture
20331 @cindex Cell Broadband Engine
20334 When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
20335 it provides the following special commands:
20338 @item info spu event
20340 Display SPU event facility status. Shows current event mask
20341 and pending event status.
20343 @item info spu signal
20344 Display SPU signal notification facility status. Shows pending
20345 signal-control word and signal notification mode of both signal
20346 notification channels.
20348 @item info spu mailbox
20349 Display SPU mailbox facility status. Shows all pending entries,
20350 in order of processing, in each of the SPU Write Outbound,
20351 SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
20354 Display MFC DMA status. Shows all pending commands in the MFC
20355 DMA queue. For each entry, opcode, tag, class IDs, effective
20356 and local store addresses and transfer size are shown.
20358 @item info spu proxydma
20359 Display MFC Proxy-DMA status. Shows all pending commands in the MFC
20360 Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
20361 and local store addresses and transfer size are shown.
20365 When @value{GDBN} is debugging a combined PowerPC/SPU application
20366 on the Cell Broadband Engine, it provides in addition the following
20370 @item set spu stop-on-load @var{arg}
20372 Set whether to stop for new SPE threads. When set to @code{on}, @value{GDBN}
20373 will give control to the user when a new SPE thread enters its @code{main}
20374 function. The default is @code{off}.
20376 @item show spu stop-on-load
20378 Show whether to stop for new SPE threads.
20380 @item set spu auto-flush-cache @var{arg}
20381 Set whether to automatically flush the software-managed cache. When set to
20382 @code{on}, @value{GDBN} will automatically cause the SPE software-managed
20383 cache to be flushed whenever SPE execution stops. This provides a consistent
20384 view of PowerPC memory that is accessed via the cache. If an application
20385 does not use the software-managed cache, this option has no effect.
20387 @item show spu auto-flush-cache
20388 Show whether to automatically flush the software-managed cache.
20393 @subsection PowerPC
20394 @cindex PowerPC architecture
20396 When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
20397 pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
20398 numbers stored in the floating point registers. These values must be stored
20399 in two consecutive registers, always starting at an even register like
20400 @code{f0} or @code{f2}.
20402 The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
20403 by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
20404 @code{f2} and @code{f3} for @code{$dl1} and so on.
20406 For POWER7 processors, @value{GDBN} provides a set of pseudo-registers, the 64-bit
20407 wide Extended Floating Point Registers (@samp{f32} through @samp{f63}).
20410 @node Controlling GDB
20411 @chapter Controlling @value{GDBN}
20413 You can alter the way @value{GDBN} interacts with you by using the
20414 @code{set} command. For commands controlling how @value{GDBN} displays
20415 data, see @ref{Print Settings, ,Print Settings}. Other settings are
20420 * Editing:: Command editing
20421 * Command History:: Command history
20422 * Screen Size:: Screen size
20423 * Numbers:: Numbers
20424 * ABI:: Configuring the current ABI
20425 * Auto-loading:: Automatically loading associated files
20426 * Messages/Warnings:: Optional warnings and messages
20427 * Debugging Output:: Optional messages about internal happenings
20428 * Other Misc Settings:: Other Miscellaneous Settings
20436 @value{GDBN} indicates its readiness to read a command by printing a string
20437 called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
20438 can change the prompt string with the @code{set prompt} command. For
20439 instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
20440 the prompt in one of the @value{GDBN} sessions so that you can always tell
20441 which one you are talking to.
20443 @emph{Note:} @code{set prompt} does not add a space for you after the
20444 prompt you set. This allows you to set a prompt which ends in a space
20445 or a prompt that does not.
20449 @item set prompt @var{newprompt}
20450 Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
20452 @kindex show prompt
20454 Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
20457 Versions of @value{GDBN} that ship with Python scripting enabled have
20458 prompt extensions. The commands for interacting with these extensions
20462 @kindex set extended-prompt
20463 @item set extended-prompt @var{prompt}
20464 Set an extended prompt that allows for substitutions.
20465 @xref{gdb.prompt}, for a list of escape sequences that can be used for
20466 substitution. Any escape sequences specified as part of the prompt
20467 string are replaced with the corresponding strings each time the prompt
20473 set extended-prompt Current working directory: \w (gdb)
20476 Note that when an extended-prompt is set, it takes control of the
20477 @var{prompt_hook} hook. @xref{prompt_hook}, for further information.
20479 @kindex show extended-prompt
20480 @item show extended-prompt
20481 Prints the extended prompt. Any escape sequences specified as part of
20482 the prompt string with @code{set extended-prompt}, are replaced with the
20483 corresponding strings each time the prompt is displayed.
20487 @section Command Editing
20489 @cindex command line editing
20491 @value{GDBN} reads its input commands via the @dfn{Readline} interface. This
20492 @sc{gnu} library provides consistent behavior for programs which provide a
20493 command line interface to the user. Advantages are @sc{gnu} Emacs-style
20494 or @dfn{vi}-style inline editing of commands, @code{csh}-like history
20495 substitution, and a storage and recall of command history across
20496 debugging sessions.
20498 You may control the behavior of command line editing in @value{GDBN} with the
20499 command @code{set}.
20502 @kindex set editing
20505 @itemx set editing on
20506 Enable command line editing (enabled by default).
20508 @item set editing off
20509 Disable command line editing.
20511 @kindex show editing
20513 Show whether command line editing is enabled.
20516 @ifset SYSTEM_READLINE
20517 @xref{Command Line Editing, , , rluserman, GNU Readline Library},
20519 @ifclear SYSTEM_READLINE
20520 @xref{Command Line Editing},
20522 for more details about the Readline
20523 interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
20524 encouraged to read that chapter.
20526 @node Command History
20527 @section Command History
20528 @cindex command history
20530 @value{GDBN} can keep track of the commands you type during your
20531 debugging sessions, so that you can be certain of precisely what
20532 happened. Use these commands to manage the @value{GDBN} command
20535 @value{GDBN} uses the @sc{gnu} History library, a part of the Readline
20536 package, to provide the history facility.
20537 @ifset SYSTEM_READLINE
20538 @xref{Using History Interactively, , , history, GNU History Library},
20540 @ifclear SYSTEM_READLINE
20541 @xref{Using History Interactively},
20543 for the detailed description of the History library.
20545 To issue a command to @value{GDBN} without affecting certain aspects of
20546 the state which is seen by users, prefix it with @samp{server }
20547 (@pxref{Server Prefix}). This
20548 means that this command will not affect the command history, nor will it
20549 affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
20550 pressed on a line by itself.
20552 @cindex @code{server}, command prefix
20553 The server prefix does not affect the recording of values into the value
20554 history; to print a value without recording it into the value history,
20555 use the @code{output} command instead of the @code{print} command.
20557 Here is the description of @value{GDBN} commands related to command
20561 @cindex history substitution
20562 @cindex history file
20563 @kindex set history filename
20564 @cindex @env{GDBHISTFILE}, environment variable
20565 @item set history filename @var{fname}
20566 Set the name of the @value{GDBN} command history file to @var{fname}.
20567 This is the file where @value{GDBN} reads an initial command history
20568 list, and where it writes the command history from this session when it
20569 exits. You can access this list through history expansion or through
20570 the history command editing characters listed below. This file defaults
20571 to the value of the environment variable @code{GDBHISTFILE}, or to
20572 @file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
20575 @cindex save command history
20576 @kindex set history save
20577 @item set history save
20578 @itemx set history save on
20579 Record command history in a file, whose name may be specified with the
20580 @code{set history filename} command. By default, this option is disabled.
20582 @item set history save off
20583 Stop recording command history in a file.
20585 @cindex history size
20586 @kindex set history size
20587 @cindex @env{HISTSIZE}, environment variable
20588 @item set history size @var{size}
20589 Set the number of commands which @value{GDBN} keeps in its history list.
20590 This defaults to the value of the environment variable
20591 @code{HISTSIZE}, or to 256 if this variable is not set.
20594 History expansion assigns special meaning to the character @kbd{!}.
20595 @ifset SYSTEM_READLINE
20596 @xref{Event Designators, , , history, GNU History Library},
20598 @ifclear SYSTEM_READLINE
20599 @xref{Event Designators},
20603 @cindex history expansion, turn on/off
20604 Since @kbd{!} is also the logical not operator in C, history expansion
20605 is off by default. If you decide to enable history expansion with the
20606 @code{set history expansion on} command, you may sometimes need to
20607 follow @kbd{!} (when it is used as logical not, in an expression) with
20608 a space or a tab to prevent it from being expanded. The readline
20609 history facilities do not attempt substitution on the strings
20610 @kbd{!=} and @kbd{!(}, even when history expansion is enabled.
20612 The commands to control history expansion are:
20615 @item set history expansion on
20616 @itemx set history expansion
20617 @kindex set history expansion
20618 Enable history expansion. History expansion is off by default.
20620 @item set history expansion off
20621 Disable history expansion.
20624 @kindex show history
20626 @itemx show history filename
20627 @itemx show history save
20628 @itemx show history size
20629 @itemx show history expansion
20630 These commands display the state of the @value{GDBN} history parameters.
20631 @code{show history} by itself displays all four states.
20636 @kindex show commands
20637 @cindex show last commands
20638 @cindex display command history
20639 @item show commands
20640 Display the last ten commands in the command history.
20642 @item show commands @var{n}
20643 Print ten commands centered on command number @var{n}.
20645 @item show commands +
20646 Print ten commands just after the commands last printed.
20650 @section Screen Size
20651 @cindex size of screen
20652 @cindex pauses in output
20654 Certain commands to @value{GDBN} may produce large amounts of
20655 information output to the screen. To help you read all of it,
20656 @value{GDBN} pauses and asks you for input at the end of each page of
20657 output. Type @key{RET} when you want to continue the output, or @kbd{q}
20658 to discard the remaining output. Also, the screen width setting
20659 determines when to wrap lines of output. Depending on what is being
20660 printed, @value{GDBN} tries to break the line at a readable place,
20661 rather than simply letting it overflow onto the following line.
20663 Normally @value{GDBN} knows the size of the screen from the terminal
20664 driver software. For example, on Unix @value{GDBN} uses the termcap data base
20665 together with the value of the @code{TERM} environment variable and the
20666 @code{stty rows} and @code{stty cols} settings. If this is not correct,
20667 you can override it with the @code{set height} and @code{set
20674 @kindex show height
20675 @item set height @var{lpp}
20677 @itemx set width @var{cpl}
20679 These @code{set} commands specify a screen height of @var{lpp} lines and
20680 a screen width of @var{cpl} characters. The associated @code{show}
20681 commands display the current settings.
20683 If you specify a height of zero lines, @value{GDBN} does not pause during
20684 output no matter how long the output is. This is useful if output is to a
20685 file or to an editor buffer.
20687 Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
20688 from wrapping its output.
20690 @item set pagination on
20691 @itemx set pagination off
20692 @kindex set pagination
20693 Turn the output pagination on or off; the default is on. Turning
20694 pagination off is the alternative to @code{set height 0}. Note that
20695 running @value{GDBN} with the @option{--batch} option (@pxref{Mode
20696 Options, -batch}) also automatically disables pagination.
20698 @item show pagination
20699 @kindex show pagination
20700 Show the current pagination mode.
20705 @cindex number representation
20706 @cindex entering numbers
20708 You can always enter numbers in octal, decimal, or hexadecimal in
20709 @value{GDBN} by the usual conventions: octal numbers begin with
20710 @samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
20711 begin with @samp{0x}. Numbers that neither begin with @samp{0} or
20712 @samp{0x}, nor end with a @samp{.} are, by default, entered in base
20713 10; likewise, the default display for numbers---when no particular
20714 format is specified---is base 10. You can change the default base for
20715 both input and output with the commands described below.
20718 @kindex set input-radix
20719 @item set input-radix @var{base}
20720 Set the default base for numeric input. Supported choices
20721 for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
20722 specified either unambiguously or using the current input radix; for
20726 set input-radix 012
20727 set input-radix 10.
20728 set input-radix 0xa
20732 sets the input base to decimal. On the other hand, @samp{set input-radix 10}
20733 leaves the input radix unchanged, no matter what it was, since
20734 @samp{10}, being without any leading or trailing signs of its base, is
20735 interpreted in the current radix. Thus, if the current radix is 16,
20736 @samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
20739 @kindex set output-radix
20740 @item set output-radix @var{base}
20741 Set the default base for numeric display. Supported choices
20742 for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
20743 specified either unambiguously or using the current input radix.
20745 @kindex show input-radix
20746 @item show input-radix
20747 Display the current default base for numeric input.
20749 @kindex show output-radix
20750 @item show output-radix
20751 Display the current default base for numeric display.
20753 @item set radix @r{[}@var{base}@r{]}
20757 These commands set and show the default base for both input and output
20758 of numbers. @code{set radix} sets the radix of input and output to
20759 the same base; without an argument, it resets the radix back to its
20760 default value of 10.
20765 @section Configuring the Current ABI
20767 @value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
20768 application automatically. However, sometimes you need to override its
20769 conclusions. Use these commands to manage @value{GDBN}'s view of the
20776 One @value{GDBN} configuration can debug binaries for multiple operating
20777 system targets, either via remote debugging or native emulation.
20778 @value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
20779 but you can override its conclusion using the @code{set osabi} command.
20780 One example where this is useful is in debugging of binaries which use
20781 an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
20782 not have the same identifying marks that the standard C library for your
20787 Show the OS ABI currently in use.
20790 With no argument, show the list of registered available OS ABI's.
20792 @item set osabi @var{abi}
20793 Set the current OS ABI to @var{abi}.
20796 @cindex float promotion
20798 Generally, the way that an argument of type @code{float} is passed to a
20799 function depends on whether the function is prototyped. For a prototyped
20800 (i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
20801 according to the architecture's convention for @code{float}. For unprototyped
20802 (i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
20803 @code{double} and then passed.
20805 Unfortunately, some forms of debug information do not reliably indicate whether
20806 a function is prototyped. If @value{GDBN} calls a function that is not marked
20807 as prototyped, it consults @kbd{set coerce-float-to-double}.
20810 @kindex set coerce-float-to-double
20811 @item set coerce-float-to-double
20812 @itemx set coerce-float-to-double on
20813 Arguments of type @code{float} will be promoted to @code{double} when passed
20814 to an unprototyped function. This is the default setting.
20816 @item set coerce-float-to-double off
20817 Arguments of type @code{float} will be passed directly to unprototyped
20820 @kindex show coerce-float-to-double
20821 @item show coerce-float-to-double
20822 Show the current setting of promoting @code{float} to @code{double}.
20826 @kindex show cp-abi
20827 @value{GDBN} needs to know the ABI used for your program's C@t{++}
20828 objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
20829 used to build your application. @value{GDBN} only fully supports
20830 programs with a single C@t{++} ABI; if your program contains code using
20831 multiple C@t{++} ABI's or if @value{GDBN} can not identify your
20832 program's ABI correctly, you can tell @value{GDBN} which ABI to use.
20833 Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
20834 before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
20835 ``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
20836 use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
20841 Show the C@t{++} ABI currently in use.
20844 With no argument, show the list of supported C@t{++} ABI's.
20846 @item set cp-abi @var{abi}
20847 @itemx set cp-abi auto
20848 Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
20852 @section Automatically loading associated files
20853 @cindex auto-loading
20855 @value{GDBN} sometimes reads files with commands and settings automatically,
20856 without being explicitly told so by the user. We call this feature
20857 @dfn{auto-loading}. While auto-loading is useful for automatically adapting
20858 @value{GDBN} to the needs of your project, it can sometimes produce unexpected
20859 results or introduce security risks (e.g., if the file comes from untrusted
20862 For these reasons, @value{GDBN} includes commands and options to let you
20863 control when to auto-load files and which files should be auto-loaded.
20866 @anchor{set auto-load off}
20867 @kindex set auto-load off
20868 @item set auto-load off
20869 Globally disable loading of all auto-loaded files.
20870 You may want to use this command with the @samp{-iex} option
20871 (@pxref{Option -init-eval-command}) such as:
20873 $ @kbd{gdb -iex "set auto-load off" untrusted-executable corefile}
20876 Be aware that system init file (@pxref{System-wide configuration})
20877 and init files from your home directory (@pxref{Home Directory Init File})
20878 still get read (as they come from generally trusted directories).
20879 To prevent @value{GDBN} from auto-loading even those init files, use the
20880 @option{-nx} option (@pxref{Mode Options}), in addition to
20881 @code{set auto-load no}.
20883 @anchor{show auto-load}
20884 @kindex show auto-load
20885 @item show auto-load
20886 Show whether auto-loading of each specific @samp{auto-load} file(s) is enabled
20890 (gdb) show auto-load
20891 gdb-scripts: Auto-loading of canned sequences of commands scripts is on.
20892 libthread-db: Auto-loading of inferior specific libthread_db is on.
20893 local-gdbinit: Auto-loading of .gdbinit script from current directory is on.
20894 python-scripts: Auto-loading of Python scripts is on.
20895 safe-path: List of directories from which it is safe to auto-load files
20899 @anchor{info auto-load}
20900 @kindex info auto-load
20901 @item info auto-load
20902 Print whether each specific @samp{auto-load} file(s) have been auto-loaded or
20906 (gdb) info auto-load
20909 Yes /home/user/gdb/gdb-gdb.gdb
20910 libthread-db: No auto-loaded libthread-db.
20911 local-gdbinit: Local .gdbinit file "/home/user/gdb/.gdbinit" has been loaded.
20914 Yes /home/user/gdb/gdb-gdb.py
20918 These are various kinds of files @value{GDBN} can automatically load:
20922 @xref{objfile-gdb.py file}, controlled by @ref{set auto-load python-scripts}.
20924 @xref{objfile-gdb.gdb file}, controlled by @ref{set auto-load gdb-scripts}.
20926 @xref{dotdebug_gdb_scripts section},
20927 controlled by @ref{set auto-load python-scripts}.
20929 @xref{Init File in the Current Directory},
20930 controlled by @ref{set auto-load local-gdbinit}.
20932 @xref{libthread_db.so.1 file}, controlled by @ref{set auto-load libthread-db}.
20935 These are @value{GDBN} control commands for the auto-loading:
20937 @multitable @columnfractions .5 .5
20938 @item @xref{set auto-load off}.
20939 @tab Disable auto-loading globally.
20940 @item @xref{show auto-load}.
20941 @tab Show setting of all kinds of files.
20942 @item @xref{info auto-load}.
20943 @tab Show state of all kinds of files.
20944 @item @xref{set auto-load gdb-scripts}.
20945 @tab Control for @value{GDBN} command scripts.
20946 @item @xref{show auto-load gdb-scripts}.
20947 @tab Show setting of @value{GDBN} command scripts.
20948 @item @xref{info auto-load gdb-scripts}.
20949 @tab Show state of @value{GDBN} command scripts.
20950 @item @xref{set auto-load python-scripts}.
20951 @tab Control for @value{GDBN} Python scripts.
20952 @item @xref{show auto-load python-scripts}.
20953 @tab Show setting of @value{GDBN} Python scripts.
20954 @item @xref{info auto-load python-scripts}.
20955 @tab Show state of @value{GDBN} Python scripts.
20956 @item @xref{set auto-load local-gdbinit}.
20957 @tab Control for init file in the current directory.
20958 @item @xref{show auto-load local-gdbinit}.
20959 @tab Show setting of init file in the current directory.
20960 @item @xref{info auto-load local-gdbinit}.
20961 @tab Show state of init file in the current directory.
20962 @item @xref{set auto-load libthread-db}.
20963 @tab Control for thread debugging library.
20964 @item @xref{show auto-load libthread-db}.
20965 @tab Show setting of thread debugging library.
20966 @item @xref{info auto-load libthread-db}.
20967 @tab Show state of thread debugging library.
20968 @item @xref{set auto-load safe-path}.
20969 @tab Control directories trusted for automatic loading.
20970 @item @xref{show auto-load safe-path}.
20971 @tab Show directories trusted for automatic loading.
20972 @item @xref{add-auto-load-safe-path}.
20973 @tab Add directory trusted for automatic loading.
20977 * Init File in the Current Directory:: @samp{set/show/info auto-load local-gdbinit}
20978 * libthread_db.so.1 file:: @samp{set/show/info auto-load libthread-db}
20979 * objfile-gdb.gdb file:: @samp{set/show/info auto-load gdb-script}
20980 * Auto-loading safe path:: @samp{set/show/info auto-load safe-path}
20981 * Auto-loading verbose mode:: @samp{set/show debug auto-load}
20982 @xref{Python Auto-loading}.
20985 @node Init File in the Current Directory
20986 @subsection Automatically loading init file in the current directory
20987 @cindex auto-loading init file in the current directory
20989 By default, @value{GDBN} reads and executes the canned sequences of commands
20990 from init file (if any) in the current working directory,
20991 see @ref{Init File in the Current Directory during Startup}.
20994 @anchor{set auto-load local-gdbinit}
20995 @kindex set auto-load local-gdbinit
20996 @item set auto-load local-gdbinit [on|off]
20997 Enable or disable the auto-loading of canned sequences of commands
20998 (@pxref{Sequences}) found in init file in the current directory.
21000 @anchor{show auto-load local-gdbinit}
21001 @kindex show auto-load local-gdbinit
21002 @item show auto-load local-gdbinit
21003 Show whether auto-loading of canned sequences of commands from init file in the
21004 current directory is enabled or disabled.
21006 @anchor{info auto-load local-gdbinit}
21007 @kindex info auto-load local-gdbinit
21008 @item info auto-load local-gdbinit
21009 Print whether canned sequences of commands from init file in the
21010 current directory have been auto-loaded.
21013 @node libthread_db.so.1 file
21014 @subsection Automatically loading thread debugging library
21015 @cindex auto-loading libthread_db.so.1
21017 This feature is currently present only on @sc{gnu}/Linux native hosts.
21019 @value{GDBN} reads in some cases thread debugging library from places specific
21020 to the inferior (@pxref{set libthread-db-search-path}).
21022 The special @samp{libthread-db-search-path} entry @samp{$sdir} is processed
21023 without checking this @samp{set auto-load libthread-db} switch as system
21024 libraries have to be trusted in general. In all other cases of
21025 @samp{libthread-db-search-path} entries @value{GDBN} checks first if @samp{set
21026 auto-load libthread-db} is enabled before trying to open such thread debugging
21030 @anchor{set auto-load libthread-db}
21031 @kindex set auto-load libthread-db
21032 @item set auto-load libthread-db [on|off]
21033 Enable or disable the auto-loading of inferior specific thread debugging library.
21035 @anchor{show auto-load libthread-db}
21036 @kindex show auto-load libthread-db
21037 @item show auto-load libthread-db
21038 Show whether auto-loading of inferior specific thread debugging library is
21039 enabled or disabled.
21041 @anchor{info auto-load libthread-db}
21042 @kindex info auto-load libthread-db
21043 @item info auto-load libthread-db
21044 Print the list of all loaded inferior specific thread debugging libraries and
21045 for each such library print list of inferior @var{pid}s using it.
21048 @node objfile-gdb.gdb file
21049 @subsection The @file{@var{objfile}-gdb.gdb} file
21050 @cindex auto-loading @file{@var{objfile}-gdb.gdb}
21052 @value{GDBN} tries to load an @file{@var{objfile}-gdb.gdb} file containing
21053 canned sequences of commands (@pxref{Sequences}), as long as @samp{set
21054 auto-load gdb-scripts} is set to @samp{on}.
21056 For more background refer to the similar Python scripts auto-loading
21057 description (@pxref{objfile-gdb.py file}).
21060 @anchor{set auto-load gdb-scripts}
21061 @kindex set auto-load gdb-scripts
21062 @item set auto-load gdb-scripts [on|off]
21063 Enable or disable the auto-loading of canned sequences of commands scripts.
21065 @anchor{show auto-load gdb-scripts}
21066 @kindex show auto-load gdb-scripts
21067 @item show auto-load gdb-scripts
21068 Show whether auto-loading of canned sequences of commands scripts is enabled or
21071 @anchor{info auto-load gdb-scripts}
21072 @kindex info auto-load gdb-scripts
21073 @cindex print list of auto-loaded canned sequences of commands scripts
21074 @item info auto-load gdb-scripts [@var{regexp}]
21075 Print the list of all canned sequences of commands scripts that @value{GDBN}
21079 If @var{regexp} is supplied only canned sequences of commands scripts with
21080 matching names are printed.
21082 @node Auto-loading safe path
21083 @subsection Security restriction for auto-loading
21084 @cindex auto-loading safe-path
21086 As the files of inferior can come from untrusted source (such as submitted by
21087 an application user) @value{GDBN} does not always load any files automatically.
21088 @value{GDBN} provides the @samp{set auto-load safe-path} setting to list
21089 directories trusted for loading files not explicitly requested by user.
21091 If the path is not set properly you will see a warning and the file will not
21096 Reading symbols from /home/user/gdb/gdb...done.
21097 warning: File "/home/user/gdb/gdb-gdb.gdb" auto-loading has been
21098 declined by your `auto-load safe-path' set to "/usr/local".
21099 warning: File "/home/user/gdb/gdb-gdb.py" auto-loading has been
21100 declined by your `auto-load safe-path' set to "/usr/local".
21103 The list of trusted directories is controlled by the following commands:
21106 @anchor{set auto-load safe-path}
21107 @kindex set auto-load safe-path
21108 @item set auto-load safe-path @var{directories}
21109 Set the list of directories (and their subdirectories) trusted for automatic
21110 loading and execution of scripts. You can also enter a specific trusted file.
21111 The list of directories uses directory separator (@samp{:} on GNU and Unix
21112 systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
21113 to the @env{PATH} environment variable.
21115 @anchor{show auto-load safe-path}
21116 @kindex show auto-load safe-path
21117 @item show auto-load safe-path
21118 Show the list of directories trusted for automatic loading and execution of
21121 @anchor{add-auto-load-safe-path}
21122 @kindex add-auto-load-safe-path
21123 @item add-auto-load-safe-path
21124 Add an entry (or list of entries) the list of directories trusted for automatic
21125 loading and execution of scripts. Multiple entries may be delimited by the
21126 host platform directory separator in use.
21129 Setting this variable to an empty string disables this security protection.
21130 This variable is supposed to be set to the system directories writable by the
21131 system superuser only. Users can add their source directories in init files in
21132 their home directories (@pxref{Home Directory Init File}). See also deprecated
21133 init file in the current directory
21134 (@pxref{Init File in the Current Directory during Startup}).
21136 To force @value{GDBN} to load the files it declined to load in the previous
21137 example, you could use one of the following ways:
21140 @item @file{~/.gdbinit}: @samp{add-auto-load-safe-path ~/src/gdb}
21141 Specify this trusted directory (or a file) as additional component of the list.
21142 You have to specify also any existing directories displayed by
21143 by @samp{show auto-load safe-path} (such as @samp{/usr:/bin} in this example).
21145 @item @kbd{gdb -iex "set auto-load safe-path /usr:/bin:~/src/gdb" @dots{}}
21146 Specify this directory as in the previous case but just for a single
21147 @value{GDBN} session.
21149 @item @kbd{gdb -iex "set auto-load safe-path" @dots{}}
21150 Disable auto-loading safety for a single @value{GDBN} session.
21151 This assumes all the files you debug during this @value{GDBN} session will come
21152 from trusted sources.
21154 @item @kbd{./configure --without-auto-load-safe-path}
21155 During compilation of @value{GDBN} you may disable any auto-loading safety.
21156 This assumes all the files you will ever debug with this @value{GDBN} come from
21160 On the other hand you can also explicitly forbid automatic files loading which
21161 also suppresses any such warning messages:
21164 @item @kbd{gdb -iex "set auto-load no" @dots{}}
21165 You can use @value{GDBN} command-line option for a single @value{GDBN} session.
21167 @item @file{~/.gdbinit}: @samp{set auto-load no}
21168 Disable auto-loading globally for the user
21169 (@pxref{Home Directory Init File}). While it is improbable, you could also
21170 use system init file instead (@pxref{System-wide configuration}).
21173 This setting applies to the file names as entered by user. If no entry matches
21174 @value{GDBN} tries as a last resort to also resolve all the file names into
21175 their canonical form (typically resolving symbolic links) and compare the
21176 entries again. @value{GDBN} already canonicalizes most of the filenames on its
21177 own before starting the comparison so a canonical form of directories is
21178 recommended to be entered.
21180 @node Auto-loading verbose mode
21181 @subsection Displaying files tried for auto-load
21182 @cindex auto-loading verbose mode
21184 For better visibility of all the file locations where you can place scripts to
21185 be auto-loaded with inferior --- or to protect yourself against accidental
21186 execution of untrusted scripts --- @value{GDBN} provides a feature for printing
21187 all the files attempted to be loaded. Both existing and non-existing files may
21190 For example the list of directories from which it is safe to auto-load files
21191 (@pxref{Auto-loading safe path}) applies also to canonicalized filenames which
21192 may not be too obvious while setting it up.
21195 (gdb) set debug auto-load on
21196 (gdb) file ~/src/t/true
21197 auto-load: Loading canned sequences of commands script "/tmp/true-gdb.gdb"
21198 for objfile "/tmp/true".
21199 auto-load: Updating directories of "/usr:/opt".
21200 auto-load: Using directory "/usr".
21201 auto-load: Using directory "/opt".
21202 warning: File "/tmp/true-gdb.gdb" auto-loading has been declined
21203 by your `auto-load safe-path' set to "/usr:/opt".
21207 @anchor{set debug auto-load}
21208 @kindex set debug auto-load
21209 @item set debug auto-load [on|off]
21210 Set whether to print the filenames attempted to be auto-loaded.
21212 @anchor{show debug auto-load}
21213 @kindex show debug auto-load
21214 @item show debug auto-load
21215 Show whether printing of the filenames attempted to be auto-loaded is turned
21219 @node Messages/Warnings
21220 @section Optional Warnings and Messages
21222 @cindex verbose operation
21223 @cindex optional warnings
21224 By default, @value{GDBN} is silent about its inner workings. If you are
21225 running on a slow machine, you may want to use the @code{set verbose}
21226 command. This makes @value{GDBN} tell you when it does a lengthy
21227 internal operation, so you will not think it has crashed.
21229 Currently, the messages controlled by @code{set verbose} are those
21230 which announce that the symbol table for a source file is being read;
21231 see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
21234 @kindex set verbose
21235 @item set verbose on
21236 Enables @value{GDBN} output of certain informational messages.
21238 @item set verbose off
21239 Disables @value{GDBN} output of certain informational messages.
21241 @kindex show verbose
21243 Displays whether @code{set verbose} is on or off.
21246 By default, if @value{GDBN} encounters bugs in the symbol table of an
21247 object file, it is silent; but if you are debugging a compiler, you may
21248 find this information useful (@pxref{Symbol Errors, ,Errors Reading
21253 @kindex set complaints
21254 @item set complaints @var{limit}
21255 Permits @value{GDBN} to output @var{limit} complaints about each type of
21256 unusual symbols before becoming silent about the problem. Set
21257 @var{limit} to zero to suppress all complaints; set it to a large number
21258 to prevent complaints from being suppressed.
21260 @kindex show complaints
21261 @item show complaints
21262 Displays how many symbol complaints @value{GDBN} is permitted to produce.
21266 @anchor{confirmation requests}
21267 By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
21268 lot of stupid questions to confirm certain commands. For example, if
21269 you try to run a program which is already running:
21273 The program being debugged has been started already.
21274 Start it from the beginning? (y or n)
21277 If you are willing to unflinchingly face the consequences of your own
21278 commands, you can disable this ``feature'':
21282 @kindex set confirm
21284 @cindex confirmation
21285 @cindex stupid questions
21286 @item set confirm off
21287 Disables confirmation requests. Note that running @value{GDBN} with
21288 the @option{--batch} option (@pxref{Mode Options, -batch}) also
21289 automatically disables confirmation requests.
21291 @item set confirm on
21292 Enables confirmation requests (the default).
21294 @kindex show confirm
21296 Displays state of confirmation requests.
21300 @cindex command tracing
21301 If you need to debug user-defined commands or sourced files you may find it
21302 useful to enable @dfn{command tracing}. In this mode each command will be
21303 printed as it is executed, prefixed with one or more @samp{+} symbols, the
21304 quantity denoting the call depth of each command.
21307 @kindex set trace-commands
21308 @cindex command scripts, debugging
21309 @item set trace-commands on
21310 Enable command tracing.
21311 @item set trace-commands off
21312 Disable command tracing.
21313 @item show trace-commands
21314 Display the current state of command tracing.
21317 @node Debugging Output
21318 @section Optional Messages about Internal Happenings
21319 @cindex optional debugging messages
21321 @value{GDBN} has commands that enable optional debugging messages from
21322 various @value{GDBN} subsystems; normally these commands are of
21323 interest to @value{GDBN} maintainers, or when reporting a bug. This
21324 section documents those commands.
21327 @kindex set exec-done-display
21328 @item set exec-done-display
21329 Turns on or off the notification of asynchronous commands'
21330 completion. When on, @value{GDBN} will print a message when an
21331 asynchronous command finishes its execution. The default is off.
21332 @kindex show exec-done-display
21333 @item show exec-done-display
21334 Displays the current setting of asynchronous command completion
21337 @cindex gdbarch debugging info
21338 @cindex architecture debugging info
21339 @item set debug arch
21340 Turns on or off display of gdbarch debugging info. The default is off
21342 @item show debug arch
21343 Displays the current state of displaying gdbarch debugging info.
21344 @item set debug aix-thread
21345 @cindex AIX threads
21346 Display debugging messages about inner workings of the AIX thread
21348 @item show debug aix-thread
21349 Show the current state of AIX thread debugging info display.
21350 @item set debug check-physname
21352 Check the results of the ``physname'' computation. When reading DWARF
21353 debugging information for C@t{++}, @value{GDBN} attempts to compute
21354 each entity's name. @value{GDBN} can do this computation in two
21355 different ways, depending on exactly what information is present.
21356 When enabled, this setting causes @value{GDBN} to compute the names
21357 both ways and display any discrepancies.
21358 @item show debug check-physname
21359 Show the current state of ``physname'' checking.
21360 @item set debug dwarf2-die
21361 @cindex DWARF2 DIEs
21362 Dump DWARF2 DIEs after they are read in.
21363 The value is the number of nesting levels to print.
21364 A value of zero turns off the display.
21365 @item show debug dwarf2-die
21366 Show the current state of DWARF2 DIE debugging.
21367 @item set debug displaced
21368 @cindex displaced stepping debugging info
21369 Turns on or off display of @value{GDBN} debugging info for the
21370 displaced stepping support. The default is off.
21371 @item show debug displaced
21372 Displays the current state of displaying @value{GDBN} debugging info
21373 related to displaced stepping.
21374 @item set debug event
21375 @cindex event debugging info
21376 Turns on or off display of @value{GDBN} event debugging info. The
21378 @item show debug event
21379 Displays the current state of displaying @value{GDBN} event debugging
21381 @item set debug expression
21382 @cindex expression debugging info
21383 Turns on or off display of debugging info about @value{GDBN}
21384 expression parsing. The default is off.
21385 @item show debug expression
21386 Displays the current state of displaying debugging info about
21387 @value{GDBN} expression parsing.
21388 @item set debug frame
21389 @cindex frame debugging info
21390 Turns on or off display of @value{GDBN} frame debugging info. The
21392 @item show debug frame
21393 Displays the current state of displaying @value{GDBN} frame debugging
21395 @item set debug gnu-nat
21396 @cindex @sc{gnu}/Hurd debug messages
21397 Turns on or off debugging messages from the @sc{gnu}/Hurd debug support.
21398 @item show debug gnu-nat
21399 Show the current state of @sc{gnu}/Hurd debugging messages.
21400 @item set debug infrun
21401 @cindex inferior debugging info
21402 Turns on or off display of @value{GDBN} debugging info for running the inferior.
21403 The default is off. @file{infrun.c} contains GDB's runtime state machine used
21404 for implementing operations such as single-stepping the inferior.
21405 @item show debug infrun
21406 Displays the current state of @value{GDBN} inferior debugging.
21407 @item set debug jit
21408 @cindex just-in-time compilation, debugging messages
21409 Turns on or off debugging messages from JIT debug support.
21410 @item show debug jit
21411 Displays the current state of @value{GDBN} JIT debugging.
21412 @item set debug lin-lwp
21413 @cindex @sc{gnu}/Linux LWP debug messages
21414 @cindex Linux lightweight processes
21415 Turns on or off debugging messages from the Linux LWP debug support.
21416 @item show debug lin-lwp
21417 Show the current state of Linux LWP debugging messages.
21418 @item set debug observer
21419 @cindex observer debugging info
21420 Turns on or off display of @value{GDBN} observer debugging. This
21421 includes info such as the notification of observable events.
21422 @item show debug observer
21423 Displays the current state of observer debugging.
21424 @item set debug overload
21425 @cindex C@t{++} overload debugging info
21426 Turns on or off display of @value{GDBN} C@t{++} overload debugging
21427 info. This includes info such as ranking of functions, etc. The default
21429 @item show debug overload
21430 Displays the current state of displaying @value{GDBN} C@t{++} overload
21432 @cindex expression parser, debugging info
21433 @cindex debug expression parser
21434 @item set debug parser
21435 Turns on or off the display of expression parser debugging output.
21436 Internally, this sets the @code{yydebug} variable in the expression
21437 parser. @xref{Tracing, , Tracing Your Parser, bison, Bison}, for
21438 details. The default is off.
21439 @item show debug parser
21440 Show the current state of expression parser debugging.
21441 @cindex packets, reporting on stdout
21442 @cindex serial connections, debugging
21443 @cindex debug remote protocol
21444 @cindex remote protocol debugging
21445 @cindex display remote packets
21446 @item set debug remote
21447 Turns on or off display of reports on all packets sent back and forth across
21448 the serial line to the remote machine. The info is printed on the
21449 @value{GDBN} standard output stream. The default is off.
21450 @item show debug remote
21451 Displays the state of display of remote packets.
21452 @item set debug serial
21453 Turns on or off display of @value{GDBN} serial debugging info. The
21455 @item show debug serial
21456 Displays the current state of displaying @value{GDBN} serial debugging
21458 @item set debug solib-frv
21459 @cindex FR-V shared-library debugging
21460 Turns on or off debugging messages for FR-V shared-library code.
21461 @item show debug solib-frv
21462 Display the current state of FR-V shared-library code debugging
21464 @item set debug target
21465 @cindex target debugging info
21466 Turns on or off display of @value{GDBN} target debugging info. This info
21467 includes what is going on at the target level of GDB, as it happens. The
21468 default is 0. Set it to 1 to track events, and to 2 to also track the
21469 value of large memory transfers. Changes to this flag do not take effect
21470 until the next time you connect to a target or use the @code{run} command.
21471 @item show debug target
21472 Displays the current state of displaying @value{GDBN} target debugging
21474 @item set debug timestamp
21475 @cindex timestampping debugging info
21476 Turns on or off display of timestamps with @value{GDBN} debugging info.
21477 When enabled, seconds and microseconds are displayed before each debugging
21479 @item show debug timestamp
21480 Displays the current state of displaying timestamps with @value{GDBN}
21482 @item set debugvarobj
21483 @cindex variable object debugging info
21484 Turns on or off display of @value{GDBN} variable object debugging
21485 info. The default is off.
21486 @item show debugvarobj
21487 Displays the current state of displaying @value{GDBN} variable object
21489 @item set debug xml
21490 @cindex XML parser debugging
21491 Turns on or off debugging messages for built-in XML parsers.
21492 @item show debug xml
21493 Displays the current state of XML debugging messages.
21496 @node Other Misc Settings
21497 @section Other Miscellaneous Settings
21498 @cindex miscellaneous settings
21501 @kindex set interactive-mode
21502 @item set interactive-mode
21503 If @code{on}, forces @value{GDBN} to assume that GDB was started
21504 in a terminal. In practice, this means that @value{GDBN} should wait
21505 for the user to answer queries generated by commands entered at
21506 the command prompt. If @code{off}, forces @value{GDBN} to operate
21507 in the opposite mode, and it uses the default answers to all queries.
21508 If @code{auto} (the default), @value{GDBN} tries to determine whether
21509 its standard input is a terminal, and works in interactive-mode if it
21510 is, non-interactively otherwise.
21512 In the vast majority of cases, the debugger should be able to guess
21513 correctly which mode should be used. But this setting can be useful
21514 in certain specific cases, such as running a MinGW @value{GDBN}
21515 inside a cygwin window.
21517 @kindex show interactive-mode
21518 @item show interactive-mode
21519 Displays whether the debugger is operating in interactive mode or not.
21522 @node Extending GDB
21523 @chapter Extending @value{GDBN}
21524 @cindex extending GDB
21526 @value{GDBN} provides three mechanisms for extension. The first is based
21527 on composition of @value{GDBN} commands, the second is based on the
21528 Python scripting language, and the third is for defining new aliases of
21531 To facilitate the use of the first two extensions, @value{GDBN} is capable
21532 of evaluating the contents of a file. When doing so, @value{GDBN}
21533 can recognize which scripting language is being used by looking at
21534 the filename extension. Files with an unrecognized filename extension
21535 are always treated as a @value{GDBN} Command Files.
21536 @xref{Command Files,, Command files}.
21538 You can control how @value{GDBN} evaluates these files with the following
21542 @kindex set script-extension
21543 @kindex show script-extension
21544 @item set script-extension off
21545 All scripts are always evaluated as @value{GDBN} Command Files.
21547 @item set script-extension soft
21548 The debugger determines the scripting language based on filename
21549 extension. If this scripting language is supported, @value{GDBN}
21550 evaluates the script using that language. Otherwise, it evaluates
21551 the file as a @value{GDBN} Command File.
21553 @item set script-extension strict
21554 The debugger determines the scripting language based on filename
21555 extension, and evaluates the script using that language. If the
21556 language is not supported, then the evaluation fails.
21558 @item show script-extension
21559 Display the current value of the @code{script-extension} option.
21564 * Sequences:: Canned Sequences of Commands
21565 * Python:: Scripting @value{GDBN} using Python
21566 * Aliases:: Creating new spellings of existing commands
21570 @section Canned Sequences of Commands
21572 Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
21573 Command Lists}), @value{GDBN} provides two ways to store sequences of
21574 commands for execution as a unit: user-defined commands and command
21578 * Define:: How to define your own commands
21579 * Hooks:: Hooks for user-defined commands
21580 * Command Files:: How to write scripts of commands to be stored in a file
21581 * Output:: Commands for controlled output
21585 @subsection User-defined Commands
21587 @cindex user-defined command
21588 @cindex arguments, to user-defined commands
21589 A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
21590 which you assign a new name as a command. This is done with the
21591 @code{define} command. User commands may accept up to 10 arguments
21592 separated by whitespace. Arguments are accessed within the user command
21593 via @code{$arg0@dots{}$arg9}. A trivial example:
21597 print $arg0 + $arg1 + $arg2
21602 To execute the command use:
21609 This defines the command @code{adder}, which prints the sum of
21610 its three arguments. Note the arguments are text substitutions, so they may
21611 reference variables, use complex expressions, or even perform inferior
21614 @cindex argument count in user-defined commands
21615 @cindex how many arguments (user-defined commands)
21616 In addition, @code{$argc} may be used to find out how many arguments have
21617 been passed. This expands to a number in the range 0@dots{}10.
21622 print $arg0 + $arg1
21625 print $arg0 + $arg1 + $arg2
21633 @item define @var{commandname}
21634 Define a command named @var{commandname}. If there is already a command
21635 by that name, you are asked to confirm that you want to redefine it.
21636 @var{commandname} may be a bare command name consisting of letters,
21637 numbers, dashes, and underscores. It may also start with any predefined
21638 prefix command. For example, @samp{define target my-target} creates
21639 a user-defined @samp{target my-target} command.
21641 The definition of the command is made up of other @value{GDBN} command lines,
21642 which are given following the @code{define} command. The end of these
21643 commands is marked by a line containing @code{end}.
21646 @kindex end@r{ (user-defined commands)}
21647 @item document @var{commandname}
21648 Document the user-defined command @var{commandname}, so that it can be
21649 accessed by @code{help}. The command @var{commandname} must already be
21650 defined. This command reads lines of documentation just as @code{define}
21651 reads the lines of the command definition, ending with @code{end}.
21652 After the @code{document} command is finished, @code{help} on command
21653 @var{commandname} displays the documentation you have written.
21655 You may use the @code{document} command again to change the
21656 documentation of a command. Redefining the command with @code{define}
21657 does not change the documentation.
21659 @kindex dont-repeat
21660 @cindex don't repeat command
21662 Used inside a user-defined command, this tells @value{GDBN} that this
21663 command should not be repeated when the user hits @key{RET}
21664 (@pxref{Command Syntax, repeat last command}).
21666 @kindex help user-defined
21667 @item help user-defined
21668 List all user-defined commands and all python commands defined in class
21669 COMAND_USER. The first line of the documentation or docstring is
21674 @itemx show user @var{commandname}
21675 Display the @value{GDBN} commands used to define @var{commandname} (but
21676 not its documentation). If no @var{commandname} is given, display the
21677 definitions for all user-defined commands.
21678 This does not work for user-defined python commands.
21680 @cindex infinite recursion in user-defined commands
21681 @kindex show max-user-call-depth
21682 @kindex set max-user-call-depth
21683 @item show max-user-call-depth
21684 @itemx set max-user-call-depth
21685 The value of @code{max-user-call-depth} controls how many recursion
21686 levels are allowed in user-defined commands before @value{GDBN} suspects an
21687 infinite recursion and aborts the command.
21688 This does not apply to user-defined python commands.
21691 In addition to the above commands, user-defined commands frequently
21692 use control flow commands, described in @ref{Command Files}.
21694 When user-defined commands are executed, the
21695 commands of the definition are not printed. An error in any command
21696 stops execution of the user-defined command.
21698 If used interactively, commands that would ask for confirmation proceed
21699 without asking when used inside a user-defined command. Many @value{GDBN}
21700 commands that normally print messages to say what they are doing omit the
21701 messages when used in a user-defined command.
21704 @subsection User-defined Command Hooks
21705 @cindex command hooks
21706 @cindex hooks, for commands
21707 @cindex hooks, pre-command
21710 You may define @dfn{hooks}, which are a special kind of user-defined
21711 command. Whenever you run the command @samp{foo}, if the user-defined
21712 command @samp{hook-foo} exists, it is executed (with no arguments)
21713 before that command.
21715 @cindex hooks, post-command
21717 A hook may also be defined which is run after the command you executed.
21718 Whenever you run the command @samp{foo}, if the user-defined command
21719 @samp{hookpost-foo} exists, it is executed (with no arguments) after
21720 that command. Post-execution hooks may exist simultaneously with
21721 pre-execution hooks, for the same command.
21723 It is valid for a hook to call the command which it hooks. If this
21724 occurs, the hook is not re-executed, thereby avoiding infinite recursion.
21726 @c It would be nice if hookpost could be passed a parameter indicating
21727 @c if the command it hooks executed properly or not. FIXME!
21729 @kindex stop@r{, a pseudo-command}
21730 In addition, a pseudo-command, @samp{stop} exists. Defining
21731 (@samp{hook-stop}) makes the associated commands execute every time
21732 execution stops in your program: before breakpoint commands are run,
21733 displays are printed, or the stack frame is printed.
21735 For example, to ignore @code{SIGALRM} signals while
21736 single-stepping, but treat them normally during normal execution,
21741 handle SIGALRM nopass
21745 handle SIGALRM pass
21748 define hook-continue
21749 handle SIGALRM pass
21753 As a further example, to hook at the beginning and end of the @code{echo}
21754 command, and to add extra text to the beginning and end of the message,
21762 define hookpost-echo
21766 (@value{GDBP}) echo Hello World
21767 <<<---Hello World--->>>
21772 You can define a hook for any single-word command in @value{GDBN}, but
21773 not for command aliases; you should define a hook for the basic command
21774 name, e.g.@: @code{backtrace} rather than @code{bt}.
21775 @c FIXME! So how does Joe User discover whether a command is an alias
21777 You can hook a multi-word command by adding @code{hook-} or
21778 @code{hookpost-} to the last word of the command, e.g.@:
21779 @samp{define target hook-remote} to add a hook to @samp{target remote}.
21781 If an error occurs during the execution of your hook, execution of
21782 @value{GDBN} commands stops and @value{GDBN} issues a prompt
21783 (before the command that you actually typed had a chance to run).
21785 If you try to define a hook which does not match any known command, you
21786 get a warning from the @code{define} command.
21788 @node Command Files
21789 @subsection Command Files
21791 @cindex command files
21792 @cindex scripting commands
21793 A command file for @value{GDBN} is a text file made of lines that are
21794 @value{GDBN} commands. Comments (lines starting with @kbd{#}) may
21795 also be included. An empty line in a command file does nothing; it
21796 does not mean to repeat the last command, as it would from the
21799 You can request the execution of a command file with the @code{source}
21800 command. Note that the @code{source} command is also used to evaluate
21801 scripts that are not Command Files. The exact behavior can be configured
21802 using the @code{script-extension} setting.
21803 @xref{Extending GDB,, Extending GDB}.
21807 @cindex execute commands from a file
21808 @item source [-s] [-v] @var{filename}
21809 Execute the command file @var{filename}.
21812 The lines in a command file are generally executed sequentially,
21813 unless the order of execution is changed by one of the
21814 @emph{flow-control commands} described below. The commands are not
21815 printed as they are executed. An error in any command terminates
21816 execution of the command file and control is returned to the console.
21818 @value{GDBN} first searches for @var{filename} in the current directory.
21819 If the file is not found there, and @var{filename} does not specify a
21820 directory, then @value{GDBN} also looks for the file on the source search path
21821 (specified with the @samp{directory} command);
21822 except that @file{$cdir} is not searched because the compilation directory
21823 is not relevant to scripts.
21825 If @code{-s} is specified, then @value{GDBN} searches for @var{filename}
21826 on the search path even if @var{filename} specifies a directory.
21827 The search is done by appending @var{filename} to each element of the
21828 search path. So, for example, if @var{filename} is @file{mylib/myscript}
21829 and the search path contains @file{/home/user} then @value{GDBN} will
21830 look for the script @file{/home/user/mylib/myscript}.
21831 The search is also done if @var{filename} is an absolute path.
21832 For example, if @var{filename} is @file{/tmp/myscript} and
21833 the search path contains @file{/home/user} then @value{GDBN} will
21834 look for the script @file{/home/user/tmp/myscript}.
21835 For DOS-like systems, if @var{filename} contains a drive specification,
21836 it is stripped before concatenation. For example, if @var{filename} is
21837 @file{d:myscript} and the search path contains @file{c:/tmp} then @value{GDBN}
21838 will look for the script @file{c:/tmp/myscript}.
21840 If @code{-v}, for verbose mode, is given then @value{GDBN} displays
21841 each command as it is executed. The option must be given before
21842 @var{filename}, and is interpreted as part of the filename anywhere else.
21844 Commands that would ask for confirmation if used interactively proceed
21845 without asking when used in a command file. Many @value{GDBN} commands that
21846 normally print messages to say what they are doing omit the messages
21847 when called from command files.
21849 @value{GDBN} also accepts command input from standard input. In this
21850 mode, normal output goes to standard output and error output goes to
21851 standard error. Errors in a command file supplied on standard input do
21852 not terminate execution of the command file---execution continues with
21856 gdb < cmds > log 2>&1
21859 (The syntax above will vary depending on the shell used.) This example
21860 will execute commands from the file @file{cmds}. All output and errors
21861 would be directed to @file{log}.
21863 Since commands stored on command files tend to be more general than
21864 commands typed interactively, they frequently need to deal with
21865 complicated situations, such as different or unexpected values of
21866 variables and symbols, changes in how the program being debugged is
21867 built, etc. @value{GDBN} provides a set of flow-control commands to
21868 deal with these complexities. Using these commands, you can write
21869 complex scripts that loop over data structures, execute commands
21870 conditionally, etc.
21877 This command allows to include in your script conditionally executed
21878 commands. The @code{if} command takes a single argument, which is an
21879 expression to evaluate. It is followed by a series of commands that
21880 are executed only if the expression is true (its value is nonzero).
21881 There can then optionally be an @code{else} line, followed by a series
21882 of commands that are only executed if the expression was false. The
21883 end of the list is marked by a line containing @code{end}.
21887 This command allows to write loops. Its syntax is similar to
21888 @code{if}: the command takes a single argument, which is an expression
21889 to evaluate, and must be followed by the commands to execute, one per
21890 line, terminated by an @code{end}. These commands are called the
21891 @dfn{body} of the loop. The commands in the body of @code{while} are
21892 executed repeatedly as long as the expression evaluates to true.
21896 This command exits the @code{while} loop in whose body it is included.
21897 Execution of the script continues after that @code{while}s @code{end}
21900 @kindex loop_continue
21901 @item loop_continue
21902 This command skips the execution of the rest of the body of commands
21903 in the @code{while} loop in whose body it is included. Execution
21904 branches to the beginning of the @code{while} loop, where it evaluates
21905 the controlling expression.
21907 @kindex end@r{ (if/else/while commands)}
21909 Terminate the block of commands that are the body of @code{if},
21910 @code{else}, or @code{while} flow-control commands.
21915 @subsection Commands for Controlled Output
21917 During the execution of a command file or a user-defined command, normal
21918 @value{GDBN} output is suppressed; the only output that appears is what is
21919 explicitly printed by the commands in the definition. This section
21920 describes three commands useful for generating exactly the output you
21925 @item echo @var{text}
21926 @c I do not consider backslash-space a standard C escape sequence
21927 @c because it is not in ANSI.
21928 Print @var{text}. Nonprinting characters can be included in
21929 @var{text} using C escape sequences, such as @samp{\n} to print a
21930 newline. @strong{No newline is printed unless you specify one.}
21931 In addition to the standard C escape sequences, a backslash followed
21932 by a space stands for a space. This is useful for displaying a
21933 string with spaces at the beginning or the end, since leading and
21934 trailing spaces are otherwise trimmed from all arguments.
21935 To print @samp{@w{ }and foo =@w{ }}, use the command
21936 @samp{echo \@w{ }and foo = \@w{ }}.
21938 A backslash at the end of @var{text} can be used, as in C, to continue
21939 the command onto subsequent lines. For example,
21942 echo This is some text\n\
21943 which is continued\n\
21944 onto several lines.\n
21947 produces the same output as
21950 echo This is some text\n
21951 echo which is continued\n
21952 echo onto several lines.\n
21956 @item output @var{expression}
21957 Print the value of @var{expression} and nothing but that value: no
21958 newlines, no @samp{$@var{nn} = }. The value is not entered in the
21959 value history either. @xref{Expressions, ,Expressions}, for more information
21962 @item output/@var{fmt} @var{expression}
21963 Print the value of @var{expression} in format @var{fmt}. You can use
21964 the same formats as for @code{print}. @xref{Output Formats,,Output
21965 Formats}, for more information.
21968 @item printf @var{template}, @var{expressions}@dots{}
21969 Print the values of one or more @var{expressions} under the control of
21970 the string @var{template}. To print several values, make
21971 @var{expressions} be a comma-separated list of individual expressions,
21972 which may be either numbers or pointers. Their values are printed as
21973 specified by @var{template}, exactly as a C program would do by
21974 executing the code below:
21977 printf (@var{template}, @var{expressions}@dots{});
21980 As in @code{C} @code{printf}, ordinary characters in @var{template}
21981 are printed verbatim, while @dfn{conversion specification} introduced
21982 by the @samp{%} character cause subsequent @var{expressions} to be
21983 evaluated, their values converted and formatted according to type and
21984 style information encoded in the conversion specifications, and then
21987 For example, you can print two values in hex like this:
21990 printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
21993 @code{printf} supports all the standard @code{C} conversion
21994 specifications, including the flags and modifiers between the @samp{%}
21995 character and the conversion letter, with the following exceptions:
21999 The argument-ordering modifiers, such as @samp{2$}, are not supported.
22002 The modifier @samp{*} is not supported for specifying precision or
22006 The @samp{'} flag (for separation of digits into groups according to
22007 @code{LC_NUMERIC'}) is not supported.
22010 The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
22014 The conversion letter @samp{n} (as in @samp{%n}) is not supported.
22017 The conversion letters @samp{a} and @samp{A} are not supported.
22021 Note that the @samp{ll} type modifier is supported only if the
22022 underlying @code{C} implementation used to build @value{GDBN} supports
22023 the @code{long long int} type, and the @samp{L} type modifier is
22024 supported only if @code{long double} type is available.
22026 As in @code{C}, @code{printf} supports simple backslash-escape
22027 sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
22028 @samp{\a}, and @samp{\f}, that consist of backslash followed by a
22029 single character. Octal and hexadecimal escape sequences are not
22032 Additionally, @code{printf} supports conversion specifications for DFP
22033 (@dfn{Decimal Floating Point}) types using the following length modifiers
22034 together with a floating point specifier.
22039 @samp{H} for printing @code{Decimal32} types.
22042 @samp{D} for printing @code{Decimal64} types.
22045 @samp{DD} for printing @code{Decimal128} types.
22048 If the underlying @code{C} implementation used to build @value{GDBN} has
22049 support for the three length modifiers for DFP types, other modifiers
22050 such as width and precision will also be available for @value{GDBN} to use.
22052 In case there is no such @code{C} support, no additional modifiers will be
22053 available and the value will be printed in the standard way.
22055 Here's an example of printing DFP types using the above conversion letters:
22057 printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
22061 @item eval @var{template}, @var{expressions}@dots{}
22062 Convert the values of one or more @var{expressions} under the control of
22063 the string @var{template} to a command line, and call it.
22068 @section Scripting @value{GDBN} using Python
22069 @cindex python scripting
22070 @cindex scripting with python
22072 You can script @value{GDBN} using the @uref{http://www.python.org/,
22073 Python programming language}. This feature is available only if
22074 @value{GDBN} was configured using @option{--with-python}.
22076 @cindex python directory
22077 Python scripts used by @value{GDBN} should be installed in
22078 @file{@var{data-directory}/python}, where @var{data-directory} is
22079 the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
22080 This directory, known as the @dfn{python directory},
22081 is automatically added to the Python Search Path in order to allow
22082 the Python interpreter to locate all scripts installed at this location.
22084 Additionally, @value{GDBN} commands and convenience functions which
22085 are written in Python and are located in the
22086 @file{@var{data-directory}/python/gdb/command} or
22087 @file{@var{data-directory}/python/gdb/function} directories are
22088 automatically imported when @value{GDBN} starts.
22091 * Python Commands:: Accessing Python from @value{GDBN}.
22092 * Python API:: Accessing @value{GDBN} from Python.
22093 * Python Auto-loading:: Automatically loading Python code.
22094 * Python modules:: Python modules provided by @value{GDBN}.
22097 @node Python Commands
22098 @subsection Python Commands
22099 @cindex python commands
22100 @cindex commands to access python
22102 @value{GDBN} provides one command for accessing the Python interpreter,
22103 and one related setting:
22107 @item python @r{[}@var{code}@r{]}
22108 The @code{python} command can be used to evaluate Python code.
22110 If given an argument, the @code{python} command will evaluate the
22111 argument as a Python command. For example:
22114 (@value{GDBP}) python print 23
22118 If you do not provide an argument to @code{python}, it will act as a
22119 multi-line command, like @code{define}. In this case, the Python
22120 script is made up of subsequent command lines, given after the
22121 @code{python} command. This command list is terminated using a line
22122 containing @code{end}. For example:
22125 (@value{GDBP}) python
22127 End with a line saying just "end".
22133 @kindex set python print-stack
22134 @item set python print-stack
22135 By default, @value{GDBN} will print only the message component of a
22136 Python exception when an error occurs in a Python script. This can be
22137 controlled using @code{set python print-stack}: if @code{full}, then
22138 full Python stack printing is enabled; if @code{none}, then Python stack
22139 and message printing is disabled; if @code{message}, the default, only
22140 the message component of the error is printed.
22143 It is also possible to execute a Python script from the @value{GDBN}
22147 @item source @file{script-name}
22148 The script name must end with @samp{.py} and @value{GDBN} must be configured
22149 to recognize the script language based on filename extension using
22150 the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
22152 @item python execfile ("script-name")
22153 This method is based on the @code{execfile} Python built-in function,
22154 and thus is always available.
22158 @subsection Python API
22160 @cindex programming in python
22162 @cindex python stdout
22163 @cindex python pagination
22164 At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
22165 @code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
22166 A Python program which outputs to one of these streams may have its
22167 output interrupted by the user (@pxref{Screen Size}). In this
22168 situation, a Python @code{KeyboardInterrupt} exception is thrown.
22171 * Basic Python:: Basic Python Functions.
22172 * Exception Handling:: How Python exceptions are translated.
22173 * Values From Inferior:: Python representation of values.
22174 * Types In Python:: Python representation of types.
22175 * Pretty Printing API:: Pretty-printing values.
22176 * Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
22177 * Writing a Pretty-Printer:: Writing a Pretty-Printer.
22178 * Inferiors In Python:: Python representation of inferiors (processes)
22179 * Events In Python:: Listening for events from @value{GDBN}.
22180 * Threads In Python:: Accessing inferior threads from Python.
22181 * Commands In Python:: Implementing new commands in Python.
22182 * Parameters In Python:: Adding new @value{GDBN} parameters.
22183 * Functions In Python:: Writing new convenience functions.
22184 * Progspaces In Python:: Program spaces.
22185 * Objfiles In Python:: Object files.
22186 * Frames In Python:: Accessing inferior stack frames from Python.
22187 * Blocks In Python:: Accessing frame blocks from Python.
22188 * Symbols In Python:: Python representation of symbols.
22189 * Symbol Tables In Python:: Python representation of symbol tables.
22190 * Lazy Strings In Python:: Python representation of lazy strings.
22191 * Breakpoints In Python:: Manipulating breakpoints using Python.
22192 * Finish Breakpoints in Python:: Setting Breakpoints on function return
22197 @subsubsection Basic Python
22199 @cindex python functions
22200 @cindex python module
22202 @value{GDBN} introduces a new Python module, named @code{gdb}. All
22203 methods and classes added by @value{GDBN} are placed in this module.
22204 @value{GDBN} automatically @code{import}s the @code{gdb} module for
22205 use in all scripts evaluated by the @code{python} command.
22207 @findex gdb.PYTHONDIR
22208 @defvar gdb.PYTHONDIR
22209 A string containing the python directory (@pxref{Python}).
22212 @findex gdb.execute
22213 @defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
22214 Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
22215 If a GDB exception happens while @var{command} runs, it is
22216 translated as described in @ref{Exception Handling,,Exception Handling}.
22218 @var{from_tty} specifies whether @value{GDBN} ought to consider this
22219 command as having originated from the user invoking it interactively.
22220 It must be a boolean value. If omitted, it defaults to @code{False}.
22222 By default, any output produced by @var{command} is sent to
22223 @value{GDBN}'s standard output. If the @var{to_string} parameter is
22224 @code{True}, then output will be collected by @code{gdb.execute} and
22225 returned as a string. The default is @code{False}, in which case the
22226 return value is @code{None}. If @var{to_string} is @code{True}, the
22227 @value{GDBN} virtual terminal will be temporarily set to unlimited width
22228 and height, and its pagination will be disabled; @pxref{Screen Size}.
22231 @findex gdb.breakpoints
22232 @defun gdb.breakpoints ()
22233 Return a sequence holding all of @value{GDBN}'s breakpoints.
22234 @xref{Breakpoints In Python}, for more information.
22237 @findex gdb.parameter
22238 @defun gdb.parameter (parameter)
22239 Return the value of a @value{GDBN} parameter. @var{parameter} is a
22240 string naming the parameter to look up; @var{parameter} may contain
22241 spaces if the parameter has a multi-part name. For example,
22242 @samp{print object} is a valid parameter name.
22244 If the named parameter does not exist, this function throws a
22245 @code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
22246 parameter's value is converted to a Python value of the appropriate
22247 type, and returned.
22250 @findex gdb.history
22251 @defun gdb.history (number)
22252 Return a value from @value{GDBN}'s value history (@pxref{Value
22253 History}). @var{number} indicates which history element to return.
22254 If @var{number} is negative, then @value{GDBN} will take its absolute value
22255 and count backward from the last element (i.e., the most recent element) to
22256 find the value to return. If @var{number} is zero, then @value{GDBN} will
22257 return the most recent element. If the element specified by @var{number}
22258 doesn't exist in the value history, a @code{gdb.error} exception will be
22261 If no exception is raised, the return value is always an instance of
22262 @code{gdb.Value} (@pxref{Values From Inferior}).
22265 @findex gdb.parse_and_eval
22266 @defun gdb.parse_and_eval (expression)
22267 Parse @var{expression} as an expression in the current language,
22268 evaluate it, and return the result as a @code{gdb.Value}.
22269 @var{expression} must be a string.
22271 This function can be useful when implementing a new command
22272 (@pxref{Commands In Python}), as it provides a way to parse the
22273 command's argument as an expression. It is also useful simply to
22274 compute values, for example, it is the only way to get the value of a
22275 convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
22278 @findex gdb.post_event
22279 @defun gdb.post_event (event)
22280 Put @var{event}, a callable object taking no arguments, into
22281 @value{GDBN}'s internal event queue. This callable will be invoked at
22282 some later point, during @value{GDBN}'s event processing. Events
22283 posted using @code{post_event} will be run in the order in which they
22284 were posted; however, there is no way to know when they will be
22285 processed relative to other events inside @value{GDBN}.
22287 @value{GDBN} is not thread-safe. If your Python program uses multiple
22288 threads, you must be careful to only call @value{GDBN}-specific
22289 functions in the main @value{GDBN} thread. @code{post_event} ensures
22293 (@value{GDBP}) python
22297 > def __init__(self, message):
22298 > self.message = message;
22299 > def __call__(self):
22300 > gdb.write(self.message)
22302 >class MyThread1 (threading.Thread):
22304 > gdb.post_event(Writer("Hello "))
22306 >class MyThread2 (threading.Thread):
22308 > gdb.post_event(Writer("World\n"))
22310 >MyThread1().start()
22311 >MyThread2().start()
22313 (@value{GDBP}) Hello World
22318 @defun gdb.write (string @r{[}, stream{]})
22319 Print a string to @value{GDBN}'s paginated output stream. The
22320 optional @var{stream} determines the stream to print to. The default
22321 stream is @value{GDBN}'s standard output stream. Possible stream
22328 @value{GDBN}'s standard output stream.
22333 @value{GDBN}'s standard error stream.
22338 @value{GDBN}'s log stream (@pxref{Logging Output}).
22341 Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
22342 call this function and will automatically direct the output to the
22347 @defun gdb.flush ()
22348 Flush the buffer of a @value{GDBN} paginated stream so that the
22349 contents are displayed immediately. @value{GDBN} will flush the
22350 contents of a stream automatically when it encounters a newline in the
22351 buffer. The optional @var{stream} determines the stream to flush. The
22352 default stream is @value{GDBN}'s standard output stream. Possible
22359 @value{GDBN}'s standard output stream.
22364 @value{GDBN}'s standard error stream.
22369 @value{GDBN}'s log stream (@pxref{Logging Output}).
22373 Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
22374 call this function for the relevant stream.
22377 @findex gdb.target_charset
22378 @defun gdb.target_charset ()
22379 Return the name of the current target character set (@pxref{Character
22380 Sets}). This differs from @code{gdb.parameter('target-charset')} in
22381 that @samp{auto} is never returned.
22384 @findex gdb.target_wide_charset
22385 @defun gdb.target_wide_charset ()
22386 Return the name of the current target wide character set
22387 (@pxref{Character Sets}). This differs from
22388 @code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
22392 @findex gdb.solib_name
22393 @defun gdb.solib_name (address)
22394 Return the name of the shared library holding the given @var{address}
22395 as a string, or @code{None}.
22398 @findex gdb.decode_line
22399 @defun gdb.decode_line @r{[}expression@r{]}
22400 Return locations of the line specified by @var{expression}, or of the
22401 current line if no argument was given. This function returns a Python
22402 tuple containing two elements. The first element contains a string
22403 holding any unparsed section of @var{expression} (or @code{None} if
22404 the expression has been fully parsed). The second element contains
22405 either @code{None} or another tuple that contains all the locations
22406 that match the expression represented as @code{gdb.Symtab_and_line}
22407 objects (@pxref{Symbol Tables In Python}). If @var{expression} is
22408 provided, it is decoded the way that @value{GDBN}'s inbuilt
22409 @code{break} or @code{edit} commands do (@pxref{Specify Location}).
22412 @defun gdb.prompt_hook (current_prompt)
22413 @anchor{prompt_hook}
22415 If @var{prompt_hook} is callable, @value{GDBN} will call the method
22416 assigned to this operation before a prompt is displayed by
22419 The parameter @code{current_prompt} contains the current @value{GDBN}
22420 prompt. This method must return a Python string, or @code{None}. If
22421 a string is returned, the @value{GDBN} prompt will be set to that
22422 string. If @code{None} is returned, @value{GDBN} will continue to use
22423 the current prompt.
22425 Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
22426 such as those used by readline for command input, and annotation
22427 related prompts are prohibited from being changed.
22430 @node Exception Handling
22431 @subsubsection Exception Handling
22432 @cindex python exceptions
22433 @cindex exceptions, python
22435 When executing the @code{python} command, Python exceptions
22436 uncaught within the Python code are translated to calls to
22437 @value{GDBN} error-reporting mechanism. If the command that called
22438 @code{python} does not handle the error, @value{GDBN} will
22439 terminate it and print an error message containing the Python
22440 exception name, the associated value, and the Python call stack
22441 backtrace at the point where the exception was raised. Example:
22444 (@value{GDBP}) python print foo
22445 Traceback (most recent call last):
22446 File "<string>", line 1, in <module>
22447 NameError: name 'foo' is not defined
22450 @value{GDBN} errors that happen in @value{GDBN} commands invoked by
22451 Python code are converted to Python exceptions. The type of the
22452 Python exception depends on the error.
22456 This is the base class for most exceptions generated by @value{GDBN}.
22457 It is derived from @code{RuntimeError}, for compatibility with earlier
22458 versions of @value{GDBN}.
22460 If an error occurring in @value{GDBN} does not fit into some more
22461 specific category, then the generated exception will have this type.
22463 @item gdb.MemoryError
22464 This is a subclass of @code{gdb.error} which is thrown when an
22465 operation tried to access invalid memory in the inferior.
22467 @item KeyboardInterrupt
22468 User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
22469 prompt) is translated to a Python @code{KeyboardInterrupt} exception.
22472 In all cases, your exception handler will see the @value{GDBN} error
22473 message as its value and the Python call stack backtrace at the Python
22474 statement closest to where the @value{GDBN} error occured as the
22477 @findex gdb.GdbError
22478 When implementing @value{GDBN} commands in Python via @code{gdb.Command},
22479 it is useful to be able to throw an exception that doesn't cause a
22480 traceback to be printed. For example, the user may have invoked the
22481 command incorrectly. Use the @code{gdb.GdbError} exception
22482 to handle this case. Example:
22486 >class HelloWorld (gdb.Command):
22487 > """Greet the whole world."""
22488 > def __init__ (self):
22489 > super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
22490 > def invoke (self, args, from_tty):
22491 > argv = gdb.string_to_argv (args)
22492 > if len (argv) != 0:
22493 > raise gdb.GdbError ("hello-world takes no arguments")
22494 > print "Hello, World!"
22497 (gdb) hello-world 42
22498 hello-world takes no arguments
22501 @node Values From Inferior
22502 @subsubsection Values From Inferior
22503 @cindex values from inferior, with Python
22504 @cindex python, working with values from inferior
22506 @cindex @code{gdb.Value}
22507 @value{GDBN} provides values it obtains from the inferior program in
22508 an object of type @code{gdb.Value}. @value{GDBN} uses this object
22509 for its internal bookkeeping of the inferior's values, and for
22510 fetching values when necessary.
22512 Inferior values that are simple scalars can be used directly in
22513 Python expressions that are valid for the value's data type. Here's
22514 an example for an integer or floating-point value @code{some_val}:
22521 As result of this, @code{bar} will also be a @code{gdb.Value} object
22522 whose values are of the same type as those of @code{some_val}.
22524 Inferior values that are structures or instances of some class can
22525 be accessed using the Python @dfn{dictionary syntax}. For example, if
22526 @code{some_val} is a @code{gdb.Value} instance holding a structure, you
22527 can access its @code{foo} element with:
22530 bar = some_val['foo']
22533 Again, @code{bar} will also be a @code{gdb.Value} object.
22535 A @code{gdb.Value} that represents a function can be executed via
22536 inferior function call. Any arguments provided to the call must match
22537 the function's prototype, and must be provided in the order specified
22540 For example, @code{some_val} is a @code{gdb.Value} instance
22541 representing a function that takes two integers as arguments. To
22542 execute this function, call it like so:
22545 result = some_val (10,20)
22548 Any values returned from a function call will be stored as a
22551 The following attributes are provided:
22554 @defvar Value.address
22555 If this object is addressable, this read-only attribute holds a
22556 @code{gdb.Value} object representing the address. Otherwise,
22557 this attribute holds @code{None}.
22560 @cindex optimized out value in Python
22561 @defvar Value.is_optimized_out
22562 This read-only boolean attribute is true if the compiler optimized out
22563 this value, thus it is not available for fetching from the inferior.
22567 The type of this @code{gdb.Value}. The value of this attribute is a
22568 @code{gdb.Type} object (@pxref{Types In Python}).
22571 @defvar Value.dynamic_type
22572 The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
22573 type information (@acronym{RTTI}) to determine the dynamic type of the
22574 value. If this value is of class type, it will return the class in
22575 which the value is embedded, if any. If this value is of pointer or
22576 reference to a class type, it will compute the dynamic type of the
22577 referenced object, and return a pointer or reference to that type,
22578 respectively. In all other cases, it will return the value's static
22581 Note that this feature will only work when debugging a C@t{++} program
22582 that includes @acronym{RTTI} for the object in question. Otherwise,
22583 it will just return the static type of the value as in @kbd{ptype foo}
22584 (@pxref{Symbols, ptype}).
22587 @defvar Value.is_lazy
22588 The value of this read-only boolean attribute is @code{True} if this
22589 @code{gdb.Value} has not yet been fetched from the inferior.
22590 @value{GDBN} does not fetch values until necessary, for efficiency.
22594 myval = gdb.parse_and_eval ('somevar')
22597 The value of @code{somevar} is not fetched at this time. It will be
22598 fetched when the value is needed, or when the @code{fetch_lazy}
22603 The following methods are provided:
22606 @defun Value.__init__ (@var{val})
22607 Many Python values can be converted directly to a @code{gdb.Value} via
22608 this object initializer. Specifically:
22611 @item Python boolean
22612 A Python boolean is converted to the boolean type from the current
22615 @item Python integer
22616 A Python integer is converted to the C @code{long} type for the
22617 current architecture.
22620 A Python long is converted to the C @code{long long} type for the
22621 current architecture.
22624 A Python float is converted to the C @code{double} type for the
22625 current architecture.
22627 @item Python string
22628 A Python string is converted to a target string, using the current
22631 @item @code{gdb.Value}
22632 If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
22634 @item @code{gdb.LazyString}
22635 If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
22636 Python}), then the lazy string's @code{value} method is called, and
22637 its result is used.
22641 @defun Value.cast (type)
22642 Return a new instance of @code{gdb.Value} that is the result of
22643 casting this instance to the type described by @var{type}, which must
22644 be a @code{gdb.Type} object. If the cast cannot be performed for some
22645 reason, this method throws an exception.
22648 @defun Value.dereference ()
22649 For pointer data types, this method returns a new @code{gdb.Value} object
22650 whose contents is the object pointed to by the pointer. For example, if
22651 @code{foo} is a C pointer to an @code{int}, declared in your C program as
22658 then you can use the corresponding @code{gdb.Value} to access what
22659 @code{foo} points to like this:
22662 bar = foo.dereference ()
22665 The result @code{bar} will be a @code{gdb.Value} object holding the
22666 value pointed to by @code{foo}.
22668 A similar function @code{Value.referenced_value} exists which also
22669 returns @code{gdb.Value} objects corresonding to the values pointed to
22670 by pointer values (and additionally, values referenced by reference
22671 values). However, the behavior of @code{Value.dereference}
22672 differs from @code{Value.referenced_value} by the fact that the
22673 behavior of @code{Value.dereference} is identical to applying the C
22674 unary operator @code{*} on a given value. For example, consider a
22675 reference to a pointer @code{ptrref}, declared in your C@t{++} program
22679 typedef int *intptr;
22683 intptr &ptrref = ptr;
22686 Though @code{ptrref} is a reference value, one can apply the method
22687 @code{Value.dereference} to the @code{gdb.Value} object corresponding
22688 to it and obtain a @code{gdb.Value} which is identical to that
22689 corresponding to @code{val}. However, if you apply the method
22690 @code{Value.referenced_value}, the result would be a @code{gdb.Value}
22691 object identical to that corresponding to @code{ptr}.
22694 py_ptrref = gdb.parse_and_eval ("ptrref")
22695 py_val = py_ptrref.dereference ()
22696 py_ptr = py_ptrref.referenced_value ()
22699 The @code{gdb.Value} object @code{py_val} is identical to that
22700 corresponding to @code{val}, and @code{py_ptr} is identical to that
22701 corresponding to @code{ptr}. In general, @code{Value.dereference} can
22702 be applied whenever the C unary operator @code{*} can be applied
22703 to the corresponding C value. For those cases where applying both
22704 @code{Value.dereference} and @code{Value.referenced_value} is allowed,
22705 the results obtained need not be identical (as we have seen in the above
22706 example). The results are however identical when applied on
22707 @code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
22708 objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
22711 @defun Value.referenced_value ()
22712 For pointer or reference data types, this method returns a new
22713 @code{gdb.Value} object corresponding to the value referenced by the
22714 pointer/reference value. For pointer data types,
22715 @code{Value.dereference} and @code{Value.referenced_value} produce
22716 identical results. The difference between these methods is that
22717 @code{Value.dereference} cannot get the values referenced by reference
22718 values. For example, consider a reference to an @code{int}, declared
22719 in your C@t{++} program as
22727 then applying @code{Value.dereference} to the @code{gdb.Value} object
22728 corresponding to @code{ref} will result in an error, while applying
22729 @code{Value.referenced_value} will result in a @code{gdb.Value} object
22730 identical to that corresponding to @code{val}.
22733 py_ref = gdb.parse_and_eval ("ref")
22734 er_ref = py_ref.dereference () # Results in error
22735 py_val = py_ref.referenced_value () # Returns the referenced value
22738 The @code{gdb.Value} object @code{py_val} is identical to that
22739 corresponding to @code{val}.
22742 @defun Value.dynamic_cast (type)
22743 Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
22744 operator were used. Consult a C@t{++} reference for details.
22747 @defun Value.reinterpret_cast (type)
22748 Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
22749 operator were used. Consult a C@t{++} reference for details.
22752 @defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
22753 If this @code{gdb.Value} represents a string, then this method
22754 converts the contents to a Python string. Otherwise, this method will
22755 throw an exception.
22757 Strings are recognized in a language-specific way; whether a given
22758 @code{gdb.Value} represents a string is determined by the current
22761 For C-like languages, a value is a string if it is a pointer to or an
22762 array of characters or ints. The string is assumed to be terminated
22763 by a zero of the appropriate width. However if the optional length
22764 argument is given, the string will be converted to that given length,
22765 ignoring any embedded zeros that the string may contain.
22767 If the optional @var{encoding} argument is given, it must be a string
22768 naming the encoding of the string in the @code{gdb.Value}, such as
22769 @code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
22770 the same encodings as the corresponding argument to Python's
22771 @code{string.decode} method, and the Python codec machinery will be used
22772 to convert the string. If @var{encoding} is not given, or if
22773 @var{encoding} is the empty string, then either the @code{target-charset}
22774 (@pxref{Character Sets}) will be used, or a language-specific encoding
22775 will be used, if the current language is able to supply one.
22777 The optional @var{errors} argument is the same as the corresponding
22778 argument to Python's @code{string.decode} method.
22780 If the optional @var{length} argument is given, the string will be
22781 fetched and converted to the given length.
22784 @defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
22785 If this @code{gdb.Value} represents a string, then this method
22786 converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
22787 In Python}). Otherwise, this method will throw an exception.
22789 If the optional @var{encoding} argument is given, it must be a string
22790 naming the encoding of the @code{gdb.LazyString}. Some examples are:
22791 @samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
22792 @var{encoding} argument is an encoding that @value{GDBN} does
22793 recognize, @value{GDBN} will raise an error.
22795 When a lazy string is printed, the @value{GDBN} encoding machinery is
22796 used to convert the string during printing. If the optional
22797 @var{encoding} argument is not provided, or is an empty string,
22798 @value{GDBN} will automatically select the encoding most suitable for
22799 the string type. For further information on encoding in @value{GDBN}
22800 please see @ref{Character Sets}.
22802 If the optional @var{length} argument is given, the string will be
22803 fetched and encoded to the length of characters specified. If
22804 the @var{length} argument is not provided, the string will be fetched
22805 and encoded until a null of appropriate width is found.
22808 @defun Value.fetch_lazy ()
22809 If the @code{gdb.Value} object is currently a lazy value
22810 (@code{gdb.Value.is_lazy} is @code{True}), then the value is
22811 fetched from the inferior. Any errors that occur in the process
22812 will produce a Python exception.
22814 If the @code{gdb.Value} object is not a lazy value, this method
22817 This method does not return a value.
22822 @node Types In Python
22823 @subsubsection Types In Python
22824 @cindex types in Python
22825 @cindex Python, working with types
22828 @value{GDBN} represents types from the inferior using the class
22831 The following type-related functions are available in the @code{gdb}
22834 @findex gdb.lookup_type
22835 @defun gdb.lookup_type (name @r{[}, block@r{]})
22836 This function looks up a type by name. @var{name} is the name of the
22837 type to look up. It must be a string.
22839 If @var{block} is given, then @var{name} is looked up in that scope.
22840 Otherwise, it is searched for globally.
22842 Ordinarily, this function will return an instance of @code{gdb.Type}.
22843 If the named type cannot be found, it will throw an exception.
22846 If the type is a structure or class type, or an enum type, the fields
22847 of that type can be accessed using the Python @dfn{dictionary syntax}.
22848 For example, if @code{some_type} is a @code{gdb.Type} instance holding
22849 a structure type, you can access its @code{foo} field with:
22852 bar = some_type['foo']
22855 @code{bar} will be a @code{gdb.Field} object; see below under the
22856 description of the @code{Type.fields} method for a description of the
22857 @code{gdb.Field} class.
22859 An instance of @code{Type} has the following attributes:
22863 The type code for this type. The type code will be one of the
22864 @code{TYPE_CODE_} constants defined below.
22867 @defvar Type.sizeof
22868 The size of this type, in target @code{char} units. Usually, a
22869 target's @code{char} type will be an 8-bit byte. However, on some
22870 unusual platforms, this type may have a different size.
22874 The tag name for this type. The tag name is the name after
22875 @code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
22876 languages have this concept. If this type has no tag name, then
22877 @code{None} is returned.
22881 The following methods are provided:
22884 @defun Type.fields ()
22885 For structure and union types, this method returns the fields. Range
22886 types have two fields, the minimum and maximum values. Enum types
22887 have one field per enum constant. Function and method types have one
22888 field per parameter. The base types of C@t{++} classes are also
22889 represented as fields. If the type has no fields, or does not fit
22890 into one of these categories, an empty sequence will be returned.
22892 Each field is a @code{gdb.Field} object, with some pre-defined attributes:
22895 This attribute is not available for @code{static} fields (as in
22896 C@t{++} or Java). For non-@code{static} fields, the value is the bit
22897 position of the field. For @code{enum} fields, the value is the
22898 enumeration member's integer representation.
22901 The name of the field, or @code{None} for anonymous fields.
22904 This is @code{True} if the field is artificial, usually meaning that
22905 it was provided by the compiler and not the user. This attribute is
22906 always provided, and is @code{False} if the field is not artificial.
22908 @item is_base_class
22909 This is @code{True} if the field represents a base class of a C@t{++}
22910 structure. This attribute is always provided, and is @code{False}
22911 if the field is not a base class of the type that is the argument of
22912 @code{fields}, or if that type was not a C@t{++} class.
22915 If the field is packed, or is a bitfield, then this will have a
22916 non-zero value, which is the size of the field in bits. Otherwise,
22917 this will be zero; in this case the field's size is given by its type.
22920 The type of the field. This is usually an instance of @code{Type},
22921 but it can be @code{None} in some situations.
22925 @defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
22926 Return a new @code{gdb.Type} object which represents an array of this
22927 type. If one argument is given, it is the inclusive upper bound of
22928 the array; in this case the lower bound is zero. If two arguments are
22929 given, the first argument is the lower bound of the array, and the
22930 second argument is the upper bound of the array. An array's length
22931 must not be negative, but the bounds can be.
22934 @defun Type.const ()
22935 Return a new @code{gdb.Type} object which represents a
22936 @code{const}-qualified variant of this type.
22939 @defun Type.volatile ()
22940 Return a new @code{gdb.Type} object which represents a
22941 @code{volatile}-qualified variant of this type.
22944 @defun Type.unqualified ()
22945 Return a new @code{gdb.Type} object which represents an unqualified
22946 variant of this type. That is, the result is neither @code{const} nor
22950 @defun Type.range ()
22951 Return a Python @code{Tuple} object that contains two elements: the
22952 low bound of the argument type and the high bound of that type. If
22953 the type does not have a range, @value{GDBN} will raise a
22954 @code{gdb.error} exception (@pxref{Exception Handling}).
22957 @defun Type.reference ()
22958 Return a new @code{gdb.Type} object which represents a reference to this
22962 @defun Type.pointer ()
22963 Return a new @code{gdb.Type} object which represents a pointer to this
22967 @defun Type.strip_typedefs ()
22968 Return a new @code{gdb.Type} that represents the real type,
22969 after removing all layers of typedefs.
22972 @defun Type.target ()
22973 Return a new @code{gdb.Type} object which represents the target type
22976 For a pointer type, the target type is the type of the pointed-to
22977 object. For an array type (meaning C-like arrays), the target type is
22978 the type of the elements of the array. For a function or method type,
22979 the target type is the type of the return value. For a complex type,
22980 the target type is the type of the elements. For a typedef, the
22981 target type is the aliased type.
22983 If the type does not have a target, this method will throw an
22987 @defun Type.template_argument (n @r{[}, block@r{]})
22988 If this @code{gdb.Type} is an instantiation of a template, this will
22989 return a new @code{gdb.Type} which represents the type of the
22990 @var{n}th template argument.
22992 If this @code{gdb.Type} is not a template type, this will throw an
22993 exception. Ordinarily, only C@t{++} code will have template types.
22995 If @var{block} is given, then @var{name} is looked up in that scope.
22996 Otherwise, it is searched for globally.
23001 Each type has a code, which indicates what category this type falls
23002 into. The available type categories are represented by constants
23003 defined in the @code{gdb} module:
23006 @findex TYPE_CODE_PTR
23007 @findex gdb.TYPE_CODE_PTR
23008 @item gdb.TYPE_CODE_PTR
23009 The type is a pointer.
23011 @findex TYPE_CODE_ARRAY
23012 @findex gdb.TYPE_CODE_ARRAY
23013 @item gdb.TYPE_CODE_ARRAY
23014 The type is an array.
23016 @findex TYPE_CODE_STRUCT
23017 @findex gdb.TYPE_CODE_STRUCT
23018 @item gdb.TYPE_CODE_STRUCT
23019 The type is a structure.
23021 @findex TYPE_CODE_UNION
23022 @findex gdb.TYPE_CODE_UNION
23023 @item gdb.TYPE_CODE_UNION
23024 The type is a union.
23026 @findex TYPE_CODE_ENUM
23027 @findex gdb.TYPE_CODE_ENUM
23028 @item gdb.TYPE_CODE_ENUM
23029 The type is an enum.
23031 @findex TYPE_CODE_FLAGS
23032 @findex gdb.TYPE_CODE_FLAGS
23033 @item gdb.TYPE_CODE_FLAGS
23034 A bit flags type, used for things such as status registers.
23036 @findex TYPE_CODE_FUNC
23037 @findex gdb.TYPE_CODE_FUNC
23038 @item gdb.TYPE_CODE_FUNC
23039 The type is a function.
23041 @findex TYPE_CODE_INT
23042 @findex gdb.TYPE_CODE_INT
23043 @item gdb.TYPE_CODE_INT
23044 The type is an integer type.
23046 @findex TYPE_CODE_FLT
23047 @findex gdb.TYPE_CODE_FLT
23048 @item gdb.TYPE_CODE_FLT
23049 A floating point type.
23051 @findex TYPE_CODE_VOID
23052 @findex gdb.TYPE_CODE_VOID
23053 @item gdb.TYPE_CODE_VOID
23054 The special type @code{void}.
23056 @findex TYPE_CODE_SET
23057 @findex gdb.TYPE_CODE_SET
23058 @item gdb.TYPE_CODE_SET
23061 @findex TYPE_CODE_RANGE
23062 @findex gdb.TYPE_CODE_RANGE
23063 @item gdb.TYPE_CODE_RANGE
23064 A range type, that is, an integer type with bounds.
23066 @findex TYPE_CODE_STRING
23067 @findex gdb.TYPE_CODE_STRING
23068 @item gdb.TYPE_CODE_STRING
23069 A string type. Note that this is only used for certain languages with
23070 language-defined string types; C strings are not represented this way.
23072 @findex TYPE_CODE_BITSTRING
23073 @findex gdb.TYPE_CODE_BITSTRING
23074 @item gdb.TYPE_CODE_BITSTRING
23077 @findex TYPE_CODE_ERROR
23078 @findex gdb.TYPE_CODE_ERROR
23079 @item gdb.TYPE_CODE_ERROR
23080 An unknown or erroneous type.
23082 @findex TYPE_CODE_METHOD
23083 @findex gdb.TYPE_CODE_METHOD
23084 @item gdb.TYPE_CODE_METHOD
23085 A method type, as found in C@t{++} or Java.
23087 @findex TYPE_CODE_METHODPTR
23088 @findex gdb.TYPE_CODE_METHODPTR
23089 @item gdb.TYPE_CODE_METHODPTR
23090 A pointer-to-member-function.
23092 @findex TYPE_CODE_MEMBERPTR
23093 @findex gdb.TYPE_CODE_MEMBERPTR
23094 @item gdb.TYPE_CODE_MEMBERPTR
23095 A pointer-to-member.
23097 @findex TYPE_CODE_REF
23098 @findex gdb.TYPE_CODE_REF
23099 @item gdb.TYPE_CODE_REF
23102 @findex TYPE_CODE_CHAR
23103 @findex gdb.TYPE_CODE_CHAR
23104 @item gdb.TYPE_CODE_CHAR
23107 @findex TYPE_CODE_BOOL
23108 @findex gdb.TYPE_CODE_BOOL
23109 @item gdb.TYPE_CODE_BOOL
23112 @findex TYPE_CODE_COMPLEX
23113 @findex gdb.TYPE_CODE_COMPLEX
23114 @item gdb.TYPE_CODE_COMPLEX
23115 A complex float type.
23117 @findex TYPE_CODE_TYPEDEF
23118 @findex gdb.TYPE_CODE_TYPEDEF
23119 @item gdb.TYPE_CODE_TYPEDEF
23120 A typedef to some other type.
23122 @findex TYPE_CODE_NAMESPACE
23123 @findex gdb.TYPE_CODE_NAMESPACE
23124 @item gdb.TYPE_CODE_NAMESPACE
23125 A C@t{++} namespace.
23127 @findex TYPE_CODE_DECFLOAT
23128 @findex gdb.TYPE_CODE_DECFLOAT
23129 @item gdb.TYPE_CODE_DECFLOAT
23130 A decimal floating point type.
23132 @findex TYPE_CODE_INTERNAL_FUNCTION
23133 @findex gdb.TYPE_CODE_INTERNAL_FUNCTION
23134 @item gdb.TYPE_CODE_INTERNAL_FUNCTION
23135 A function internal to @value{GDBN}. This is the type used to represent
23136 convenience functions.
23139 Further support for types is provided in the @code{gdb.types}
23140 Python module (@pxref{gdb.types}).
23142 @node Pretty Printing API
23143 @subsubsection Pretty Printing API
23145 An example output is provided (@pxref{Pretty Printing}).
23147 A pretty-printer is just an object that holds a value and implements a
23148 specific interface, defined here.
23150 @defun pretty_printer.children (self)
23151 @value{GDBN} will call this method on a pretty-printer to compute the
23152 children of the pretty-printer's value.
23154 This method must return an object conforming to the Python iterator
23155 protocol. Each item returned by the iterator must be a tuple holding
23156 two elements. The first element is the ``name'' of the child; the
23157 second element is the child's value. The value can be any Python
23158 object which is convertible to a @value{GDBN} value.
23160 This method is optional. If it does not exist, @value{GDBN} will act
23161 as though the value has no children.
23164 @defun pretty_printer.display_hint (self)
23165 The CLI may call this method and use its result to change the
23166 formatting of a value. The result will also be supplied to an MI
23167 consumer as a @samp{displayhint} attribute of the variable being
23170 This method is optional. If it does exist, this method must return a
23173 Some display hints are predefined by @value{GDBN}:
23177 Indicate that the object being printed is ``array-like''. The CLI
23178 uses this to respect parameters such as @code{set print elements} and
23179 @code{set print array}.
23182 Indicate that the object being printed is ``map-like'', and that the
23183 children of this value can be assumed to alternate between keys and
23187 Indicate that the object being printed is ``string-like''. If the
23188 printer's @code{to_string} method returns a Python string of some
23189 kind, then @value{GDBN} will call its internal language-specific
23190 string-printing function to format the string. For the CLI this means
23191 adding quotation marks, possibly escaping some characters, respecting
23192 @code{set print elements}, and the like.
23196 @defun pretty_printer.to_string (self)
23197 @value{GDBN} will call this method to display the string
23198 representation of the value passed to the object's constructor.
23200 When printing from the CLI, if the @code{to_string} method exists,
23201 then @value{GDBN} will prepend its result to the values returned by
23202 @code{children}. Exactly how this formatting is done is dependent on
23203 the display hint, and may change as more hints are added. Also,
23204 depending on the print settings (@pxref{Print Settings}), the CLI may
23205 print just the result of @code{to_string} in a stack trace, omitting
23206 the result of @code{children}.
23208 If this method returns a string, it is printed verbatim.
23210 Otherwise, if this method returns an instance of @code{gdb.Value},
23211 then @value{GDBN} prints this value. This may result in a call to
23212 another pretty-printer.
23214 If instead the method returns a Python value which is convertible to a
23215 @code{gdb.Value}, then @value{GDBN} performs the conversion and prints
23216 the resulting value. Again, this may result in a call to another
23217 pretty-printer. Python scalars (integers, floats, and booleans) and
23218 strings are convertible to @code{gdb.Value}; other types are not.
23220 Finally, if this method returns @code{None} then no further operations
23221 are peformed in this method and nothing is printed.
23223 If the result is not one of these types, an exception is raised.
23226 @value{GDBN} provides a function which can be used to look up the
23227 default pretty-printer for a @code{gdb.Value}:
23229 @findex gdb.default_visualizer
23230 @defun gdb.default_visualizer (value)
23231 This function takes a @code{gdb.Value} object as an argument. If a
23232 pretty-printer for this value exists, then it is returned. If no such
23233 printer exists, then this returns @code{None}.
23236 @node Selecting Pretty-Printers
23237 @subsubsection Selecting Pretty-Printers
23239 The Python list @code{gdb.pretty_printers} contains an array of
23240 functions or callable objects that have been registered via addition
23241 as a pretty-printer. Printers in this list are called @code{global}
23242 printers, they're available when debugging all inferiors.
23243 Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
23244 Each @code{gdb.Objfile} also contains a @code{pretty_printers}
23247 Each function on these lists is passed a single @code{gdb.Value}
23248 argument and should return a pretty-printer object conforming to the
23249 interface definition above (@pxref{Pretty Printing API}). If a function
23250 cannot create a pretty-printer for the value, it should return
23253 @value{GDBN} first checks the @code{pretty_printers} attribute of each
23254 @code{gdb.Objfile} in the current program space and iteratively calls
23255 each enabled lookup routine in the list for that @code{gdb.Objfile}
23256 until it receives a pretty-printer object.
23257 If no pretty-printer is found in the objfile lists, @value{GDBN} then
23258 searches the pretty-printer list of the current program space,
23259 calling each enabled function until an object is returned.
23260 After these lists have been exhausted, it tries the global
23261 @code{gdb.pretty_printers} list, again calling each enabled function until an
23262 object is returned.
23264 The order in which the objfiles are searched is not specified. For a
23265 given list, functions are always invoked from the head of the list,
23266 and iterated over sequentially until the end of the list, or a printer
23267 object is returned.
23269 For various reasons a pretty-printer may not work.
23270 For example, the underlying data structure may have changed and
23271 the pretty-printer is out of date.
23273 The consequences of a broken pretty-printer are severe enough that
23274 @value{GDBN} provides support for enabling and disabling individual
23275 printers. For example, if @code{print frame-arguments} is on,
23276 a backtrace can become highly illegible if any argument is printed
23277 with a broken printer.
23279 Pretty-printers are enabled and disabled by attaching an @code{enabled}
23280 attribute to the registered function or callable object. If this attribute
23281 is present and its value is @code{False}, the printer is disabled, otherwise
23282 the printer is enabled.
23284 @node Writing a Pretty-Printer
23285 @subsubsection Writing a Pretty-Printer
23286 @cindex writing a pretty-printer
23288 A pretty-printer consists of two parts: a lookup function to detect
23289 if the type is supported, and the printer itself.
23291 Here is an example showing how a @code{std::string} printer might be
23292 written. @xref{Pretty Printing API}, for details on the API this class
23296 class StdStringPrinter(object):
23297 "Print a std::string"
23299 def __init__(self, val):
23302 def to_string(self):
23303 return self.val['_M_dataplus']['_M_p']
23305 def display_hint(self):
23309 And here is an example showing how a lookup function for the printer
23310 example above might be written.
23313 def str_lookup_function(val):
23314 lookup_tag = val.type.tag
23315 if lookup_tag == None:
23317 regex = re.compile("^std::basic_string<char,.*>$")
23318 if regex.match(lookup_tag):
23319 return StdStringPrinter(val)
23323 The example lookup function extracts the value's type, and attempts to
23324 match it to a type that it can pretty-print. If it is a type the
23325 printer can pretty-print, it will return a printer object. If not, it
23326 returns @code{None}.
23328 We recommend that you put your core pretty-printers into a Python
23329 package. If your pretty-printers are for use with a library, we
23330 further recommend embedding a version number into the package name.
23331 This practice will enable @value{GDBN} to load multiple versions of
23332 your pretty-printers at the same time, because they will have
23335 You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
23336 can be evaluated multiple times without changing its meaning. An
23337 ideal auto-load file will consist solely of @code{import}s of your
23338 printer modules, followed by a call to a register pretty-printers with
23339 the current objfile.
23341 Taken as a whole, this approach will scale nicely to multiple
23342 inferiors, each potentially using a different library version.
23343 Embedding a version number in the Python package name will ensure that
23344 @value{GDBN} is able to load both sets of printers simultaneously.
23345 Then, because the search for pretty-printers is done by objfile, and
23346 because your auto-loaded code took care to register your library's
23347 printers with a specific objfile, @value{GDBN} will find the correct
23348 printers for the specific version of the library used by each
23351 To continue the @code{std::string} example (@pxref{Pretty Printing API}),
23352 this code might appear in @code{gdb.libstdcxx.v6}:
23355 def register_printers(objfile):
23356 objfile.pretty_printers.append(str_lookup_function)
23360 And then the corresponding contents of the auto-load file would be:
23363 import gdb.libstdcxx.v6
23364 gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
23367 The previous example illustrates a basic pretty-printer.
23368 There are a few things that can be improved on.
23369 The printer doesn't have a name, making it hard to identify in a
23370 list of installed printers. The lookup function has a name, but
23371 lookup functions can have arbitrary, even identical, names.
23373 Second, the printer only handles one type, whereas a library typically has
23374 several types. One could install a lookup function for each desired type
23375 in the library, but one could also have a single lookup function recognize
23376 several types. The latter is the conventional way this is handled.
23377 If a pretty-printer can handle multiple data types, then its
23378 @dfn{subprinters} are the printers for the individual data types.
23380 The @code{gdb.printing} module provides a formal way of solving these
23381 problems (@pxref{gdb.printing}).
23382 Here is another example that handles multiple types.
23384 These are the types we are going to pretty-print:
23387 struct foo @{ int a, b; @};
23388 struct bar @{ struct foo x, y; @};
23391 Here are the printers:
23395 """Print a foo object."""
23397 def __init__(self, val):
23400 def to_string(self):
23401 return ("a=<" + str(self.val["a"]) +
23402 "> b=<" + str(self.val["b"]) + ">")
23405 """Print a bar object."""
23407 def __init__(self, val):
23410 def to_string(self):
23411 return ("x=<" + str(self.val["x"]) +
23412 "> y=<" + str(self.val["y"]) + ">")
23415 This example doesn't need a lookup function, that is handled by the
23416 @code{gdb.printing} module. Instead a function is provided to build up
23417 the object that handles the lookup.
23420 import gdb.printing
23422 def build_pretty_printer():
23423 pp = gdb.printing.RegexpCollectionPrettyPrinter(
23425 pp.add_printer('foo', '^foo$', fooPrinter)
23426 pp.add_printer('bar', '^bar$', barPrinter)
23430 And here is the autoload support:
23433 import gdb.printing
23435 gdb.printing.register_pretty_printer(
23436 gdb.current_objfile(),
23437 my_library.build_pretty_printer())
23440 Finally, when this printer is loaded into @value{GDBN}, here is the
23441 corresponding output of @samp{info pretty-printer}:
23444 (gdb) info pretty-printer
23451 @node Inferiors In Python
23452 @subsubsection Inferiors In Python
23453 @cindex inferiors in Python
23455 @findex gdb.Inferior
23456 Programs which are being run under @value{GDBN} are called inferiors
23457 (@pxref{Inferiors and Programs}). Python scripts can access
23458 information about and manipulate inferiors controlled by @value{GDBN}
23459 via objects of the @code{gdb.Inferior} class.
23461 The following inferior-related functions are available in the @code{gdb}
23464 @defun gdb.inferiors ()
23465 Return a tuple containing all inferior objects.
23468 @defun gdb.selected_inferior ()
23469 Return an object representing the current inferior.
23472 A @code{gdb.Inferior} object has the following attributes:
23475 @defvar Inferior.num
23476 ID of inferior, as assigned by GDB.
23479 @defvar Inferior.pid
23480 Process ID of the inferior, as assigned by the underlying operating
23484 @defvar Inferior.was_attached
23485 Boolean signaling whether the inferior was created using `attach', or
23486 started by @value{GDBN} itself.
23490 A @code{gdb.Inferior} object has the following methods:
23493 @defun Inferior.is_valid ()
23494 Returns @code{True} if the @code{gdb.Inferior} object is valid,
23495 @code{False} if not. A @code{gdb.Inferior} object will become invalid
23496 if the inferior no longer exists within @value{GDBN}. All other
23497 @code{gdb.Inferior} methods will throw an exception if it is invalid
23498 at the time the method is called.
23501 @defun Inferior.threads ()
23502 This method returns a tuple holding all the threads which are valid
23503 when it is called. If there are no valid threads, the method will
23504 return an empty tuple.
23507 @findex gdb.read_memory
23508 @defun Inferior.read_memory (address, length)
23509 Read @var{length} bytes of memory from the inferior, starting at
23510 @var{address}. Returns a buffer object, which behaves much like an array
23511 or a string. It can be modified and given to the @code{gdb.write_memory}
23515 @findex gdb.write_memory
23516 @defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
23517 Write the contents of @var{buffer} to the inferior, starting at
23518 @var{address}. The @var{buffer} parameter must be a Python object
23519 which supports the buffer protocol, i.e., a string, an array or the
23520 object returned from @code{gdb.read_memory}. If given, @var{length}
23521 determines the number of bytes from @var{buffer} to be written.
23524 @findex gdb.search_memory
23525 @defun Inferior.search_memory (address, length, pattern)
23526 Search a region of the inferior memory starting at @var{address} with
23527 the given @var{length} using the search pattern supplied in
23528 @var{pattern}. The @var{pattern} parameter must be a Python object
23529 which supports the buffer protocol, i.e., a string, an array or the
23530 object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
23531 containing the address where the pattern was found, or @code{None} if
23532 the pattern could not be found.
23536 @node Events In Python
23537 @subsubsection Events In Python
23538 @cindex inferior events in Python
23540 @value{GDBN} provides a general event facility so that Python code can be
23541 notified of various state changes, particularly changes that occur in
23544 An @dfn{event} is just an object that describes some state change. The
23545 type of the object and its attributes will vary depending on the details
23546 of the change. All the existing events are described below.
23548 In order to be notified of an event, you must register an event handler
23549 with an @dfn{event registry}. An event registry is an object in the
23550 @code{gdb.events} module which dispatches particular events. A registry
23551 provides methods to register and unregister event handlers:
23554 @defun EventRegistry.connect (object)
23555 Add the given callable @var{object} to the registry. This object will be
23556 called when an event corresponding to this registry occurs.
23559 @defun EventRegistry.disconnect (object)
23560 Remove the given @var{object} from the registry. Once removed, the object
23561 will no longer receive notifications of events.
23565 Here is an example:
23568 def exit_handler (event):
23569 print "event type: exit"
23570 print "exit code: %d" % (event.exit_code)
23572 gdb.events.exited.connect (exit_handler)
23575 In the above example we connect our handler @code{exit_handler} to the
23576 registry @code{events.exited}. Once connected, @code{exit_handler} gets
23577 called when the inferior exits. The argument @dfn{event} in this example is
23578 of type @code{gdb.ExitedEvent}. As you can see in the example the
23579 @code{ExitedEvent} object has an attribute which indicates the exit code of
23582 The following is a listing of the event registries that are available and
23583 details of the events they emit:
23588 Emits @code{gdb.ThreadEvent}.
23590 Some events can be thread specific when @value{GDBN} is running in non-stop
23591 mode. When represented in Python, these events all extend
23592 @code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
23593 events which are emitted by this or other modules might extend this event.
23594 Examples of these events are @code{gdb.BreakpointEvent} and
23595 @code{gdb.ContinueEvent}.
23598 @defvar ThreadEvent.inferior_thread
23599 In non-stop mode this attribute will be set to the specific thread which was
23600 involved in the emitted event. Otherwise, it will be set to @code{None}.
23604 Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
23606 This event indicates that the inferior has been continued after a stop. For
23607 inherited attribute refer to @code{gdb.ThreadEvent} above.
23609 @item events.exited
23610 Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
23611 @code{events.ExitedEvent} has two attributes:
23613 @defvar ExitedEvent.exit_code
23614 An integer representing the exit code, if available, which the inferior
23615 has returned. (The exit code could be unavailable if, for example,
23616 @value{GDBN} detaches from the inferior.) If the exit code is unavailable,
23617 the attribute does not exist.
23619 @defvar ExitedEvent inferior
23620 A reference to the inferior which triggered the @code{exited} event.
23625 Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
23627 Indicates that the inferior has stopped. All events emitted by this registry
23628 extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
23629 will indicate the stopped thread when @value{GDBN} is running in non-stop
23630 mode. Refer to @code{gdb.ThreadEvent} above for more details.
23632 Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
23634 This event indicates that the inferior or one of its threads has received as
23635 signal. @code{gdb.SignalEvent} has the following attributes:
23638 @defvar SignalEvent.stop_signal
23639 A string representing the signal received by the inferior. A list of possible
23640 signal values can be obtained by running the command @code{info signals} in
23641 the @value{GDBN} command prompt.
23645 Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
23647 @code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
23648 been hit, and has the following attributes:
23651 @defvar BreakpointEvent.breakpoints
23652 A sequence containing references to all the breakpoints (type
23653 @code{gdb.Breakpoint}) that were hit.
23654 @xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
23656 @defvar BreakpointEvent.breakpoint
23657 A reference to the first breakpoint that was hit.
23658 This function is maintained for backward compatibility and is now deprecated
23659 in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
23663 @item events.new_objfile
23664 Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
23665 been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
23668 @defvar NewObjFileEvent.new_objfile
23669 A reference to the object file (@code{gdb.Objfile}) which has been loaded.
23670 @xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
23676 @node Threads In Python
23677 @subsubsection Threads In Python
23678 @cindex threads in python
23680 @findex gdb.InferiorThread
23681 Python scripts can access information about, and manipulate inferior threads
23682 controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
23684 The following thread-related functions are available in the @code{gdb}
23687 @findex gdb.selected_thread
23688 @defun gdb.selected_thread ()
23689 This function returns the thread object for the selected thread. If there
23690 is no selected thread, this will return @code{None}.
23693 A @code{gdb.InferiorThread} object has the following attributes:
23696 @defvar InferiorThread.name
23697 The name of the thread. If the user specified a name using
23698 @code{thread name}, then this returns that name. Otherwise, if an
23699 OS-supplied name is available, then it is returned. Otherwise, this
23700 returns @code{None}.
23702 This attribute can be assigned to. The new value must be a string
23703 object, which sets the new name, or @code{None}, which removes any
23704 user-specified thread name.
23707 @defvar InferiorThread.num
23708 ID of the thread, as assigned by GDB.
23711 @defvar InferiorThread.ptid
23712 ID of the thread, as assigned by the operating system. This attribute is a
23713 tuple containing three integers. The first is the Process ID (PID); the second
23714 is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
23715 Either the LWPID or TID may be 0, which indicates that the operating system
23716 does not use that identifier.
23720 A @code{gdb.InferiorThread} object has the following methods:
23723 @defun InferiorThread.is_valid ()
23724 Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
23725 @code{False} if not. A @code{gdb.InferiorThread} object will become
23726 invalid if the thread exits, or the inferior that the thread belongs
23727 is deleted. All other @code{gdb.InferiorThread} methods will throw an
23728 exception if it is invalid at the time the method is called.
23731 @defun InferiorThread.switch ()
23732 This changes @value{GDBN}'s currently selected thread to the one represented
23736 @defun InferiorThread.is_stopped ()
23737 Return a Boolean indicating whether the thread is stopped.
23740 @defun InferiorThread.is_running ()
23741 Return a Boolean indicating whether the thread is running.
23744 @defun InferiorThread.is_exited ()
23745 Return a Boolean indicating whether the thread is exited.
23749 @node Commands In Python
23750 @subsubsection Commands In Python
23752 @cindex commands in python
23753 @cindex python commands
23754 You can implement new @value{GDBN} CLI commands in Python. A CLI
23755 command is implemented using an instance of the @code{gdb.Command}
23756 class, most commonly using a subclass.
23758 @defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
23759 The object initializer for @code{Command} registers the new command
23760 with @value{GDBN}. This initializer is normally invoked from the
23761 subclass' own @code{__init__} method.
23763 @var{name} is the name of the command. If @var{name} consists of
23764 multiple words, then the initial words are looked for as prefix
23765 commands. In this case, if one of the prefix commands does not exist,
23766 an exception is raised.
23768 There is no support for multi-line commands.
23770 @var{command_class} should be one of the @samp{COMMAND_} constants
23771 defined below. This argument tells @value{GDBN} how to categorize the
23772 new command in the help system.
23774 @var{completer_class} is an optional argument. If given, it should be
23775 one of the @samp{COMPLETE_} constants defined below. This argument
23776 tells @value{GDBN} how to perform completion for this command. If not
23777 given, @value{GDBN} will attempt to complete using the object's
23778 @code{complete} method (see below); if no such method is found, an
23779 error will occur when completion is attempted.
23781 @var{prefix} is an optional argument. If @code{True}, then the new
23782 command is a prefix command; sub-commands of this command may be
23785 The help text for the new command is taken from the Python
23786 documentation string for the command's class, if there is one. If no
23787 documentation string is provided, the default value ``This command is
23788 not documented.'' is used.
23791 @cindex don't repeat Python command
23792 @defun Command.dont_repeat ()
23793 By default, a @value{GDBN} command is repeated when the user enters a
23794 blank line at the command prompt. A command can suppress this
23795 behavior by invoking the @code{dont_repeat} method. This is similar
23796 to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
23799 @defun Command.invoke (argument, from_tty)
23800 This method is called by @value{GDBN} when this command is invoked.
23802 @var{argument} is a string. It is the argument to the command, after
23803 leading and trailing whitespace has been stripped.
23805 @var{from_tty} is a boolean argument. When true, this means that the
23806 command was entered by the user at the terminal; when false it means
23807 that the command came from elsewhere.
23809 If this method throws an exception, it is turned into a @value{GDBN}
23810 @code{error} call. Otherwise, the return value is ignored.
23812 @findex gdb.string_to_argv
23813 To break @var{argument} up into an argv-like string use
23814 @code{gdb.string_to_argv}. This function behaves identically to
23815 @value{GDBN}'s internal argument lexer @code{buildargv}.
23816 It is recommended to use this for consistency.
23817 Arguments are separated by spaces and may be quoted.
23821 print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
23822 ['1', '2 "3', '4 "5', "6 '7"]
23827 @cindex completion of Python commands
23828 @defun Command.complete (text, word)
23829 This method is called by @value{GDBN} when the user attempts
23830 completion on this command. All forms of completion are handled by
23831 this method, that is, the @key{TAB} and @key{M-?} key bindings
23832 (@pxref{Completion}), and the @code{complete} command (@pxref{Help,
23835 The arguments @var{text} and @var{word} are both strings. @var{text}
23836 holds the complete command line up to the cursor's location.
23837 @var{word} holds the last word of the command line; this is computed
23838 using a word-breaking heuristic.
23840 The @code{complete} method can return several values:
23843 If the return value is a sequence, the contents of the sequence are
23844 used as the completions. It is up to @code{complete} to ensure that the
23845 contents actually do complete the word. A zero-length sequence is
23846 allowed, it means that there were no completions available. Only
23847 string elements of the sequence are used; other elements in the
23848 sequence are ignored.
23851 If the return value is one of the @samp{COMPLETE_} constants defined
23852 below, then the corresponding @value{GDBN}-internal completion
23853 function is invoked, and its result is used.
23856 All other results are treated as though there were no available
23861 When a new command is registered, it must be declared as a member of
23862 some general class of commands. This is used to classify top-level
23863 commands in the on-line help system; note that prefix commands are not
23864 listed under their own category but rather that of their top-level
23865 command. The available classifications are represented by constants
23866 defined in the @code{gdb} module:
23869 @findex COMMAND_NONE
23870 @findex gdb.COMMAND_NONE
23871 @item gdb.COMMAND_NONE
23872 The command does not belong to any particular class. A command in
23873 this category will not be displayed in any of the help categories.
23875 @findex COMMAND_RUNNING
23876 @findex gdb.COMMAND_RUNNING
23877 @item gdb.COMMAND_RUNNING
23878 The command is related to running the inferior. For example,
23879 @code{start}, @code{step}, and @code{continue} are in this category.
23880 Type @kbd{help running} at the @value{GDBN} prompt to see a list of
23881 commands in this category.
23883 @findex COMMAND_DATA
23884 @findex gdb.COMMAND_DATA
23885 @item gdb.COMMAND_DATA
23886 The command is related to data or variables. For example,
23887 @code{call}, @code{find}, and @code{print} are in this category. Type
23888 @kbd{help data} at the @value{GDBN} prompt to see a list of commands
23891 @findex COMMAND_STACK
23892 @findex gdb.COMMAND_STACK
23893 @item gdb.COMMAND_STACK
23894 The command has to do with manipulation of the stack. For example,
23895 @code{backtrace}, @code{frame}, and @code{return} are in this
23896 category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
23897 list of commands in this category.
23899 @findex COMMAND_FILES
23900 @findex gdb.COMMAND_FILES
23901 @item gdb.COMMAND_FILES
23902 This class is used for file-related commands. For example,
23903 @code{file}, @code{list} and @code{section} are in this category.
23904 Type @kbd{help files} at the @value{GDBN} prompt to see a list of
23905 commands in this category.
23907 @findex COMMAND_SUPPORT
23908 @findex gdb.COMMAND_SUPPORT
23909 @item gdb.COMMAND_SUPPORT
23910 This should be used for ``support facilities'', generally meaning
23911 things that are useful to the user when interacting with @value{GDBN},
23912 but not related to the state of the inferior. For example,
23913 @code{help}, @code{make}, and @code{shell} are in this category. Type
23914 @kbd{help support} at the @value{GDBN} prompt to see a list of
23915 commands in this category.
23917 @findex COMMAND_STATUS
23918 @findex gdb.COMMAND_STATUS
23919 @item gdb.COMMAND_STATUS
23920 The command is an @samp{info}-related command, that is, related to the
23921 state of @value{GDBN} itself. For example, @code{info}, @code{macro},
23922 and @code{show} are in this category. Type @kbd{help status} at the
23923 @value{GDBN} prompt to see a list of commands in this category.
23925 @findex COMMAND_BREAKPOINTS
23926 @findex gdb.COMMAND_BREAKPOINTS
23927 @item gdb.COMMAND_BREAKPOINTS
23928 The command has to do with breakpoints. For example, @code{break},
23929 @code{clear}, and @code{delete} are in this category. Type @kbd{help
23930 breakpoints} at the @value{GDBN} prompt to see a list of commands in
23933 @findex COMMAND_TRACEPOINTS
23934 @findex gdb.COMMAND_TRACEPOINTS
23935 @item gdb.COMMAND_TRACEPOINTS
23936 The command has to do with tracepoints. For example, @code{trace},
23937 @code{actions}, and @code{tfind} are in this category. Type
23938 @kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
23939 commands in this category.
23941 @findex COMMAND_USER
23942 @findex gdb.COMMAND_USER
23943 @item gdb.COMMAND_USER
23944 The command is a general purpose command for the user, and typically
23945 does not fit in one of the other categories.
23946 Type @kbd{help user-defined} at the @value{GDBN} prompt to see
23947 a list of commands in this category, as well as the list of gdb macros
23948 (@pxref{Sequences}).
23950 @findex COMMAND_OBSCURE
23951 @findex gdb.COMMAND_OBSCURE
23952 @item gdb.COMMAND_OBSCURE
23953 The command is only used in unusual circumstances, or is not of
23954 general interest to users. For example, @code{checkpoint},
23955 @code{fork}, and @code{stop} are in this category. Type @kbd{help
23956 obscure} at the @value{GDBN} prompt to see a list of commands in this
23959 @findex COMMAND_MAINTENANCE
23960 @findex gdb.COMMAND_MAINTENANCE
23961 @item gdb.COMMAND_MAINTENANCE
23962 The command is only useful to @value{GDBN} maintainers. The
23963 @code{maintenance} and @code{flushregs} commands are in this category.
23964 Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
23965 commands in this category.
23968 A new command can use a predefined completion function, either by
23969 specifying it via an argument at initialization, or by returning it
23970 from the @code{complete} method. These predefined completion
23971 constants are all defined in the @code{gdb} module:
23974 @findex COMPLETE_NONE
23975 @findex gdb.COMPLETE_NONE
23976 @item gdb.COMPLETE_NONE
23977 This constant means that no completion should be done.
23979 @findex COMPLETE_FILENAME
23980 @findex gdb.COMPLETE_FILENAME
23981 @item gdb.COMPLETE_FILENAME
23982 This constant means that filename completion should be performed.
23984 @findex COMPLETE_LOCATION
23985 @findex gdb.COMPLETE_LOCATION
23986 @item gdb.COMPLETE_LOCATION
23987 This constant means that location completion should be done.
23988 @xref{Specify Location}.
23990 @findex COMPLETE_COMMAND
23991 @findex gdb.COMPLETE_COMMAND
23992 @item gdb.COMPLETE_COMMAND
23993 This constant means that completion should examine @value{GDBN}
23996 @findex COMPLETE_SYMBOL
23997 @findex gdb.COMPLETE_SYMBOL
23998 @item gdb.COMPLETE_SYMBOL
23999 This constant means that completion should be done using symbol names
24003 The following code snippet shows how a trivial CLI command can be
24004 implemented in Python:
24007 class HelloWorld (gdb.Command):
24008 """Greet the whole world."""
24010 def __init__ (self):
24011 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
24013 def invoke (self, arg, from_tty):
24014 print "Hello, World!"
24019 The last line instantiates the class, and is necessary to trigger the
24020 registration of the command with @value{GDBN}. Depending on how the
24021 Python code is read into @value{GDBN}, you may need to import the
24022 @code{gdb} module explicitly.
24024 @node Parameters In Python
24025 @subsubsection Parameters In Python
24027 @cindex parameters in python
24028 @cindex python parameters
24029 @tindex gdb.Parameter
24031 You can implement new @value{GDBN} parameters using Python. A new
24032 parameter is implemented as an instance of the @code{gdb.Parameter}
24035 Parameters are exposed to the user via the @code{set} and
24036 @code{show} commands. @xref{Help}.
24038 There are many parameters that already exist and can be set in
24039 @value{GDBN}. Two examples are: @code{set follow fork} and
24040 @code{set charset}. Setting these parameters influences certain
24041 behavior in @value{GDBN}. Similarly, you can define parameters that
24042 can be used to influence behavior in custom Python scripts and commands.
24044 @defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
24045 The object initializer for @code{Parameter} registers the new
24046 parameter with @value{GDBN}. This initializer is normally invoked
24047 from the subclass' own @code{__init__} method.
24049 @var{name} is the name of the new parameter. If @var{name} consists
24050 of multiple words, then the initial words are looked for as prefix
24051 parameters. An example of this can be illustrated with the
24052 @code{set print} set of parameters. If @var{name} is
24053 @code{print foo}, then @code{print} will be searched as the prefix
24054 parameter. In this case the parameter can subsequently be accessed in
24055 @value{GDBN} as @code{set print foo}.
24057 If @var{name} consists of multiple words, and no prefix parameter group
24058 can be found, an exception is raised.
24060 @var{command-class} should be one of the @samp{COMMAND_} constants
24061 (@pxref{Commands In Python}). This argument tells @value{GDBN} how to
24062 categorize the new parameter in the help system.
24064 @var{parameter-class} should be one of the @samp{PARAM_} constants
24065 defined below. This argument tells @value{GDBN} the type of the new
24066 parameter; this information is used for input validation and
24069 If @var{parameter-class} is @code{PARAM_ENUM}, then
24070 @var{enum-sequence} must be a sequence of strings. These strings
24071 represent the possible values for the parameter.
24073 If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
24074 of a fourth argument will cause an exception to be thrown.
24076 The help text for the new parameter is taken from the Python
24077 documentation string for the parameter's class, if there is one. If
24078 there is no documentation string, a default value is used.
24081 @defvar Parameter.set_doc
24082 If this attribute exists, and is a string, then its value is used as
24083 the help text for this parameter's @code{set} command. The value is
24084 examined when @code{Parameter.__init__} is invoked; subsequent changes
24088 @defvar Parameter.show_doc
24089 If this attribute exists, and is a string, then its value is used as
24090 the help text for this parameter's @code{show} command. The value is
24091 examined when @code{Parameter.__init__} is invoked; subsequent changes
24095 @defvar Parameter.value
24096 The @code{value} attribute holds the underlying value of the
24097 parameter. It can be read and assigned to just as any other
24098 attribute. @value{GDBN} does validation when assignments are made.
24101 There are two methods that should be implemented in any
24102 @code{Parameter} class. These are:
24104 @defun Parameter.get_set_string (self)
24105 @value{GDBN} will call this method when a @var{parameter}'s value has
24106 been changed via the @code{set} API (for example, @kbd{set foo off}).
24107 The @code{value} attribute has already been populated with the new
24108 value and may be used in output. This method must return a string.
24111 @defun Parameter.get_show_string (self, svalue)
24112 @value{GDBN} will call this method when a @var{parameter}'s
24113 @code{show} API has been invoked (for example, @kbd{show foo}). The
24114 argument @code{svalue} receives the string representation of the
24115 current value. This method must return a string.
24118 When a new parameter is defined, its type must be specified. The
24119 available types are represented by constants defined in the @code{gdb}
24123 @findex PARAM_BOOLEAN
24124 @findex gdb.PARAM_BOOLEAN
24125 @item gdb.PARAM_BOOLEAN
24126 The value is a plain boolean. The Python boolean values, @code{True}
24127 and @code{False} are the only valid values.
24129 @findex PARAM_AUTO_BOOLEAN
24130 @findex gdb.PARAM_AUTO_BOOLEAN
24131 @item gdb.PARAM_AUTO_BOOLEAN
24132 The value has three possible states: true, false, and @samp{auto}. In
24133 Python, true and false are represented using boolean constants, and
24134 @samp{auto} is represented using @code{None}.
24136 @findex PARAM_UINTEGER
24137 @findex gdb.PARAM_UINTEGER
24138 @item gdb.PARAM_UINTEGER
24139 The value is an unsigned integer. The value of 0 should be
24140 interpreted to mean ``unlimited''.
24142 @findex PARAM_INTEGER
24143 @findex gdb.PARAM_INTEGER
24144 @item gdb.PARAM_INTEGER
24145 The value is a signed integer. The value of 0 should be interpreted
24146 to mean ``unlimited''.
24148 @findex PARAM_STRING
24149 @findex gdb.PARAM_STRING
24150 @item gdb.PARAM_STRING
24151 The value is a string. When the user modifies the string, any escape
24152 sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
24153 translated into corresponding characters and encoded into the current
24156 @findex PARAM_STRING_NOESCAPE
24157 @findex gdb.PARAM_STRING_NOESCAPE
24158 @item gdb.PARAM_STRING_NOESCAPE
24159 The value is a string. When the user modifies the string, escapes are
24160 passed through untranslated.
24162 @findex PARAM_OPTIONAL_FILENAME
24163 @findex gdb.PARAM_OPTIONAL_FILENAME
24164 @item gdb.PARAM_OPTIONAL_FILENAME
24165 The value is a either a filename (a string), or @code{None}.
24167 @findex PARAM_FILENAME
24168 @findex gdb.PARAM_FILENAME
24169 @item gdb.PARAM_FILENAME
24170 The value is a filename. This is just like
24171 @code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
24173 @findex PARAM_ZINTEGER
24174 @findex gdb.PARAM_ZINTEGER
24175 @item gdb.PARAM_ZINTEGER
24176 The value is an integer. This is like @code{PARAM_INTEGER}, except 0
24177 is interpreted as itself.
24180 @findex gdb.PARAM_ENUM
24181 @item gdb.PARAM_ENUM
24182 The value is a string, which must be one of a collection string
24183 constants provided when the parameter is created.
24186 @node Functions In Python
24187 @subsubsection Writing new convenience functions
24189 @cindex writing convenience functions
24190 @cindex convenience functions in python
24191 @cindex python convenience functions
24192 @tindex gdb.Function
24194 You can implement new convenience functions (@pxref{Convenience Vars})
24195 in Python. A convenience function is an instance of a subclass of the
24196 class @code{gdb.Function}.
24198 @defun Function.__init__ (name)
24199 The initializer for @code{Function} registers the new function with
24200 @value{GDBN}. The argument @var{name} is the name of the function,
24201 a string. The function will be visible to the user as a convenience
24202 variable of type @code{internal function}, whose name is the same as
24203 the given @var{name}.
24205 The documentation for the new function is taken from the documentation
24206 string for the new class.
24209 @defun Function.invoke (@var{*args})
24210 When a convenience function is evaluated, its arguments are converted
24211 to instances of @code{gdb.Value}, and then the function's
24212 @code{invoke} method is called. Note that @value{GDBN} does not
24213 predetermine the arity of convenience functions. Instead, all
24214 available arguments are passed to @code{invoke}, following the
24215 standard Python calling convention. In particular, a convenience
24216 function can have default values for parameters without ill effect.
24218 The return value of this method is used as its value in the enclosing
24219 expression. If an ordinary Python value is returned, it is converted
24220 to a @code{gdb.Value} following the usual rules.
24223 The following code snippet shows how a trivial convenience function can
24224 be implemented in Python:
24227 class Greet (gdb.Function):
24228 """Return string to greet someone.
24229 Takes a name as argument."""
24231 def __init__ (self):
24232 super (Greet, self).__init__ ("greet")
24234 def invoke (self, name):
24235 return "Hello, %s!" % name.string ()
24240 The last line instantiates the class, and is necessary to trigger the
24241 registration of the function with @value{GDBN}. Depending on how the
24242 Python code is read into @value{GDBN}, you may need to import the
24243 @code{gdb} module explicitly.
24245 @node Progspaces In Python
24246 @subsubsection Program Spaces In Python
24248 @cindex progspaces in python
24249 @tindex gdb.Progspace
24251 A program space, or @dfn{progspace}, represents a symbolic view
24252 of an address space.
24253 It consists of all of the objfiles of the program.
24254 @xref{Objfiles In Python}.
24255 @xref{Inferiors and Programs, program spaces}, for more details
24256 about program spaces.
24258 The following progspace-related functions are available in the
24261 @findex gdb.current_progspace
24262 @defun gdb.current_progspace ()
24263 This function returns the program space of the currently selected inferior.
24264 @xref{Inferiors and Programs}.
24267 @findex gdb.progspaces
24268 @defun gdb.progspaces ()
24269 Return a sequence of all the progspaces currently known to @value{GDBN}.
24272 Each progspace is represented by an instance of the @code{gdb.Progspace}
24275 @defvar Progspace.filename
24276 The file name of the progspace as a string.
24279 @defvar Progspace.pretty_printers
24280 The @code{pretty_printers} attribute is a list of functions. It is
24281 used to look up pretty-printers. A @code{Value} is passed to each
24282 function in order; if the function returns @code{None}, then the
24283 search continues. Otherwise, the return value should be an object
24284 which is used to format the value. @xref{Pretty Printing API}, for more
24288 @node Objfiles In Python
24289 @subsubsection Objfiles In Python
24291 @cindex objfiles in python
24292 @tindex gdb.Objfile
24294 @value{GDBN} loads symbols for an inferior from various
24295 symbol-containing files (@pxref{Files}). These include the primary
24296 executable file, any shared libraries used by the inferior, and any
24297 separate debug info files (@pxref{Separate Debug Files}).
24298 @value{GDBN} calls these symbol-containing files @dfn{objfiles}.
24300 The following objfile-related functions are available in the
24303 @findex gdb.current_objfile
24304 @defun gdb.current_objfile ()
24305 When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
24306 sets the ``current objfile'' to the corresponding objfile. This
24307 function returns the current objfile. If there is no current objfile,
24308 this function returns @code{None}.
24311 @findex gdb.objfiles
24312 @defun gdb.objfiles ()
24313 Return a sequence of all the objfiles current known to @value{GDBN}.
24314 @xref{Objfiles In Python}.
24317 Each objfile is represented by an instance of the @code{gdb.Objfile}
24320 @defvar Objfile.filename
24321 The file name of the objfile as a string.
24324 @defvar Objfile.pretty_printers
24325 The @code{pretty_printers} attribute is a list of functions. It is
24326 used to look up pretty-printers. A @code{Value} is passed to each
24327 function in order; if the function returns @code{None}, then the
24328 search continues. Otherwise, the return value should be an object
24329 which is used to format the value. @xref{Pretty Printing API}, for more
24333 A @code{gdb.Objfile} object has the following methods:
24335 @defun Objfile.is_valid ()
24336 Returns @code{True} if the @code{gdb.Objfile} object is valid,
24337 @code{False} if not. A @code{gdb.Objfile} object can become invalid
24338 if the object file it refers to is not loaded in @value{GDBN} any
24339 longer. All other @code{gdb.Objfile} methods will throw an exception
24340 if it is invalid at the time the method is called.
24343 @node Frames In Python
24344 @subsubsection Accessing inferior stack frames from Python.
24346 @cindex frames in python
24347 When the debugged program stops, @value{GDBN} is able to analyze its call
24348 stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
24349 represents a frame in the stack. A @code{gdb.Frame} object is only valid
24350 while its corresponding frame exists in the inferior's stack. If you try
24351 to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
24352 exception (@pxref{Exception Handling}).
24354 Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
24358 (@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
24362 The following frame-related functions are available in the @code{gdb} module:
24364 @findex gdb.selected_frame
24365 @defun gdb.selected_frame ()
24366 Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
24369 @findex gdb.newest_frame
24370 @defun gdb.newest_frame ()
24371 Return the newest frame object for the selected thread.
24374 @defun gdb.frame_stop_reason_string (reason)
24375 Return a string explaining the reason why @value{GDBN} stopped unwinding
24376 frames, as expressed by the given @var{reason} code (an integer, see the
24377 @code{unwind_stop_reason} method further down in this section).
24380 A @code{gdb.Frame} object has the following methods:
24383 @defun Frame.is_valid ()
24384 Returns true if the @code{gdb.Frame} object is valid, false if not.
24385 A frame object can become invalid if the frame it refers to doesn't
24386 exist anymore in the inferior. All @code{gdb.Frame} methods will throw
24387 an exception if it is invalid at the time the method is called.
24390 @defun Frame.name ()
24391 Returns the function name of the frame, or @code{None} if it can't be
24395 @defun Frame.type ()
24396 Returns the type of the frame. The value can be one of:
24398 @item gdb.NORMAL_FRAME
24399 An ordinary stack frame.
24401 @item gdb.DUMMY_FRAME
24402 A fake stack frame that was created by @value{GDBN} when performing an
24403 inferior function call.
24405 @item gdb.INLINE_FRAME
24406 A frame representing an inlined function. The function was inlined
24407 into a @code{gdb.NORMAL_FRAME} that is older than this one.
24409 @item gdb.TAILCALL_FRAME
24410 A frame representing a tail call. @xref{Tail Call Frames}.
24412 @item gdb.SIGTRAMP_FRAME
24413 A signal trampoline frame. This is the frame created by the OS when
24414 it calls into a signal handler.
24416 @item gdb.ARCH_FRAME
24417 A fake stack frame representing a cross-architecture call.
24419 @item gdb.SENTINEL_FRAME
24420 This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
24425 @defun Frame.unwind_stop_reason ()
24426 Return an integer representing the reason why it's not possible to find
24427 more frames toward the outermost frame. Use
24428 @code{gdb.frame_stop_reason_string} to convert the value returned by this
24429 function to a string. The value can be one of:
24432 @item gdb.FRAME_UNWIND_NO_REASON
24433 No particular reason (older frames should be available).
24435 @item gdb.FRAME_UNWIND_NULL_ID
24436 The previous frame's analyzer returns an invalid result.
24438 @item gdb.FRAME_UNWIND_OUTERMOST
24439 This frame is the outermost.
24441 @item gdb.FRAME_UNWIND_UNAVAILABLE
24442 Cannot unwind further, because that would require knowing the
24443 values of registers or memory that have not been collected.
24445 @item gdb.FRAME_UNWIND_INNER_ID
24446 This frame ID looks like it ought to belong to a NEXT frame,
24447 but we got it for a PREV frame. Normally, this is a sign of
24448 unwinder failure. It could also indicate stack corruption.
24450 @item gdb.FRAME_UNWIND_SAME_ID
24451 This frame has the same ID as the previous one. That means
24452 that unwinding further would almost certainly give us another
24453 frame with exactly the same ID, so break the chain. Normally,
24454 this is a sign of unwinder failure. It could also indicate
24457 @item gdb.FRAME_UNWIND_NO_SAVED_PC
24458 The frame unwinder did not find any saved PC, but we needed
24459 one to unwind further.
24461 @item gdb.FRAME_UNWIND_FIRST_ERROR
24462 Any stop reason greater or equal to this value indicates some kind
24463 of error. This special value facilitates writing code that tests
24464 for errors in unwinding in a way that will work correctly even if
24465 the list of the other values is modified in future @value{GDBN}
24466 versions. Using it, you could write:
24468 reason = gdb.selected_frame().unwind_stop_reason ()
24469 reason_str = gdb.frame_stop_reason_string (reason)
24470 if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
24471 print "An error occured: %s" % reason_str
24478 Returns the frame's resume address.
24481 @defun Frame.block ()
24482 Return the frame's code block. @xref{Blocks In Python}.
24485 @defun Frame.function ()
24486 Return the symbol for the function corresponding to this frame.
24487 @xref{Symbols In Python}.
24490 @defun Frame.older ()
24491 Return the frame that called this frame.
24494 @defun Frame.newer ()
24495 Return the frame called by this frame.
24498 @defun Frame.find_sal ()
24499 Return the frame's symtab and line object.
24500 @xref{Symbol Tables In Python}.
24503 @defun Frame.read_var (variable @r{[}, block@r{]})
24504 Return the value of @var{variable} in this frame. If the optional
24505 argument @var{block} is provided, search for the variable from that
24506 block; otherwise start at the frame's current block (which is
24507 determined by the frame's current program counter). @var{variable}
24508 must be a string or a @code{gdb.Symbol} object. @var{block} must be a
24509 @code{gdb.Block} object.
24512 @defun Frame.select ()
24513 Set this frame to be the selected frame. @xref{Stack, ,Examining the
24518 @node Blocks In Python
24519 @subsubsection Accessing frame blocks from Python.
24521 @cindex blocks in python
24524 Within each frame, @value{GDBN} maintains information on each block
24525 stored in that frame. These blocks are organized hierarchically, and
24526 are represented individually in Python as a @code{gdb.Block}.
24527 Please see @ref{Frames In Python}, for a more in-depth discussion on
24528 frames. Furthermore, see @ref{Stack, ,Examining the Stack}, for more
24529 detailed technical information on @value{GDBN}'s book-keeping of the
24532 A @code{gdb.Block} is iterable. The iterator returns the symbols
24533 (@pxref{Symbols In Python}) local to the block.
24535 The following block-related functions are available in the @code{gdb}
24538 @findex gdb.block_for_pc
24539 @defun gdb.block_for_pc (pc)
24540 Return the @code{gdb.Block} containing the given @var{pc} value. If the
24541 block cannot be found for the @var{pc} value specified, the function
24542 will return @code{None}.
24545 A @code{gdb.Block} object has the following methods:
24548 @defun Block.is_valid ()
24549 Returns @code{True} if the @code{gdb.Block} object is valid,
24550 @code{False} if not. A block object can become invalid if the block it
24551 refers to doesn't exist anymore in the inferior. All other
24552 @code{gdb.Block} methods will throw an exception if it is invalid at
24553 the time the method is called. The block's validity is also checked
24554 during iteration over symbols of the block.
24558 A @code{gdb.Block} object has the following attributes:
24561 @defvar Block.start
24562 The start address of the block. This attribute is not writable.
24566 The end address of the block. This attribute is not writable.
24569 @defvar Block.function
24570 The name of the block represented as a @code{gdb.Symbol}. If the
24571 block is not named, then this attribute holds @code{None}. This
24572 attribute is not writable.
24575 @defvar Block.superblock
24576 The block containing this block. If this parent block does not exist,
24577 this attribute holds @code{None}. This attribute is not writable.
24580 @defvar Block.global_block
24581 The global block associated with this block. This attribute is not
24585 @defvar Block.static_block
24586 The static block associated with this block. This attribute is not
24590 @defvar Block.is_global
24591 @code{True} if the @code{gdb.Block} object is a global block,
24592 @code{False} if not. This attribute is not
24596 @defvar Block.is_static
24597 @code{True} if the @code{gdb.Block} object is a static block,
24598 @code{False} if not. This attribute is not writable.
24602 @node Symbols In Python
24603 @subsubsection Python representation of Symbols.
24605 @cindex symbols in python
24608 @value{GDBN} represents every variable, function and type as an
24609 entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
24610 Similarly, Python represents these symbols in @value{GDBN} with the
24611 @code{gdb.Symbol} object.
24613 The following symbol-related functions are available in the @code{gdb}
24616 @findex gdb.lookup_symbol
24617 @defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
24618 This function searches for a symbol by name. The search scope can be
24619 restricted to the parameters defined in the optional domain and block
24622 @var{name} is the name of the symbol. It must be a string. The
24623 optional @var{block} argument restricts the search to symbols visible
24624 in that @var{block}. The @var{block} argument must be a
24625 @code{gdb.Block} object. If omitted, the block for the current frame
24626 is used. The optional @var{domain} argument restricts
24627 the search to the domain type. The @var{domain} argument must be a
24628 domain constant defined in the @code{gdb} module and described later
24631 The result is a tuple of two elements.
24632 The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
24634 If the symbol is found, the second element is @code{True} if the symbol
24635 is a field of a method's object (e.g., @code{this} in C@t{++}),
24636 otherwise it is @code{False}.
24637 If the symbol is not found, the second element is @code{False}.
24640 @findex gdb.lookup_global_symbol
24641 @defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
24642 This function searches for a global symbol by name.
24643 The search scope can be restricted to by the domain argument.
24645 @var{name} is the name of the symbol. It must be a string.
24646 The optional @var{domain} argument restricts the search to the domain type.
24647 The @var{domain} argument must be a domain constant defined in the @code{gdb}
24648 module and described later in this chapter.
24650 The result is a @code{gdb.Symbol} object or @code{None} if the symbol
24654 A @code{gdb.Symbol} object has the following attributes:
24657 @defvar Symbol.type
24658 The type of the symbol or @code{None} if no type is recorded.
24659 This attribute is represented as a @code{gdb.Type} object.
24660 @xref{Types In Python}. This attribute is not writable.
24663 @defvar Symbol.symtab
24664 The symbol table in which the symbol appears. This attribute is
24665 represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
24666 Python}. This attribute is not writable.
24669 @defvar Symbol.line
24670 The line number in the source code at which the symbol was defined.
24671 This is an integer.
24674 @defvar Symbol.name
24675 The name of the symbol as a string. This attribute is not writable.
24678 @defvar Symbol.linkage_name
24679 The name of the symbol, as used by the linker (i.e., may be mangled).
24680 This attribute is not writable.
24683 @defvar Symbol.print_name
24684 The name of the symbol in a form suitable for output. This is either
24685 @code{name} or @code{linkage_name}, depending on whether the user
24686 asked @value{GDBN} to display demangled or mangled names.
24689 @defvar Symbol.addr_class
24690 The address class of the symbol. This classifies how to find the value
24691 of a symbol. Each address class is a constant defined in the
24692 @code{gdb} module and described later in this chapter.
24695 @defvar Symbol.needs_frame
24696 This is @code{True} if evaluating this symbol's value requires a frame
24697 (@pxref{Frames In Python}) and @code{False} otherwise. Typically,
24698 local variables will require a frame, but other symbols will not.
24701 @defvar Symbol.is_argument
24702 @code{True} if the symbol is an argument of a function.
24705 @defvar Symbol.is_constant
24706 @code{True} if the symbol is a constant.
24709 @defvar Symbol.is_function
24710 @code{True} if the symbol is a function or a method.
24713 @defvar Symbol.is_variable
24714 @code{True} if the symbol is a variable.
24718 A @code{gdb.Symbol} object has the following methods:
24721 @defun Symbol.is_valid ()
24722 Returns @code{True} if the @code{gdb.Symbol} object is valid,
24723 @code{False} if not. A @code{gdb.Symbol} object can become invalid if
24724 the symbol it refers to does not exist in @value{GDBN} any longer.
24725 All other @code{gdb.Symbol} methods will throw an exception if it is
24726 invalid at the time the method is called.
24729 @defun Symbol.value (@r{[}frame@r{]})
24730 Compute the value of the symbol, as a @code{gdb.Value}. For
24731 functions, this computes the address of the function, cast to the
24732 appropriate type. If the symbol requires a frame in order to compute
24733 its value, then @var{frame} must be given. If @var{frame} is not
24734 given, or if @var{frame} is invalid, then this method will throw an
24739 The available domain categories in @code{gdb.Symbol} are represented
24740 as constants in the @code{gdb} module:
24743 @findex SYMBOL_UNDEF_DOMAIN
24744 @findex gdb.SYMBOL_UNDEF_DOMAIN
24745 @item gdb.SYMBOL_UNDEF_DOMAIN
24746 This is used when a domain has not been discovered or none of the
24747 following domains apply. This usually indicates an error either
24748 in the symbol information or in @value{GDBN}'s handling of symbols.
24749 @findex SYMBOL_VAR_DOMAIN
24750 @findex gdb.SYMBOL_VAR_DOMAIN
24751 @item gdb.SYMBOL_VAR_DOMAIN
24752 This domain contains variables, function names, typedef names and enum
24754 @findex SYMBOL_STRUCT_DOMAIN
24755 @findex gdb.SYMBOL_STRUCT_DOMAIN
24756 @item gdb.SYMBOL_STRUCT_DOMAIN
24757 This domain holds struct, union and enum type names.
24758 @findex SYMBOL_LABEL_DOMAIN
24759 @findex gdb.SYMBOL_LABEL_DOMAIN
24760 @item gdb.SYMBOL_LABEL_DOMAIN
24761 This domain contains names of labels (for gotos).
24762 @findex SYMBOL_VARIABLES_DOMAIN
24763 @findex gdb.SYMBOL_VARIABLES_DOMAIN
24764 @item gdb.SYMBOL_VARIABLES_DOMAIN
24765 This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
24766 contains everything minus functions and types.
24767 @findex SYMBOL_FUNCTIONS_DOMAIN
24768 @findex gdb.SYMBOL_FUNCTIONS_DOMAIN
24769 @item gdb.SYMBOL_FUNCTION_DOMAIN
24770 This domain contains all functions.
24771 @findex SYMBOL_TYPES_DOMAIN
24772 @findex gdb.SYMBOL_TYPES_DOMAIN
24773 @item gdb.SYMBOL_TYPES_DOMAIN
24774 This domain contains all types.
24777 The available address class categories in @code{gdb.Symbol} are represented
24778 as constants in the @code{gdb} module:
24781 @findex SYMBOL_LOC_UNDEF
24782 @findex gdb.SYMBOL_LOC_UNDEF
24783 @item gdb.SYMBOL_LOC_UNDEF
24784 If this is returned by address class, it indicates an error either in
24785 the symbol information or in @value{GDBN}'s handling of symbols.
24786 @findex SYMBOL_LOC_CONST
24787 @findex gdb.SYMBOL_LOC_CONST
24788 @item gdb.SYMBOL_LOC_CONST
24789 Value is constant int.
24790 @findex SYMBOL_LOC_STATIC
24791 @findex gdb.SYMBOL_LOC_STATIC
24792 @item gdb.SYMBOL_LOC_STATIC
24793 Value is at a fixed address.
24794 @findex SYMBOL_LOC_REGISTER
24795 @findex gdb.SYMBOL_LOC_REGISTER
24796 @item gdb.SYMBOL_LOC_REGISTER
24797 Value is in a register.
24798 @findex SYMBOL_LOC_ARG
24799 @findex gdb.SYMBOL_LOC_ARG
24800 @item gdb.SYMBOL_LOC_ARG
24801 Value is an argument. This value is at the offset stored within the
24802 symbol inside the frame's argument list.
24803 @findex SYMBOL_LOC_REF_ARG
24804 @findex gdb.SYMBOL_LOC_REF_ARG
24805 @item gdb.SYMBOL_LOC_REF_ARG
24806 Value address is stored in the frame's argument list. Just like
24807 @code{LOC_ARG} except that the value's address is stored at the
24808 offset, not the value itself.
24809 @findex SYMBOL_LOC_REGPARM_ADDR
24810 @findex gdb.SYMBOL_LOC_REGPARM_ADDR
24811 @item gdb.SYMBOL_LOC_REGPARM_ADDR
24812 Value is a specified register. Just like @code{LOC_REGISTER} except
24813 the register holds the address of the argument instead of the argument
24815 @findex SYMBOL_LOC_LOCAL
24816 @findex gdb.SYMBOL_LOC_LOCAL
24817 @item gdb.SYMBOL_LOC_LOCAL
24818 Value is a local variable.
24819 @findex SYMBOL_LOC_TYPEDEF
24820 @findex gdb.SYMBOL_LOC_TYPEDEF
24821 @item gdb.SYMBOL_LOC_TYPEDEF
24822 Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
24824 @findex SYMBOL_LOC_BLOCK
24825 @findex gdb.SYMBOL_LOC_BLOCK
24826 @item gdb.SYMBOL_LOC_BLOCK
24828 @findex SYMBOL_LOC_CONST_BYTES
24829 @findex gdb.SYMBOL_LOC_CONST_BYTES
24830 @item gdb.SYMBOL_LOC_CONST_BYTES
24831 Value is a byte-sequence.
24832 @findex SYMBOL_LOC_UNRESOLVED
24833 @findex gdb.SYMBOL_LOC_UNRESOLVED
24834 @item gdb.SYMBOL_LOC_UNRESOLVED
24835 Value is at a fixed address, but the address of the variable has to be
24836 determined from the minimal symbol table whenever the variable is
24838 @findex SYMBOL_LOC_OPTIMIZED_OUT
24839 @findex gdb.SYMBOL_LOC_OPTIMIZED_OUT
24840 @item gdb.SYMBOL_LOC_OPTIMIZED_OUT
24841 The value does not actually exist in the program.
24842 @findex SYMBOL_LOC_COMPUTED
24843 @findex gdb.SYMBOL_LOC_COMPUTED
24844 @item gdb.SYMBOL_LOC_COMPUTED
24845 The value's address is a computed location.
24848 @node Symbol Tables In Python
24849 @subsubsection Symbol table representation in Python.
24851 @cindex symbol tables in python
24853 @tindex gdb.Symtab_and_line
24855 Access to symbol table data maintained by @value{GDBN} on the inferior
24856 is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
24857 @code{gdb.Symtab}. Symbol table and line data for a frame is returned
24858 from the @code{find_sal} method in @code{gdb.Frame} object.
24859 @xref{Frames In Python}.
24861 For more information on @value{GDBN}'s symbol table management, see
24862 @ref{Symbols, ,Examining the Symbol Table}, for more information.
24864 A @code{gdb.Symtab_and_line} object has the following attributes:
24867 @defvar Symtab_and_line.symtab
24868 The symbol table object (@code{gdb.Symtab}) for this frame.
24869 This attribute is not writable.
24872 @defvar Symtab_and_line.pc
24873 Indicates the current program counter address. This attribute is not
24877 @defvar Symtab_and_line.line
24878 Indicates the current line number for this object. This
24879 attribute is not writable.
24883 A @code{gdb.Symtab_and_line} object has the following methods:
24886 @defun Symtab_and_line.is_valid ()
24887 Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
24888 @code{False} if not. A @code{gdb.Symtab_and_line} object can become
24889 invalid if the Symbol table and line object it refers to does not
24890 exist in @value{GDBN} any longer. All other
24891 @code{gdb.Symtab_and_line} methods will throw an exception if it is
24892 invalid at the time the method is called.
24896 A @code{gdb.Symtab} object has the following attributes:
24899 @defvar Symtab.filename
24900 The symbol table's source filename. This attribute is not writable.
24903 @defvar Symtab.objfile
24904 The symbol table's backing object file. @xref{Objfiles In Python}.
24905 This attribute is not writable.
24909 A @code{gdb.Symtab} object has the following methods:
24912 @defun Symtab.is_valid ()
24913 Returns @code{True} if the @code{gdb.Symtab} object is valid,
24914 @code{False} if not. A @code{gdb.Symtab} object can become invalid if
24915 the symbol table it refers to does not exist in @value{GDBN} any
24916 longer. All other @code{gdb.Symtab} methods will throw an exception
24917 if it is invalid at the time the method is called.
24920 @defun Symtab.fullname ()
24921 Return the symbol table's source absolute file name.
24925 @node Breakpoints In Python
24926 @subsubsection Manipulating breakpoints using Python
24928 @cindex breakpoints in python
24929 @tindex gdb.Breakpoint
24931 Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
24934 @defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal@r{]]]})
24935 Create a new breakpoint. @var{spec} is a string naming the
24936 location of the breakpoint, or an expression that defines a
24937 watchpoint. The contents can be any location recognized by the
24938 @code{break} command, or in the case of a watchpoint, by the @code{watch}
24939 command. The optional @var{type} denotes the breakpoint to create
24940 from the types defined later in this chapter. This argument can be
24941 either: @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}. @var{type}
24942 defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal} argument
24943 allows the breakpoint to become invisible to the user. The breakpoint
24944 will neither be reported when created, nor will it be listed in the
24945 output from @code{info breakpoints} (but will be listed with the
24946 @code{maint info breakpoints} command). The optional @var{wp_class}
24947 argument defines the class of watchpoint to create, if @var{type} is
24948 @code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it is
24949 assumed to be a @code{gdb.WP_WRITE} class.
24952 @defun Breakpoint.stop (self)
24953 The @code{gdb.Breakpoint} class can be sub-classed and, in
24954 particular, you may choose to implement the @code{stop} method.
24955 If this method is defined as a sub-class of @code{gdb.Breakpoint},
24956 it will be called when the inferior reaches any location of a
24957 breakpoint which instantiates that sub-class. If the method returns
24958 @code{True}, the inferior will be stopped at the location of the
24959 breakpoint, otherwise the inferior will continue.
24961 If there are multiple breakpoints at the same location with a
24962 @code{stop} method, each one will be called regardless of the
24963 return status of the previous. This ensures that all @code{stop}
24964 methods have a chance to execute at that location. In this scenario
24965 if one of the methods returns @code{True} but the others return
24966 @code{False}, the inferior will still be stopped.
24968 You should not alter the execution state of the inferior (i.e.@:, step,
24969 next, etc.), alter the current frame context (i.e.@:, change the current
24970 active frame), or alter, add or delete any breakpoint. As a general
24971 rule, you should not alter any data within @value{GDBN} or the inferior
24974 Example @code{stop} implementation:
24977 class MyBreakpoint (gdb.Breakpoint):
24979 inf_val = gdb.parse_and_eval("foo")
24986 The available watchpoint types represented by constants are defined in the
24991 @findex gdb.WP_READ
24993 Read only watchpoint.
24996 @findex gdb.WP_WRITE
24998 Write only watchpoint.
25001 @findex gdb.WP_ACCESS
25002 @item gdb.WP_ACCESS
25003 Read/Write watchpoint.
25006 @defun Breakpoint.is_valid ()
25007 Return @code{True} if this @code{Breakpoint} object is valid,
25008 @code{False} otherwise. A @code{Breakpoint} object can become invalid
25009 if the user deletes the breakpoint. In this case, the object still
25010 exists, but the underlying breakpoint does not. In the cases of
25011 watchpoint scope, the watchpoint remains valid even if execution of the
25012 inferior leaves the scope of that watchpoint.
25015 @defun Breakpoint.delete
25016 Permanently deletes the @value{GDBN} breakpoint. This also
25017 invalidates the Python @code{Breakpoint} object. Any further access
25018 to this object's attributes or methods will raise an error.
25021 @defvar Breakpoint.enabled
25022 This attribute is @code{True} if the breakpoint is enabled, and
25023 @code{False} otherwise. This attribute is writable.
25026 @defvar Breakpoint.silent
25027 This attribute is @code{True} if the breakpoint is silent, and
25028 @code{False} otherwise. This attribute is writable.
25030 Note that a breakpoint can also be silent if it has commands and the
25031 first command is @code{silent}. This is not reported by the
25032 @code{silent} attribute.
25035 @defvar Breakpoint.thread
25036 If the breakpoint is thread-specific, this attribute holds the thread
25037 id. If the breakpoint is not thread-specific, this attribute is
25038 @code{None}. This attribute is writable.
25041 @defvar Breakpoint.task
25042 If the breakpoint is Ada task-specific, this attribute holds the Ada task
25043 id. If the breakpoint is not task-specific (or the underlying
25044 language is not Ada), this attribute is @code{None}. This attribute
25048 @defvar Breakpoint.ignore_count
25049 This attribute holds the ignore count for the breakpoint, an integer.
25050 This attribute is writable.
25053 @defvar Breakpoint.number
25054 This attribute holds the breakpoint's number --- the identifier used by
25055 the user to manipulate the breakpoint. This attribute is not writable.
25058 @defvar Breakpoint.type
25059 This attribute holds the breakpoint's type --- the identifier used to
25060 determine the actual breakpoint type or use-case. This attribute is not
25064 @defvar Breakpoint.visible
25065 This attribute tells whether the breakpoint is visible to the user
25066 when set, or when the @samp{info breakpoints} command is run. This
25067 attribute is not writable.
25070 The available types are represented by constants defined in the @code{gdb}
25074 @findex BP_BREAKPOINT
25075 @findex gdb.BP_BREAKPOINT
25076 @item gdb.BP_BREAKPOINT
25077 Normal code breakpoint.
25079 @findex BP_WATCHPOINT
25080 @findex gdb.BP_WATCHPOINT
25081 @item gdb.BP_WATCHPOINT
25082 Watchpoint breakpoint.
25084 @findex BP_HARDWARE_WATCHPOINT
25085 @findex gdb.BP_HARDWARE_WATCHPOINT
25086 @item gdb.BP_HARDWARE_WATCHPOINT
25087 Hardware assisted watchpoint.
25089 @findex BP_READ_WATCHPOINT
25090 @findex gdb.BP_READ_WATCHPOINT
25091 @item gdb.BP_READ_WATCHPOINT
25092 Hardware assisted read watchpoint.
25094 @findex BP_ACCESS_WATCHPOINT
25095 @findex gdb.BP_ACCESS_WATCHPOINT
25096 @item gdb.BP_ACCESS_WATCHPOINT
25097 Hardware assisted access watchpoint.
25100 @defvar Breakpoint.hit_count
25101 This attribute holds the hit count for the breakpoint, an integer.
25102 This attribute is writable, but currently it can only be set to zero.
25105 @defvar Breakpoint.location
25106 This attribute holds the location of the breakpoint, as specified by
25107 the user. It is a string. If the breakpoint does not have a location
25108 (that is, it is a watchpoint) the attribute's value is @code{None}. This
25109 attribute is not writable.
25112 @defvar Breakpoint.expression
25113 This attribute holds a breakpoint expression, as specified by
25114 the user. It is a string. If the breakpoint does not have an
25115 expression (the breakpoint is not a watchpoint) the attribute's value
25116 is @code{None}. This attribute is not writable.
25119 @defvar Breakpoint.condition
25120 This attribute holds the condition of the breakpoint, as specified by
25121 the user. It is a string. If there is no condition, this attribute's
25122 value is @code{None}. This attribute is writable.
25125 @defvar Breakpoint.commands
25126 This attribute holds the commands attached to the breakpoint. If
25127 there are commands, this attribute's value is a string holding all the
25128 commands, separated by newlines. If there are no commands, this
25129 attribute is @code{None}. This attribute is not writable.
25132 @node Finish Breakpoints in Python
25133 @subsubsection Finish Breakpoints
25135 @cindex python finish breakpoints
25136 @tindex gdb.FinishBreakpoint
25138 A finish breakpoint is a temporary breakpoint set at the return address of
25139 a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
25140 extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
25141 and deleted when the execution will run out of the breakpoint scope (i.e.@:
25142 @code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
25143 Finish breakpoints are thread specific and must be create with the right
25146 @defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
25147 Create a finish breakpoint at the return address of the @code{gdb.Frame}
25148 object @var{frame}. If @var{frame} is not provided, this defaults to the
25149 newest frame. The optional @var{internal} argument allows the breakpoint to
25150 become invisible to the user. @xref{Breakpoints In Python}, for further
25151 details about this argument.
25154 @defun FinishBreakpoint.out_of_scope (self)
25155 In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
25156 @code{return} command, @dots{}), a function may not properly terminate, and
25157 thus never hit the finish breakpoint. When @value{GDBN} notices such a
25158 situation, the @code{out_of_scope} callback will be triggered.
25160 You may want to sub-class @code{gdb.FinishBreakpoint} and override this
25164 class MyFinishBreakpoint (gdb.FinishBreakpoint)
25166 print "normal finish"
25169 def out_of_scope ():
25170 print "abnormal finish"
25174 @defvar FinishBreakpoint.return_value
25175 When @value{GDBN} is stopped at a finish breakpoint and the frame
25176 used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
25177 attribute will contain a @code{gdb.Value} object corresponding to the return
25178 value of the function. The value will be @code{None} if the function return
25179 type is @code{void} or if the return value was not computable. This attribute
25183 @node Lazy Strings In Python
25184 @subsubsection Python representation of lazy strings.
25186 @cindex lazy strings in python
25187 @tindex gdb.LazyString
25189 A @dfn{lazy string} is a string whose contents is not retrieved or
25190 encoded until it is needed.
25192 A @code{gdb.LazyString} is represented in @value{GDBN} as an
25193 @code{address} that points to a region of memory, an @code{encoding}
25194 that will be used to encode that region of memory, and a @code{length}
25195 to delimit the region of memory that represents the string. The
25196 difference between a @code{gdb.LazyString} and a string wrapped within
25197 a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
25198 differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
25199 retrieved and encoded during printing, while a @code{gdb.Value}
25200 wrapping a string is immediately retrieved and encoded on creation.
25202 A @code{gdb.LazyString} object has the following functions:
25204 @defun LazyString.value ()
25205 Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
25206 will point to the string in memory, but will lose all the delayed
25207 retrieval, encoding and handling that @value{GDBN} applies to a
25208 @code{gdb.LazyString}.
25211 @defvar LazyString.address
25212 This attribute holds the address of the string. This attribute is not
25216 @defvar LazyString.length
25217 This attribute holds the length of the string in characters. If the
25218 length is -1, then the string will be fetched and encoded up to the
25219 first null of appropriate width. This attribute is not writable.
25222 @defvar LazyString.encoding
25223 This attribute holds the encoding that will be applied to the string
25224 when the string is printed by @value{GDBN}. If the encoding is not
25225 set, or contains an empty string, then @value{GDBN} will select the
25226 most appropriate encoding when the string is printed. This attribute
25230 @defvar LazyString.type
25231 This attribute holds the type that is represented by the lazy string's
25232 type. For a lazy string this will always be a pointer type. To
25233 resolve this to the lazy string's character type, use the type's
25234 @code{target} method. @xref{Types In Python}. This attribute is not
25238 @node Python Auto-loading
25239 @subsection Python Auto-loading
25240 @cindex Python auto-loading
25242 When a new object file is read (for example, due to the @code{file}
25243 command, or because the inferior has loaded a shared library),
25244 @value{GDBN} will look for Python support scripts in several ways:
25245 @file{@var{objfile}-gdb.py} (@pxref{objfile-gdb.py file})
25246 and @code{.debug_gdb_scripts} section
25247 (@pxref{dotdebug_gdb_scripts section}).
25249 The auto-loading feature is useful for supplying application-specific
25250 debugging commands and scripts.
25252 Auto-loading can be enabled or disabled,
25253 and the list of auto-loaded scripts can be printed.
25256 @anchor{set auto-load python-scripts}
25257 @kindex set auto-load python-scripts
25258 @item set auto-load python-scripts [on|off]
25259 Enable or disable the auto-loading of Python scripts.
25261 @anchor{show auto-load python-scripts}
25262 @kindex show auto-load python-scripts
25263 @item show auto-load python-scripts
25264 Show whether auto-loading of Python scripts is enabled or disabled.
25266 @anchor{info auto-load python-scripts}
25267 @kindex info auto-load python-scripts
25268 @cindex print list of auto-loaded Python scripts
25269 @item info auto-load python-scripts [@var{regexp}]
25270 Print the list of all Python scripts that @value{GDBN} auto-loaded.
25272 Also printed is the list of Python scripts that were mentioned in
25273 the @code{.debug_gdb_scripts} section and were not found
25274 (@pxref{dotdebug_gdb_scripts section}).
25275 This is useful because their names are not printed when @value{GDBN}
25276 tries to load them and fails. There may be many of them, and printing
25277 an error message for each one is problematic.
25279 If @var{regexp} is supplied only Python scripts with matching names are printed.
25284 (gdb) info auto-load python-scripts
25286 Yes py-section-script.py
25287 full name: /tmp/py-section-script.py
25288 No my-foo-pretty-printers.py
25292 When reading an auto-loaded file, @value{GDBN} sets the
25293 @dfn{current objfile}. This is available via the @code{gdb.current_objfile}
25294 function (@pxref{Objfiles In Python}). This can be useful for
25295 registering objfile-specific pretty-printers.
25298 * objfile-gdb.py file:: The @file{@var{objfile}-gdb.py} file
25299 * dotdebug_gdb_scripts section:: The @code{.debug_gdb_scripts} section
25300 * Which flavor to choose?::
25303 @node objfile-gdb.py file
25304 @subsubsection The @file{@var{objfile}-gdb.py} file
25305 @cindex @file{@var{objfile}-gdb.py}
25307 When a new object file is read, @value{GDBN} looks for
25308 a file named @file{@var{objfile}-gdb.py},
25309 where @var{objfile} is the object file's real name, formed by ensuring
25310 that the file name is absolute, following all symlinks, and resolving
25311 @code{.} and @code{..} components. If this file exists and is
25312 readable, @value{GDBN} will evaluate it as a Python script.
25314 If this file does not exist, and if the parameter
25315 @code{debug-file-directory} is set (@pxref{Separate Debug Files}),
25316 then @value{GDBN} will look for @var{real-name} in all of the
25317 directories mentioned in the value of @code{debug-file-directory}.
25319 Finally, if this file does not exist, then @value{GDBN} will look for
25320 a file named @file{@var{data-directory}/auto-load/@var{real-name}}, where
25321 @var{data-directory} is @value{GDBN}'s data directory (available via
25322 @code{show data-directory}, @pxref{Data Files}), and @var{real-name}
25323 is the object file's real name, as described above.
25325 @value{GDBN} does not track which files it has already auto-loaded this way.
25326 @value{GDBN} will load the associated script every time the corresponding
25327 @var{objfile} is opened.
25328 So your @file{-gdb.py} file should be careful to avoid errors if it
25329 is evaluated more than once.
25331 @node dotdebug_gdb_scripts section
25332 @subsubsection The @code{.debug_gdb_scripts} section
25333 @cindex @code{.debug_gdb_scripts} section
25335 For systems using file formats like ELF and COFF,
25336 when @value{GDBN} loads a new object file
25337 it will look for a special section named @samp{.debug_gdb_scripts}.
25338 If this section exists, its contents is a list of names of scripts to load.
25340 @value{GDBN} will look for each specified script file first in the
25341 current directory and then along the source search path
25342 (@pxref{Source Path, ,Specifying Source Directories}),
25343 except that @file{$cdir} is not searched, since the compilation
25344 directory is not relevant to scripts.
25346 Entries can be placed in section @code{.debug_gdb_scripts} with,
25347 for example, this GCC macro:
25350 /* Note: The "MS" section flags are to remove duplicates. */
25351 #define DEFINE_GDB_SCRIPT(script_name) \
25353 .pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n\
25355 .asciz \"" script_name "\"\n\
25361 Then one can reference the macro in a header or source file like this:
25364 DEFINE_GDB_SCRIPT ("my-app-scripts.py")
25367 The script name may include directories if desired.
25369 If the macro is put in a header, any application or library
25370 using this header will get a reference to the specified script.
25372 @node Which flavor to choose?
25373 @subsubsection Which flavor to choose?
25375 Given the multiple ways of auto-loading Python scripts, it might not always
25376 be clear which one to choose. This section provides some guidance.
25378 Benefits of the @file{-gdb.py} way:
25382 Can be used with file formats that don't support multiple sections.
25385 Ease of finding scripts for public libraries.
25387 Scripts specified in the @code{.debug_gdb_scripts} section are searched for
25388 in the source search path.
25389 For publicly installed libraries, e.g., @file{libstdc++}, there typically
25390 isn't a source directory in which to find the script.
25393 Doesn't require source code additions.
25396 Benefits of the @code{.debug_gdb_scripts} way:
25400 Works with static linking.
25402 Scripts for libraries done the @file{-gdb.py} way require an objfile to
25403 trigger their loading. When an application is statically linked the only
25404 objfile available is the executable, and it is cumbersome to attach all the
25405 scripts from all the input libraries to the executable's @file{-gdb.py} script.
25408 Works with classes that are entirely inlined.
25410 Some classes can be entirely inlined, and thus there may not be an associated
25411 shared library to attach a @file{-gdb.py} script to.
25414 Scripts needn't be copied out of the source tree.
25416 In some circumstances, apps can be built out of large collections of internal
25417 libraries, and the build infrastructure necessary to install the
25418 @file{-gdb.py} scripts in a place where @value{GDBN} can find them is
25419 cumbersome. It may be easier to specify the scripts in the
25420 @code{.debug_gdb_scripts} section as relative paths, and add a path to the
25421 top of the source tree to the source search path.
25424 @node Python modules
25425 @subsection Python modules
25426 @cindex python modules
25428 @value{GDBN} comes with several modules to assist writing Python code.
25431 * gdb.printing:: Building and registering pretty-printers.
25432 * gdb.types:: Utilities for working with types.
25433 * gdb.prompt:: Utilities for prompt value substitution.
25437 @subsubsection gdb.printing
25438 @cindex gdb.printing
25440 This module provides a collection of utilities for working with
25444 @item PrettyPrinter (@var{name}, @var{subprinters}=None)
25445 This class specifies the API that makes @samp{info pretty-printer},
25446 @samp{enable pretty-printer} and @samp{disable pretty-printer} work.
25447 Pretty-printers should generally inherit from this class.
25449 @item SubPrettyPrinter (@var{name})
25450 For printers that handle multiple types, this class specifies the
25451 corresponding API for the subprinters.
25453 @item RegexpCollectionPrettyPrinter (@var{name})
25454 Utility class for handling multiple printers, all recognized via
25455 regular expressions.
25456 @xref{Writing a Pretty-Printer}, for an example.
25458 @item FlagEnumerationPrinter (@var{name})
25459 A pretty-printer which handles printing of @code{enum} values. Unlike
25460 @value{GDBN}'s built-in @code{enum} printing, this printer attempts to
25461 work properly when there is some overlap between the enumeration
25462 constants. @var{name} is the name of the printer and also the name of
25463 the @code{enum} type to look up.
25465 @item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
25466 Register @var{printer} with the pretty-printer list of @var{obj}.
25467 If @var{replace} is @code{True} then any existing copy of the printer
25468 is replaced. Otherwise a @code{RuntimeError} exception is raised
25469 if a printer with the same name already exists.
25473 @subsubsection gdb.types
25476 This module provides a collection of utilities for working with
25477 @code{gdb.Types} objects.
25480 @item get_basic_type (@var{type})
25481 Return @var{type} with const and volatile qualifiers stripped,
25482 and with typedefs and C@t{++} references converted to the underlying type.
25487 typedef const int const_int;
25489 const_int& foo_ref (foo);
25490 int main () @{ return 0; @}
25497 (gdb) python import gdb.types
25498 (gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
25499 (gdb) python print gdb.types.get_basic_type(foo_ref.type)
25503 @item has_field (@var{type}, @var{field})
25504 Return @code{True} if @var{type}, assumed to be a type with fields
25505 (e.g., a structure or union), has field @var{field}.
25507 @item make_enum_dict (@var{enum_type})
25508 Return a Python @code{dictionary} type produced from @var{enum_type}.
25510 @item deep_items (@var{type})
25511 Returns a Python iterator similar to the standard
25512 @code{gdb.Type.iteritems} method, except that the iterator returned
25513 by @code{deep_items} will recursively traverse anonymous struct or
25514 union fields. For example:
25528 Then in @value{GDBN}:
25530 (@value{GDBP}) python import gdb.types
25531 (@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
25532 (@value{GDBP}) python print struct_a.keys ()
25534 (@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
25535 @{['a', 'b0', 'b1']@}
25541 @subsubsection gdb.prompt
25544 This module provides a method for prompt value-substitution.
25547 @item substitute_prompt (@var{string})
25548 Return @var{string} with escape sequences substituted by values. Some
25549 escape sequences take arguments. You can specify arguments inside
25550 ``@{@}'' immediately following the escape sequence.
25552 The escape sequences you can pass to this function are:
25556 Substitute a backslash.
25558 Substitute an ESC character.
25560 Substitute the selected frame; an argument names a frame parameter.
25562 Substitute a newline.
25564 Substitute a parameter's value; the argument names the parameter.
25566 Substitute a carriage return.
25568 Substitute the selected thread; an argument names a thread parameter.
25570 Substitute the version of GDB.
25572 Substitute the current working directory.
25574 Begin a sequence of non-printing characters. These sequences are
25575 typically used with the ESC character, and are not counted in the string
25576 length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
25577 blue-colored ``(gdb)'' prompt where the length is five.
25579 End a sequence of non-printing characters.
25585 substitute_prompt (``frame: \f,
25586 print arguments: \p@{print frame-arguments@}'')
25589 @exdent will return the string:
25592 "frame: main, print arguments: scalars"
25597 @section Creating new spellings of existing commands
25598 @cindex aliases for commands
25600 It is often useful to define alternate spellings of existing commands.
25601 For example, if a new @value{GDBN} command defined in Python has
25602 a long name to type, it is handy to have an abbreviated version of it
25603 that involves less typing.
25605 @value{GDBN} itself uses aliases. For example @samp{s} is an alias
25606 of the @samp{step} command even though it is otherwise an ambiguous
25607 abbreviation of other commands like @samp{set} and @samp{show}.
25609 Aliases are also used to provide shortened or more common versions
25610 of multi-word commands. For example, @value{GDBN} provides the
25611 @samp{tty} alias of the @samp{set inferior-tty} command.
25613 You can define a new alias with the @samp{alias} command.
25618 @item alias [-a] [--] @var{ALIAS} = @var{COMMAND}
25622 @var{ALIAS} specifies the name of the new alias.
25623 Each word of @var{ALIAS} must consist of letters, numbers, dashes and
25626 @var{COMMAND} specifies the name of an existing command
25627 that is being aliased.
25629 The @samp{-a} option specifies that the new alias is an abbreviation
25630 of the command. Abbreviations are not shown in command
25631 lists displayed by the @samp{help} command.
25633 The @samp{--} option specifies the end of options,
25634 and is useful when @var{ALIAS} begins with a dash.
25636 Here is a simple example showing how to make an abbreviation
25637 of a command so that there is less to type.
25638 Suppose you were tired of typing @samp{disas}, the current
25639 shortest unambiguous abbreviation of the @samp{disassemble} command
25640 and you wanted an even shorter version named @samp{di}.
25641 The following will accomplish this.
25644 (gdb) alias -a di = disas
25647 Note that aliases are different from user-defined commands.
25648 With a user-defined command, you also need to write documentation
25649 for it with the @samp{document} command.
25650 An alias automatically picks up the documentation of the existing command.
25652 Here is an example where we make @samp{elms} an abbreviation of
25653 @samp{elements} in the @samp{set print elements} command.
25654 This is to show that you can make an abbreviation of any part
25658 (gdb) alias -a set print elms = set print elements
25659 (gdb) alias -a show print elms = show print elements
25660 (gdb) set p elms 20
25662 Limit on string chars or array elements to print is 200.
25665 Note that if you are defining an alias of a @samp{set} command,
25666 and you want to have an alias for the corresponding @samp{show}
25667 command, then you need to define the latter separately.
25669 Unambiguously abbreviated commands are allowed in @var{COMMAND} and
25670 @var{ALIAS}, just as they are normally.
25673 (gdb) alias -a set pr elms = set p ele
25676 Finally, here is an example showing the creation of a one word
25677 alias for a more complex command.
25678 This creates alias @samp{spe} of the command @samp{set print elements}.
25681 (gdb) alias spe = set print elements
25686 @chapter Command Interpreters
25687 @cindex command interpreters
25689 @value{GDBN} supports multiple command interpreters, and some command
25690 infrastructure to allow users or user interface writers to switch
25691 between interpreters or run commands in other interpreters.
25693 @value{GDBN} currently supports two command interpreters, the console
25694 interpreter (sometimes called the command-line interpreter or @sc{cli})
25695 and the machine interface interpreter (or @sc{gdb/mi}). This manual
25696 describes both of these interfaces in great detail.
25698 By default, @value{GDBN} will start with the console interpreter.
25699 However, the user may choose to start @value{GDBN} with another
25700 interpreter by specifying the @option{-i} or @option{--interpreter}
25701 startup options. Defined interpreters include:
25705 @cindex console interpreter
25706 The traditional console or command-line interpreter. This is the most often
25707 used interpreter with @value{GDBN}. With no interpreter specified at runtime,
25708 @value{GDBN} will use this interpreter.
25711 @cindex mi interpreter
25712 The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
25713 by programs wishing to use @value{GDBN} as a backend for a debugger GUI
25714 or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
25718 @cindex mi2 interpreter
25719 The current @sc{gdb/mi} interface.
25722 @cindex mi1 interpreter
25723 The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
25727 @cindex invoke another interpreter
25728 The interpreter being used by @value{GDBN} may not be dynamically
25729 switched at runtime. Although possible, this could lead to a very
25730 precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
25731 enters the command "interpreter-set console" in a console view,
25732 @value{GDBN} would switch to using the console interpreter, rendering
25733 the IDE inoperable!
25735 @kindex interpreter-exec
25736 Although you may only choose a single interpreter at startup, you may execute
25737 commands in any interpreter from the current interpreter using the appropriate
25738 command. If you are running the console interpreter, simply use the
25739 @code{interpreter-exec} command:
25742 interpreter-exec mi "-data-list-register-names"
25745 @sc{gdb/mi} has a similar command, although it is only available in versions of
25746 @value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
25749 @chapter @value{GDBN} Text User Interface
25751 @cindex Text User Interface
25754 * TUI Overview:: TUI overview
25755 * TUI Keys:: TUI key bindings
25756 * TUI Single Key Mode:: TUI single key mode
25757 * TUI Commands:: TUI-specific commands
25758 * TUI Configuration:: TUI configuration variables
25761 The @value{GDBN} Text User Interface (TUI) is a terminal
25762 interface which uses the @code{curses} library to show the source
25763 file, the assembly output, the program registers and @value{GDBN}
25764 commands in separate text windows. The TUI mode is supported only
25765 on platforms where a suitable version of the @code{curses} library
25768 The TUI mode is enabled by default when you invoke @value{GDBN} as
25769 @samp{@value{GDBP} -tui}.
25770 You can also switch in and out of TUI mode while @value{GDBN} runs by
25771 using various TUI commands and key bindings, such as @kbd{C-x C-a}.
25772 @xref{TUI Keys, ,TUI Key Bindings}.
25775 @section TUI Overview
25777 In TUI mode, @value{GDBN} can display several text windows:
25781 This window is the @value{GDBN} command window with the @value{GDBN}
25782 prompt and the @value{GDBN} output. The @value{GDBN} input is still
25783 managed using readline.
25786 The source window shows the source file of the program. The current
25787 line and active breakpoints are displayed in this window.
25790 The assembly window shows the disassembly output of the program.
25793 This window shows the processor registers. Registers are highlighted
25794 when their values change.
25797 The source and assembly windows show the current program position
25798 by highlighting the current line and marking it with a @samp{>} marker.
25799 Breakpoints are indicated with two markers. The first marker
25800 indicates the breakpoint type:
25804 Breakpoint which was hit at least once.
25807 Breakpoint which was never hit.
25810 Hardware breakpoint which was hit at least once.
25813 Hardware breakpoint which was never hit.
25816 The second marker indicates whether the breakpoint is enabled or not:
25820 Breakpoint is enabled.
25823 Breakpoint is disabled.
25826 The source, assembly and register windows are updated when the current
25827 thread changes, when the frame changes, or when the program counter
25830 These windows are not all visible at the same time. The command
25831 window is always visible. The others can be arranged in several
25842 source and assembly,
25845 source and registers, or
25848 assembly and registers.
25851 A status line above the command window shows the following information:
25855 Indicates the current @value{GDBN} target.
25856 (@pxref{Targets, ,Specifying a Debugging Target}).
25859 Gives the current process or thread number.
25860 When no process is being debugged, this field is set to @code{No process}.
25863 Gives the current function name for the selected frame.
25864 The name is demangled if demangling is turned on (@pxref{Print Settings}).
25865 When there is no symbol corresponding to the current program counter,
25866 the string @code{??} is displayed.
25869 Indicates the current line number for the selected frame.
25870 When the current line number is not known, the string @code{??} is displayed.
25873 Indicates the current program counter address.
25877 @section TUI Key Bindings
25878 @cindex TUI key bindings
25880 The TUI installs several key bindings in the readline keymaps
25881 @ifset SYSTEM_READLINE
25882 (@pxref{Command Line Editing, , , rluserman, GNU Readline Library}).
25884 @ifclear SYSTEM_READLINE
25885 (@pxref{Command Line Editing}).
25887 The following key bindings are installed for both TUI mode and the
25888 @value{GDBN} standard mode.
25897 Enter or leave the TUI mode. When leaving the TUI mode,
25898 the curses window management stops and @value{GDBN} operates using
25899 its standard mode, writing on the terminal directly. When reentering
25900 the TUI mode, control is given back to the curses windows.
25901 The screen is then refreshed.
25905 Use a TUI layout with only one window. The layout will
25906 either be @samp{source} or @samp{assembly}. When the TUI mode
25907 is not active, it will switch to the TUI mode.
25909 Think of this key binding as the Emacs @kbd{C-x 1} binding.
25913 Use a TUI layout with at least two windows. When the current
25914 layout already has two windows, the next layout with two windows is used.
25915 When a new layout is chosen, one window will always be common to the
25916 previous layout and the new one.
25918 Think of it as the Emacs @kbd{C-x 2} binding.
25922 Change the active window. The TUI associates several key bindings
25923 (like scrolling and arrow keys) with the active window. This command
25924 gives the focus to the next TUI window.
25926 Think of it as the Emacs @kbd{C-x o} binding.
25930 Switch in and out of the TUI SingleKey mode that binds single
25931 keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
25934 The following key bindings only work in the TUI mode:
25939 Scroll the active window one page up.
25943 Scroll the active window one page down.
25947 Scroll the active window one line up.
25951 Scroll the active window one line down.
25955 Scroll the active window one column left.
25959 Scroll the active window one column right.
25963 Refresh the screen.
25966 Because the arrow keys scroll the active window in the TUI mode, they
25967 are not available for their normal use by readline unless the command
25968 window has the focus. When another window is active, you must use
25969 other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
25970 and @kbd{C-f} to control the command window.
25972 @node TUI Single Key Mode
25973 @section TUI Single Key Mode
25974 @cindex TUI single key mode
25976 The TUI also provides a @dfn{SingleKey} mode, which binds several
25977 frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
25978 switch into this mode, where the following key bindings are used:
25981 @kindex c @r{(SingleKey TUI key)}
25985 @kindex d @r{(SingleKey TUI key)}
25989 @kindex f @r{(SingleKey TUI key)}
25993 @kindex n @r{(SingleKey TUI key)}
25997 @kindex q @r{(SingleKey TUI key)}
25999 exit the SingleKey mode.
26001 @kindex r @r{(SingleKey TUI key)}
26005 @kindex s @r{(SingleKey TUI key)}
26009 @kindex u @r{(SingleKey TUI key)}
26013 @kindex v @r{(SingleKey TUI key)}
26017 @kindex w @r{(SingleKey TUI key)}
26022 Other keys temporarily switch to the @value{GDBN} command prompt.
26023 The key that was pressed is inserted in the editing buffer so that
26024 it is possible to type most @value{GDBN} commands without interaction
26025 with the TUI SingleKey mode. Once the command is entered the TUI
26026 SingleKey mode is restored. The only way to permanently leave
26027 this mode is by typing @kbd{q} or @kbd{C-x s}.
26031 @section TUI-specific Commands
26032 @cindex TUI commands
26034 The TUI has specific commands to control the text windows.
26035 These commands are always available, even when @value{GDBN} is not in
26036 the TUI mode. When @value{GDBN} is in the standard mode, most
26037 of these commands will automatically switch to the TUI mode.
26039 Note that if @value{GDBN}'s @code{stdout} is not connected to a
26040 terminal, or @value{GDBN} has been started with the machine interface
26041 interpreter (@pxref{GDB/MI, ,The @sc{gdb/mi} Interface}), most of
26042 these commands will fail with an error, because it would not be
26043 possible or desirable to enable curses window management.
26048 List and give the size of all displayed windows.
26052 Display the next layout.
26055 Display the previous layout.
26058 Display the source window only.
26061 Display the assembly window only.
26064 Display the source and assembly window.
26067 Display the register window together with the source or assembly window.
26071 Make the next window active for scrolling.
26074 Make the previous window active for scrolling.
26077 Make the source window active for scrolling.
26080 Make the assembly window active for scrolling.
26083 Make the register window active for scrolling.
26086 Make the command window active for scrolling.
26090 Refresh the screen. This is similar to typing @kbd{C-L}.
26092 @item tui reg float
26094 Show the floating point registers in the register window.
26096 @item tui reg general
26097 Show the general registers in the register window.
26100 Show the next register group. The list of register groups as well as
26101 their order is target specific. The predefined register groups are the
26102 following: @code{general}, @code{float}, @code{system}, @code{vector},
26103 @code{all}, @code{save}, @code{restore}.
26105 @item tui reg system
26106 Show the system registers in the register window.
26110 Update the source window and the current execution point.
26112 @item winheight @var{name} +@var{count}
26113 @itemx winheight @var{name} -@var{count}
26115 Change the height of the window @var{name} by @var{count}
26116 lines. Positive counts increase the height, while negative counts
26119 @item tabset @var{nchars}
26121 Set the width of tab stops to be @var{nchars} characters.
26124 @node TUI Configuration
26125 @section TUI Configuration Variables
26126 @cindex TUI configuration variables
26128 Several configuration variables control the appearance of TUI windows.
26131 @item set tui border-kind @var{kind}
26132 @kindex set tui border-kind
26133 Select the border appearance for the source, assembly and register windows.
26134 The possible values are the following:
26137 Use a space character to draw the border.
26140 Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
26143 Use the Alternate Character Set to draw the border. The border is
26144 drawn using character line graphics if the terminal supports them.
26147 @item set tui border-mode @var{mode}
26148 @kindex set tui border-mode
26149 @itemx set tui active-border-mode @var{mode}
26150 @kindex set tui active-border-mode
26151 Select the display attributes for the borders of the inactive windows
26152 or the active window. The @var{mode} can be one of the following:
26155 Use normal attributes to display the border.
26161 Use reverse video mode.
26164 Use half bright mode.
26166 @item half-standout
26167 Use half bright and standout mode.
26170 Use extra bright or bold mode.
26172 @item bold-standout
26173 Use extra bright or bold and standout mode.
26178 @chapter Using @value{GDBN} under @sc{gnu} Emacs
26181 @cindex @sc{gnu} Emacs
26182 A special interface allows you to use @sc{gnu} Emacs to view (and
26183 edit) the source files for the program you are debugging with
26186 To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
26187 executable file you want to debug as an argument. This command starts
26188 @value{GDBN} as a subprocess of Emacs, with input and output through a newly
26189 created Emacs buffer.
26190 @c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
26192 Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
26197 All ``terminal'' input and output goes through an Emacs buffer, called
26200 This applies both to @value{GDBN} commands and their output, and to the input
26201 and output done by the program you are debugging.
26203 This is useful because it means that you can copy the text of previous
26204 commands and input them again; you can even use parts of the output
26207 All the facilities of Emacs' Shell mode are available for interacting
26208 with your program. In particular, you can send signals the usual
26209 way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
26213 @value{GDBN} displays source code through Emacs.
26215 Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
26216 source file for that frame and puts an arrow (@samp{=>}) at the
26217 left margin of the current line. Emacs uses a separate buffer for
26218 source display, and splits the screen to show both your @value{GDBN} session
26221 Explicit @value{GDBN} @code{list} or search commands still produce output as
26222 usual, but you probably have no reason to use them from Emacs.
26225 We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
26226 a graphical mode, enabled by default, which provides further buffers
26227 that can control the execution and describe the state of your program.
26228 @xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
26230 If you specify an absolute file name when prompted for the @kbd{M-x
26231 gdb} argument, then Emacs sets your current working directory to where
26232 your program resides. If you only specify the file name, then Emacs
26233 sets your current working directory to the directory associated
26234 with the previous buffer. In this case, @value{GDBN} may find your
26235 program by searching your environment's @code{PATH} variable, but on
26236 some operating systems it might not find the source. So, although the
26237 @value{GDBN} input and output session proceeds normally, the auxiliary
26238 buffer does not display the current source and line of execution.
26240 The initial working directory of @value{GDBN} is printed on the top
26241 line of the GUD buffer and this serves as a default for the commands
26242 that specify files for @value{GDBN} to operate on. @xref{Files,
26243 ,Commands to Specify Files}.
26245 By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
26246 need to call @value{GDBN} by a different name (for example, if you
26247 keep several configurations around, with different names) you can
26248 customize the Emacs variable @code{gud-gdb-command-name} to run the
26251 In the GUD buffer, you can use these special Emacs commands in
26252 addition to the standard Shell mode commands:
26256 Describe the features of Emacs' GUD Mode.
26259 Execute to another source line, like the @value{GDBN} @code{step} command; also
26260 update the display window to show the current file and location.
26263 Execute to next source line in this function, skipping all function
26264 calls, like the @value{GDBN} @code{next} command. Then update the display window
26265 to show the current file and location.
26268 Execute one instruction, like the @value{GDBN} @code{stepi} command; update
26269 display window accordingly.
26272 Execute until exit from the selected stack frame, like the @value{GDBN}
26273 @code{finish} command.
26276 Continue execution of your program, like the @value{GDBN} @code{continue}
26280 Go up the number of frames indicated by the numeric argument
26281 (@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
26282 like the @value{GDBN} @code{up} command.
26285 Go down the number of frames indicated by the numeric argument, like the
26286 @value{GDBN} @code{down} command.
26289 In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
26290 tells @value{GDBN} to set a breakpoint on the source line point is on.
26292 In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
26293 separate frame which shows a backtrace when the GUD buffer is current.
26294 Move point to any frame in the stack and type @key{RET} to make it
26295 become the current frame and display the associated source in the
26296 source buffer. Alternatively, click @kbd{Mouse-2} to make the
26297 selected frame become the current one. In graphical mode, the
26298 speedbar displays watch expressions.
26300 If you accidentally delete the source-display buffer, an easy way to get
26301 it back is to type the command @code{f} in the @value{GDBN} buffer, to
26302 request a frame display; when you run under Emacs, this recreates
26303 the source buffer if necessary to show you the context of the current
26306 The source files displayed in Emacs are in ordinary Emacs buffers
26307 which are visiting the source files in the usual way. You can edit
26308 the files with these buffers if you wish; but keep in mind that @value{GDBN}
26309 communicates with Emacs in terms of line numbers. If you add or
26310 delete lines from the text, the line numbers that @value{GDBN} knows cease
26311 to correspond properly with the code.
26313 A more detailed description of Emacs' interaction with @value{GDBN} is
26314 given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
26317 @c The following dropped because Epoch is nonstandard. Reactivate
26320 @kindex Emacs Epoch environment
26324 Version 18 of @sc{gnu} Emacs has a built-in window system
26325 called the @code{epoch}
26326 environment. Users of this environment can use a new command,
26327 @code{inspect} which performs identically to @code{print} except that
26328 each value is printed in its own window.
26333 @chapter The @sc{gdb/mi} Interface
26335 @unnumberedsec Function and Purpose
26337 @cindex @sc{gdb/mi}, its purpose
26338 @sc{gdb/mi} is a line based machine oriented text interface to
26339 @value{GDBN} and is activated by specifying using the
26340 @option{--interpreter} command line option (@pxref{Mode Options}). It
26341 is specifically intended to support the development of systems which
26342 use the debugger as just one small component of a larger system.
26344 This chapter is a specification of the @sc{gdb/mi} interface. It is written
26345 in the form of a reference manual.
26347 Note that @sc{gdb/mi} is still under construction, so some of the
26348 features described below are incomplete and subject to change
26349 (@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
26351 @unnumberedsec Notation and Terminology
26353 @cindex notational conventions, for @sc{gdb/mi}
26354 This chapter uses the following notation:
26358 @code{|} separates two alternatives.
26361 @code{[ @var{something} ]} indicates that @var{something} is optional:
26362 it may or may not be given.
26365 @code{( @var{group} )*} means that @var{group} inside the parentheses
26366 may repeat zero or more times.
26369 @code{( @var{group} )+} means that @var{group} inside the parentheses
26370 may repeat one or more times.
26373 @code{"@var{string}"} means a literal @var{string}.
26377 @heading Dependencies
26381 * GDB/MI General Design::
26382 * GDB/MI Command Syntax::
26383 * GDB/MI Compatibility with CLI::
26384 * GDB/MI Development and Front Ends::
26385 * GDB/MI Output Records::
26386 * GDB/MI Simple Examples::
26387 * GDB/MI Command Description Format::
26388 * GDB/MI Breakpoint Commands::
26389 * GDB/MI Program Context::
26390 * GDB/MI Thread Commands::
26391 * GDB/MI Ada Tasking Commands::
26392 * GDB/MI Program Execution::
26393 * GDB/MI Stack Manipulation::
26394 * GDB/MI Variable Objects::
26395 * GDB/MI Data Manipulation::
26396 * GDB/MI Tracepoint Commands::
26397 * GDB/MI Symbol Query::
26398 * GDB/MI File Commands::
26400 * GDB/MI Kod Commands::
26401 * GDB/MI Memory Overlay Commands::
26402 * GDB/MI Signal Handling Commands::
26404 * GDB/MI Target Manipulation::
26405 * GDB/MI File Transfer Commands::
26406 * GDB/MI Miscellaneous Commands::
26409 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26410 @node GDB/MI General Design
26411 @section @sc{gdb/mi} General Design
26412 @cindex GDB/MI General Design
26414 Interaction of a @sc{GDB/MI} frontend with @value{GDBN} involves three
26415 parts---commands sent to @value{GDBN}, responses to those commands
26416 and notifications. Each command results in exactly one response,
26417 indicating either successful completion of the command, or an error.
26418 For the commands that do not resume the target, the response contains the
26419 requested information. For the commands that resume the target, the
26420 response only indicates whether the target was successfully resumed.
26421 Notifications is the mechanism for reporting changes in the state of the
26422 target, or in @value{GDBN} state, that cannot conveniently be associated with
26423 a command and reported as part of that command response.
26425 The important examples of notifications are:
26429 Exec notifications. These are used to report changes in
26430 target state---when a target is resumed, or stopped. It would not
26431 be feasible to include this information in response of resuming
26432 commands, because one resume commands can result in multiple events in
26433 different threads. Also, quite some time may pass before any event
26434 happens in the target, while a frontend needs to know whether the resuming
26435 command itself was successfully executed.
26438 Console output, and status notifications. Console output
26439 notifications are used to report output of CLI commands, as well as
26440 diagnostics for other commands. Status notifications are used to
26441 report the progress of a long-running operation. Naturally, including
26442 this information in command response would mean no output is produced
26443 until the command is finished, which is undesirable.
26446 General notifications. Commands may have various side effects on
26447 the @value{GDBN} or target state beyond their official purpose. For example,
26448 a command may change the selected thread. Although such changes can
26449 be included in command response, using notification allows for more
26450 orthogonal frontend design.
26454 There's no guarantee that whenever an MI command reports an error,
26455 @value{GDBN} or the target are in any specific state, and especially,
26456 the state is not reverted to the state before the MI command was
26457 processed. Therefore, whenever an MI command results in an error,
26458 we recommend that the frontend refreshes all the information shown in
26459 the user interface.
26463 * Context management::
26464 * Asynchronous and non-stop modes::
26468 @node Context management
26469 @subsection Context management
26471 In most cases when @value{GDBN} accesses the target, this access is
26472 done in context of a specific thread and frame (@pxref{Frames}).
26473 Often, even when accessing global data, the target requires that a thread
26474 be specified. The CLI interface maintains the selected thread and frame,
26475 and supplies them to target on each command. This is convenient,
26476 because a command line user would not want to specify that information
26477 explicitly on each command, and because user interacts with
26478 @value{GDBN} via a single terminal, so no confusion is possible as
26479 to what thread and frame are the current ones.
26481 In the case of MI, the concept of selected thread and frame is less
26482 useful. First, a frontend can easily remember this information
26483 itself. Second, a graphical frontend can have more than one window,
26484 each one used for debugging a different thread, and the frontend might
26485 want to access additional threads for internal purposes. This
26486 increases the risk that by relying on implicitly selected thread, the
26487 frontend may be operating on a wrong one. Therefore, each MI command
26488 should explicitly specify which thread and frame to operate on. To
26489 make it possible, each MI command accepts the @samp{--thread} and
26490 @samp{--frame} options, the value to each is @value{GDBN} identifier
26491 for thread and frame to operate on.
26493 Usually, each top-level window in a frontend allows the user to select
26494 a thread and a frame, and remembers the user selection for further
26495 operations. However, in some cases @value{GDBN} may suggest that the
26496 current thread be changed. For example, when stopping on a breakpoint
26497 it is reasonable to switch to the thread where breakpoint is hit. For
26498 another example, if the user issues the CLI @samp{thread} command via
26499 the frontend, it is desirable to change the frontend's selected thread to the
26500 one specified by user. @value{GDBN} communicates the suggestion to
26501 change current thread using the @samp{=thread-selected} notification.
26502 No such notification is available for the selected frame at the moment.
26504 Note that historically, MI shares the selected thread with CLI, so
26505 frontends used the @code{-thread-select} to execute commands in the
26506 right context. However, getting this to work right is cumbersome. The
26507 simplest way is for frontend to emit @code{-thread-select} command
26508 before every command. This doubles the number of commands that need
26509 to be sent. The alternative approach is to suppress @code{-thread-select}
26510 if the selected thread in @value{GDBN} is supposed to be identical to the
26511 thread the frontend wants to operate on. However, getting this
26512 optimization right can be tricky. In particular, if the frontend
26513 sends several commands to @value{GDBN}, and one of the commands changes the
26514 selected thread, then the behaviour of subsequent commands will
26515 change. So, a frontend should either wait for response from such
26516 problematic commands, or explicitly add @code{-thread-select} for
26517 all subsequent commands. No frontend is known to do this exactly
26518 right, so it is suggested to just always pass the @samp{--thread} and
26519 @samp{--frame} options.
26521 @node Asynchronous and non-stop modes
26522 @subsection Asynchronous command execution and non-stop mode
26524 On some targets, @value{GDBN} is capable of processing MI commands
26525 even while the target is running. This is called @dfn{asynchronous
26526 command execution} (@pxref{Background Execution}). The frontend may
26527 specify a preferrence for asynchronous execution using the
26528 @code{-gdb-set target-async 1} command, which should be emitted before
26529 either running the executable or attaching to the target. After the
26530 frontend has started the executable or attached to the target, it can
26531 find if asynchronous execution is enabled using the
26532 @code{-list-target-features} command.
26534 Even if @value{GDBN} can accept a command while target is running,
26535 many commands that access the target do not work when the target is
26536 running. Therefore, asynchronous command execution is most useful
26537 when combined with non-stop mode (@pxref{Non-Stop Mode}). Then,
26538 it is possible to examine the state of one thread, while other threads
26541 When a given thread is running, MI commands that try to access the
26542 target in the context of that thread may not work, or may work only on
26543 some targets. In particular, commands that try to operate on thread's
26544 stack will not work, on any target. Commands that read memory, or
26545 modify breakpoints, may work or not work, depending on the target. Note
26546 that even commands that operate on global state, such as @code{print},
26547 @code{set}, and breakpoint commands, still access the target in the
26548 context of a specific thread, so frontend should try to find a
26549 stopped thread and perform the operation on that thread (using the
26550 @samp{--thread} option).
26552 Which commands will work in the context of a running thread is
26553 highly target dependent. However, the two commands
26554 @code{-exec-interrupt}, to stop a thread, and @code{-thread-info},
26555 to find the state of a thread, will always work.
26557 @node Thread groups
26558 @subsection Thread groups
26559 @value{GDBN} may be used to debug several processes at the same time.
26560 On some platfroms, @value{GDBN} may support debugging of several
26561 hardware systems, each one having several cores with several different
26562 processes running on each core. This section describes the MI
26563 mechanism to support such debugging scenarios.
26565 The key observation is that regardless of the structure of the
26566 target, MI can have a global list of threads, because most commands that
26567 accept the @samp{--thread} option do not need to know what process that
26568 thread belongs to. Therefore, it is not necessary to introduce
26569 neither additional @samp{--process} option, nor an notion of the
26570 current process in the MI interface. The only strictly new feature
26571 that is required is the ability to find how the threads are grouped
26574 To allow the user to discover such grouping, and to support arbitrary
26575 hierarchy of machines/cores/processes, MI introduces the concept of a
26576 @dfn{thread group}. Thread group is a collection of threads and other
26577 thread groups. A thread group always has a string identifier, a type,
26578 and may have additional attributes specific to the type. A new
26579 command, @code{-list-thread-groups}, returns the list of top-level
26580 thread groups, which correspond to processes that @value{GDBN} is
26581 debugging at the moment. By passing an identifier of a thread group
26582 to the @code{-list-thread-groups} command, it is possible to obtain
26583 the members of specific thread group.
26585 To allow the user to easily discover processes, and other objects, he
26586 wishes to debug, a concept of @dfn{available thread group} is
26587 introduced. Available thread group is an thread group that
26588 @value{GDBN} is not debugging, but that can be attached to, using the
26589 @code{-target-attach} command. The list of available top-level thread
26590 groups can be obtained using @samp{-list-thread-groups --available}.
26591 In general, the content of a thread group may be only retrieved only
26592 after attaching to that thread group.
26594 Thread groups are related to inferiors (@pxref{Inferiors and
26595 Programs}). Each inferior corresponds to a thread group of a special
26596 type @samp{process}, and some additional operations are permitted on
26597 such thread groups.
26599 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26600 @node GDB/MI Command Syntax
26601 @section @sc{gdb/mi} Command Syntax
26604 * GDB/MI Input Syntax::
26605 * GDB/MI Output Syntax::
26608 @node GDB/MI Input Syntax
26609 @subsection @sc{gdb/mi} Input Syntax
26611 @cindex input syntax for @sc{gdb/mi}
26612 @cindex @sc{gdb/mi}, input syntax
26614 @item @var{command} @expansion{}
26615 @code{@var{cli-command} | @var{mi-command}}
26617 @item @var{cli-command} @expansion{}
26618 @code{[ @var{token} ] @var{cli-command} @var{nl}}, where
26619 @var{cli-command} is any existing @value{GDBN} CLI command.
26621 @item @var{mi-command} @expansion{}
26622 @code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
26623 @code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
26625 @item @var{token} @expansion{}
26626 "any sequence of digits"
26628 @item @var{option} @expansion{}
26629 @code{"-" @var{parameter} [ " " @var{parameter} ]}
26631 @item @var{parameter} @expansion{}
26632 @code{@var{non-blank-sequence} | @var{c-string}}
26634 @item @var{operation} @expansion{}
26635 @emph{any of the operations described in this chapter}
26637 @item @var{non-blank-sequence} @expansion{}
26638 @emph{anything, provided it doesn't contain special characters such as
26639 "-", @var{nl}, """ and of course " "}
26641 @item @var{c-string} @expansion{}
26642 @code{""" @var{seven-bit-iso-c-string-content} """}
26644 @item @var{nl} @expansion{}
26653 The CLI commands are still handled by the @sc{mi} interpreter; their
26654 output is described below.
26657 The @code{@var{token}}, when present, is passed back when the command
26661 Some @sc{mi} commands accept optional arguments as part of the parameter
26662 list. Each option is identified by a leading @samp{-} (dash) and may be
26663 followed by an optional argument parameter. Options occur first in the
26664 parameter list and can be delimited from normal parameters using
26665 @samp{--} (this is useful when some parameters begin with a dash).
26672 We want easy access to the existing CLI syntax (for debugging).
26675 We want it to be easy to spot a @sc{mi} operation.
26678 @node GDB/MI Output Syntax
26679 @subsection @sc{gdb/mi} Output Syntax
26681 @cindex output syntax of @sc{gdb/mi}
26682 @cindex @sc{gdb/mi}, output syntax
26683 The output from @sc{gdb/mi} consists of zero or more out-of-band records
26684 followed, optionally, by a single result record. This result record
26685 is for the most recent command. The sequence of output records is
26686 terminated by @samp{(gdb)}.
26688 If an input command was prefixed with a @code{@var{token}} then the
26689 corresponding output for that command will also be prefixed by that same
26693 @item @var{output} @expansion{}
26694 @code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
26696 @item @var{result-record} @expansion{}
26697 @code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
26699 @item @var{out-of-band-record} @expansion{}
26700 @code{@var{async-record} | @var{stream-record}}
26702 @item @var{async-record} @expansion{}
26703 @code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
26705 @item @var{exec-async-output} @expansion{}
26706 @code{[ @var{token} ] "*" @var{async-output}}
26708 @item @var{status-async-output} @expansion{}
26709 @code{[ @var{token} ] "+" @var{async-output}}
26711 @item @var{notify-async-output} @expansion{}
26712 @code{[ @var{token} ] "=" @var{async-output}}
26714 @item @var{async-output} @expansion{}
26715 @code{@var{async-class} ( "," @var{result} )* @var{nl}}
26717 @item @var{result-class} @expansion{}
26718 @code{"done" | "running" | "connected" | "error" | "exit"}
26720 @item @var{async-class} @expansion{}
26721 @code{"stopped" | @var{others}} (where @var{others} will be added
26722 depending on the needs---this is still in development).
26724 @item @var{result} @expansion{}
26725 @code{ @var{variable} "=" @var{value}}
26727 @item @var{variable} @expansion{}
26728 @code{ @var{string} }
26730 @item @var{value} @expansion{}
26731 @code{ @var{const} | @var{tuple} | @var{list} }
26733 @item @var{const} @expansion{}
26734 @code{@var{c-string}}
26736 @item @var{tuple} @expansion{}
26737 @code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
26739 @item @var{list} @expansion{}
26740 @code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
26741 @var{result} ( "," @var{result} )* "]" }
26743 @item @var{stream-record} @expansion{}
26744 @code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
26746 @item @var{console-stream-output} @expansion{}
26747 @code{"~" @var{c-string}}
26749 @item @var{target-stream-output} @expansion{}
26750 @code{"@@" @var{c-string}}
26752 @item @var{log-stream-output} @expansion{}
26753 @code{"&" @var{c-string}}
26755 @item @var{nl} @expansion{}
26758 @item @var{token} @expansion{}
26759 @emph{any sequence of digits}.
26767 All output sequences end in a single line containing a period.
26770 The @code{@var{token}} is from the corresponding request. Note that
26771 for all async output, while the token is allowed by the grammar and
26772 may be output by future versions of @value{GDBN} for select async
26773 output messages, it is generally omitted. Frontends should treat
26774 all async output as reporting general changes in the state of the
26775 target and there should be no need to associate async output to any
26779 @cindex status output in @sc{gdb/mi}
26780 @var{status-async-output} contains on-going status information about the
26781 progress of a slow operation. It can be discarded. All status output is
26782 prefixed by @samp{+}.
26785 @cindex async output in @sc{gdb/mi}
26786 @var{exec-async-output} contains asynchronous state change on the target
26787 (stopped, started, disappeared). All async output is prefixed by
26791 @cindex notify output in @sc{gdb/mi}
26792 @var{notify-async-output} contains supplementary information that the
26793 client should handle (e.g., a new breakpoint information). All notify
26794 output is prefixed by @samp{=}.
26797 @cindex console output in @sc{gdb/mi}
26798 @var{console-stream-output} is output that should be displayed as is in the
26799 console. It is the textual response to a CLI command. All the console
26800 output is prefixed by @samp{~}.
26803 @cindex target output in @sc{gdb/mi}
26804 @var{target-stream-output} is the output produced by the target program.
26805 All the target output is prefixed by @samp{@@}.
26808 @cindex log output in @sc{gdb/mi}
26809 @var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
26810 instance messages that should be displayed as part of an error log. All
26811 the log output is prefixed by @samp{&}.
26814 @cindex list output in @sc{gdb/mi}
26815 New @sc{gdb/mi} commands should only output @var{lists} containing
26821 @xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
26822 details about the various output records.
26824 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26825 @node GDB/MI Compatibility with CLI
26826 @section @sc{gdb/mi} Compatibility with CLI
26828 @cindex compatibility, @sc{gdb/mi} and CLI
26829 @cindex @sc{gdb/mi}, compatibility with CLI
26831 For the developers convenience CLI commands can be entered directly,
26832 but there may be some unexpected behaviour. For example, commands
26833 that query the user will behave as if the user replied yes, breakpoint
26834 command lists are not executed and some CLI commands, such as
26835 @code{if}, @code{when} and @code{define}, prompt for further input with
26836 @samp{>}, which is not valid MI output.
26838 This feature may be removed at some stage in the future and it is
26839 recommended that front ends use the @code{-interpreter-exec} command
26840 (@pxref{-interpreter-exec}).
26842 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26843 @node GDB/MI Development and Front Ends
26844 @section @sc{gdb/mi} Development and Front Ends
26845 @cindex @sc{gdb/mi} development
26847 The application which takes the MI output and presents the state of the
26848 program being debugged to the user is called a @dfn{front end}.
26850 Although @sc{gdb/mi} is still incomplete, it is currently being used
26851 by a variety of front ends to @value{GDBN}. This makes it difficult
26852 to introduce new functionality without breaking existing usage. This
26853 section tries to minimize the problems by describing how the protocol
26856 Some changes in MI need not break a carefully designed front end, and
26857 for these the MI version will remain unchanged. The following is a
26858 list of changes that may occur within one level, so front ends should
26859 parse MI output in a way that can handle them:
26863 New MI commands may be added.
26866 New fields may be added to the output of any MI command.
26869 The range of values for fields with specified values, e.g.,
26870 @code{in_scope} (@pxref{-var-update}) may be extended.
26872 @c The format of field's content e.g type prefix, may change so parse it
26873 @c at your own risk. Yes, in general?
26875 @c The order of fields may change? Shouldn't really matter but it might
26876 @c resolve inconsistencies.
26879 If the changes are likely to break front ends, the MI version level
26880 will be increased by one. This will allow the front end to parse the
26881 output according to the MI version. Apart from mi0, new versions of
26882 @value{GDBN} will not support old versions of MI and it will be the
26883 responsibility of the front end to work with the new one.
26885 @c Starting with mi3, add a new command -mi-version that prints the MI
26888 The best way to avoid unexpected changes in MI that might break your front
26889 end is to make your project known to @value{GDBN} developers and
26890 follow development on @email{gdb@@sourceware.org} and
26891 @email{gdb-patches@@sourceware.org}.
26892 @cindex mailing lists
26894 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26895 @node GDB/MI Output Records
26896 @section @sc{gdb/mi} Output Records
26899 * GDB/MI Result Records::
26900 * GDB/MI Stream Records::
26901 * GDB/MI Async Records::
26902 * GDB/MI Frame Information::
26903 * GDB/MI Thread Information::
26904 * GDB/MI Ada Exception Information::
26907 @node GDB/MI Result Records
26908 @subsection @sc{gdb/mi} Result Records
26910 @cindex result records in @sc{gdb/mi}
26911 @cindex @sc{gdb/mi}, result records
26912 In addition to a number of out-of-band notifications, the response to a
26913 @sc{gdb/mi} command includes one of the following result indications:
26917 @item "^done" [ "," @var{results} ]
26918 The synchronous operation was successful, @code{@var{results}} are the return
26923 This result record is equivalent to @samp{^done}. Historically, it
26924 was output instead of @samp{^done} if the command has resumed the
26925 target. This behaviour is maintained for backward compatibility, but
26926 all frontends should treat @samp{^done} and @samp{^running}
26927 identically and rely on the @samp{*running} output record to determine
26928 which threads are resumed.
26932 @value{GDBN} has connected to a remote target.
26934 @item "^error" "," @var{c-string}
26936 The operation failed. The @code{@var{c-string}} contains the corresponding
26941 @value{GDBN} has terminated.
26945 @node GDB/MI Stream Records
26946 @subsection @sc{gdb/mi} Stream Records
26948 @cindex @sc{gdb/mi}, stream records
26949 @cindex stream records in @sc{gdb/mi}
26950 @value{GDBN} internally maintains a number of output streams: the console, the
26951 target, and the log. The output intended for each of these streams is
26952 funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
26954 Each stream record begins with a unique @dfn{prefix character} which
26955 identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
26956 Syntax}). In addition to the prefix, each stream record contains a
26957 @code{@var{string-output}}. This is either raw text (with an implicit new
26958 line) or a quoted C string (which does not contain an implicit newline).
26961 @item "~" @var{string-output}
26962 The console output stream contains text that should be displayed in the
26963 CLI console window. It contains the textual responses to CLI commands.
26965 @item "@@" @var{string-output}
26966 The target output stream contains any textual output from the running
26967 target. This is only present when GDB's event loop is truly
26968 asynchronous, which is currently only the case for remote targets.
26970 @item "&" @var{string-output}
26971 The log stream contains debugging messages being produced by @value{GDBN}'s
26975 @node GDB/MI Async Records
26976 @subsection @sc{gdb/mi} Async Records
26978 @cindex async records in @sc{gdb/mi}
26979 @cindex @sc{gdb/mi}, async records
26980 @dfn{Async} records are used to notify the @sc{gdb/mi} client of
26981 additional changes that have occurred. Those changes can either be a
26982 consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
26983 target activity (e.g., target stopped).
26985 The following is the list of possible async records:
26989 @item *running,thread-id="@var{thread}"
26990 The target is now running. The @var{thread} field tells which
26991 specific thread is now running, and can be @samp{all} if all threads
26992 are running. The frontend should assume that no interaction with a
26993 running thread is possible after this notification is produced.
26994 The frontend should not assume that this notification is output
26995 only once for any command. @value{GDBN} may emit this notification
26996 several times, either for different threads, because it cannot resume
26997 all threads together, or even for a single thread, if the thread must
26998 be stepped though some code before letting it run freely.
27000 @item *stopped,reason="@var{reason}",thread-id="@var{id}",stopped-threads="@var{stopped}",core="@var{core}"
27001 The target has stopped. The @var{reason} field can have one of the
27005 @item breakpoint-hit
27006 A breakpoint was reached.
27007 @item watchpoint-trigger
27008 A watchpoint was triggered.
27009 @item read-watchpoint-trigger
27010 A read watchpoint was triggered.
27011 @item access-watchpoint-trigger
27012 An access watchpoint was triggered.
27013 @item function-finished
27014 An -exec-finish or similar CLI command was accomplished.
27015 @item location-reached
27016 An -exec-until or similar CLI command was accomplished.
27017 @item watchpoint-scope
27018 A watchpoint has gone out of scope.
27019 @item end-stepping-range
27020 An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
27021 similar CLI command was accomplished.
27022 @item exited-signalled
27023 The inferior exited because of a signal.
27025 The inferior exited.
27026 @item exited-normally
27027 The inferior exited normally.
27028 @item signal-received
27029 A signal was received by the inferior.
27031 The inferior has stopped due to a library being loaded or unloaded.
27032 This can happen when @code{stop-on-solib-events} (@pxref{Files}) is
27033 set or when a @code{catch load} or @code{catch unload} catchpoint is
27034 in use (@pxref{Set Catchpoints}).
27036 The inferior has forked. This is reported when @code{catch fork}
27037 (@pxref{Set Catchpoints}) has been used.
27039 The inferior has vforked. This is reported in when @code{catch vfork}
27040 (@pxref{Set Catchpoints}) has been used.
27041 @item syscall-entry
27042 The inferior entered a system call. This is reported when @code{catch
27043 syscall} (@pxref{Set Catchpoints}) has been used.
27044 @item syscall-entry
27045 The inferior returned from a system call. This is reported when
27046 @code{catch syscall} (@pxref{Set Catchpoints}) has been used.
27048 The inferior called @code{exec}. This is reported when @code{catch exec}
27049 (@pxref{Set Catchpoints}) has been used.
27052 The @var{id} field identifies the thread that directly caused the stop
27053 -- for example by hitting a breakpoint. Depending on whether all-stop
27054 mode is in effect (@pxref{All-Stop Mode}), @value{GDBN} may either
27055 stop all threads, or only the thread that directly triggered the stop.
27056 If all threads are stopped, the @var{stopped} field will have the
27057 value of @code{"all"}. Otherwise, the value of the @var{stopped}
27058 field will be a list of thread identifiers. Presently, this list will
27059 always include a single thread, but frontend should be prepared to see
27060 several threads in the list. The @var{core} field reports the
27061 processor core on which the stop event has happened. This field may be absent
27062 if such information is not available.
27064 @item =thread-group-added,id="@var{id}"
27065 @itemx =thread-group-removed,id="@var{id}"
27066 A thread group was either added or removed. The @var{id} field
27067 contains the @value{GDBN} identifier of the thread group. When a thread
27068 group is added, it generally might not be associated with a running
27069 process. When a thread group is removed, its id becomes invalid and
27070 cannot be used in any way.
27072 @item =thread-group-started,id="@var{id}",pid="@var{pid}"
27073 A thread group became associated with a running program,
27074 either because the program was just started or the thread group
27075 was attached to a program. The @var{id} field contains the
27076 @value{GDBN} identifier of the thread group. The @var{pid} field
27077 contains process identifier, specific to the operating system.
27079 @item =thread-group-exited,id="@var{id}"[,exit-code="@var{code}"]
27080 A thread group is no longer associated with a running program,
27081 either because the program has exited, or because it was detached
27082 from. The @var{id} field contains the @value{GDBN} identifier of the
27083 thread group. @var{code} is the exit code of the inferior; it exists
27084 only when the inferior exited with some code.
27086 @item =thread-created,id="@var{id}",group-id="@var{gid}"
27087 @itemx =thread-exited,id="@var{id}",group-id="@var{gid}"
27088 A thread either was created, or has exited. The @var{id} field
27089 contains the @value{GDBN} identifier of the thread. The @var{gid}
27090 field identifies the thread group this thread belongs to.
27092 @item =thread-selected,id="@var{id}"
27093 Informs that the selected thread was changed as result of the last
27094 command. This notification is not emitted as result of @code{-thread-select}
27095 command but is emitted whenever an MI command that is not documented
27096 to change the selected thread actually changes it. In particular,
27097 invoking, directly or indirectly (via user-defined command), the CLI
27098 @code{thread} command, will generate this notification.
27100 We suggest that in response to this notification, front ends
27101 highlight the selected thread and cause subsequent commands to apply to
27104 @item =library-loaded,...
27105 Reports that a new library file was loaded by the program. This
27106 notification has 4 fields---@var{id}, @var{target-name},
27107 @var{host-name}, and @var{symbols-loaded}. The @var{id} field is an
27108 opaque identifier of the library. For remote debugging case,
27109 @var{target-name} and @var{host-name} fields give the name of the
27110 library file on the target, and on the host respectively. For native
27111 debugging, both those fields have the same value. The
27112 @var{symbols-loaded} field is emitted only for backward compatibility
27113 and should not be relied on to convey any useful information. The
27114 @var{thread-group} field, if present, specifies the id of the thread
27115 group in whose context the library was loaded. If the field is
27116 absent, it means the library was loaded in the context of all present
27119 @item =library-unloaded,...
27120 Reports that a library was unloaded by the program. This notification
27121 has 3 fields---@var{id}, @var{target-name} and @var{host-name} with
27122 the same meaning as for the @code{=library-loaded} notification.
27123 The @var{thread-group} field, if present, specifies the id of the
27124 thread group in whose context the library was unloaded. If the field is
27125 absent, it means the library was unloaded in the context of all present
27128 @item =breakpoint-created,bkpt=@{...@}
27129 @itemx =breakpoint-modified,bkpt=@{...@}
27130 @itemx =breakpoint-deleted,bkpt=@{...@}
27131 Reports that a breakpoint was created, modified, or deleted,
27132 respectively. Only user-visible breakpoints are reported to the MI
27135 The @var{bkpt} argument is of the same form as returned by the various
27136 breakpoint commands; @xref{GDB/MI Breakpoint Commands}.
27138 Note that if a breakpoint is emitted in the result record of a
27139 command, then it will not also be emitted in an async record.
27143 @node GDB/MI Frame Information
27144 @subsection @sc{gdb/mi} Frame Information
27146 Response from many MI commands includes an information about stack
27147 frame. This information is a tuple that may have the following
27152 The level of the stack frame. The innermost frame has the level of
27153 zero. This field is always present.
27156 The name of the function corresponding to the frame. This field may
27157 be absent if @value{GDBN} is unable to determine the function name.
27160 The code address for the frame. This field is always present.
27163 The name of the source files that correspond to the frame's code
27164 address. This field may be absent.
27167 The source line corresponding to the frames' code address. This field
27171 The name of the binary file (either executable or shared library) the
27172 corresponds to the frame's code address. This field may be absent.
27176 @node GDB/MI Thread Information
27177 @subsection @sc{gdb/mi} Thread Information
27179 Whenever @value{GDBN} has to report an information about a thread, it
27180 uses a tuple with the following fields:
27184 The numeric id assigned to the thread by @value{GDBN}. This field is
27188 Target-specific string identifying the thread. This field is always present.
27191 Additional information about the thread provided by the target.
27192 It is supposed to be human-readable and not interpreted by the
27193 frontend. This field is optional.
27196 Either @samp{stopped} or @samp{running}, depending on whether the
27197 thread is presently running. This field is always present.
27200 The value of this field is an integer number of the processor core the
27201 thread was last seen on. This field is optional.
27204 @node GDB/MI Ada Exception Information
27205 @subsection @sc{gdb/mi} Ada Exception Information
27207 Whenever a @code{*stopped} record is emitted because the program
27208 stopped after hitting an exception catchpoint (@pxref{Set Catchpoints}),
27209 @value{GDBN} provides the name of the exception that was raised via
27210 the @code{exception-name} field.
27212 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27213 @node GDB/MI Simple Examples
27214 @section Simple Examples of @sc{gdb/mi} Interaction
27215 @cindex @sc{gdb/mi}, simple examples
27217 This subsection presents several simple examples of interaction using
27218 the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
27219 following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
27220 the output received from @sc{gdb/mi}.
27222 Note the line breaks shown in the examples are here only for
27223 readability, they don't appear in the real output.
27225 @subheading Setting a Breakpoint
27227 Setting a breakpoint generates synchronous output which contains detailed
27228 information of the breakpoint.
27231 -> -break-insert main
27232 <- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
27233 enabled="y",addr="0x08048564",func="main",file="myprog.c",
27234 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
27238 @subheading Program Execution
27240 Program execution generates asynchronous records and MI gives the
27241 reason that execution stopped.
27247 <- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
27248 frame=@{addr="0x08048564",func="main",
27249 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
27250 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
27255 <- *stopped,reason="exited-normally"
27259 @subheading Quitting @value{GDBN}
27261 Quitting @value{GDBN} just prints the result class @samp{^exit}.
27269 Please note that @samp{^exit} is printed immediately, but it might
27270 take some time for @value{GDBN} to actually exit. During that time, @value{GDBN}
27271 performs necessary cleanups, including killing programs being debugged
27272 or disconnecting from debug hardware, so the frontend should wait till
27273 @value{GDBN} exits and should only forcibly kill @value{GDBN} if it
27274 fails to exit in reasonable time.
27276 @subheading A Bad Command
27278 Here's what happens if you pass a non-existent command:
27282 <- ^error,msg="Undefined MI command: rubbish"
27287 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27288 @node GDB/MI Command Description Format
27289 @section @sc{gdb/mi} Command Description Format
27291 The remaining sections describe blocks of commands. Each block of
27292 commands is laid out in a fashion similar to this section.
27294 @subheading Motivation
27296 The motivation for this collection of commands.
27298 @subheading Introduction
27300 A brief introduction to this collection of commands as a whole.
27302 @subheading Commands
27304 For each command in the block, the following is described:
27306 @subsubheading Synopsis
27309 -command @var{args}@dots{}
27312 @subsubheading Result
27314 @subsubheading @value{GDBN} Command
27316 The corresponding @value{GDBN} CLI command(s), if any.
27318 @subsubheading Example
27320 Example(s) formatted for readability. Some of the described commands have
27321 not been implemented yet and these are labeled N.A.@: (not available).
27324 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27325 @node GDB/MI Breakpoint Commands
27326 @section @sc{gdb/mi} Breakpoint Commands
27328 @cindex breakpoint commands for @sc{gdb/mi}
27329 @cindex @sc{gdb/mi}, breakpoint commands
27330 This section documents @sc{gdb/mi} commands for manipulating
27333 @subheading The @code{-break-after} Command
27334 @findex -break-after
27336 @subsubheading Synopsis
27339 -break-after @var{number} @var{count}
27342 The breakpoint number @var{number} is not in effect until it has been
27343 hit @var{count} times. To see how this is reflected in the output of
27344 the @samp{-break-list} command, see the description of the
27345 @samp{-break-list} command below.
27347 @subsubheading @value{GDBN} Command
27349 The corresponding @value{GDBN} command is @samp{ignore}.
27351 @subsubheading Example
27356 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
27357 enabled="y",addr="0x000100d0",func="main",file="hello.c",
27358 fullname="/home/foo/hello.c",line="5",times="0"@}
27365 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
27366 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27367 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27368 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27369 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27370 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27371 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27372 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27373 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
27374 line="5",times="0",ignore="3"@}]@}
27379 @subheading The @code{-break-catch} Command
27380 @findex -break-catch
27383 @subheading The @code{-break-commands} Command
27384 @findex -break-commands
27386 @subsubheading Synopsis
27389 -break-commands @var{number} [ @var{command1} ... @var{commandN} ]
27392 Specifies the CLI commands that should be executed when breakpoint
27393 @var{number} is hit. The parameters @var{command1} to @var{commandN}
27394 are the commands. If no command is specified, any previously-set
27395 commands are cleared. @xref{Break Commands}. Typical use of this
27396 functionality is tracing a program, that is, printing of values of
27397 some variables whenever breakpoint is hit and then continuing.
27399 @subsubheading @value{GDBN} Command
27401 The corresponding @value{GDBN} command is @samp{commands}.
27403 @subsubheading Example
27408 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
27409 enabled="y",addr="0x000100d0",func="main",file="hello.c",
27410 fullname="/home/foo/hello.c",line="5",times="0"@}
27412 -break-commands 1 "print v" "continue"
27417 @subheading The @code{-break-condition} Command
27418 @findex -break-condition
27420 @subsubheading Synopsis
27423 -break-condition @var{number} @var{expr}
27426 Breakpoint @var{number} will stop the program only if the condition in
27427 @var{expr} is true. The condition becomes part of the
27428 @samp{-break-list} output (see the description of the @samp{-break-list}
27431 @subsubheading @value{GDBN} Command
27433 The corresponding @value{GDBN} command is @samp{condition}.
27435 @subsubheading Example
27439 -break-condition 1 1
27443 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
27444 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27445 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27446 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27447 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27448 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27449 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27450 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27451 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
27452 line="5",cond="1",times="0",ignore="3"@}]@}
27456 @subheading The @code{-break-delete} Command
27457 @findex -break-delete
27459 @subsubheading Synopsis
27462 -break-delete ( @var{breakpoint} )+
27465 Delete the breakpoint(s) whose number(s) are specified in the argument
27466 list. This is obviously reflected in the breakpoint list.
27468 @subsubheading @value{GDBN} Command
27470 The corresponding @value{GDBN} command is @samp{delete}.
27472 @subsubheading Example
27480 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
27481 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27482 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27483 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27484 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27485 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27486 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27491 @subheading The @code{-break-disable} Command
27492 @findex -break-disable
27494 @subsubheading Synopsis
27497 -break-disable ( @var{breakpoint} )+
27500 Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
27501 break list is now set to @samp{n} for the named @var{breakpoint}(s).
27503 @subsubheading @value{GDBN} Command
27505 The corresponding @value{GDBN} command is @samp{disable}.
27507 @subsubheading Example
27515 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
27516 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27517 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27518 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27519 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27520 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27521 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27522 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
27523 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
27524 line="5",times="0"@}]@}
27528 @subheading The @code{-break-enable} Command
27529 @findex -break-enable
27531 @subsubheading Synopsis
27534 -break-enable ( @var{breakpoint} )+
27537 Enable (previously disabled) @var{breakpoint}(s).
27539 @subsubheading @value{GDBN} Command
27541 The corresponding @value{GDBN} command is @samp{enable}.
27543 @subsubheading Example
27551 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
27552 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27553 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27554 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27555 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27556 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27557 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27558 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
27559 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
27560 line="5",times="0"@}]@}
27564 @subheading The @code{-break-info} Command
27565 @findex -break-info
27567 @subsubheading Synopsis
27570 -break-info @var{breakpoint}
27574 Get information about a single breakpoint.
27576 @subsubheading @value{GDBN} Command
27578 The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
27580 @subsubheading Example
27583 @subheading The @code{-break-insert} Command
27584 @findex -break-insert
27586 @subsubheading Synopsis
27589 -break-insert [ -t ] [ -h ] [ -f ] [ -d ] [ -a ]
27590 [ -c @var{condition} ] [ -i @var{ignore-count} ]
27591 [ -p @var{thread} ] [ @var{location} ]
27595 If specified, @var{location}, can be one of:
27602 @item filename:linenum
27603 @item filename:function
27607 The possible optional parameters of this command are:
27611 Insert a temporary breakpoint.
27613 Insert a hardware breakpoint.
27614 @item -c @var{condition}
27615 Make the breakpoint conditional on @var{condition}.
27616 @item -i @var{ignore-count}
27617 Initialize the @var{ignore-count}.
27619 If @var{location} cannot be parsed (for example if it
27620 refers to unknown files or functions), create a pending
27621 breakpoint. Without this flag, @value{GDBN} will report
27622 an error, and won't create a breakpoint, if @var{location}
27625 Create a disabled breakpoint.
27627 Create a tracepoint. @xref{Tracepoints}. When this parameter
27628 is used together with @samp{-h}, a fast tracepoint is created.
27631 @subsubheading Result
27633 The result is in the form:
27636 ^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
27637 enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
27638 fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
27639 times="@var{times}"@}
27643 where @var{number} is the @value{GDBN} number for this breakpoint,
27644 @var{funcname} is the name of the function where the breakpoint was
27645 inserted, @var{filename} is the name of the source file which contains
27646 this function, @var{lineno} is the source line number within that file
27647 and @var{times} the number of times that the breakpoint has been hit
27648 (always 0 for -break-insert but may be greater for -break-info or -break-list
27649 which use the same output).
27651 Note: this format is open to change.
27652 @c An out-of-band breakpoint instead of part of the result?
27654 @subsubheading @value{GDBN} Command
27656 The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
27657 @samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
27659 @subsubheading Example
27664 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
27665 fullname="/home/foo/recursive2.c,line="4",times="0"@}
27667 -break-insert -t foo
27668 ^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
27669 fullname="/home/foo/recursive2.c,line="11",times="0"@}
27672 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
27673 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27674 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27675 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27676 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27677 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27678 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27679 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27680 addr="0x0001072c", func="main",file="recursive2.c",
27681 fullname="/home/foo/recursive2.c,"line="4",times="0"@},
27682 bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
27683 addr="0x00010774",func="foo",file="recursive2.c",
27684 fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
27686 -break-insert -r foo.*
27687 ~int foo(int, int);
27688 ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
27689 "fullname="/home/foo/recursive2.c",line="11",times="0"@}
27693 @subheading The @code{-break-list} Command
27694 @findex -break-list
27696 @subsubheading Synopsis
27702 Displays the list of inserted breakpoints, showing the following fields:
27706 number of the breakpoint
27708 type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
27710 should the breakpoint be deleted or disabled when it is hit: @samp{keep}
27713 is the breakpoint enabled or no: @samp{y} or @samp{n}
27715 memory location at which the breakpoint is set
27717 logical location of the breakpoint, expressed by function name, file
27720 number of times the breakpoint has been hit
27723 If there are no breakpoints or watchpoints, the @code{BreakpointTable}
27724 @code{body} field is an empty list.
27726 @subsubheading @value{GDBN} Command
27728 The corresponding @value{GDBN} command is @samp{info break}.
27730 @subsubheading Example
27735 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
27736 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27737 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27738 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27739 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27740 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27741 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27742 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27743 addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
27744 bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
27745 addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
27746 line="13",times="0"@}]@}
27750 Here's an example of the result when there are no breakpoints:
27755 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
27756 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27757 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27758 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27759 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27760 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27761 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27766 @subheading The @code{-break-passcount} Command
27767 @findex -break-passcount
27769 @subsubheading Synopsis
27772 -break-passcount @var{tracepoint-number} @var{passcount}
27775 Set the passcount for tracepoint @var{tracepoint-number} to
27776 @var{passcount}. If the breakpoint referred to by @var{tracepoint-number}
27777 is not a tracepoint, error is emitted. This corresponds to CLI
27778 command @samp{passcount}.
27780 @subheading The @code{-break-watch} Command
27781 @findex -break-watch
27783 @subsubheading Synopsis
27786 -break-watch [ -a | -r ]
27789 Create a watchpoint. With the @samp{-a} option it will create an
27790 @dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
27791 read from or on a write to the memory location. With the @samp{-r}
27792 option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
27793 trigger only when the memory location is accessed for reading. Without
27794 either of the options, the watchpoint created is a regular watchpoint,
27795 i.e., it will trigger when the memory location is accessed for writing.
27796 @xref{Set Watchpoints, , Setting Watchpoints}.
27798 Note that @samp{-break-list} will report a single list of watchpoints and
27799 breakpoints inserted.
27801 @subsubheading @value{GDBN} Command
27803 The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
27806 @subsubheading Example
27808 Setting a watchpoint on a variable in the @code{main} function:
27813 ^done,wpt=@{number="2",exp="x"@}
27818 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
27819 value=@{old="-268439212",new="55"@},
27820 frame=@{func="main",args=[],file="recursive2.c",
27821 fullname="/home/foo/bar/recursive2.c",line="5"@}
27825 Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
27826 the program execution twice: first for the variable changing value, then
27827 for the watchpoint going out of scope.
27832 ^done,wpt=@{number="5",exp="C"@}
27837 *stopped,reason="watchpoint-trigger",
27838 wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
27839 frame=@{func="callee4",args=[],
27840 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27841 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
27846 *stopped,reason="watchpoint-scope",wpnum="5",
27847 frame=@{func="callee3",args=[@{name="strarg",
27848 value="0x11940 \"A string argument.\""@}],
27849 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27850 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
27854 Listing breakpoints and watchpoints, at different points in the program
27855 execution. Note that once the watchpoint goes out of scope, it is
27861 ^done,wpt=@{number="2",exp="C"@}
27864 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
27865 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27866 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27867 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27868 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27869 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27870 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27871 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27872 addr="0x00010734",func="callee4",
27873 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27874 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
27875 bkpt=@{number="2",type="watchpoint",disp="keep",
27876 enabled="y",addr="",what="C",times="0"@}]@}
27881 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
27882 value=@{old="-276895068",new="3"@},
27883 frame=@{func="callee4",args=[],
27884 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27885 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
27888 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
27889 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27890 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27891 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27892 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27893 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27894 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27895 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27896 addr="0x00010734",func="callee4",
27897 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27898 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
27899 bkpt=@{number="2",type="watchpoint",disp="keep",
27900 enabled="y",addr="",what="C",times="-5"@}]@}
27904 ^done,reason="watchpoint-scope",wpnum="2",
27905 frame=@{func="callee3",args=[@{name="strarg",
27906 value="0x11940 \"A string argument.\""@}],
27907 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27908 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
27911 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
27912 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
27913 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
27914 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
27915 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
27916 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
27917 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
27918 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
27919 addr="0x00010734",func="callee4",
27920 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27921 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
27926 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27927 @node GDB/MI Program Context
27928 @section @sc{gdb/mi} Program Context
27930 @subheading The @code{-exec-arguments} Command
27931 @findex -exec-arguments
27934 @subsubheading Synopsis
27937 -exec-arguments @var{args}
27940 Set the inferior program arguments, to be used in the next
27943 @subsubheading @value{GDBN} Command
27945 The corresponding @value{GDBN} command is @samp{set args}.
27947 @subsubheading Example
27951 -exec-arguments -v word
27958 @subheading The @code{-exec-show-arguments} Command
27959 @findex -exec-show-arguments
27961 @subsubheading Synopsis
27964 -exec-show-arguments
27967 Print the arguments of the program.
27969 @subsubheading @value{GDBN} Command
27971 The corresponding @value{GDBN} command is @samp{show args}.
27973 @subsubheading Example
27978 @subheading The @code{-environment-cd} Command
27979 @findex -environment-cd
27981 @subsubheading Synopsis
27984 -environment-cd @var{pathdir}
27987 Set @value{GDBN}'s working directory.
27989 @subsubheading @value{GDBN} Command
27991 The corresponding @value{GDBN} command is @samp{cd}.
27993 @subsubheading Example
27997 -environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
28003 @subheading The @code{-environment-directory} Command
28004 @findex -environment-directory
28006 @subsubheading Synopsis
28009 -environment-directory [ -r ] [ @var{pathdir} ]+
28012 Add directories @var{pathdir} to beginning of search path for source files.
28013 If the @samp{-r} option is used, the search path is reset to the default
28014 search path. If directories @var{pathdir} are supplied in addition to the
28015 @samp{-r} option, the search path is first reset and then addition
28017 Multiple directories may be specified, separated by blanks. Specifying
28018 multiple directories in a single command
28019 results in the directories added to the beginning of the
28020 search path in the same order they were presented in the command.
28021 If blanks are needed as
28022 part of a directory name, double-quotes should be used around
28023 the name. In the command output, the path will show up separated
28024 by the system directory-separator character. The directory-separator
28025 character must not be used
28026 in any directory name.
28027 If no directories are specified, the current search path is displayed.
28029 @subsubheading @value{GDBN} Command
28031 The corresponding @value{GDBN} command is @samp{dir}.
28033 @subsubheading Example
28037 -environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
28038 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
28040 -environment-directory ""
28041 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
28043 -environment-directory -r /home/jjohnstn/src/gdb /usr/src
28044 ^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
28046 -environment-directory -r
28047 ^done,source-path="$cdir:$cwd"
28052 @subheading The @code{-environment-path} Command
28053 @findex -environment-path
28055 @subsubheading Synopsis
28058 -environment-path [ -r ] [ @var{pathdir} ]+
28061 Add directories @var{pathdir} to beginning of search path for object files.
28062 If the @samp{-r} option is used, the search path is reset to the original
28063 search path that existed at gdb start-up. If directories @var{pathdir} are
28064 supplied in addition to the
28065 @samp{-r} option, the search path is first reset and then addition
28067 Multiple directories may be specified, separated by blanks. Specifying
28068 multiple directories in a single command
28069 results in the directories added to the beginning of the
28070 search path in the same order they were presented in the command.
28071 If blanks are needed as
28072 part of a directory name, double-quotes should be used around
28073 the name. In the command output, the path will show up separated
28074 by the system directory-separator character. The directory-separator
28075 character must not be used
28076 in any directory name.
28077 If no directories are specified, the current path is displayed.
28080 @subsubheading @value{GDBN} Command
28082 The corresponding @value{GDBN} command is @samp{path}.
28084 @subsubheading Example
28089 ^done,path="/usr/bin"
28091 -environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
28092 ^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
28094 -environment-path -r /usr/local/bin
28095 ^done,path="/usr/local/bin:/usr/bin"
28100 @subheading The @code{-environment-pwd} Command
28101 @findex -environment-pwd
28103 @subsubheading Synopsis
28109 Show the current working directory.
28111 @subsubheading @value{GDBN} Command
28113 The corresponding @value{GDBN} command is @samp{pwd}.
28115 @subsubheading Example
28120 ^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
28124 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28125 @node GDB/MI Thread Commands
28126 @section @sc{gdb/mi} Thread Commands
28129 @subheading The @code{-thread-info} Command
28130 @findex -thread-info
28132 @subsubheading Synopsis
28135 -thread-info [ @var{thread-id} ]
28138 Reports information about either a specific thread, if
28139 the @var{thread-id} parameter is present, or about all
28140 threads. When printing information about all threads,
28141 also reports the current thread.
28143 @subsubheading @value{GDBN} Command
28145 The @samp{info thread} command prints the same information
28148 @subsubheading Result
28150 The result is a list of threads. The following attributes are
28151 defined for a given thread:
28155 This field exists only for the current thread. It has the value @samp{*}.
28158 The identifier that @value{GDBN} uses to refer to the thread.
28161 The identifier that the target uses to refer to the thread.
28164 Extra information about the thread, in a target-specific format. This
28168 The name of the thread. If the user specified a name using the
28169 @code{thread name} command, then this name is given. Otherwise, if
28170 @value{GDBN} can extract the thread name from the target, then that
28171 name is given. If @value{GDBN} cannot find the thread name, then this
28175 The stack frame currently executing in the thread.
28178 The thread's state. The @samp{state} field may have the following
28183 The thread is stopped. Frame information is available for stopped
28187 The thread is running. There's no frame information for running
28193 If @value{GDBN} can find the CPU core on which this thread is running,
28194 then this field is the core identifier. This field is optional.
28198 @subsubheading Example
28203 @{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
28204 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",
28205 args=[]@},state="running"@},
28206 @{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
28207 frame=@{level="0",addr="0x0804891f",func="foo",
28208 args=[@{name="i",value="10"@}],
28209 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@},
28210 state="running"@}],
28211 current-thread-id="1"
28215 @subheading The @code{-thread-list-ids} Command
28216 @findex -thread-list-ids
28218 @subsubheading Synopsis
28224 Produces a list of the currently known @value{GDBN} thread ids. At the
28225 end of the list it also prints the total number of such threads.
28227 This command is retained for historical reasons, the
28228 @code{-thread-info} command should be used instead.
28230 @subsubheading @value{GDBN} Command
28232 Part of @samp{info threads} supplies the same information.
28234 @subsubheading Example
28239 ^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
28240 current-thread-id="1",number-of-threads="3"
28245 @subheading The @code{-thread-select} Command
28246 @findex -thread-select
28248 @subsubheading Synopsis
28251 -thread-select @var{threadnum}
28254 Make @var{threadnum} the current thread. It prints the number of the new
28255 current thread, and the topmost frame for that thread.
28257 This command is deprecated in favor of explicitly using the
28258 @samp{--thread} option to each command.
28260 @subsubheading @value{GDBN} Command
28262 The corresponding @value{GDBN} command is @samp{thread}.
28264 @subsubheading Example
28271 *stopped,reason="end-stepping-range",thread-id="2",line="187",
28272 file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
28276 thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
28277 number-of-threads="3"
28280 ^done,new-thread-id="3",
28281 frame=@{level="0",func="vprintf",
28282 args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
28283 @{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
28287 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28288 @node GDB/MI Ada Tasking Commands
28289 @section @sc{gdb/mi} Ada Tasking Commands
28291 @subheading The @code{-ada-task-info} Command
28292 @findex -ada-task-info
28294 @subsubheading Synopsis
28297 -ada-task-info [ @var{task-id} ]
28300 Reports information about either a specific Ada task, if the
28301 @var{task-id} parameter is present, or about all Ada tasks.
28303 @subsubheading @value{GDBN} Command
28305 The @samp{info tasks} command prints the same information
28306 about all Ada tasks (@pxref{Ada Tasks}).
28308 @subsubheading Result
28310 The result is a table of Ada tasks. The following columns are
28311 defined for each Ada task:
28315 This field exists only for the current thread. It has the value @samp{*}.
28318 The identifier that @value{GDBN} uses to refer to the Ada task.
28321 The identifier that the target uses to refer to the Ada task.
28324 The identifier of the thread corresponding to the Ada task.
28326 This field should always exist, as Ada tasks are always implemented
28327 on top of a thread. But if @value{GDBN} cannot find this corresponding
28328 thread for any reason, the field is omitted.
28331 This field exists only when the task was created by another task.
28332 In this case, it provides the ID of the parent task.
28335 The base priority of the task.
28338 The current state of the task. For a detailed description of the
28339 possible states, see @ref{Ada Tasks}.
28342 The name of the task.
28346 @subsubheading Example
28350 ^done,tasks=@{nr_rows="3",nr_cols="8",
28351 hdr=[@{width="1",alignment="-1",col_name="current",colhdr=""@},
28352 @{width="3",alignment="1",col_name="id",colhdr="ID"@},
28353 @{width="9",alignment="1",col_name="task-id",colhdr="TID"@},
28354 @{width="4",alignment="1",col_name="thread-id",colhdr=""@},
28355 @{width="4",alignment="1",col_name="parent-id",colhdr="P-ID"@},
28356 @{width="3",alignment="1",col_name="priority",colhdr="Pri"@},
28357 @{width="22",alignment="-1",col_name="state",colhdr="State"@},
28358 @{width="1",alignment="2",col_name="name",colhdr="Name"@}],
28359 body=[@{current="*",id="1",task-id=" 644010",thread-id="1",priority="48",
28360 state="Child Termination Wait",name="main_task"@}]@}
28364 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28365 @node GDB/MI Program Execution
28366 @section @sc{gdb/mi} Program Execution
28368 These are the asynchronous commands which generate the out-of-band
28369 record @samp{*stopped}. Currently @value{GDBN} only really executes
28370 asynchronously with remote targets and this interaction is mimicked in
28373 @subheading The @code{-exec-continue} Command
28374 @findex -exec-continue
28376 @subsubheading Synopsis
28379 -exec-continue [--reverse] [--all|--thread-group N]
28382 Resumes the execution of the inferior program, which will continue
28383 to execute until it reaches a debugger stop event. If the
28384 @samp{--reverse} option is specified, execution resumes in reverse until
28385 it reaches a stop event. Stop events may include
28388 breakpoints or watchpoints
28390 signals or exceptions
28392 the end of the process (or its beginning under @samp{--reverse})
28394 the end or beginning of a replay log if one is being used.
28396 In all-stop mode (@pxref{All-Stop
28397 Mode}), may resume only one thread, or all threads, depending on the
28398 value of the @samp{scheduler-locking} variable. If @samp{--all} is
28399 specified, all threads (in all inferiors) will be resumed. The @samp{--all} option is
28400 ignored in all-stop mode. If the @samp{--thread-group} options is
28401 specified, then all threads in that thread group are resumed.
28403 @subsubheading @value{GDBN} Command
28405 The corresponding @value{GDBN} corresponding is @samp{continue}.
28407 @subsubheading Example
28414 *stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
28415 func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
28421 @subheading The @code{-exec-finish} Command
28422 @findex -exec-finish
28424 @subsubheading Synopsis
28427 -exec-finish [--reverse]
28430 Resumes the execution of the inferior program until the current
28431 function is exited. Displays the results returned by the function.
28432 If the @samp{--reverse} option is specified, resumes the reverse
28433 execution of the inferior program until the point where current
28434 function was called.
28436 @subsubheading @value{GDBN} Command
28438 The corresponding @value{GDBN} command is @samp{finish}.
28440 @subsubheading Example
28442 Function returning @code{void}.
28449 *stopped,reason="function-finished",frame=@{func="main",args=[],
28450 file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
28454 Function returning other than @code{void}. The name of the internal
28455 @value{GDBN} variable storing the result is printed, together with the
28462 *stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
28463 args=[@{name="a",value="1"],@{name="b",value="9"@}@},
28464 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28465 gdb-result-var="$1",return-value="0"
28470 @subheading The @code{-exec-interrupt} Command
28471 @findex -exec-interrupt
28473 @subsubheading Synopsis
28476 -exec-interrupt [--all|--thread-group N]
28479 Interrupts the background execution of the target. Note how the token
28480 associated with the stop message is the one for the execution command
28481 that has been interrupted. The token for the interrupt itself only
28482 appears in the @samp{^done} output. If the user is trying to
28483 interrupt a non-running program, an error message will be printed.
28485 Note that when asynchronous execution is enabled, this command is
28486 asynchronous just like other execution commands. That is, first the
28487 @samp{^done} response will be printed, and the target stop will be
28488 reported after that using the @samp{*stopped} notification.
28490 In non-stop mode, only the context thread is interrupted by default.
28491 All threads (in all inferiors) will be interrupted if the
28492 @samp{--all} option is specified. If the @samp{--thread-group}
28493 option is specified, all threads in that group will be interrupted.
28495 @subsubheading @value{GDBN} Command
28497 The corresponding @value{GDBN} command is @samp{interrupt}.
28499 @subsubheading Example
28510 111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
28511 frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
28512 fullname="/home/foo/bar/try.c",line="13"@}
28517 ^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
28521 @subheading The @code{-exec-jump} Command
28524 @subsubheading Synopsis
28527 -exec-jump @var{location}
28530 Resumes execution of the inferior program at the location specified by
28531 parameter. @xref{Specify Location}, for a description of the
28532 different forms of @var{location}.
28534 @subsubheading @value{GDBN} Command
28536 The corresponding @value{GDBN} command is @samp{jump}.
28538 @subsubheading Example
28541 -exec-jump foo.c:10
28542 *running,thread-id="all"
28547 @subheading The @code{-exec-next} Command
28550 @subsubheading Synopsis
28553 -exec-next [--reverse]
28556 Resumes execution of the inferior program, stopping when the beginning
28557 of the next source line is reached.
28559 If the @samp{--reverse} option is specified, resumes reverse execution
28560 of the inferior program, stopping at the beginning of the previous
28561 source line. If you issue this command on the first line of a
28562 function, it will take you back to the caller of that function, to the
28563 source line where the function was called.
28566 @subsubheading @value{GDBN} Command
28568 The corresponding @value{GDBN} command is @samp{next}.
28570 @subsubheading Example
28576 *stopped,reason="end-stepping-range",line="8",file="hello.c"
28581 @subheading The @code{-exec-next-instruction} Command
28582 @findex -exec-next-instruction
28584 @subsubheading Synopsis
28587 -exec-next-instruction [--reverse]
28590 Executes one machine instruction. If the instruction is a function
28591 call, continues until the function returns. If the program stops at an
28592 instruction in the middle of a source line, the address will be
28595 If the @samp{--reverse} option is specified, resumes reverse execution
28596 of the inferior program, stopping at the previous instruction. If the
28597 previously executed instruction was a return from another function,
28598 it will continue to execute in reverse until the call to that function
28599 (from the current stack frame) is reached.
28601 @subsubheading @value{GDBN} Command
28603 The corresponding @value{GDBN} command is @samp{nexti}.
28605 @subsubheading Example
28609 -exec-next-instruction
28613 *stopped,reason="end-stepping-range",
28614 addr="0x000100d4",line="5",file="hello.c"
28619 @subheading The @code{-exec-return} Command
28620 @findex -exec-return
28622 @subsubheading Synopsis
28628 Makes current function return immediately. Doesn't execute the inferior.
28629 Displays the new current frame.
28631 @subsubheading @value{GDBN} Command
28633 The corresponding @value{GDBN} command is @samp{return}.
28635 @subsubheading Example
28639 200-break-insert callee4
28640 200^done,bkpt=@{number="1",addr="0x00010734",
28641 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
28646 000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
28647 frame=@{func="callee4",args=[],
28648 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28649 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
28655 111^done,frame=@{level="0",func="callee3",
28656 args=[@{name="strarg",
28657 value="0x11940 \"A string argument.\""@}],
28658 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28659 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
28664 @subheading The @code{-exec-run} Command
28667 @subsubheading Synopsis
28670 -exec-run [--all | --thread-group N]
28673 Starts execution of the inferior from the beginning. The inferior
28674 executes until either a breakpoint is encountered or the program
28675 exits. In the latter case the output will include an exit code, if
28676 the program has exited exceptionally.
28678 When no option is specified, the current inferior is started. If the
28679 @samp{--thread-group} option is specified, it should refer to a thread
28680 group of type @samp{process}, and that thread group will be started.
28681 If the @samp{--all} option is specified, then all inferiors will be started.
28683 @subsubheading @value{GDBN} Command
28685 The corresponding @value{GDBN} command is @samp{run}.
28687 @subsubheading Examples
28692 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
28697 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
28698 frame=@{func="main",args=[],file="recursive2.c",
28699 fullname="/home/foo/bar/recursive2.c",line="4"@}
28704 Program exited normally:
28712 *stopped,reason="exited-normally"
28717 Program exited exceptionally:
28725 *stopped,reason="exited",exit-code="01"
28729 Another way the program can terminate is if it receives a signal such as
28730 @code{SIGINT}. In this case, @sc{gdb/mi} displays this:
28734 *stopped,reason="exited-signalled",signal-name="SIGINT",
28735 signal-meaning="Interrupt"
28739 @c @subheading -exec-signal
28742 @subheading The @code{-exec-step} Command
28745 @subsubheading Synopsis
28748 -exec-step [--reverse]
28751 Resumes execution of the inferior program, stopping when the beginning
28752 of the next source line is reached, if the next source line is not a
28753 function call. If it is, stop at the first instruction of the called
28754 function. If the @samp{--reverse} option is specified, resumes reverse
28755 execution of the inferior program, stopping at the beginning of the
28756 previously executed source line.
28758 @subsubheading @value{GDBN} Command
28760 The corresponding @value{GDBN} command is @samp{step}.
28762 @subsubheading Example
28764 Stepping into a function:
28770 *stopped,reason="end-stepping-range",
28771 frame=@{func="foo",args=[@{name="a",value="10"@},
28772 @{name="b",value="0"@}],file="recursive2.c",
28773 fullname="/home/foo/bar/recursive2.c",line="11"@}
28783 *stopped,reason="end-stepping-range",line="14",file="recursive2.c"
28788 @subheading The @code{-exec-step-instruction} Command
28789 @findex -exec-step-instruction
28791 @subsubheading Synopsis
28794 -exec-step-instruction [--reverse]
28797 Resumes the inferior which executes one machine instruction. If the
28798 @samp{--reverse} option is specified, resumes reverse execution of the
28799 inferior program, stopping at the previously executed instruction.
28800 The output, once @value{GDBN} has stopped, will vary depending on
28801 whether we have stopped in the middle of a source line or not. In the
28802 former case, the address at which the program stopped will be printed
28805 @subsubheading @value{GDBN} Command
28807 The corresponding @value{GDBN} command is @samp{stepi}.
28809 @subsubheading Example
28813 -exec-step-instruction
28817 *stopped,reason="end-stepping-range",
28818 frame=@{func="foo",args=[],file="try.c",
28819 fullname="/home/foo/bar/try.c",line="10"@}
28821 -exec-step-instruction
28825 *stopped,reason="end-stepping-range",
28826 frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
28827 fullname="/home/foo/bar/try.c",line="10"@}
28832 @subheading The @code{-exec-until} Command
28833 @findex -exec-until
28835 @subsubheading Synopsis
28838 -exec-until [ @var{location} ]
28841 Executes the inferior until the @var{location} specified in the
28842 argument is reached. If there is no argument, the inferior executes
28843 until a source line greater than the current one is reached. The
28844 reason for stopping in this case will be @samp{location-reached}.
28846 @subsubheading @value{GDBN} Command
28848 The corresponding @value{GDBN} command is @samp{until}.
28850 @subsubheading Example
28854 -exec-until recursive2.c:6
28858 *stopped,reason="location-reached",frame=@{func="main",args=[],
28859 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
28864 @subheading -file-clear
28865 Is this going away????
28868 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28869 @node GDB/MI Stack Manipulation
28870 @section @sc{gdb/mi} Stack Manipulation Commands
28873 @subheading The @code{-stack-info-frame} Command
28874 @findex -stack-info-frame
28876 @subsubheading Synopsis
28882 Get info on the selected frame.
28884 @subsubheading @value{GDBN} Command
28886 The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
28887 (without arguments).
28889 @subsubheading Example
28894 ^done,frame=@{level="1",addr="0x0001076c",func="callee3",
28895 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28896 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
28900 @subheading The @code{-stack-info-depth} Command
28901 @findex -stack-info-depth
28903 @subsubheading Synopsis
28906 -stack-info-depth [ @var{max-depth} ]
28909 Return the depth of the stack. If the integer argument @var{max-depth}
28910 is specified, do not count beyond @var{max-depth} frames.
28912 @subsubheading @value{GDBN} Command
28914 There's no equivalent @value{GDBN} command.
28916 @subsubheading Example
28918 For a stack with frame levels 0 through 11:
28925 -stack-info-depth 4
28928 -stack-info-depth 12
28931 -stack-info-depth 11
28934 -stack-info-depth 13
28939 @subheading The @code{-stack-list-arguments} Command
28940 @findex -stack-list-arguments
28942 @subsubheading Synopsis
28945 -stack-list-arguments @var{print-values}
28946 [ @var{low-frame} @var{high-frame} ]
28949 Display a list of the arguments for the frames between @var{low-frame}
28950 and @var{high-frame} (inclusive). If @var{low-frame} and
28951 @var{high-frame} are not provided, list the arguments for the whole
28952 call stack. If the two arguments are equal, show the single frame
28953 at the corresponding level. It is an error if @var{low-frame} is
28954 larger than the actual number of frames. On the other hand,
28955 @var{high-frame} may be larger than the actual number of frames, in
28956 which case only existing frames will be returned.
28958 If @var{print-values} is 0 or @code{--no-values}, print only the names of
28959 the variables; if it is 1 or @code{--all-values}, print also their
28960 values; and if it is 2 or @code{--simple-values}, print the name,
28961 type and value for simple data types, and the name and type for arrays,
28962 structures and unions.
28964 Use of this command to obtain arguments in a single frame is
28965 deprecated in favor of the @samp{-stack-list-variables} command.
28967 @subsubheading @value{GDBN} Command
28969 @value{GDBN} does not have an equivalent command. @code{gdbtk} has a
28970 @samp{gdb_get_args} command which partially overlaps with the
28971 functionality of @samp{-stack-list-arguments}.
28973 @subsubheading Example
28980 frame=@{level="0",addr="0x00010734",func="callee4",
28981 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28982 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
28983 frame=@{level="1",addr="0x0001076c",func="callee3",
28984 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28985 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
28986 frame=@{level="2",addr="0x0001078c",func="callee2",
28987 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28988 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
28989 frame=@{level="3",addr="0x000107b4",func="callee1",
28990 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28991 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
28992 frame=@{level="4",addr="0x000107e0",func="main",
28993 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28994 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
28996 -stack-list-arguments 0
28999 frame=@{level="0",args=[]@},
29000 frame=@{level="1",args=[name="strarg"]@},
29001 frame=@{level="2",args=[name="intarg",name="strarg"]@},
29002 frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
29003 frame=@{level="4",args=[]@}]
29005 -stack-list-arguments 1
29008 frame=@{level="0",args=[]@},
29010 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
29011 frame=@{level="2",args=[
29012 @{name="intarg",value="2"@},
29013 @{name="strarg",value="0x11940 \"A string argument.\""@}]@},
29014 @{frame=@{level="3",args=[
29015 @{name="intarg",value="2"@},
29016 @{name="strarg",value="0x11940 \"A string argument.\""@},
29017 @{name="fltarg",value="3.5"@}]@},
29018 frame=@{level="4",args=[]@}]
29020 -stack-list-arguments 0 2 2
29021 ^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
29023 -stack-list-arguments 1 2 2
29024 ^done,stack-args=[frame=@{level="2",
29025 args=[@{name="intarg",value="2"@},
29026 @{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
29030 @c @subheading -stack-list-exception-handlers
29033 @subheading The @code{-stack-list-frames} Command
29034 @findex -stack-list-frames
29036 @subsubheading Synopsis
29039 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
29042 List the frames currently on the stack. For each frame it displays the
29047 The frame number, 0 being the topmost frame, i.e., the innermost function.
29049 The @code{$pc} value for that frame.
29053 File name of the source file where the function lives.
29054 @item @var{fullname}
29055 The full file name of the source file where the function lives.
29057 Line number corresponding to the @code{$pc}.
29059 The shared library where this function is defined. This is only given
29060 if the frame's function is not known.
29063 If invoked without arguments, this command prints a backtrace for the
29064 whole stack. If given two integer arguments, it shows the frames whose
29065 levels are between the two arguments (inclusive). If the two arguments
29066 are equal, it shows the single frame at the corresponding level. It is
29067 an error if @var{low-frame} is larger than the actual number of
29068 frames. On the other hand, @var{high-frame} may be larger than the
29069 actual number of frames, in which case only existing frames will be returned.
29071 @subsubheading @value{GDBN} Command
29073 The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
29075 @subsubheading Example
29077 Full stack backtrace:
29083 [frame=@{level="0",addr="0x0001076c",func="foo",
29084 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
29085 frame=@{level="1",addr="0x000107a4",func="foo",
29086 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29087 frame=@{level="2",addr="0x000107a4",func="foo",
29088 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29089 frame=@{level="3",addr="0x000107a4",func="foo",
29090 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29091 frame=@{level="4",addr="0x000107a4",func="foo",
29092 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29093 frame=@{level="5",addr="0x000107a4",func="foo",
29094 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29095 frame=@{level="6",addr="0x000107a4",func="foo",
29096 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29097 frame=@{level="7",addr="0x000107a4",func="foo",
29098 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29099 frame=@{level="8",addr="0x000107a4",func="foo",
29100 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29101 frame=@{level="9",addr="0x000107a4",func="foo",
29102 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29103 frame=@{level="10",addr="0x000107a4",func="foo",
29104 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29105 frame=@{level="11",addr="0x00010738",func="main",
29106 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
29110 Show frames between @var{low_frame} and @var{high_frame}:
29114 -stack-list-frames 3 5
29116 [frame=@{level="3",addr="0x000107a4",func="foo",
29117 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29118 frame=@{level="4",addr="0x000107a4",func="foo",
29119 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
29120 frame=@{level="5",addr="0x000107a4",func="foo",
29121 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
29125 Show a single frame:
29129 -stack-list-frames 3 3
29131 [frame=@{level="3",addr="0x000107a4",func="foo",
29132 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
29137 @subheading The @code{-stack-list-locals} Command
29138 @findex -stack-list-locals
29140 @subsubheading Synopsis
29143 -stack-list-locals @var{print-values}
29146 Display the local variable names for the selected frame. If
29147 @var{print-values} is 0 or @code{--no-values}, print only the names of
29148 the variables; if it is 1 or @code{--all-values}, print also their
29149 values; and if it is 2 or @code{--simple-values}, print the name,
29150 type and value for simple data types, and the name and type for arrays,
29151 structures and unions. In this last case, a frontend can immediately
29152 display the value of simple data types and create variable objects for
29153 other data types when the user wishes to explore their values in
29156 This command is deprecated in favor of the
29157 @samp{-stack-list-variables} command.
29159 @subsubheading @value{GDBN} Command
29161 @samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
29163 @subsubheading Example
29167 -stack-list-locals 0
29168 ^done,locals=[name="A",name="B",name="C"]
29170 -stack-list-locals --all-values
29171 ^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
29172 @{name="C",value="@{1, 2, 3@}"@}]
29173 -stack-list-locals --simple-values
29174 ^done,locals=[@{name="A",type="int",value="1"@},
29175 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
29179 @subheading The @code{-stack-list-variables} Command
29180 @findex -stack-list-variables
29182 @subsubheading Synopsis
29185 -stack-list-variables @var{print-values}
29188 Display the names of local variables and function arguments for the selected frame. If
29189 @var{print-values} is 0 or @code{--no-values}, print only the names of
29190 the variables; if it is 1 or @code{--all-values}, print also their
29191 values; and if it is 2 or @code{--simple-values}, print the name,
29192 type and value for simple data types, and the name and type for arrays,
29193 structures and unions.
29195 @subsubheading Example
29199 -stack-list-variables --thread 1 --frame 0 --all-values
29200 ^done,variables=[@{name="x",value="11"@},@{name="s",value="@{a = 1, b = 2@}"@}]
29205 @subheading The @code{-stack-select-frame} Command
29206 @findex -stack-select-frame
29208 @subsubheading Synopsis
29211 -stack-select-frame @var{framenum}
29214 Change the selected frame. Select a different frame @var{framenum} on
29217 This command in deprecated in favor of passing the @samp{--frame}
29218 option to every command.
29220 @subsubheading @value{GDBN} Command
29222 The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
29223 @samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
29225 @subsubheading Example
29229 -stack-select-frame 2
29234 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29235 @node GDB/MI Variable Objects
29236 @section @sc{gdb/mi} Variable Objects
29240 @subheading Motivation for Variable Objects in @sc{gdb/mi}
29242 For the implementation of a variable debugger window (locals, watched
29243 expressions, etc.), we are proposing the adaptation of the existing code
29244 used by @code{Insight}.
29246 The two main reasons for that are:
29250 It has been proven in practice (it is already on its second generation).
29253 It will shorten development time (needless to say how important it is
29257 The original interface was designed to be used by Tcl code, so it was
29258 slightly changed so it could be used through @sc{gdb/mi}. This section
29259 describes the @sc{gdb/mi} operations that will be available and gives some
29260 hints about their use.
29262 @emph{Note}: In addition to the set of operations described here, we
29263 expect the @sc{gui} implementation of a variable window to require, at
29264 least, the following operations:
29267 @item @code{-gdb-show} @code{output-radix}
29268 @item @code{-stack-list-arguments}
29269 @item @code{-stack-list-locals}
29270 @item @code{-stack-select-frame}
29275 @subheading Introduction to Variable Objects
29277 @cindex variable objects in @sc{gdb/mi}
29279 Variable objects are "object-oriented" MI interface for examining and
29280 changing values of expressions. Unlike some other MI interfaces that
29281 work with expressions, variable objects are specifically designed for
29282 simple and efficient presentation in the frontend. A variable object
29283 is identified by string name. When a variable object is created, the
29284 frontend specifies the expression for that variable object. The
29285 expression can be a simple variable, or it can be an arbitrary complex
29286 expression, and can even involve CPU registers. After creating a
29287 variable object, the frontend can invoke other variable object
29288 operations---for example to obtain or change the value of a variable
29289 object, or to change display format.
29291 Variable objects have hierarchical tree structure. Any variable object
29292 that corresponds to a composite type, such as structure in C, has
29293 a number of child variable objects, for example corresponding to each
29294 element of a structure. A child variable object can itself have
29295 children, recursively. Recursion ends when we reach
29296 leaf variable objects, which always have built-in types. Child variable
29297 objects are created only by explicit request, so if a frontend
29298 is not interested in the children of a particular variable object, no
29299 child will be created.
29301 For a leaf variable object it is possible to obtain its value as a
29302 string, or set the value from a string. String value can be also
29303 obtained for a non-leaf variable object, but it's generally a string
29304 that only indicates the type of the object, and does not list its
29305 contents. Assignment to a non-leaf variable object is not allowed.
29307 A frontend does not need to read the values of all variable objects each time
29308 the program stops. Instead, MI provides an update command that lists all
29309 variable objects whose values has changed since the last update
29310 operation. This considerably reduces the amount of data that must
29311 be transferred to the frontend. As noted above, children variable
29312 objects are created on demand, and only leaf variable objects have a
29313 real value. As result, gdb will read target memory only for leaf
29314 variables that frontend has created.
29316 The automatic update is not always desirable. For example, a frontend
29317 might want to keep a value of some expression for future reference,
29318 and never update it. For another example, fetching memory is
29319 relatively slow for embedded targets, so a frontend might want
29320 to disable automatic update for the variables that are either not
29321 visible on the screen, or ``closed''. This is possible using so
29322 called ``frozen variable objects''. Such variable objects are never
29323 implicitly updated.
29325 Variable objects can be either @dfn{fixed} or @dfn{floating}. For the
29326 fixed variable object, the expression is parsed when the variable
29327 object is created, including associating identifiers to specific
29328 variables. The meaning of expression never changes. For a floating
29329 variable object the values of variables whose names appear in the
29330 expressions are re-evaluated every time in the context of the current
29331 frame. Consider this example:
29336 struct work_state state;
29343 If a fixed variable object for the @code{state} variable is created in
29344 this function, and we enter the recursive call, the variable
29345 object will report the value of @code{state} in the top-level
29346 @code{do_work} invocation. On the other hand, a floating variable
29347 object will report the value of @code{state} in the current frame.
29349 If an expression specified when creating a fixed variable object
29350 refers to a local variable, the variable object becomes bound to the
29351 thread and frame in which the variable object is created. When such
29352 variable object is updated, @value{GDBN} makes sure that the
29353 thread/frame combination the variable object is bound to still exists,
29354 and re-evaluates the variable object in context of that thread/frame.
29356 The following is the complete set of @sc{gdb/mi} operations defined to
29357 access this functionality:
29359 @multitable @columnfractions .4 .6
29360 @item @strong{Operation}
29361 @tab @strong{Description}
29363 @item @code{-enable-pretty-printing}
29364 @tab enable Python-based pretty-printing
29365 @item @code{-var-create}
29366 @tab create a variable object
29367 @item @code{-var-delete}
29368 @tab delete the variable object and/or its children
29369 @item @code{-var-set-format}
29370 @tab set the display format of this variable
29371 @item @code{-var-show-format}
29372 @tab show the display format of this variable
29373 @item @code{-var-info-num-children}
29374 @tab tells how many children this object has
29375 @item @code{-var-list-children}
29376 @tab return a list of the object's children
29377 @item @code{-var-info-type}
29378 @tab show the type of this variable object
29379 @item @code{-var-info-expression}
29380 @tab print parent-relative expression that this variable object represents
29381 @item @code{-var-info-path-expression}
29382 @tab print full expression that this variable object represents
29383 @item @code{-var-show-attributes}
29384 @tab is this variable editable? does it exist here?
29385 @item @code{-var-evaluate-expression}
29386 @tab get the value of this variable
29387 @item @code{-var-assign}
29388 @tab set the value of this variable
29389 @item @code{-var-update}
29390 @tab update the variable and its children
29391 @item @code{-var-set-frozen}
29392 @tab set frozeness attribute
29393 @item @code{-var-set-update-range}
29394 @tab set range of children to display on update
29397 In the next subsection we describe each operation in detail and suggest
29398 how it can be used.
29400 @subheading Description And Use of Operations on Variable Objects
29402 @subheading The @code{-enable-pretty-printing} Command
29403 @findex -enable-pretty-printing
29406 -enable-pretty-printing
29409 @value{GDBN} allows Python-based visualizers to affect the output of the
29410 MI variable object commands. However, because there was no way to
29411 implement this in a fully backward-compatible way, a front end must
29412 request that this functionality be enabled.
29414 Once enabled, this feature cannot be disabled.
29416 Note that if Python support has not been compiled into @value{GDBN},
29417 this command will still succeed (and do nothing).
29419 This feature is currently (as of @value{GDBN} 7.0) experimental, and
29420 may work differently in future versions of @value{GDBN}.
29422 @subheading The @code{-var-create} Command
29423 @findex -var-create
29425 @subsubheading Synopsis
29428 -var-create @{@var{name} | "-"@}
29429 @{@var{frame-addr} | "*" | "@@"@} @var{expression}
29432 This operation creates a variable object, which allows the monitoring of
29433 a variable, the result of an expression, a memory cell or a CPU
29436 The @var{name} parameter is the string by which the object can be
29437 referenced. It must be unique. If @samp{-} is specified, the varobj
29438 system will generate a string ``varNNNNNN'' automatically. It will be
29439 unique provided that one does not specify @var{name} of that format.
29440 The command fails if a duplicate name is found.
29442 The frame under which the expression should be evaluated can be
29443 specified by @var{frame-addr}. A @samp{*} indicates that the current
29444 frame should be used. A @samp{@@} indicates that a floating variable
29445 object must be created.
29447 @var{expression} is any expression valid on the current language set (must not
29448 begin with a @samp{*}), or one of the following:
29452 @samp{*@var{addr}}, where @var{addr} is the address of a memory cell
29455 @samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
29458 @samp{$@var{regname}} --- a CPU register name
29461 @cindex dynamic varobj
29462 A varobj's contents may be provided by a Python-based pretty-printer. In this
29463 case the varobj is known as a @dfn{dynamic varobj}. Dynamic varobjs
29464 have slightly different semantics in some cases. If the
29465 @code{-enable-pretty-printing} command is not sent, then @value{GDBN}
29466 will never create a dynamic varobj. This ensures backward
29467 compatibility for existing clients.
29469 @subsubheading Result
29471 This operation returns attributes of the newly-created varobj. These
29476 The name of the varobj.
29479 The number of children of the varobj. This number is not necessarily
29480 reliable for a dynamic varobj. Instead, you must examine the
29481 @samp{has_more} attribute.
29484 The varobj's scalar value. For a varobj whose type is some sort of
29485 aggregate (e.g., a @code{struct}), or for a dynamic varobj, this value
29486 will not be interesting.
29489 The varobj's type. This is a string representation of the type, as
29490 would be printed by the @value{GDBN} CLI. If @samp{print object}
29491 (@pxref{Print Settings, set print object}) is set to @code{on}, the
29492 @emph{actual} (derived) type of the object is shown rather than the
29493 @emph{declared} one.
29496 If a variable object is bound to a specific thread, then this is the
29497 thread's identifier.
29500 For a dynamic varobj, this indicates whether there appear to be any
29501 children available. For a non-dynamic varobj, this will be 0.
29504 This attribute will be present and have the value @samp{1} if the
29505 varobj is a dynamic varobj. If the varobj is not a dynamic varobj,
29506 then this attribute will not be present.
29509 A dynamic varobj can supply a display hint to the front end. The
29510 value comes directly from the Python pretty-printer object's
29511 @code{display_hint} method. @xref{Pretty Printing API}.
29514 Typical output will look like this:
29517 name="@var{name}",numchild="@var{N}",type="@var{type}",thread-id="@var{M}",
29518 has_more="@var{has_more}"
29522 @subheading The @code{-var-delete} Command
29523 @findex -var-delete
29525 @subsubheading Synopsis
29528 -var-delete [ -c ] @var{name}
29531 Deletes a previously created variable object and all of its children.
29532 With the @samp{-c} option, just deletes the children.
29534 Returns an error if the object @var{name} is not found.
29537 @subheading The @code{-var-set-format} Command
29538 @findex -var-set-format
29540 @subsubheading Synopsis
29543 -var-set-format @var{name} @var{format-spec}
29546 Sets the output format for the value of the object @var{name} to be
29549 @anchor{-var-set-format}
29550 The syntax for the @var{format-spec} is as follows:
29553 @var{format-spec} @expansion{}
29554 @{binary | decimal | hexadecimal | octal | natural@}
29557 The natural format is the default format choosen automatically
29558 based on the variable type (like decimal for an @code{int}, hex
29559 for pointers, etc.).
29561 For a variable with children, the format is set only on the
29562 variable itself, and the children are not affected.
29564 @subheading The @code{-var-show-format} Command
29565 @findex -var-show-format
29567 @subsubheading Synopsis
29570 -var-show-format @var{name}
29573 Returns the format used to display the value of the object @var{name}.
29576 @var{format} @expansion{}
29581 @subheading The @code{-var-info-num-children} Command
29582 @findex -var-info-num-children
29584 @subsubheading Synopsis
29587 -var-info-num-children @var{name}
29590 Returns the number of children of a variable object @var{name}:
29596 Note that this number is not completely reliable for a dynamic varobj.
29597 It will return the current number of children, but more children may
29601 @subheading The @code{-var-list-children} Command
29602 @findex -var-list-children
29604 @subsubheading Synopsis
29607 -var-list-children [@var{print-values}] @var{name} [@var{from} @var{to}]
29609 @anchor{-var-list-children}
29611 Return a list of the children of the specified variable object and
29612 create variable objects for them, if they do not already exist. With
29613 a single argument or if @var{print-values} has a value of 0 or
29614 @code{--no-values}, print only the names of the variables; if
29615 @var{print-values} is 1 or @code{--all-values}, also print their
29616 values; and if it is 2 or @code{--simple-values} print the name and
29617 value for simple data types and just the name for arrays, structures
29620 @var{from} and @var{to}, if specified, indicate the range of children
29621 to report. If @var{from} or @var{to} is less than zero, the range is
29622 reset and all children will be reported. Otherwise, children starting
29623 at @var{from} (zero-based) and up to and excluding @var{to} will be
29626 If a child range is requested, it will only affect the current call to
29627 @code{-var-list-children}, but not future calls to @code{-var-update}.
29628 For this, you must instead use @code{-var-set-update-range}. The
29629 intent of this approach is to enable a front end to implement any
29630 update approach it likes; for example, scrolling a view may cause the
29631 front end to request more children with @code{-var-list-children}, and
29632 then the front end could call @code{-var-set-update-range} with a
29633 different range to ensure that future updates are restricted to just
29636 For each child the following results are returned:
29641 Name of the variable object created for this child.
29644 The expression to be shown to the user by the front end to designate this child.
29645 For example this may be the name of a structure member.
29647 For a dynamic varobj, this value cannot be used to form an
29648 expression. There is no way to do this at all with a dynamic varobj.
29650 For C/C@t{++} structures there are several pseudo children returned to
29651 designate access qualifiers. For these pseudo children @var{exp} is
29652 @samp{public}, @samp{private}, or @samp{protected}. In this case the
29653 type and value are not present.
29655 A dynamic varobj will not report the access qualifying
29656 pseudo-children, regardless of the language. This information is not
29657 available at all with a dynamic varobj.
29660 Number of children this child has. For a dynamic varobj, this will be
29664 The type of the child. If @samp{print object}
29665 (@pxref{Print Settings, set print object}) is set to @code{on}, the
29666 @emph{actual} (derived) type of the object is shown rather than the
29667 @emph{declared} one.
29670 If values were requested, this is the value.
29673 If this variable object is associated with a thread, this is the thread id.
29674 Otherwise this result is not present.
29677 If the variable object is frozen, this variable will be present with a value of 1.
29680 The result may have its own attributes:
29684 A dynamic varobj can supply a display hint to the front end. The
29685 value comes directly from the Python pretty-printer object's
29686 @code{display_hint} method. @xref{Pretty Printing API}.
29689 This is an integer attribute which is nonzero if there are children
29690 remaining after the end of the selected range.
29693 @subsubheading Example
29697 -var-list-children n
29698 ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
29699 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
29701 -var-list-children --all-values n
29702 ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
29703 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
29707 @subheading The @code{-var-info-type} Command
29708 @findex -var-info-type
29710 @subsubheading Synopsis
29713 -var-info-type @var{name}
29716 Returns the type of the specified variable @var{name}. The type is
29717 returned as a string in the same format as it is output by the
29721 type=@var{typename}
29725 @subheading The @code{-var-info-expression} Command
29726 @findex -var-info-expression
29728 @subsubheading Synopsis
29731 -var-info-expression @var{name}
29734 Returns a string that is suitable for presenting this
29735 variable object in user interface. The string is generally
29736 not valid expression in the current language, and cannot be evaluated.
29738 For example, if @code{a} is an array, and variable object
29739 @code{A} was created for @code{a}, then we'll get this output:
29742 (gdb) -var-info-expression A.1
29743 ^done,lang="C",exp="1"
29747 Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
29749 Note that the output of the @code{-var-list-children} command also
29750 includes those expressions, so the @code{-var-info-expression} command
29753 @subheading The @code{-var-info-path-expression} Command
29754 @findex -var-info-path-expression
29756 @subsubheading Synopsis
29759 -var-info-path-expression @var{name}
29762 Returns an expression that can be evaluated in the current
29763 context and will yield the same value that a variable object has.
29764 Compare this with the @code{-var-info-expression} command, which
29765 result can be used only for UI presentation. Typical use of
29766 the @code{-var-info-path-expression} command is creating a
29767 watchpoint from a variable object.
29769 This command is currently not valid for children of a dynamic varobj,
29770 and will give an error when invoked on one.
29772 For example, suppose @code{C} is a C@t{++} class, derived from class
29773 @code{Base}, and that the @code{Base} class has a member called
29774 @code{m_size}. Assume a variable @code{c} is has the type of
29775 @code{C} and a variable object @code{C} was created for variable
29776 @code{c}. Then, we'll get this output:
29778 (gdb) -var-info-path-expression C.Base.public.m_size
29779 ^done,path_expr=((Base)c).m_size)
29782 @subheading The @code{-var-show-attributes} Command
29783 @findex -var-show-attributes
29785 @subsubheading Synopsis
29788 -var-show-attributes @var{name}
29791 List attributes of the specified variable object @var{name}:
29794 status=@var{attr} [ ( ,@var{attr} )* ]
29798 where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
29800 @subheading The @code{-var-evaluate-expression} Command
29801 @findex -var-evaluate-expression
29803 @subsubheading Synopsis
29806 -var-evaluate-expression [-f @var{format-spec}] @var{name}
29809 Evaluates the expression that is represented by the specified variable
29810 object and returns its value as a string. The format of the string
29811 can be specified with the @samp{-f} option. The possible values of
29812 this option are the same as for @code{-var-set-format}
29813 (@pxref{-var-set-format}). If the @samp{-f} option is not specified,
29814 the current display format will be used. The current display format
29815 can be changed using the @code{-var-set-format} command.
29821 Note that one must invoke @code{-var-list-children} for a variable
29822 before the value of a child variable can be evaluated.
29824 @subheading The @code{-var-assign} Command
29825 @findex -var-assign
29827 @subsubheading Synopsis
29830 -var-assign @var{name} @var{expression}
29833 Assigns the value of @var{expression} to the variable object specified
29834 by @var{name}. The object must be @samp{editable}. If the variable's
29835 value is altered by the assign, the variable will show up in any
29836 subsequent @code{-var-update} list.
29838 @subsubheading Example
29846 ^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
29850 @subheading The @code{-var-update} Command
29851 @findex -var-update
29853 @subsubheading Synopsis
29856 -var-update [@var{print-values}] @{@var{name} | "*"@}
29859 Reevaluate the expressions corresponding to the variable object
29860 @var{name} and all its direct and indirect children, and return the
29861 list of variable objects whose values have changed; @var{name} must
29862 be a root variable object. Here, ``changed'' means that the result of
29863 @code{-var-evaluate-expression} before and after the
29864 @code{-var-update} is different. If @samp{*} is used as the variable
29865 object names, all existing variable objects are updated, except
29866 for frozen ones (@pxref{-var-set-frozen}). The option
29867 @var{print-values} determines whether both names and values, or just
29868 names are printed. The possible values of this option are the same
29869 as for @code{-var-list-children} (@pxref{-var-list-children}). It is
29870 recommended to use the @samp{--all-values} option, to reduce the
29871 number of MI commands needed on each program stop.
29873 With the @samp{*} parameter, if a variable object is bound to a
29874 currently running thread, it will not be updated, without any
29877 If @code{-var-set-update-range} was previously used on a varobj, then
29878 only the selected range of children will be reported.
29880 @code{-var-update} reports all the changed varobjs in a tuple named
29883 Each item in the change list is itself a tuple holding:
29887 The name of the varobj.
29890 If values were requested for this update, then this field will be
29891 present and will hold the value of the varobj.
29894 @anchor{-var-update}
29895 This field is a string which may take one of three values:
29899 The variable object's current value is valid.
29902 The variable object does not currently hold a valid value but it may
29903 hold one in the future if its associated expression comes back into
29907 The variable object no longer holds a valid value.
29908 This can occur when the executable file being debugged has changed,
29909 either through recompilation or by using the @value{GDBN} @code{file}
29910 command. The front end should normally choose to delete these variable
29914 In the future new values may be added to this list so the front should
29915 be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
29918 This is only present if the varobj is still valid. If the type
29919 changed, then this will be the string @samp{true}; otherwise it will
29922 When a varobj's type changes, its children are also likely to have
29923 become incorrect. Therefore, the varobj's children are automatically
29924 deleted when this attribute is @samp{true}. Also, the varobj's update
29925 range, when set using the @code{-var-set-update-range} command, is
29929 If the varobj's type changed, then this field will be present and will
29932 @item new_num_children
29933 For a dynamic varobj, if the number of children changed, or if the
29934 type changed, this will be the new number of children.
29936 The @samp{numchild} field in other varobj responses is generally not
29937 valid for a dynamic varobj -- it will show the number of children that
29938 @value{GDBN} knows about, but because dynamic varobjs lazily
29939 instantiate their children, this will not reflect the number of
29940 children which may be available.
29942 The @samp{new_num_children} attribute only reports changes to the
29943 number of children known by @value{GDBN}. This is the only way to
29944 detect whether an update has removed children (which necessarily can
29945 only happen at the end of the update range).
29948 The display hint, if any.
29951 This is an integer value, which will be 1 if there are more children
29952 available outside the varobj's update range.
29955 This attribute will be present and have the value @samp{1} if the
29956 varobj is a dynamic varobj. If the varobj is not a dynamic varobj,
29957 then this attribute will not be present.
29960 If new children were added to a dynamic varobj within the selected
29961 update range (as set by @code{-var-set-update-range}), then they will
29962 be listed in this attribute.
29965 @subsubheading Example
29972 -var-update --all-values var1
29973 ^done,changelist=[@{name="var1",value="3",in_scope="true",
29974 type_changed="false"@}]
29978 @subheading The @code{-var-set-frozen} Command
29979 @findex -var-set-frozen
29980 @anchor{-var-set-frozen}
29982 @subsubheading Synopsis
29985 -var-set-frozen @var{name} @var{flag}
29988 Set the frozenness flag on the variable object @var{name}. The
29989 @var{flag} parameter should be either @samp{1} to make the variable
29990 frozen or @samp{0} to make it unfrozen. If a variable object is
29991 frozen, then neither itself, nor any of its children, are
29992 implicitly updated by @code{-var-update} of
29993 a parent variable or by @code{-var-update *}. Only
29994 @code{-var-update} of the variable itself will update its value and
29995 values of its children. After a variable object is unfrozen, it is
29996 implicitly updated by all subsequent @code{-var-update} operations.
29997 Unfreezing a variable does not update it, only subsequent
29998 @code{-var-update} does.
30000 @subsubheading Example
30004 -var-set-frozen V 1
30009 @subheading The @code{-var-set-update-range} command
30010 @findex -var-set-update-range
30011 @anchor{-var-set-update-range}
30013 @subsubheading Synopsis
30016 -var-set-update-range @var{name} @var{from} @var{to}
30019 Set the range of children to be returned by future invocations of
30020 @code{-var-update}.
30022 @var{from} and @var{to} indicate the range of children to report. If
30023 @var{from} or @var{to} is less than zero, the range is reset and all
30024 children will be reported. Otherwise, children starting at @var{from}
30025 (zero-based) and up to and excluding @var{to} will be reported.
30027 @subsubheading Example
30031 -var-set-update-range V 1 2
30035 @subheading The @code{-var-set-visualizer} command
30036 @findex -var-set-visualizer
30037 @anchor{-var-set-visualizer}
30039 @subsubheading Synopsis
30042 -var-set-visualizer @var{name} @var{visualizer}
30045 Set a visualizer for the variable object @var{name}.
30047 @var{visualizer} is the visualizer to use. The special value
30048 @samp{None} means to disable any visualizer in use.
30050 If not @samp{None}, @var{visualizer} must be a Python expression.
30051 This expression must evaluate to a callable object which accepts a
30052 single argument. @value{GDBN} will call this object with the value of
30053 the varobj @var{name} as an argument (this is done so that the same
30054 Python pretty-printing code can be used for both the CLI and MI).
30055 When called, this object must return an object which conforms to the
30056 pretty-printing interface (@pxref{Pretty Printing API}).
30058 The pre-defined function @code{gdb.default_visualizer} may be used to
30059 select a visualizer by following the built-in process
30060 (@pxref{Selecting Pretty-Printers}). This is done automatically when
30061 a varobj is created, and so ordinarily is not needed.
30063 This feature is only available if Python support is enabled. The MI
30064 command @code{-list-features} (@pxref{GDB/MI Miscellaneous Commands})
30065 can be used to check this.
30067 @subsubheading Example
30069 Resetting the visualizer:
30073 -var-set-visualizer V None
30077 Reselecting the default (type-based) visualizer:
30081 -var-set-visualizer V gdb.default_visualizer
30085 Suppose @code{SomeClass} is a visualizer class. A lambda expression
30086 can be used to instantiate this class for a varobj:
30090 -var-set-visualizer V "lambda val: SomeClass()"
30094 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30095 @node GDB/MI Data Manipulation
30096 @section @sc{gdb/mi} Data Manipulation
30098 @cindex data manipulation, in @sc{gdb/mi}
30099 @cindex @sc{gdb/mi}, data manipulation
30100 This section describes the @sc{gdb/mi} commands that manipulate data:
30101 examine memory and registers, evaluate expressions, etc.
30103 @c REMOVED FROM THE INTERFACE.
30104 @c @subheading -data-assign
30105 @c Change the value of a program variable. Plenty of side effects.
30106 @c @subsubheading GDB Command
30108 @c @subsubheading Example
30111 @subheading The @code{-data-disassemble} Command
30112 @findex -data-disassemble
30114 @subsubheading Synopsis
30118 [ -s @var{start-addr} -e @var{end-addr} ]
30119 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
30127 @item @var{start-addr}
30128 is the beginning address (or @code{$pc})
30129 @item @var{end-addr}
30131 @item @var{filename}
30132 is the name of the file to disassemble
30133 @item @var{linenum}
30134 is the line number to disassemble around
30136 is the number of disassembly lines to be produced. If it is -1,
30137 the whole function will be disassembled, in case no @var{end-addr} is
30138 specified. If @var{end-addr} is specified as a non-zero value, and
30139 @var{lines} is lower than the number of disassembly lines between
30140 @var{start-addr} and @var{end-addr}, only @var{lines} lines are
30141 displayed; if @var{lines} is higher than the number of lines between
30142 @var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
30145 is either 0 (meaning only disassembly), 1 (meaning mixed source and
30146 disassembly), 2 (meaning disassembly with raw opcodes), or 3 (meaning
30147 mixed source and disassembly with raw opcodes).
30150 @subsubheading Result
30152 The output for each instruction is composed of four fields:
30161 Note that whatever included in the instruction field, is not manipulated
30162 directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
30164 @subsubheading @value{GDBN} Command
30166 There's no direct mapping from this command to the CLI.
30168 @subsubheading Example
30170 Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
30174 -data-disassemble -s $pc -e "$pc + 20" -- 0
30177 @{address="0x000107c0",func-name="main",offset="4",
30178 inst="mov 2, %o0"@},
30179 @{address="0x000107c4",func-name="main",offset="8",
30180 inst="sethi %hi(0x11800), %o2"@},
30181 @{address="0x000107c8",func-name="main",offset="12",
30182 inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
30183 @{address="0x000107cc",func-name="main",offset="16",
30184 inst="sethi %hi(0x11800), %o2"@},
30185 @{address="0x000107d0",func-name="main",offset="20",
30186 inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
30190 Disassemble the whole @code{main} function. Line 32 is part of
30194 -data-disassemble -f basics.c -l 32 -- 0
30196 @{address="0x000107bc",func-name="main",offset="0",
30197 inst="save %sp, -112, %sp"@},
30198 @{address="0x000107c0",func-name="main",offset="4",
30199 inst="mov 2, %o0"@},
30200 @{address="0x000107c4",func-name="main",offset="8",
30201 inst="sethi %hi(0x11800), %o2"@},
30203 @{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
30204 @{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
30208 Disassemble 3 instructions from the start of @code{main}:
30212 -data-disassemble -f basics.c -l 32 -n 3 -- 0
30214 @{address="0x000107bc",func-name="main",offset="0",
30215 inst="save %sp, -112, %sp"@},
30216 @{address="0x000107c0",func-name="main",offset="4",
30217 inst="mov 2, %o0"@},
30218 @{address="0x000107c4",func-name="main",offset="8",
30219 inst="sethi %hi(0x11800), %o2"@}]
30223 Disassemble 3 instructions from the start of @code{main} in mixed mode:
30227 -data-disassemble -f basics.c -l 32 -n 3 -- 1
30229 src_and_asm_line=@{line="31",
30230 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
30231 testsuite/gdb.mi/basics.c",line_asm_insn=[
30232 @{address="0x000107bc",func-name="main",offset="0",
30233 inst="save %sp, -112, %sp"@}]@},
30234 src_and_asm_line=@{line="32",
30235 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
30236 testsuite/gdb.mi/basics.c",line_asm_insn=[
30237 @{address="0x000107c0",func-name="main",offset="4",
30238 inst="mov 2, %o0"@},
30239 @{address="0x000107c4",func-name="main",offset="8",
30240 inst="sethi %hi(0x11800), %o2"@}]@}]
30245 @subheading The @code{-data-evaluate-expression} Command
30246 @findex -data-evaluate-expression
30248 @subsubheading Synopsis
30251 -data-evaluate-expression @var{expr}
30254 Evaluate @var{expr} as an expression. The expression could contain an
30255 inferior function call. The function call will execute synchronously.
30256 If the expression contains spaces, it must be enclosed in double quotes.
30258 @subsubheading @value{GDBN} Command
30260 The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
30261 @samp{call}. In @code{gdbtk} only, there's a corresponding
30262 @samp{gdb_eval} command.
30264 @subsubheading Example
30266 In the following example, the numbers that precede the commands are the
30267 @dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
30268 Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
30272 211-data-evaluate-expression A
30275 311-data-evaluate-expression &A
30276 311^done,value="0xefffeb7c"
30278 411-data-evaluate-expression A+3
30281 511-data-evaluate-expression "A + 3"
30287 @subheading The @code{-data-list-changed-registers} Command
30288 @findex -data-list-changed-registers
30290 @subsubheading Synopsis
30293 -data-list-changed-registers
30296 Display a list of the registers that have changed.
30298 @subsubheading @value{GDBN} Command
30300 @value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
30301 has the corresponding command @samp{gdb_changed_register_list}.
30303 @subsubheading Example
30305 On a PPC MBX board:
30313 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
30314 func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
30317 -data-list-changed-registers
30318 ^done,changed-registers=["0","1","2","4","5","6","7","8","9",
30319 "10","11","13","14","15","16","17","18","19","20","21","22","23",
30320 "24","25","26","27","28","30","31","64","65","66","67","69"]
30325 @subheading The @code{-data-list-register-names} Command
30326 @findex -data-list-register-names
30328 @subsubheading Synopsis
30331 -data-list-register-names [ ( @var{regno} )+ ]
30334 Show a list of register names for the current target. If no arguments
30335 are given, it shows a list of the names of all the registers. If
30336 integer numbers are given as arguments, it will print a list of the
30337 names of the registers corresponding to the arguments. To ensure
30338 consistency between a register name and its number, the output list may
30339 include empty register names.
30341 @subsubheading @value{GDBN} Command
30343 @value{GDBN} does not have a command which corresponds to
30344 @samp{-data-list-register-names}. In @code{gdbtk} there is a
30345 corresponding command @samp{gdb_regnames}.
30347 @subsubheading Example
30349 For the PPC MBX board:
30352 -data-list-register-names
30353 ^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
30354 "r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
30355 "r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
30356 "r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
30357 "f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
30358 "f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
30359 "", "pc","ps","cr","lr","ctr","xer"]
30361 -data-list-register-names 1 2 3
30362 ^done,register-names=["r1","r2","r3"]
30366 @subheading The @code{-data-list-register-values} Command
30367 @findex -data-list-register-values
30369 @subsubheading Synopsis
30372 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
30375 Display the registers' contents. @var{fmt} is the format according to
30376 which the registers' contents are to be returned, followed by an optional
30377 list of numbers specifying the registers to display. A missing list of
30378 numbers indicates that the contents of all the registers must be returned.
30380 Allowed formats for @var{fmt} are:
30397 @subsubheading @value{GDBN} Command
30399 The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
30400 all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
30402 @subsubheading Example
30404 For a PPC MBX board (note: line breaks are for readability only, they
30405 don't appear in the actual output):
30409 -data-list-register-values r 64 65
30410 ^done,register-values=[@{number="64",value="0xfe00a300"@},
30411 @{number="65",value="0x00029002"@}]
30413 -data-list-register-values x
30414 ^done,register-values=[@{number="0",value="0xfe0043c8"@},
30415 @{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
30416 @{number="3",value="0x0"@},@{number="4",value="0xa"@},
30417 @{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
30418 @{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
30419 @{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
30420 @{number="11",value="0x1"@},@{number="12",value="0x0"@},
30421 @{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
30422 @{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
30423 @{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
30424 @{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
30425 @{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
30426 @{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
30427 @{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
30428 @{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
30429 @{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
30430 @{number="31",value="0x0"@},@{number="32",value="0x0"@},
30431 @{number="33",value="0x0"@},@{number="34",value="0x0"@},
30432 @{number="35",value="0x0"@},@{number="36",value="0x0"@},
30433 @{number="37",value="0x0"@},@{number="38",value="0x0"@},
30434 @{number="39",value="0x0"@},@{number="40",value="0x0"@},
30435 @{number="41",value="0x0"@},@{number="42",value="0x0"@},
30436 @{number="43",value="0x0"@},@{number="44",value="0x0"@},
30437 @{number="45",value="0x0"@},@{number="46",value="0x0"@},
30438 @{number="47",value="0x0"@},@{number="48",value="0x0"@},
30439 @{number="49",value="0x0"@},@{number="50",value="0x0"@},
30440 @{number="51",value="0x0"@},@{number="52",value="0x0"@},
30441 @{number="53",value="0x0"@},@{number="54",value="0x0"@},
30442 @{number="55",value="0x0"@},@{number="56",value="0x0"@},
30443 @{number="57",value="0x0"@},@{number="58",value="0x0"@},
30444 @{number="59",value="0x0"@},@{number="60",value="0x0"@},
30445 @{number="61",value="0x0"@},@{number="62",value="0x0"@},
30446 @{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
30447 @{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
30448 @{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
30449 @{number="69",value="0x20002b03"@}]
30454 @subheading The @code{-data-read-memory} Command
30455 @findex -data-read-memory
30457 This command is deprecated, use @code{-data-read-memory-bytes} instead.
30459 @subsubheading Synopsis
30462 -data-read-memory [ -o @var{byte-offset} ]
30463 @var{address} @var{word-format} @var{word-size}
30464 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
30471 @item @var{address}
30472 An expression specifying the address of the first memory word to be
30473 read. Complex expressions containing embedded white space should be
30474 quoted using the C convention.
30476 @item @var{word-format}
30477 The format to be used to print the memory words. The notation is the
30478 same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
30481 @item @var{word-size}
30482 The size of each memory word in bytes.
30484 @item @var{nr-rows}
30485 The number of rows in the output table.
30487 @item @var{nr-cols}
30488 The number of columns in the output table.
30491 If present, indicates that each row should include an @sc{ascii} dump. The
30492 value of @var{aschar} is used as a padding character when a byte is not a
30493 member of the printable @sc{ascii} character set (printable @sc{ascii}
30494 characters are those whose code is between 32 and 126, inclusively).
30496 @item @var{byte-offset}
30497 An offset to add to the @var{address} before fetching memory.
30500 This command displays memory contents as a table of @var{nr-rows} by
30501 @var{nr-cols} words, each word being @var{word-size} bytes. In total,
30502 @code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
30503 (returned as @samp{total-bytes}). Should less than the requested number
30504 of bytes be returned by the target, the missing words are identified
30505 using @samp{N/A}. The number of bytes read from the target is returned
30506 in @samp{nr-bytes} and the starting address used to read memory in
30509 The address of the next/previous row or page is available in
30510 @samp{next-row} and @samp{prev-row}, @samp{next-page} and
30513 @subsubheading @value{GDBN} Command
30515 The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
30516 @samp{gdb_get_mem} memory read command.
30518 @subsubheading Example
30520 Read six bytes of memory starting at @code{bytes+6} but then offset by
30521 @code{-6} bytes. Format as three rows of two columns. One byte per
30522 word. Display each word in hex.
30526 9-data-read-memory -o -6 -- bytes+6 x 1 3 2
30527 9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
30528 next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
30529 prev-page="0x0000138a",memory=[
30530 @{addr="0x00001390",data=["0x00","0x01"]@},
30531 @{addr="0x00001392",data=["0x02","0x03"]@},
30532 @{addr="0x00001394",data=["0x04","0x05"]@}]
30536 Read two bytes of memory starting at address @code{shorts + 64} and
30537 display as a single word formatted in decimal.
30541 5-data-read-memory shorts+64 d 2 1 1
30542 5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
30543 next-row="0x00001512",prev-row="0x0000150e",
30544 next-page="0x00001512",prev-page="0x0000150e",memory=[
30545 @{addr="0x00001510",data=["128"]@}]
30549 Read thirty two bytes of memory starting at @code{bytes+16} and format
30550 as eight rows of four columns. Include a string encoding with @samp{x}
30551 used as the non-printable character.
30555 4-data-read-memory bytes+16 x 1 8 4 x
30556 4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
30557 next-row="0x000013c0",prev-row="0x0000139c",
30558 next-page="0x000013c0",prev-page="0x00001380",memory=[
30559 @{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
30560 @{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
30561 @{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
30562 @{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
30563 @{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
30564 @{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
30565 @{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
30566 @{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
30570 @subheading The @code{-data-read-memory-bytes} Command
30571 @findex -data-read-memory-bytes
30573 @subsubheading Synopsis
30576 -data-read-memory-bytes [ -o @var{byte-offset} ]
30577 @var{address} @var{count}
30584 @item @var{address}
30585 An expression specifying the address of the first memory word to be
30586 read. Complex expressions containing embedded white space should be
30587 quoted using the C convention.
30590 The number of bytes to read. This should be an integer literal.
30592 @item @var{byte-offset}
30593 The offsets in bytes relative to @var{address} at which to start
30594 reading. This should be an integer literal. This option is provided
30595 so that a frontend is not required to first evaluate address and then
30596 perform address arithmetics itself.
30600 This command attempts to read all accessible memory regions in the
30601 specified range. First, all regions marked as unreadable in the memory
30602 map (if one is defined) will be skipped. @xref{Memory Region
30603 Attributes}. Second, @value{GDBN} will attempt to read the remaining
30604 regions. For each one, if reading full region results in an errors,
30605 @value{GDBN} will try to read a subset of the region.
30607 In general, every single byte in the region may be readable or not,
30608 and the only way to read every readable byte is to try a read at
30609 every address, which is not practical. Therefore, @value{GDBN} will
30610 attempt to read all accessible bytes at either beginning or the end
30611 of the region, using a binary division scheme. This heuristic works
30612 well for reading accross a memory map boundary. Note that if a region
30613 has a readable range that is neither at the beginning or the end,
30614 @value{GDBN} will not read it.
30616 The result record (@pxref{GDB/MI Result Records}) that is output of
30617 the command includes a field named @samp{memory} whose content is a
30618 list of tuples. Each tuple represent a successfully read memory block
30619 and has the following fields:
30623 The start address of the memory block, as hexadecimal literal.
30626 The end address of the memory block, as hexadecimal literal.
30629 The offset of the memory block, as hexadecimal literal, relative to
30630 the start address passed to @code{-data-read-memory-bytes}.
30633 The contents of the memory block, in hex.
30639 @subsubheading @value{GDBN} Command
30641 The corresponding @value{GDBN} command is @samp{x}.
30643 @subsubheading Example
30647 -data-read-memory-bytes &a 10
30648 ^done,memory=[@{begin="0xbffff154",offset="0x00000000",
30650 contents="01000000020000000300"@}]
30655 @subheading The @code{-data-write-memory-bytes} Command
30656 @findex -data-write-memory-bytes
30658 @subsubheading Synopsis
30661 -data-write-memory-bytes @var{address} @var{contents}
30668 @item @var{address}
30669 An expression specifying the address of the first memory word to be
30670 read. Complex expressions containing embedded white space should be
30671 quoted using the C convention.
30673 @item @var{contents}
30674 The hex-encoded bytes to write.
30678 @subsubheading @value{GDBN} Command
30680 There's no corresponding @value{GDBN} command.
30682 @subsubheading Example
30686 -data-write-memory-bytes &a "aabbccdd"
30692 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30693 @node GDB/MI Tracepoint Commands
30694 @section @sc{gdb/mi} Tracepoint Commands
30696 The commands defined in this section implement MI support for
30697 tracepoints. For detailed introduction, see @ref{Tracepoints}.
30699 @subheading The @code{-trace-find} Command
30700 @findex -trace-find
30702 @subsubheading Synopsis
30705 -trace-find @var{mode} [@var{parameters}@dots{}]
30708 Find a trace frame using criteria defined by @var{mode} and
30709 @var{parameters}. The following table lists permissible
30710 modes and their parameters. For details of operation, see @ref{tfind}.
30715 No parameters are required. Stops examining trace frames.
30718 An integer is required as parameter. Selects tracepoint frame with
30721 @item tracepoint-number
30722 An integer is required as parameter. Finds next
30723 trace frame that corresponds to tracepoint with the specified number.
30726 An address is required as parameter. Finds
30727 next trace frame that corresponds to any tracepoint at the specified
30730 @item pc-inside-range
30731 Two addresses are required as parameters. Finds next trace
30732 frame that corresponds to a tracepoint at an address inside the
30733 specified range. Both bounds are considered to be inside the range.
30735 @item pc-outside-range
30736 Two addresses are required as parameters. Finds
30737 next trace frame that corresponds to a tracepoint at an address outside
30738 the specified range. Both bounds are considered to be inside the range.
30741 Line specification is required as parameter. @xref{Specify Location}.
30742 Finds next trace frame that corresponds to a tracepoint at
30743 the specified location.
30747 If @samp{none} was passed as @var{mode}, the response does not
30748 have fields. Otherwise, the response may have the following fields:
30752 This field has either @samp{0} or @samp{1} as the value, depending
30753 on whether a matching tracepoint was found.
30756 The index of the found traceframe. This field is present iff
30757 the @samp{found} field has value of @samp{1}.
30760 The index of the found tracepoint. This field is present iff
30761 the @samp{found} field has value of @samp{1}.
30764 The information about the frame corresponding to the found trace
30765 frame. This field is present only if a trace frame was found.
30766 @xref{GDB/MI Frame Information}, for description of this field.
30770 @subsubheading @value{GDBN} Command
30772 The corresponding @value{GDBN} command is @samp{tfind}.
30774 @subheading -trace-define-variable
30775 @findex -trace-define-variable
30777 @subsubheading Synopsis
30780 -trace-define-variable @var{name} [ @var{value} ]
30783 Create trace variable @var{name} if it does not exist. If
30784 @var{value} is specified, sets the initial value of the specified
30785 trace variable to that value. Note that the @var{name} should start
30786 with the @samp{$} character.
30788 @subsubheading @value{GDBN} Command
30790 The corresponding @value{GDBN} command is @samp{tvariable}.
30792 @subheading -trace-list-variables
30793 @findex -trace-list-variables
30795 @subsubheading Synopsis
30798 -trace-list-variables
30801 Return a table of all defined trace variables. Each element of the
30802 table has the following fields:
30806 The name of the trace variable. This field is always present.
30809 The initial value. This is a 64-bit signed integer. This
30810 field is always present.
30813 The value the trace variable has at the moment. This is a 64-bit
30814 signed integer. This field is absent iff current value is
30815 not defined, for example if the trace was never run, or is
30820 @subsubheading @value{GDBN} Command
30822 The corresponding @value{GDBN} command is @samp{tvariables}.
30824 @subsubheading Example
30828 -trace-list-variables
30829 ^done,trace-variables=@{nr_rows="1",nr_cols="3",
30830 hdr=[@{width="15",alignment="-1",col_name="name",colhdr="Name"@},
30831 @{width="11",alignment="-1",col_name="initial",colhdr="Initial"@},
30832 @{width="11",alignment="-1",col_name="current",colhdr="Current"@}],
30833 body=[variable=@{name="$trace_timestamp",initial="0"@}
30834 variable=@{name="$foo",initial="10",current="15"@}]@}
30838 @subheading -trace-save
30839 @findex -trace-save
30841 @subsubheading Synopsis
30844 -trace-save [-r ] @var{filename}
30847 Saves the collected trace data to @var{filename}. Without the
30848 @samp{-r} option, the data is downloaded from the target and saved
30849 in a local file. With the @samp{-r} option the target is asked
30850 to perform the save.
30852 @subsubheading @value{GDBN} Command
30854 The corresponding @value{GDBN} command is @samp{tsave}.
30857 @subheading -trace-start
30858 @findex -trace-start
30860 @subsubheading Synopsis
30866 Starts a tracing experiments. The result of this command does not
30869 @subsubheading @value{GDBN} Command
30871 The corresponding @value{GDBN} command is @samp{tstart}.
30873 @subheading -trace-status
30874 @findex -trace-status
30876 @subsubheading Synopsis
30882 Obtains the status of a tracing experiment. The result may include
30883 the following fields:
30888 May have a value of either @samp{0}, when no tracing operations are
30889 supported, @samp{1}, when all tracing operations are supported, or
30890 @samp{file} when examining trace file. In the latter case, examining
30891 of trace frame is possible but new tracing experiement cannot be
30892 started. This field is always present.
30895 May have a value of either @samp{0} or @samp{1} depending on whether
30896 tracing experiement is in progress on target. This field is present
30897 if @samp{supported} field is not @samp{0}.
30900 Report the reason why the tracing was stopped last time. This field
30901 may be absent iff tracing was never stopped on target yet. The
30902 value of @samp{request} means the tracing was stopped as result of
30903 the @code{-trace-stop} command. The value of @samp{overflow} means
30904 the tracing buffer is full. The value of @samp{disconnection} means
30905 tracing was automatically stopped when @value{GDBN} has disconnected.
30906 The value of @samp{passcount} means tracing was stopped when a
30907 tracepoint was passed a maximal number of times for that tracepoint.
30908 This field is present if @samp{supported} field is not @samp{0}.
30910 @item stopping-tracepoint
30911 The number of tracepoint whose passcount as exceeded. This field is
30912 present iff the @samp{stop-reason} field has the value of
30916 @itemx frames-created
30917 The @samp{frames} field is a count of the total number of trace frames
30918 in the trace buffer, while @samp{frames-created} is the total created
30919 during the run, including ones that were discarded, such as when a
30920 circular trace buffer filled up. Both fields are optional.
30924 These fields tell the current size of the tracing buffer and the
30925 remaining space. These fields are optional.
30928 The value of the circular trace buffer flag. @code{1} means that the
30929 trace buffer is circular and old trace frames will be discarded if
30930 necessary to make room, @code{0} means that the trace buffer is linear
30934 The value of the disconnected tracing flag. @code{1} means that
30935 tracing will continue after @value{GDBN} disconnects, @code{0} means
30936 that the trace run will stop.
30940 @subsubheading @value{GDBN} Command
30942 The corresponding @value{GDBN} command is @samp{tstatus}.
30944 @subheading -trace-stop
30945 @findex -trace-stop
30947 @subsubheading Synopsis
30953 Stops a tracing experiment. The result of this command has the same
30954 fields as @code{-trace-status}, except that the @samp{supported} and
30955 @samp{running} fields are not output.
30957 @subsubheading @value{GDBN} Command
30959 The corresponding @value{GDBN} command is @samp{tstop}.
30962 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30963 @node GDB/MI Symbol Query
30964 @section @sc{gdb/mi} Symbol Query Commands
30968 @subheading The @code{-symbol-info-address} Command
30969 @findex -symbol-info-address
30971 @subsubheading Synopsis
30974 -symbol-info-address @var{symbol}
30977 Describe where @var{symbol} is stored.
30979 @subsubheading @value{GDBN} Command
30981 The corresponding @value{GDBN} command is @samp{info address}.
30983 @subsubheading Example
30987 @subheading The @code{-symbol-info-file} Command
30988 @findex -symbol-info-file
30990 @subsubheading Synopsis
30996 Show the file for the symbol.
30998 @subsubheading @value{GDBN} Command
31000 There's no equivalent @value{GDBN} command. @code{gdbtk} has
31001 @samp{gdb_find_file}.
31003 @subsubheading Example
31007 @subheading The @code{-symbol-info-function} Command
31008 @findex -symbol-info-function
31010 @subsubheading Synopsis
31013 -symbol-info-function
31016 Show which function the symbol lives in.
31018 @subsubheading @value{GDBN} Command
31020 @samp{gdb_get_function} in @code{gdbtk}.
31022 @subsubheading Example
31026 @subheading The @code{-symbol-info-line} Command
31027 @findex -symbol-info-line
31029 @subsubheading Synopsis
31035 Show the core addresses of the code for a source line.
31037 @subsubheading @value{GDBN} Command
31039 The corresponding @value{GDBN} command is @samp{info line}.
31040 @code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
31042 @subsubheading Example
31046 @subheading The @code{-symbol-info-symbol} Command
31047 @findex -symbol-info-symbol
31049 @subsubheading Synopsis
31052 -symbol-info-symbol @var{addr}
31055 Describe what symbol is at location @var{addr}.
31057 @subsubheading @value{GDBN} Command
31059 The corresponding @value{GDBN} command is @samp{info symbol}.
31061 @subsubheading Example
31065 @subheading The @code{-symbol-list-functions} Command
31066 @findex -symbol-list-functions
31068 @subsubheading Synopsis
31071 -symbol-list-functions
31074 List the functions in the executable.
31076 @subsubheading @value{GDBN} Command
31078 @samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
31079 @samp{gdb_search} in @code{gdbtk}.
31081 @subsubheading Example
31086 @subheading The @code{-symbol-list-lines} Command
31087 @findex -symbol-list-lines
31089 @subsubheading Synopsis
31092 -symbol-list-lines @var{filename}
31095 Print the list of lines that contain code and their associated program
31096 addresses for the given source filename. The entries are sorted in
31097 ascending PC order.
31099 @subsubheading @value{GDBN} Command
31101 There is no corresponding @value{GDBN} command.
31103 @subsubheading Example
31106 -symbol-list-lines basics.c
31107 ^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
31113 @subheading The @code{-symbol-list-types} Command
31114 @findex -symbol-list-types
31116 @subsubheading Synopsis
31122 List all the type names.
31124 @subsubheading @value{GDBN} Command
31126 The corresponding commands are @samp{info types} in @value{GDBN},
31127 @samp{gdb_search} in @code{gdbtk}.
31129 @subsubheading Example
31133 @subheading The @code{-symbol-list-variables} Command
31134 @findex -symbol-list-variables
31136 @subsubheading Synopsis
31139 -symbol-list-variables
31142 List all the global and static variable names.
31144 @subsubheading @value{GDBN} Command
31146 @samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
31148 @subsubheading Example
31152 @subheading The @code{-symbol-locate} Command
31153 @findex -symbol-locate
31155 @subsubheading Synopsis
31161 @subsubheading @value{GDBN} Command
31163 @samp{gdb_loc} in @code{gdbtk}.
31165 @subsubheading Example
31169 @subheading The @code{-symbol-type} Command
31170 @findex -symbol-type
31172 @subsubheading Synopsis
31175 -symbol-type @var{variable}
31178 Show type of @var{variable}.
31180 @subsubheading @value{GDBN} Command
31182 The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
31183 @samp{gdb_obj_variable}.
31185 @subsubheading Example
31190 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31191 @node GDB/MI File Commands
31192 @section @sc{gdb/mi} File Commands
31194 This section describes the GDB/MI commands to specify executable file names
31195 and to read in and obtain symbol table information.
31197 @subheading The @code{-file-exec-and-symbols} Command
31198 @findex -file-exec-and-symbols
31200 @subsubheading Synopsis
31203 -file-exec-and-symbols @var{file}
31206 Specify the executable file to be debugged. This file is the one from
31207 which the symbol table is also read. If no file is specified, the
31208 command clears the executable and symbol information. If breakpoints
31209 are set when using this command with no arguments, @value{GDBN} will produce
31210 error messages. Otherwise, no output is produced, except a completion
31213 @subsubheading @value{GDBN} Command
31215 The corresponding @value{GDBN} command is @samp{file}.
31217 @subsubheading Example
31221 -file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
31227 @subheading The @code{-file-exec-file} Command
31228 @findex -file-exec-file
31230 @subsubheading Synopsis
31233 -file-exec-file @var{file}
31236 Specify the executable file to be debugged. Unlike
31237 @samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
31238 from this file. If used without argument, @value{GDBN} clears the information
31239 about the executable file. No output is produced, except a completion
31242 @subsubheading @value{GDBN} Command
31244 The corresponding @value{GDBN} command is @samp{exec-file}.
31246 @subsubheading Example
31250 -file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
31257 @subheading The @code{-file-list-exec-sections} Command
31258 @findex -file-list-exec-sections
31260 @subsubheading Synopsis
31263 -file-list-exec-sections
31266 List the sections of the current executable file.
31268 @subsubheading @value{GDBN} Command
31270 The @value{GDBN} command @samp{info file} shows, among the rest, the same
31271 information as this command. @code{gdbtk} has a corresponding command
31272 @samp{gdb_load_info}.
31274 @subsubheading Example
31279 @subheading The @code{-file-list-exec-source-file} Command
31280 @findex -file-list-exec-source-file
31282 @subsubheading Synopsis
31285 -file-list-exec-source-file
31288 List the line number, the current source file, and the absolute path
31289 to the current source file for the current executable. The macro
31290 information field has a value of @samp{1} or @samp{0} depending on
31291 whether or not the file includes preprocessor macro information.
31293 @subsubheading @value{GDBN} Command
31295 The @value{GDBN} equivalent is @samp{info source}
31297 @subsubheading Example
31301 123-file-list-exec-source-file
31302 123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
31307 @subheading The @code{-file-list-exec-source-files} Command
31308 @findex -file-list-exec-source-files
31310 @subsubheading Synopsis
31313 -file-list-exec-source-files
31316 List the source files for the current executable.
31318 It will always output the filename, but only when @value{GDBN} can find
31319 the absolute file name of a source file, will it output the fullname.
31321 @subsubheading @value{GDBN} Command
31323 The @value{GDBN} equivalent is @samp{info sources}.
31324 @code{gdbtk} has an analogous command @samp{gdb_listfiles}.
31326 @subsubheading Example
31329 -file-list-exec-source-files
31331 @{file=foo.c,fullname=/home/foo.c@},
31332 @{file=/home/bar.c,fullname=/home/bar.c@},
31333 @{file=gdb_could_not_find_fullpath.c@}]
31338 @subheading The @code{-file-list-shared-libraries} Command
31339 @findex -file-list-shared-libraries
31341 @subsubheading Synopsis
31344 -file-list-shared-libraries
31347 List the shared libraries in the program.
31349 @subsubheading @value{GDBN} Command
31351 The corresponding @value{GDBN} command is @samp{info shared}.
31353 @subsubheading Example
31357 @subheading The @code{-file-list-symbol-files} Command
31358 @findex -file-list-symbol-files
31360 @subsubheading Synopsis
31363 -file-list-symbol-files
31368 @subsubheading @value{GDBN} Command
31370 The corresponding @value{GDBN} command is @samp{info file} (part of it).
31372 @subsubheading Example
31377 @subheading The @code{-file-symbol-file} Command
31378 @findex -file-symbol-file
31380 @subsubheading Synopsis
31383 -file-symbol-file @var{file}
31386 Read symbol table info from the specified @var{file} argument. When
31387 used without arguments, clears @value{GDBN}'s symbol table info. No output is
31388 produced, except for a completion notification.
31390 @subsubheading @value{GDBN} Command
31392 The corresponding @value{GDBN} command is @samp{symbol-file}.
31394 @subsubheading Example
31398 -file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
31404 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31405 @node GDB/MI Memory Overlay Commands
31406 @section @sc{gdb/mi} Memory Overlay Commands
31408 The memory overlay commands are not implemented.
31410 @c @subheading -overlay-auto
31412 @c @subheading -overlay-list-mapping-state
31414 @c @subheading -overlay-list-overlays
31416 @c @subheading -overlay-map
31418 @c @subheading -overlay-off
31420 @c @subheading -overlay-on
31422 @c @subheading -overlay-unmap
31424 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31425 @node GDB/MI Signal Handling Commands
31426 @section @sc{gdb/mi} Signal Handling Commands
31428 Signal handling commands are not implemented.
31430 @c @subheading -signal-handle
31432 @c @subheading -signal-list-handle-actions
31434 @c @subheading -signal-list-signal-types
31438 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31439 @node GDB/MI Target Manipulation
31440 @section @sc{gdb/mi} Target Manipulation Commands
31443 @subheading The @code{-target-attach} Command
31444 @findex -target-attach
31446 @subsubheading Synopsis
31449 -target-attach @var{pid} | @var{gid} | @var{file}
31452 Attach to a process @var{pid} or a file @var{file} outside of
31453 @value{GDBN}, or a thread group @var{gid}. If attaching to a thread
31454 group, the id previously returned by
31455 @samp{-list-thread-groups --available} must be used.
31457 @subsubheading @value{GDBN} Command
31459 The corresponding @value{GDBN} command is @samp{attach}.
31461 @subsubheading Example
31465 =thread-created,id="1"
31466 *stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
31472 @subheading The @code{-target-compare-sections} Command
31473 @findex -target-compare-sections
31475 @subsubheading Synopsis
31478 -target-compare-sections [ @var{section} ]
31481 Compare data of section @var{section} on target to the exec file.
31482 Without the argument, all sections are compared.
31484 @subsubheading @value{GDBN} Command
31486 The @value{GDBN} equivalent is @samp{compare-sections}.
31488 @subsubheading Example
31493 @subheading The @code{-target-detach} Command
31494 @findex -target-detach
31496 @subsubheading Synopsis
31499 -target-detach [ @var{pid} | @var{gid} ]
31502 Detach from the remote target which normally resumes its execution.
31503 If either @var{pid} or @var{gid} is specified, detaches from either
31504 the specified process, or specified thread group. There's no output.
31506 @subsubheading @value{GDBN} Command
31508 The corresponding @value{GDBN} command is @samp{detach}.
31510 @subsubheading Example
31520 @subheading The @code{-target-disconnect} Command
31521 @findex -target-disconnect
31523 @subsubheading Synopsis
31529 Disconnect from the remote target. There's no output and the target is
31530 generally not resumed.
31532 @subsubheading @value{GDBN} Command
31534 The corresponding @value{GDBN} command is @samp{disconnect}.
31536 @subsubheading Example
31546 @subheading The @code{-target-download} Command
31547 @findex -target-download
31549 @subsubheading Synopsis
31555 Loads the executable onto the remote target.
31556 It prints out an update message every half second, which includes the fields:
31560 The name of the section.
31562 The size of what has been sent so far for that section.
31564 The size of the section.
31566 The total size of what was sent so far (the current and the previous sections).
31568 The size of the overall executable to download.
31572 Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
31573 @sc{gdb/mi} Output Syntax}).
31575 In addition, it prints the name and size of the sections, as they are
31576 downloaded. These messages include the following fields:
31580 The name of the section.
31582 The size of the section.
31584 The size of the overall executable to download.
31588 At the end, a summary is printed.
31590 @subsubheading @value{GDBN} Command
31592 The corresponding @value{GDBN} command is @samp{load}.
31594 @subsubheading Example
31596 Note: each status message appears on a single line. Here the messages
31597 have been broken down so that they can fit onto a page.
31602 +download,@{section=".text",section-size="6668",total-size="9880"@}
31603 +download,@{section=".text",section-sent="512",section-size="6668",
31604 total-sent="512",total-size="9880"@}
31605 +download,@{section=".text",section-sent="1024",section-size="6668",
31606 total-sent="1024",total-size="9880"@}
31607 +download,@{section=".text",section-sent="1536",section-size="6668",
31608 total-sent="1536",total-size="9880"@}
31609 +download,@{section=".text",section-sent="2048",section-size="6668",
31610 total-sent="2048",total-size="9880"@}
31611 +download,@{section=".text",section-sent="2560",section-size="6668",
31612 total-sent="2560",total-size="9880"@}
31613 +download,@{section=".text",section-sent="3072",section-size="6668",
31614 total-sent="3072",total-size="9880"@}
31615 +download,@{section=".text",section-sent="3584",section-size="6668",
31616 total-sent="3584",total-size="9880"@}
31617 +download,@{section=".text",section-sent="4096",section-size="6668",
31618 total-sent="4096",total-size="9880"@}
31619 +download,@{section=".text",section-sent="4608",section-size="6668",
31620 total-sent="4608",total-size="9880"@}
31621 +download,@{section=".text",section-sent="5120",section-size="6668",
31622 total-sent="5120",total-size="9880"@}
31623 +download,@{section=".text",section-sent="5632",section-size="6668",
31624 total-sent="5632",total-size="9880"@}
31625 +download,@{section=".text",section-sent="6144",section-size="6668",
31626 total-sent="6144",total-size="9880"@}
31627 +download,@{section=".text",section-sent="6656",section-size="6668",
31628 total-sent="6656",total-size="9880"@}
31629 +download,@{section=".init",section-size="28",total-size="9880"@}
31630 +download,@{section=".fini",section-size="28",total-size="9880"@}
31631 +download,@{section=".data",section-size="3156",total-size="9880"@}
31632 +download,@{section=".data",section-sent="512",section-size="3156",
31633 total-sent="7236",total-size="9880"@}
31634 +download,@{section=".data",section-sent="1024",section-size="3156",
31635 total-sent="7748",total-size="9880"@}
31636 +download,@{section=".data",section-sent="1536",section-size="3156",
31637 total-sent="8260",total-size="9880"@}
31638 +download,@{section=".data",section-sent="2048",section-size="3156",
31639 total-sent="8772",total-size="9880"@}
31640 +download,@{section=".data",section-sent="2560",section-size="3156",
31641 total-sent="9284",total-size="9880"@}
31642 +download,@{section=".data",section-sent="3072",section-size="3156",
31643 total-sent="9796",total-size="9880"@}
31644 ^done,address="0x10004",load-size="9880",transfer-rate="6586",
31651 @subheading The @code{-target-exec-status} Command
31652 @findex -target-exec-status
31654 @subsubheading Synopsis
31657 -target-exec-status
31660 Provide information on the state of the target (whether it is running or
31661 not, for instance).
31663 @subsubheading @value{GDBN} Command
31665 There's no equivalent @value{GDBN} command.
31667 @subsubheading Example
31671 @subheading The @code{-target-list-available-targets} Command
31672 @findex -target-list-available-targets
31674 @subsubheading Synopsis
31677 -target-list-available-targets
31680 List the possible targets to connect to.
31682 @subsubheading @value{GDBN} Command
31684 The corresponding @value{GDBN} command is @samp{help target}.
31686 @subsubheading Example
31690 @subheading The @code{-target-list-current-targets} Command
31691 @findex -target-list-current-targets
31693 @subsubheading Synopsis
31696 -target-list-current-targets
31699 Describe the current target.
31701 @subsubheading @value{GDBN} Command
31703 The corresponding information is printed by @samp{info file} (among
31706 @subsubheading Example
31710 @subheading The @code{-target-list-parameters} Command
31711 @findex -target-list-parameters
31713 @subsubheading Synopsis
31716 -target-list-parameters
31722 @subsubheading @value{GDBN} Command
31726 @subsubheading Example
31730 @subheading The @code{-target-select} Command
31731 @findex -target-select
31733 @subsubheading Synopsis
31736 -target-select @var{type} @var{parameters @dots{}}
31739 Connect @value{GDBN} to the remote target. This command takes two args:
31743 The type of target, for instance @samp{remote}, etc.
31744 @item @var{parameters}
31745 Device names, host names and the like. @xref{Target Commands, ,
31746 Commands for Managing Targets}, for more details.
31749 The output is a connection notification, followed by the address at
31750 which the target program is, in the following form:
31753 ^connected,addr="@var{address}",func="@var{function name}",
31754 args=[@var{arg list}]
31757 @subsubheading @value{GDBN} Command
31759 The corresponding @value{GDBN} command is @samp{target}.
31761 @subsubheading Example
31765 -target-select remote /dev/ttya
31766 ^connected,addr="0xfe00a300",func="??",args=[]
31770 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31771 @node GDB/MI File Transfer Commands
31772 @section @sc{gdb/mi} File Transfer Commands
31775 @subheading The @code{-target-file-put} Command
31776 @findex -target-file-put
31778 @subsubheading Synopsis
31781 -target-file-put @var{hostfile} @var{targetfile}
31784 Copy file @var{hostfile} from the host system (the machine running
31785 @value{GDBN}) to @var{targetfile} on the target system.
31787 @subsubheading @value{GDBN} Command
31789 The corresponding @value{GDBN} command is @samp{remote put}.
31791 @subsubheading Example
31795 -target-file-put localfile remotefile
31801 @subheading The @code{-target-file-get} Command
31802 @findex -target-file-get
31804 @subsubheading Synopsis
31807 -target-file-get @var{targetfile} @var{hostfile}
31810 Copy file @var{targetfile} from the target system to @var{hostfile}
31811 on the host system.
31813 @subsubheading @value{GDBN} Command
31815 The corresponding @value{GDBN} command is @samp{remote get}.
31817 @subsubheading Example
31821 -target-file-get remotefile localfile
31827 @subheading The @code{-target-file-delete} Command
31828 @findex -target-file-delete
31830 @subsubheading Synopsis
31833 -target-file-delete @var{targetfile}
31836 Delete @var{targetfile} from the target system.
31838 @subsubheading @value{GDBN} Command
31840 The corresponding @value{GDBN} command is @samp{remote delete}.
31842 @subsubheading Example
31846 -target-file-delete remotefile
31852 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31853 @node GDB/MI Miscellaneous Commands
31854 @section Miscellaneous @sc{gdb/mi} Commands
31856 @c @subheading -gdb-complete
31858 @subheading The @code{-gdb-exit} Command
31861 @subsubheading Synopsis
31867 Exit @value{GDBN} immediately.
31869 @subsubheading @value{GDBN} Command
31871 Approximately corresponds to @samp{quit}.
31873 @subsubheading Example
31883 @subheading The @code{-exec-abort} Command
31884 @findex -exec-abort
31886 @subsubheading Synopsis
31892 Kill the inferior running program.
31894 @subsubheading @value{GDBN} Command
31896 The corresponding @value{GDBN} command is @samp{kill}.
31898 @subsubheading Example
31903 @subheading The @code{-gdb-set} Command
31906 @subsubheading Synopsis
31912 Set an internal @value{GDBN} variable.
31913 @c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
31915 @subsubheading @value{GDBN} Command
31917 The corresponding @value{GDBN} command is @samp{set}.
31919 @subsubheading Example
31929 @subheading The @code{-gdb-show} Command
31932 @subsubheading Synopsis
31938 Show the current value of a @value{GDBN} variable.
31940 @subsubheading @value{GDBN} Command
31942 The corresponding @value{GDBN} command is @samp{show}.
31944 @subsubheading Example
31953 @c @subheading -gdb-source
31956 @subheading The @code{-gdb-version} Command
31957 @findex -gdb-version
31959 @subsubheading Synopsis
31965 Show version information for @value{GDBN}. Used mostly in testing.
31967 @subsubheading @value{GDBN} Command
31969 The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
31970 default shows this information when you start an interactive session.
31972 @subsubheading Example
31974 @c This example modifies the actual output from GDB to avoid overfull
31980 ~Copyright 2000 Free Software Foundation, Inc.
31981 ~GDB is free software, covered by the GNU General Public License, and
31982 ~you are welcome to change it and/or distribute copies of it under
31983 ~ certain conditions.
31984 ~Type "show copying" to see the conditions.
31985 ~There is absolutely no warranty for GDB. Type "show warranty" for
31987 ~This GDB was configured as
31988 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
31993 @subheading The @code{-list-features} Command
31994 @findex -list-features
31996 Returns a list of particular features of the MI protocol that
31997 this version of gdb implements. A feature can be a command,
31998 or a new field in an output of some command, or even an
31999 important bugfix. While a frontend can sometimes detect presence
32000 of a feature at runtime, it is easier to perform detection at debugger
32003 The command returns a list of strings, with each string naming an
32004 available feature. Each returned string is just a name, it does not
32005 have any internal structure. The list of possible feature names
32011 (gdb) -list-features
32012 ^done,result=["feature1","feature2"]
32015 The current list of features is:
32018 @item frozen-varobjs
32019 Indicates support for the @code{-var-set-frozen} command, as well
32020 as possible presense of the @code{frozen} field in the output
32021 of @code{-varobj-create}.
32022 @item pending-breakpoints
32023 Indicates support for the @option{-f} option to the @code{-break-insert}
32026 Indicates Python scripting support, Python-based
32027 pretty-printing commands, and possible presence of the
32028 @samp{display_hint} field in the output of @code{-var-list-children}
32030 Indicates support for the @code{-thread-info} command.
32031 @item data-read-memory-bytes
32032 Indicates support for the @code{-data-read-memory-bytes} and the
32033 @code{-data-write-memory-bytes} commands.
32034 @item breakpoint-notifications
32035 Indicates that changes to breakpoints and breakpoints created via the
32036 CLI will be announced via async records.
32037 @item ada-task-info
32038 Indicates support for the @code{-ada-task-info} command.
32041 @subheading The @code{-list-target-features} Command
32042 @findex -list-target-features
32044 Returns a list of particular features that are supported by the
32045 target. Those features affect the permitted MI commands, but
32046 unlike the features reported by the @code{-list-features} command, the
32047 features depend on which target GDB is using at the moment. Whenever
32048 a target can change, due to commands such as @code{-target-select},
32049 @code{-target-attach} or @code{-exec-run}, the list of target features
32050 may change, and the frontend should obtain it again.
32054 (gdb) -list-features
32055 ^done,result=["async"]
32058 The current list of features is:
32062 Indicates that the target is capable of asynchronous command
32063 execution, which means that @value{GDBN} will accept further commands
32064 while the target is running.
32067 Indicates that the target is capable of reverse execution.
32068 @xref{Reverse Execution}, for more information.
32072 @subheading The @code{-list-thread-groups} Command
32073 @findex -list-thread-groups
32075 @subheading Synopsis
32078 -list-thread-groups [ --available ] [ --recurse 1 ] [ @var{group} ... ]
32081 Lists thread groups (@pxref{Thread groups}). When a single thread
32082 group is passed as the argument, lists the children of that group.
32083 When several thread group are passed, lists information about those
32084 thread groups. Without any parameters, lists information about all
32085 top-level thread groups.
32087 Normally, thread groups that are being debugged are reported.
32088 With the @samp{--available} option, @value{GDBN} reports thread groups
32089 available on the target.
32091 The output of this command may have either a @samp{threads} result or
32092 a @samp{groups} result. The @samp{thread} result has a list of tuples
32093 as value, with each tuple describing a thread (@pxref{GDB/MI Thread
32094 Information}). The @samp{groups} result has a list of tuples as value,
32095 each tuple describing a thread group. If top-level groups are
32096 requested (that is, no parameter is passed), or when several groups
32097 are passed, the output always has a @samp{groups} result. The format
32098 of the @samp{group} result is described below.
32100 To reduce the number of roundtrips it's possible to list thread groups
32101 together with their children, by passing the @samp{--recurse} option
32102 and the recursion depth. Presently, only recursion depth of 1 is
32103 permitted. If this option is present, then every reported thread group
32104 will also include its children, either as @samp{group} or
32105 @samp{threads} field.
32107 In general, any combination of option and parameters is permitted, with
32108 the following caveats:
32112 When a single thread group is passed, the output will typically
32113 be the @samp{threads} result. Because threads may not contain
32114 anything, the @samp{recurse} option will be ignored.
32117 When the @samp{--available} option is passed, limited information may
32118 be available. In particular, the list of threads of a process might
32119 be inaccessible. Further, specifying specific thread groups might
32120 not give any performance advantage over listing all thread groups.
32121 The frontend should assume that @samp{-list-thread-groups --available}
32122 is always an expensive operation and cache the results.
32126 The @samp{groups} result is a list of tuples, where each tuple may
32127 have the following fields:
32131 Identifier of the thread group. This field is always present.
32132 The identifier is an opaque string; frontends should not try to
32133 convert it to an integer, even though it might look like one.
32136 The type of the thread group. At present, only @samp{process} is a
32140 The target-specific process identifier. This field is only present
32141 for thread groups of type @samp{process} and only if the process exists.
32144 The number of children this thread group has. This field may be
32145 absent for an available thread group.
32148 This field has a list of tuples as value, each tuple describing a
32149 thread. It may be present if the @samp{--recurse} option is
32150 specified, and it's actually possible to obtain the threads.
32153 This field is a list of integers, each identifying a core that one
32154 thread of the group is running on. This field may be absent if
32155 such information is not available.
32158 The name of the executable file that corresponds to this thread group.
32159 The field is only present for thread groups of type @samp{process},
32160 and only if there is a corresponding executable file.
32164 @subheading Example
32168 -list-thread-groups
32169 ^done,groups=[@{id="17",type="process",pid="yyy",num_children="2"@}]
32170 -list-thread-groups 17
32171 ^done,threads=[@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
32172 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},state="running"@},
32173 @{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
32174 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
32175 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@},state="running"@}]]
32176 -list-thread-groups --available
32177 ^done,groups=[@{id="17",type="process",pid="yyy",num_children="2",cores=[1,2]@}]
32178 -list-thread-groups --available --recurse 1
32179 ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
32180 threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
32181 @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},..]
32182 -list-thread-groups --available --recurse 1 17 18
32183 ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
32184 threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
32185 @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},...]
32189 @subheading The @code{-add-inferior} Command
32190 @findex -add-inferior
32192 @subheading Synopsis
32198 Creates a new inferior (@pxref{Inferiors and Programs}). The created
32199 inferior is not associated with any executable. Such association may
32200 be established with the @samp{-file-exec-and-symbols} command
32201 (@pxref{GDB/MI File Commands}). The command response has a single
32202 field, @samp{thread-group}, whose value is the identifier of the
32203 thread group corresponding to the new inferior.
32205 @subheading Example
32210 ^done,thread-group="i3"
32213 @subheading The @code{-interpreter-exec} Command
32214 @findex -interpreter-exec
32216 @subheading Synopsis
32219 -interpreter-exec @var{interpreter} @var{command}
32221 @anchor{-interpreter-exec}
32223 Execute the specified @var{command} in the given @var{interpreter}.
32225 @subheading @value{GDBN} Command
32227 The corresponding @value{GDBN} command is @samp{interpreter-exec}.
32229 @subheading Example
32233 -interpreter-exec console "break main"
32234 &"During symbol reading, couldn't parse type; debugger out of date?.\n"
32235 &"During symbol reading, bad structure-type format.\n"
32236 ~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
32241 @subheading The @code{-inferior-tty-set} Command
32242 @findex -inferior-tty-set
32244 @subheading Synopsis
32247 -inferior-tty-set /dev/pts/1
32250 Set terminal for future runs of the program being debugged.
32252 @subheading @value{GDBN} Command
32254 The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
32256 @subheading Example
32260 -inferior-tty-set /dev/pts/1
32265 @subheading The @code{-inferior-tty-show} Command
32266 @findex -inferior-tty-show
32268 @subheading Synopsis
32274 Show terminal for future runs of program being debugged.
32276 @subheading @value{GDBN} Command
32278 The corresponding @value{GDBN} command is @samp{show inferior-tty}.
32280 @subheading Example
32284 -inferior-tty-set /dev/pts/1
32288 ^done,inferior_tty_terminal="/dev/pts/1"
32292 @subheading The @code{-enable-timings} Command
32293 @findex -enable-timings
32295 @subheading Synopsis
32298 -enable-timings [yes | no]
32301 Toggle the printing of the wallclock, user and system times for an MI
32302 command as a field in its output. This command is to help frontend
32303 developers optimize the performance of their code. No argument is
32304 equivalent to @samp{yes}.
32306 @subheading @value{GDBN} Command
32310 @subheading Example
32318 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
32319 addr="0x080484ed",func="main",file="myprog.c",
32320 fullname="/home/nickrob/myprog.c",line="73",times="0"@},
32321 time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
32329 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
32330 frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
32331 @{name="argv",value="0xbfb60364"@}],file="myprog.c",
32332 fullname="/home/nickrob/myprog.c",line="73"@}
32337 @chapter @value{GDBN} Annotations
32339 This chapter describes annotations in @value{GDBN}. Annotations were
32340 designed to interface @value{GDBN} to graphical user interfaces or other
32341 similar programs which want to interact with @value{GDBN} at a
32342 relatively high level.
32344 The annotation mechanism has largely been superseded by @sc{gdb/mi}
32348 This is Edition @value{EDITION}, @value{DATE}.
32352 * Annotations Overview:: What annotations are; the general syntax.
32353 * Server Prefix:: Issuing a command without affecting user state.
32354 * Prompting:: Annotations marking @value{GDBN}'s need for input.
32355 * Errors:: Annotations for error messages.
32356 * Invalidation:: Some annotations describe things now invalid.
32357 * Annotations for Running::
32358 Whether the program is running, how it stopped, etc.
32359 * Source Annotations:: Annotations describing source code.
32362 @node Annotations Overview
32363 @section What is an Annotation?
32364 @cindex annotations
32366 Annotations start with a newline character, two @samp{control-z}
32367 characters, and the name of the annotation. If there is no additional
32368 information associated with this annotation, the name of the annotation
32369 is followed immediately by a newline. If there is additional
32370 information, the name of the annotation is followed by a space, the
32371 additional information, and a newline. The additional information
32372 cannot contain newline characters.
32374 Any output not beginning with a newline and two @samp{control-z}
32375 characters denotes literal output from @value{GDBN}. Currently there is
32376 no need for @value{GDBN} to output a newline followed by two
32377 @samp{control-z} characters, but if there was such a need, the
32378 annotations could be extended with an @samp{escape} annotation which
32379 means those three characters as output.
32381 The annotation @var{level}, which is specified using the
32382 @option{--annotate} command line option (@pxref{Mode Options}), controls
32383 how much information @value{GDBN} prints together with its prompt,
32384 values of expressions, source lines, and other types of output. Level 0
32385 is for no annotations, level 1 is for use when @value{GDBN} is run as a
32386 subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
32387 for programs that control @value{GDBN}, and level 2 annotations have
32388 been made obsolete (@pxref{Limitations, , Limitations of the Annotation
32389 Interface, annotate, GDB's Obsolete Annotations}).
32392 @kindex set annotate
32393 @item set annotate @var{level}
32394 The @value{GDBN} command @code{set annotate} sets the level of
32395 annotations to the specified @var{level}.
32397 @item show annotate
32398 @kindex show annotate
32399 Show the current annotation level.
32402 This chapter describes level 3 annotations.
32404 A simple example of starting up @value{GDBN} with annotations is:
32407 $ @kbd{gdb --annotate=3}
32409 Copyright 2003 Free Software Foundation, Inc.
32410 GDB is free software, covered by the GNU General Public License,
32411 and you are welcome to change it and/or distribute copies of it
32412 under certain conditions.
32413 Type "show copying" to see the conditions.
32414 There is absolutely no warranty for GDB. Type "show warranty"
32416 This GDB was configured as "i386-pc-linux-gnu"
32427 Here @samp{quit} is input to @value{GDBN}; the rest is output from
32428 @value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
32429 denotes a @samp{control-z} character) are annotations; the rest is
32430 output from @value{GDBN}.
32432 @node Server Prefix
32433 @section The Server Prefix
32434 @cindex server prefix
32436 If you prefix a command with @samp{server } then it will not affect
32437 the command history, nor will it affect @value{GDBN}'s notion of which
32438 command to repeat if @key{RET} is pressed on a line by itself. This
32439 means that commands can be run behind a user's back by a front-end in
32440 a transparent manner.
32442 The @code{server } prefix does not affect the recording of values into
32443 the value history; to print a value without recording it into the
32444 value history, use the @code{output} command instead of the
32445 @code{print} command.
32447 Using this prefix also disables confirmation requests
32448 (@pxref{confirmation requests}).
32451 @section Annotation for @value{GDBN} Input
32453 @cindex annotations for prompts
32454 When @value{GDBN} prompts for input, it annotates this fact so it is possible
32455 to know when to send output, when the output from a given command is
32458 Different kinds of input each have a different @dfn{input type}. Each
32459 input type has three annotations: a @code{pre-} annotation, which
32460 denotes the beginning of any prompt which is being output, a plain
32461 annotation, which denotes the end of the prompt, and then a @code{post-}
32462 annotation which denotes the end of any echo which may (or may not) be
32463 associated with the input. For example, the @code{prompt} input type
32464 features the following annotations:
32472 The input types are
32475 @findex pre-prompt annotation
32476 @findex prompt annotation
32477 @findex post-prompt annotation
32479 When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
32481 @findex pre-commands annotation
32482 @findex commands annotation
32483 @findex post-commands annotation
32485 When @value{GDBN} prompts for a set of commands, like in the @code{commands}
32486 command. The annotations are repeated for each command which is input.
32488 @findex pre-overload-choice annotation
32489 @findex overload-choice annotation
32490 @findex post-overload-choice annotation
32491 @item overload-choice
32492 When @value{GDBN} wants the user to select between various overloaded functions.
32494 @findex pre-query annotation
32495 @findex query annotation
32496 @findex post-query annotation
32498 When @value{GDBN} wants the user to confirm a potentially dangerous operation.
32500 @findex pre-prompt-for-continue annotation
32501 @findex prompt-for-continue annotation
32502 @findex post-prompt-for-continue annotation
32503 @item prompt-for-continue
32504 When @value{GDBN} is asking the user to press return to continue. Note: Don't
32505 expect this to work well; instead use @code{set height 0} to disable
32506 prompting. This is because the counting of lines is buggy in the
32507 presence of annotations.
32512 @cindex annotations for errors, warnings and interrupts
32514 @findex quit annotation
32519 This annotation occurs right before @value{GDBN} responds to an interrupt.
32521 @findex error annotation
32526 This annotation occurs right before @value{GDBN} responds to an error.
32528 Quit and error annotations indicate that any annotations which @value{GDBN} was
32529 in the middle of may end abruptly. For example, if a
32530 @code{value-history-begin} annotation is followed by a @code{error}, one
32531 cannot expect to receive the matching @code{value-history-end}. One
32532 cannot expect not to receive it either, however; an error annotation
32533 does not necessarily mean that @value{GDBN} is immediately returning all the way
32536 @findex error-begin annotation
32537 A quit or error annotation may be preceded by
32543 Any output between that and the quit or error annotation is the error
32546 Warning messages are not yet annotated.
32547 @c If we want to change that, need to fix warning(), type_error(),
32548 @c range_error(), and possibly other places.
32551 @section Invalidation Notices
32553 @cindex annotations for invalidation messages
32554 The following annotations say that certain pieces of state may have
32558 @findex frames-invalid annotation
32559 @item ^Z^Zframes-invalid
32561 The frames (for example, output from the @code{backtrace} command) may
32564 @findex breakpoints-invalid annotation
32565 @item ^Z^Zbreakpoints-invalid
32567 The breakpoints may have changed. For example, the user just added or
32568 deleted a breakpoint.
32571 @node Annotations for Running
32572 @section Running the Program
32573 @cindex annotations for running programs
32575 @findex starting annotation
32576 @findex stopping annotation
32577 When the program starts executing due to a @value{GDBN} command such as
32578 @code{step} or @code{continue},
32584 is output. When the program stops,
32590 is output. Before the @code{stopped} annotation, a variety of
32591 annotations describe how the program stopped.
32594 @findex exited annotation
32595 @item ^Z^Zexited @var{exit-status}
32596 The program exited, and @var{exit-status} is the exit status (zero for
32597 successful exit, otherwise nonzero).
32599 @findex signalled annotation
32600 @findex signal-name annotation
32601 @findex signal-name-end annotation
32602 @findex signal-string annotation
32603 @findex signal-string-end annotation
32604 @item ^Z^Zsignalled
32605 The program exited with a signal. After the @code{^Z^Zsignalled}, the
32606 annotation continues:
32612 ^Z^Zsignal-name-end
32616 ^Z^Zsignal-string-end
32621 where @var{name} is the name of the signal, such as @code{SIGILL} or
32622 @code{SIGSEGV}, and @var{string} is the explanation of the signal, such
32623 as @code{Illegal Instruction} or @code{Segmentation fault}.
32624 @var{intro-text}, @var{middle-text}, and @var{end-text} are for the
32625 user's benefit and have no particular format.
32627 @findex signal annotation
32629 The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
32630 just saying that the program received the signal, not that it was
32631 terminated with it.
32633 @findex breakpoint annotation
32634 @item ^Z^Zbreakpoint @var{number}
32635 The program hit breakpoint number @var{number}.
32637 @findex watchpoint annotation
32638 @item ^Z^Zwatchpoint @var{number}
32639 The program hit watchpoint number @var{number}.
32642 @node Source Annotations
32643 @section Displaying Source
32644 @cindex annotations for source display
32646 @findex source annotation
32647 The following annotation is used instead of displaying source code:
32650 ^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
32653 where @var{filename} is an absolute file name indicating which source
32654 file, @var{line} is the line number within that file (where 1 is the
32655 first line in the file), @var{character} is the character position
32656 within the file (where 0 is the first character in the file) (for most
32657 debug formats this will necessarily point to the beginning of a line),
32658 @var{middle} is @samp{middle} if @var{addr} is in the middle of the
32659 line, or @samp{beg} if @var{addr} is at the beginning of the line, and
32660 @var{addr} is the address in the target program associated with the
32661 source which is being displayed. @var{addr} is in the form @samp{0x}
32662 followed by one or more lowercase hex digits (note that this does not
32663 depend on the language).
32665 @node JIT Interface
32666 @chapter JIT Compilation Interface
32667 @cindex just-in-time compilation
32668 @cindex JIT compilation interface
32670 This chapter documents @value{GDBN}'s @dfn{just-in-time} (JIT) compilation
32671 interface. A JIT compiler is a program or library that generates native
32672 executable code at runtime and executes it, usually in order to achieve good
32673 performance while maintaining platform independence.
32675 Programs that use JIT compilation are normally difficult to debug because
32676 portions of their code are generated at runtime, instead of being loaded from
32677 object files, which is where @value{GDBN} normally finds the program's symbols
32678 and debug information. In order to debug programs that use JIT compilation,
32679 @value{GDBN} has an interface that allows the program to register in-memory
32680 symbol files with @value{GDBN} at runtime.
32682 If you are using @value{GDBN} to debug a program that uses this interface, then
32683 it should work transparently so long as you have not stripped the binary. If
32684 you are developing a JIT compiler, then the interface is documented in the rest
32685 of this chapter. At this time, the only known client of this interface is the
32688 Broadly speaking, the JIT interface mirrors the dynamic loader interface. The
32689 JIT compiler communicates with @value{GDBN} by writing data into a global
32690 variable and calling a fuction at a well-known symbol. When @value{GDBN}
32691 attaches, it reads a linked list of symbol files from the global variable to
32692 find existing code, and puts a breakpoint in the function so that it can find
32693 out about additional code.
32696 * Declarations:: Relevant C struct declarations
32697 * Registering Code:: Steps to register code
32698 * Unregistering Code:: Steps to unregister code
32699 * Custom Debug Info:: Emit debug information in a custom format
32703 @section JIT Declarations
32705 These are the relevant struct declarations that a C program should include to
32706 implement the interface:
32716 struct jit_code_entry
32718 struct jit_code_entry *next_entry;
32719 struct jit_code_entry *prev_entry;
32720 const char *symfile_addr;
32721 uint64_t symfile_size;
32724 struct jit_descriptor
32727 /* This type should be jit_actions_t, but we use uint32_t
32728 to be explicit about the bitwidth. */
32729 uint32_t action_flag;
32730 struct jit_code_entry *relevant_entry;
32731 struct jit_code_entry *first_entry;
32734 /* GDB puts a breakpoint in this function. */
32735 void __attribute__((noinline)) __jit_debug_register_code() @{ @};
32737 /* Make sure to specify the version statically, because the
32738 debugger may check the version before we can set it. */
32739 struct jit_descriptor __jit_debug_descriptor = @{ 1, 0, 0, 0 @};
32742 If the JIT is multi-threaded, then it is important that the JIT synchronize any
32743 modifications to this global data properly, which can easily be done by putting
32744 a global mutex around modifications to these structures.
32746 @node Registering Code
32747 @section Registering Code
32749 To register code with @value{GDBN}, the JIT should follow this protocol:
32753 Generate an object file in memory with symbols and other desired debug
32754 information. The file must include the virtual addresses of the sections.
32757 Create a code entry for the file, which gives the start and size of the symbol
32761 Add it to the linked list in the JIT descriptor.
32764 Point the relevant_entry field of the descriptor at the entry.
32767 Set @code{action_flag} to @code{JIT_REGISTER} and call
32768 @code{__jit_debug_register_code}.
32771 When @value{GDBN} is attached and the breakpoint fires, @value{GDBN} uses the
32772 @code{relevant_entry} pointer so it doesn't have to walk the list looking for
32773 new code. However, the linked list must still be maintained in order to allow
32774 @value{GDBN} to attach to a running process and still find the symbol files.
32776 @node Unregistering Code
32777 @section Unregistering Code
32779 If code is freed, then the JIT should use the following protocol:
32783 Remove the code entry corresponding to the code from the linked list.
32786 Point the @code{relevant_entry} field of the descriptor at the code entry.
32789 Set @code{action_flag} to @code{JIT_UNREGISTER} and call
32790 @code{__jit_debug_register_code}.
32793 If the JIT frees or recompiles code without unregistering it, then @value{GDBN}
32794 and the JIT will leak the memory used for the associated symbol files.
32796 @node Custom Debug Info
32797 @section Custom Debug Info
32798 @cindex custom JIT debug info
32799 @cindex JIT debug info reader
32801 Generating debug information in platform-native file formats (like ELF
32802 or COFF) may be an overkill for JIT compilers; especially if all the
32803 debug info is used for is displaying a meaningful backtrace. The
32804 issue can be resolved by having the JIT writers decide on a debug info
32805 format and also provide a reader that parses the debug info generated
32806 by the JIT compiler. This section gives a brief overview on writing
32807 such a parser. More specific details can be found in the source file
32808 @file{gdb/jit-reader.in}, which is also installed as a header at
32809 @file{@var{includedir}/gdb/jit-reader.h} for easy inclusion.
32811 The reader is implemented as a shared object (so this functionality is
32812 not available on platforms which don't allow loading shared objects at
32813 runtime). Two @value{GDBN} commands, @code{jit-reader-load} and
32814 @code{jit-reader-unload} are provided, to be used to load and unload
32815 the readers from a preconfigured directory. Once loaded, the shared
32816 object is used the parse the debug information emitted by the JIT
32820 * Using JIT Debug Info Readers:: How to use supplied readers correctly
32821 * Writing JIT Debug Info Readers:: Creating a debug-info reader
32824 @node Using JIT Debug Info Readers
32825 @subsection Using JIT Debug Info Readers
32826 @kindex jit-reader-load
32827 @kindex jit-reader-unload
32829 Readers can be loaded and unloaded using the @code{jit-reader-load}
32830 and @code{jit-reader-unload} commands.
32833 @item jit-reader-load @var{reader-name}
32834 Load the JIT reader named @var{reader-name}. On a UNIX system, this
32835 will usually load @file{@var{libdir}/gdb/@var{reader-name}}, where
32836 @var{libdir} is the system library directory, usually
32837 @file{/usr/local/lib}. Only one reader can be active at a time;
32838 trying to load a second reader when one is already loaded will result
32839 in @value{GDBN} reporting an error. A new JIT reader can be loaded by
32840 first unloading the current one using @code{jit-reader-load} and then
32841 invoking @code{jit-reader-load}.
32843 @item jit-reader-unload
32844 Unload the currently loaded JIT reader.
32848 @node Writing JIT Debug Info Readers
32849 @subsection Writing JIT Debug Info Readers
32850 @cindex writing JIT debug info readers
32852 As mentioned, a reader is essentially a shared object conforming to a
32853 certain ABI. This ABI is described in @file{jit-reader.h}.
32855 @file{jit-reader.h} defines the structures, macros and functions
32856 required to write a reader. It is installed (along with
32857 @value{GDBN}), in @file{@var{includedir}/gdb} where @var{includedir} is
32858 the system include directory.
32860 Readers need to be released under a GPL compatible license. A reader
32861 can be declared as released under such a license by placing the macro
32862 @code{GDB_DECLARE_GPL_COMPATIBLE_READER} in a source file.
32864 The entry point for readers is the symbol @code{gdb_init_reader},
32865 which is expected to be a function with the prototype
32867 @findex gdb_init_reader
32869 extern struct gdb_reader_funcs *gdb_init_reader (void);
32872 @cindex @code{struct gdb_reader_funcs}
32874 @code{struct gdb_reader_funcs} contains a set of pointers to callback
32875 functions. These functions are executed to read the debug info
32876 generated by the JIT compiler (@code{read}), to unwind stack frames
32877 (@code{unwind}) and to create canonical frame IDs
32878 (@code{get_Frame_id}). It also has a callback that is called when the
32879 reader is being unloaded (@code{destroy}). The struct looks like this
32882 struct gdb_reader_funcs
32884 /* Must be set to GDB_READER_INTERFACE_VERSION. */
32885 int reader_version;
32887 /* For use by the reader. */
32890 gdb_read_debug_info *read;
32891 gdb_unwind_frame *unwind;
32892 gdb_get_frame_id *get_frame_id;
32893 gdb_destroy_reader *destroy;
32897 @cindex @code{struct gdb_symbol_callbacks}
32898 @cindex @code{struct gdb_unwind_callbacks}
32900 The callbacks are provided with another set of callbacks by
32901 @value{GDBN} to do their job. For @code{read}, these callbacks are
32902 passed in a @code{struct gdb_symbol_callbacks} and for @code{unwind}
32903 and @code{get_frame_id}, in a @code{struct gdb_unwind_callbacks}.
32904 @code{struct gdb_symbol_callbacks} has callbacks to create new object
32905 files and new symbol tables inside those object files. @code{struct
32906 gdb_unwind_callbacks} has callbacks to read registers off the current
32907 frame and to write out the values of the registers in the previous
32908 frame. Both have a callback (@code{target_read}) to read bytes off the
32909 target's address space.
32911 @node In-Process Agent
32912 @chapter In-Process Agent
32913 @cindex debugging agent
32914 The traditional debugging model is conceptually low-speed, but works fine,
32915 because most bugs can be reproduced in debugging-mode execution. However,
32916 as multi-core or many-core processors are becoming mainstream, and
32917 multi-threaded programs become more and more popular, there should be more
32918 and more bugs that only manifest themselves at normal-mode execution, for
32919 example, thread races, because debugger's interference with the program's
32920 timing may conceal the bugs. On the other hand, in some applications,
32921 it is not feasible for the debugger to interrupt the program's execution
32922 long enough for the developer to learn anything helpful about its behavior.
32923 If the program's correctness depends on its real-time behavior, delays
32924 introduced by a debugger might cause the program to fail, even when the
32925 code itself is correct. It is useful to be able to observe the program's
32926 behavior without interrupting it.
32928 Therefore, traditional debugging model is too intrusive to reproduce
32929 some bugs. In order to reduce the interference with the program, we can
32930 reduce the number of operations performed by debugger. The
32931 @dfn{In-Process Agent}, a shared library, is running within the same
32932 process with inferior, and is able to perform some debugging operations
32933 itself. As a result, debugger is only involved when necessary, and
32934 performance of debugging can be improved accordingly. Note that
32935 interference with program can be reduced but can't be removed completely,
32936 because the in-process agent will still stop or slow down the program.
32938 The in-process agent can interpret and execute Agent Expressions
32939 (@pxref{Agent Expressions}) during performing debugging operations. The
32940 agent expressions can be used for different purposes, such as collecting
32941 data in tracepoints, and condition evaluation in breakpoints.
32943 @anchor{Control Agent}
32944 You can control whether the in-process agent is used as an aid for
32945 debugging with the following commands:
32948 @kindex set agent on
32950 Causes the in-process agent to perform some operations on behalf of the
32951 debugger. Just which operations requested by the user will be done
32952 by the in-process agent depends on the its capabilities. For example,
32953 if you request to evaluate breakpoint conditions in the in-process agent,
32954 and the in-process agent has such capability as well, then breakpoint
32955 conditions will be evaluated in the in-process agent.
32957 @kindex set agent off
32958 @item set agent off
32959 Disables execution of debugging operations by the in-process agent. All
32960 of the operations will be performed by @value{GDBN}.
32964 Display the current setting of execution of debugging operations by
32965 the in-process agent.
32969 @chapter Reporting Bugs in @value{GDBN}
32970 @cindex bugs in @value{GDBN}
32971 @cindex reporting bugs in @value{GDBN}
32973 Your bug reports play an essential role in making @value{GDBN} reliable.
32975 Reporting a bug may help you by bringing a solution to your problem, or it
32976 may not. But in any case the principal function of a bug report is to help
32977 the entire community by making the next version of @value{GDBN} work better. Bug
32978 reports are your contribution to the maintenance of @value{GDBN}.
32980 In order for a bug report to serve its purpose, you must include the
32981 information that enables us to fix the bug.
32984 * Bug Criteria:: Have you found a bug?
32985 * Bug Reporting:: How to report bugs
32989 @section Have You Found a Bug?
32990 @cindex bug criteria
32992 If you are not sure whether you have found a bug, here are some guidelines:
32995 @cindex fatal signal
32996 @cindex debugger crash
32997 @cindex crash of debugger
32999 If the debugger gets a fatal signal, for any input whatever, that is a
33000 @value{GDBN} bug. Reliable debuggers never crash.
33002 @cindex error on valid input
33004 If @value{GDBN} produces an error message for valid input, that is a
33005 bug. (Note that if you're cross debugging, the problem may also be
33006 somewhere in the connection to the target.)
33008 @cindex invalid input
33010 If @value{GDBN} does not produce an error message for invalid input,
33011 that is a bug. However, you should note that your idea of
33012 ``invalid input'' might be our idea of ``an extension'' or ``support
33013 for traditional practice''.
33016 If you are an experienced user of debugging tools, your suggestions
33017 for improvement of @value{GDBN} are welcome in any case.
33020 @node Bug Reporting
33021 @section How to Report Bugs
33022 @cindex bug reports
33023 @cindex @value{GDBN} bugs, reporting
33025 A number of companies and individuals offer support for @sc{gnu} products.
33026 If you obtained @value{GDBN} from a support organization, we recommend you
33027 contact that organization first.
33029 You can find contact information for many support companies and
33030 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
33032 @c should add a web page ref...
33035 @ifset BUGURL_DEFAULT
33036 In any event, we also recommend that you submit bug reports for
33037 @value{GDBN}. The preferred method is to submit them directly using
33038 @uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
33039 page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
33042 @strong{Do not send bug reports to @samp{info-gdb}, or to
33043 @samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
33044 not want to receive bug reports. Those that do have arranged to receive
33047 The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
33048 serves as a repeater. The mailing list and the newsgroup carry exactly
33049 the same messages. Often people think of posting bug reports to the
33050 newsgroup instead of mailing them. This appears to work, but it has one
33051 problem which can be crucial: a newsgroup posting often lacks a mail
33052 path back to the sender. Thus, if we need to ask for more information,
33053 we may be unable to reach you. For this reason, it is better to send
33054 bug reports to the mailing list.
33056 @ifclear BUGURL_DEFAULT
33057 In any event, we also recommend that you submit bug reports for
33058 @value{GDBN} to @value{BUGURL}.
33062 The fundamental principle of reporting bugs usefully is this:
33063 @strong{report all the facts}. If you are not sure whether to state a
33064 fact or leave it out, state it!
33066 Often people omit facts because they think they know what causes the
33067 problem and assume that some details do not matter. Thus, you might
33068 assume that the name of the variable you use in an example does not matter.
33069 Well, probably it does not, but one cannot be sure. Perhaps the bug is a
33070 stray memory reference which happens to fetch from the location where that
33071 name is stored in memory; perhaps, if the name were different, the contents
33072 of that location would fool the debugger into doing the right thing despite
33073 the bug. Play it safe and give a specific, complete example. That is the
33074 easiest thing for you to do, and the most helpful.
33076 Keep in mind that the purpose of a bug report is to enable us to fix the
33077 bug. It may be that the bug has been reported previously, but neither
33078 you nor we can know that unless your bug report is complete and
33081 Sometimes people give a few sketchy facts and ask, ``Does this ring a
33082 bell?'' Those bug reports are useless, and we urge everyone to
33083 @emph{refuse to respond to them} except to chide the sender to report
33086 To enable us to fix the bug, you should include all these things:
33090 The version of @value{GDBN}. @value{GDBN} announces it if you start
33091 with no arguments; you can also print it at any time using @code{show
33094 Without this, we will not know whether there is any point in looking for
33095 the bug in the current version of @value{GDBN}.
33098 The type of machine you are using, and the operating system name and
33102 What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
33103 ``@value{GCC}--2.8.1''.
33106 What compiler (and its version) was used to compile the program you are
33107 debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
33108 C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
33109 to get this information; for other compilers, see the documentation for
33113 The command arguments you gave the compiler to compile your example and
33114 observe the bug. For example, did you use @samp{-O}? To guarantee
33115 you will not omit something important, list them all. A copy of the
33116 Makefile (or the output from make) is sufficient.
33118 If we were to try to guess the arguments, we would probably guess wrong
33119 and then we might not encounter the bug.
33122 A complete input script, and all necessary source files, that will
33126 A description of what behavior you observe that you believe is
33127 incorrect. For example, ``It gets a fatal signal.''
33129 Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
33130 will certainly notice it. But if the bug is incorrect output, we might
33131 not notice unless it is glaringly wrong. You might as well not give us
33132 a chance to make a mistake.
33134 Even if the problem you experience is a fatal signal, you should still
33135 say so explicitly. Suppose something strange is going on, such as, your
33136 copy of @value{GDBN} is out of synch, or you have encountered a bug in
33137 the C library on your system. (This has happened!) Your copy might
33138 crash and ours would not. If you told us to expect a crash, then when
33139 ours fails to crash, we would know that the bug was not happening for
33140 us. If you had not told us to expect a crash, then we would not be able
33141 to draw any conclusion from our observations.
33144 @cindex recording a session script
33145 To collect all this information, you can use a session recording program
33146 such as @command{script}, which is available on many Unix systems.
33147 Just run your @value{GDBN} session inside @command{script} and then
33148 include the @file{typescript} file with your bug report.
33150 Another way to record a @value{GDBN} session is to run @value{GDBN}
33151 inside Emacs and then save the entire buffer to a file.
33154 If you wish to suggest changes to the @value{GDBN} source, send us context
33155 diffs. If you even discuss something in the @value{GDBN} source, refer to
33156 it by context, not by line number.
33158 The line numbers in our development sources will not match those in your
33159 sources. Your line numbers would convey no useful information to us.
33163 Here are some things that are not necessary:
33167 A description of the envelope of the bug.
33169 Often people who encounter a bug spend a lot of time investigating
33170 which changes to the input file will make the bug go away and which
33171 changes will not affect it.
33173 This is often time consuming and not very useful, because the way we
33174 will find the bug is by running a single example under the debugger
33175 with breakpoints, not by pure deduction from a series of examples.
33176 We recommend that you save your time for something else.
33178 Of course, if you can find a simpler example to report @emph{instead}
33179 of the original one, that is a convenience for us. Errors in the
33180 output will be easier to spot, running under the debugger will take
33181 less time, and so on.
33183 However, simplification is not vital; if you do not want to do this,
33184 report the bug anyway and send us the entire test case you used.
33187 A patch for the bug.
33189 A patch for the bug does help us if it is a good one. But do not omit
33190 the necessary information, such as the test case, on the assumption that
33191 a patch is all we need. We might see problems with your patch and decide
33192 to fix the problem another way, or we might not understand it at all.
33194 Sometimes with a program as complicated as @value{GDBN} it is very hard to
33195 construct an example that will make the program follow a certain path
33196 through the code. If you do not send us the example, we will not be able
33197 to construct one, so we will not be able to verify that the bug is fixed.
33199 And if we cannot understand what bug you are trying to fix, or why your
33200 patch should be an improvement, we will not install it. A test case will
33201 help us to understand.
33204 A guess about what the bug is or what it depends on.
33206 Such guesses are usually wrong. Even we cannot guess right about such
33207 things without first using the debugger to find the facts.
33210 @c The readline documentation is distributed with the readline code
33211 @c and consists of the two following files:
33214 @c Use -I with makeinfo to point to the appropriate directory,
33215 @c environment var TEXINPUTS with TeX.
33216 @ifclear SYSTEM_READLINE
33217 @include rluser.texi
33218 @include hsuser.texi
33222 @appendix In Memoriam
33224 The @value{GDBN} project mourns the loss of the following long-time
33229 Fred was a long-standing contributor to @value{GDBN} (1991-2006), and
33230 to Free Software in general. Outside of @value{GDBN}, he was known in
33231 the Amiga world for his series of Fish Disks, and the GeekGadget project.
33233 @item Michael Snyder
33234 Michael was one of the Global Maintainers of the @value{GDBN} project,
33235 with contributions recorded as early as 1996, until 2011. In addition
33236 to his day to day participation, he was a large driving force behind
33237 adding Reverse Debugging to @value{GDBN}.
33240 Beyond their technical contributions to the project, they were also
33241 enjoyable members of the Free Software Community. We will miss them.
33243 @node Formatting Documentation
33244 @appendix Formatting Documentation
33246 @cindex @value{GDBN} reference card
33247 @cindex reference card
33248 The @value{GDBN} 4 release includes an already-formatted reference card, ready
33249 for printing with PostScript or Ghostscript, in the @file{gdb}
33250 subdirectory of the main source directory@footnote{In
33251 @file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
33252 release.}. If you can use PostScript or Ghostscript with your printer,
33253 you can print the reference card immediately with @file{refcard.ps}.
33255 The release also includes the source for the reference card. You
33256 can format it, using @TeX{}, by typing:
33262 The @value{GDBN} reference card is designed to print in @dfn{landscape}
33263 mode on US ``letter'' size paper;
33264 that is, on a sheet 11 inches wide by 8.5 inches
33265 high. You will need to specify this form of printing as an option to
33266 your @sc{dvi} output program.
33268 @cindex documentation
33270 All the documentation for @value{GDBN} comes as part of the machine-readable
33271 distribution. The documentation is written in Texinfo format, which is
33272 a documentation system that uses a single source file to produce both
33273 on-line information and a printed manual. You can use one of the Info
33274 formatting commands to create the on-line version of the documentation
33275 and @TeX{} (or @code{texi2roff}) to typeset the printed version.
33277 @value{GDBN} includes an already formatted copy of the on-line Info
33278 version of this manual in the @file{gdb} subdirectory. The main Info
33279 file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
33280 subordinate files matching @samp{gdb.info*} in the same directory. If
33281 necessary, you can print out these files, or read them with any editor;
33282 but they are easier to read using the @code{info} subsystem in @sc{gnu}
33283 Emacs or the standalone @code{info} program, available as part of the
33284 @sc{gnu} Texinfo distribution.
33286 If you want to format these Info files yourself, you need one of the
33287 Info formatting programs, such as @code{texinfo-format-buffer} or
33290 If you have @code{makeinfo} installed, and are in the top level
33291 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
33292 version @value{GDBVN}), you can make the Info file by typing:
33299 If you want to typeset and print copies of this manual, you need @TeX{},
33300 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
33301 Texinfo definitions file.
33303 @TeX{} is a typesetting program; it does not print files directly, but
33304 produces output files called @sc{dvi} files. To print a typeset
33305 document, you need a program to print @sc{dvi} files. If your system
33306 has @TeX{} installed, chances are it has such a program. The precise
33307 command to use depends on your system; @kbd{lpr -d} is common; another
33308 (for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
33309 require a file name without any extension or a @samp{.dvi} extension.
33311 @TeX{} also requires a macro definitions file called
33312 @file{texinfo.tex}. This file tells @TeX{} how to typeset a document
33313 written in Texinfo format. On its own, @TeX{} cannot either read or
33314 typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
33315 and is located in the @file{gdb-@var{version-number}/texinfo}
33318 If you have @TeX{} and a @sc{dvi} printer program installed, you can
33319 typeset and print this manual. First switch to the @file{gdb}
33320 subdirectory of the main source directory (for example, to
33321 @file{gdb-@value{GDBVN}/gdb}) and type:
33327 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
33329 @node Installing GDB
33330 @appendix Installing @value{GDBN}
33331 @cindex installation
33334 * Requirements:: Requirements for building @value{GDBN}
33335 * Running Configure:: Invoking the @value{GDBN} @file{configure} script
33336 * Separate Objdir:: Compiling @value{GDBN} in another directory
33337 * Config Names:: Specifying names for hosts and targets
33338 * Configure Options:: Summary of options for configure
33339 * System-wide configuration:: Having a system-wide init file
33343 @section Requirements for Building @value{GDBN}
33344 @cindex building @value{GDBN}, requirements for
33346 Building @value{GDBN} requires various tools and packages to be available.
33347 Other packages will be used only if they are found.
33349 @heading Tools/Packages Necessary for Building @value{GDBN}
33351 @item ISO C90 compiler
33352 @value{GDBN} is written in ISO C90. It should be buildable with any
33353 working C90 compiler, e.g.@: GCC.
33357 @heading Tools/Packages Optional for Building @value{GDBN}
33361 @value{GDBN} can use the Expat XML parsing library. This library may be
33362 included with your operating system distribution; if it is not, you
33363 can get the latest version from @url{http://expat.sourceforge.net}.
33364 The @file{configure} script will search for this library in several
33365 standard locations; if it is installed in an unusual path, you can
33366 use the @option{--with-libexpat-prefix} option to specify its location.
33372 Remote protocol memory maps (@pxref{Memory Map Format})
33374 Target descriptions (@pxref{Target Descriptions})
33376 Remote shared library lists (@xref{Library List Format},
33377 or alternatively @pxref{Library List Format for SVR4 Targets})
33379 MS-Windows shared libraries (@pxref{Shared Libraries})
33381 Traceframe info (@pxref{Traceframe Info Format})
33385 @cindex compressed debug sections
33386 @value{GDBN} will use the @samp{zlib} library, if available, to read
33387 compressed debug sections. Some linkers, such as GNU gold, are capable
33388 of producing binaries with compressed debug sections. If @value{GDBN}
33389 is compiled with @samp{zlib}, it will be able to read the debug
33390 information in such binaries.
33392 The @samp{zlib} library is likely included with your operating system
33393 distribution; if it is not, you can get the latest version from
33394 @url{http://zlib.net}.
33397 @value{GDBN}'s features related to character sets (@pxref{Character
33398 Sets}) require a functioning @code{iconv} implementation. If you are
33399 on a GNU system, then this is provided by the GNU C Library. Some
33400 other systems also provide a working @code{iconv}.
33402 If @value{GDBN} is using the @code{iconv} program which is installed
33403 in a non-standard place, you will need to tell @value{GDBN} where to find it.
33404 This is done with @option{--with-iconv-bin} which specifies the
33405 directory that contains the @code{iconv} program.
33407 On systems without @code{iconv}, you can install GNU Libiconv. If you
33408 have previously installed Libiconv, you can use the
33409 @option{--with-libiconv-prefix} option to configure.
33411 @value{GDBN}'s top-level @file{configure} and @file{Makefile} will
33412 arrange to build Libiconv if a directory named @file{libiconv} appears
33413 in the top-most source directory. If Libiconv is built this way, and
33414 if the operating system does not provide a suitable @code{iconv}
33415 implementation, then the just-built library will automatically be used
33416 by @value{GDBN}. One easy way to set this up is to download GNU
33417 Libiconv, unpack it, and then rename the directory holding the
33418 Libiconv source code to @samp{libiconv}.
33421 @node Running Configure
33422 @section Invoking the @value{GDBN} @file{configure} Script
33423 @cindex configuring @value{GDBN}
33424 @value{GDBN} comes with a @file{configure} script that automates the process
33425 of preparing @value{GDBN} for installation; you can then use @code{make} to
33426 build the @code{gdb} program.
33428 @c irrelevant in info file; it's as current as the code it lives with.
33429 @footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
33430 look at the @file{README} file in the sources; we may have improved the
33431 installation procedures since publishing this manual.}
33434 The @value{GDBN} distribution includes all the source code you need for
33435 @value{GDBN} in a single directory, whose name is usually composed by
33436 appending the version number to @samp{gdb}.
33438 For example, the @value{GDBN} version @value{GDBVN} distribution is in the
33439 @file{gdb-@value{GDBVN}} directory. That directory contains:
33442 @item gdb-@value{GDBVN}/configure @r{(and supporting files)}
33443 script for configuring @value{GDBN} and all its supporting libraries
33445 @item gdb-@value{GDBVN}/gdb
33446 the source specific to @value{GDBN} itself
33448 @item gdb-@value{GDBVN}/bfd
33449 source for the Binary File Descriptor library
33451 @item gdb-@value{GDBVN}/include
33452 @sc{gnu} include files
33454 @item gdb-@value{GDBVN}/libiberty
33455 source for the @samp{-liberty} free software library
33457 @item gdb-@value{GDBVN}/opcodes
33458 source for the library of opcode tables and disassemblers
33460 @item gdb-@value{GDBVN}/readline
33461 source for the @sc{gnu} command-line interface
33463 @item gdb-@value{GDBVN}/glob
33464 source for the @sc{gnu} filename pattern-matching subroutine
33466 @item gdb-@value{GDBVN}/mmalloc
33467 source for the @sc{gnu} memory-mapped malloc package
33470 The simplest way to configure and build @value{GDBN} is to run @file{configure}
33471 from the @file{gdb-@var{version-number}} source directory, which in
33472 this example is the @file{gdb-@value{GDBVN}} directory.
33474 First switch to the @file{gdb-@var{version-number}} source directory
33475 if you are not already in it; then run @file{configure}. Pass the
33476 identifier for the platform on which @value{GDBN} will run as an
33482 cd gdb-@value{GDBVN}
33483 ./configure @var{host}
33488 where @var{host} is an identifier such as @samp{sun4} or
33489 @samp{decstation}, that identifies the platform where @value{GDBN} will run.
33490 (You can often leave off @var{host}; @file{configure} tries to guess the
33491 correct value by examining your system.)
33493 Running @samp{configure @var{host}} and then running @code{make} builds the
33494 @file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
33495 libraries, then @code{gdb} itself. The configured source files, and the
33496 binaries, are left in the corresponding source directories.
33499 @file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
33500 system does not recognize this automatically when you run a different
33501 shell, you may need to run @code{sh} on it explicitly:
33504 sh configure @var{host}
33507 If you run @file{configure} from a directory that contains source
33508 directories for multiple libraries or programs, such as the
33509 @file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
33511 creates configuration files for every directory level underneath (unless
33512 you tell it not to, with the @samp{--norecursion} option).
33514 You should run the @file{configure} script from the top directory in the
33515 source tree, the @file{gdb-@var{version-number}} directory. If you run
33516 @file{configure} from one of the subdirectories, you will configure only
33517 that subdirectory. That is usually not what you want. In particular,
33518 if you run the first @file{configure} from the @file{gdb} subdirectory
33519 of the @file{gdb-@var{version-number}} directory, you will omit the
33520 configuration of @file{bfd}, @file{readline}, and other sibling
33521 directories of the @file{gdb} subdirectory. This leads to build errors
33522 about missing include files such as @file{bfd/bfd.h}.
33524 You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
33525 However, you should make sure that the shell on your path (named by
33526 the @samp{SHELL} environment variable) is publicly readable. Remember
33527 that @value{GDBN} uses the shell to start your program---some systems refuse to
33528 let @value{GDBN} debug child processes whose programs are not readable.
33530 @node Separate Objdir
33531 @section Compiling @value{GDBN} in Another Directory
33533 If you want to run @value{GDBN} versions for several host or target machines,
33534 you need a different @code{gdb} compiled for each combination of
33535 host and target. @file{configure} is designed to make this easy by
33536 allowing you to generate each configuration in a separate subdirectory,
33537 rather than in the source directory. If your @code{make} program
33538 handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
33539 @code{make} in each of these directories builds the @code{gdb}
33540 program specified there.
33542 To build @code{gdb} in a separate directory, run @file{configure}
33543 with the @samp{--srcdir} option to specify where to find the source.
33544 (You also need to specify a path to find @file{configure}
33545 itself from your working directory. If the path to @file{configure}
33546 would be the same as the argument to @samp{--srcdir}, you can leave out
33547 the @samp{--srcdir} option; it is assumed.)
33549 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
33550 separate directory for a Sun 4 like this:
33554 cd gdb-@value{GDBVN}
33557 ../gdb-@value{GDBVN}/configure sun4
33562 When @file{configure} builds a configuration using a remote source
33563 directory, it creates a tree for the binaries with the same structure
33564 (and using the same names) as the tree under the source directory. In
33565 the example, you'd find the Sun 4 library @file{libiberty.a} in the
33566 directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
33567 @file{gdb-sun4/gdb}.
33569 Make sure that your path to the @file{configure} script has just one
33570 instance of @file{gdb} in it. If your path to @file{configure} looks
33571 like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
33572 one subdirectory of @value{GDBN}, not the whole package. This leads to
33573 build errors about missing include files such as @file{bfd/bfd.h}.
33575 One popular reason to build several @value{GDBN} configurations in separate
33576 directories is to configure @value{GDBN} for cross-compiling (where
33577 @value{GDBN} runs on one machine---the @dfn{host}---while debugging
33578 programs that run on another machine---the @dfn{target}).
33579 You specify a cross-debugging target by
33580 giving the @samp{--target=@var{target}} option to @file{configure}.
33582 When you run @code{make} to build a program or library, you must run
33583 it in a configured directory---whatever directory you were in when you
33584 called @file{configure} (or one of its subdirectories).
33586 The @code{Makefile} that @file{configure} generates in each source
33587 directory also runs recursively. If you type @code{make} in a source
33588 directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
33589 directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
33590 will build all the required libraries, and then build GDB.
33592 When you have multiple hosts or targets configured in separate
33593 directories, you can run @code{make} on them in parallel (for example,
33594 if they are NFS-mounted on each of the hosts); they will not interfere
33598 @section Specifying Names for Hosts and Targets
33600 The specifications used for hosts and targets in the @file{configure}
33601 script are based on a three-part naming scheme, but some short predefined
33602 aliases are also supported. The full naming scheme encodes three pieces
33603 of information in the following pattern:
33606 @var{architecture}-@var{vendor}-@var{os}
33609 For example, you can use the alias @code{sun4} as a @var{host} argument,
33610 or as the value for @var{target} in a @code{--target=@var{target}}
33611 option. The equivalent full name is @samp{sparc-sun-sunos4}.
33613 The @file{configure} script accompanying @value{GDBN} does not provide
33614 any query facility to list all supported host and target names or
33615 aliases. @file{configure} calls the Bourne shell script
33616 @code{config.sub} to map abbreviations to full names; you can read the
33617 script, if you wish, or you can use it to test your guesses on
33618 abbreviations---for example:
33621 % sh config.sub i386-linux
33623 % sh config.sub alpha-linux
33624 alpha-unknown-linux-gnu
33625 % sh config.sub hp9k700
33627 % sh config.sub sun4
33628 sparc-sun-sunos4.1.1
33629 % sh config.sub sun3
33630 m68k-sun-sunos4.1.1
33631 % sh config.sub i986v
33632 Invalid configuration `i986v': machine `i986v' not recognized
33636 @code{config.sub} is also distributed in the @value{GDBN} source
33637 directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
33639 @node Configure Options
33640 @section @file{configure} Options
33642 Here is a summary of the @file{configure} options and arguments that
33643 are most often useful for building @value{GDBN}. @file{configure} also has
33644 several other options not listed here. @inforef{What Configure
33645 Does,,configure.info}, for a full explanation of @file{configure}.
33648 configure @r{[}--help@r{]}
33649 @r{[}--prefix=@var{dir}@r{]}
33650 @r{[}--exec-prefix=@var{dir}@r{]}
33651 @r{[}--srcdir=@var{dirname}@r{]}
33652 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
33653 @r{[}--target=@var{target}@r{]}
33658 You may introduce options with a single @samp{-} rather than
33659 @samp{--} if you prefer; but you may abbreviate option names if you use
33664 Display a quick summary of how to invoke @file{configure}.
33666 @item --prefix=@var{dir}
33667 Configure the source to install programs and files under directory
33670 @item --exec-prefix=@var{dir}
33671 Configure the source to install programs under directory
33674 @c avoid splitting the warning from the explanation:
33676 @item --srcdir=@var{dirname}
33677 @strong{Warning: using this option requires @sc{gnu} @code{make}, or another
33678 @code{make} that implements the @code{VPATH} feature.}@*
33679 Use this option to make configurations in directories separate from the
33680 @value{GDBN} source directories. Among other things, you can use this to
33681 build (or maintain) several configurations simultaneously, in separate
33682 directories. @file{configure} writes configuration-specific files in
33683 the current directory, but arranges for them to use the source in the
33684 directory @var{dirname}. @file{configure} creates directories under
33685 the working directory in parallel to the source directories below
33688 @item --norecursion
33689 Configure only the directory level where @file{configure} is executed; do not
33690 propagate configuration to subdirectories.
33692 @item --target=@var{target}
33693 Configure @value{GDBN} for cross-debugging programs running on the specified
33694 @var{target}. Without this option, @value{GDBN} is configured to debug
33695 programs that run on the same machine (@var{host}) as @value{GDBN} itself.
33697 There is no convenient way to generate a list of all available targets.
33699 @item @var{host} @dots{}
33700 Configure @value{GDBN} to run on the specified @var{host}.
33702 There is no convenient way to generate a list of all available hosts.
33705 There are many other options available as well, but they are generally
33706 needed for special purposes only.
33708 @node System-wide configuration
33709 @section System-wide configuration and settings
33710 @cindex system-wide init file
33712 @value{GDBN} can be configured to have a system-wide init file;
33713 this file will be read and executed at startup (@pxref{Startup, , What
33714 @value{GDBN} does during startup}).
33716 Here is the corresponding configure option:
33719 @item --with-system-gdbinit=@var{file}
33720 Specify that the default location of the system-wide init file is
33724 If @value{GDBN} has been configured with the option @option{--prefix=$prefix},
33725 it may be subject to relocation. Two possible cases:
33729 If the default location of this init file contains @file{$prefix},
33730 it will be subject to relocation. Suppose that the configure options
33731 are @option{--prefix=$prefix --with-system-gdbinit=$prefix/etc/gdbinit};
33732 if @value{GDBN} is moved from @file{$prefix} to @file{$install}, the system
33733 init file is looked for as @file{$install/etc/gdbinit} instead of
33734 @file{$prefix/etc/gdbinit}.
33737 By contrast, if the default location does not contain the prefix,
33738 it will not be relocated. E.g.@: if @value{GDBN} has been configured with
33739 @option{--prefix=/usr/local --with-system-gdbinit=/usr/share/gdb/gdbinit},
33740 then @value{GDBN} will always look for @file{/usr/share/gdb/gdbinit},
33741 wherever @value{GDBN} is installed.
33744 @node Maintenance Commands
33745 @appendix Maintenance Commands
33746 @cindex maintenance commands
33747 @cindex internal commands
33749 In addition to commands intended for @value{GDBN} users, @value{GDBN}
33750 includes a number of commands intended for @value{GDBN} developers,
33751 that are not documented elsewhere in this manual. These commands are
33752 provided here for reference. (For commands that turn on debugging
33753 messages, see @ref{Debugging Output}.)
33756 @kindex maint agent
33757 @kindex maint agent-eval
33758 @item maint agent @var{expression}
33759 @itemx maint agent-eval @var{expression}
33760 Translate the given @var{expression} into remote agent bytecodes.
33761 This command is useful for debugging the Agent Expression mechanism
33762 (@pxref{Agent Expressions}). The @samp{agent} version produces an
33763 expression useful for data collection, such as by tracepoints, while
33764 @samp{maint agent-eval} produces an expression that evaluates directly
33765 to a result. For instance, a collection expression for @code{globa +
33766 globb} will include bytecodes to record four bytes of memory at each
33767 of the addresses of @code{globa} and @code{globb}, while discarding
33768 the result of the addition, while an evaluation expression will do the
33769 addition and return the sum.
33771 @kindex maint info breakpoints
33772 @item @anchor{maint info breakpoints}maint info breakpoints
33773 Using the same format as @samp{info breakpoints}, display both the
33774 breakpoints you've set explicitly, and those @value{GDBN} is using for
33775 internal purposes. Internal breakpoints are shown with negative
33776 breakpoint numbers. The type column identifies what kind of breakpoint
33781 Normal, explicitly set breakpoint.
33784 Normal, explicitly set watchpoint.
33787 Internal breakpoint, used to handle correctly stepping through
33788 @code{longjmp} calls.
33790 @item longjmp resume
33791 Internal breakpoint at the target of a @code{longjmp}.
33794 Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
33797 Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
33800 Shared library events.
33804 @kindex set displaced-stepping
33805 @kindex show displaced-stepping
33806 @cindex displaced stepping support
33807 @cindex out-of-line single-stepping
33808 @item set displaced-stepping
33809 @itemx show displaced-stepping
33810 Control whether or not @value{GDBN} will do @dfn{displaced stepping}
33811 if the target supports it. Displaced stepping is a way to single-step
33812 over breakpoints without removing them from the inferior, by executing
33813 an out-of-line copy of the instruction that was originally at the
33814 breakpoint location. It is also known as out-of-line single-stepping.
33817 @item set displaced-stepping on
33818 If the target architecture supports it, @value{GDBN} will use
33819 displaced stepping to step over breakpoints.
33821 @item set displaced-stepping off
33822 @value{GDBN} will not use displaced stepping to step over breakpoints,
33823 even if such is supported by the target architecture.
33825 @cindex non-stop mode, and @samp{set displaced-stepping}
33826 @item set displaced-stepping auto
33827 This is the default mode. @value{GDBN} will use displaced stepping
33828 only if non-stop mode is active (@pxref{Non-Stop Mode}) and the target
33829 architecture supports displaced stepping.
33832 @kindex maint check-symtabs
33833 @item maint check-symtabs
33834 Check the consistency of psymtabs and symtabs.
33836 @kindex maint cplus first_component
33837 @item maint cplus first_component @var{name}
33838 Print the first C@t{++} class/namespace component of @var{name}.
33840 @kindex maint cplus namespace
33841 @item maint cplus namespace
33842 Print the list of possible C@t{++} namespaces.
33844 @kindex maint demangle
33845 @item maint demangle @var{name}
33846 Demangle a C@t{++} or Objective-C mangled @var{name}.
33848 @kindex maint deprecate
33849 @kindex maint undeprecate
33850 @cindex deprecated commands
33851 @item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
33852 @itemx maint undeprecate @var{command}
33853 Deprecate or undeprecate the named @var{command}. Deprecated commands
33854 cause @value{GDBN} to issue a warning when you use them. The optional
33855 argument @var{replacement} says which newer command should be used in
33856 favor of the deprecated one; if it is given, @value{GDBN} will mention
33857 the replacement as part of the warning.
33859 @kindex maint dump-me
33860 @item maint dump-me
33861 @cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
33862 Cause a fatal signal in the debugger and force it to dump its core.
33863 This is supported only on systems which support aborting a program
33864 with the @code{SIGQUIT} signal.
33866 @kindex maint internal-error
33867 @kindex maint internal-warning
33868 @item maint internal-error @r{[}@var{message-text}@r{]}
33869 @itemx maint internal-warning @r{[}@var{message-text}@r{]}
33870 Cause @value{GDBN} to call the internal function @code{internal_error}
33871 or @code{internal_warning} and hence behave as though an internal error
33872 or internal warning has been detected. In addition to reporting the
33873 internal problem, these functions give the user the opportunity to
33874 either quit @value{GDBN} or create a core file of the current
33875 @value{GDBN} session.
33877 These commands take an optional parameter @var{message-text} that is
33878 used as the text of the error or warning message.
33880 Here's an example of using @code{internal-error}:
33883 (@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
33884 @dots{}/maint.c:121: internal-error: testing, 1, 2
33885 A problem internal to GDB has been detected. Further
33886 debugging may prove unreliable.
33887 Quit this debugging session? (y or n) @kbd{n}
33888 Create a core file? (y or n) @kbd{n}
33892 @cindex @value{GDBN} internal error
33893 @cindex internal errors, control of @value{GDBN} behavior
33895 @kindex maint set internal-error
33896 @kindex maint show internal-error
33897 @kindex maint set internal-warning
33898 @kindex maint show internal-warning
33899 @item maint set internal-error @var{action} [ask|yes|no]
33900 @itemx maint show internal-error @var{action}
33901 @itemx maint set internal-warning @var{action} [ask|yes|no]
33902 @itemx maint show internal-warning @var{action}
33903 When @value{GDBN} reports an internal problem (error or warning) it
33904 gives the user the opportunity to both quit @value{GDBN} and create a
33905 core file of the current @value{GDBN} session. These commands let you
33906 override the default behaviour for each particular @var{action},
33907 described in the table below.
33911 You can specify that @value{GDBN} should always (yes) or never (no)
33912 quit. The default is to ask the user what to do.
33915 You can specify that @value{GDBN} should always (yes) or never (no)
33916 create a core file. The default is to ask the user what to do.
33919 @kindex maint packet
33920 @item maint packet @var{text}
33921 If @value{GDBN} is talking to an inferior via the serial protocol,
33922 then this command sends the string @var{text} to the inferior, and
33923 displays the response packet. @value{GDBN} supplies the initial
33924 @samp{$} character, the terminating @samp{#} character, and the
33927 @kindex maint print architecture
33928 @item maint print architecture @r{[}@var{file}@r{]}
33929 Print the entire architecture configuration. The optional argument
33930 @var{file} names the file where the output goes.
33932 @kindex maint print c-tdesc
33933 @item maint print c-tdesc
33934 Print the current target description (@pxref{Target Descriptions}) as
33935 a C source file. The created source file can be used in @value{GDBN}
33936 when an XML parser is not available to parse the description.
33938 @kindex maint print dummy-frames
33939 @item maint print dummy-frames
33940 Prints the contents of @value{GDBN}'s internal dummy-frame stack.
33943 (@value{GDBP}) @kbd{b add}
33945 (@value{GDBP}) @kbd{print add(2,3)}
33946 Breakpoint 2, add (a=2, b=3) at @dots{}
33948 The program being debugged stopped while in a function called from GDB.
33950 (@value{GDBP}) @kbd{maint print dummy-frames}
33951 0x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
33952 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
33953 call_lo=0x01014000 call_hi=0x01014001
33957 Takes an optional file parameter.
33959 @kindex maint print registers
33960 @kindex maint print raw-registers
33961 @kindex maint print cooked-registers
33962 @kindex maint print register-groups
33963 @kindex maint print remote-registers
33964 @item maint print registers @r{[}@var{file}@r{]}
33965 @itemx maint print raw-registers @r{[}@var{file}@r{]}
33966 @itemx maint print cooked-registers @r{[}@var{file}@r{]}
33967 @itemx maint print register-groups @r{[}@var{file}@r{]}
33968 @itemx maint print remote-registers @r{[}@var{file}@r{]}
33969 Print @value{GDBN}'s internal register data structures.
33971 The command @code{maint print raw-registers} includes the contents of
33972 the raw register cache; the command @code{maint print
33973 cooked-registers} includes the (cooked) value of all registers,
33974 including registers which aren't available on the target nor visible
33975 to user; the command @code{maint print register-groups} includes the
33976 groups that each register is a member of; and the command @code{maint
33977 print remote-registers} includes the remote target's register numbers
33978 and offsets in the `G' packets. @xref{Registers,, Registers, gdbint,
33979 @value{GDBN} Internals}.
33981 These commands take an optional parameter, a file name to which to
33982 write the information.
33984 @kindex maint print reggroups
33985 @item maint print reggroups @r{[}@var{file}@r{]}
33986 Print @value{GDBN}'s internal register group data structures. The
33987 optional argument @var{file} tells to what file to write the
33990 The register groups info looks like this:
33993 (@value{GDBP}) @kbd{maint print reggroups}
34006 This command forces @value{GDBN} to flush its internal register cache.
34008 @kindex maint print objfiles
34009 @cindex info for known object files
34010 @item maint print objfiles
34011 Print a dump of all known object files. For each object file, this
34012 command prints its name, address in memory, and all of its psymtabs
34015 @kindex maint print section-scripts
34016 @cindex info for known .debug_gdb_scripts-loaded scripts
34017 @item maint print section-scripts [@var{regexp}]
34018 Print a dump of scripts specified in the @code{.debug_gdb_section} section.
34019 If @var{regexp} is specified, only print scripts loaded by object files
34020 matching @var{regexp}.
34021 For each script, this command prints its name as specified in the objfile,
34022 and the full path if known.
34023 @xref{dotdebug_gdb_scripts section}.
34025 @kindex maint print statistics
34026 @cindex bcache statistics
34027 @item maint print statistics
34028 This command prints, for each object file in the program, various data
34029 about that object file followed by the byte cache (@dfn{bcache})
34030 statistics for the object file. The objfile data includes the number
34031 of minimal, partial, full, and stabs symbols, the number of types
34032 defined by the objfile, the number of as yet unexpanded psym tables,
34033 the number of line tables and string tables, and the amount of memory
34034 used by the various tables. The bcache statistics include the counts,
34035 sizes, and counts of duplicates of all and unique objects, max,
34036 average, and median entry size, total memory used and its overhead and
34037 savings, and various measures of the hash table size and chain
34040 @kindex maint print target-stack
34041 @cindex target stack description
34042 @item maint print target-stack
34043 A @dfn{target} is an interface between the debugger and a particular
34044 kind of file or process. Targets can be stacked in @dfn{strata},
34045 so that more than one target can potentially respond to a request.
34046 In particular, memory accesses will walk down the stack of targets
34047 until they find a target that is interested in handling that particular
34050 This command prints a short description of each layer that was pushed on
34051 the @dfn{target stack}, starting from the top layer down to the bottom one.
34053 @kindex maint print type
34054 @cindex type chain of a data type
34055 @item maint print type @var{expr}
34056 Print the type chain for a type specified by @var{expr}. The argument
34057 can be either a type name or a symbol. If it is a symbol, the type of
34058 that symbol is described. The type chain produced by this command is
34059 a recursive definition of the data type as stored in @value{GDBN}'s
34060 data structures, including its flags and contained types.
34062 @kindex maint set dwarf2 always-disassemble
34063 @kindex maint show dwarf2 always-disassemble
34064 @item maint set dwarf2 always-disassemble
34065 @item maint show dwarf2 always-disassemble
34066 Control the behavior of @code{info address} when using DWARF debugging
34069 The default is @code{off}, which means that @value{GDBN} should try to
34070 describe a variable's location in an easily readable format. When
34071 @code{on}, @value{GDBN} will instead display the DWARF location
34072 expression in an assembly-like format. Note that some locations are
34073 too complex for @value{GDBN} to describe simply; in this case you will
34074 always see the disassembly form.
34076 Here is an example of the resulting disassembly:
34079 (gdb) info addr argc
34080 Symbol "argc" is a complex DWARF expression:
34084 For more information on these expressions, see
34085 @uref{http://www.dwarfstd.org/, the DWARF standard}.
34087 @kindex maint set dwarf2 max-cache-age
34088 @kindex maint show dwarf2 max-cache-age
34089 @item maint set dwarf2 max-cache-age
34090 @itemx maint show dwarf2 max-cache-age
34091 Control the DWARF 2 compilation unit cache.
34093 @cindex DWARF 2 compilation units cache
34094 In object files with inter-compilation-unit references, such as those
34095 produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
34096 reader needs to frequently refer to previously read compilation units.
34097 This setting controls how long a compilation unit will remain in the
34098 cache if it is not referenced. A higher limit means that cached
34099 compilation units will be stored in memory longer, and more total
34100 memory will be used. Setting it to zero disables caching, which will
34101 slow down @value{GDBN} startup, but reduce memory consumption.
34103 @kindex maint set profile
34104 @kindex maint show profile
34105 @cindex profiling GDB
34106 @item maint set profile
34107 @itemx maint show profile
34108 Control profiling of @value{GDBN}.
34110 Profiling will be disabled until you use the @samp{maint set profile}
34111 command to enable it. When you enable profiling, the system will begin
34112 collecting timing and execution count data; when you disable profiling or
34113 exit @value{GDBN}, the results will be written to a log file. Remember that
34114 if you use profiling, @value{GDBN} will overwrite the profiling log file
34115 (often called @file{gmon.out}). If you have a record of important profiling
34116 data in a @file{gmon.out} file, be sure to move it to a safe location.
34118 Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
34119 compiled with the @samp{-pg} compiler option.
34121 @kindex maint set show-debug-regs
34122 @kindex maint show show-debug-regs
34123 @cindex hardware debug registers
34124 @item maint set show-debug-regs
34125 @itemx maint show show-debug-regs
34126 Control whether to show variables that mirror the hardware debug
34127 registers. Use @code{ON} to enable, @code{OFF} to disable. If
34128 enabled, the debug registers values are shown when @value{GDBN} inserts or
34129 removes a hardware breakpoint or watchpoint, and when the inferior
34130 triggers a hardware-assisted breakpoint or watchpoint.
34132 @kindex maint set show-all-tib
34133 @kindex maint show show-all-tib
34134 @item maint set show-all-tib
34135 @itemx maint show show-all-tib
34136 Control whether to show all non zero areas within a 1k block starting
34137 at thread local base, when using the @samp{info w32 thread-information-block}
34140 @kindex maint space
34141 @cindex memory used by commands
34143 Control whether to display memory usage for each command. If set to a
34144 nonzero value, @value{GDBN} will display how much memory each command
34145 took, following the command's own output. This can also be requested
34146 by invoking @value{GDBN} with the @option{--statistics} command-line
34147 switch (@pxref{Mode Options}).
34150 @cindex time of command execution
34152 Control whether to display the execution time of @value{GDBN} for each command.
34153 If set to a nonzero value, @value{GDBN} will display how much time it
34154 took to execute each command, following the command's own output.
34155 Both CPU time and wallclock time are printed.
34156 Printing both is useful when trying to determine whether the cost is
34157 CPU or, e.g., disk/network, latency.
34158 Note that the CPU time printed is for @value{GDBN} only, it does not include
34159 the execution time of the inferior because there's no mechanism currently
34160 to compute how much time was spent by @value{GDBN} and how much time was
34161 spent by the program been debugged.
34162 This can also be requested by invoking @value{GDBN} with the
34163 @option{--statistics} command-line switch (@pxref{Mode Options}).
34165 @kindex maint translate-address
34166 @item maint translate-address @r{[}@var{section}@r{]} @var{addr}
34167 Find the symbol stored at the location specified by the address
34168 @var{addr} and an optional section name @var{section}. If found,
34169 @value{GDBN} prints the name of the closest symbol and an offset from
34170 the symbol's location to the specified address. This is similar to
34171 the @code{info address} command (@pxref{Symbols}), except that this
34172 command also allows to find symbols in other sections.
34174 If section was not specified, the section in which the symbol was found
34175 is also printed. For dynamically linked executables, the name of
34176 executable or shared library containing the symbol is printed as well.
34180 The following command is useful for non-interactive invocations of
34181 @value{GDBN}, such as in the test suite.
34184 @item set watchdog @var{nsec}
34185 @kindex set watchdog
34186 @cindex watchdog timer
34187 @cindex timeout for commands
34188 Set the maximum number of seconds @value{GDBN} will wait for the
34189 target operation to finish. If this time expires, @value{GDBN}
34190 reports and error and the command is aborted.
34192 @item show watchdog
34193 Show the current setting of the target wait timeout.
34196 @node Remote Protocol
34197 @appendix @value{GDBN} Remote Serial Protocol
34202 * Stop Reply Packets::
34203 * General Query Packets::
34204 * Architecture-Specific Protocol Details::
34205 * Tracepoint Packets::
34206 * Host I/O Packets::
34208 * Notification Packets::
34209 * Remote Non-Stop::
34210 * Packet Acknowledgment::
34212 * File-I/O Remote Protocol Extension::
34213 * Library List Format::
34214 * Library List Format for SVR4 Targets::
34215 * Memory Map Format::
34216 * Thread List Format::
34217 * Traceframe Info Format::
34223 There may be occasions when you need to know something about the
34224 protocol---for example, if there is only one serial port to your target
34225 machine, you might want your program to do something special if it
34226 recognizes a packet meant for @value{GDBN}.
34228 In the examples below, @samp{->} and @samp{<-} are used to indicate
34229 transmitted and received data, respectively.
34231 @cindex protocol, @value{GDBN} remote serial
34232 @cindex serial protocol, @value{GDBN} remote
34233 @cindex remote serial protocol
34234 All @value{GDBN} commands and responses (other than acknowledgments
34235 and notifications, see @ref{Notification Packets}) are sent as a
34236 @var{packet}. A @var{packet} is introduced with the character
34237 @samp{$}, the actual @var{packet-data}, and the terminating character
34238 @samp{#} followed by a two-digit @var{checksum}:
34241 @code{$}@var{packet-data}@code{#}@var{checksum}
34245 @cindex checksum, for @value{GDBN} remote
34247 The two-digit @var{checksum} is computed as the modulo 256 sum of all
34248 characters between the leading @samp{$} and the trailing @samp{#} (an
34249 eight bit unsigned checksum).
34251 Implementors should note that prior to @value{GDBN} 5.0 the protocol
34252 specification also included an optional two-digit @var{sequence-id}:
34255 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
34258 @cindex sequence-id, for @value{GDBN} remote
34260 That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
34261 has never output @var{sequence-id}s. Stubs that handle packets added
34262 since @value{GDBN} 5.0 must not accept @var{sequence-id}.
34264 When either the host or the target machine receives a packet, the first
34265 response expected is an acknowledgment: either @samp{+} (to indicate
34266 the package was received correctly) or @samp{-} (to request
34270 -> @code{$}@var{packet-data}@code{#}@var{checksum}
34275 The @samp{+}/@samp{-} acknowledgments can be disabled
34276 once a connection is established.
34277 @xref{Packet Acknowledgment}, for details.
34279 The host (@value{GDBN}) sends @var{command}s, and the target (the
34280 debugging stub incorporated in your program) sends a @var{response}. In
34281 the case of step and continue @var{command}s, the response is only sent
34282 when the operation has completed, and the target has again stopped all
34283 threads in all attached processes. This is the default all-stop mode
34284 behavior, but the remote protocol also supports @value{GDBN}'s non-stop
34285 execution mode; see @ref{Remote Non-Stop}, for details.
34287 @var{packet-data} consists of a sequence of characters with the
34288 exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
34291 @cindex remote protocol, field separator
34292 Fields within the packet should be separated using @samp{,} @samp{;} or
34293 @samp{:}. Except where otherwise noted all numbers are represented in
34294 @sc{hex} with leading zeros suppressed.
34296 Implementors should note that prior to @value{GDBN} 5.0, the character
34297 @samp{:} could not appear as the third character in a packet (as it
34298 would potentially conflict with the @var{sequence-id}).
34300 @cindex remote protocol, binary data
34301 @anchor{Binary Data}
34302 Binary data in most packets is encoded either as two hexadecimal
34303 digits per byte of binary data. This allowed the traditional remote
34304 protocol to work over connections which were only seven-bit clean.
34305 Some packets designed more recently assume an eight-bit clean
34306 connection, and use a more efficient encoding to send and receive
34309 The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
34310 as an escape character. Any escaped byte is transmitted as the escape
34311 character followed by the original character XORed with @code{0x20}.
34312 For example, the byte @code{0x7d} would be transmitted as the two
34313 bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
34314 @code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
34315 @samp{@}}) must always be escaped. Responses sent by the stub
34316 must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
34317 is not interpreted as the start of a run-length encoded sequence
34320 Response @var{data} can be run-length encoded to save space.
34321 Run-length encoding replaces runs of identical characters with one
34322 instance of the repeated character, followed by a @samp{*} and a
34323 repeat count. The repeat count is itself sent encoded, to avoid
34324 binary characters in @var{data}: a value of @var{n} is sent as
34325 @code{@var{n}+29}. For a repeat count greater or equal to 3, this
34326 produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
34327 code 32) for a repeat count of 3. (This is because run-length
34328 encoding starts to win for counts 3 or more.) Thus, for example,
34329 @samp{0* } is a run-length encoding of ``0000'': the space character
34330 after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
34333 The printable characters @samp{#} and @samp{$} or with a numeric value
34334 greater than 126 must not be used. Runs of six repeats (@samp{#}) or
34335 seven repeats (@samp{$}) can be expanded using a repeat count of only
34336 five (@samp{"}). For example, @samp{00000000} can be encoded as
34339 The error response returned for some packets includes a two character
34340 error number. That number is not well defined.
34342 @cindex empty response, for unsupported packets
34343 For any @var{command} not supported by the stub, an empty response
34344 (@samp{$#00}) should be returned. That way it is possible to extend the
34345 protocol. A newer @value{GDBN} can tell if a packet is supported based
34348 At a minimum, a stub is required to support the @samp{g} and @samp{G}
34349 commands for register access, and the @samp{m} and @samp{M} commands
34350 for memory access. Stubs that only control single-threaded targets
34351 can implement run control with the @samp{c} (continue), and @samp{s}
34352 (step) commands. Stubs that support multi-threading targets should
34353 support the @samp{vCont} command. All other commands are optional.
34358 The following table provides a complete list of all currently defined
34359 @var{command}s and their corresponding response @var{data}.
34360 @xref{File-I/O Remote Protocol Extension}, for details about the File
34361 I/O extension of the remote protocol.
34363 Each packet's description has a template showing the packet's overall
34364 syntax, followed by an explanation of the packet's meaning. We
34365 include spaces in some of the templates for clarity; these are not
34366 part of the packet's syntax. No @value{GDBN} packet uses spaces to
34367 separate its components. For example, a template like @samp{foo
34368 @var{bar} @var{baz}} describes a packet beginning with the three ASCII
34369 bytes @samp{foo}, followed by a @var{bar}, followed directly by a
34370 @var{baz}. @value{GDBN} does not transmit a space character between the
34371 @samp{foo} and the @var{bar}, or between the @var{bar} and the
34374 @cindex @var{thread-id}, in remote protocol
34375 @anchor{thread-id syntax}
34376 Several packets and replies include a @var{thread-id} field to identify
34377 a thread. Normally these are positive numbers with a target-specific
34378 interpretation, formatted as big-endian hex strings. A @var{thread-id}
34379 can also be a literal @samp{-1} to indicate all threads, or @samp{0} to
34382 In addition, the remote protocol supports a multiprocess feature in
34383 which the @var{thread-id} syntax is extended to optionally include both
34384 process and thread ID fields, as @samp{p@var{pid}.@var{tid}}.
34385 The @var{pid} (process) and @var{tid} (thread) components each have the
34386 format described above: a positive number with target-specific
34387 interpretation formatted as a big-endian hex string, literal @samp{-1}
34388 to indicate all processes or threads (respectively), or @samp{0} to
34389 indicate an arbitrary process or thread. Specifying just a process, as
34390 @samp{p@var{pid}}, is equivalent to @samp{p@var{pid}.-1}. It is an
34391 error to specify all processes but a specific thread, such as
34392 @samp{p-1.@var{tid}}. Note that the @samp{p} prefix is @emph{not} used
34393 for those packets and replies explicitly documented to include a process
34394 ID, rather than a @var{thread-id}.
34396 The multiprocess @var{thread-id} syntax extensions are only used if both
34397 @value{GDBN} and the stub report support for the @samp{multiprocess}
34398 feature using @samp{qSupported}. @xref{multiprocess extensions}, for
34401 Note that all packet forms beginning with an upper- or lower-case
34402 letter, other than those described here, are reserved for future use.
34404 Here are the packet descriptions.
34409 @cindex @samp{!} packet
34410 @anchor{extended mode}
34411 Enable extended mode. In extended mode, the remote server is made
34412 persistent. The @samp{R} packet is used to restart the program being
34418 The remote target both supports and has enabled extended mode.
34422 @cindex @samp{?} packet
34423 Indicate the reason the target halted. The reply is the same as for
34424 step and continue. This packet has a special interpretation when the
34425 target is in non-stop mode; see @ref{Remote Non-Stop}.
34428 @xref{Stop Reply Packets}, for the reply specifications.
34430 @item A @var{arglen},@var{argnum},@var{arg},@dots{}
34431 @cindex @samp{A} packet
34432 Initialized @code{argv[]} array passed into program. @var{arglen}
34433 specifies the number of bytes in the hex encoded byte stream
34434 @var{arg}. See @code{gdbserver} for more details.
34439 The arguments were set.
34445 @cindex @samp{b} packet
34446 (Don't use this packet; its behavior is not well-defined.)
34447 Change the serial line speed to @var{baud}.
34449 JTC: @emph{When does the transport layer state change? When it's
34450 received, or after the ACK is transmitted. In either case, there are
34451 problems if the command or the acknowledgment packet is dropped.}
34453 Stan: @emph{If people really wanted to add something like this, and get
34454 it working for the first time, they ought to modify ser-unix.c to send
34455 some kind of out-of-band message to a specially-setup stub and have the
34456 switch happen "in between" packets, so that from remote protocol's point
34457 of view, nothing actually happened.}
34459 @item B @var{addr},@var{mode}
34460 @cindex @samp{B} packet
34461 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
34462 breakpoint at @var{addr}.
34464 Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
34465 (@pxref{insert breakpoint or watchpoint packet}).
34467 @cindex @samp{bc} packet
34470 Backward continue. Execute the target system in reverse. No parameter.
34471 @xref{Reverse Execution}, for more information.
34474 @xref{Stop Reply Packets}, for the reply specifications.
34476 @cindex @samp{bs} packet
34479 Backward single step. Execute one instruction in reverse. No parameter.
34480 @xref{Reverse Execution}, for more information.
34483 @xref{Stop Reply Packets}, for the reply specifications.
34485 @item c @r{[}@var{addr}@r{]}
34486 @cindex @samp{c} packet
34487 Continue. @var{addr} is address to resume. If @var{addr} is omitted,
34488 resume at current address.
34490 This packet is deprecated for multi-threading support. @xref{vCont
34494 @xref{Stop Reply Packets}, for the reply specifications.
34496 @item C @var{sig}@r{[};@var{addr}@r{]}
34497 @cindex @samp{C} packet
34498 Continue with signal @var{sig} (hex signal number). If
34499 @samp{;@var{addr}} is omitted, resume at same address.
34501 This packet is deprecated for multi-threading support. @xref{vCont
34505 @xref{Stop Reply Packets}, for the reply specifications.
34508 @cindex @samp{d} packet
34511 Don't use this packet; instead, define a general set packet
34512 (@pxref{General Query Packets}).
34516 @cindex @samp{D} packet
34517 The first form of the packet is used to detach @value{GDBN} from the
34518 remote system. It is sent to the remote target
34519 before @value{GDBN} disconnects via the @code{detach} command.
34521 The second form, including a process ID, is used when multiprocess
34522 protocol extensions are enabled (@pxref{multiprocess extensions}), to
34523 detach only a specific process. The @var{pid} is specified as a
34524 big-endian hex string.
34534 @item F @var{RC},@var{EE},@var{CF};@var{XX}
34535 @cindex @samp{F} packet
34536 A reply from @value{GDBN} to an @samp{F} packet sent by the target.
34537 This is part of the File-I/O protocol extension. @xref{File-I/O
34538 Remote Protocol Extension}, for the specification.
34541 @anchor{read registers packet}
34542 @cindex @samp{g} packet
34543 Read general registers.
34547 @item @var{XX@dots{}}
34548 Each byte of register data is described by two hex digits. The bytes
34549 with the register are transmitted in target byte order. The size of
34550 each register and their position within the @samp{g} packet are
34551 determined by the @value{GDBN} internal gdbarch functions
34552 @code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
34553 specification of several standard @samp{g} packets is specified below.
34555 When reading registers from a trace frame (@pxref{Analyze Collected
34556 Data,,Using the Collected Data}), the stub may also return a string of
34557 literal @samp{x}'s in place of the register data digits, to indicate
34558 that the corresponding register has not been collected, thus its value
34559 is unavailable. For example, for an architecture with 4 registers of
34560 4 bytes each, the following reply indicates to @value{GDBN} that
34561 registers 0 and 2 have not been collected, while registers 1 and 3
34562 have been collected, and both have zero value:
34566 <- @code{xxxxxxxx00000000xxxxxxxx00000000}
34573 @item G @var{XX@dots{}}
34574 @cindex @samp{G} packet
34575 Write general registers. @xref{read registers packet}, for a
34576 description of the @var{XX@dots{}} data.
34586 @item H @var{op} @var{thread-id}
34587 @cindex @samp{H} packet
34588 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
34589 @samp{G}, et.al.). @var{op} depends on the operation to be performed:
34590 it should be @samp{c} for step and continue operations (note that this
34591 is deprecated, supporting the @samp{vCont} command is a better
34592 option), @samp{g} for other operations. The thread designator
34593 @var{thread-id} has the format and interpretation described in
34594 @ref{thread-id syntax}.
34605 @c 'H': How restrictive (or permissive) is the thread model. If a
34606 @c thread is selected and stopped, are other threads allowed
34607 @c to continue to execute? As I mentioned above, I think the
34608 @c semantics of each command when a thread is selected must be
34609 @c described. For example:
34611 @c 'g': If the stub supports threads and a specific thread is
34612 @c selected, returns the register block from that thread;
34613 @c otherwise returns current registers.
34615 @c 'G' If the stub supports threads and a specific thread is
34616 @c selected, sets the registers of the register block of
34617 @c that thread; otherwise sets current registers.
34619 @item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
34620 @anchor{cycle step packet}
34621 @cindex @samp{i} packet
34622 Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
34623 present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
34624 step starting at that address.
34627 @cindex @samp{I} packet
34628 Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
34632 @cindex @samp{k} packet
34635 FIXME: @emph{There is no description of how to operate when a specific
34636 thread context has been selected (i.e.@: does 'k' kill only that
34639 @item m @var{addr},@var{length}
34640 @cindex @samp{m} packet
34641 Read @var{length} bytes of memory starting at address @var{addr}.
34642 Note that @var{addr} may not be aligned to any particular boundary.
34644 The stub need not use any particular size or alignment when gathering
34645 data from memory for the response; even if @var{addr} is word-aligned
34646 and @var{length} is a multiple of the word size, the stub is free to
34647 use byte accesses, or not. For this reason, this packet may not be
34648 suitable for accessing memory-mapped I/O devices.
34649 @cindex alignment of remote memory accesses
34650 @cindex size of remote memory accesses
34651 @cindex memory, alignment and size of remote accesses
34655 @item @var{XX@dots{}}
34656 Memory contents; each byte is transmitted as a two-digit hexadecimal
34657 number. The reply may contain fewer bytes than requested if the
34658 server was able to read only part of the region of memory.
34663 @item M @var{addr},@var{length}:@var{XX@dots{}}
34664 @cindex @samp{M} packet
34665 Write @var{length} bytes of memory starting at address @var{addr}.
34666 @var{XX@dots{}} is the data; each byte is transmitted as a two-digit
34667 hexadecimal number.
34674 for an error (this includes the case where only part of the data was
34679 @cindex @samp{p} packet
34680 Read the value of register @var{n}; @var{n} is in hex.
34681 @xref{read registers packet}, for a description of how the returned
34682 register value is encoded.
34686 @item @var{XX@dots{}}
34687 the register's value
34691 Indicating an unrecognized @var{query}.
34694 @item P @var{n@dots{}}=@var{r@dots{}}
34695 @anchor{write register packet}
34696 @cindex @samp{P} packet
34697 Write register @var{n@dots{}} with value @var{r@dots{}}. The register
34698 number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
34699 digits for each byte in the register (target byte order).
34709 @item q @var{name} @var{params}@dots{}
34710 @itemx Q @var{name} @var{params}@dots{}
34711 @cindex @samp{q} packet
34712 @cindex @samp{Q} packet
34713 General query (@samp{q}) and set (@samp{Q}). These packets are
34714 described fully in @ref{General Query Packets}.
34717 @cindex @samp{r} packet
34718 Reset the entire system.
34720 Don't use this packet; use the @samp{R} packet instead.
34723 @cindex @samp{R} packet
34724 Restart the program being debugged. @var{XX}, while needed, is ignored.
34725 This packet is only available in extended mode (@pxref{extended mode}).
34727 The @samp{R} packet has no reply.
34729 @item s @r{[}@var{addr}@r{]}
34730 @cindex @samp{s} packet
34731 Single step. @var{addr} is the address at which to resume. If
34732 @var{addr} is omitted, resume at same address.
34734 This packet is deprecated for multi-threading support. @xref{vCont
34738 @xref{Stop Reply Packets}, for the reply specifications.
34740 @item S @var{sig}@r{[};@var{addr}@r{]}
34741 @anchor{step with signal packet}
34742 @cindex @samp{S} packet
34743 Step with signal. This is analogous to the @samp{C} packet, but
34744 requests a single-step, rather than a normal resumption of execution.
34746 This packet is deprecated for multi-threading support. @xref{vCont
34750 @xref{Stop Reply Packets}, for the reply specifications.
34752 @item t @var{addr}:@var{PP},@var{MM}
34753 @cindex @samp{t} packet
34754 Search backwards starting at address @var{addr} for a match with pattern
34755 @var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
34756 @var{addr} must be at least 3 digits.
34758 @item T @var{thread-id}
34759 @cindex @samp{T} packet
34760 Find out if the thread @var{thread-id} is alive. @xref{thread-id syntax}.
34765 thread is still alive
34771 Packets starting with @samp{v} are identified by a multi-letter name,
34772 up to the first @samp{;} or @samp{?} (or the end of the packet).
34774 @item vAttach;@var{pid}
34775 @cindex @samp{vAttach} packet
34776 Attach to a new process with the specified process ID @var{pid}.
34777 The process ID is a
34778 hexadecimal integer identifying the process. In all-stop mode, all
34779 threads in the attached process are stopped; in non-stop mode, it may be
34780 attached without being stopped if that is supported by the target.
34782 @c In non-stop mode, on a successful vAttach, the stub should set the
34783 @c current thread to a thread of the newly-attached process. After
34784 @c attaching, GDB queries for the attached process's thread ID with qC.
34785 @c Also note that, from a user perspective, whether or not the
34786 @c target is stopped on attach in non-stop mode depends on whether you
34787 @c use the foreground or background version of the attach command, not
34788 @c on what vAttach does; GDB does the right thing with respect to either
34789 @c stopping or restarting threads.
34791 This packet is only available in extended mode (@pxref{extended mode}).
34797 @item @r{Any stop packet}
34798 for success in all-stop mode (@pxref{Stop Reply Packets})
34800 for success in non-stop mode (@pxref{Remote Non-Stop})
34803 @item vCont@r{[};@var{action}@r{[}:@var{thread-id}@r{]]}@dots{}
34804 @cindex @samp{vCont} packet
34805 @anchor{vCont packet}
34806 Resume the inferior, specifying different actions for each thread.
34807 If an action is specified with no @var{thread-id}, then it is applied to any
34808 threads that don't have a specific action specified; if no default action is
34809 specified then other threads should remain stopped in all-stop mode and
34810 in their current state in non-stop mode.
34811 Specifying multiple
34812 default actions is an error; specifying no actions is also an error.
34813 Thread IDs are specified using the syntax described in @ref{thread-id syntax}.
34815 Currently supported actions are:
34821 Continue with signal @var{sig}. The signal @var{sig} should be two hex digits.
34825 Step with signal @var{sig}. The signal @var{sig} should be two hex digits.
34830 The optional argument @var{addr} normally associated with the
34831 @samp{c}, @samp{C}, @samp{s}, and @samp{S} packets is
34832 not supported in @samp{vCont}.
34834 The @samp{t} action is only relevant in non-stop mode
34835 (@pxref{Remote Non-Stop}) and may be ignored by the stub otherwise.
34836 A stop reply should be generated for any affected thread not already stopped.
34837 When a thread is stopped by means of a @samp{t} action,
34838 the corresponding stop reply should indicate that the thread has stopped with
34839 signal @samp{0}, regardless of whether the target uses some other signal
34840 as an implementation detail.
34842 The stub must support @samp{vCont} if it reports support for
34843 multiprocess extensions (@pxref{multiprocess extensions}). Note that in
34844 this case @samp{vCont} actions can be specified to apply to all threads
34845 in a process by using the @samp{p@var{pid}.-1} form of the
34849 @xref{Stop Reply Packets}, for the reply specifications.
34852 @cindex @samp{vCont?} packet
34853 Request a list of actions supported by the @samp{vCont} packet.
34857 @item vCont@r{[};@var{action}@dots{}@r{]}
34858 The @samp{vCont} packet is supported. Each @var{action} is a supported
34859 command in the @samp{vCont} packet.
34861 The @samp{vCont} packet is not supported.
34864 @item vFile:@var{operation}:@var{parameter}@dots{}
34865 @cindex @samp{vFile} packet
34866 Perform a file operation on the target system. For details,
34867 see @ref{Host I/O Packets}.
34869 @item vFlashErase:@var{addr},@var{length}
34870 @cindex @samp{vFlashErase} packet
34871 Direct the stub to erase @var{length} bytes of flash starting at
34872 @var{addr}. The region may enclose any number of flash blocks, but
34873 its start and end must fall on block boundaries, as indicated by the
34874 flash block size appearing in the memory map (@pxref{Memory Map
34875 Format}). @value{GDBN} groups flash memory programming operations
34876 together, and sends a @samp{vFlashDone} request after each group; the
34877 stub is allowed to delay erase operation until the @samp{vFlashDone}
34878 packet is received.
34888 @item vFlashWrite:@var{addr}:@var{XX@dots{}}
34889 @cindex @samp{vFlashWrite} packet
34890 Direct the stub to write data to flash address @var{addr}. The data
34891 is passed in binary form using the same encoding as for the @samp{X}
34892 packet (@pxref{Binary Data}). The memory ranges specified by
34893 @samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
34894 not overlap, and must appear in order of increasing addresses
34895 (although @samp{vFlashErase} packets for higher addresses may already
34896 have been received; the ordering is guaranteed only between
34897 @samp{vFlashWrite} packets). If a packet writes to an address that was
34898 neither erased by a preceding @samp{vFlashErase} packet nor by some other
34899 target-specific method, the results are unpredictable.
34907 for vFlashWrite addressing non-flash memory
34913 @cindex @samp{vFlashDone} packet
34914 Indicate to the stub that flash programming operation is finished.
34915 The stub is permitted to delay or batch the effects of a group of
34916 @samp{vFlashErase} and @samp{vFlashWrite} packets until a
34917 @samp{vFlashDone} packet is received. The contents of the affected
34918 regions of flash memory are unpredictable until the @samp{vFlashDone}
34919 request is completed.
34921 @item vKill;@var{pid}
34922 @cindex @samp{vKill} packet
34923 Kill the process with the specified process ID. @var{pid} is a
34924 hexadecimal integer identifying the process. This packet is used in
34925 preference to @samp{k} when multiprocess protocol extensions are
34926 supported; see @ref{multiprocess extensions}.
34936 @item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
34937 @cindex @samp{vRun} packet
34938 Run the program @var{filename}, passing it each @var{argument} on its
34939 command line. The file and arguments are hex-encoded strings. If
34940 @var{filename} is an empty string, the stub may use a default program
34941 (e.g.@: the last program run). The program is created in the stopped
34944 @c FIXME: What about non-stop mode?
34946 This packet is only available in extended mode (@pxref{extended mode}).
34952 @item @r{Any stop packet}
34953 for success (@pxref{Stop Reply Packets})
34957 @anchor{vStopped packet}
34958 @cindex @samp{vStopped} packet
34960 In non-stop mode (@pxref{Remote Non-Stop}), acknowledge a previous stop
34961 reply and prompt for the stub to report another one.
34965 @item @r{Any stop packet}
34966 if there is another unreported stop event (@pxref{Stop Reply Packets})
34968 if there are no unreported stop events
34971 @item X @var{addr},@var{length}:@var{XX@dots{}}
34973 @cindex @samp{X} packet
34974 Write data to memory, where the data is transmitted in binary.
34975 @var{addr} is address, @var{length} is number of bytes,
34976 @samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
34986 @item z @var{type},@var{addr},@var{kind}
34987 @itemx Z @var{type},@var{addr},@var{kind}
34988 @anchor{insert breakpoint or watchpoint packet}
34989 @cindex @samp{z} packet
34990 @cindex @samp{Z} packets
34991 Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
34992 watchpoint starting at address @var{address} of kind @var{kind}.
34994 Each breakpoint and watchpoint packet @var{type} is documented
34997 @emph{Implementation notes: A remote target shall return an empty string
34998 for an unrecognized breakpoint or watchpoint packet @var{type}. A
34999 remote target shall support either both or neither of a given
35000 @samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
35001 avoid potential problems with duplicate packets, the operations should
35002 be implemented in an idempotent way.}
35004 @item z0,@var{addr},@var{kind}
35005 @itemx Z0,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}
35006 @cindex @samp{z0} packet
35007 @cindex @samp{Z0} packet
35008 Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
35009 @var{addr} of type @var{kind}.
35011 A memory breakpoint is implemented by replacing the instruction at
35012 @var{addr} with a software breakpoint or trap instruction. The
35013 @var{kind} is target-specific and typically indicates the size of
35014 the breakpoint in bytes that should be inserted. E.g., the @sc{arm}
35015 and @sc{mips} can insert either a 2 or 4 byte breakpoint. Some
35016 architectures have additional meanings for @var{kind};
35017 @var{cond_list} is an optional list of conditional expressions in bytecode
35018 form that should be evaluated on the target's side. These are the
35019 conditions that should be taken into consideration when deciding if
35020 the breakpoint trigger should be reported back to @var{GDBN}.
35022 The @var{cond_list} parameter is comprised of a series of expressions,
35023 concatenated without separators. Each expression has the following form:
35027 @item X @var{len},@var{expr}
35028 @var{len} is the length of the bytecode expression and @var{expr} is the
35029 actual conditional expression in bytecode form.
35033 see @ref{Architecture-Specific Protocol Details}.
35035 @emph{Implementation note: It is possible for a target to copy or move
35036 code that contains memory breakpoints (e.g., when implementing
35037 overlays). The behavior of this packet, in the presence of such a
35038 target, is not defined.}
35050 @item z1,@var{addr},@var{kind}
35051 @itemx Z1,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}
35052 @cindex @samp{z1} packet
35053 @cindex @samp{Z1} packet
35054 Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
35055 address @var{addr}.
35057 A hardware breakpoint is implemented using a mechanism that is not
35058 dependant on being able to modify the target's memory. @var{kind}
35059 and @var{cond_list} have the same meaning as in @samp{Z0} packets.
35061 @emph{Implementation note: A hardware breakpoint is not affected by code
35074 @item z2,@var{addr},@var{kind}
35075 @itemx Z2,@var{addr},@var{kind}
35076 @cindex @samp{z2} packet
35077 @cindex @samp{Z2} packet
35078 Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint at @var{addr}.
35079 @var{kind} is interpreted as the number of bytes to watch.
35091 @item z3,@var{addr},@var{kind}
35092 @itemx Z3,@var{addr},@var{kind}
35093 @cindex @samp{z3} packet
35094 @cindex @samp{Z3} packet
35095 Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint at @var{addr}.
35096 @var{kind} is interpreted as the number of bytes to watch.
35108 @item z4,@var{addr},@var{kind}
35109 @itemx Z4,@var{addr},@var{kind}
35110 @cindex @samp{z4} packet
35111 @cindex @samp{Z4} packet
35112 Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint at @var{addr}.
35113 @var{kind} is interpreted as the number of bytes to watch.
35127 @node Stop Reply Packets
35128 @section Stop Reply Packets
35129 @cindex stop reply packets
35131 The @samp{C}, @samp{c}, @samp{S}, @samp{s}, @samp{vCont},
35132 @samp{vAttach}, @samp{vRun}, @samp{vStopped}, and @samp{?} packets can
35133 receive any of the below as a reply. Except for @samp{?}
35134 and @samp{vStopped}, that reply is only returned
35135 when the target halts. In the below the exact meaning of @dfn{signal
35136 number} is defined by the header @file{include/gdb/signals.h} in the
35137 @value{GDBN} source code.
35139 As in the description of request packets, we include spaces in the
35140 reply templates for clarity; these are not part of the reply packet's
35141 syntax. No @value{GDBN} stop reply packet uses spaces to separate its
35147 The program received signal number @var{AA} (a two-digit hexadecimal
35148 number). This is equivalent to a @samp{T} response with no
35149 @var{n}:@var{r} pairs.
35151 @item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
35152 @cindex @samp{T} packet reply
35153 The program received signal number @var{AA} (a two-digit hexadecimal
35154 number). This is equivalent to an @samp{S} response, except that the
35155 @samp{@var{n}:@var{r}} pairs can carry values of important registers
35156 and other information directly in the stop reply packet, reducing
35157 round-trip latency. Single-step and breakpoint traps are reported
35158 this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
35162 If @var{n} is a hexadecimal number, it is a register number, and the
35163 corresponding @var{r} gives that register's value. @var{r} is a
35164 series of bytes in target byte order, with each byte given by a
35165 two-digit hex number.
35168 If @var{n} is @samp{thread}, then @var{r} is the @var{thread-id} of
35169 the stopped thread, as specified in @ref{thread-id syntax}.
35172 If @var{n} is @samp{core}, then @var{r} is the hexadecimal number of
35173 the core on which the stop event was detected.
35176 If @var{n} is a recognized @dfn{stop reason}, it describes a more
35177 specific event that stopped the target. The currently defined stop
35178 reasons are listed below. @var{aa} should be @samp{05}, the trap
35179 signal. At most one stop reason should be present.
35182 Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
35183 and go on to the next; this allows us to extend the protocol in the
35187 The currently defined stop reasons are:
35193 The packet indicates a watchpoint hit, and @var{r} is the data address, in
35196 @cindex shared library events, remote reply
35198 The packet indicates that the loaded libraries have changed.
35199 @value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
35200 list of loaded libraries. @var{r} is ignored.
35202 @cindex replay log events, remote reply
35204 The packet indicates that the target cannot continue replaying
35205 logged execution events, because it has reached the end (or the
35206 beginning when executing backward) of the log. The value of @var{r}
35207 will be either @samp{begin} or @samp{end}. @xref{Reverse Execution},
35208 for more information.
35212 @itemx W @var{AA} ; process:@var{pid}
35213 The process exited, and @var{AA} is the exit status. This is only
35214 applicable to certain targets.
35216 The second form of the response, including the process ID of the exited
35217 process, can be used only when @value{GDBN} has reported support for
35218 multiprocess protocol extensions; see @ref{multiprocess extensions}.
35219 The @var{pid} is formatted as a big-endian hex string.
35222 @itemx X @var{AA} ; process:@var{pid}
35223 The process terminated with signal @var{AA}.
35225 The second form of the response, including the process ID of the
35226 terminated process, can be used only when @value{GDBN} has reported
35227 support for multiprocess protocol extensions; see @ref{multiprocess
35228 extensions}. The @var{pid} is formatted as a big-endian hex string.
35230 @item O @var{XX}@dots{}
35231 @samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
35232 written as the program's console output. This can happen at any time
35233 while the program is running and the debugger should continue to wait
35234 for @samp{W}, @samp{T}, etc. This reply is not permitted in non-stop mode.
35236 @item F @var{call-id},@var{parameter}@dots{}
35237 @var{call-id} is the identifier which says which host system call should
35238 be called. This is just the name of the function. Translation into the
35239 correct system call is only applicable as it's defined in @value{GDBN}.
35240 @xref{File-I/O Remote Protocol Extension}, for a list of implemented
35243 @samp{@var{parameter}@dots{}} is a list of parameters as defined for
35244 this very system call.
35246 The target replies with this packet when it expects @value{GDBN} to
35247 call a host system call on behalf of the target. @value{GDBN} replies
35248 with an appropriate @samp{F} packet and keeps up waiting for the next
35249 reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
35250 or @samp{s} action is expected to be continued. @xref{File-I/O Remote
35251 Protocol Extension}, for more details.
35255 @node General Query Packets
35256 @section General Query Packets
35257 @cindex remote query requests
35259 Packets starting with @samp{q} are @dfn{general query packets};
35260 packets starting with @samp{Q} are @dfn{general set packets}. General
35261 query and set packets are a semi-unified form for retrieving and
35262 sending information to and from the stub.
35264 The initial letter of a query or set packet is followed by a name
35265 indicating what sort of thing the packet applies to. For example,
35266 @value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
35267 definitions with the stub. These packet names follow some
35272 The name must not contain commas, colons or semicolons.
35274 Most @value{GDBN} query and set packets have a leading upper case
35277 The names of custom vendor packets should use a company prefix, in
35278 lower case, followed by a period. For example, packets designed at
35279 the Acme Corporation might begin with @samp{qacme.foo} (for querying
35280 foos) or @samp{Qacme.bar} (for setting bars).
35283 The name of a query or set packet should be separated from any
35284 parameters by a @samp{:}; the parameters themselves should be
35285 separated by @samp{,} or @samp{;}. Stubs must be careful to match the
35286 full packet name, and check for a separator or the end of the packet,
35287 in case two packet names share a common prefix. New packets should not begin
35288 with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
35289 packets predate these conventions, and have arguments without any terminator
35290 for the packet name; we suspect they are in widespread use in places that
35291 are difficult to upgrade. The @samp{qC} packet has no arguments, but some
35292 existing stubs (e.g.@: RedBoot) are known to not check for the end of the
35295 Like the descriptions of the other packets, each description here
35296 has a template showing the packet's overall syntax, followed by an
35297 explanation of the packet's meaning. We include spaces in some of the
35298 templates for clarity; these are not part of the packet's syntax. No
35299 @value{GDBN} packet uses spaces to separate its components.
35301 Here are the currently defined query and set packets:
35307 Turn on or off the agent as a helper to perform some debugging operations
35308 delegated from @value{GDBN} (@pxref{Control Agent}).
35310 @item QAllow:@var{op}:@var{val}@dots{}
35311 @cindex @samp{QAllow} packet
35312 Specify which operations @value{GDBN} expects to request of the
35313 target, as a semicolon-separated list of operation name and value
35314 pairs. Possible values for @var{op} include @samp{WriteReg},
35315 @samp{WriteMem}, @samp{InsertBreak}, @samp{InsertTrace},
35316 @samp{InsertFastTrace}, and @samp{Stop}. @var{val} is either 0,
35317 indicating that @value{GDBN} will not request the operation, or 1,
35318 indicating that it may. (The target can then use this to set up its
35319 own internals optimally, for instance if the debugger never expects to
35320 insert breakpoints, it may not need to install its own trap handler.)
35323 @cindex current thread, remote request
35324 @cindex @samp{qC} packet
35325 Return the current thread ID.
35329 @item QC @var{thread-id}
35330 Where @var{thread-id} is a thread ID as documented in
35331 @ref{thread-id syntax}.
35332 @item @r{(anything else)}
35333 Any other reply implies the old thread ID.
35336 @item qCRC:@var{addr},@var{length}
35337 @cindex CRC of memory block, remote request
35338 @cindex @samp{qCRC} packet
35339 Compute the CRC checksum of a block of memory using CRC-32 defined in
35340 IEEE 802.3. The CRC is computed byte at a time, taking the most
35341 significant bit of each byte first. The initial pattern code
35342 @code{0xffffffff} is used to ensure leading zeros affect the CRC.
35344 @emph{Note:} This is the same CRC used in validating separate debug
35345 files (@pxref{Separate Debug Files, , Debugging Information in Separate
35346 Files}). However the algorithm is slightly different. When validating
35347 separate debug files, the CRC is computed taking the @emph{least}
35348 significant bit of each byte first, and the final result is inverted to
35349 detect trailing zeros.
35354 An error (such as memory fault)
35355 @item C @var{crc32}
35356 The specified memory region's checksum is @var{crc32}.
35359 @item QDisableRandomization:@var{value}
35360 @cindex disable address space randomization, remote request
35361 @cindex @samp{QDisableRandomization} packet
35362 Some target operating systems will randomize the virtual address space
35363 of the inferior process as a security feature, but provide a feature
35364 to disable such randomization, e.g.@: to allow for a more deterministic
35365 debugging experience. On such systems, this packet with a @var{value}
35366 of 1 directs the target to disable address space randomization for
35367 processes subsequently started via @samp{vRun} packets, while a packet
35368 with a @var{value} of 0 tells the target to enable address space
35371 This packet is only available in extended mode (@pxref{extended mode}).
35376 The request succeeded.
35379 An error occurred. @var{nn} are hex digits.
35382 An empty reply indicates that @samp{QDisableRandomization} is not supported
35386 This packet is not probed by default; the remote stub must request it,
35387 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35388 This should only be done on targets that actually support disabling
35389 address space randomization.
35392 @itemx qsThreadInfo
35393 @cindex list active threads, remote request
35394 @cindex @samp{qfThreadInfo} packet
35395 @cindex @samp{qsThreadInfo} packet
35396 Obtain a list of all active thread IDs from the target (OS). Since there
35397 may be too many active threads to fit into one reply packet, this query
35398 works iteratively: it may require more than one query/reply sequence to
35399 obtain the entire list of threads. The first query of the sequence will
35400 be the @samp{qfThreadInfo} query; subsequent queries in the
35401 sequence will be the @samp{qsThreadInfo} query.
35403 NOTE: This packet replaces the @samp{qL} query (see below).
35407 @item m @var{thread-id}
35409 @item m @var{thread-id},@var{thread-id}@dots{}
35410 a comma-separated list of thread IDs
35412 (lower case letter @samp{L}) denotes end of list.
35415 In response to each query, the target will reply with a list of one or
35416 more thread IDs, separated by commas.
35417 @value{GDBN} will respond to each reply with a request for more thread
35418 ids (using the @samp{qs} form of the query), until the target responds
35419 with @samp{l} (lower-case ell, for @dfn{last}).
35420 Refer to @ref{thread-id syntax}, for the format of the @var{thread-id}
35423 @item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
35424 @cindex get thread-local storage address, remote request
35425 @cindex @samp{qGetTLSAddr} packet
35426 Fetch the address associated with thread local storage specified
35427 by @var{thread-id}, @var{offset}, and @var{lm}.
35429 @var{thread-id} is the thread ID associated with the
35430 thread for which to fetch the TLS address. @xref{thread-id syntax}.
35432 @var{offset} is the (big endian, hex encoded) offset associated with the
35433 thread local variable. (This offset is obtained from the debug
35434 information associated with the variable.)
35436 @var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
35437 load module associated with the thread local storage. For example,
35438 a @sc{gnu}/Linux system will pass the link map address of the shared
35439 object associated with the thread local storage under consideration.
35440 Other operating environments may choose to represent the load module
35441 differently, so the precise meaning of this parameter will vary.
35445 @item @var{XX}@dots{}
35446 Hex encoded (big endian) bytes representing the address of the thread
35447 local storage requested.
35450 An error occurred. @var{nn} are hex digits.
35453 An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
35456 @item qGetTIBAddr:@var{thread-id}
35457 @cindex get thread information block address
35458 @cindex @samp{qGetTIBAddr} packet
35459 Fetch address of the Windows OS specific Thread Information Block.
35461 @var{thread-id} is the thread ID associated with the thread.
35465 @item @var{XX}@dots{}
35466 Hex encoded (big endian) bytes representing the linear address of the
35467 thread information block.
35470 An error occured. This means that either the thread was not found, or the
35471 address could not be retrieved.
35474 An empty reply indicates that @samp{qGetTIBAddr} is not supported by the stub.
35477 @item qL @var{startflag} @var{threadcount} @var{nextthread}
35478 Obtain thread information from RTOS. Where: @var{startflag} (one hex
35479 digit) is one to indicate the first query and zero to indicate a
35480 subsequent query; @var{threadcount} (two hex digits) is the maximum
35481 number of threads the response packet can contain; and @var{nextthread}
35482 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
35483 returned in the response as @var{argthread}.
35485 Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
35489 @item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
35490 Where: @var{count} (two hex digits) is the number of threads being
35491 returned; @var{done} (one hex digit) is zero to indicate more threads
35492 and one indicates no further threads; @var{argthreadid} (eight hex
35493 digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
35494 is a sequence of thread IDs from the target. @var{threadid} (eight hex
35495 digits). See @code{remote.c:parse_threadlist_response()}.
35499 @cindex section offsets, remote request
35500 @cindex @samp{qOffsets} packet
35501 Get section offsets that the target used when relocating the downloaded
35506 @item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
35507 Relocate the @code{Text} section by @var{xxx} from its original address.
35508 Relocate the @code{Data} section by @var{yyy} from its original address.
35509 If the object file format provides segment information (e.g.@: @sc{elf}
35510 @samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
35511 segments by the supplied offsets.
35513 @emph{Note: while a @code{Bss} offset may be included in the response,
35514 @value{GDBN} ignores this and instead applies the @code{Data} offset
35515 to the @code{Bss} section.}
35517 @item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
35518 Relocate the first segment of the object file, which conventionally
35519 contains program code, to a starting address of @var{xxx}. If
35520 @samp{DataSeg} is specified, relocate the second segment, which
35521 conventionally contains modifiable data, to a starting address of
35522 @var{yyy}. @value{GDBN} will report an error if the object file
35523 does not contain segment information, or does not contain at least
35524 as many segments as mentioned in the reply. Extra segments are
35525 kept at fixed offsets relative to the last relocated segment.
35528 @item qP @var{mode} @var{thread-id}
35529 @cindex thread information, remote request
35530 @cindex @samp{qP} packet
35531 Returns information on @var{thread-id}. Where: @var{mode} is a hex
35532 encoded 32 bit mode; @var{thread-id} is a thread ID
35533 (@pxref{thread-id syntax}).
35535 Don't use this packet; use the @samp{qThreadExtraInfo} query instead
35538 Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
35542 @cindex non-stop mode, remote request
35543 @cindex @samp{QNonStop} packet
35545 Enter non-stop (@samp{QNonStop:1}) or all-stop (@samp{QNonStop:0}) mode.
35546 @xref{Remote Non-Stop}, for more information.
35551 The request succeeded.
35554 An error occurred. @var{nn} are hex digits.
35557 An empty reply indicates that @samp{QNonStop} is not supported by
35561 This packet is not probed by default; the remote stub must request it,
35562 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35563 Use of this packet is controlled by the @code{set non-stop} command;
35564 @pxref{Non-Stop Mode}.
35566 @item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
35567 @cindex pass signals to inferior, remote request
35568 @cindex @samp{QPassSignals} packet
35569 @anchor{QPassSignals}
35570 Each listed @var{signal} should be passed directly to the inferior process.
35571 Signals are numbered identically to continue packets and stop replies
35572 (@pxref{Stop Reply Packets}). Each @var{signal} list item should be
35573 strictly greater than the previous item. These signals do not need to stop
35574 the inferior, or be reported to @value{GDBN}. All other signals should be
35575 reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
35576 combine; any earlier @samp{QPassSignals} list is completely replaced by the
35577 new list. This packet improves performance when using @samp{handle
35578 @var{signal} nostop noprint pass}.
35583 The request succeeded.
35586 An error occurred. @var{nn} are hex digits.
35589 An empty reply indicates that @samp{QPassSignals} is not supported by
35593 Use of this packet is controlled by the @code{set remote pass-signals}
35594 command (@pxref{Remote Configuration, set remote pass-signals}).
35595 This packet is not probed by default; the remote stub must request it,
35596 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35598 @item QProgramSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
35599 @cindex signals the inferior may see, remote request
35600 @cindex @samp{QProgramSignals} packet
35601 @anchor{QProgramSignals}
35602 Each listed @var{signal} may be delivered to the inferior process.
35603 Others should be silently discarded.
35605 In some cases, the remote stub may need to decide whether to deliver a
35606 signal to the program or not without @value{GDBN} involvement. One
35607 example of that is while detaching --- the program's threads may have
35608 stopped for signals that haven't yet had a chance of being reported to
35609 @value{GDBN}, and so the remote stub can use the signal list specified
35610 by this packet to know whether to deliver or ignore those pending
35613 This does not influence whether to deliver a signal as requested by a
35614 resumption packet (@pxref{vCont packet}).
35616 Signals are numbered identically to continue packets and stop replies
35617 (@pxref{Stop Reply Packets}). Each @var{signal} list item should be
35618 strictly greater than the previous item. Multiple
35619 @samp{QProgramSignals} packets do not combine; any earlier
35620 @samp{QProgramSignals} list is completely replaced by the new list.
35625 The request succeeded.
35628 An error occurred. @var{nn} are hex digits.
35631 An empty reply indicates that @samp{QProgramSignals} is not supported
35635 Use of this packet is controlled by the @code{set remote program-signals}
35636 command (@pxref{Remote Configuration, set remote program-signals}).
35637 This packet is not probed by default; the remote stub must request it,
35638 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35640 @item qRcmd,@var{command}
35641 @cindex execute remote command, remote request
35642 @cindex @samp{qRcmd} packet
35643 @var{command} (hex encoded) is passed to the local interpreter for
35644 execution. Invalid commands should be reported using the output
35645 string. Before the final result packet, the target may also respond
35646 with a number of intermediate @samp{O@var{output}} console output
35647 packets. @emph{Implementors should note that providing access to a
35648 stubs's interpreter may have security implications}.
35653 A command response with no output.
35655 A command response with the hex encoded output string @var{OUTPUT}.
35657 Indicate a badly formed request.
35659 An empty reply indicates that @samp{qRcmd} is not recognized.
35662 (Note that the @code{qRcmd} packet's name is separated from the
35663 command by a @samp{,}, not a @samp{:}, contrary to the naming
35664 conventions above. Please don't use this packet as a model for new
35667 @item qSearch:memory:@var{address};@var{length};@var{search-pattern}
35668 @cindex searching memory, in remote debugging
35669 @cindex @samp{qSearch:memory} packet
35670 @anchor{qSearch memory}
35671 Search @var{length} bytes at @var{address} for @var{search-pattern}.
35672 @var{address} and @var{length} are encoded in hex.
35673 @var{search-pattern} is a sequence of bytes, hex encoded.
35678 The pattern was not found.
35680 The pattern was found at @var{address}.
35682 A badly formed request or an error was encountered while searching memory.
35684 An empty reply indicates that @samp{qSearch:memory} is not recognized.
35687 @item QStartNoAckMode
35688 @cindex @samp{QStartNoAckMode} packet
35689 @anchor{QStartNoAckMode}
35690 Request that the remote stub disable the normal @samp{+}/@samp{-}
35691 protocol acknowledgments (@pxref{Packet Acknowledgment}).
35696 The stub has switched to no-acknowledgment mode.
35697 @value{GDBN} acknowledges this reponse,
35698 but neither the stub nor @value{GDBN} shall send or expect further
35699 @samp{+}/@samp{-} acknowledgments in the current connection.
35701 An empty reply indicates that the stub does not support no-acknowledgment mode.
35704 @item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
35705 @cindex supported packets, remote query
35706 @cindex features of the remote protocol
35707 @cindex @samp{qSupported} packet
35708 @anchor{qSupported}
35709 Tell the remote stub about features supported by @value{GDBN}, and
35710 query the stub for features it supports. This packet allows
35711 @value{GDBN} and the remote stub to take advantage of each others'
35712 features. @samp{qSupported} also consolidates multiple feature probes
35713 at startup, to improve @value{GDBN} performance---a single larger
35714 packet performs better than multiple smaller probe packets on
35715 high-latency links. Some features may enable behavior which must not
35716 be on by default, e.g.@: because it would confuse older clients or
35717 stubs. Other features may describe packets which could be
35718 automatically probed for, but are not. These features must be
35719 reported before @value{GDBN} will use them. This ``default
35720 unsupported'' behavior is not appropriate for all packets, but it
35721 helps to keep the initial connection time under control with new
35722 versions of @value{GDBN} which support increasing numbers of packets.
35726 @item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
35727 The stub supports or does not support each returned @var{stubfeature},
35728 depending on the form of each @var{stubfeature} (see below for the
35731 An empty reply indicates that @samp{qSupported} is not recognized,
35732 or that no features needed to be reported to @value{GDBN}.
35735 The allowed forms for each feature (either a @var{gdbfeature} in the
35736 @samp{qSupported} packet, or a @var{stubfeature} in the response)
35740 @item @var{name}=@var{value}
35741 The remote protocol feature @var{name} is supported, and associated
35742 with the specified @var{value}. The format of @var{value} depends
35743 on the feature, but it must not include a semicolon.
35745 The remote protocol feature @var{name} is supported, and does not
35746 need an associated value.
35748 The remote protocol feature @var{name} is not supported.
35750 The remote protocol feature @var{name} may be supported, and
35751 @value{GDBN} should auto-detect support in some other way when it is
35752 needed. This form will not be used for @var{gdbfeature} notifications,
35753 but may be used for @var{stubfeature} responses.
35756 Whenever the stub receives a @samp{qSupported} request, the
35757 supplied set of @value{GDBN} features should override any previous
35758 request. This allows @value{GDBN} to put the stub in a known
35759 state, even if the stub had previously been communicating with
35760 a different version of @value{GDBN}.
35762 The following values of @var{gdbfeature} (for the packet sent by @value{GDBN})
35767 This feature indicates whether @value{GDBN} supports multiprocess
35768 extensions to the remote protocol. @value{GDBN} does not use such
35769 extensions unless the stub also reports that it supports them by
35770 including @samp{multiprocess+} in its @samp{qSupported} reply.
35771 @xref{multiprocess extensions}, for details.
35774 This feature indicates that @value{GDBN} supports the XML target
35775 description. If the stub sees @samp{xmlRegisters=} with target
35776 specific strings separated by a comma, it will report register
35780 This feature indicates whether @value{GDBN} supports the
35781 @samp{qRelocInsn} packet (@pxref{Tracepoint Packets,,Relocate
35782 instruction reply packet}).
35785 Stubs should ignore any unknown values for
35786 @var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
35787 packet supports receiving packets of unlimited length (earlier
35788 versions of @value{GDBN} may reject overly long responses). Additional values
35789 for @var{gdbfeature} may be defined in the future to let the stub take
35790 advantage of new features in @value{GDBN}, e.g.@: incompatible
35791 improvements in the remote protocol---the @samp{multiprocess} feature is
35792 an example of such a feature. The stub's reply should be independent
35793 of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
35794 describes all the features it supports, and then the stub replies with
35795 all the features it supports.
35797 Similarly, @value{GDBN} will silently ignore unrecognized stub feature
35798 responses, as long as each response uses one of the standard forms.
35800 Some features are flags. A stub which supports a flag feature
35801 should respond with a @samp{+} form response. Other features
35802 require values, and the stub should respond with an @samp{=}
35805 Each feature has a default value, which @value{GDBN} will use if
35806 @samp{qSupported} is not available or if the feature is not mentioned
35807 in the @samp{qSupported} response. The default values are fixed; a
35808 stub is free to omit any feature responses that match the defaults.
35810 Not all features can be probed, but for those which can, the probing
35811 mechanism is useful: in some cases, a stub's internal
35812 architecture may not allow the protocol layer to know some information
35813 about the underlying target in advance. This is especially common in
35814 stubs which may be configured for multiple targets.
35816 These are the currently defined stub features and their properties:
35818 @multitable @columnfractions 0.35 0.2 0.12 0.2
35819 @c NOTE: The first row should be @headitem, but we do not yet require
35820 @c a new enough version of Texinfo (4.7) to use @headitem.
35822 @tab Value Required
35826 @item @samp{PacketSize}
35831 @item @samp{qXfer:auxv:read}
35836 @item @samp{qXfer:features:read}
35841 @item @samp{qXfer:libraries:read}
35846 @item @samp{qXfer:memory-map:read}
35851 @item @samp{qXfer:sdata:read}
35856 @item @samp{qXfer:spu:read}
35861 @item @samp{qXfer:spu:write}
35866 @item @samp{qXfer:siginfo:read}
35871 @item @samp{qXfer:siginfo:write}
35876 @item @samp{qXfer:threads:read}
35881 @item @samp{qXfer:traceframe-info:read}
35886 @item @samp{qXfer:uib:read}
35891 @item @samp{qXfer:fdpic:read}
35896 @item @samp{QNonStop}
35901 @item @samp{QPassSignals}
35906 @item @samp{QStartNoAckMode}
35911 @item @samp{multiprocess}
35916 @item @samp{ConditionalBreakpoints}
35921 @item @samp{ConditionalTracepoints}
35926 @item @samp{ReverseContinue}
35931 @item @samp{ReverseStep}
35936 @item @samp{TracepointSource}
35941 @item @samp{QAgent}
35946 @item @samp{QAllow}
35951 @item @samp{QDisableRandomization}
35956 @item @samp{EnableDisableTracepoints}
35961 @item @samp{tracenz}
35968 These are the currently defined stub features, in more detail:
35971 @cindex packet size, remote protocol
35972 @item PacketSize=@var{bytes}
35973 The remote stub can accept packets up to at least @var{bytes} in
35974 length. @value{GDBN} will send packets up to this size for bulk
35975 transfers, and will never send larger packets. This is a limit on the
35976 data characters in the packet, including the frame and checksum.
35977 There is no trailing NUL byte in a remote protocol packet; if the stub
35978 stores packets in a NUL-terminated format, it should allow an extra
35979 byte in its buffer for the NUL. If this stub feature is not supported,
35980 @value{GDBN} guesses based on the size of the @samp{g} packet response.
35982 @item qXfer:auxv:read
35983 The remote stub understands the @samp{qXfer:auxv:read} packet
35984 (@pxref{qXfer auxiliary vector read}).
35986 @item qXfer:features:read
35987 The remote stub understands the @samp{qXfer:features:read} packet
35988 (@pxref{qXfer target description read}).
35990 @item qXfer:libraries:read
35991 The remote stub understands the @samp{qXfer:libraries:read} packet
35992 (@pxref{qXfer library list read}).
35994 @item qXfer:libraries-svr4:read
35995 The remote stub understands the @samp{qXfer:libraries-svr4:read} packet
35996 (@pxref{qXfer svr4 library list read}).
35998 @item qXfer:memory-map:read
35999 The remote stub understands the @samp{qXfer:memory-map:read} packet
36000 (@pxref{qXfer memory map read}).
36002 @item qXfer:sdata:read
36003 The remote stub understands the @samp{qXfer:sdata:read} packet
36004 (@pxref{qXfer sdata read}).
36006 @item qXfer:spu:read
36007 The remote stub understands the @samp{qXfer:spu:read} packet
36008 (@pxref{qXfer spu read}).
36010 @item qXfer:spu:write
36011 The remote stub understands the @samp{qXfer:spu:write} packet
36012 (@pxref{qXfer spu write}).
36014 @item qXfer:siginfo:read
36015 The remote stub understands the @samp{qXfer:siginfo:read} packet
36016 (@pxref{qXfer siginfo read}).
36018 @item qXfer:siginfo:write
36019 The remote stub understands the @samp{qXfer:siginfo:write} packet
36020 (@pxref{qXfer siginfo write}).
36022 @item qXfer:threads:read
36023 The remote stub understands the @samp{qXfer:threads:read} packet
36024 (@pxref{qXfer threads read}).
36026 @item qXfer:traceframe-info:read
36027 The remote stub understands the @samp{qXfer:traceframe-info:read}
36028 packet (@pxref{qXfer traceframe info read}).
36030 @item qXfer:uib:read
36031 The remote stub understands the @samp{qXfer:uib:read}
36032 packet (@pxref{qXfer unwind info block}).
36034 @item qXfer:fdpic:read
36035 The remote stub understands the @samp{qXfer:fdpic:read}
36036 packet (@pxref{qXfer fdpic loadmap read}).
36039 The remote stub understands the @samp{QNonStop} packet
36040 (@pxref{QNonStop}).
36043 The remote stub understands the @samp{QPassSignals} packet
36044 (@pxref{QPassSignals}).
36046 @item QStartNoAckMode
36047 The remote stub understands the @samp{QStartNoAckMode} packet and
36048 prefers to operate in no-acknowledgment mode. @xref{Packet Acknowledgment}.
36051 @anchor{multiprocess extensions}
36052 @cindex multiprocess extensions, in remote protocol
36053 The remote stub understands the multiprocess extensions to the remote
36054 protocol syntax. The multiprocess extensions affect the syntax of
36055 thread IDs in both packets and replies (@pxref{thread-id syntax}), and
36056 add process IDs to the @samp{D} packet and @samp{W} and @samp{X}
36057 replies. Note that reporting this feature indicates support for the
36058 syntactic extensions only, not that the stub necessarily supports
36059 debugging of more than one process at a time. The stub must not use
36060 multiprocess extensions in packet replies unless @value{GDBN} has also
36061 indicated it supports them in its @samp{qSupported} request.
36063 @item qXfer:osdata:read
36064 The remote stub understands the @samp{qXfer:osdata:read} packet
36065 ((@pxref{qXfer osdata read}).
36067 @item ConditionalBreakpoints
36068 The target accepts and implements evaluation of conditional expressions
36069 defined for breakpoints. The target will only report breakpoint triggers
36070 when such conditions are true (@pxref{Conditions, ,Break Conditions}).
36072 @item ConditionalTracepoints
36073 The remote stub accepts and implements conditional expressions defined
36074 for tracepoints (@pxref{Tracepoint Conditions}).
36076 @item ReverseContinue
36077 The remote stub accepts and implements the reverse continue packet
36081 The remote stub accepts and implements the reverse step packet
36084 @item TracepointSource
36085 The remote stub understands the @samp{QTDPsrc} packet that supplies
36086 the source form of tracepoint definitions.
36089 The remote stub understands the @samp{QAgent} packet.
36092 The remote stub understands the @samp{QAllow} packet.
36094 @item QDisableRandomization
36095 The remote stub understands the @samp{QDisableRandomization} packet.
36097 @item StaticTracepoint
36098 @cindex static tracepoints, in remote protocol
36099 The remote stub supports static tracepoints.
36101 @item InstallInTrace
36102 @anchor{install tracepoint in tracing}
36103 The remote stub supports installing tracepoint in tracing.
36105 @item EnableDisableTracepoints
36106 The remote stub supports the @samp{QTEnable} (@pxref{QTEnable}) and
36107 @samp{QTDisable} (@pxref{QTDisable}) packets that allow tracepoints
36108 to be enabled and disabled while a trace experiment is running.
36111 @cindex string tracing, in remote protocol
36112 The remote stub supports the @samp{tracenz} bytecode for collecting strings.
36113 See @ref{Bytecode Descriptions} for details about the bytecode.
36118 @cindex symbol lookup, remote request
36119 @cindex @samp{qSymbol} packet
36120 Notify the target that @value{GDBN} is prepared to serve symbol lookup
36121 requests. Accept requests from the target for the values of symbols.
36126 The target does not need to look up any (more) symbols.
36127 @item qSymbol:@var{sym_name}
36128 The target requests the value of symbol @var{sym_name} (hex encoded).
36129 @value{GDBN} may provide the value by using the
36130 @samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
36134 @item qSymbol:@var{sym_value}:@var{sym_name}
36135 Set the value of @var{sym_name} to @var{sym_value}.
36137 @var{sym_name} (hex encoded) is the name of a symbol whose value the
36138 target has previously requested.
36140 @var{sym_value} (hex) is the value for symbol @var{sym_name}. If
36141 @value{GDBN} cannot supply a value for @var{sym_name}, then this field
36147 The target does not need to look up any (more) symbols.
36148 @item qSymbol:@var{sym_name}
36149 The target requests the value of a new symbol @var{sym_name} (hex
36150 encoded). @value{GDBN} will continue to supply the values of symbols
36151 (if available), until the target ceases to request them.
36156 @item QTDisconnected
36163 @itemx qTMinFTPILen
36165 @xref{Tracepoint Packets}.
36167 @item qThreadExtraInfo,@var{thread-id}
36168 @cindex thread attributes info, remote request
36169 @cindex @samp{qThreadExtraInfo} packet
36170 Obtain a printable string description of a thread's attributes from
36171 the target OS. @var{thread-id} is a thread ID;
36172 see @ref{thread-id syntax}. This
36173 string may contain anything that the target OS thinks is interesting
36174 for @value{GDBN} to tell the user about the thread. The string is
36175 displayed in @value{GDBN}'s @code{info threads} display. Some
36176 examples of possible thread extra info strings are @samp{Runnable}, or
36177 @samp{Blocked on Mutex}.
36181 @item @var{XX}@dots{}
36182 Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
36183 comprising the printable string containing the extra information about
36184 the thread's attributes.
36187 (Note that the @code{qThreadExtraInfo} packet's name is separated from
36188 the command by a @samp{,}, not a @samp{:}, contrary to the naming
36189 conventions above. Please don't use this packet as a model for new
36208 @xref{Tracepoint Packets}.
36210 @item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
36211 @cindex read special object, remote request
36212 @cindex @samp{qXfer} packet
36213 @anchor{qXfer read}
36214 Read uninterpreted bytes from the target's special data area
36215 identified by the keyword @var{object}. Request @var{length} bytes
36216 starting at @var{offset} bytes into the data. The content and
36217 encoding of @var{annex} is specific to @var{object}; it can supply
36218 additional details about what data to access.
36220 Here are the specific requests of this form defined so far. All
36221 @samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
36222 formats, listed below.
36225 @item qXfer:auxv:read::@var{offset},@var{length}
36226 @anchor{qXfer auxiliary vector read}
36227 Access the target's @dfn{auxiliary vector}. @xref{OS Information,
36228 auxiliary vector}. Note @var{annex} must be empty.
36230 This packet is not probed by default; the remote stub must request it,
36231 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36233 @item qXfer:features:read:@var{annex}:@var{offset},@var{length}
36234 @anchor{qXfer target description read}
36235 Access the @dfn{target description}. @xref{Target Descriptions}. The
36236 annex specifies which XML document to access. The main description is
36237 always loaded from the @samp{target.xml} annex.
36239 This packet is not probed by default; the remote stub must request it,
36240 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36242 @item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
36243 @anchor{qXfer library list read}
36244 Access the target's list of loaded libraries. @xref{Library List Format}.
36245 The annex part of the generic @samp{qXfer} packet must be empty
36246 (@pxref{qXfer read}).
36248 Targets which maintain a list of libraries in the program's memory do
36249 not need to implement this packet; it is designed for platforms where
36250 the operating system manages the list of loaded libraries.
36252 This packet is not probed by default; the remote stub must request it,
36253 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36255 @item qXfer:libraries-svr4:read:@var{annex}:@var{offset},@var{length}
36256 @anchor{qXfer svr4 library list read}
36257 Access the target's list of loaded libraries when the target is an SVR4
36258 platform. @xref{Library List Format for SVR4 Targets}. The annex part
36259 of the generic @samp{qXfer} packet must be empty (@pxref{qXfer read}).
36261 This packet is optional for better performance on SVR4 targets.
36262 @value{GDBN} uses memory read packets to read the SVR4 library list otherwise.
36264 This packet is not probed by default; the remote stub must request it,
36265 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36267 @item qXfer:memory-map:read::@var{offset},@var{length}
36268 @anchor{qXfer memory map read}
36269 Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
36270 annex part of the generic @samp{qXfer} packet must be empty
36271 (@pxref{qXfer read}).
36273 This packet is not probed by default; the remote stub must request it,
36274 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36276 @item qXfer:sdata:read::@var{offset},@var{length}
36277 @anchor{qXfer sdata read}
36279 Read contents of the extra collected static tracepoint marker
36280 information. The annex part of the generic @samp{qXfer} packet must
36281 be empty (@pxref{qXfer read}). @xref{Tracepoint Actions,,Tracepoint
36284 This packet is not probed by default; the remote stub must request it,
36285 by supplying an appropriate @samp{qSupported} response
36286 (@pxref{qSupported}).
36288 @item qXfer:siginfo:read::@var{offset},@var{length}
36289 @anchor{qXfer siginfo read}
36290 Read contents of the extra signal information on the target
36291 system. The annex part of the generic @samp{qXfer} packet must be
36292 empty (@pxref{qXfer read}).
36294 This packet is not probed by default; the remote stub must request it,
36295 by supplying an appropriate @samp{qSupported} response
36296 (@pxref{qSupported}).
36298 @item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
36299 @anchor{qXfer spu read}
36300 Read contents of an @code{spufs} file on the target system. The
36301 annex specifies which file to read; it must be of the form
36302 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
36303 in the target process, and @var{name} identifes the @code{spufs} file
36304 in that context to be accessed.
36306 This packet is not probed by default; the remote stub must request it,
36307 by supplying an appropriate @samp{qSupported} response
36308 (@pxref{qSupported}).
36310 @item qXfer:threads:read::@var{offset},@var{length}
36311 @anchor{qXfer threads read}
36312 Access the list of threads on target. @xref{Thread List Format}. The
36313 annex part of the generic @samp{qXfer} packet must be empty
36314 (@pxref{qXfer read}).
36316 This packet is not probed by default; the remote stub must request it,
36317 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36319 @item qXfer:traceframe-info:read::@var{offset},@var{length}
36320 @anchor{qXfer traceframe info read}
36322 Return a description of the current traceframe's contents.
36323 @xref{Traceframe Info Format}. The annex part of the generic
36324 @samp{qXfer} packet must be empty (@pxref{qXfer read}).
36326 This packet is not probed by default; the remote stub must request it,
36327 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36329 @item qXfer:uib:read:@var{pc}:@var{offset},@var{length}
36330 @anchor{qXfer unwind info block}
36332 Return the unwind information block for @var{pc}. This packet is used
36333 on OpenVMS/ia64 to ask the kernel unwind information.
36335 This packet is not probed by default.
36337 @item qXfer:fdpic:read:@var{annex}:@var{offset},@var{length}
36338 @anchor{qXfer fdpic loadmap read}
36339 Read contents of @code{loadmap}s on the target system. The
36340 annex, either @samp{exec} or @samp{interp}, specifies which @code{loadmap},
36341 executable @code{loadmap} or interpreter @code{loadmap} to read.
36343 This packet is not probed by default; the remote stub must request it,
36344 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36346 @item qXfer:osdata:read::@var{offset},@var{length}
36347 @anchor{qXfer osdata read}
36348 Access the target's @dfn{operating system information}.
36349 @xref{Operating System Information}.
36356 Data @var{data} (@pxref{Binary Data}) has been read from the
36357 target. There may be more data at a higher address (although
36358 it is permitted to return @samp{m} even for the last valid
36359 block of data, as long as at least one byte of data was read).
36360 @var{data} may have fewer bytes than the @var{length} in the
36364 Data @var{data} (@pxref{Binary Data}) has been read from the target.
36365 There is no more data to be read. @var{data} may have fewer bytes
36366 than the @var{length} in the request.
36369 The @var{offset} in the request is at the end of the data.
36370 There is no more data to be read.
36373 The request was malformed, or @var{annex} was invalid.
36376 The offset was invalid, or there was an error encountered reading the data.
36377 @var{nn} is a hex-encoded @code{errno} value.
36380 An empty reply indicates the @var{object} string was not recognized by
36381 the stub, or that the object does not support reading.
36384 @item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
36385 @cindex write data into object, remote request
36386 @anchor{qXfer write}
36387 Write uninterpreted bytes into the target's special data area
36388 identified by the keyword @var{object}, starting at @var{offset} bytes
36389 into the data. @var{data}@dots{} is the binary-encoded data
36390 (@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
36391 is specific to @var{object}; it can supply additional details about what data
36394 Here are the specific requests of this form defined so far. All
36395 @samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
36396 formats, listed below.
36399 @item qXfer:siginfo:write::@var{offset}:@var{data}@dots{}
36400 @anchor{qXfer siginfo write}
36401 Write @var{data} to the extra signal information on the target system.
36402 The annex part of the generic @samp{qXfer} packet must be
36403 empty (@pxref{qXfer write}).
36405 This packet is not probed by default; the remote stub must request it,
36406 by supplying an appropriate @samp{qSupported} response
36407 (@pxref{qSupported}).
36409 @item qXfer:spu:write:@var{annex}:@var{offset}:@var{data}@dots{}
36410 @anchor{qXfer spu write}
36411 Write @var{data} to an @code{spufs} file on the target system. The
36412 annex specifies which file to write; it must be of the form
36413 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
36414 in the target process, and @var{name} identifes the @code{spufs} file
36415 in that context to be accessed.
36417 This packet is not probed by default; the remote stub must request it,
36418 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
36424 @var{nn} (hex encoded) is the number of bytes written.
36425 This may be fewer bytes than supplied in the request.
36428 The request was malformed, or @var{annex} was invalid.
36431 The offset was invalid, or there was an error encountered writing the data.
36432 @var{nn} is a hex-encoded @code{errno} value.
36435 An empty reply indicates the @var{object} string was not
36436 recognized by the stub, or that the object does not support writing.
36439 @item qXfer:@var{object}:@var{operation}:@dots{}
36440 Requests of this form may be added in the future. When a stub does
36441 not recognize the @var{object} keyword, or its support for
36442 @var{object} does not recognize the @var{operation} keyword, the stub
36443 must respond with an empty packet.
36445 @item qAttached:@var{pid}
36446 @cindex query attached, remote request
36447 @cindex @samp{qAttached} packet
36448 Return an indication of whether the remote server attached to an
36449 existing process or created a new process. When the multiprocess
36450 protocol extensions are supported (@pxref{multiprocess extensions}),
36451 @var{pid} is an integer in hexadecimal format identifying the target
36452 process. Otherwise, @value{GDBN} will omit the @var{pid} field and
36453 the query packet will be simplified as @samp{qAttached}.
36455 This query is used, for example, to know whether the remote process
36456 should be detached or killed when a @value{GDBN} session is ended with
36457 the @code{quit} command.
36462 The remote server attached to an existing process.
36464 The remote server created a new process.
36466 A badly formed request or an error was encountered.
36471 @node Architecture-Specific Protocol Details
36472 @section Architecture-Specific Protocol Details
36474 This section describes how the remote protocol is applied to specific
36475 target architectures. Also see @ref{Standard Target Features}, for
36476 details of XML target descriptions for each architecture.
36480 @subsubsection Breakpoint Kinds
36482 These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.
36487 16-bit Thumb mode breakpoint.
36490 32-bit Thumb mode (Thumb-2) breakpoint.
36493 32-bit ARM mode breakpoint.
36499 @subsubsection Register Packet Format
36501 The following @code{g}/@code{G} packets have previously been defined.
36502 In the below, some thirty-two bit registers are transferred as
36503 sixty-four bits. Those registers should be zero/sign extended (which?)
36504 to fill the space allocated. Register bytes are transferred in target
36505 byte order. The two nibbles within a register byte are transferred
36506 most-significant - least-significant.
36512 All registers are transferred as thirty-two bit quantities in the order:
36513 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
36514 registers; fsr; fir; fp.
36518 All registers are transferred as sixty-four bit quantities (including
36519 thirty-two bit registers such as @code{sr}). The ordering is the same
36524 @node Tracepoint Packets
36525 @section Tracepoint Packets
36526 @cindex tracepoint packets
36527 @cindex packets, tracepoint
36529 Here we describe the packets @value{GDBN} uses to implement
36530 tracepoints (@pxref{Tracepoints}).
36534 @item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}[:F@var{flen}][:X@var{len},@var{bytes}]@r{[}-@r{]}
36535 Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
36536 is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
36537 the tracepoint is disabled. @var{step} is the tracepoint's step
36538 count, and @var{pass} is its pass count. If an @samp{F} is present,
36539 then the tracepoint is to be a fast tracepoint, and the @var{flen} is
36540 the number of bytes that the target should copy elsewhere to make room
36541 for the tracepoint. If an @samp{X} is present, it introduces a
36542 tracepoint condition, which consists of a hexadecimal length, followed
36543 by a comma and hex-encoded bytes, in a manner similar to action
36544 encodings as described below. If the trailing @samp{-} is present,
36545 further @samp{QTDP} packets will follow to specify this tracepoint's
36551 The packet was understood and carried out.
36553 @xref{Tracepoint Packets,,Relocate instruction reply packet}.
36555 The packet was not recognized.
36558 @item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
36559 Define actions to be taken when a tracepoint is hit. @var{n} and
36560 @var{addr} must be the same as in the initial @samp{QTDP} packet for
36561 this tracepoint. This packet may only be sent immediately after
36562 another @samp{QTDP} packet that ended with a @samp{-}. If the
36563 trailing @samp{-} is present, further @samp{QTDP} packets will follow,
36564 specifying more actions for this tracepoint.
36566 In the series of action packets for a given tracepoint, at most one
36567 can have an @samp{S} before its first @var{action}. If such a packet
36568 is sent, it and the following packets define ``while-stepping''
36569 actions. Any prior packets define ordinary actions --- that is, those
36570 taken when the tracepoint is first hit. If no action packet has an
36571 @samp{S}, then all the packets in the series specify ordinary
36572 tracepoint actions.
36574 The @samp{@var{action}@dots{}} portion of the packet is a series of
36575 actions, concatenated without separators. Each action has one of the
36581 Collect the registers whose bits are set in @var{mask}. @var{mask} is
36582 a hexadecimal number whose @var{i}'th bit is set if register number
36583 @var{i} should be collected. (The least significant bit is numbered
36584 zero.) Note that @var{mask} may be any number of digits long; it may
36585 not fit in a 32-bit word.
36587 @item M @var{basereg},@var{offset},@var{len}
36588 Collect @var{len} bytes of memory starting at the address in register
36589 number @var{basereg}, plus @var{offset}. If @var{basereg} is
36590 @samp{-1}, then the range has a fixed address: @var{offset} is the
36591 address of the lowest byte to collect. The @var{basereg},
36592 @var{offset}, and @var{len} parameters are all unsigned hexadecimal
36593 values (the @samp{-1} value for @var{basereg} is a special case).
36595 @item X @var{len},@var{expr}
36596 Evaluate @var{expr}, whose length is @var{len}, and collect memory as
36597 it directs. @var{expr} is an agent expression, as described in
36598 @ref{Agent Expressions}. Each byte of the expression is encoded as a
36599 two-digit hex number in the packet; @var{len} is the number of bytes
36600 in the expression (and thus one-half the number of hex digits in the
36605 Any number of actions may be packed together in a single @samp{QTDP}
36606 packet, as long as the packet does not exceed the maximum packet
36607 length (400 bytes, for many stubs). There may be only one @samp{R}
36608 action per tracepoint, and it must precede any @samp{M} or @samp{X}
36609 actions. Any registers referred to by @samp{M} and @samp{X} actions
36610 must be collected by a preceding @samp{R} action. (The
36611 ``while-stepping'' actions are treated as if they were attached to a
36612 separate tracepoint, as far as these restrictions are concerned.)
36617 The packet was understood and carried out.
36619 @xref{Tracepoint Packets,,Relocate instruction reply packet}.
36621 The packet was not recognized.
36624 @item QTDPsrc:@var{n}:@var{addr}:@var{type}:@var{start}:@var{slen}:@var{bytes}
36625 @cindex @samp{QTDPsrc} packet
36626 Specify a source string of tracepoint @var{n} at address @var{addr}.
36627 This is useful to get accurate reproduction of the tracepoints
36628 originally downloaded at the beginning of the trace run. @var{type}
36629 is the name of the tracepoint part, such as @samp{cond} for the
36630 tracepoint's conditional expression (see below for a list of types), while
36631 @var{bytes} is the string, encoded in hexadecimal.
36633 @var{start} is the offset of the @var{bytes} within the overall source
36634 string, while @var{slen} is the total length of the source string.
36635 This is intended for handling source strings that are longer than will
36636 fit in a single packet.
36637 @c Add detailed example when this info is moved into a dedicated
36638 @c tracepoint descriptions section.
36640 The available string types are @samp{at} for the location,
36641 @samp{cond} for the conditional, and @samp{cmd} for an action command.
36642 @value{GDBN} sends a separate packet for each command in the action
36643 list, in the same order in which the commands are stored in the list.
36645 The target does not need to do anything with source strings except
36646 report them back as part of the replies to the @samp{qTfP}/@samp{qTsP}
36649 Although this packet is optional, and @value{GDBN} will only send it
36650 if the target replies with @samp{TracepointSource} @xref{General
36651 Query Packets}, it makes both disconnected tracing and trace files
36652 much easier to use. Otherwise the user must be careful that the
36653 tracepoints in effect while looking at trace frames are identical to
36654 the ones in effect during the trace run; even a small discrepancy
36655 could cause @samp{tdump} not to work, or a particular trace frame not
36658 @item QTDV:@var{n}:@var{value}
36659 @cindex define trace state variable, remote request
36660 @cindex @samp{QTDV} packet
36661 Create a new trace state variable, number @var{n}, with an initial
36662 value of @var{value}, which is a 64-bit signed integer. Both @var{n}
36663 and @var{value} are encoded as hexadecimal values. @value{GDBN} has
36664 the option of not using this packet for initial values of zero; the
36665 target should simply create the trace state variables as they are
36666 mentioned in expressions.
36668 @item QTFrame:@var{n}
36669 Select the @var{n}'th tracepoint frame from the buffer, and use the
36670 register and memory contents recorded there to answer subsequent
36671 request packets from @value{GDBN}.
36673 A successful reply from the stub indicates that the stub has found the
36674 requested frame. The response is a series of parts, concatenated
36675 without separators, describing the frame we selected. Each part has
36676 one of the following forms:
36680 The selected frame is number @var{n} in the trace frame buffer;
36681 @var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
36682 was no frame matching the criteria in the request packet.
36685 The selected trace frame records a hit of tracepoint number @var{t};
36686 @var{t} is a hexadecimal number.
36690 @item QTFrame:pc:@var{addr}
36691 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
36692 currently selected frame whose PC is @var{addr};
36693 @var{addr} is a hexadecimal number.
36695 @item QTFrame:tdp:@var{t}
36696 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
36697 currently selected frame that is a hit of tracepoint @var{t}; @var{t}
36698 is a hexadecimal number.
36700 @item QTFrame:range:@var{start}:@var{end}
36701 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
36702 currently selected frame whose PC is between @var{start} (inclusive)
36703 and @var{end} (inclusive); @var{start} and @var{end} are hexadecimal
36706 @item QTFrame:outside:@var{start}:@var{end}
36707 Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
36708 frame @emph{outside} the given range of addresses (exclusive).
36711 This packet requests the minimum length of instruction at which a fast
36712 tracepoint (@pxref{Set Tracepoints}) may be placed. For instance, on
36713 the 32-bit x86 architecture, it is possible to use a 4-byte jump, but
36714 it depends on the target system being able to create trampolines in
36715 the first 64K of memory, which might or might not be possible for that
36716 system. So the reply to this packet will be 4 if it is able to
36723 The minimum instruction length is currently unknown.
36725 The minimum instruction length is @var{length}, where @var{length} is greater
36726 or equal to 1. @var{length} is a hexadecimal number. A reply of 1 means
36727 that a fast tracepoint may be placed on any instruction regardless of size.
36729 An error has occurred.
36731 An empty reply indicates that the request is not supported by the stub.
36735 Begin the tracepoint experiment. Begin collecting data from
36736 tracepoint hits in the trace frame buffer. This packet supports the
36737 @samp{qRelocInsn} reply (@pxref{Tracepoint Packets,,Relocate
36738 instruction reply packet}).
36741 End the tracepoint experiment. Stop collecting trace frames.
36743 @item QTEnable:@var{n}:@var{addr}
36745 Enable tracepoint @var{n} at address @var{addr} in a started tracepoint
36746 experiment. If the tracepoint was previously disabled, then collection
36747 of data from it will resume.
36749 @item QTDisable:@var{n}:@var{addr}
36751 Disable tracepoint @var{n} at address @var{addr} in a started tracepoint
36752 experiment. No more data will be collected from the tracepoint unless
36753 @samp{QTEnable:@var{n}:@var{addr}} is subsequently issued.
36756 Clear the table of tracepoints, and empty the trace frame buffer.
36758 @item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
36759 Establish the given ranges of memory as ``transparent''. The stub
36760 will answer requests for these ranges from memory's current contents,
36761 if they were not collected as part of the tracepoint hit.
36763 @value{GDBN} uses this to mark read-only regions of memory, like those
36764 containing program code. Since these areas never change, they should
36765 still have the same contents they did when the tracepoint was hit, so
36766 there's no reason for the stub to refuse to provide their contents.
36768 @item QTDisconnected:@var{value}
36769 Set the choice to what to do with the tracing run when @value{GDBN}
36770 disconnects from the target. A @var{value} of 1 directs the target to
36771 continue the tracing run, while 0 tells the target to stop tracing if
36772 @value{GDBN} is no longer in the picture.
36775 Ask the stub if there is a trace experiment running right now.
36777 The reply has the form:
36781 @item T@var{running}@r{[};@var{field}@r{]}@dots{}
36782 @var{running} is a single digit @code{1} if the trace is presently
36783 running, or @code{0} if not. It is followed by semicolon-separated
36784 optional fields that an agent may use to report additional status.
36788 If the trace is not running, the agent may report any of several
36789 explanations as one of the optional fields:
36794 No trace has been run yet.
36796 @item tstop[:@var{text}]:0
36797 The trace was stopped by a user-originated stop command. The optional
36798 @var{text} field is a user-supplied string supplied as part of the
36799 stop command (for instance, an explanation of why the trace was
36800 stopped manually). It is hex-encoded.
36803 The trace stopped because the trace buffer filled up.
36805 @item tdisconnected:0
36806 The trace stopped because @value{GDBN} disconnected from the target.
36808 @item tpasscount:@var{tpnum}
36809 The trace stopped because tracepoint @var{tpnum} exceeded its pass count.
36811 @item terror:@var{text}:@var{tpnum}
36812 The trace stopped because tracepoint @var{tpnum} had an error. The
36813 string @var{text} is available to describe the nature of the error
36814 (for instance, a divide by zero in the condition expression).
36815 @var{text} is hex encoded.
36818 The trace stopped for some other reason.
36822 Additional optional fields supply statistical and other information.
36823 Although not required, they are extremely useful for users monitoring
36824 the progress of a trace run. If a trace has stopped, and these
36825 numbers are reported, they must reflect the state of the just-stopped
36830 @item tframes:@var{n}
36831 The number of trace frames in the buffer.
36833 @item tcreated:@var{n}
36834 The total number of trace frames created during the run. This may
36835 be larger than the trace frame count, if the buffer is circular.
36837 @item tsize:@var{n}
36838 The total size of the trace buffer, in bytes.
36840 @item tfree:@var{n}
36841 The number of bytes still unused in the buffer.
36843 @item circular:@var{n}
36844 The value of the circular trace buffer flag. @code{1} means that the
36845 trace buffer is circular and old trace frames will be discarded if
36846 necessary to make room, @code{0} means that the trace buffer is linear
36849 @item disconn:@var{n}
36850 The value of the disconnected tracing flag. @code{1} means that
36851 tracing will continue after @value{GDBN} disconnects, @code{0} means
36852 that the trace run will stop.
36856 @item qTP:@var{tp}:@var{addr}
36857 @cindex tracepoint status, remote request
36858 @cindex @samp{qTP} packet
36859 Ask the stub for the current state of tracepoint number @var{tp} at
36860 address @var{addr}.
36864 @item V@var{hits}:@var{usage}
36865 The tracepoint has been hit @var{hits} times so far during the trace
36866 run, and accounts for @var{usage} in the trace buffer. Note that
36867 @code{while-stepping} steps are not counted as separate hits, but the
36868 steps' space consumption is added into the usage number.
36872 @item qTV:@var{var}
36873 @cindex trace state variable value, remote request
36874 @cindex @samp{qTV} packet
36875 Ask the stub for the value of the trace state variable number @var{var}.
36880 The value of the variable is @var{value}. This will be the current
36881 value of the variable if the user is examining a running target, or a
36882 saved value if the variable was collected in the trace frame that the
36883 user is looking at. Note that multiple requests may result in
36884 different reply values, such as when requesting values while the
36885 program is running.
36888 The value of the variable is unknown. This would occur, for example,
36889 if the user is examining a trace frame in which the requested variable
36895 These packets request data about tracepoints that are being used by
36896 the target. @value{GDBN} sends @code{qTfP} to get the first piece
36897 of data, and multiple @code{qTsP} to get additional pieces. Replies
36898 to these packets generally take the form of the @code{QTDP} packets
36899 that define tracepoints. (FIXME add detailed syntax)
36903 These packets request data about trace state variables that are on the
36904 target. @value{GDBN} sends @code{qTfV} to get the first vari of data,
36905 and multiple @code{qTsV} to get additional variables. Replies to
36906 these packets follow the syntax of the @code{QTDV} packets that define
36907 trace state variables.
36911 These packets request data about static tracepoint markers that exist
36912 in the target program. @value{GDBN} sends @code{qTfSTM} to get the
36913 first piece of data, and multiple @code{qTsSTM} to get additional
36914 pieces. Replies to these packets take the following form:
36918 @item m @var{address}:@var{id}:@var{extra}
36920 @item m @var{address}:@var{id}:@var{extra},@var{address}:@var{id}:@var{extra}@dots{}
36921 a comma-separated list of markers
36923 (lower case letter @samp{L}) denotes end of list.
36925 An error occurred. @var{nn} are hex digits.
36927 An empty reply indicates that the request is not supported by the
36931 @var{address} is encoded in hex.
36932 @var{id} and @var{extra} are strings encoded in hex.
36934 In response to each query, the target will reply with a list of one or
36935 more markers, separated by commas. @value{GDBN} will respond to each
36936 reply with a request for more markers (using the @samp{qs} form of the
36937 query), until the target responds with @samp{l} (lower-case ell, for
36940 @item qTSTMat:@var{address}
36941 This packets requests data about static tracepoint markers in the
36942 target program at @var{address}. Replies to this packet follow the
36943 syntax of the @samp{qTfSTM} and @code{qTsSTM} packets that list static
36944 tracepoint markers.
36946 @item QTSave:@var{filename}
36947 This packet directs the target to save trace data to the file name
36948 @var{filename} in the target's filesystem. @var{filename} is encoded
36949 as a hex string; the interpretation of the file name (relative vs
36950 absolute, wild cards, etc) is up to the target.
36952 @item qTBuffer:@var{offset},@var{len}
36953 Return up to @var{len} bytes of the current contents of trace buffer,
36954 starting at @var{offset}. The trace buffer is treated as if it were
36955 a contiguous collection of traceframes, as per the trace file format.
36956 The reply consists as many hex-encoded bytes as the target can deliver
36957 in a packet; it is not an error to return fewer than were asked for.
36958 A reply consisting of just @code{l} indicates that no bytes are
36961 @item QTBuffer:circular:@var{value}
36962 This packet directs the target to use a circular trace buffer if
36963 @var{value} is 1, or a linear buffer if the value is 0.
36965 @item QTNotes:@r{[}@var{type}:@var{text}@r{]}@r{[};@var{type}:@var{text}@r{]}@dots{}
36966 This packet adds optional textual notes to the trace run. Allowable
36967 types include @code{user}, @code{notes}, and @code{tstop}, the
36968 @var{text} fields are arbitrary strings, hex-encoded.
36972 @subsection Relocate instruction reply packet
36973 When installing fast tracepoints in memory, the target may need to
36974 relocate the instruction currently at the tracepoint address to a
36975 different address in memory. For most instructions, a simple copy is
36976 enough, but, for example, call instructions that implicitly push the
36977 return address on the stack, and relative branches or other
36978 PC-relative instructions require offset adjustment, so that the effect
36979 of executing the instruction at a different address is the same as if
36980 it had executed in the original location.
36982 In response to several of the tracepoint packets, the target may also
36983 respond with a number of intermediate @samp{qRelocInsn} request
36984 packets before the final result packet, to have @value{GDBN} handle
36985 this relocation operation. If a packet supports this mechanism, its
36986 documentation will explicitly say so. See for example the above
36987 descriptions for the @samp{QTStart} and @samp{QTDP} packets. The
36988 format of the request is:
36991 @item qRelocInsn:@var{from};@var{to}
36993 This requests @value{GDBN} to copy instruction at address @var{from}
36994 to address @var{to}, possibly adjusted so that executing the
36995 instruction at @var{to} has the same effect as executing it at
36996 @var{from}. @value{GDBN} writes the adjusted instruction to target
36997 memory starting at @var{to}.
37002 @item qRelocInsn:@var{adjusted_size}
37003 Informs the stub the relocation is complete. @var{adjusted_size} is
37004 the length in bytes of resulting relocated instruction sequence.
37006 A badly formed request was detected, or an error was encountered while
37007 relocating the instruction.
37010 @node Host I/O Packets
37011 @section Host I/O Packets
37012 @cindex Host I/O, remote protocol
37013 @cindex file transfer, remote protocol
37015 The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
37016 operations on the far side of a remote link. For example, Host I/O is
37017 used to upload and download files to a remote target with its own
37018 filesystem. Host I/O uses the same constant values and data structure
37019 layout as the target-initiated File-I/O protocol. However, the
37020 Host I/O packets are structured differently. The target-initiated
37021 protocol relies on target memory to store parameters and buffers.
37022 Host I/O requests are initiated by @value{GDBN}, and the
37023 target's memory is not involved. @xref{File-I/O Remote Protocol
37024 Extension}, for more details on the target-initiated protocol.
37026 The Host I/O request packets all encode a single operation along with
37027 its arguments. They have this format:
37031 @item vFile:@var{operation}: @var{parameter}@dots{}
37032 @var{operation} is the name of the particular request; the target
37033 should compare the entire packet name up to the second colon when checking
37034 for a supported operation. The format of @var{parameter} depends on
37035 the operation. Numbers are always passed in hexadecimal. Negative
37036 numbers have an explicit minus sign (i.e.@: two's complement is not
37037 used). Strings (e.g.@: filenames) are encoded as a series of
37038 hexadecimal bytes. The last argument to a system call may be a
37039 buffer of escaped binary data (@pxref{Binary Data}).
37043 The valid responses to Host I/O packets are:
37047 @item F @var{result} [, @var{errno}] [; @var{attachment}]
37048 @var{result} is the integer value returned by this operation, usually
37049 non-negative for success and -1 for errors. If an error has occured,
37050 @var{errno} will be included in the result. @var{errno} will have a
37051 value defined by the File-I/O protocol (@pxref{Errno Values}). For
37052 operations which return data, @var{attachment} supplies the data as a
37053 binary buffer. Binary buffers in response packets are escaped in the
37054 normal way (@pxref{Binary Data}). See the individual packet
37055 documentation for the interpretation of @var{result} and
37059 An empty response indicates that this operation is not recognized.
37063 These are the supported Host I/O operations:
37066 @item vFile:open: @var{pathname}, @var{flags}, @var{mode}
37067 Open a file at @var{pathname} and return a file descriptor for it, or
37068 return -1 if an error occurs. @var{pathname} is a string,
37069 @var{flags} is an integer indicating a mask of open flags
37070 (@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
37071 of mode bits to use if the file is created (@pxref{mode_t Values}).
37072 @xref{open}, for details of the open flags and mode values.
37074 @item vFile:close: @var{fd}
37075 Close the open file corresponding to @var{fd} and return 0, or
37076 -1 if an error occurs.
37078 @item vFile:pread: @var{fd}, @var{count}, @var{offset}
37079 Read data from the open file corresponding to @var{fd}. Up to
37080 @var{count} bytes will be read from the file, starting at @var{offset}
37081 relative to the start of the file. The target may read fewer bytes;
37082 common reasons include packet size limits and an end-of-file
37083 condition. The number of bytes read is returned. Zero should only be
37084 returned for a successful read at the end of the file, or if
37085 @var{count} was zero.
37087 The data read should be returned as a binary attachment on success.
37088 If zero bytes were read, the response should include an empty binary
37089 attachment (i.e.@: a trailing semicolon). The return value is the
37090 number of target bytes read; the binary attachment may be longer if
37091 some characters were escaped.
37093 @item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
37094 Write @var{data} (a binary buffer) to the open file corresponding
37095 to @var{fd}. Start the write at @var{offset} from the start of the
37096 file. Unlike many @code{write} system calls, there is no
37097 separate @var{count} argument; the length of @var{data} in the
37098 packet is used. @samp{vFile:write} returns the number of bytes written,
37099 which may be shorter than the length of @var{data}, or -1 if an
37102 @item vFile:unlink: @var{pathname}
37103 Delete the file at @var{pathname} on the target. Return 0,
37104 or -1 if an error occurs. @var{pathname} is a string.
37106 @item vFile:readlink: @var{filename}
37107 Read value of symbolic link @var{filename} on the target. Return
37108 the number of bytes read, or -1 if an error occurs.
37110 The data read should be returned as a binary attachment on success.
37111 If zero bytes were read, the response should include an empty binary
37112 attachment (i.e.@: a trailing semicolon). The return value is the
37113 number of target bytes read; the binary attachment may be longer if
37114 some characters were escaped.
37119 @section Interrupts
37120 @cindex interrupts (remote protocol)
37122 When a program on the remote target is running, @value{GDBN} may
37123 attempt to interrupt it by sending a @samp{Ctrl-C}, @code{BREAK} or
37124 a @code{BREAK} followed by @code{g},
37125 control of which is specified via @value{GDBN}'s @samp{interrupt-sequence}.
37127 The precise meaning of @code{BREAK} is defined by the transport
37128 mechanism and may, in fact, be undefined. @value{GDBN} does not
37129 currently define a @code{BREAK} mechanism for any of the network
37130 interfaces except for TCP, in which case @value{GDBN} sends the
37131 @code{telnet} BREAK sequence.
37133 @samp{Ctrl-C}, on the other hand, is defined and implemented for all
37134 transport mechanisms. It is represented by sending the single byte
37135 @code{0x03} without any of the usual packet overhead described in
37136 the Overview section (@pxref{Overview}). When a @code{0x03} byte is
37137 transmitted as part of a packet, it is considered to be packet data
37138 and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
37139 (@pxref{X packet}), used for binary downloads, may include an unescaped
37140 @code{0x03} as part of its packet.
37142 @code{BREAK} followed by @code{g} is also known as Magic SysRq g.
37143 When Linux kernel receives this sequence from serial port,
37144 it stops execution and connects to gdb.
37146 Stubs are not required to recognize these interrupt mechanisms and the
37147 precise meaning associated with receipt of the interrupt is
37148 implementation defined. If the target supports debugging of multiple
37149 threads and/or processes, it should attempt to interrupt all
37150 currently-executing threads and processes.
37151 If the stub is successful at interrupting the
37152 running program, it should send one of the stop
37153 reply packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
37154 of successfully stopping the program in all-stop mode, and a stop reply
37155 for each stopped thread in non-stop mode.
37156 Interrupts received while the
37157 program is stopped are discarded.
37159 @node Notification Packets
37160 @section Notification Packets
37161 @cindex notification packets
37162 @cindex packets, notification
37164 The @value{GDBN} remote serial protocol includes @dfn{notifications},
37165 packets that require no acknowledgment. Both the GDB and the stub
37166 may send notifications (although the only notifications defined at
37167 present are sent by the stub). Notifications carry information
37168 without incurring the round-trip latency of an acknowledgment, and so
37169 are useful for low-impact communications where occasional packet loss
37172 A notification packet has the form @samp{% @var{data} #
37173 @var{checksum}}, where @var{data} is the content of the notification,
37174 and @var{checksum} is a checksum of @var{data}, computed and formatted
37175 as for ordinary @value{GDBN} packets. A notification's @var{data}
37176 never contains @samp{$}, @samp{%} or @samp{#} characters. Upon
37177 receiving a notification, the recipient sends no @samp{+} or @samp{-}
37178 to acknowledge the notification's receipt or to report its corruption.
37180 Every notification's @var{data} begins with a name, which contains no
37181 colon characters, followed by a colon character.
37183 Recipients should silently ignore corrupted notifications and
37184 notifications they do not understand. Recipients should restart
37185 timeout periods on receipt of a well-formed notification, whether or
37186 not they understand it.
37188 Senders should only send the notifications described here when this
37189 protocol description specifies that they are permitted. In the
37190 future, we may extend the protocol to permit existing notifications in
37191 new contexts; this rule helps older senders avoid confusing newer
37194 (Older versions of @value{GDBN} ignore bytes received until they see
37195 the @samp{$} byte that begins an ordinary packet, so new stubs may
37196 transmit notifications without fear of confusing older clients. There
37197 are no notifications defined for @value{GDBN} to send at the moment, but we
37198 assume that most older stubs would ignore them, as well.)
37200 The following notification packets from the stub to @value{GDBN} are
37204 @item Stop: @var{reply}
37205 Report an asynchronous stop event in non-stop mode.
37206 The @var{reply} has the form of a stop reply, as
37207 described in @ref{Stop Reply Packets}. Refer to @ref{Remote Non-Stop},
37208 for information on how these notifications are acknowledged by
37212 @node Remote Non-Stop
37213 @section Remote Protocol Support for Non-Stop Mode
37215 @value{GDBN}'s remote protocol supports non-stop debugging of
37216 multi-threaded programs, as described in @ref{Non-Stop Mode}. If the stub
37217 supports non-stop mode, it should report that to @value{GDBN} by including
37218 @samp{QNonStop+} in its @samp{qSupported} response (@pxref{qSupported}).
37220 @value{GDBN} typically sends a @samp{QNonStop} packet only when
37221 establishing a new connection with the stub. Entering non-stop mode
37222 does not alter the state of any currently-running threads, but targets
37223 must stop all threads in any already-attached processes when entering
37224 all-stop mode. @value{GDBN} uses the @samp{?} packet as necessary to
37225 probe the target state after a mode change.
37227 In non-stop mode, when an attached process encounters an event that
37228 would otherwise be reported with a stop reply, it uses the
37229 asynchronous notification mechanism (@pxref{Notification Packets}) to
37230 inform @value{GDBN}. In contrast to all-stop mode, where all threads
37231 in all processes are stopped when a stop reply is sent, in non-stop
37232 mode only the thread reporting the stop event is stopped. That is,
37233 when reporting a @samp{S} or @samp{T} response to indicate completion
37234 of a step operation, hitting a breakpoint, or a fault, only the
37235 affected thread is stopped; any other still-running threads continue
37236 to run. When reporting a @samp{W} or @samp{X} response, all running
37237 threads belonging to other attached processes continue to run.
37239 Only one stop reply notification at a time may be pending; if
37240 additional stop events occur before @value{GDBN} has acknowledged the
37241 previous notification, they must be queued by the stub for later
37242 synchronous transmission in response to @samp{vStopped} packets from
37243 @value{GDBN}. Because the notification mechanism is unreliable,
37244 the stub is permitted to resend a stop reply notification
37245 if it believes @value{GDBN} may not have received it. @value{GDBN}
37246 ignores additional stop reply notifications received before it has
37247 finished processing a previous notification and the stub has completed
37248 sending any queued stop events.
37250 Otherwise, @value{GDBN} must be prepared to receive a stop reply
37251 notification at any time. Specifically, they may appear when
37252 @value{GDBN} is not otherwise reading input from the stub, or when
37253 @value{GDBN} is expecting to read a normal synchronous response or a
37254 @samp{+}/@samp{-} acknowledgment to a packet it has sent.
37255 Notification packets are distinct from any other communication from
37256 the stub so there is no ambiguity.
37258 After receiving a stop reply notification, @value{GDBN} shall
37259 acknowledge it by sending a @samp{vStopped} packet (@pxref{vStopped packet})
37260 as a regular, synchronous request to the stub. Such acknowledgment
37261 is not required to happen immediately, as @value{GDBN} is permitted to
37262 send other, unrelated packets to the stub first, which the stub should
37265 Upon receiving a @samp{vStopped} packet, if the stub has other queued
37266 stop events to report to @value{GDBN}, it shall respond by sending a
37267 normal stop reply response. @value{GDBN} shall then send another
37268 @samp{vStopped} packet to solicit further responses; again, it is
37269 permitted to send other, unrelated packets as well which the stub
37270 should process normally.
37272 If the stub receives a @samp{vStopped} packet and there are no
37273 additional stop events to report, the stub shall return an @samp{OK}
37274 response. At this point, if further stop events occur, the stub shall
37275 send a new stop reply notification, @value{GDBN} shall accept the
37276 notification, and the process shall be repeated.
37278 In non-stop mode, the target shall respond to the @samp{?} packet as
37279 follows. First, any incomplete stop reply notification/@samp{vStopped}
37280 sequence in progress is abandoned. The target must begin a new
37281 sequence reporting stop events for all stopped threads, whether or not
37282 it has previously reported those events to @value{GDBN}. The first
37283 stop reply is sent as a synchronous reply to the @samp{?} packet, and
37284 subsequent stop replies are sent as responses to @samp{vStopped} packets
37285 using the mechanism described above. The target must not send
37286 asynchronous stop reply notifications until the sequence is complete.
37287 If all threads are running when the target receives the @samp{?} packet,
37288 or if the target is not attached to any process, it shall respond
37291 @node Packet Acknowledgment
37292 @section Packet Acknowledgment
37294 @cindex acknowledgment, for @value{GDBN} remote
37295 @cindex packet acknowledgment, for @value{GDBN} remote
37296 By default, when either the host or the target machine receives a packet,
37297 the first response expected is an acknowledgment: either @samp{+} (to indicate
37298 the package was received correctly) or @samp{-} (to request retransmission).
37299 This mechanism allows the @value{GDBN} remote protocol to operate over
37300 unreliable transport mechanisms, such as a serial line.
37302 In cases where the transport mechanism is itself reliable (such as a pipe or
37303 TCP connection), the @samp{+}/@samp{-} acknowledgments are redundant.
37304 It may be desirable to disable them in that case to reduce communication
37305 overhead, or for other reasons. This can be accomplished by means of the
37306 @samp{QStartNoAckMode} packet; @pxref{QStartNoAckMode}.
37308 When in no-acknowledgment mode, neither the stub nor @value{GDBN} shall send or
37309 expect @samp{+}/@samp{-} protocol acknowledgments. The packet
37310 and response format still includes the normal checksum, as described in
37311 @ref{Overview}, but the checksum may be ignored by the receiver.
37313 If the stub supports @samp{QStartNoAckMode} and prefers to operate in
37314 no-acknowledgment mode, it should report that to @value{GDBN}
37315 by including @samp{QStartNoAckMode+} in its response to @samp{qSupported};
37316 @pxref{qSupported}.
37317 If @value{GDBN} also supports @samp{QStartNoAckMode} and it has not been
37318 disabled via the @code{set remote noack-packet off} command
37319 (@pxref{Remote Configuration}),
37320 @value{GDBN} may then send a @samp{QStartNoAckMode} packet to the stub.
37321 Only then may the stub actually turn off packet acknowledgments.
37322 @value{GDBN} sends a final @samp{+} acknowledgment of the stub's @samp{OK}
37323 response, which can be safely ignored by the stub.
37325 Note that @code{set remote noack-packet} command only affects negotiation
37326 between @value{GDBN} and the stub when subsequent connections are made;
37327 it does not affect the protocol acknowledgment state for any current
37329 Since @samp{+}/@samp{-} acknowledgments are enabled by default when a
37330 new connection is established,
37331 there is also no protocol request to re-enable the acknowledgments
37332 for the current connection, once disabled.
37337 Example sequence of a target being re-started. Notice how the restart
37338 does not get any direct output:
37343 @emph{target restarts}
37346 <- @code{T001:1234123412341234}
37350 Example sequence of a target being stepped by a single instruction:
37353 -> @code{G1445@dots{}}
37358 <- @code{T001:1234123412341234}
37362 <- @code{1455@dots{}}
37366 @node File-I/O Remote Protocol Extension
37367 @section File-I/O Remote Protocol Extension
37368 @cindex File-I/O remote protocol extension
37371 * File-I/O Overview::
37372 * Protocol Basics::
37373 * The F Request Packet::
37374 * The F Reply Packet::
37375 * The Ctrl-C Message::
37377 * List of Supported Calls::
37378 * Protocol-specific Representation of Datatypes::
37380 * File-I/O Examples::
37383 @node File-I/O Overview
37384 @subsection File-I/O Overview
37385 @cindex file-i/o overview
37387 The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
37388 target to use the host's file system and console I/O to perform various
37389 system calls. System calls on the target system are translated into a
37390 remote protocol packet to the host system, which then performs the needed
37391 actions and returns a response packet to the target system.
37392 This simulates file system operations even on targets that lack file systems.
37394 The protocol is defined to be independent of both the host and target systems.
37395 It uses its own internal representation of datatypes and values. Both
37396 @value{GDBN} and the target's @value{GDBN} stub are responsible for
37397 translating the system-dependent value representations into the internal
37398 protocol representations when data is transmitted.
37400 The communication is synchronous. A system call is possible only when
37401 @value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
37402 or @samp{s} packets. While @value{GDBN} handles the request for a system call,
37403 the target is stopped to allow deterministic access to the target's
37404 memory. Therefore File-I/O is not interruptible by target signals. On
37405 the other hand, it is possible to interrupt File-I/O by a user interrupt
37406 (@samp{Ctrl-C}) within @value{GDBN}.
37408 The target's request to perform a host system call does not finish
37409 the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
37410 after finishing the system call, the target returns to continuing the
37411 previous activity (continue, step). No additional continue or step
37412 request from @value{GDBN} is required.
37415 (@value{GDBP}) continue
37416 <- target requests 'system call X'
37417 target is stopped, @value{GDBN} executes system call
37418 -> @value{GDBN} returns result
37419 ... target continues, @value{GDBN} returns to wait for the target
37420 <- target hits breakpoint and sends a Txx packet
37423 The protocol only supports I/O on the console and to regular files on
37424 the host file system. Character or block special devices, pipes,
37425 named pipes, sockets or any other communication method on the host
37426 system are not supported by this protocol.
37428 File I/O is not supported in non-stop mode.
37430 @node Protocol Basics
37431 @subsection Protocol Basics
37432 @cindex protocol basics, file-i/o
37434 The File-I/O protocol uses the @code{F} packet as the request as well
37435 as reply packet. Since a File-I/O system call can only occur when
37436 @value{GDBN} is waiting for a response from the continuing or stepping target,
37437 the File-I/O request is a reply that @value{GDBN} has to expect as a result
37438 of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
37439 This @code{F} packet contains all information needed to allow @value{GDBN}
37440 to call the appropriate host system call:
37444 A unique identifier for the requested system call.
37447 All parameters to the system call. Pointers are given as addresses
37448 in the target memory address space. Pointers to strings are given as
37449 pointer/length pair. Numerical values are given as they are.
37450 Numerical control flags are given in a protocol-specific representation.
37454 At this point, @value{GDBN} has to perform the following actions.
37458 If the parameters include pointer values to data needed as input to a
37459 system call, @value{GDBN} requests this data from the target with a
37460 standard @code{m} packet request. This additional communication has to be
37461 expected by the target implementation and is handled as any other @code{m}
37465 @value{GDBN} translates all value from protocol representation to host
37466 representation as needed. Datatypes are coerced into the host types.
37469 @value{GDBN} calls the system call.
37472 It then coerces datatypes back to protocol representation.
37475 If the system call is expected to return data in buffer space specified
37476 by pointer parameters to the call, the data is transmitted to the
37477 target using a @code{M} or @code{X} packet. This packet has to be expected
37478 by the target implementation and is handled as any other @code{M} or @code{X}
37483 Eventually @value{GDBN} replies with another @code{F} packet which contains all
37484 necessary information for the target to continue. This at least contains
37491 @code{errno}, if has been changed by the system call.
37498 After having done the needed type and value coercion, the target continues
37499 the latest continue or step action.
37501 @node The F Request Packet
37502 @subsection The @code{F} Request Packet
37503 @cindex file-i/o request packet
37504 @cindex @code{F} request packet
37506 The @code{F} request packet has the following format:
37509 @item F@var{call-id},@var{parameter@dots{}}
37511 @var{call-id} is the identifier to indicate the host system call to be called.
37512 This is just the name of the function.
37514 @var{parameter@dots{}} are the parameters to the system call.
37515 Parameters are hexadecimal integer values, either the actual values in case
37516 of scalar datatypes, pointers to target buffer space in case of compound
37517 datatypes and unspecified memory areas, or pointer/length pairs in case
37518 of string parameters. These are appended to the @var{call-id} as a
37519 comma-delimited list. All values are transmitted in ASCII
37520 string representation, pointer/length pairs separated by a slash.
37526 @node The F Reply Packet
37527 @subsection The @code{F} Reply Packet
37528 @cindex file-i/o reply packet
37529 @cindex @code{F} reply packet
37531 The @code{F} reply packet has the following format:
37535 @item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
37537 @var{retcode} is the return code of the system call as hexadecimal value.
37539 @var{errno} is the @code{errno} set by the call, in protocol-specific
37541 This parameter can be omitted if the call was successful.
37543 @var{Ctrl-C flag} is only sent if the user requested a break. In this
37544 case, @var{errno} must be sent as well, even if the call was successful.
37545 The @var{Ctrl-C flag} itself consists of the character @samp{C}:
37552 or, if the call was interrupted before the host call has been performed:
37559 assuming 4 is the protocol-specific representation of @code{EINTR}.
37564 @node The Ctrl-C Message
37565 @subsection The @samp{Ctrl-C} Message
37566 @cindex ctrl-c message, in file-i/o protocol
37568 If the @samp{Ctrl-C} flag is set in the @value{GDBN}
37569 reply packet (@pxref{The F Reply Packet}),
37570 the target should behave as if it had
37571 gotten a break message. The meaning for the target is ``system call
37572 interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
37573 (as with a break message) and return to @value{GDBN} with a @code{T02}
37576 It's important for the target to know in which
37577 state the system call was interrupted. There are two possible cases:
37581 The system call hasn't been performed on the host yet.
37584 The system call on the host has been finished.
37588 These two states can be distinguished by the target by the value of the
37589 returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
37590 call hasn't been performed. This is equivalent to the @code{EINTR} handling
37591 on POSIX systems. In any other case, the target may presume that the
37592 system call has been finished --- successfully or not --- and should behave
37593 as if the break message arrived right after the system call.
37595 @value{GDBN} must behave reliably. If the system call has not been called
37596 yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
37597 @code{errno} in the packet. If the system call on the host has been finished
37598 before the user requests a break, the full action must be finished by
37599 @value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
37600 The @code{F} packet may only be sent when either nothing has happened
37601 or the full action has been completed.
37604 @subsection Console I/O
37605 @cindex console i/o as part of file-i/o
37607 By default and if not explicitly closed by the target system, the file
37608 descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
37609 on the @value{GDBN} console is handled as any other file output operation
37610 (@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
37611 by @value{GDBN} so that after the target read request from file descriptor
37612 0 all following typing is buffered until either one of the following
37617 The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
37619 system call is treated as finished.
37622 The user presses @key{RET}. This is treated as end of input with a trailing
37626 The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
37627 character (neither newline nor @samp{Ctrl-D}) is appended to the input.
37631 If the user has typed more characters than fit in the buffer given to
37632 the @code{read} call, the trailing characters are buffered in @value{GDBN} until
37633 either another @code{read(0, @dots{})} is requested by the target, or debugging
37634 is stopped at the user's request.
37637 @node List of Supported Calls
37638 @subsection List of Supported Calls
37639 @cindex list of supported file-i/o calls
37656 @unnumberedsubsubsec open
37657 @cindex open, file-i/o system call
37662 int open(const char *pathname, int flags);
37663 int open(const char *pathname, int flags, mode_t mode);
37667 @samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
37670 @var{flags} is the bitwise @code{OR} of the following values:
37674 If the file does not exist it will be created. The host
37675 rules apply as far as file ownership and time stamps
37679 When used with @code{O_CREAT}, if the file already exists it is
37680 an error and open() fails.
37683 If the file already exists and the open mode allows
37684 writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
37685 truncated to zero length.
37688 The file is opened in append mode.
37691 The file is opened for reading only.
37694 The file is opened for writing only.
37697 The file is opened for reading and writing.
37701 Other bits are silently ignored.
37705 @var{mode} is the bitwise @code{OR} of the following values:
37709 User has read permission.
37712 User has write permission.
37715 Group has read permission.
37718 Group has write permission.
37721 Others have read permission.
37724 Others have write permission.
37728 Other bits are silently ignored.
37731 @item Return value:
37732 @code{open} returns the new file descriptor or -1 if an error
37739 @var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
37742 @var{pathname} refers to a directory.
37745 The requested access is not allowed.
37748 @var{pathname} was too long.
37751 A directory component in @var{pathname} does not exist.
37754 @var{pathname} refers to a device, pipe, named pipe or socket.
37757 @var{pathname} refers to a file on a read-only filesystem and
37758 write access was requested.
37761 @var{pathname} is an invalid pointer value.
37764 No space on device to create the file.
37767 The process already has the maximum number of files open.
37770 The limit on the total number of files open on the system
37774 The call was interrupted by the user.
37780 @unnumberedsubsubsec close
37781 @cindex close, file-i/o system call
37790 @samp{Fclose,@var{fd}}
37792 @item Return value:
37793 @code{close} returns zero on success, or -1 if an error occurred.
37799 @var{fd} isn't a valid open file descriptor.
37802 The call was interrupted by the user.
37808 @unnumberedsubsubsec read
37809 @cindex read, file-i/o system call
37814 int read(int fd, void *buf, unsigned int count);
37818 @samp{Fread,@var{fd},@var{bufptr},@var{count}}
37820 @item Return value:
37821 On success, the number of bytes read is returned.
37822 Zero indicates end of file. If count is zero, read
37823 returns zero as well. On error, -1 is returned.
37829 @var{fd} is not a valid file descriptor or is not open for
37833 @var{bufptr} is an invalid pointer value.
37836 The call was interrupted by the user.
37842 @unnumberedsubsubsec write
37843 @cindex write, file-i/o system call
37848 int write(int fd, const void *buf, unsigned int count);
37852 @samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
37854 @item Return value:
37855 On success, the number of bytes written are returned.
37856 Zero indicates nothing was written. On error, -1
37863 @var{fd} is not a valid file descriptor or is not open for
37867 @var{bufptr} is an invalid pointer value.
37870 An attempt was made to write a file that exceeds the
37871 host-specific maximum file size allowed.
37874 No space on device to write the data.
37877 The call was interrupted by the user.
37883 @unnumberedsubsubsec lseek
37884 @cindex lseek, file-i/o system call
37889 long lseek (int fd, long offset, int flag);
37893 @samp{Flseek,@var{fd},@var{offset},@var{flag}}
37895 @var{flag} is one of:
37899 The offset is set to @var{offset} bytes.
37902 The offset is set to its current location plus @var{offset}
37906 The offset is set to the size of the file plus @var{offset}
37910 @item Return value:
37911 On success, the resulting unsigned offset in bytes from
37912 the beginning of the file is returned. Otherwise, a
37913 value of -1 is returned.
37919 @var{fd} is not a valid open file descriptor.
37922 @var{fd} is associated with the @value{GDBN} console.
37925 @var{flag} is not a proper value.
37928 The call was interrupted by the user.
37934 @unnumberedsubsubsec rename
37935 @cindex rename, file-i/o system call
37940 int rename(const char *oldpath, const char *newpath);
37944 @samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
37946 @item Return value:
37947 On success, zero is returned. On error, -1 is returned.
37953 @var{newpath} is an existing directory, but @var{oldpath} is not a
37957 @var{newpath} is a non-empty directory.
37960 @var{oldpath} or @var{newpath} is a directory that is in use by some
37964 An attempt was made to make a directory a subdirectory
37968 A component used as a directory in @var{oldpath} or new
37969 path is not a directory. Or @var{oldpath} is a directory
37970 and @var{newpath} exists but is not a directory.
37973 @var{oldpathptr} or @var{newpathptr} are invalid pointer values.
37976 No access to the file or the path of the file.
37980 @var{oldpath} or @var{newpath} was too long.
37983 A directory component in @var{oldpath} or @var{newpath} does not exist.
37986 The file is on a read-only filesystem.
37989 The device containing the file has no room for the new
37993 The call was interrupted by the user.
37999 @unnumberedsubsubsec unlink
38000 @cindex unlink, file-i/o system call
38005 int unlink(const char *pathname);
38009 @samp{Funlink,@var{pathnameptr}/@var{len}}
38011 @item Return value:
38012 On success, zero is returned. On error, -1 is returned.
38018 No access to the file or the path of the file.
38021 The system does not allow unlinking of directories.
38024 The file @var{pathname} cannot be unlinked because it's
38025 being used by another process.
38028 @var{pathnameptr} is an invalid pointer value.
38031 @var{pathname} was too long.
38034 A directory component in @var{pathname} does not exist.
38037 A component of the path is not a directory.
38040 The file is on a read-only filesystem.
38043 The call was interrupted by the user.
38049 @unnumberedsubsubsec stat/fstat
38050 @cindex fstat, file-i/o system call
38051 @cindex stat, file-i/o system call
38056 int stat(const char *pathname, struct stat *buf);
38057 int fstat(int fd, struct stat *buf);
38061 @samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
38062 @samp{Ffstat,@var{fd},@var{bufptr}}
38064 @item Return value:
38065 On success, zero is returned. On error, -1 is returned.
38071 @var{fd} is not a valid open file.
38074 A directory component in @var{pathname} does not exist or the
38075 path is an empty string.
38078 A component of the path is not a directory.
38081 @var{pathnameptr} is an invalid pointer value.
38084 No access to the file or the path of the file.
38087 @var{pathname} was too long.
38090 The call was interrupted by the user.
38096 @unnumberedsubsubsec gettimeofday
38097 @cindex gettimeofday, file-i/o system call
38102 int gettimeofday(struct timeval *tv, void *tz);
38106 @samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
38108 @item Return value:
38109 On success, 0 is returned, -1 otherwise.
38115 @var{tz} is a non-NULL pointer.
38118 @var{tvptr} and/or @var{tzptr} is an invalid pointer value.
38124 @unnumberedsubsubsec isatty
38125 @cindex isatty, file-i/o system call
38130 int isatty(int fd);
38134 @samp{Fisatty,@var{fd}}
38136 @item Return value:
38137 Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
38143 The call was interrupted by the user.
38148 Note that the @code{isatty} call is treated as a special case: it returns
38149 1 to the target if the file descriptor is attached
38150 to the @value{GDBN} console, 0 otherwise. Implementing through system calls
38151 would require implementing @code{ioctl} and would be more complex than
38156 @unnumberedsubsubsec system
38157 @cindex system, file-i/o system call
38162 int system(const char *command);
38166 @samp{Fsystem,@var{commandptr}/@var{len}}
38168 @item Return value:
38169 If @var{len} is zero, the return value indicates whether a shell is
38170 available. A zero return value indicates a shell is not available.
38171 For non-zero @var{len}, the value returned is -1 on error and the
38172 return status of the command otherwise. Only the exit status of the
38173 command is returned, which is extracted from the host's @code{system}
38174 return value by calling @code{WEXITSTATUS(retval)}. In case
38175 @file{/bin/sh} could not be executed, 127 is returned.
38181 The call was interrupted by the user.
38186 @value{GDBN} takes over the full task of calling the necessary host calls
38187 to perform the @code{system} call. The return value of @code{system} on
38188 the host is simplified before it's returned
38189 to the target. Any termination signal information from the child process
38190 is discarded, and the return value consists
38191 entirely of the exit status of the called command.
38193 Due to security concerns, the @code{system} call is by default refused
38194 by @value{GDBN}. The user has to allow this call explicitly with the
38195 @code{set remote system-call-allowed 1} command.
38198 @item set remote system-call-allowed
38199 @kindex set remote system-call-allowed
38200 Control whether to allow the @code{system} calls in the File I/O
38201 protocol for the remote target. The default is zero (disabled).
38203 @item show remote system-call-allowed
38204 @kindex show remote system-call-allowed
38205 Show whether the @code{system} calls are allowed in the File I/O
38209 @node Protocol-specific Representation of Datatypes
38210 @subsection Protocol-specific Representation of Datatypes
38211 @cindex protocol-specific representation of datatypes, in file-i/o protocol
38214 * Integral Datatypes::
38216 * Memory Transfer::
38221 @node Integral Datatypes
38222 @unnumberedsubsubsec Integral Datatypes
38223 @cindex integral datatypes, in file-i/o protocol
38225 The integral datatypes used in the system calls are @code{int},
38226 @code{unsigned int}, @code{long}, @code{unsigned long},
38227 @code{mode_t}, and @code{time_t}.
38229 @code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
38230 implemented as 32 bit values in this protocol.
38232 @code{long} and @code{unsigned long} are implemented as 64 bit types.
38234 @xref{Limits}, for corresponding MIN and MAX values (similar to those
38235 in @file{limits.h}) to allow range checking on host and target.
38237 @code{time_t} datatypes are defined as seconds since the Epoch.
38239 All integral datatypes transferred as part of a memory read or write of a
38240 structured datatype e.g.@: a @code{struct stat} have to be given in big endian
38243 @node Pointer Values
38244 @unnumberedsubsubsec Pointer Values
38245 @cindex pointer values, in file-i/o protocol
38247 Pointers to target data are transmitted as they are. An exception
38248 is made for pointers to buffers for which the length isn't
38249 transmitted as part of the function call, namely strings. Strings
38250 are transmitted as a pointer/length pair, both as hex values, e.g.@:
38257 which is a pointer to data of length 18 bytes at position 0x1aaf.
38258 The length is defined as the full string length in bytes, including
38259 the trailing null byte. For example, the string @code{"hello world"}
38260 at address 0x123456 is transmitted as
38266 @node Memory Transfer
38267 @unnumberedsubsubsec Memory Transfer
38268 @cindex memory transfer, in file-i/o protocol
38270 Structured data which is transferred using a memory read or write (for
38271 example, a @code{struct stat}) is expected to be in a protocol-specific format
38272 with all scalar multibyte datatypes being big endian. Translation to
38273 this representation needs to be done both by the target before the @code{F}
38274 packet is sent, and by @value{GDBN} before
38275 it transfers memory to the target. Transferred pointers to structured
38276 data should point to the already-coerced data at any time.
38280 @unnumberedsubsubsec struct stat
38281 @cindex struct stat, in file-i/o protocol
38283 The buffer of type @code{struct stat} used by the target and @value{GDBN}
38284 is defined as follows:
38288 unsigned int st_dev; /* device */
38289 unsigned int st_ino; /* inode */
38290 mode_t st_mode; /* protection */
38291 unsigned int st_nlink; /* number of hard links */
38292 unsigned int st_uid; /* user ID of owner */
38293 unsigned int st_gid; /* group ID of owner */
38294 unsigned int st_rdev; /* device type (if inode device) */
38295 unsigned long st_size; /* total size, in bytes */
38296 unsigned long st_blksize; /* blocksize for filesystem I/O */
38297 unsigned long st_blocks; /* number of blocks allocated */
38298 time_t st_atime; /* time of last access */
38299 time_t st_mtime; /* time of last modification */
38300 time_t st_ctime; /* time of last change */
38304 The integral datatypes conform to the definitions given in the
38305 appropriate section (see @ref{Integral Datatypes}, for details) so this
38306 structure is of size 64 bytes.
38308 The values of several fields have a restricted meaning and/or
38314 A value of 0 represents a file, 1 the console.
38317 No valid meaning for the target. Transmitted unchanged.
38320 Valid mode bits are described in @ref{Constants}. Any other
38321 bits have currently no meaning for the target.
38326 No valid meaning for the target. Transmitted unchanged.
38331 These values have a host and file system dependent
38332 accuracy. Especially on Windows hosts, the file system may not
38333 support exact timing values.
38336 The target gets a @code{struct stat} of the above representation and is
38337 responsible for coercing it to the target representation before
38340 Note that due to size differences between the host, target, and protocol
38341 representations of @code{struct stat} members, these members could eventually
38342 get truncated on the target.
38344 @node struct timeval
38345 @unnumberedsubsubsec struct timeval
38346 @cindex struct timeval, in file-i/o protocol
38348 The buffer of type @code{struct timeval} used by the File-I/O protocol
38349 is defined as follows:
38353 time_t tv_sec; /* second */
38354 long tv_usec; /* microsecond */
38358 The integral datatypes conform to the definitions given in the
38359 appropriate section (see @ref{Integral Datatypes}, for details) so this
38360 structure is of size 8 bytes.
38363 @subsection Constants
38364 @cindex constants, in file-i/o protocol
38366 The following values are used for the constants inside of the
38367 protocol. @value{GDBN} and target are responsible for translating these
38368 values before and after the call as needed.
38379 @unnumberedsubsubsec Open Flags
38380 @cindex open flags, in file-i/o protocol
38382 All values are given in hexadecimal representation.
38394 @node mode_t Values
38395 @unnumberedsubsubsec mode_t Values
38396 @cindex mode_t values, in file-i/o protocol
38398 All values are given in octal representation.
38415 @unnumberedsubsubsec Errno Values
38416 @cindex errno values, in file-i/o protocol
38418 All values are given in decimal representation.
38443 @code{EUNKNOWN} is used as a fallback error value if a host system returns
38444 any error value not in the list of supported error numbers.
38447 @unnumberedsubsubsec Lseek Flags
38448 @cindex lseek flags, in file-i/o protocol
38457 @unnumberedsubsubsec Limits
38458 @cindex limits, in file-i/o protocol
38460 All values are given in decimal representation.
38463 INT_MIN -2147483648
38465 UINT_MAX 4294967295
38466 LONG_MIN -9223372036854775808
38467 LONG_MAX 9223372036854775807
38468 ULONG_MAX 18446744073709551615
38471 @node File-I/O Examples
38472 @subsection File-I/O Examples
38473 @cindex file-i/o examples
38475 Example sequence of a write call, file descriptor 3, buffer is at target
38476 address 0x1234, 6 bytes should be written:
38479 <- @code{Fwrite,3,1234,6}
38480 @emph{request memory read from target}
38483 @emph{return "6 bytes written"}
38487 Example sequence of a read call, file descriptor 3, buffer is at target
38488 address 0x1234, 6 bytes should be read:
38491 <- @code{Fread,3,1234,6}
38492 @emph{request memory write to target}
38493 -> @code{X1234,6:XXXXXX}
38494 @emph{return "6 bytes read"}
38498 Example sequence of a read call, call fails on the host due to invalid
38499 file descriptor (@code{EBADF}):
38502 <- @code{Fread,3,1234,6}
38506 Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
38510 <- @code{Fread,3,1234,6}
38515 Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
38519 <- @code{Fread,3,1234,6}
38520 -> @code{X1234,6:XXXXXX}
38524 @node Library List Format
38525 @section Library List Format
38526 @cindex library list format, remote protocol
38528 On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
38529 same process as your application to manage libraries. In this case,
38530 @value{GDBN} can use the loader's symbol table and normal memory
38531 operations to maintain a list of shared libraries. On other
38532 platforms, the operating system manages loaded libraries.
38533 @value{GDBN} can not retrieve the list of currently loaded libraries
38534 through memory operations, so it uses the @samp{qXfer:libraries:read}
38535 packet (@pxref{qXfer library list read}) instead. The remote stub
38536 queries the target's operating system and reports which libraries
38539 The @samp{qXfer:libraries:read} packet returns an XML document which
38540 lists loaded libraries and their offsets. Each library has an
38541 associated name and one or more segment or section base addresses,
38542 which report where the library was loaded in memory.
38544 For the common case of libraries that are fully linked binaries, the
38545 library should have a list of segments. If the target supports
38546 dynamic linking of a relocatable object file, its library XML element
38547 should instead include a list of allocated sections. The segment or
38548 section bases are start addresses, not relocation offsets; they do not
38549 depend on the library's link-time base addresses.
38551 @value{GDBN} must be linked with the Expat library to support XML
38552 library lists. @xref{Expat}.
38554 A simple memory map, with one loaded library relocated by a single
38555 offset, looks like this:
38559 <library name="/lib/libc.so.6">
38560 <segment address="0x10000000"/>
38565 Another simple memory map, with one loaded library with three
38566 allocated sections (.text, .data, .bss), looks like this:
38570 <library name="sharedlib.o">
38571 <section address="0x10000000"/>
38572 <section address="0x20000000"/>
38573 <section address="0x30000000"/>
38578 The format of a library list is described by this DTD:
38581 <!-- library-list: Root element with versioning -->
38582 <!ELEMENT library-list (library)*>
38583 <!ATTLIST library-list version CDATA #FIXED "1.0">
38584 <!ELEMENT library (segment*, section*)>
38585 <!ATTLIST library name CDATA #REQUIRED>
38586 <!ELEMENT segment EMPTY>
38587 <!ATTLIST segment address CDATA #REQUIRED>
38588 <!ELEMENT section EMPTY>
38589 <!ATTLIST section address CDATA #REQUIRED>
38592 In addition, segments and section descriptors cannot be mixed within a
38593 single library element, and you must supply at least one segment or
38594 section for each library.
38596 @node Library List Format for SVR4 Targets
38597 @section Library List Format for SVR4 Targets
38598 @cindex library list format, remote protocol
38600 On SVR4 platforms @value{GDBN} can use the symbol table of a dynamic loader
38601 (e.g.@: @file{ld.so}) and normal memory operations to maintain a list of
38602 shared libraries. Still a special library list provided by this packet is
38603 more efficient for the @value{GDBN} remote protocol.
38605 The @samp{qXfer:libraries-svr4:read} packet returns an XML document which lists
38606 loaded libraries and their SVR4 linker parameters. For each library on SVR4
38607 target, the following parameters are reported:
38611 @code{name}, the absolute file name from the @code{l_name} field of
38612 @code{struct link_map}.
38614 @code{lm} with address of @code{struct link_map} used for TLS
38615 (Thread Local Storage) access.
38617 @code{l_addr}, the displacement as read from the field @code{l_addr} of
38618 @code{struct link_map}. For prelinked libraries this is not an absolute
38619 memory address. It is a displacement of absolute memory address against
38620 address the file was prelinked to during the library load.
38622 @code{l_ld}, which is memory address of the @code{PT_DYNAMIC} segment
38625 Additionally the single @code{main-lm} attribute specifies address of
38626 @code{struct link_map} used for the main executable. This parameter is used
38627 for TLS access and its presence is optional.
38629 @value{GDBN} must be linked with the Expat library to support XML
38630 SVR4 library lists. @xref{Expat}.
38632 A simple memory map, with two loaded libraries (which do not use prelink),
38636 <library-list-svr4 version="1.0" main-lm="0xe4f8f8">
38637 <library name="/lib/ld-linux.so.2" lm="0xe4f51c" l_addr="0xe2d000"
38639 <library name="/lib/libc.so.6" lm="0xe4fbe8" l_addr="0x154000"
38641 </library-list-svr>
38644 The format of an SVR4 library list is described by this DTD:
38647 <!-- library-list-svr4: Root element with versioning -->
38648 <!ELEMENT library-list-svr4 (library)*>
38649 <!ATTLIST library-list-svr4 version CDATA #FIXED "1.0">
38650 <!ATTLIST library-list-svr4 main-lm CDATA #IMPLIED>
38651 <!ELEMENT library EMPTY>
38652 <!ATTLIST library name CDATA #REQUIRED>
38653 <!ATTLIST library lm CDATA #REQUIRED>
38654 <!ATTLIST library l_addr CDATA #REQUIRED>
38655 <!ATTLIST library l_ld CDATA #REQUIRED>
38658 @node Memory Map Format
38659 @section Memory Map Format
38660 @cindex memory map format
38662 To be able to write into flash memory, @value{GDBN} needs to obtain a
38663 memory map from the target. This section describes the format of the
38666 The memory map is obtained using the @samp{qXfer:memory-map:read}
38667 (@pxref{qXfer memory map read}) packet and is an XML document that
38668 lists memory regions.
38670 @value{GDBN} must be linked with the Expat library to support XML
38671 memory maps. @xref{Expat}.
38673 The top-level structure of the document is shown below:
38676 <?xml version="1.0"?>
38677 <!DOCTYPE memory-map
38678 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
38679 "http://sourceware.org/gdb/gdb-memory-map.dtd">
38685 Each region can be either:
38690 A region of RAM starting at @var{addr} and extending for @var{length}
38694 <memory type="ram" start="@var{addr}" length="@var{length}"/>
38699 A region of read-only memory:
38702 <memory type="rom" start="@var{addr}" length="@var{length}"/>
38707 A region of flash memory, with erasure blocks @var{blocksize}
38711 <memory type="flash" start="@var{addr}" length="@var{length}">
38712 <property name="blocksize">@var{blocksize}</property>
38718 Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
38719 by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
38720 packets to write to addresses in such ranges.
38722 The formal DTD for memory map format is given below:
38725 <!-- ................................................... -->
38726 <!-- Memory Map XML DTD ................................ -->
38727 <!-- File: memory-map.dtd .............................. -->
38728 <!-- .................................... .............. -->
38729 <!-- memory-map.dtd -->
38730 <!-- memory-map: Root element with versioning -->
38731 <!ELEMENT memory-map (memory | property)>
38732 <!ATTLIST memory-map version CDATA #FIXED "1.0.0">
38733 <!ELEMENT memory (property)>
38734 <!-- memory: Specifies a memory region,
38735 and its type, or device. -->
38736 <!ATTLIST memory type CDATA #REQUIRED
38737 start CDATA #REQUIRED
38738 length CDATA #REQUIRED
38739 device CDATA #IMPLIED>
38740 <!-- property: Generic attribute tag -->
38741 <!ELEMENT property (#PCDATA | property)*>
38742 <!ATTLIST property name CDATA #REQUIRED>
38745 @node Thread List Format
38746 @section Thread List Format
38747 @cindex thread list format
38749 To efficiently update the list of threads and their attributes,
38750 @value{GDBN} issues the @samp{qXfer:threads:read} packet
38751 (@pxref{qXfer threads read}) and obtains the XML document with
38752 the following structure:
38755 <?xml version="1.0"?>
38757 <thread id="id" core="0">
38758 ... description ...
38763 Each @samp{thread} element must have the @samp{id} attribute that
38764 identifies the thread (@pxref{thread-id syntax}). The
38765 @samp{core} attribute, if present, specifies which processor core
38766 the thread was last executing on. The content of the of @samp{thread}
38767 element is interpreted as human-readable auxilliary information.
38769 @node Traceframe Info Format
38770 @section Traceframe Info Format
38771 @cindex traceframe info format
38773 To be able to know which objects in the inferior can be examined when
38774 inspecting a tracepoint hit, @value{GDBN} needs to obtain the list of
38775 memory ranges, registers and trace state variables that have been
38776 collected in a traceframe.
38778 This list is obtained using the @samp{qXfer:traceframe-info:read}
38779 (@pxref{qXfer traceframe info read}) packet and is an XML document.
38781 @value{GDBN} must be linked with the Expat library to support XML
38782 traceframe info discovery. @xref{Expat}.
38784 The top-level structure of the document is shown below:
38787 <?xml version="1.0"?>
38788 <!DOCTYPE traceframe-info
38789 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
38790 "http://sourceware.org/gdb/gdb-traceframe-info.dtd">
38796 Each traceframe block can be either:
38801 A region of collected memory starting at @var{addr} and extending for
38802 @var{length} bytes from there:
38805 <memory start="@var{addr}" length="@var{length}"/>
38810 The formal DTD for the traceframe info format is given below:
38813 <!ELEMENT traceframe-info (memory)* >
38814 <!ATTLIST traceframe-info version CDATA #FIXED "1.0">
38816 <!ELEMENT memory EMPTY>
38817 <!ATTLIST memory start CDATA #REQUIRED
38818 length CDATA #REQUIRED>
38821 @include agentexpr.texi
38823 @node Target Descriptions
38824 @appendix Target Descriptions
38825 @cindex target descriptions
38827 One of the challenges of using @value{GDBN} to debug embedded systems
38828 is that there are so many minor variants of each processor
38829 architecture in use. It is common practice for vendors to start with
38830 a standard processor core --- ARM, PowerPC, or MIPS, for example ---
38831 and then make changes to adapt it to a particular market niche. Some
38832 architectures have hundreds of variants, available from dozens of
38833 vendors. This leads to a number of problems:
38837 With so many different customized processors, it is difficult for
38838 the @value{GDBN} maintainers to keep up with the changes.
38840 Since individual variants may have short lifetimes or limited
38841 audiences, it may not be worthwhile to carry information about every
38842 variant in the @value{GDBN} source tree.
38844 When @value{GDBN} does support the architecture of the embedded system
38845 at hand, the task of finding the correct architecture name to give the
38846 @command{set architecture} command can be error-prone.
38849 To address these problems, the @value{GDBN} remote protocol allows a
38850 target system to not only identify itself to @value{GDBN}, but to
38851 actually describe its own features. This lets @value{GDBN} support
38852 processor variants it has never seen before --- to the extent that the
38853 descriptions are accurate, and that @value{GDBN} understands them.
38855 @value{GDBN} must be linked with the Expat library to support XML
38856 target descriptions. @xref{Expat}.
38859 * Retrieving Descriptions:: How descriptions are fetched from a target.
38860 * Target Description Format:: The contents of a target description.
38861 * Predefined Target Types:: Standard types available for target
38863 * Standard Target Features:: Features @value{GDBN} knows about.
38866 @node Retrieving Descriptions
38867 @section Retrieving Descriptions
38869 Target descriptions can be read from the target automatically, or
38870 specified by the user manually. The default behavior is to read the
38871 description from the target. @value{GDBN} retrieves it via the remote
38872 protocol using @samp{qXfer} requests (@pxref{General Query Packets,
38873 qXfer}). The @var{annex} in the @samp{qXfer} packet will be
38874 @samp{target.xml}. The contents of the @samp{target.xml} annex are an
38875 XML document, of the form described in @ref{Target Description
38878 Alternatively, you can specify a file to read for the target description.
38879 If a file is set, the target will not be queried. The commands to
38880 specify a file are:
38883 @cindex set tdesc filename
38884 @item set tdesc filename @var{path}
38885 Read the target description from @var{path}.
38887 @cindex unset tdesc filename
38888 @item unset tdesc filename
38889 Do not read the XML target description from a file. @value{GDBN}
38890 will use the description supplied by the current target.
38892 @cindex show tdesc filename
38893 @item show tdesc filename
38894 Show the filename to read for a target description, if any.
38898 @node Target Description Format
38899 @section Target Description Format
38900 @cindex target descriptions, XML format
38902 A target description annex is an @uref{http://www.w3.org/XML/, XML}
38903 document which complies with the Document Type Definition provided in
38904 the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
38905 means you can use generally available tools like @command{xmllint} to
38906 check that your feature descriptions are well-formed and valid.
38907 However, to help people unfamiliar with XML write descriptions for
38908 their targets, we also describe the grammar here.
38910 Target descriptions can identify the architecture of the remote target
38911 and (for some architectures) provide information about custom register
38912 sets. They can also identify the OS ABI of the remote target.
38913 @value{GDBN} can use this information to autoconfigure for your
38914 target, or to warn you if you connect to an unsupported target.
38916 Here is a simple target description:
38919 <target version="1.0">
38920 <architecture>i386:x86-64</architecture>
38925 This minimal description only says that the target uses
38926 the x86-64 architecture.
38928 A target description has the following overall form, with [ ] marking
38929 optional elements and @dots{} marking repeatable elements. The elements
38930 are explained further below.
38933 <?xml version="1.0"?>
38934 <!DOCTYPE target SYSTEM "gdb-target.dtd">
38935 <target version="1.0">
38936 @r{[}@var{architecture}@r{]}
38937 @r{[}@var{osabi}@r{]}
38938 @r{[}@var{compatible}@r{]}
38939 @r{[}@var{feature}@dots{}@r{]}
38944 The description is generally insensitive to whitespace and line
38945 breaks, under the usual common-sense rules. The XML version
38946 declaration and document type declaration can generally be omitted
38947 (@value{GDBN} does not require them), but specifying them may be
38948 useful for XML validation tools. The @samp{version} attribute for
38949 @samp{<target>} may also be omitted, but we recommend
38950 including it; if future versions of @value{GDBN} use an incompatible
38951 revision of @file{gdb-target.dtd}, they will detect and report
38952 the version mismatch.
38954 @subsection Inclusion
38955 @cindex target descriptions, inclusion
38958 @cindex <xi:include>
38961 It can sometimes be valuable to split a target description up into
38962 several different annexes, either for organizational purposes, or to
38963 share files between different possible target descriptions. You can
38964 divide a description into multiple files by replacing any element of
38965 the target description with an inclusion directive of the form:
38968 <xi:include href="@var{document}"/>
38972 When @value{GDBN} encounters an element of this form, it will retrieve
38973 the named XML @var{document}, and replace the inclusion directive with
38974 the contents of that document. If the current description was read
38975 using @samp{qXfer}, then so will be the included document;
38976 @var{document} will be interpreted as the name of an annex. If the
38977 current description was read from a file, @value{GDBN} will look for
38978 @var{document} as a file in the same directory where it found the
38979 original description.
38981 @subsection Architecture
38982 @cindex <architecture>
38984 An @samp{<architecture>} element has this form:
38987 <architecture>@var{arch}</architecture>
38990 @var{arch} is one of the architectures from the set accepted by
38991 @code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).
38994 @cindex @code{<osabi>}
38996 This optional field was introduced in @value{GDBN} version 7.0.
38997 Previous versions of @value{GDBN} ignore it.
38999 An @samp{<osabi>} element has this form:
39002 <osabi>@var{abi-name}</osabi>
39005 @var{abi-name} is an OS ABI name from the same selection accepted by
39006 @w{@code{set osabi}} (@pxref{ABI, ,Configuring the Current ABI}).
39008 @subsection Compatible Architecture
39009 @cindex @code{<compatible>}
39011 This optional field was introduced in @value{GDBN} version 7.0.
39012 Previous versions of @value{GDBN} ignore it.
39014 A @samp{<compatible>} element has this form:
39017 <compatible>@var{arch}</compatible>
39020 @var{arch} is one of the architectures from the set accepted by
39021 @code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).
39023 A @samp{<compatible>} element is used to specify that the target
39024 is able to run binaries in some other than the main target architecture
39025 given by the @samp{<architecture>} element. For example, on the
39026 Cell Broadband Engine, the main architecture is @code{powerpc:common}
39027 or @code{powerpc:common64}, but the system is able to run binaries
39028 in the @code{spu} architecture as well. The way to describe this
39029 capability with @samp{<compatible>} is as follows:
39032 <architecture>powerpc:common</architecture>
39033 <compatible>spu</compatible>
39036 @subsection Features
39039 Each @samp{<feature>} describes some logical portion of the target
39040 system. Features are currently used to describe available CPU
39041 registers and the types of their contents. A @samp{<feature>} element
39045 <feature name="@var{name}">
39046 @r{[}@var{type}@dots{}@r{]}
39052 Each feature's name should be unique within the description. The name
39053 of a feature does not matter unless @value{GDBN} has some special
39054 knowledge of the contents of that feature; if it does, the feature
39055 should have its standard name. @xref{Standard Target Features}.
39059 Any register's value is a collection of bits which @value{GDBN} must
39060 interpret. The default interpretation is a two's complement integer,
39061 but other types can be requested by name in the register description.
39062 Some predefined types are provided by @value{GDBN} (@pxref{Predefined
39063 Target Types}), and the description can define additional composite types.
39065 Each type element must have an @samp{id} attribute, which gives
39066 a unique (within the containing @samp{<feature>}) name to the type.
39067 Types must be defined before they are used.
39070 Some targets offer vector registers, which can be treated as arrays
39071 of scalar elements. These types are written as @samp{<vector>} elements,
39072 specifying the array element type, @var{type}, and the number of elements,
39076 <vector id="@var{id}" type="@var{type}" count="@var{count}"/>
39080 If a register's value is usefully viewed in multiple ways, define it
39081 with a union type containing the useful representations. The
39082 @samp{<union>} element contains one or more @samp{<field>} elements,
39083 each of which has a @var{name} and a @var{type}:
39086 <union id="@var{id}">
39087 <field name="@var{name}" type="@var{type}"/>
39093 If a register's value is composed from several separate values, define
39094 it with a structure type. There are two forms of the @samp{<struct>}
39095 element; a @samp{<struct>} element must either contain only bitfields
39096 or contain no bitfields. If the structure contains only bitfields,
39097 its total size in bytes must be specified, each bitfield must have an
39098 explicit start and end, and bitfields are automatically assigned an
39099 integer type. The field's @var{start} should be less than or
39100 equal to its @var{end}, and zero represents the least significant bit.
39103 <struct id="@var{id}" size="@var{size}">
39104 <field name="@var{name}" start="@var{start}" end="@var{end}"/>
39109 If the structure contains no bitfields, then each field has an
39110 explicit type, and no implicit padding is added.
39113 <struct id="@var{id}">
39114 <field name="@var{name}" type="@var{type}"/>
39120 If a register's value is a series of single-bit flags, define it with
39121 a flags type. The @samp{<flags>} element has an explicit @var{size}
39122 and contains one or more @samp{<field>} elements. Each field has a
39123 @var{name}, a @var{start}, and an @var{end}. Only single-bit flags
39127 <flags id="@var{id}" size="@var{size}">
39128 <field name="@var{name}" start="@var{start}" end="@var{end}"/>
39133 @subsection Registers
39136 Each register is represented as an element with this form:
39139 <reg name="@var{name}"
39140 bitsize="@var{size}"
39141 @r{[}regnum="@var{num}"@r{]}
39142 @r{[}save-restore="@var{save-restore}"@r{]}
39143 @r{[}type="@var{type}"@r{]}
39144 @r{[}group="@var{group}"@r{]}/>
39148 The components are as follows:
39153 The register's name; it must be unique within the target description.
39156 The register's size, in bits.
39159 The register's number. If omitted, a register's number is one greater
39160 than that of the previous register (either in the current feature or in
39161 a preceding feature); the first register in the target description
39162 defaults to zero. This register number is used to read or write
39163 the register; e.g.@: it is used in the remote @code{p} and @code{P}
39164 packets, and registers appear in the @code{g} and @code{G} packets
39165 in order of increasing register number.
39168 Whether the register should be preserved across inferior function
39169 calls; this must be either @code{yes} or @code{no}. The default is
39170 @code{yes}, which is appropriate for most registers except for
39171 some system control registers; this is not related to the target's
39175 The type of the register. @var{type} may be a predefined type, a type
39176 defined in the current feature, or one of the special types @code{int}
39177 and @code{float}. @code{int} is an integer type of the correct size
39178 for @var{bitsize}, and @code{float} is a floating point type (in the
39179 architecture's normal floating point format) of the correct size for
39180 @var{bitsize}. The default is @code{int}.
39183 The register group to which this register belongs. @var{group} must
39184 be either @code{general}, @code{float}, or @code{vector}. If no
39185 @var{group} is specified, @value{GDBN} will not display the register
39186 in @code{info registers}.
39190 @node Predefined Target Types
39191 @section Predefined Target Types
39192 @cindex target descriptions, predefined types
39194 Type definitions in the self-description can build up composite types
39195 from basic building blocks, but can not define fundamental types. Instead,
39196 standard identifiers are provided by @value{GDBN} for the fundamental
39197 types. The currently supported types are:
39206 Signed integer types holding the specified number of bits.
39213 Unsigned integer types holding the specified number of bits.
39217 Pointers to unspecified code and data. The program counter and
39218 any dedicated return address register may be marked as code
39219 pointers; printing a code pointer converts it into a symbolic
39220 address. The stack pointer and any dedicated address registers
39221 may be marked as data pointers.
39224 Single precision IEEE floating point.
39227 Double precision IEEE floating point.
39230 The 12-byte extended precision format used by ARM FPA registers.
39233 The 10-byte extended precision format used by x87 registers.
39236 32bit @sc{eflags} register used by x86.
39239 32bit @sc{mxcsr} register used by x86.
39243 @node Standard Target Features
39244 @section Standard Target Features
39245 @cindex target descriptions, standard features
39247 A target description must contain either no registers or all the
39248 target's registers. If the description contains no registers, then
39249 @value{GDBN} will assume a default register layout, selected based on
39250 the architecture. If the description contains any registers, the
39251 default layout will not be used; the standard registers must be
39252 described in the target description, in such a way that @value{GDBN}
39253 can recognize them.
39255 This is accomplished by giving specific names to feature elements
39256 which contain standard registers. @value{GDBN} will look for features
39257 with those names and verify that they contain the expected registers;
39258 if any known feature is missing required registers, or if any required
39259 feature is missing, @value{GDBN} will reject the target
39260 description. You can add additional registers to any of the
39261 standard features --- @value{GDBN} will display them just as if
39262 they were added to an unrecognized feature.
39264 This section lists the known features and their expected contents.
39265 Sample XML documents for these features are included in the
39266 @value{GDBN} source tree, in the directory @file{gdb/features}.
39268 Names recognized by @value{GDBN} should include the name of the
39269 company or organization which selected the name, and the overall
39270 architecture to which the feature applies; so e.g.@: the feature
39271 containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
39273 The names of registers are not case sensitive for the purpose
39274 of recognizing standard features, but @value{GDBN} will only display
39275 registers using the capitalization used in the description.
39282 * PowerPC Features::
39288 @subsection ARM Features
39289 @cindex target descriptions, ARM features
39291 The @samp{org.gnu.gdb.arm.core} feature is required for non-M-profile
39293 It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
39294 @samp{lr}, @samp{pc}, and @samp{cpsr}.
39296 For M-profile targets (e.g. Cortex-M3), the @samp{org.gnu.gdb.arm.core}
39297 feature is replaced by @samp{org.gnu.gdb.arm.m-profile}. It should contain
39298 registers @samp{r0} through @samp{r13}, @samp{sp}, @samp{lr}, @samp{pc},
39301 The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
39302 should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
39304 The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
39305 it should contain at least registers @samp{wR0} through @samp{wR15} and
39306 @samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
39307 @samp{wCSSF}, and @samp{wCASF} registers are optional.
39309 The @samp{org.gnu.gdb.arm.vfp} feature is optional. If present, it
39310 should contain at least registers @samp{d0} through @samp{d15}. If
39311 they are present, @samp{d16} through @samp{d31} should also be included.
39312 @value{GDBN} will synthesize the single-precision registers from
39313 halves of the double-precision registers.
39315 The @samp{org.gnu.gdb.arm.neon} feature is optional. It does not
39316 need to contain registers; it instructs @value{GDBN} to display the
39317 VFP double-precision registers as vectors and to synthesize the
39318 quad-precision registers from pairs of double-precision registers.
39319 If this feature is present, @samp{org.gnu.gdb.arm.vfp} must also
39320 be present and include 32 double-precision registers.
39322 @node i386 Features
39323 @subsection i386 Features
39324 @cindex target descriptions, i386 features
39326 The @samp{org.gnu.gdb.i386.core} feature is required for i386/amd64
39327 targets. It should describe the following registers:
39331 @samp{eax} through @samp{edi} plus @samp{eip} for i386
39333 @samp{rax} through @samp{r15} plus @samp{rip} for amd64
39335 @samp{eflags}, @samp{cs}, @samp{ss}, @samp{ds}, @samp{es},
39336 @samp{fs}, @samp{gs}
39338 @samp{st0} through @samp{st7}
39340 @samp{fctrl}, @samp{fstat}, @samp{ftag}, @samp{fiseg}, @samp{fioff},
39341 @samp{foseg}, @samp{fooff} and @samp{fop}
39344 The register sets may be different, depending on the target.
39346 The @samp{org.gnu.gdb.i386.sse} feature is optional. It should
39347 describe registers:
39351 @samp{xmm0} through @samp{xmm7} for i386
39353 @samp{xmm0} through @samp{xmm15} for amd64
39358 The @samp{org.gnu.gdb.i386.avx} feature is optional and requires the
39359 @samp{org.gnu.gdb.i386.sse} feature. It should
39360 describe the upper 128 bits of @sc{ymm} registers:
39364 @samp{ymm0h} through @samp{ymm7h} for i386
39366 @samp{ymm0h} through @samp{ymm15h} for amd64
39369 The @samp{org.gnu.gdb.i386.linux} feature is optional. It should
39370 describe a single register, @samp{orig_eax}.
39372 @node MIPS Features
39373 @subsection MIPS Features
39374 @cindex target descriptions, MIPS features
39376 The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
39377 It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
39378 @samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
39381 The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
39382 contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
39383 registers. They may be 32-bit or 64-bit depending on the target.
39385 The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
39386 it may be optional in a future version of @value{GDBN}. It should
39387 contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
39388 @samp{fir}. They may be 32-bit or 64-bit depending on the target.
39390 The @samp{org.gnu.gdb.mips.dsp} feature is optional. It should
39391 contain registers @samp{hi1} through @samp{hi3}, @samp{lo1} through
39392 @samp{lo3}, and @samp{dspctl}. The @samp{dspctl} register should
39393 be 32-bit and the rest may be 32-bit or 64-bit depending on the target.
39395 The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
39396 contain a single register, @samp{restart}, which is used by the
39397 Linux kernel to control restartable syscalls.
39399 @node M68K Features
39400 @subsection M68K Features
39401 @cindex target descriptions, M68K features
39404 @item @samp{org.gnu.gdb.m68k.core}
39405 @itemx @samp{org.gnu.gdb.coldfire.core}
39406 @itemx @samp{org.gnu.gdb.fido.core}
39407 One of those features must be always present.
39408 The feature that is present determines which flavor of m68k is
39409 used. The feature that is present should contain registers
39410 @samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
39411 @samp{sp}, @samp{ps} and @samp{pc}.
39413 @item @samp{org.gnu.gdb.coldfire.fp}
39414 This feature is optional. If present, it should contain registers
39415 @samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
39419 @node PowerPC Features
39420 @subsection PowerPC Features
39421 @cindex target descriptions, PowerPC features
39423 The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
39424 targets. It should contain registers @samp{r0} through @samp{r31},
39425 @samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
39426 @samp{xer}. They may be 32-bit or 64-bit depending on the target.
39428 The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
39429 contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
39431 The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
39432 contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
39435 The @samp{org.gnu.gdb.power.vsx} feature is optional. It should
39436 contain registers @samp{vs0h} through @samp{vs31h}. @value{GDBN}
39437 will combine these registers with the floating point registers
39438 (@samp{f0} through @samp{f31}) and the altivec registers (@samp{vr0}
39439 through @samp{vr31}) to present the 128-bit wide registers @samp{vs0}
39440 through @samp{vs63}, the set of vector registers for POWER7.
39442 The @samp{org.gnu.gdb.power.spe} feature is optional. It should
39443 contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
39444 @samp{spefscr}. SPE targets should provide 32-bit registers in
39445 @samp{org.gnu.gdb.power.core} and provide the upper halves in
39446 @samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
39447 these to present registers @samp{ev0} through @samp{ev31} to the
39450 @node TIC6x Features
39451 @subsection TMS320C6x Features
39452 @cindex target descriptions, TIC6x features
39453 @cindex target descriptions, TMS320C6x features
39454 The @samp{org.gnu.gdb.tic6x.core} feature is required for TMS320C6x
39455 targets. It should contain registers @samp{A0} through @samp{A15},
39456 registers @samp{B0} through @samp{B15}, @samp{CSR} and @samp{PC}.
39458 The @samp{org.gnu.gdb.tic6x.gp} feature is optional. It should
39459 contain registers @samp{A16} through @samp{A31} and @samp{B16}
39460 through @samp{B31}.
39462 The @samp{org.gnu.gdb.tic6x.c6xp} feature is optional. It should
39463 contain registers @samp{TSR}, @samp{ILC} and @samp{RILC}.
39465 @node Operating System Information
39466 @appendix Operating System Information
39467 @cindex operating system information
39473 Users of @value{GDBN} often wish to obtain information about the state of
39474 the operating system running on the target---for example the list of
39475 processes, or the list of open files. This section describes the
39476 mechanism that makes it possible. This mechanism is similar to the
39477 target features mechanism (@pxref{Target Descriptions}), but focuses
39478 on a different aspect of target.
39480 Operating system information is retrived from the target via the
39481 remote protocol, using @samp{qXfer} requests (@pxref{qXfer osdata
39482 read}). The object name in the request should be @samp{osdata}, and
39483 the @var{annex} identifies the data to be fetched.
39486 @appendixsection Process list
39487 @cindex operating system information, process list
39489 When requesting the process list, the @var{annex} field in the
39490 @samp{qXfer} request should be @samp{processes}. The returned data is
39491 an XML document. The formal syntax of this document is defined in
39492 @file{gdb/features/osdata.dtd}.
39494 An example document is:
39497 <?xml version="1.0"?>
39498 <!DOCTYPE target SYSTEM "osdata.dtd">
39499 <osdata type="processes">
39501 <column name="pid">1</column>
39502 <column name="user">root</column>
39503 <column name="command">/sbin/init</column>
39504 <column name="cores">1,2,3</column>
39509 Each item should include a column whose name is @samp{pid}. The value
39510 of that column should identify the process on the target. The
39511 @samp{user} and @samp{command} columns are optional, and will be
39512 displayed by @value{GDBN}. The @samp{cores} column, if present,
39513 should contain a comma-separated list of cores that this process
39514 is running on. Target may provide additional columns,
39515 which @value{GDBN} currently ignores.
39517 @node Trace File Format
39518 @appendix Trace File Format
39519 @cindex trace file format
39521 The trace file comes in three parts: a header, a textual description
39522 section, and a trace frame section with binary data.
39524 The header has the form @code{\x7fTRACE0\n}. The first byte is
39525 @code{0x7f} so as to indicate that the file contains binary data,
39526 while the @code{0} is a version number that may have different values
39529 The description section consists of multiple lines of @sc{ascii} text
39530 separated by newline characters (@code{0xa}). The lines may include a
39531 variety of optional descriptive or context-setting information, such
39532 as tracepoint definitions or register set size. @value{GDBN} will
39533 ignore any line that it does not recognize. An empty line marks the end
39536 @c FIXME add some specific types of data
39538 The trace frame section consists of a number of consecutive frames.
39539 Each frame begins with a two-byte tracepoint number, followed by a
39540 four-byte size giving the amount of data in the frame. The data in
39541 the frame consists of a number of blocks, each introduced by a
39542 character indicating its type (at least register, memory, and trace
39543 state variable). The data in this section is raw binary, not a
39544 hexadecimal or other encoding; its endianness matches the target's
39547 @c FIXME bi-arch may require endianness/arch info in description section
39550 @item R @var{bytes}
39551 Register block. The number and ordering of bytes matches that of a
39552 @code{g} packet in the remote protocol. Note that these are the
39553 actual bytes, in target order and @value{GDBN} register order, not a
39554 hexadecimal encoding.
39556 @item M @var{address} @var{length} @var{bytes}...
39557 Memory block. This is a contiguous block of memory, at the 8-byte
39558 address @var{address}, with a 2-byte length @var{length}, followed by
39559 @var{length} bytes.
39561 @item V @var{number} @var{value}
39562 Trace state variable block. This records the 8-byte signed value
39563 @var{value} of trace state variable numbered @var{number}.
39567 Future enhancements of the trace file format may include additional types
39570 @node Index Section Format
39571 @appendix @code{.gdb_index} section format
39572 @cindex .gdb_index section format
39573 @cindex index section format
39575 This section documents the index section that is created by @code{save
39576 gdb-index} (@pxref{Index Files}). The index section is
39577 DWARF-specific; some knowledge of DWARF is assumed in this
39580 The mapped index file format is designed to be directly
39581 @code{mmap}able on any architecture. In most cases, a datum is
39582 represented using a little-endian 32-bit integer value, called an
39583 @code{offset_type}. Big endian machines must byte-swap the values
39584 before using them. Exceptions to this rule are noted. The data is
39585 laid out such that alignment is always respected.
39587 A mapped index consists of several areas, laid out in order.
39591 The file header. This is a sequence of values, of @code{offset_type}
39592 unless otherwise noted:
39596 The version number, currently 6. Versions 1, 2 and 3 are obsolete.
39597 Version 4 uses a different hashing function from versions 5 and 6.
39598 Version 6 includes symbols for inlined functions, whereas versions
39599 4 and 5 do not. @value{GDBN} will only read version 4 and 5 indices
39600 if the @code{--use-deprecated-index-sections} option is used.
39603 The offset, from the start of the file, of the CU list.
39606 The offset, from the start of the file, of the types CU list. Note
39607 that this area can be empty, in which case this offset will be equal
39608 to the next offset.
39611 The offset, from the start of the file, of the address area.
39614 The offset, from the start of the file, of the symbol table.
39617 The offset, from the start of the file, of the constant pool.
39621 The CU list. This is a sequence of pairs of 64-bit little-endian
39622 values, sorted by the CU offset. The first element in each pair is
39623 the offset of a CU in the @code{.debug_info} section. The second
39624 element in each pair is the length of that CU. References to a CU
39625 elsewhere in the map are done using a CU index, which is just the
39626 0-based index into this table. Note that if there are type CUs, then
39627 conceptually CUs and type CUs form a single list for the purposes of
39631 The types CU list. This is a sequence of triplets of 64-bit
39632 little-endian values. In a triplet, the first value is the CU offset,
39633 the second value is the type offset in the CU, and the third value is
39634 the type signature. The types CU list is not sorted.
39637 The address area. The address area consists of a sequence of address
39638 entries. Each address entry has three elements:
39642 The low address. This is a 64-bit little-endian value.
39645 The high address. This is a 64-bit little-endian value. Like
39646 @code{DW_AT_high_pc}, the value is one byte beyond the end.
39649 The CU index. This is an @code{offset_type} value.
39653 The symbol table. This is an open-addressed hash table. The size of
39654 the hash table is always a power of 2.
39656 Each slot in the hash table consists of a pair of @code{offset_type}
39657 values. The first value is the offset of the symbol's name in the
39658 constant pool. The second value is the offset of the CU vector in the
39661 If both values are 0, then this slot in the hash table is empty. This
39662 is ok because while 0 is a valid constant pool index, it cannot be a
39663 valid index for both a string and a CU vector.
39665 The hash value for a table entry is computed by applying an
39666 iterative hash function to the symbol's name. Starting with an
39667 initial value of @code{r = 0}, each (unsigned) character @samp{c} in
39668 the string is incorporated into the hash using the formula depending on the
39673 The formula is @code{r = r * 67 + c - 113}.
39675 @item Versions 5 and 6
39676 The formula is @code{r = r * 67 + tolower (c) - 113}.
39679 The terminating @samp{\0} is not incorporated into the hash.
39681 The step size used in the hash table is computed via
39682 @code{((hash * 17) & (size - 1)) | 1}, where @samp{hash} is the hash
39683 value, and @samp{size} is the size of the hash table. The step size
39684 is used to find the next candidate slot when handling a hash
39687 The names of C@t{++} symbols in the hash table are canonicalized. We
39688 don't currently have a simple description of the canonicalization
39689 algorithm; if you intend to create new index sections, you must read
39693 The constant pool. This is simply a bunch of bytes. It is organized
39694 so that alignment is correct: CU vectors are stored first, followed by
39697 A CU vector in the constant pool is a sequence of @code{offset_type}
39698 values. The first value is the number of CU indices in the vector.
39699 Each subsequent value is the index of a CU in the CU list. This
39700 element in the hash table is used to indicate which CUs define the
39703 A string in the constant pool is zero-terminated.
39708 @node GNU Free Documentation License
39709 @appendix GNU Free Documentation License
39718 % I think something like @colophon should be in texinfo. In the
39720 \long\def\colophon{\hbox to0pt{}\vfill
39721 \centerline{The body of this manual is set in}
39722 \centerline{\fontname\tenrm,}
39723 \centerline{with headings in {\bf\fontname\tenbf}}
39724 \centerline{and examples in {\tt\fontname\tentt}.}
39725 \centerline{{\it\fontname\tenit\/},}
39726 \centerline{{\bf\fontname\tenbf}, and}
39727 \centerline{{\sl\fontname\tensl\/}}
39728 \centerline{are used for emphasis.}\vfill}