1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
40 #include "arch-utils.h"
43 #include "mips-tdep.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
50 #include "sim-regno.h"
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
60 /* The sizes of floating point registers. */
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
69 static const char *mips_abi_string;
71 static const char *mips_abi_strings[] = {
82 struct frame_extra_info
84 mips_extra_func_info_t proc_desc;
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
96 static const char *size_enums[] = {
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
120 static int mips_debug = 0;
122 /* MIPS specific per-architecture information */
125 /* from the elf header */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int default_mask_address_p;
138 /* Is the target using 64-bit raw integer registers but only
139 storing a left-aligned 32-bit value in each? */
140 int mips64_transfers_32bit_regs_p;
141 /* Indexes for various registers. IRIX and embedded have
142 different values. This contains the "public" fields. Don't
143 add any that do not need to be public. */
144 const struct mips_regnum *regnum;
145 /* Register names table for the current register set. */
146 const char **mips_processor_reg_names;
149 const struct mips_regnum *
150 mips_regnum (struct gdbarch *gdbarch)
152 return gdbarch_tdep (gdbarch)->regnum;
156 mips_fpa0_regnum (struct gdbarch *gdbarch)
158 return mips_regnum (gdbarch)->fp0 + 12;
161 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
162 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
164 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
166 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
168 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
170 /* Return the currently configured (or set) saved register size. */
172 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
174 static const char *mips_saved_regsize_string = size_auto;
176 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
178 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
179 functions to test, set, or clear bit 0 of addresses. */
182 is_mips16_addr (CORE_ADDR addr)
188 make_mips16_addr (CORE_ADDR addr)
194 unmake_mips16_addr (CORE_ADDR addr)
196 return ((addr) & ~1);
199 /* Return the contents of register REGNUM as a signed integer. */
202 read_signed_register (int regnum)
204 void *buf = alloca (register_size (current_gdbarch, regnum));
205 deprecated_read_register_gen (regnum, buf);
206 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
210 read_signed_register_pid (int regnum, ptid_t ptid)
215 if (ptid_equal (ptid, inferior_ptid))
216 return read_signed_register (regnum);
218 save_ptid = inferior_ptid;
220 inferior_ptid = ptid;
222 retval = read_signed_register (regnum);
224 inferior_ptid = save_ptid;
229 /* Return the MIPS ABI associated with GDBARCH. */
231 mips_abi (struct gdbarch *gdbarch)
233 return gdbarch_tdep (gdbarch)->mips_abi;
237 mips_regsize (struct gdbarch *gdbarch)
239 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
240 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
244 mips_saved_regsize (void)
246 if (mips_saved_regsize_string == size_auto)
247 return MIPS_DEFAULT_SAVED_REGSIZE;
248 else if (mips_saved_regsize_string == size_64)
250 else /* if (mips_saved_regsize_string == size_32) */
254 /* Functions for setting and testing a bit in a minimal symbol that
255 marks it as 16-bit function. The MSB of the minimal symbol's
256 "info" field is used for this purpose.
258 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
259 i.e. refers to a 16-bit function, and sets a "special" bit in a
260 minimal symbol to mark it as a 16-bit function
262 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
265 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
267 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
269 MSYMBOL_INFO (msym) = (char *)
270 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
271 SYMBOL_VALUE_ADDRESS (msym) |= 1;
276 msymbol_is_special (struct minimal_symbol *msym)
278 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
281 /* XFER a value from the big/little/left end of the register.
282 Depending on the size of the value it might occupy the entire
283 register or just part of it. Make an allowance for this, aligning
284 things accordingly. */
287 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
288 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
291 bfd_byte reg[MAX_REGISTER_SIZE];
293 gdb_assert (reg_num >= NUM_REGS);
294 /* Need to transfer the left or right part of the register, based on
295 the targets byte order. */
299 reg_offset = register_size (current_gdbarch, reg_num) - length;
301 case BFD_ENDIAN_LITTLE:
304 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
308 internal_error (__FILE__, __LINE__, "bad switch");
311 fprintf_unfiltered (gdb_stderr,
312 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
313 reg_num, reg_offset, buf_offset, length);
314 if (mips_debug && out != NULL)
317 fprintf_unfiltered (gdb_stdlog, "out ");
318 for (i = 0; i < length; i++)
319 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
322 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
324 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
325 if (mips_debug && in != NULL)
328 fprintf_unfiltered (gdb_stdlog, "in ");
329 for (i = 0; i < length; i++)
330 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
333 fprintf_unfiltered (gdb_stdlog, "\n");
336 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
337 compatiblity mode. A return value of 1 means that we have
338 physical 64-bit registers, but should treat them as 32-bit registers. */
341 mips2_fp_compat (void)
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
345 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
354 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
361 /* Indicate that the ABI makes use of double-precision registers
362 provided by the FPU (rather than combining pairs of registers to
363 form double-precision values). See also MIPS_FPU_TYPE. */
364 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
366 /* The amount of space reserved on the stack for registers. This is
367 different to MIPS_SAVED_REGSIZE as it determines the alignment of
368 data allocated after the registers have run out. */
370 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
372 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
374 static const char *mips_stack_argsize_string = size_auto;
377 mips_stack_argsize (void)
379 if (mips_stack_argsize_string == size_auto)
380 return MIPS_DEFAULT_STACK_ARGSIZE;
381 else if (mips_stack_argsize_string == size_64)
383 else /* if (mips_stack_argsize_string == size_32) */
387 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
389 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
391 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
392 struct frame_info *, int);
394 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
396 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
398 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
400 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
401 struct frame_info *next_frame,
404 static CORE_ADDR after_prologue (CORE_ADDR pc,
405 mips_extra_func_info_t proc_desc);
407 static struct type *mips_float_register_type (void);
408 static struct type *mips_double_register_type (void);
410 /* The list of available "set mips " and "show mips " commands */
412 static struct cmd_list_element *setmipscmdlist = NULL;
413 static struct cmd_list_element *showmipscmdlist = NULL;
415 /* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the followign tables. */
419 enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
423 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
424 "sr", "lo", "hi", "bad", "cause","pc",
425 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
426 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
427 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
428 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
429 "fsr", "fir", ""/*"fp"*/, "",
430 "", "", "", "", "", "", "", "",
431 "", "", "", "", "", "", "", "",
434 /* Names of IDT R3041 registers. */
436 static const char *mips_r3041_reg_names[] = {
437 "sr", "lo", "hi", "bad", "cause","pc",
438 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
439 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
440 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
441 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
442 "fsr", "fir", "",/*"fp"*/ "",
443 "", "", "bus", "ccfg", "", "", "", "",
444 "", "", "port", "cmp", "", "", "epc", "prid",
447 /* Names of tx39 registers. */
449 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
450 "sr", "lo", "hi", "bad", "cause","pc",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 "", "", "", "", "", "", "", "",
456 "", "", "", "", "", "", "", "",
457 "", "", "config", "cache", "debug", "depc", "epc", ""
460 /* Names of IRIX registers. */
461 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
470 /* Return the name of the register corresponding to REGNO. */
472 mips_register_name (int regno)
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 /* GPR names for all ABIs other than n32/n64. */
476 static char *mips_gpr_names[] = {
477 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
478 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
479 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
480 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
483 /* GPR names for n32 and n64 ABIs. */
484 static char *mips_n32_n64_gpr_names[] = {
485 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
486 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
487 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
488 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
491 enum mips_abi abi = mips_abi (current_gdbarch);
493 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
494 don't make the raw register names visible. */
495 int rawnum = regno % NUM_REGS;
496 if (regno < NUM_REGS)
499 /* The MIPS integer registers are always mapped from 0 to 31. The
500 names of the registers (which reflects the conventions regarding
501 register use) vary depending on the ABI. */
502 if (0 <= rawnum && rawnum < 32)
504 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
505 return mips_n32_n64_gpr_names[rawnum];
507 return mips_gpr_names[rawnum];
509 else if (32 <= rawnum && rawnum < NUM_REGS)
511 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
512 return tdep->mips_processor_reg_names[rawnum - 32];
515 internal_error (__FILE__, __LINE__,
516 "mips_register_name: bad register number %d", rawnum);
519 /* Return the groups that a MIPS register can be categorised into. */
522 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
528 int rawnum = regnum % NUM_REGS;
529 int pseudo = regnum / NUM_REGS;
530 if (reggroup == all_reggroup)
532 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
533 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
534 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
535 (gdbarch), as not all architectures are multi-arch. */
536 raw_p = rawnum < NUM_REGS;
537 if (REGISTER_NAME (regnum) == NULL
538 || REGISTER_NAME (regnum)[0] == '\0')
540 if (reggroup == float_reggroup)
541 return float_p && pseudo;
542 if (reggroup == vector_reggroup)
543 return vector_p && pseudo;
544 if (reggroup == general_reggroup)
545 return (!vector_p && !float_p) && pseudo;
546 /* Save the pseudo registers. Need to make certain that any code
547 extracting register values from a saved register cache also uses
549 if (reggroup == save_reggroup)
550 return raw_p && pseudo;
551 /* Restore the same pseudo register. */
552 if (reggroup == restore_reggroup)
553 return raw_p && pseudo;
557 /* Map the symbol table registers which live in the range [1 *
558 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
562 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
563 int cookednum, void *buf)
565 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
566 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
570 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, const void *buf)
573 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
574 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
577 /* Table to translate MIPS16 register field to actual register number. */
578 static int mips16_to_32_reg[8] =
579 {16, 17, 2, 3, 4, 5, 6, 7};
581 /* Heuristic_proc_start may hunt through the text section for a long
582 time across a 2400 baud serial line. Allows the user to limit this
585 static unsigned int heuristic_fence_post = 0;
587 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
588 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
589 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
590 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
591 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
592 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
593 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
594 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
595 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
596 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
597 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
598 this will corrupt pdr.iline. Fortunately we don't use it. */
599 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
600 #define _PROC_MAGIC_ 0x0F0F0F0F
601 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
602 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
604 struct linked_proc_info
606 struct mips_extra_func_info info;
607 struct linked_proc_info *next;
609 *linked_proc_desc_table = NULL;
611 /* Number of bytes of storage in the actual machine representation for
612 register N. NOTE: This defines the pseudo register type so need to
613 rebuild the architecture vector. */
615 static int mips64_transfers_32bit_regs_p = 0;
618 set_mips64_transfers_32bit_regs (char *args, int from_tty,
619 struct cmd_list_element *c)
621 struct gdbarch_info info;
622 gdbarch_info_init (&info);
623 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
624 instead of relying on globals. Doing that would let generic code
625 handle the search for this specific architecture. */
626 if (!gdbarch_update_p (info))
628 mips64_transfers_32bit_regs_p = 0;
629 error ("32-bit compatibility mode not supported");
633 /* Convert between RAW and VIRTUAL registers. The RAW register size
634 defines the remote-gdb packet. */
637 mips_register_convertible (int reg_nr)
639 if (gdbarch_tdep (current_gdbarch)->mips64_transfers_32bit_regs_p)
642 return (register_size (current_gdbarch, reg_nr) > register_size (current_gdbarch, reg_nr));
646 mips_register_convert_to_virtual (int n, struct type *virtual_type,
647 char *raw_buf, char *virt_buf)
649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
651 raw_buf + (register_size (current_gdbarch, n) - TYPE_LENGTH (virtual_type)),
652 TYPE_LENGTH (virtual_type));
656 TYPE_LENGTH (virtual_type));
660 mips_register_convert_to_raw (struct type *virtual_type, int n,
661 const char *virt_buf, char *raw_buf)
663 memset (raw_buf, 0, register_size (current_gdbarch, n));
664 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
665 memcpy (raw_buf + (register_size (current_gdbarch, n) - TYPE_LENGTH (virtual_type)),
667 TYPE_LENGTH (virtual_type));
671 TYPE_LENGTH (virtual_type));
675 mips_convert_register_p (int regnum, struct type *type)
677 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
678 && register_size (current_gdbarch, regnum) == 4
679 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
680 && TYPE_CODE(type) == TYPE_CODE_FLT
681 && TYPE_LENGTH(type) == 8);
685 mips_register_to_value (struct frame_info *frame, int regnum,
686 struct type *type, void *to)
688 get_frame_register (frame, regnum + 0, (char *) to + 4);
689 get_frame_register (frame, regnum + 1, (char *) to + 0);
693 mips_value_to_register (struct frame_info *frame, int regnum,
694 struct type *type, const void *from)
696 put_frame_register (frame, regnum + 0, (const char *) from + 4);
697 put_frame_register (frame, regnum + 1, (const char *) from + 0);
700 /* Return the GDB type object for the "standard" data type of data in
704 mips_register_type (struct gdbarch *gdbarch, int regnum)
706 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
707 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
708 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
710 /* The floating-point registers raw, or cooked, always match
711 mips_regsize(), and also map 1:1, byte for byte. */
712 switch (gdbarch_byte_order (gdbarch))
715 if (mips_regsize (gdbarch) == 4)
716 return builtin_type_ieee_single_big;
718 return builtin_type_ieee_double_big;
719 case BFD_ENDIAN_LITTLE:
720 if (mips_regsize (gdbarch) == 4)
721 return builtin_type_ieee_single_little;
723 return builtin_type_ieee_double_little;
724 case BFD_ENDIAN_UNKNOWN:
726 internal_error (__FILE__, __LINE__, "bad switch");
729 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
730 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
735 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
736 /* The target, while using a 64-bit register buffer, is only
737 transfering 32-bits of each integer register. Reflect this in
738 the cooked/pseudo register value. */
739 return builtin_type_int32;
740 else if (mips_regsize (gdbarch) == 8)
742 return builtin_type_int64;
745 return builtin_type_int32;
748 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
753 return read_signed_register (SP_REGNUM);
756 /* Should the upper word of 64-bit addresses be zeroed? */
757 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
760 mips_mask_address_p (void)
762 switch (mask_address_var)
764 case AUTO_BOOLEAN_TRUE:
766 case AUTO_BOOLEAN_FALSE:
769 case AUTO_BOOLEAN_AUTO:
770 return MIPS_DEFAULT_MASK_ADDRESS_P;
772 internal_error (__FILE__, __LINE__,
773 "mips_mask_address_p: bad switch");
779 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
781 switch (mask_address_var)
783 case AUTO_BOOLEAN_TRUE:
784 printf_filtered ("The 32 bit mips address mask is enabled\n");
786 case AUTO_BOOLEAN_FALSE:
787 printf_filtered ("The 32 bit mips address mask is disabled\n");
789 case AUTO_BOOLEAN_AUTO:
790 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
791 mips_mask_address_p () ? "enabled" : "disabled");
794 internal_error (__FILE__, __LINE__,
795 "show_mask_address: bad switch");
800 /* Should call_function allocate stack space for a struct return? */
803 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
805 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
808 /* Should call_function pass struct by reference?
809 For each architecture, structs are passed either by
810 value or by reference, depending on their size. */
813 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
815 enum type_code typecode = TYPE_CODE (check_typedef (type));
816 int len = TYPE_LENGTH (check_typedef (type));
818 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
819 return (len > MIPS_SAVED_REGSIZE);
825 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
827 return 0; /* Assumption: N32/N64 never passes struct by ref. */
831 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
833 return 0; /* Assumption: O32/O64 never passes struct by ref. */
836 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
839 pc_is_mips16 (bfd_vma memaddr)
841 struct minimal_symbol *sym;
843 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
844 if (is_mips16_addr (memaddr))
847 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
848 the high bit of the info field. Use this to decide if the function is
849 MIPS16 or normal MIPS. */
850 sym = lookup_minimal_symbol_by_pc (memaddr);
852 return msymbol_is_special (sym);
857 /* MIPS believes that the PC has a sign extended value. Perhaphs the
858 all registers should be sign extended for simplicity? */
861 mips_read_pc (ptid_t ptid)
863 return read_signed_register_pid (PC_REGNUM, ptid);
866 /* This returns the PC of the first inst after the prologue. If we can't
867 find the prologue, then return 0. */
870 after_prologue (CORE_ADDR pc,
871 mips_extra_func_info_t proc_desc)
873 struct symtab_and_line sal;
874 CORE_ADDR func_addr, func_end;
876 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
877 to read the stack pointer from the current machine state, because
878 the current machine state has nothing to do with the information
879 we need from the proc_desc; and the process may or may not exist
882 proc_desc = find_proc_desc (pc, NULL, 0);
886 /* If function is frameless, then we need to do it the hard way. I
887 strongly suspect that frameless always means prologueless... */
888 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
889 && PROC_FRAME_OFFSET (proc_desc) == 0)
893 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
894 return 0; /* Unknown */
896 sal = find_pc_line (func_addr, 0);
898 if (sal.end < func_end)
901 /* The line after the prologue is after the end of the function. In this
902 case, tell the caller to find the prologue the hard way. */
907 /* Decode a MIPS32 instruction that saves a register in the stack, and
908 set the appropriate bit in the general register mask or float register mask
909 to indicate which register is saved. This is a helper function
910 for mips_find_saved_regs. */
913 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
914 unsigned long *float_mask)
918 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
919 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
920 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
922 /* It might be possible to use the instruction to
923 find the offset, rather than the code below which
924 is based on things being in a certain order in the
925 frame, but figuring out what the instruction's offset
926 is relative to might be a little tricky. */
927 reg = (inst & 0x001f0000) >> 16;
928 *gen_mask |= (1 << reg);
930 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
931 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
932 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
935 reg = ((inst & 0x001f0000) >> 16);
936 *float_mask |= (1 << reg);
940 /* Decode a MIPS16 instruction that saves a register in the stack, and
941 set the appropriate bit in the general register or float register mask
942 to indicate which register is saved. This is a helper function
943 for mips_find_saved_regs. */
946 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
948 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
950 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
951 *gen_mask |= (1 << reg);
953 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
955 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
956 *gen_mask |= (1 << reg);
958 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
959 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
960 *gen_mask |= (1 << RA_REGNUM);
964 /* Fetch and return instruction from the specified location. If the PC
965 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
968 mips_fetch_instruction (CORE_ADDR addr)
970 char buf[MIPS_INSTLEN];
974 if (pc_is_mips16 (addr))
976 instlen = MIPS16_INSTLEN;
977 addr = unmake_mips16_addr (addr);
980 instlen = MIPS_INSTLEN;
981 status = read_memory_nobpt (addr, buf, instlen);
983 memory_error (status, addr);
984 return extract_unsigned_integer (buf, instlen);
988 /* These the fields of 32 bit mips instructions */
989 #define mips32_op(x) (x >> 26)
990 #define itype_op(x) (x >> 26)
991 #define itype_rs(x) ((x >> 21) & 0x1f)
992 #define itype_rt(x) ((x >> 16) & 0x1f)
993 #define itype_immediate(x) (x & 0xffff)
995 #define jtype_op(x) (x >> 26)
996 #define jtype_target(x) (x & 0x03ffffff)
998 #define rtype_op(x) (x >> 26)
999 #define rtype_rs(x) ((x >> 21) & 0x1f)
1000 #define rtype_rt(x) ((x >> 16) & 0x1f)
1001 #define rtype_rd(x) ((x >> 11) & 0x1f)
1002 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1003 #define rtype_funct(x) (x & 0x3f)
1006 mips32_relative_offset (unsigned long inst)
1009 x = itype_immediate (inst);
1010 if (x & 0x8000) /* sign bit set */
1012 x |= 0xffff0000; /* sign extension */
1018 /* Determine whate to set a single step breakpoint while considering
1019 branch prediction */
1021 mips32_next_pc (CORE_ADDR pc)
1025 inst = mips_fetch_instruction (pc);
1026 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1028 if (itype_op (inst) >> 2 == 5)
1029 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1031 op = (itype_op (inst) & 0x03);
1041 goto greater_branch;
1046 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1047 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1049 int tf = itype_rt (inst) & 0x01;
1050 int cnum = itype_rt (inst) >> 2;
1051 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
1052 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1054 if (((cond >> cnum) & 0x01) == tf)
1055 pc += mips32_relative_offset (inst) + 4;
1060 pc += 4; /* Not a branch, next instruction is easy */
1063 { /* This gets way messy */
1065 /* Further subdivide into SPECIAL, REGIMM and other */
1066 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1068 case 0: /* SPECIAL */
1069 op = rtype_funct (inst);
1074 /* Set PC to that address */
1075 pc = read_signed_register (rtype_rs (inst));
1081 break; /* end SPECIAL */
1082 case 1: /* REGIMM */
1084 op = itype_rt (inst); /* branch condition */
1089 case 16: /* BLTZAL */
1090 case 18: /* BLTZALL */
1092 if (read_signed_register (itype_rs (inst)) < 0)
1093 pc += mips32_relative_offset (inst) + 4;
1095 pc += 8; /* after the delay slot */
1099 case 17: /* BGEZAL */
1100 case 19: /* BGEZALL */
1101 greater_equal_branch:
1102 if (read_signed_register (itype_rs (inst)) >= 0)
1103 pc += mips32_relative_offset (inst) + 4;
1105 pc += 8; /* after the delay slot */
1107 /* All of the other instructions in the REGIMM category */
1112 break; /* end REGIMM */
1117 reg = jtype_target (inst) << 2;
1118 /* Upper four bits get never changed... */
1119 pc = reg + ((pc + 4) & 0xf0000000);
1122 /* FIXME case JALX : */
1125 reg = jtype_target (inst) << 2;
1126 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1127 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1129 break; /* The new PC will be alternate mode */
1130 case 4: /* BEQ, BEQL */
1132 if (read_signed_register (itype_rs (inst)) ==
1133 read_signed_register (itype_rt (inst)))
1134 pc += mips32_relative_offset (inst) + 4;
1138 case 5: /* BNE, BNEL */
1140 if (read_signed_register (itype_rs (inst)) !=
1141 read_signed_register (itype_rt (inst)))
1142 pc += mips32_relative_offset (inst) + 4;
1146 case 6: /* BLEZ, BLEZL */
1148 if (read_signed_register (itype_rs (inst) <= 0))
1149 pc += mips32_relative_offset (inst) + 4;
1155 greater_branch: /* BGTZ, BGTZL */
1156 if (read_signed_register (itype_rs (inst) > 0))
1157 pc += mips32_relative_offset (inst) + 4;
1164 } /* mips32_next_pc */
1166 /* Decoding the next place to set a breakpoint is irregular for the
1167 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1168 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1169 We dont want to set a single step instruction on the extend instruction
1173 /* Lots of mips16 instruction formats */
1174 /* Predicting jumps requires itype,ritype,i8type
1175 and their extensions extItype,extritype,extI8type
1177 enum mips16_inst_fmts
1179 itype, /* 0 immediate 5,10 */
1180 ritype, /* 1 5,3,8 */
1181 rrtype, /* 2 5,3,3,5 */
1182 rritype, /* 3 5,3,3,5 */
1183 rrrtype, /* 4 5,3,3,3,2 */
1184 rriatype, /* 5 5,3,3,1,4 */
1185 shifttype, /* 6 5,3,3,3,2 */
1186 i8type, /* 7 5,3,8 */
1187 i8movtype, /* 8 5,3,3,5 */
1188 i8mov32rtype, /* 9 5,3,5,3 */
1189 i64type, /* 10 5,3,8 */
1190 ri64type, /* 11 5,3,3,5 */
1191 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1192 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1193 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1194 extRRItype, /* 15 5,5,5,5,3,3,5 */
1195 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1196 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1197 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1198 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1199 extRi64type, /* 20 5,6,5,5,3,3,5 */
1200 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1202 /* I am heaping all the fields of the formats into one structure and
1203 then, only the fields which are involved in instruction extension */
1207 unsigned int regx; /* Function in i8 type */
1212 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1213 for the bits which make up the immediatate extension. */
1216 extended_offset (unsigned int extension)
1219 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1221 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1223 value |= extension & 0x01f; /* extract 4:0 */
1227 /* Only call this function if you know that this is an extendable
1228 instruction, It wont malfunction, but why make excess remote memory references?
1229 If the immediate operands get sign extended or somthing, do it after
1230 the extension is performed.
1232 /* FIXME: Every one of these cases needs to worry about sign extension
1233 when the offset is to be used in relative addressing */
1237 fetch_mips_16 (CORE_ADDR pc)
1240 pc &= 0xfffffffe; /* clear the low order bit */
1241 target_read_memory (pc, buf, 2);
1242 return extract_unsigned_integer (buf, 2);
1246 unpack_mips16 (CORE_ADDR pc,
1247 unsigned int extension,
1249 enum mips16_inst_fmts insn_format,
1250 struct upk_mips16 *upk)
1255 switch (insn_format)
1262 value = extended_offset (extension);
1263 value = value << 11; /* rom for the original value */
1264 value |= inst & 0x7ff; /* eleven bits from instruction */
1268 value = inst & 0x7ff;
1269 /* FIXME : Consider sign extension */
1278 { /* A register identifier and an offset */
1279 /* Most of the fields are the same as I type but the
1280 immediate value is of a different length */
1284 value = extended_offset (extension);
1285 value = value << 8; /* from the original instruction */
1286 value |= inst & 0xff; /* eleven bits from instruction */
1287 regx = (extension >> 8) & 0x07; /* or i8 funct */
1288 if (value & 0x4000) /* test the sign bit , bit 26 */
1290 value &= ~0x3fff; /* remove the sign bit */
1296 value = inst & 0xff; /* 8 bits */
1297 regx = (inst >> 8) & 0x07; /* or i8 funct */
1298 /* FIXME: Do sign extension , this format needs it */
1299 if (value & 0x80) /* THIS CONFUSES ME */
1301 value &= 0xef; /* remove the sign bit */
1311 unsigned long value;
1312 unsigned int nexthalf;
1313 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1314 value = value << 16;
1315 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1323 internal_error (__FILE__, __LINE__,
1326 upk->offset = offset;
1333 add_offset_16 (CORE_ADDR pc, int offset)
1335 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1339 extended_mips16_next_pc (CORE_ADDR pc,
1340 unsigned int extension,
1343 int op = (insn >> 11);
1346 case 2: /* Branch */
1349 struct upk_mips16 upk;
1350 unpack_mips16 (pc, extension, insn, itype, &upk);
1351 offset = upk.offset;
1357 pc += (offset << 1) + 2;
1360 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1362 struct upk_mips16 upk;
1363 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1364 pc = add_offset_16 (pc, upk.offset);
1365 if ((insn >> 10) & 0x01) /* Exchange mode */
1366 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1373 struct upk_mips16 upk;
1375 unpack_mips16 (pc, extension, insn, ritype, &upk);
1376 reg = read_signed_register (upk.regx);
1378 pc += (upk.offset << 1) + 2;
1385 struct upk_mips16 upk;
1387 unpack_mips16 (pc, extension, insn, ritype, &upk);
1388 reg = read_signed_register (upk.regx);
1390 pc += (upk.offset << 1) + 2;
1395 case 12: /* I8 Formats btez btnez */
1397 struct upk_mips16 upk;
1399 unpack_mips16 (pc, extension, insn, i8type, &upk);
1400 /* upk.regx contains the opcode */
1401 reg = read_signed_register (24); /* Test register is 24 */
1402 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1403 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1404 /* pc = add_offset_16(pc,upk.offset) ; */
1405 pc += (upk.offset << 1) + 2;
1410 case 29: /* RR Formats JR, JALR, JALR-RA */
1412 struct upk_mips16 upk;
1413 /* upk.fmt = rrtype; */
1418 upk.regx = (insn >> 8) & 0x07;
1419 upk.regy = (insn >> 5) & 0x07;
1427 break; /* Function return instruction */
1433 break; /* BOGUS Guess */
1435 pc = read_signed_register (reg);
1442 /* This is an instruction extension. Fetch the real instruction
1443 (which follows the extension) and decode things based on
1447 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1460 mips16_next_pc (CORE_ADDR pc)
1462 unsigned int insn = fetch_mips_16 (pc);
1463 return extended_mips16_next_pc (pc, 0, insn);
1466 /* The mips_next_pc function supports single_step when the remote
1467 target monitor or stub is not developed enough to do a single_step.
1468 It works by decoding the current instruction and predicting where a
1469 branch will go. This isnt hard because all the data is available.
1470 The MIPS32 and MIPS16 variants are quite different */
1472 mips_next_pc (CORE_ADDR pc)
1475 return mips16_next_pc (pc);
1477 return mips32_next_pc (pc);
1480 /* Set up the 'saved_regs' array. This is a data structure containing
1481 the addresses on the stack where each register has been saved, for
1482 each stack frame. Registers that have not been saved will have
1483 zero here. The stack pointer register is special: rather than the
1484 address where the stack register has been saved,
1485 saved_regs[SP_REGNUM] will have the actual value of the previous
1486 frame's stack register. */
1489 mips_find_saved_regs (struct frame_info *fci)
1492 /* r0 bit means kernel trap */
1494 /* What registers have been saved? Bitmasks. */
1495 unsigned long gen_mask, float_mask;
1496 mips_extra_func_info_t proc_desc;
1498 CORE_ADDR *saved_regs;
1500 if (deprecated_get_frame_saved_regs (fci) != NULL)
1502 saved_regs = frame_saved_regs_zalloc (fci);
1504 /* If it is the frame for sigtramp, the saved registers are located
1505 in a sigcontext structure somewhere on the stack. If the stack
1506 layout for sigtramp changes we might have to change these
1507 constants and the companion fixup_sigtramp in mdebugread.c */
1508 #ifndef SIGFRAME_BASE
1509 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1510 above the sigtramp frame. */
1511 #define SIGFRAME_BASE mips_regsize (current_gdbarch)
1512 /* FIXME! Are these correct?? */
1513 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1514 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
1515 #define SIGFRAME_FPREGSAVE_OFF \
1516 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
1518 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1520 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1522 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1523 + ireg * mips_regsize (current_gdbarch));
1524 set_reg_offset (saved_regs, ireg, reg_position);
1526 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1528 CORE_ADDR reg_position = (get_frame_base (fci)
1529 + SIGFRAME_FPREGSAVE_OFF
1530 + ireg * mips_regsize (current_gdbarch));
1531 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
1534 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1535 /* SP_REGNUM, contains the value and not the address. */
1536 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1540 proc_desc = get_frame_extra_info (fci)->proc_desc;
1541 if (proc_desc == NULL)
1542 /* I'm not sure how/whether this can happen. Normally when we
1543 can't find a proc_desc, we "synthesize" one using
1544 heuristic_proc_desc and set the saved_regs right away. */
1547 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1548 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1549 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1551 if (/* In any frame other than the innermost or a frame interrupted
1552 by a signal, we assume that all registers have been saved.
1553 This assumes that all register saves in a function happen
1554 before the first function call. */
1555 (get_next_frame (fci) == NULL
1556 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1558 /* In a dummy frame we know exactly where things are saved. */
1559 && !PROC_DESC_IS_DUMMY (proc_desc)
1561 /* Don't bother unless we are inside a function prologue.
1562 Outside the prologue, we know where everything is. */
1564 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1566 /* Not sure exactly what kernel_trap means, but if it means the
1567 kernel saves the registers without a prologue doing it, we
1568 better not examine the prologue to see whether registers
1569 have been saved yet. */
1572 /* We need to figure out whether the registers that the
1573 proc_desc claims are saved have been saved yet. */
1577 /* Bitmasks; set if we have found a save for the register. */
1578 unsigned long gen_save_found = 0;
1579 unsigned long float_save_found = 0;
1582 /* If the address is odd, assume this is MIPS16 code. */
1583 addr = PROC_LOW_ADDR (proc_desc);
1584 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1586 /* Scan through this function's instructions preceding the
1587 current PC, and look for those that save registers. */
1588 while (addr < get_frame_pc (fci))
1590 inst = mips_fetch_instruction (addr);
1591 if (pc_is_mips16 (addr))
1592 mips16_decode_reg_save (inst, &gen_save_found);
1594 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1597 gen_mask = gen_save_found;
1598 float_mask = float_save_found;
1601 /* Fill in the offsets for the registers which gen_mask says were
1604 CORE_ADDR reg_position = (get_frame_base (fci)
1605 + PROC_REG_OFFSET (proc_desc));
1606 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1607 if (gen_mask & 0x80000000)
1609 set_reg_offset (saved_regs, ireg, reg_position);
1610 reg_position -= MIPS_SAVED_REGSIZE;
1614 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1615 order of that normally used by gcc. Therefore, we have to fetch
1616 the first instruction of the function, and if it's an entry
1617 instruction that saves $s0 or $s1, correct their saved addresses. */
1618 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1620 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1621 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1625 int sreg_count = (inst >> 6) & 3;
1627 /* Check if the ra register was pushed on the stack. */
1628 CORE_ADDR reg_position = (get_frame_base (fci)
1629 + PROC_REG_OFFSET (proc_desc));
1631 reg_position -= MIPS_SAVED_REGSIZE;
1633 /* Check if the s0 and s1 registers were pushed on the
1635 for (reg = 16; reg < sreg_count + 16; reg++)
1637 set_reg_offset (saved_regs, reg, reg_position);
1638 reg_position -= MIPS_SAVED_REGSIZE;
1643 /* Fill in the offsets for the registers which float_mask says were
1646 CORE_ADDR reg_position = (get_frame_base (fci)
1647 + PROC_FREG_OFFSET (proc_desc));
1649 /* Fill in the offsets for the float registers which float_mask
1651 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1652 if (float_mask & 0x80000000)
1654 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1656 /* On a big endian 32 bit ABI, floating point registers
1657 are paired to form doubles such that the most
1658 significant part is in $f[N+1] and the least
1659 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1660 registers are also spilled as a pair and stored as a
1663 When little-endian the least significant part is
1664 stored first leading to the memory order $f[N] and
1667 Unfortunately, when big-endian the most significant
1668 part of the double is stored first, and the least
1669 significant is stored second. This leads to the
1670 registers being ordered in memory as firt $f[N+1] and
1673 For the big-endian case make certain that the
1674 addresses point at the correct (swapped) locations
1675 $f[N] and $f[N+1] pair (keep in mind that
1676 reg_position is decremented each time through the
1679 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
1680 reg_position - MIPS_SAVED_REGSIZE);
1682 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
1683 reg_position + MIPS_SAVED_REGSIZE);
1686 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
1687 reg_position -= MIPS_SAVED_REGSIZE;
1690 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1693 /* SP_REGNUM, contains the value and not the address. */
1694 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1698 read_next_frame_reg (struct frame_info *fi, int regno)
1700 /* Always a pseudo. */
1701 gdb_assert (regno >= NUM_REGS);
1705 regcache_cooked_read_signed (current_regcache, regno, &val);
1708 else if ((regno % NUM_REGS) == SP_REGNUM)
1709 /* The SP_REGNUM is special, its value is stored in saved_regs.
1710 In fact, it is so special that it can even only be fetched
1711 using a raw register number! Once this code as been converted
1712 to frame-unwind the problem goes away. */
1713 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1715 return frame_unwind_register_signed (fi, regno);
1719 /* mips_addr_bits_remove - remove useless address bits */
1722 mips_addr_bits_remove (CORE_ADDR addr)
1724 if (mips_mask_address_p ()
1725 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1726 /* This hack is a work-around for existing boards using PMON, the
1727 simulator, and any other 64-bit targets that doesn't have true
1728 64-bit addressing. On these targets, the upper 32 bits of
1729 addresses are ignored by the hardware. Thus, the PC or SP are
1730 likely to have been sign extended to all 1s by instruction
1731 sequences that load 32-bit addresses. For example, a typical
1732 piece of code that loads an address is this:
1734 lui $r2, <upper 16 bits>
1735 ori $r2, <lower 16 bits>
1737 But the lui sign-extends the value such that the upper 32 bits
1738 may be all 1s. The workaround is simply to mask off these
1739 bits. In the future, gcc may be changed to support true 64-bit
1740 addressing, and this masking will have to be disabled. */
1741 return addr &= 0xffffffffUL;
1746 /* mips_software_single_step() is called just before we want to resume
1747 the inferior, if we want to single-step it but there is no hardware
1748 or kernel single-step support (MIPS on GNU/Linux for example). We find
1749 the target of the coming instruction and breakpoint it.
1751 single_step is also called just after the inferior stops. If we had
1752 set up a simulated single-step, we undo our damage. */
1755 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1757 static CORE_ADDR next_pc;
1758 typedef char binsn_quantum[BREAKPOINT_MAX];
1759 static binsn_quantum break_mem;
1762 if (insert_breakpoints_p)
1764 pc = read_register (PC_REGNUM);
1765 next_pc = mips_next_pc (pc);
1767 target_insert_breakpoint (next_pc, break_mem);
1770 target_remove_breakpoint (next_pc, break_mem);
1774 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1779 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1780 : get_next_frame (prev)
1781 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1783 tmp = SKIP_TRAMPOLINE_CODE (pc);
1784 return tmp ? tmp : pc;
1789 mips_frame_saved_pc (struct frame_info *frame)
1793 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1796 /* Always unwind the cooked PC register value. */
1797 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1802 mips_extra_func_info_t proc_desc
1803 = get_frame_extra_info (frame)->proc_desc;
1804 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1805 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1808 /* We have to get the saved pc from the sigcontext if it is
1809 a signal handler frame. */
1810 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1811 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1812 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1815 return ADDR_BITS_REMOVE (saved_pc);
1818 static struct mips_extra_func_info temp_proc_desc;
1820 /* This hack will go away once the get_prev_frame() code has been
1821 modified to set the frame's type first. That is BEFORE init extra
1822 frame info et.al. is called. This is because it will become
1823 possible to skip the init extra info call for sigtramp and dummy
1825 static CORE_ADDR *temp_saved_regs;
1827 /* Set a register's saved stack address in temp_saved_regs. If an
1828 address has already been set for this register, do nothing; this
1829 way we will only recognize the first save of a given register in a
1832 For simplicity, save the address in both [0 .. NUM_REGS) and
1833 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1834 is used as it is only second range (the ABI instead of ISA
1835 registers) that comes into play when finding saved registers in a
1839 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1841 if (saved_regs[regno] == 0)
1843 saved_regs[regno + 0 * NUM_REGS] = offset;
1844 saved_regs[regno + 1 * NUM_REGS] = offset;
1849 /* Test whether the PC points to the return instruction at the
1850 end of a function. */
1853 mips_about_to_return (CORE_ADDR pc)
1855 if (pc_is_mips16 (pc))
1856 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1857 generates a "jr $ra"; other times it generates code to load
1858 the return address from the stack to an accessible register (such
1859 as $a3), then a "jr" using that register. This second case
1860 is almost impossible to distinguish from an indirect jump
1861 used for switch statements, so we don't even try. */
1862 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1864 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1868 /* This fencepost looks highly suspicious to me. Removing it also
1869 seems suspicious as it could affect remote debugging across serial
1873 heuristic_proc_start (CORE_ADDR pc)
1880 pc = ADDR_BITS_REMOVE (pc);
1882 fence = start_pc - heuristic_fence_post;
1886 if (heuristic_fence_post == UINT_MAX
1887 || fence < VM_MIN_ADDRESS)
1888 fence = VM_MIN_ADDRESS;
1890 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1892 /* search back for previous return */
1893 for (start_pc -= instlen;; start_pc -= instlen)
1894 if (start_pc < fence)
1896 /* It's not clear to me why we reach this point when
1897 stop_soon, but with this test, at least we
1898 don't print out warnings for every child forked (eg, on
1900 if (stop_soon == NO_STOP_QUIETLY)
1902 static int blurb_printed = 0;
1904 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1909 /* This actually happens frequently in embedded
1910 development, when you first connect to a board
1911 and your stack pointer and pc are nowhere in
1912 particular. This message needs to give people
1913 in that situation enough information to
1914 determine that it's no big deal. */
1915 printf_filtered ("\n\
1916 GDB is unable to find the start of the function at 0x%s\n\
1917 and thus can't determine the size of that function's stack frame.\n\
1918 This means that GDB may be unable to access that stack frame, or\n\
1919 the frames below it.\n\
1920 This problem is most likely caused by an invalid program counter or\n\
1922 However, if you think GDB should simply search farther back\n\
1923 from 0x%s for code which looks like the beginning of a\n\
1924 function, you can increase the range of the search using the `set\n\
1925 heuristic-fence-post' command.\n",
1926 paddr_nz (pc), paddr_nz (pc));
1933 else if (pc_is_mips16 (start_pc))
1935 unsigned short inst;
1937 /* On MIPS16, any one of the following is likely to be the
1938 start of a function:
1942 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1943 inst = mips_fetch_instruction (start_pc);
1944 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1945 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1946 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1947 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1949 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1950 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1955 else if (mips_about_to_return (start_pc))
1957 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1964 /* Fetch the immediate value from a MIPS16 instruction.
1965 If the previous instruction was an EXTEND, use it to extend
1966 the upper bits of the immediate value. This is a helper function
1967 for mips16_heuristic_proc_desc. */
1970 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1971 unsigned short inst, /* current instruction */
1972 int nbits, /* number of bits in imm field */
1973 int scale, /* scale factor to be applied to imm */
1974 int is_signed) /* is the imm field signed? */
1978 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1980 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1981 if (offset & 0x8000) /* check for negative extend */
1982 offset = 0 - (0x10000 - (offset & 0xffff));
1983 return offset | (inst & 0x1f);
1987 int max_imm = 1 << nbits;
1988 int mask = max_imm - 1;
1989 int sign_bit = max_imm >> 1;
1991 offset = inst & mask;
1992 if (is_signed && (offset & sign_bit))
1993 offset = 0 - (max_imm - offset);
1994 return offset * scale;
1999 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2000 stream from start_pc to limit_pc. */
2003 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2004 struct frame_info *next_frame, CORE_ADDR sp)
2007 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2008 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2009 unsigned inst = 0; /* current instruction */
2010 unsigned entry_inst = 0; /* the entry instruction */
2013 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2014 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2016 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2018 /* Save the previous instruction. If it's an EXTEND, we'll extract
2019 the immediate offset extension from it in mips16_get_imm. */
2022 /* Fetch and decode the instruction. */
2023 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2024 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2025 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2027 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2028 if (offset < 0) /* negative stack adjustment? */
2029 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2031 /* Exit loop if a positive stack adjustment is found, which
2032 usually means that the stack cleanup code in the function
2033 epilogue is reached. */
2036 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2038 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2039 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2040 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2041 set_reg_offset (temp_saved_regs, reg, sp + offset);
2043 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2045 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2046 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2047 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2048 set_reg_offset (temp_saved_regs, reg, sp + offset);
2050 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2052 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2053 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2054 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2056 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2058 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2059 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2060 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2062 else if (inst == 0x673d) /* move $s1, $sp */
2065 PROC_FRAME_REG (&temp_proc_desc) = 17;
2067 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2069 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2070 frame_addr = sp + offset;
2071 PROC_FRAME_REG (&temp_proc_desc) = 17;
2072 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2074 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2076 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2077 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2078 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2079 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2081 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2083 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2084 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2085 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2086 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2088 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2089 entry_inst = inst; /* save for later processing */
2090 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2091 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2094 /* The entry instruction is typically the first instruction in a function,
2095 and it stores registers at offsets relative to the value of the old SP
2096 (before the prologue). But the value of the sp parameter to this
2097 function is the new SP (after the prologue has been executed). So we
2098 can't calculate those offsets until we've seen the entire prologue,
2099 and can calculate what the old SP must have been. */
2100 if (entry_inst != 0)
2102 int areg_count = (entry_inst >> 8) & 7;
2103 int sreg_count = (entry_inst >> 6) & 3;
2105 /* The entry instruction always subtracts 32 from the SP. */
2106 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2108 /* Now we can calculate what the SP must have been at the
2109 start of the function prologue. */
2110 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2112 /* Check if a0-a3 were saved in the caller's argument save area. */
2113 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2115 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2116 set_reg_offset (temp_saved_regs, reg, sp + offset);
2117 offset += MIPS_SAVED_REGSIZE;
2120 /* Check if the ra register was pushed on the stack. */
2122 if (entry_inst & 0x20)
2124 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2125 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2126 offset -= MIPS_SAVED_REGSIZE;
2129 /* Check if the s0 and s1 registers were pushed on the stack. */
2130 for (reg = 16; reg < sreg_count + 16; reg++)
2132 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2133 set_reg_offset (temp_saved_regs, reg, sp + offset);
2134 offset -= MIPS_SAVED_REGSIZE;
2140 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2141 struct frame_info *next_frame, CORE_ADDR sp)
2144 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2146 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2147 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2148 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2149 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2150 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2152 unsigned long inst, high_word, low_word;
2155 /* Fetch the instruction. */
2156 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2158 /* Save some code by pre-extracting some useful fields. */
2159 high_word = (inst >> 16) & 0xffff;
2160 low_word = inst & 0xffff;
2161 reg = high_word & 0x1f;
2163 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2164 || high_word == 0x23bd /* addi $sp,$sp,-i */
2165 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2167 if (low_word & 0x8000) /* negative stack adjustment? */
2168 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2170 /* Exit loop if a positive stack adjustment is found, which
2171 usually means that the stack cleanup code in the function
2172 epilogue is reached. */
2175 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2177 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2178 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2180 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2182 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2183 but the register size used is only 32 bits. Make the address
2184 for the saved register point to the lower 32 bits. */
2185 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2186 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
2188 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2190 /* Old gcc frame, r30 is virtual frame pointer. */
2191 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2192 frame_addr = sp + low_word;
2193 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2195 unsigned alloca_adjust;
2196 PROC_FRAME_REG (&temp_proc_desc) = 30;
2197 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2198 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2199 if (alloca_adjust > 0)
2201 /* FP > SP + frame_size. This may be because
2202 * of an alloca or somethings similar.
2203 * Fix sp to "pre-alloca" value, and try again.
2205 sp += alloca_adjust;
2210 /* move $30,$sp. With different versions of gas this will be either
2211 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2212 Accept any one of these. */
2213 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2215 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2216 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2218 unsigned alloca_adjust;
2219 PROC_FRAME_REG (&temp_proc_desc) = 30;
2220 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2221 alloca_adjust = (unsigned) (frame_addr - sp);
2222 if (alloca_adjust > 0)
2224 /* FP > SP + frame_size. This may be because
2225 * of an alloca or somethings similar.
2226 * Fix sp to "pre-alloca" value, and try again.
2228 sp += alloca_adjust;
2233 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2235 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2236 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2241 static mips_extra_func_info_t
2242 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2243 struct frame_info *next_frame, int cur_frame)
2248 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2254 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2255 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2256 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2257 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2258 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2259 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2261 if (start_pc + 200 < limit_pc)
2262 limit_pc = start_pc + 200;
2263 if (pc_is_mips16 (start_pc))
2264 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2266 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2267 return &temp_proc_desc;
2270 struct mips_objfile_private
2276 /* Global used to communicate between non_heuristic_proc_desc and
2277 compare_pdr_entries within qsort (). */
2278 static bfd *the_bfd;
2281 compare_pdr_entries (const void *a, const void *b)
2283 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2284 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2288 else if (lhs == rhs)
2294 static mips_extra_func_info_t
2295 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2297 CORE_ADDR startaddr;
2298 mips_extra_func_info_t proc_desc;
2299 struct block *b = block_for_pc (pc);
2301 struct obj_section *sec;
2302 struct mips_objfile_private *priv;
2304 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2307 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2309 *addrptr = startaddr;
2313 sec = find_pc_section (pc);
2316 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2318 /* Search the ".pdr" section generated by GAS. This includes most of
2319 the information normally found in ECOFF PDRs. */
2321 the_bfd = sec->objfile->obfd;
2323 && (the_bfd->format == bfd_object
2324 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2325 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2327 /* Right now GAS only outputs the address as a four-byte sequence.
2328 This means that we should not bother with this method on 64-bit
2329 targets (until that is fixed). */
2331 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2332 sizeof (struct mips_objfile_private));
2334 sec->objfile->obj_private = priv;
2336 else if (priv == NULL)
2340 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2341 sizeof (struct mips_objfile_private));
2343 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2346 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2347 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2349 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2350 priv->contents, 0, priv->size);
2352 /* In general, the .pdr section is sorted. However, in the
2353 presence of multiple code sections (and other corner cases)
2354 it can become unsorted. Sort it so that we can use a faster
2356 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2361 sec->objfile->obj_private = priv;
2365 if (priv->size != 0)
2371 high = priv->size / 32;
2377 mid = (low + high) / 2;
2379 ptr = priv->contents + mid * 32;
2380 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2381 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2382 SECT_OFF_TEXT (sec->objfile));
2383 if (pdr_pc == startaddr)
2385 if (pdr_pc > startaddr)
2390 while (low != high);
2394 struct symbol *sym = find_pc_function (pc);
2396 /* Fill in what we need of the proc_desc. */
2397 proc_desc = (mips_extra_func_info_t)
2398 obstack_alloc (&sec->objfile->psymbol_obstack,
2399 sizeof (struct mips_extra_func_info));
2400 PROC_LOW_ADDR (proc_desc) = startaddr;
2402 /* Only used for dummy frames. */
2403 PROC_HIGH_ADDR (proc_desc) = 0;
2405 PROC_FRAME_OFFSET (proc_desc)
2406 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2407 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2409 PROC_FRAME_ADJUST (proc_desc) = 0;
2410 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2412 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2414 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2416 PROC_FREG_OFFSET (proc_desc)
2417 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2418 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2420 proc_desc->pdr.isym = (long) sym;
2430 if (startaddr > BLOCK_START (b))
2432 /* This is the "pathological" case referred to in a comment in
2433 print_frame_info. It might be better to move this check into
2438 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2440 /* If we never found a PDR for this function in symbol reading, then
2441 examine prologues to find the information. */
2444 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2445 if (PROC_FRAME_REG (proc_desc) == -1)
2455 static mips_extra_func_info_t
2456 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2458 mips_extra_func_info_t proc_desc;
2459 CORE_ADDR startaddr = 0;
2461 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2465 /* IF this is the topmost frame AND
2466 * (this proc does not have debugging information OR
2467 * the PC is in the procedure prologue)
2468 * THEN create a "heuristic" proc_desc (by analyzing
2469 * the actual code) to replace the "official" proc_desc.
2471 if (next_frame == NULL)
2473 struct symtab_and_line val;
2474 struct symbol *proc_symbol =
2475 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2479 val = find_pc_line (BLOCK_START
2480 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2482 val.pc = val.end ? val.end : pc;
2484 if (!proc_symbol || pc < val.pc)
2486 mips_extra_func_info_t found_heuristic =
2487 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2488 pc, next_frame, cur_frame);
2489 if (found_heuristic)
2490 proc_desc = found_heuristic;
2496 /* Is linked_proc_desc_table really necessary? It only seems to be used
2497 by procedure call dummys. However, the procedures being called ought
2498 to have their own proc_descs, and even if they don't,
2499 heuristic_proc_desc knows how to create them! */
2501 struct linked_proc_info *link;
2503 for (link = linked_proc_desc_table; link; link = link->next)
2504 if (PROC_LOW_ADDR (&link->info) <= pc
2505 && PROC_HIGH_ADDR (&link->info) > pc)
2509 startaddr = heuristic_proc_start (pc);
2512 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2518 get_frame_pointer (struct frame_info *frame,
2519 mips_extra_func_info_t proc_desc)
2521 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2522 + PROC_FRAME_OFFSET (proc_desc)
2523 - PROC_FRAME_ADJUST (proc_desc));
2526 static mips_extra_func_info_t cached_proc_desc;
2529 mips_frame_chain (struct frame_info *frame)
2531 mips_extra_func_info_t proc_desc;
2533 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2535 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
2538 /* Check if the PC is inside a call stub. If it is, fetch the
2539 PC of the caller of that stub. */
2540 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2543 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2545 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2546 is well, frame->frame the bottom of the current frame will
2547 contain that value. */
2548 return get_frame_base (frame);
2551 /* Look up the procedure descriptor for this PC. */
2552 proc_desc = find_proc_desc (saved_pc, frame, 1);
2556 cached_proc_desc = proc_desc;
2558 /* If no frame pointer and frame size is zero, we must be at end
2559 of stack (or otherwise hosed). If we don't check frame size,
2560 we loop forever if we see a zero size frame. */
2561 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2562 && PROC_FRAME_OFFSET (proc_desc) == 0
2563 /* The previous frame from a sigtramp frame might be frameless
2564 and have frame size zero. */
2565 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2566 /* For a generic dummy frame, let get_frame_pointer() unwind a
2567 register value saved as part of the dummy frame call. */
2568 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2571 return get_frame_pointer (frame, proc_desc);
2575 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2578 mips_extra_func_info_t proc_desc;
2580 if (get_frame_type (fci) == DUMMY_FRAME)
2583 /* Use proc_desc calculated in frame_chain. When there is no
2584 next frame, i.e, get_next_frame (fci) == NULL, we call
2585 find_proc_desc () to calculate it, passing an explicit
2586 NULL as the frame parameter. */
2588 get_next_frame (fci)
2590 : find_proc_desc (get_frame_pc (fci),
2591 NULL /* i.e, get_next_frame (fci) */,
2594 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2596 deprecated_set_frame_saved_regs_hack (fci, NULL);
2597 get_frame_extra_info (fci)->proc_desc =
2598 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2601 /* Fixup frame-pointer - only needed for top frame */
2602 /* This may not be quite right, if proc has a real frame register.
2603 Get the value of the frame relative sp, procedure might have been
2604 interrupted by a signal at it's very start. */
2605 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2606 && !PROC_DESC_IS_DUMMY (proc_desc))
2607 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2608 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2609 /* Do not ``fix'' fci->frame. It will have the value of the
2610 generic dummy frame's top-of-stack (since the draft
2611 fci->frame is obtained by returning the unwound stack
2612 pointer) and that is what we want. That way the fci->frame
2613 value will match the top-of-stack value that was saved as
2614 part of the dummy frames data. */
2617 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2619 if (proc_desc == &temp_proc_desc)
2623 /* Do not set the saved registers for a sigtramp frame,
2624 mips_find_saved_registers will do that for us. We can't
2625 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2627 /* FIXME: cagney/2002-11-18: This problem will go away once
2628 frame.c:get_prev_frame() is modified to set the frame's
2629 type before calling functions like this. */
2630 find_pc_partial_function (get_frame_pc (fci), &name,
2631 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2632 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2634 frame_saved_regs_zalloc (fci);
2635 /* Set value of previous frame's stack pointer.
2636 Remember that saved_regs[SP_REGNUM] is special in
2637 that it contains the value of the stack pointer
2638 register. The other saved_regs values are addresses
2639 (in the inferior) at which a given register's value
2641 set_reg_offset (temp_saved_regs, SP_REGNUM,
2642 get_frame_base (fci));
2643 set_reg_offset (temp_saved_regs, PC_REGNUM,
2644 temp_saved_regs[RA_REGNUM]);
2645 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
2646 SIZEOF_FRAME_SAVED_REGS);
2650 /* hack: if argument regs are saved, guess these contain args */
2651 /* assume we can't tell how many args for now */
2652 get_frame_extra_info (fci)->num_args = -1;
2653 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2655 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2657 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2664 /* MIPS stack frames are almost impenetrable. When execution stops,
2665 we basically have to look at symbol information for the function
2666 that we stopped in, which tells us *which* register (if any) is
2667 the base of the frame pointer, and what offset from that register
2668 the frame itself is at.
2670 This presents a problem when trying to examine a stack in memory
2671 (that isn't executing at the moment), using the "frame" command. We
2672 don't have a PC, nor do we have any registers except SP.
2674 This routine takes two arguments, SP and PC, and tries to make the
2675 cached frames look as if these two arguments defined a frame on the
2676 cache. This allows the rest of info frame to extract the important
2677 arguments without difficulty. */
2680 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2683 error ("MIPS frame specifications require two arguments: sp and pc");
2685 return create_new_frame (argv[0], argv[1]);
2688 /* According to the current ABI, should the type be passed in a
2689 floating-point register (assuming that there is space)? When there
2690 is no FPU, FP are not even considered as possibile candidates for
2691 FP registers and, consequently this returns false - forces FP
2692 arguments into integer registers. */
2695 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2697 return ((typecode == TYPE_CODE_FLT
2699 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2700 && TYPE_NFIELDS (arg_type) == 1
2701 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2702 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2705 /* On o32, argument passing in GPRs depends on the alignment of the type being
2706 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2709 mips_type_needs_double_align (struct type *type)
2711 enum type_code typecode = TYPE_CODE (type);
2713 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2715 else if (typecode == TYPE_CODE_STRUCT)
2717 if (TYPE_NFIELDS (type) < 1)
2719 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2721 else if (typecode == TYPE_CODE_UNION)
2725 n = TYPE_NFIELDS (type);
2726 for (i = 0; i < n; i++)
2727 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2734 /* Adjust the address downward (direction of stack growth) so that it
2735 is correctly aligned for a new stack frame. */
2737 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2739 return align_down (addr, 16);
2743 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2744 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2745 struct value **args, CORE_ADDR sp, int struct_return,
2746 CORE_ADDR struct_addr)
2752 int stack_offset = 0;
2754 /* For shared libraries, "t9" needs to point at the function
2756 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2758 /* Set the return address register to point to the entry point of
2759 the program, where a breakpoint lies in wait. */
2760 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2762 /* First ensure that the stack and structure return address (if any)
2763 are properly aligned. The stack has to be at least 64-bit
2764 aligned even on 32-bit machines, because doubles must be 64-bit
2765 aligned. For n32 and n64, stack frames need to be 128-bit
2766 aligned, so we round to this widest known alignment. */
2768 sp = align_down (sp, 16);
2769 struct_addr = align_down (struct_addr, 16);
2771 /* Now make space on the stack for the args. We allocate more
2772 than necessary for EABI, because the first few arguments are
2773 passed in registers, but that's OK. */
2774 for (argnum = 0; argnum < nargs; argnum++)
2775 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2776 MIPS_STACK_ARGSIZE);
2777 sp -= align_up (len, 16);
2780 fprintf_unfiltered (gdb_stdlog,
2781 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2782 paddr_nz (sp), (long) align_up (len, 16));
2784 /* Initialize the integer and float register pointers. */
2786 float_argreg = mips_fpa0_regnum (current_gdbarch);
2788 /* The struct_return pointer occupies the first parameter-passing reg. */
2792 fprintf_unfiltered (gdb_stdlog,
2793 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2794 argreg, paddr_nz (struct_addr));
2795 write_register (argreg++, struct_addr);
2798 /* Now load as many as possible of the first arguments into
2799 registers, and push the rest onto the stack. Loop thru args
2800 from first to last. */
2801 for (argnum = 0; argnum < nargs; argnum++)
2804 char valbuf[MAX_REGISTER_SIZE];
2805 struct value *arg = args[argnum];
2806 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2807 int len = TYPE_LENGTH (arg_type);
2808 enum type_code typecode = TYPE_CODE (arg_type);
2811 fprintf_unfiltered (gdb_stdlog,
2812 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2813 argnum + 1, len, (int) typecode);
2815 /* The EABI passes structures that do not fit in a register by
2817 if (len > MIPS_SAVED_REGSIZE
2818 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2820 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2821 typecode = TYPE_CODE_PTR;
2822 len = MIPS_SAVED_REGSIZE;
2825 fprintf_unfiltered (gdb_stdlog, " push");
2828 val = (char *) VALUE_CONTENTS (arg);
2830 /* 32-bit ABIs always start floating point arguments in an
2831 even-numbered floating point register. Round the FP register
2832 up before the check to see if there are any FP registers
2833 left. Non MIPS_EABI targets also pass the FP in the integer
2834 registers so also round up normal registers. */
2835 if (!FP_REGISTER_DOUBLE
2836 && fp_register_arg_p (typecode, arg_type))
2838 if ((float_argreg & 1))
2842 /* Floating point arguments passed in registers have to be
2843 treated specially. On 32-bit architectures, doubles
2844 are passed in register pairs; the even register gets
2845 the low word, and the odd register gets the high word.
2846 On non-EABI processors, the first two floating point arguments are
2847 also copied to general registers, because MIPS16 functions
2848 don't use float registers for arguments. This duplication of
2849 arguments in general registers can't hurt non-MIPS16 functions
2850 because those registers are normally skipped. */
2851 /* MIPS_EABI squeezes a struct that contains a single floating
2852 point value into an FP register instead of pushing it onto the
2854 if (fp_register_arg_p (typecode, arg_type)
2855 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2857 if (!FP_REGISTER_DOUBLE && len == 8)
2859 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2860 unsigned long regval;
2862 /* Write the low word of the double to the even register(s). */
2863 regval = extract_unsigned_integer (val + low_offset, 4);
2865 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2866 float_argreg, phex (regval, 4));
2867 write_register (float_argreg++, regval);
2869 /* Write the high word of the double to the odd register(s). */
2870 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2872 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2873 float_argreg, phex (regval, 4));
2874 write_register (float_argreg++, regval);
2878 /* This is a floating point value that fits entirely
2879 in a single register. */
2880 /* On 32 bit ABI's the float_argreg is further adjusted
2881 above to ensure that it is even register aligned. */
2882 LONGEST regval = extract_unsigned_integer (val, len);
2884 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2885 float_argreg, phex (regval, len));
2886 write_register (float_argreg++, regval);
2891 /* Copy the argument to general registers or the stack in
2892 register-sized pieces. Large arguments are split between
2893 registers and stack. */
2894 /* Note: structs whose size is not a multiple of
2895 mips_regsize() are treated specially: Irix cc passes them
2896 in registers where gcc sometimes puts them on the stack.
2897 For maximum compatibility, we will put them in both
2899 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2900 (len % MIPS_SAVED_REGSIZE != 0));
2902 /* Note: Floating-point values that didn't fit into an FP
2903 register are only written to memory. */
2906 /* Remember if the argument was written to the stack. */
2907 int stack_used_p = 0;
2909 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2912 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2915 /* Write this portion of the argument to the stack. */
2916 if (argreg > MIPS_LAST_ARG_REGNUM
2918 || fp_register_arg_p (typecode, arg_type))
2920 /* Should shorter than int integer values be
2921 promoted to int before being stored? */
2922 int longword_offset = 0;
2925 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2927 if (MIPS_STACK_ARGSIZE == 8 &&
2928 (typecode == TYPE_CODE_INT ||
2929 typecode == TYPE_CODE_PTR ||
2930 typecode == TYPE_CODE_FLT) && len <= 4)
2931 longword_offset = MIPS_STACK_ARGSIZE - len;
2932 else if ((typecode == TYPE_CODE_STRUCT ||
2933 typecode == TYPE_CODE_UNION) &&
2934 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2935 longword_offset = MIPS_STACK_ARGSIZE - len;
2940 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2941 paddr_nz (stack_offset));
2942 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2943 paddr_nz (longword_offset));
2946 addr = sp + stack_offset + longword_offset;
2951 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2953 for (i = 0; i < partial_len; i++)
2955 fprintf_unfiltered (gdb_stdlog, "%02x",
2959 write_memory (addr, val, partial_len);
2962 /* Note!!! This is NOT an else clause. Odd sized
2963 structs may go thru BOTH paths. Floating point
2964 arguments will not. */
2965 /* Write this portion of the argument to a general
2966 purpose register. */
2967 if (argreg <= MIPS_LAST_ARG_REGNUM
2968 && !fp_register_arg_p (typecode, arg_type))
2970 LONGEST regval = extract_unsigned_integer (val, partial_len);
2973 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2975 phex (regval, MIPS_SAVED_REGSIZE));
2976 write_register (argreg, regval);
2983 /* Compute the the offset into the stack at which we
2984 will copy the next parameter.
2986 In the new EABI (and the NABI32), the stack_offset
2987 only needs to be adjusted when it has been used. */
2990 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
2994 fprintf_unfiltered (gdb_stdlog, "\n");
2997 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2999 /* Return adjusted stack pointer. */
3003 /* N32/N64 version of push_dummy_call. */
3006 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3007 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3008 struct value **args, CORE_ADDR sp, int struct_return,
3009 CORE_ADDR struct_addr)
3015 int stack_offset = 0;
3017 /* For shared libraries, "t9" needs to point at the function
3019 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3021 /* Set the return address register to point to the entry point of
3022 the program, where a breakpoint lies in wait. */
3023 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3025 /* First ensure that the stack and structure return address (if any)
3026 are properly aligned. The stack has to be at least 64-bit
3027 aligned even on 32-bit machines, because doubles must be 64-bit
3028 aligned. For n32 and n64, stack frames need to be 128-bit
3029 aligned, so we round to this widest known alignment. */
3031 sp = align_down (sp, 16);
3032 struct_addr = align_down (struct_addr, 16);
3034 /* Now make space on the stack for the args. */
3035 for (argnum = 0; argnum < nargs; argnum++)
3036 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3037 MIPS_STACK_ARGSIZE);
3038 sp -= align_up (len, 16);
3041 fprintf_unfiltered (gdb_stdlog,
3042 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3043 paddr_nz (sp), (long) align_up (len, 16));
3045 /* Initialize the integer and float register pointers. */
3047 float_argreg = mips_fpa0_regnum (current_gdbarch);
3049 /* The struct_return pointer occupies the first parameter-passing reg. */
3053 fprintf_unfiltered (gdb_stdlog,
3054 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3055 argreg, paddr_nz (struct_addr));
3056 write_register (argreg++, struct_addr);
3059 /* Now load as many as possible of the first arguments into
3060 registers, and push the rest onto the stack. Loop thru args
3061 from first to last. */
3062 for (argnum = 0; argnum < nargs; argnum++)
3065 char valbuf[MAX_REGISTER_SIZE];
3066 struct value *arg = args[argnum];
3067 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3068 int len = TYPE_LENGTH (arg_type);
3069 enum type_code typecode = TYPE_CODE (arg_type);
3072 fprintf_unfiltered (gdb_stdlog,
3073 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3074 argnum + 1, len, (int) typecode);
3076 val = (char *) VALUE_CONTENTS (arg);
3078 if (fp_register_arg_p (typecode, arg_type)
3079 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3081 /* This is a floating point value that fits entirely
3082 in a single register. */
3083 /* On 32 bit ABI's the float_argreg is further adjusted
3084 above to ensure that it is even register aligned. */
3085 LONGEST regval = extract_unsigned_integer (val, len);
3087 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3088 float_argreg, phex (regval, len));
3089 write_register (float_argreg++, regval);
3092 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3093 argreg, phex (regval, len));
3094 write_register (argreg, regval);
3099 /* Copy the argument to general registers or the stack in
3100 register-sized pieces. Large arguments are split between
3101 registers and stack. */
3102 /* Note: structs whose size is not a multiple of
3103 mips_regsize() are treated specially: Irix cc passes them
3104 in registers where gcc sometimes puts them on the stack.
3105 For maximum compatibility, we will put them in both
3107 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3108 (len % MIPS_SAVED_REGSIZE != 0));
3109 /* Note: Floating-point values that didn't fit into an FP
3110 register are only written to memory. */
3113 /* Rememer if the argument was written to the stack. */
3114 int stack_used_p = 0;
3115 int partial_len = len < MIPS_SAVED_REGSIZE ?
3116 len : MIPS_SAVED_REGSIZE;
3119 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3122 /* Write this portion of the argument to the stack. */
3123 if (argreg > MIPS_LAST_ARG_REGNUM
3125 || fp_register_arg_p (typecode, arg_type))
3127 /* Should shorter than int integer values be
3128 promoted to int before being stored? */
3129 int longword_offset = 0;
3132 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3134 if (MIPS_STACK_ARGSIZE == 8 &&
3135 (typecode == TYPE_CODE_INT ||
3136 typecode == TYPE_CODE_PTR ||
3137 typecode == TYPE_CODE_FLT) && len <= 4)
3138 longword_offset = MIPS_STACK_ARGSIZE - len;
3143 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3144 paddr_nz (stack_offset));
3145 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3146 paddr_nz (longword_offset));
3149 addr = sp + stack_offset + longword_offset;
3154 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3156 for (i = 0; i < partial_len; i++)
3158 fprintf_unfiltered (gdb_stdlog, "%02x",
3162 write_memory (addr, val, partial_len);
3165 /* Note!!! This is NOT an else clause. Odd sized
3166 structs may go thru BOTH paths. Floating point
3167 arguments will not. */
3168 /* Write this portion of the argument to a general
3169 purpose register. */
3170 if (argreg <= MIPS_LAST_ARG_REGNUM
3171 && !fp_register_arg_p (typecode, arg_type))
3173 LONGEST regval = extract_unsigned_integer (val, partial_len);
3175 /* A non-floating-point argument being passed in a
3176 general register. If a struct or union, and if
3177 the remaining length is smaller than the register
3178 size, we have to adjust the register value on
3181 It does not seem to be necessary to do the
3182 same for integral types.
3184 cagney/2001-07-23: gdb/179: Also, GCC, when
3185 outputting LE O32 with sizeof (struct) <
3186 MIPS_SAVED_REGSIZE, generates a left shift as
3187 part of storing the argument in a register a
3188 register (the left shift isn't generated when
3189 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3190 is quite possible that this is GCC contradicting
3191 the LE/O32 ABI, GDB has not been adjusted to
3192 accommodate this. Either someone needs to
3193 demonstrate that the LE/O32 ABI specifies such a
3194 left shift OR this new ABI gets identified as
3195 such and GDB gets tweaked accordingly. */
3197 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3198 && partial_len < MIPS_SAVED_REGSIZE
3199 && (typecode == TYPE_CODE_STRUCT ||
3200 typecode == TYPE_CODE_UNION))
3201 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3205 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3207 phex (regval, MIPS_SAVED_REGSIZE));
3208 write_register (argreg, regval);
3215 /* Compute the the offset into the stack at which we
3216 will copy the next parameter.
3218 In N32 (N64?), the stack_offset only needs to be
3219 adjusted when it has been used. */
3222 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3226 fprintf_unfiltered (gdb_stdlog, "\n");
3229 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3231 /* Return adjusted stack pointer. */
3235 /* O32 version of push_dummy_call. */
3238 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3239 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3240 struct value **args, CORE_ADDR sp, int struct_return,
3241 CORE_ADDR struct_addr)
3247 int stack_offset = 0;
3249 /* For shared libraries, "t9" needs to point at the function
3251 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3253 /* Set the return address register to point to the entry point of
3254 the program, where a breakpoint lies in wait. */
3255 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3257 /* First ensure that the stack and structure return address (if any)
3258 are properly aligned. The stack has to be at least 64-bit
3259 aligned even on 32-bit machines, because doubles must be 64-bit
3260 aligned. For n32 and n64, stack frames need to be 128-bit
3261 aligned, so we round to this widest known alignment. */
3263 sp = align_down (sp, 16);
3264 struct_addr = align_down (struct_addr, 16);
3266 /* Now make space on the stack for the args. */
3267 for (argnum = 0; argnum < nargs; argnum++)
3268 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3269 MIPS_STACK_ARGSIZE);
3270 sp -= align_up (len, 16);
3273 fprintf_unfiltered (gdb_stdlog,
3274 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3275 paddr_nz (sp), (long) align_up (len, 16));
3277 /* Initialize the integer and float register pointers. */
3279 float_argreg = mips_fpa0_regnum (current_gdbarch);
3281 /* The struct_return pointer occupies the first parameter-passing reg. */
3285 fprintf_unfiltered (gdb_stdlog,
3286 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3287 argreg, paddr_nz (struct_addr));
3288 write_register (argreg++, struct_addr);
3289 stack_offset += MIPS_STACK_ARGSIZE;
3292 /* Now load as many as possible of the first arguments into
3293 registers, and push the rest onto the stack. Loop thru args
3294 from first to last. */
3295 for (argnum = 0; argnum < nargs; argnum++)
3298 char valbuf[MAX_REGISTER_SIZE];
3299 struct value *arg = args[argnum];
3300 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3301 int len = TYPE_LENGTH (arg_type);
3302 enum type_code typecode = TYPE_CODE (arg_type);
3305 fprintf_unfiltered (gdb_stdlog,
3306 "mips_o32_push_dummy_call: %d len=%d type=%d",
3307 argnum + 1, len, (int) typecode);
3309 val = (char *) VALUE_CONTENTS (arg);
3311 /* 32-bit ABIs always start floating point arguments in an
3312 even-numbered floating point register. Round the FP register
3313 up before the check to see if there are any FP registers
3314 left. O32/O64 targets also pass the FP in the integer
3315 registers so also round up normal registers. */
3316 if (!FP_REGISTER_DOUBLE
3317 && fp_register_arg_p (typecode, arg_type))
3319 if ((float_argreg & 1))
3323 /* Floating point arguments passed in registers have to be
3324 treated specially. On 32-bit architectures, doubles
3325 are passed in register pairs; the even register gets
3326 the low word, and the odd register gets the high word.
3327 On O32/O64, the first two floating point arguments are
3328 also copied to general registers, because MIPS16 functions
3329 don't use float registers for arguments. This duplication of
3330 arguments in general registers can't hurt non-MIPS16 functions
3331 because those registers are normally skipped. */
3333 if (fp_register_arg_p (typecode, arg_type)
3334 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3336 if (!FP_REGISTER_DOUBLE && len == 8)
3338 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3339 unsigned long regval;
3341 /* Write the low word of the double to the even register(s). */
3342 regval = extract_unsigned_integer (val + low_offset, 4);
3344 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3345 float_argreg, phex (regval, 4));
3346 write_register (float_argreg++, regval);
3348 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3349 argreg, phex (regval, 4));
3350 write_register (argreg++, regval);
3352 /* Write the high word of the double to the odd register(s). */
3353 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3355 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3356 float_argreg, phex (regval, 4));
3357 write_register (float_argreg++, regval);
3360 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3361 argreg, phex (regval, 4));
3362 write_register (argreg++, regval);
3366 /* This is a floating point value that fits entirely
3367 in a single register. */
3368 /* On 32 bit ABI's the float_argreg is further adjusted
3369 above to ensure that it is even register aligned. */
3370 LONGEST regval = extract_unsigned_integer (val, len);
3372 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3373 float_argreg, phex (regval, len));
3374 write_register (float_argreg++, regval);
3375 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3376 registers for each argument. The below is (my
3377 guess) to ensure that the corresponding integer
3378 register has reserved the same space. */
3380 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3381 argreg, phex (regval, len));
3382 write_register (argreg, regval);
3383 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3385 /* Reserve space for the FP register. */
3386 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3390 /* Copy the argument to general registers or the stack in
3391 register-sized pieces. Large arguments are split between
3392 registers and stack. */
3393 /* Note: structs whose size is not a multiple of
3394 mips_regsize() are treated specially: Irix cc passes them
3395 in registers where gcc sometimes puts them on the stack.
3396 For maximum compatibility, we will put them in both
3398 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3399 (len % MIPS_SAVED_REGSIZE != 0));
3400 /* Structures should be aligned to eight bytes (even arg registers)
3401 on MIPS_ABI_O32, if their first member has double precision. */
3402 if (MIPS_SAVED_REGSIZE < 8
3403 && mips_type_needs_double_align (arg_type))
3408 /* Note: Floating-point values that didn't fit into an FP
3409 register are only written to memory. */
3412 /* Remember if the argument was written to the stack. */
3413 int stack_used_p = 0;
3415 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3418 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3421 /* Write this portion of the argument to the stack. */
3422 if (argreg > MIPS_LAST_ARG_REGNUM
3424 || fp_register_arg_p (typecode, arg_type))
3426 /* Should shorter than int integer values be
3427 promoted to int before being stored? */
3428 int longword_offset = 0;
3431 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3433 if (MIPS_STACK_ARGSIZE == 8 &&
3434 (typecode == TYPE_CODE_INT ||
3435 typecode == TYPE_CODE_PTR ||
3436 typecode == TYPE_CODE_FLT) && len <= 4)
3437 longword_offset = MIPS_STACK_ARGSIZE - len;
3442 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3443 paddr_nz (stack_offset));
3444 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3445 paddr_nz (longword_offset));
3448 addr = sp + stack_offset + longword_offset;
3453 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3455 for (i = 0; i < partial_len; i++)
3457 fprintf_unfiltered (gdb_stdlog, "%02x",
3461 write_memory (addr, val, partial_len);
3464 /* Note!!! This is NOT an else clause. Odd sized
3465 structs may go thru BOTH paths. Floating point
3466 arguments will not. */
3467 /* Write this portion of the argument to a general
3468 purpose register. */
3469 if (argreg <= MIPS_LAST_ARG_REGNUM
3470 && !fp_register_arg_p (typecode, arg_type))
3472 LONGEST regval = extract_signed_integer (val, partial_len);
3473 /* Value may need to be sign extended, because
3474 mips_regsize() != MIPS_SAVED_REGSIZE. */
3476 /* A non-floating-point argument being passed in a
3477 general register. If a struct or union, and if
3478 the remaining length is smaller than the register
3479 size, we have to adjust the register value on
3482 It does not seem to be necessary to do the
3483 same for integral types.
3485 Also don't do this adjustment on O64 binaries.
3487 cagney/2001-07-23: gdb/179: Also, GCC, when
3488 outputting LE O32 with sizeof (struct) <
3489 MIPS_SAVED_REGSIZE, generates a left shift as
3490 part of storing the argument in a register a
3491 register (the left shift isn't generated when
3492 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3493 is quite possible that this is GCC contradicting
3494 the LE/O32 ABI, GDB has not been adjusted to
3495 accommodate this. Either someone needs to
3496 demonstrate that the LE/O32 ABI specifies such a
3497 left shift OR this new ABI gets identified as
3498 such and GDB gets tweaked accordingly. */
3500 if (MIPS_SAVED_REGSIZE < 8
3501 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3502 && partial_len < MIPS_SAVED_REGSIZE
3503 && (typecode == TYPE_CODE_STRUCT ||
3504 typecode == TYPE_CODE_UNION))
3505 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3509 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3511 phex (regval, MIPS_SAVED_REGSIZE));
3512 write_register (argreg, regval);
3515 /* Prevent subsequent floating point arguments from
3516 being passed in floating point registers. */
3517 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3523 /* Compute the the offset into the stack at which we
3524 will copy the next parameter.
3526 In older ABIs, the caller reserved space for
3527 registers that contained arguments. This was loosely
3528 refered to as their "home". Consequently, space is
3529 always allocated. */
3531 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3535 fprintf_unfiltered (gdb_stdlog, "\n");
3538 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3540 /* Return adjusted stack pointer. */
3544 /* O64 version of push_dummy_call. */
3547 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3548 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3549 struct value **args, CORE_ADDR sp, int struct_return,
3550 CORE_ADDR struct_addr)
3556 int stack_offset = 0;
3558 /* For shared libraries, "t9" needs to point at the function
3560 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3562 /* Set the return address register to point to the entry point of
3563 the program, where a breakpoint lies in wait. */
3564 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3566 /* First ensure that the stack and structure return address (if any)
3567 are properly aligned. The stack has to be at least 64-bit
3568 aligned even on 32-bit machines, because doubles must be 64-bit
3569 aligned. For n32 and n64, stack frames need to be 128-bit
3570 aligned, so we round to this widest known alignment. */
3572 sp = align_down (sp, 16);
3573 struct_addr = align_down (struct_addr, 16);
3575 /* Now make space on the stack for the args. */
3576 for (argnum = 0; argnum < nargs; argnum++)
3577 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3578 MIPS_STACK_ARGSIZE);
3579 sp -= align_up (len, 16);
3582 fprintf_unfiltered (gdb_stdlog,
3583 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3584 paddr_nz (sp), (long) align_up (len, 16));
3586 /* Initialize the integer and float register pointers. */
3588 float_argreg = mips_fpa0_regnum (current_gdbarch);
3590 /* The struct_return pointer occupies the first parameter-passing reg. */
3594 fprintf_unfiltered (gdb_stdlog,
3595 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3596 argreg, paddr_nz (struct_addr));
3597 write_register (argreg++, struct_addr);
3598 stack_offset += MIPS_STACK_ARGSIZE;
3601 /* Now load as many as possible of the first arguments into
3602 registers, and push the rest onto the stack. Loop thru args
3603 from first to last. */
3604 for (argnum = 0; argnum < nargs; argnum++)
3607 char valbuf[MAX_REGISTER_SIZE];
3608 struct value *arg = args[argnum];
3609 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3610 int len = TYPE_LENGTH (arg_type);
3611 enum type_code typecode = TYPE_CODE (arg_type);
3614 fprintf_unfiltered (gdb_stdlog,
3615 "mips_o64_push_dummy_call: %d len=%d type=%d",
3616 argnum + 1, len, (int) typecode);
3618 val = (char *) VALUE_CONTENTS (arg);
3620 /* 32-bit ABIs always start floating point arguments in an
3621 even-numbered floating point register. Round the FP register
3622 up before the check to see if there are any FP registers
3623 left. O32/O64 targets also pass the FP in the integer
3624 registers so also round up normal registers. */
3625 if (!FP_REGISTER_DOUBLE
3626 && fp_register_arg_p (typecode, arg_type))
3628 if ((float_argreg & 1))
3632 /* Floating point arguments passed in registers have to be
3633 treated specially. On 32-bit architectures, doubles
3634 are passed in register pairs; the even register gets
3635 the low word, and the odd register gets the high word.
3636 On O32/O64, the first two floating point arguments are
3637 also copied to general registers, because MIPS16 functions
3638 don't use float registers for arguments. This duplication of
3639 arguments in general registers can't hurt non-MIPS16 functions
3640 because those registers are normally skipped. */
3642 if (fp_register_arg_p (typecode, arg_type)
3643 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3645 if (!FP_REGISTER_DOUBLE && len == 8)
3647 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3648 unsigned long regval;
3650 /* Write the low word of the double to the even register(s). */
3651 regval = extract_unsigned_integer (val + low_offset, 4);
3653 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3654 float_argreg, phex (regval, 4));
3655 write_register (float_argreg++, regval);
3657 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3658 argreg, phex (regval, 4));
3659 write_register (argreg++, regval);
3661 /* Write the high word of the double to the odd register(s). */
3662 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3664 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3665 float_argreg, phex (regval, 4));
3666 write_register (float_argreg++, regval);
3669 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3670 argreg, phex (regval, 4));
3671 write_register (argreg++, regval);
3675 /* This is a floating point value that fits entirely
3676 in a single register. */
3677 /* On 32 bit ABI's the float_argreg is further adjusted
3678 above to ensure that it is even register aligned. */
3679 LONGEST regval = extract_unsigned_integer (val, len);
3681 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3682 float_argreg, phex (regval, len));
3683 write_register (float_argreg++, regval);
3684 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3685 registers for each argument. The below is (my
3686 guess) to ensure that the corresponding integer
3687 register has reserved the same space. */
3689 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3690 argreg, phex (regval, len));
3691 write_register (argreg, regval);
3692 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3694 /* Reserve space for the FP register. */
3695 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3699 /* Copy the argument to general registers or the stack in
3700 register-sized pieces. Large arguments are split between
3701 registers and stack. */
3702 /* Note: structs whose size is not a multiple of
3703 mips_regsize() are treated specially: Irix cc passes them
3704 in registers where gcc sometimes puts them on the stack.
3705 For maximum compatibility, we will put them in both
3707 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3708 (len % MIPS_SAVED_REGSIZE != 0));
3709 /* Structures should be aligned to eight bytes (even arg registers)
3710 on MIPS_ABI_O32, if their first member has double precision. */
3711 if (MIPS_SAVED_REGSIZE < 8
3712 && mips_type_needs_double_align (arg_type))
3717 /* Note: Floating-point values that didn't fit into an FP
3718 register are only written to memory. */
3721 /* Remember if the argument was written to the stack. */
3722 int stack_used_p = 0;
3724 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3727 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3730 /* Write this portion of the argument to the stack. */
3731 if (argreg > MIPS_LAST_ARG_REGNUM
3733 || fp_register_arg_p (typecode, arg_type))
3735 /* Should shorter than int integer values be
3736 promoted to int before being stored? */
3737 int longword_offset = 0;
3740 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3742 if (MIPS_STACK_ARGSIZE == 8 &&
3743 (typecode == TYPE_CODE_INT ||
3744 typecode == TYPE_CODE_PTR ||
3745 typecode == TYPE_CODE_FLT) && len <= 4)
3746 longword_offset = MIPS_STACK_ARGSIZE - len;
3751 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3752 paddr_nz (stack_offset));
3753 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3754 paddr_nz (longword_offset));
3757 addr = sp + stack_offset + longword_offset;
3762 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3764 for (i = 0; i < partial_len; i++)
3766 fprintf_unfiltered (gdb_stdlog, "%02x",
3770 write_memory (addr, val, partial_len);
3773 /* Note!!! This is NOT an else clause. Odd sized
3774 structs may go thru BOTH paths. Floating point
3775 arguments will not. */
3776 /* Write this portion of the argument to a general
3777 purpose register. */
3778 if (argreg <= MIPS_LAST_ARG_REGNUM
3779 && !fp_register_arg_p (typecode, arg_type))
3781 LONGEST regval = extract_signed_integer (val, partial_len);
3782 /* Value may need to be sign extended, because
3783 mips_regsize() != MIPS_SAVED_REGSIZE. */
3785 /* A non-floating-point argument being passed in a
3786 general register. If a struct or union, and if
3787 the remaining length is smaller than the register
3788 size, we have to adjust the register value on
3791 It does not seem to be necessary to do the
3792 same for integral types.
3794 Also don't do this adjustment on O64 binaries.
3796 cagney/2001-07-23: gdb/179: Also, GCC, when
3797 outputting LE O32 with sizeof (struct) <
3798 MIPS_SAVED_REGSIZE, generates a left shift as
3799 part of storing the argument in a register a
3800 register (the left shift isn't generated when
3801 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3802 is quite possible that this is GCC contradicting
3803 the LE/O32 ABI, GDB has not been adjusted to
3804 accommodate this. Either someone needs to
3805 demonstrate that the LE/O32 ABI specifies such a
3806 left shift OR this new ABI gets identified as
3807 such and GDB gets tweaked accordingly. */
3809 if (MIPS_SAVED_REGSIZE < 8
3810 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3811 && partial_len < MIPS_SAVED_REGSIZE
3812 && (typecode == TYPE_CODE_STRUCT ||
3813 typecode == TYPE_CODE_UNION))
3814 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3818 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3820 phex (regval, MIPS_SAVED_REGSIZE));
3821 write_register (argreg, regval);
3824 /* Prevent subsequent floating point arguments from
3825 being passed in floating point registers. */
3826 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3832 /* Compute the the offset into the stack at which we
3833 will copy the next parameter.
3835 In older ABIs, the caller reserved space for
3836 registers that contained arguments. This was loosely
3837 refered to as their "home". Consequently, space is
3838 always allocated. */
3840 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3844 fprintf_unfiltered (gdb_stdlog, "\n");
3847 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3849 /* Return adjusted stack pointer. */
3854 mips_pop_frame (void)
3857 struct frame_info *frame = get_current_frame ();
3858 CORE_ADDR new_sp = get_frame_base (frame);
3859 mips_extra_func_info_t proc_desc;
3861 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3863 generic_pop_dummy_frame ();
3864 flush_cached_frames ();
3868 proc_desc = get_frame_extra_info (frame)->proc_desc;
3869 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3870 mips_find_saved_regs (frame);
3871 for (regnum = 0; regnum < NUM_REGS; regnum++)
3872 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3873 && deprecated_get_frame_saved_regs (frame)[regnum])
3875 /* Floating point registers must not be sign extended,
3876 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3878 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
3879 write_register (regnum,
3880 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3881 MIPS_SAVED_REGSIZE));
3883 write_register (regnum,
3884 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3885 MIPS_SAVED_REGSIZE));
3888 write_register (SP_REGNUM, new_sp);
3889 flush_cached_frames ();
3891 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3893 struct linked_proc_info *pi_ptr, *prev_ptr;
3895 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3897 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3899 if (&pi_ptr->info == proc_desc)
3904 error ("Can't locate dummy extra frame info\n");
3906 if (prev_ptr != NULL)
3907 prev_ptr->next = pi_ptr->next;
3909 linked_proc_desc_table = pi_ptr->next;
3913 write_register (mips_regnum (current_gdbarch)->hi,
3914 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3915 MIPS_SAVED_REGSIZE));
3916 write_register (mips_regnum (current_gdbarch)->lo,
3917 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3918 MIPS_SAVED_REGSIZE));
3919 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3920 write_register (mips_regnum (current_gdbarch)->fp_control_status,
3921 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3922 MIPS_SAVED_REGSIZE));
3926 /* Floating point register management.
3928 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3929 64bit operations, these early MIPS cpus treat fp register pairs
3930 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3931 registers and offer a compatibility mode that emulates the MIPS2 fp
3932 model. When operating in MIPS2 fp compat mode, later cpu's split
3933 double precision floats into two 32-bit chunks and store them in
3934 consecutive fp regs. To display 64-bit floats stored in this
3935 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3936 Throw in user-configurable endianness and you have a real mess.
3938 The way this works is:
3939 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3940 double-precision value will be split across two logical registers.
3941 The lower-numbered logical register will hold the low-order bits,
3942 regardless of the processor's endianness.
3943 - If we are on a 64-bit processor, and we are looking for a
3944 single-precision value, it will be in the low ordered bits
3945 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3946 save slot in memory.
3947 - If we are in 64-bit mode, everything is straightforward.
3949 Note that this code only deals with "live" registers at the top of the
3950 stack. We will attempt to deal with saved registers later, when
3951 the raw/cooked register interface is in place. (We need a general
3952 interface that can deal with dynamic saved register sizes -- fp
3953 regs could be 32 bits wide in one frame and 64 on the frame above
3956 static struct type *
3957 mips_float_register_type (void)
3959 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3960 return builtin_type_ieee_single_big;
3962 return builtin_type_ieee_single_little;
3965 static struct type *
3966 mips_double_register_type (void)
3968 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3969 return builtin_type_ieee_double_big;
3971 return builtin_type_ieee_double_little;
3974 /* Copy a 32-bit single-precision value from the current frame
3975 into rare_buffer. */
3978 mips_read_fp_register_single (struct frame_info *frame, int regno,
3981 int raw_size = register_size (current_gdbarch, regno);
3982 char *raw_buffer = alloca (raw_size);
3984 if (!frame_register_read (frame, regno, raw_buffer))
3985 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3988 /* We have a 64-bit value for this register. Find the low-order
3992 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3997 memcpy (rare_buffer, raw_buffer + offset, 4);
4001 memcpy (rare_buffer, raw_buffer, 4);
4005 /* Copy a 64-bit double-precision value from the current frame into
4006 rare_buffer. This may include getting half of it from the next
4010 mips_read_fp_register_double (struct frame_info *frame, int regno,
4013 int raw_size = register_size (current_gdbarch, regno);
4015 if (raw_size == 8 && !mips2_fp_compat ())
4017 /* We have a 64-bit value for this register, and we should use
4019 if (!frame_register_read (frame, regno, rare_buffer))
4020 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4024 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4025 internal_error (__FILE__, __LINE__,
4026 "mips_read_fp_register_double: bad access to "
4027 "odd-numbered FP register");
4029 /* mips_read_fp_register_single will find the correct 32 bits from
4031 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4033 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4034 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4038 mips_read_fp_register_single (frame, regno, rare_buffer);
4039 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4045 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4047 { /* do values for FP (float) regs */
4049 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4050 int inv1, inv2, namelen;
4052 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
4054 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4055 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4058 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
4060 /* 4-byte registers: Print hex and floating. Also print even
4061 numbered registers as doubles. */
4062 mips_read_fp_register_single (frame, regnum, raw_buffer);
4063 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4065 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4067 fprintf_filtered (file, " flt: ");
4069 fprintf_filtered (file, " <invalid float> ");
4071 fprintf_filtered (file, "%-17.9g", flt1);
4073 if (regnum % 2 == 0)
4075 mips_read_fp_register_double (frame, regnum, raw_buffer);
4076 doub = unpack_double (mips_double_register_type (), raw_buffer,
4079 fprintf_filtered (file, " dbl: ");
4081 fprintf_filtered (file, "<invalid double>");
4083 fprintf_filtered (file, "%-24.17g", doub);
4088 /* Eight byte registers: print each one as hex, float and double. */
4089 mips_read_fp_register_single (frame, regnum, raw_buffer);
4090 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4092 mips_read_fp_register_double (frame, regnum, raw_buffer);
4093 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4096 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4098 fprintf_filtered (file, " flt: ");
4100 fprintf_filtered (file, "<invalid float>");
4102 fprintf_filtered (file, "%-17.9g", flt1);
4104 fprintf_filtered (file, " dbl: ");
4106 fprintf_filtered (file, "<invalid double>");
4108 fprintf_filtered (file, "%-24.17g", doub);
4113 mips_print_register (struct ui_file *file, struct frame_info *frame,
4114 int regnum, int all)
4116 struct gdbarch *gdbarch = get_frame_arch (frame);
4117 char raw_buffer[MAX_REGISTER_SIZE];
4120 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4122 mips_print_fp_register (file, frame, regnum);
4126 /* Get the data in raw format. */
4127 if (!frame_register_read (frame, regnum, raw_buffer))
4129 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4133 fputs_filtered (REGISTER_NAME (regnum), file);
4135 /* The problem with printing numeric register names (r26, etc.) is that
4136 the user can't use them on input. Probably the best solution is to
4137 fix it so that either the numeric or the funky (a2, etc.) names
4138 are accepted on input. */
4139 if (regnum < MIPS_NUMREGS)
4140 fprintf_filtered (file, "(r%d): ", regnum);
4142 fprintf_filtered (file, ": ");
4144 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4145 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4149 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4153 /* Replacement for generic do_registers_info.
4154 Print regs in pretty columns. */
4157 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4160 fprintf_filtered (file, " ");
4161 mips_print_fp_register (file, frame, regnum);
4162 fprintf_filtered (file, "\n");
4167 /* Print a row's worth of GP (int) registers, with name labels above */
4170 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4173 struct gdbarch *gdbarch = get_frame_arch (frame);
4174 /* do values for GP (int) regs */
4175 char raw_buffer[MAX_REGISTER_SIZE];
4176 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4180 /* For GP registers, we print a separate row of names above the vals */
4181 fprintf_filtered (file, " ");
4182 for (col = 0, regnum = start_regnum;
4183 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4186 if (*REGISTER_NAME (regnum) == '\0')
4187 continue; /* unused register */
4188 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4189 break; /* end the row: reached FP register */
4190 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4191 REGISTER_NAME (regnum));
4194 /* print the R0 to R31 names */
4195 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4196 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4198 fprintf_filtered (file, "\n ");
4200 /* now print the values in hex, 4 or 8 to the row */
4201 for (col = 0, regnum = start_regnum;
4202 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4205 if (*REGISTER_NAME (regnum) == '\0')
4206 continue; /* unused register */
4207 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4208 break; /* end row: reached FP register */
4209 /* OK: get the data in raw format. */
4210 if (!frame_register_read (frame, regnum, raw_buffer))
4211 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4212 /* pad small registers */
4214 byte < (mips_regsize (current_gdbarch)
4215 - register_size (current_gdbarch, regnum));
4217 printf_filtered (" ");
4218 /* Now print the register value in hex, endian order. */
4219 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4220 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4221 byte < register_size (current_gdbarch, regnum);
4223 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4225 for (byte = register_size (current_gdbarch, regnum) - 1;
4228 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4229 fprintf_filtered (file, " ");
4232 if (col > 0) /* ie. if we actually printed anything... */
4233 fprintf_filtered (file, "\n");
4238 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4241 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4242 struct frame_info *frame, int regnum, int all)
4244 if (regnum != -1) /* do one specified register */
4246 gdb_assert (regnum >= NUM_REGS);
4247 if (*(REGISTER_NAME (regnum)) == '\0')
4248 error ("Not a valid register for the current processor type");
4250 mips_print_register (file, frame, regnum, 0);
4251 fprintf_filtered (file, "\n");
4254 /* do all (or most) registers */
4257 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4259 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4261 if (all) /* true for "INFO ALL-REGISTERS" command */
4262 regnum = print_fp_register_row (file, frame, regnum);
4264 regnum += MIPS_NUMREGS; /* skip floating point regs */
4267 regnum = print_gp_register_row (file, frame, regnum);
4272 /* Is this a branch with a delay slot? */
4274 static int is_delayed (unsigned long);
4277 is_delayed (unsigned long insn)
4280 for (i = 0; i < NUMOPCODES; ++i)
4281 if (mips_opcodes[i].pinfo != INSN_MACRO
4282 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4284 return (i < NUMOPCODES
4285 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4286 | INSN_COND_BRANCH_DELAY
4287 | INSN_COND_BRANCH_LIKELY)));
4291 mips_step_skips_delay (CORE_ADDR pc)
4293 char buf[MIPS_INSTLEN];
4295 /* There is no branch delay slot on MIPS16. */
4296 if (pc_is_mips16 (pc))
4299 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4300 /* If error reading memory, guess that it is not a delayed branch. */
4302 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4306 /* Given PC at the function's start address, attempt to find the
4307 prologue end using SAL information. Return zero if the skip fails.
4309 A non-optimized prologue traditionally has one SAL for the function
4310 and a second for the function body. A single line function has
4311 them both pointing at the same line.
4313 An optimized prologue is similar but the prologue may contain
4314 instructions (SALs) from the instruction body. Need to skip those
4315 while not getting into the function body.
4317 The functions end point and an increasing SAL line are used as
4318 indicators of the prologue's endpoint.
4320 This code is based on the function refine_prologue_limit (versions
4321 found in both ia64 and ppc). */
4324 skip_prologue_using_sal (CORE_ADDR func_addr)
4326 struct symtab_and_line prologue_sal;
4330 /* Get an initial range for the function. */
4331 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4332 start_pc += FUNCTION_START_OFFSET;
4334 prologue_sal = find_pc_line (start_pc, 0);
4335 if (prologue_sal.line != 0)
4337 while (prologue_sal.end < end_pc)
4339 struct symtab_and_line sal;
4341 sal = find_pc_line (prologue_sal.end, 0);
4344 /* Assume that a consecutive SAL for the same (or larger)
4345 line mark the prologue -> body transition. */
4346 if (sal.line >= prologue_sal.line)
4348 /* The case in which compiler's optimizer/scheduler has
4349 moved instructions into the prologue. We look ahead in
4350 the function looking for address ranges whose
4351 corresponding line number is less the first one that we
4352 found for the function. This is more conservative then
4353 refine_prologue_limit which scans a large number of SALs
4354 looking for any in the prologue */
4358 return prologue_sal.end;
4361 /* Skip the PC past function prologue instructions (32-bit version).
4362 This is a helper function for mips_skip_prologue. */
4365 mips32_skip_prologue (CORE_ADDR pc)
4369 int seen_sp_adjust = 0;
4370 int load_immediate_bytes = 0;
4372 /* Find an upper bound on the prologue. */
4373 end_pc = skip_prologue_using_sal (pc);
4375 end_pc = pc + 100; /* Magic. */
4377 /* Skip the typical prologue instructions. These are the stack adjustment
4378 instruction and the instructions that save registers on the stack
4379 or in the gcc frame. */
4380 for (; pc < end_pc; pc += MIPS_INSTLEN)
4382 unsigned long high_word;
4384 inst = mips_fetch_instruction (pc);
4385 high_word = (inst >> 16) & 0xffff;
4387 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4388 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4390 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4391 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4393 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4394 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4395 && (inst & 0x001F0000)) /* reg != $zero */
4398 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4400 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4402 continue; /* reg != $zero */
4404 /* move $s8,$sp. With different versions of gas this will be either
4405 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4406 Accept any one of these. */
4407 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4410 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4412 else if (high_word == 0x3c1c) /* lui $gp,n */
4414 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4416 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4417 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4419 /* The following instructions load $at or $t0 with an immediate
4420 value in preparation for a stack adjustment via
4421 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4422 a local variable, so we accept them only before a stack adjustment
4423 instruction was seen. */
4424 else if (!seen_sp_adjust)
4426 if (high_word == 0x3c01 || /* lui $at,n */
4427 high_word == 0x3c08) /* lui $t0,n */
4429 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4432 else if (high_word == 0x3421 || /* ori $at,$at,n */
4433 high_word == 0x3508 || /* ori $t0,$t0,n */
4434 high_word == 0x3401 || /* ori $at,$zero,n */
4435 high_word == 0x3408) /* ori $t0,$zero,n */
4437 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4447 /* In a frameless function, we might have incorrectly
4448 skipped some load immediate instructions. Undo the skipping
4449 if the load immediate was not followed by a stack adjustment. */
4450 if (load_immediate_bytes && !seen_sp_adjust)
4451 pc -= load_immediate_bytes;
4455 /* Skip the PC past function prologue instructions (16-bit version).
4456 This is a helper function for mips_skip_prologue. */
4459 mips16_skip_prologue (CORE_ADDR pc)
4462 int extend_bytes = 0;
4463 int prev_extend_bytes;
4465 /* Table of instructions likely to be found in a function prologue. */
4468 unsigned short inst;
4469 unsigned short mask;
4476 , /* addiu $sp,offset */
4480 , /* daddiu $sp,offset */
4484 , /* sw reg,n($sp) */
4488 , /* sd reg,n($sp) */
4492 , /* sw $ra,n($sp) */
4496 , /* sd $ra,n($sp) */
4504 , /* sw $a0-$a3,n($s1) */
4508 , /* move reg,$a0-$a3 */
4512 , /* entry pseudo-op */
4516 , /* addiu $s1,$sp,n */
4519 } /* end of table marker */
4522 /* Find an upper bound on the prologue. */
4523 end_pc = skip_prologue_using_sal (pc);
4525 end_pc = pc + 100; /* Magic. */
4527 /* Skip the typical prologue instructions. These are the stack adjustment
4528 instruction and the instructions that save registers on the stack
4529 or in the gcc frame. */
4530 for (; pc < end_pc; pc += MIPS16_INSTLEN)
4532 unsigned short inst;
4535 inst = mips_fetch_instruction (pc);
4537 /* Normally we ignore an extend instruction. However, if it is
4538 not followed by a valid prologue instruction, we must adjust
4539 the pc back over the extend so that it won't be considered
4540 part of the prologue. */
4541 if ((inst & 0xf800) == 0xf000) /* extend */
4543 extend_bytes = MIPS16_INSTLEN;
4546 prev_extend_bytes = extend_bytes;
4549 /* Check for other valid prologue instructions besides extend. */
4550 for (i = 0; table[i].mask != 0; i++)
4551 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4553 if (table[i].mask != 0) /* it was in table? */
4554 continue; /* ignore it */
4558 /* Return the current pc, adjusted backwards by 2 if
4559 the previous instruction was an extend. */
4560 return pc - prev_extend_bytes;
4566 /* To skip prologues, I use this predicate. Returns either PC itself
4567 if the code at PC does not look like a function prologue; otherwise
4568 returns an address that (if we're lucky) follows the prologue. If
4569 LENIENT, then we must skip everything which is involved in setting
4570 up the frame (it's OK to skip more, just so long as we don't skip
4571 anything which might clobber the registers which are being saved.
4572 We must skip more in the case where part of the prologue is in the
4573 delay slot of a non-prologue instruction). */
4576 mips_skip_prologue (CORE_ADDR pc)
4578 /* See if we can determine the end of the prologue via the symbol table.
4579 If so, then return either PC, or the PC after the prologue, whichever
4582 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4584 if (post_prologue_pc != 0)
4585 return max (pc, post_prologue_pc);
4587 /* Can't determine prologue from the symbol table, need to examine
4590 if (pc_is_mips16 (pc))
4591 return mips16_skip_prologue (pc);
4593 return mips32_skip_prologue (pc);
4596 /* Determine how a return value is stored within the MIPS register
4597 file, given the return type `valtype'. */
4599 struct return_value_word
4608 return_value_location (struct type *valtype,
4609 struct return_value_word *hi,
4610 struct return_value_word *lo)
4612 int len = TYPE_LENGTH (valtype);
4614 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4615 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4616 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4618 if (!FP_REGISTER_DOUBLE && len == 8)
4620 /* We need to break a 64bit float in two 32 bit halves and
4621 spread them across a floating-point register pair. */
4622 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4623 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4624 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4625 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
4627 hi->reg_offset = lo->reg_offset;
4628 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4629 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
4635 /* The floating point value fits in a single floating-point
4637 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4638 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
4641 lo->reg = mips_regnum (current_gdbarch)->fp0;
4652 /* Locate a result possibly spread across two registers. */
4654 lo->reg = regnum + 0;
4655 hi->reg = regnum + 1;
4656 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4657 && len < MIPS_SAVED_REGSIZE)
4659 /* "un-left-justify" the value in the low register */
4660 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4665 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4666 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4667 && len < MIPS_SAVED_REGSIZE * 2
4668 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4669 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4671 /* "un-left-justify" the value spread across two registers. */
4672 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4673 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4675 hi->len = len - lo->len;
4679 /* Only perform a partial copy of the second register. */
4682 if (len > MIPS_SAVED_REGSIZE)
4684 lo->len = MIPS_SAVED_REGSIZE;
4685 hi->len = len - MIPS_SAVED_REGSIZE;
4693 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4694 && register_size (current_gdbarch, regnum) == 8
4695 && MIPS_SAVED_REGSIZE == 4)
4697 /* Account for the fact that only the least-signficant part
4698 of the register is being used */
4699 lo->reg_offset += 4;
4700 hi->reg_offset += 4;
4703 hi->buf_offset = lo->len;
4707 /* Given a return value in `regbuf' with a type `valtype', extract and
4708 copy its value into `valbuf'. */
4711 mips_eabi_extract_return_value (struct type *valtype,
4715 struct return_value_word lo;
4716 struct return_value_word hi;
4717 return_value_location (valtype, &hi, &lo);
4719 memcpy (valbuf + lo.buf_offset,
4720 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4724 memcpy (valbuf + hi.buf_offset,
4725 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4730 mips_o64_extract_return_value (struct type *valtype,
4734 struct return_value_word lo;
4735 struct return_value_word hi;
4736 return_value_location (valtype, &hi, &lo);
4738 memcpy (valbuf + lo.buf_offset,
4739 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4743 memcpy (valbuf + hi.buf_offset,
4744 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4748 /* Given a return value in `valbuf' with a type `valtype', write it's
4749 value into the appropriate register. */
4752 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4754 char raw_buffer[MAX_REGISTER_SIZE];
4755 struct return_value_word lo;
4756 struct return_value_word hi;
4757 return_value_location (valtype, &hi, &lo);
4759 memset (raw_buffer, 0, sizeof (raw_buffer));
4760 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4761 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4762 register_size (current_gdbarch, lo.reg));
4766 memset (raw_buffer, 0, sizeof (raw_buffer));
4767 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4768 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4769 register_size (current_gdbarch, hi.reg));
4774 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4776 char raw_buffer[MAX_REGISTER_SIZE];
4777 struct return_value_word lo;
4778 struct return_value_word hi;
4779 return_value_location (valtype, &hi, &lo);
4781 memset (raw_buffer, 0, sizeof (raw_buffer));
4782 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4783 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4784 register_size (current_gdbarch, lo.reg));
4788 memset (raw_buffer, 0, sizeof (raw_buffer));
4789 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4790 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4791 register_size (current_gdbarch, hi.reg));
4795 /* O32 ABI stuff. */
4797 static enum return_value_convention
4798 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
4799 struct regcache *regcache,
4800 void *readbuf, const void *writebuf)
4802 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4804 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4805 || TYPE_CODE (type)== TYPE_CODE_UNION
4806 || TYPE_CODE (type)== TYPE_CODE_ARRAY)
4807 return RETURN_VALUE_STRUCT_CONVENTION;
4808 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4809 && TYPE_LENGTH (type) == 4
4810 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4812 /* A single-precision floating-point value. It fits in the
4813 least significant part of FP0. */
4815 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4816 mips_xfer_register (regcache,
4817 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4819 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4820 return RETURN_VALUE_REGISTER_CONVENTION;
4822 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4823 && TYPE_LENGTH (type) == 8
4824 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4826 /* A double-precision floating-point value. The most
4827 significant part goes in FP1, and the least significant in
4830 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4831 switch (TARGET_BYTE_ORDER)
4833 case BFD_ENDIAN_LITTLE:
4834 mips_xfer_register (regcache,
4835 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4836 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4837 mips_xfer_register (regcache,
4838 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4839 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
4841 case BFD_ENDIAN_BIG:
4842 mips_xfer_register (regcache,
4843 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4844 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4845 mips_xfer_register (regcache,
4846 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4847 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
4850 internal_error (__FILE__, __LINE__, "bad switch");
4852 return RETURN_VALUE_REGISTER_CONVENTION;
4855 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4856 && TYPE_NFIELDS (type) <= 2
4857 && TYPE_NFIELDS (type) >= 1
4858 && ((TYPE_NFIELDS (type) == 1
4859 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4861 || (TYPE_NFIELDS (type) == 2
4862 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4864 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4866 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4868 /* A struct that contains one or two floats. Each value is part
4869 in the least significant part of their floating point
4871 bfd_byte reg[MAX_REGISTER_SIZE];
4874 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
4875 field < TYPE_NFIELDS (type);
4876 field++, regnum += 2)
4878 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4881 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4882 mips_xfer_register (regcache, NUM_REGS + regnum,
4883 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4884 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4886 return RETURN_VALUE_REGISTER_CONVENTION;
4890 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4891 || TYPE_CODE (type) == TYPE_CODE_UNION)
4893 /* A structure or union. Extract the left justified value,
4894 regardless of the byte order. I.e. DO NOT USE
4898 for (offset = 0, regnum = V0_REGNUM;
4899 offset < TYPE_LENGTH (type);
4900 offset += register_size (current_gdbarch, regnum), regnum++)
4902 int xfer = register_size (current_gdbarch, regnum);
4903 if (offset + xfer > TYPE_LENGTH (type))
4904 xfer = TYPE_LENGTH (type) - offset;
4906 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4907 offset, xfer, regnum);
4908 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4909 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
4911 return RETURN_VALUE_REGISTER_CONVENTION;
4916 /* A scalar extract each part but least-significant-byte
4917 justified. o32 thinks registers are 4 byte, regardless of
4918 the ISA. mips_stack_argsize controls this. */
4921 for (offset = 0, regnum = V0_REGNUM;
4922 offset < TYPE_LENGTH (type);
4923 offset += mips_stack_argsize (), regnum++)
4925 int xfer = mips_stack_argsize ();
4927 if (offset + xfer > TYPE_LENGTH (type))
4928 xfer = TYPE_LENGTH (type) - offset;
4930 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4931 offset, xfer, regnum);
4932 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4933 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4935 return RETURN_VALUE_REGISTER_CONVENTION;
4939 /* N32/N44 ABI stuff. */
4941 static enum return_value_convention
4942 mips_n32n64_return_value (struct gdbarch *gdbarch,
4943 struct type *type, struct regcache *regcache,
4944 void *readbuf, const void *writebuf)
4946 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4947 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4948 || TYPE_CODE (type)== TYPE_CODE_UNION
4949 || TYPE_CODE (type)== TYPE_CODE_ARRAY
4950 || TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE)
4951 return RETURN_VALUE_STRUCT_CONVENTION;
4952 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4953 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4955 /* A floating-point value belongs in the least significant part
4958 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4959 mips_xfer_register (regcache,
4960 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4962 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4963 return RETURN_VALUE_REGISTER_CONVENTION;
4965 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4966 && TYPE_NFIELDS (type) <= 2
4967 && TYPE_NFIELDS (type) >= 1
4968 && ((TYPE_NFIELDS (type) == 1
4969 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4971 || (TYPE_NFIELDS (type) == 2
4972 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4974 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4976 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4978 /* A struct that contains one or two floats. Each value is part
4979 in the least significant part of their floating point
4981 bfd_byte reg[MAX_REGISTER_SIZE];
4984 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
4985 field < TYPE_NFIELDS (type);
4986 field++, regnum += 2)
4988 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4991 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4992 mips_xfer_register (regcache, NUM_REGS + regnum,
4993 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4994 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4996 return RETURN_VALUE_REGISTER_CONVENTION;
4998 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4999 || TYPE_CODE (type) == TYPE_CODE_UNION)
5001 /* A structure or union. Extract the left justified value,
5002 regardless of the byte order. I.e. DO NOT USE
5006 for (offset = 0, regnum = V0_REGNUM;
5007 offset < TYPE_LENGTH (type);
5008 offset += register_size (current_gdbarch, regnum), regnum++)
5010 int xfer = register_size (current_gdbarch, regnum);
5011 if (offset + xfer > TYPE_LENGTH (type))
5012 xfer = TYPE_LENGTH (type) - offset;
5014 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5015 offset, xfer, regnum);
5016 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5017 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5019 return RETURN_VALUE_REGISTER_CONVENTION;
5023 /* A scalar extract each part but least-significant-byte
5027 for (offset = 0, regnum = V0_REGNUM;
5028 offset < TYPE_LENGTH (type);
5029 offset += register_size (current_gdbarch, regnum), regnum++)
5031 int xfer = register_size (current_gdbarch, regnum);
5033 if (offset + xfer > TYPE_LENGTH (type))
5034 xfer = TYPE_LENGTH (type) - offset;
5036 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5037 offset, xfer, regnum);
5038 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5039 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
5041 return RETURN_VALUE_REGISTER_CONVENTION;
5046 mips_extract_struct_value_address (struct regcache *regcache)
5048 /* FIXME: This will only work at random. The caller passes the
5049 struct_return address in V0, but it is not preserved. It may
5050 still be there, or this may be a random value. */
5053 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5057 /* Exported procedure: Is PC in the signal trampoline code */
5060 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5062 if (sigtramp_address == 0)
5064 return (pc >= sigtramp_address && pc < sigtramp_end);
5067 /* Root of all "set mips "/"show mips " commands. This will eventually be
5068 used for all MIPS-specific commands. */
5071 show_mips_command (char *args, int from_tty)
5073 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5077 set_mips_command (char *args, int from_tty)
5079 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5080 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5083 /* Commands to show/set the MIPS FPU type. */
5086 show_mipsfpu_command (char *args, int from_tty)
5089 switch (MIPS_FPU_TYPE)
5091 case MIPS_FPU_SINGLE:
5092 fpu = "single-precision";
5094 case MIPS_FPU_DOUBLE:
5095 fpu = "double-precision";
5098 fpu = "absent (none)";
5101 internal_error (__FILE__, __LINE__, "bad switch");
5103 if (mips_fpu_type_auto)
5104 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5107 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5113 set_mipsfpu_command (char *args, int from_tty)
5115 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5116 show_mipsfpu_command (args, from_tty);
5120 set_mipsfpu_single_command (char *args, int from_tty)
5122 mips_fpu_type = MIPS_FPU_SINGLE;
5123 mips_fpu_type_auto = 0;
5124 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5128 set_mipsfpu_double_command (char *args, int from_tty)
5130 mips_fpu_type = MIPS_FPU_DOUBLE;
5131 mips_fpu_type_auto = 0;
5132 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5136 set_mipsfpu_none_command (char *args, int from_tty)
5138 mips_fpu_type = MIPS_FPU_NONE;
5139 mips_fpu_type_auto = 0;
5140 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5144 set_mipsfpu_auto_command (char *args, int from_tty)
5146 mips_fpu_type_auto = 1;
5149 /* Attempt to identify the particular processor model by reading the
5150 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5151 the relevant processor still exists (it dates back to '94) and
5152 secondly this is not the way to do this. The processor type should
5153 be set by forcing an architecture change. */
5156 deprecated_mips_set_processor_regs_hack (void)
5158 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5161 prid = read_register (PRID_REGNUM);
5163 if ((prid & ~0xf) == 0x700)
5164 tdep->mips_processor_reg_names = mips_r3041_reg_names;
5167 /* Just like reinit_frame_cache, but with the right arguments to be
5168 callable as an sfunc. */
5171 reinit_frame_cache_sfunc (char *args, int from_tty,
5172 struct cmd_list_element *c)
5174 reinit_frame_cache ();
5178 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5180 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5181 mips_extra_func_info_t proc_desc;
5183 /* Search for the function containing this address. Set the low bit
5184 of the address when searching, in case we were given an even address
5185 that is the start of a 16-bit function. If we didn't do this,
5186 the search would fail because the symbol table says the function
5187 starts at an odd address, i.e. 1 byte past the given address. */
5188 memaddr = ADDR_BITS_REMOVE (memaddr);
5189 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5191 /* Make an attempt to determine if this is a 16-bit function. If
5192 the procedure descriptor exists and the address therein is odd,
5193 it's definitely a 16-bit function. Otherwise, we have to just
5194 guess that if the address passed in is odd, it's 16-bits. */
5195 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5196 disassembler needs to be able to locally determine the ISA, and
5197 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5201 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5202 info->mach = bfd_mach_mips16;
5206 if (pc_is_mips16 (memaddr))
5207 info->mach = bfd_mach_mips16;
5210 /* Round down the instruction address to the appropriate boundary. */
5211 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5213 /* Set the disassembler options. */
5214 if (tdep->mips_abi == MIPS_ABI_N32
5215 || tdep->mips_abi == MIPS_ABI_N64)
5217 /* Set up the disassembler info, so that we get the right
5218 register names from libopcodes. */
5219 if (tdep->mips_abi == MIPS_ABI_N32)
5220 info->disassembler_options = "gpr-names=n32";
5222 info->disassembler_options = "gpr-names=64";
5223 info->flavour = bfd_target_elf_flavour;
5226 /* This string is not recognized explicitly by the disassembler,
5227 but it tells the disassembler to not try to guess the ABI from
5228 the bfd elf headers, such that, if the user overrides the ABI
5229 of a program linked as NewABI, the disassembly will follow the
5230 register naming conventions specified by the user. */
5231 info->disassembler_options = "gpr-names=32";
5233 /* Call the appropriate disassembler based on the target endian-ness. */
5234 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5235 return print_insn_big_mips (memaddr, info);
5237 return print_insn_little_mips (memaddr, info);
5240 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5241 counter value to determine whether a 16- or 32-bit breakpoint should be
5242 used. It returns a pointer to a string of bytes that encode a breakpoint
5243 instruction, stores the length of the string to *lenptr, and adjusts pc
5244 (if necessary) to point to the actual memory location where the
5245 breakpoint should be inserted. */
5247 static const unsigned char *
5248 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5250 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5252 if (pc_is_mips16 (*pcptr))
5254 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5255 *pcptr = unmake_mips16_addr (*pcptr);
5256 *lenptr = sizeof (mips16_big_breakpoint);
5257 return mips16_big_breakpoint;
5261 /* The IDT board uses an unusual breakpoint value, and
5262 sometimes gets confused when it sees the usual MIPS
5263 breakpoint instruction. */
5264 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5265 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5266 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5268 *lenptr = sizeof (big_breakpoint);
5270 if (strcmp (target_shortname, "mips") == 0)
5271 return idt_big_breakpoint;
5272 else if (strcmp (target_shortname, "ddb") == 0
5273 || strcmp (target_shortname, "pmon") == 0
5274 || strcmp (target_shortname, "lsi") == 0)
5275 return pmon_big_breakpoint;
5277 return big_breakpoint;
5282 if (pc_is_mips16 (*pcptr))
5284 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5285 *pcptr = unmake_mips16_addr (*pcptr);
5286 *lenptr = sizeof (mips16_little_breakpoint);
5287 return mips16_little_breakpoint;
5291 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5292 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5293 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5295 *lenptr = sizeof (little_breakpoint);
5297 if (strcmp (target_shortname, "mips") == 0)
5298 return idt_little_breakpoint;
5299 else if (strcmp (target_shortname, "ddb") == 0
5300 || strcmp (target_shortname, "pmon") == 0
5301 || strcmp (target_shortname, "lsi") == 0)
5302 return pmon_little_breakpoint;
5304 return little_breakpoint;
5309 /* If PC is in a mips16 call or return stub, return the address of the target
5310 PC, which is either the callee or the caller. There are several
5311 cases which must be handled:
5313 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5314 target PC is in $31 ($ra).
5315 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5316 and the target PC is in $2.
5317 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5318 before the jal instruction, this is effectively a call stub
5319 and the the target PC is in $2. Otherwise this is effectively
5320 a return stub and the target PC is in $18.
5322 See the source code for the stubs in gcc/config/mips/mips16.S for
5325 This function implements the SKIP_TRAMPOLINE_CODE macro.
5329 mips_skip_stub (CORE_ADDR pc)
5332 CORE_ADDR start_addr;
5334 /* Find the starting address and name of the function containing the PC. */
5335 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5338 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5339 target PC is in $31 ($ra). */
5340 if (strcmp (name, "__mips16_ret_sf") == 0
5341 || strcmp (name, "__mips16_ret_df") == 0)
5342 return read_signed_register (RA_REGNUM);
5344 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5346 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5347 and the target PC is in $2. */
5348 if (name[19] >= '0' && name[19] <= '9')
5349 return read_signed_register (2);
5351 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5352 before the jal instruction, this is effectively a call stub
5353 and the the target PC is in $2. Otherwise this is effectively
5354 a return stub and the target PC is in $18. */
5355 else if (name[19] == 's' || name[19] == 'd')
5357 if (pc == start_addr)
5359 /* Check if the target of the stub is a compiler-generated
5360 stub. Such a stub for a function bar might have a name
5361 like __fn_stub_bar, and might look like this:
5366 la $1,bar (becomes a lui/addiu pair)
5368 So scan down to the lui/addi and extract the target
5369 address from those two instructions. */
5371 CORE_ADDR target_pc = read_signed_register (2);
5375 /* See if the name of the target function is __fn_stub_*. */
5376 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5378 if (strncmp (name, "__fn_stub_", 10) != 0
5379 && strcmp (name, "etext") != 0
5380 && strcmp (name, "_etext") != 0)
5383 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5384 The limit on the search is arbitrarily set to 20
5385 instructions. FIXME. */
5386 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5388 inst = mips_fetch_instruction (target_pc);
5389 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5390 pc = (inst << 16) & 0xffff0000; /* high word */
5391 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5392 return pc | (inst & 0xffff); /* low word */
5395 /* Couldn't find the lui/addui pair, so return stub address. */
5399 /* This is the 'return' part of a call stub. The return
5400 address is in $r18. */
5401 return read_signed_register (18);
5404 return 0; /* not a stub */
5408 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5409 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5412 mips_in_call_stub (CORE_ADDR pc, char *name)
5414 CORE_ADDR start_addr;
5416 /* Find the starting address of the function containing the PC. If the
5417 caller didn't give us a name, look it up at the same time. */
5418 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5421 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5423 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5424 if (name[19] >= '0' && name[19] <= '9')
5426 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5427 before the jal instruction, this is effectively a call stub. */
5428 else if (name[19] == 's' || name[19] == 'd')
5429 return pc == start_addr;
5432 return 0; /* not a stub */
5436 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5437 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5440 mips_in_return_stub (CORE_ADDR pc, char *name)
5442 CORE_ADDR start_addr;
5444 /* Find the starting address of the function containing the PC. */
5445 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5448 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5449 if (strcmp (name, "__mips16_ret_sf") == 0
5450 || strcmp (name, "__mips16_ret_df") == 0)
5453 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5454 i.e. after the jal instruction, this is effectively a return stub. */
5455 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5456 && (name[19] == 's' || name[19] == 'd')
5457 && pc != start_addr)
5460 return 0; /* not a stub */
5464 /* Return non-zero if the PC is in a library helper function that should
5465 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5468 mips_ignore_helper (CORE_ADDR pc)
5472 /* Find the starting address and name of the function containing the PC. */
5473 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5476 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5477 that we want to ignore. */
5478 return (strcmp (name, "__mips16_ret_sf") == 0
5479 || strcmp (name, "__mips16_ret_df") == 0);
5483 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5484 the register stored on the stack (32) is different to its real raw
5485 size (64). The below ensures that registers are fetched from the
5486 stack using their ABI size and then stored into the RAW_BUFFER
5487 using their raw size.
5489 The alternative to adding this function would be to add an ABI
5490 macro - REGISTER_STACK_SIZE(). */
5493 mips_get_saved_register (char *raw_buffer,
5496 struct frame_info *frame,
5498 enum lval_type *lvalp)
5501 enum lval_type lvalx;
5505 /* Always a pseudo. */
5506 gdb_assert (regnum >= NUM_REGS);
5508 /* Make certain that all needed parameters are present. */
5513 if (optimizedp == NULL)
5514 optimizedp = &optimizedx;
5516 if ((regnum % NUM_REGS) == SP_REGNUM)
5517 /* The SP_REGNUM is special, its value is stored in saved_regs.
5518 In fact, it is so special that it can even only be fetched
5519 using a raw register number! Once this code as been converted
5520 to frame-unwind the problem goes away. */
5521 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5522 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5523 &realnumx, raw_buffer);
5525 /* Get it from the next frame. */
5526 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5527 regnum, optimizedp, lvalp, addrp,
5528 &realnumx, raw_buffer);
5531 /* Immediately after a function call, return the saved pc.
5532 Can't always go through the frames for this because on some machines
5533 the new frame is not set up until the new function executes
5534 some instructions. */
5537 mips_saved_pc_after_call (struct frame_info *frame)
5539 return read_signed_register (RA_REGNUM);
5543 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5544 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5547 mips_stab_reg_to_regnum (int num)
5550 if (num >= 0 && num < 32)
5552 else if (num >= 38 && num < 70)
5553 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
5555 regnum = mips_regnum (current_gdbarch)->hi;
5557 regnum = mips_regnum (current_gdbarch)->lo;
5559 /* This will hopefully (eventually) provoke a warning. Should
5560 we be calling complaint() here? */
5561 return NUM_REGS + NUM_PSEUDO_REGS;
5562 return NUM_REGS + regnum;
5566 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5567 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5570 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5573 if (num >= 0 && num < 32)
5575 else if (num >= 32 && num < 64)
5576 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
5578 regnum = mips_regnum (current_gdbarch)->hi;
5580 regnum = mips_regnum (current_gdbarch)->lo;
5582 /* This will hopefully (eventually) provoke a warning. Should we
5583 be calling complaint() here? */
5584 return NUM_REGS + NUM_PSEUDO_REGS;
5585 return NUM_REGS + regnum;
5589 mips_register_sim_regno (int regnum)
5591 /* Only makes sense to supply raw registers. */
5592 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5593 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5594 decide if it is valid. Should instead define a standard sim/gdb
5595 register numbering scheme. */
5596 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5597 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5600 return LEGACY_SIM_REGNO_IGNORE;
5604 /* Convert an integer into an address. By first converting the value
5605 into a pointer and then extracting it signed, the address is
5606 guarenteed to be correctly sign extended. */
5609 mips_integer_to_address (struct type *type, void *buf)
5611 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5612 LONGEST val = unpack_long (type, buf);
5613 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5614 return extract_signed_integer (tmp,
5615 TYPE_LENGTH (builtin_type_void_data_ptr));
5619 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5621 enum mips_abi *abip = (enum mips_abi *) obj;
5622 const char *name = bfd_get_section_name (abfd, sect);
5624 if (*abip != MIPS_ABI_UNKNOWN)
5627 if (strncmp (name, ".mdebug.", 8) != 0)
5630 if (strcmp (name, ".mdebug.abi32") == 0)
5631 *abip = MIPS_ABI_O32;
5632 else if (strcmp (name, ".mdebug.abiN32") == 0)
5633 *abip = MIPS_ABI_N32;
5634 else if (strcmp (name, ".mdebug.abi64") == 0)
5635 *abip = MIPS_ABI_N64;
5636 else if (strcmp (name, ".mdebug.abiO64") == 0)
5637 *abip = MIPS_ABI_O64;
5638 else if (strcmp (name, ".mdebug.eabi32") == 0)
5639 *abip = MIPS_ABI_EABI32;
5640 else if (strcmp (name, ".mdebug.eabi64") == 0)
5641 *abip = MIPS_ABI_EABI64;
5643 warning ("unsupported ABI %s.", name + 8);
5646 static enum mips_abi
5647 global_mips_abi (void)
5651 for (i = 0; mips_abi_strings[i] != NULL; i++)
5652 if (mips_abi_strings[i] == mips_abi_string)
5653 return (enum mips_abi) i;
5655 internal_error (__FILE__, __LINE__,
5656 "unknown ABI string");
5659 static struct gdbarch *
5660 mips_gdbarch_init (struct gdbarch_info info,
5661 struct gdbarch_list *arches)
5663 struct gdbarch *gdbarch;
5664 struct gdbarch_tdep *tdep;
5666 enum mips_abi mips_abi, found_abi, wanted_abi;
5673 /* First of all, extract the elf_flags, if available. */
5674 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5675 elf_flags = elf_elfheader (info.abfd)->e_flags;
5678 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5679 switch ((elf_flags & EF_MIPS_ABI))
5681 case E_MIPS_ABI_O32:
5682 mips_abi = MIPS_ABI_O32;
5684 case E_MIPS_ABI_O64:
5685 mips_abi = MIPS_ABI_O64;
5687 case E_MIPS_ABI_EABI32:
5688 mips_abi = MIPS_ABI_EABI32;
5690 case E_MIPS_ABI_EABI64:
5691 mips_abi = MIPS_ABI_EABI64;
5694 if ((elf_flags & EF_MIPS_ABI2))
5695 mips_abi = MIPS_ABI_N32;
5697 mips_abi = MIPS_ABI_UNKNOWN;
5701 /* GCC creates a pseudo-section whose name describes the ABI. */
5702 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5703 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5705 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5706 Use the ABI from the last architecture if there is one. */
5707 if (info.abfd == NULL && arches != NULL)
5708 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5710 /* Try the architecture for any hint of the correct ABI. */
5711 if (mips_abi == MIPS_ABI_UNKNOWN
5712 && info.bfd_arch_info != NULL
5713 && info.bfd_arch_info->arch == bfd_arch_mips)
5715 switch (info.bfd_arch_info->mach)
5717 case bfd_mach_mips3900:
5718 mips_abi = MIPS_ABI_EABI32;
5720 case bfd_mach_mips4100:
5721 case bfd_mach_mips5000:
5722 mips_abi = MIPS_ABI_EABI64;
5724 case bfd_mach_mips8000:
5725 case bfd_mach_mips10000:
5726 /* On Irix, ELF64 executables use the N64 ABI. The
5727 pseudo-sections which describe the ABI aren't present
5728 on IRIX. (Even for executables created by gcc.) */
5729 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5730 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5731 mips_abi = MIPS_ABI_N64;
5733 mips_abi = MIPS_ABI_N32;
5738 if (mips_abi == MIPS_ABI_UNKNOWN)
5739 mips_abi = MIPS_ABI_O32;
5741 /* Now that we have found what the ABI for this binary would be,
5742 check whether the user is overriding it. */
5743 found_abi = mips_abi;
5744 wanted_abi = global_mips_abi ();
5745 if (wanted_abi != MIPS_ABI_UNKNOWN)
5746 mips_abi = wanted_abi;
5750 fprintf_unfiltered (gdb_stdlog,
5751 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5753 fprintf_unfiltered (gdb_stdlog,
5754 "mips_gdbarch_init: mips_abi = %d\n",
5756 fprintf_unfiltered (gdb_stdlog,
5757 "mips_gdbarch_init: found_mips_abi = %d\n",
5761 /* try to find a pre-existing architecture */
5762 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5764 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5766 /* MIPS needs to be pedantic about which ABI the object is
5768 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5770 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5772 /* Need to be pedantic about which register virtual size is
5774 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5775 != mips64_transfers_32bit_regs_p)
5777 return arches->gdbarch;
5780 /* Need a new architecture. Fill in a target specific vector. */
5781 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5782 gdbarch = gdbarch_alloc (&info, tdep);
5783 tdep->elf_flags = elf_flags;
5784 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5786 /* Initially set everything according to the default ABI/ISA. */
5787 set_gdbarch_short_bit (gdbarch, 16);
5788 set_gdbarch_int_bit (gdbarch, 32);
5789 set_gdbarch_float_bit (gdbarch, 32);
5790 set_gdbarch_double_bit (gdbarch, 64);
5791 set_gdbarch_long_double_bit (gdbarch, 64);
5792 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5793 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5794 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5795 tdep->found_abi = found_abi;
5796 tdep->mips_abi = mips_abi;
5798 set_gdbarch_elf_make_msymbol_special (gdbarch,
5799 mips_elf_make_msymbol_special);
5801 /* Fill in the OS dependant register numbers. */
5803 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5804 struct mips_regnum);
5805 tdep->regnum = regnum;
5806 if (info.osabi == GDB_OSABI_IRIX)
5811 regnum->badvaddr = 66;
5814 regnum->fp_control_status = 69;
5815 regnum->fp_implementation_revision = 70;
5820 regnum->lo = MIPS_EMBED_LO_REGNUM;
5821 regnum->hi = MIPS_EMBED_HI_REGNUM;
5822 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5823 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5824 regnum->pc = MIPS_EMBED_PC_REGNUM;
5825 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5826 regnum->fp_control_status = 70;
5827 regnum->fp_implementation_revision = 71;
5830 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5831 replaced by read_pc? */
5832 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5833 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5834 set_gdbarch_num_regs (gdbarch, num_regs);
5835 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5841 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5842 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5843 tdep->mips_default_saved_regsize = 4;
5844 tdep->mips_default_stack_argsize = 4;
5845 tdep->mips_fp_register_double = 0;
5846 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5847 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5848 tdep->default_mask_address_p = 0;
5849 set_gdbarch_long_bit (gdbarch, 32);
5850 set_gdbarch_ptr_bit (gdbarch, 32);
5851 set_gdbarch_long_long_bit (gdbarch, 64);
5852 set_gdbarch_deprecated_reg_struct_has_addr
5853 (gdbarch, mips_o32_reg_struct_has_addr);
5856 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5857 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5858 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5859 tdep->mips_default_saved_regsize = 8;
5860 tdep->mips_default_stack_argsize = 8;
5861 tdep->mips_fp_register_double = 1;
5862 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5863 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5864 tdep->default_mask_address_p = 0;
5865 set_gdbarch_long_bit (gdbarch, 32);
5866 set_gdbarch_ptr_bit (gdbarch, 32);
5867 set_gdbarch_long_long_bit (gdbarch, 64);
5868 set_gdbarch_deprecated_reg_struct_has_addr
5869 (gdbarch, mips_o32_reg_struct_has_addr);
5870 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5872 case MIPS_ABI_EABI32:
5873 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5874 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5875 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5876 tdep->mips_default_saved_regsize = 4;
5877 tdep->mips_default_stack_argsize = 4;
5878 tdep->mips_fp_register_double = 0;
5879 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5880 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5881 tdep->default_mask_address_p = 0;
5882 set_gdbarch_long_bit (gdbarch, 32);
5883 set_gdbarch_ptr_bit (gdbarch, 32);
5884 set_gdbarch_long_long_bit (gdbarch, 64);
5885 set_gdbarch_deprecated_reg_struct_has_addr
5886 (gdbarch, mips_eabi_reg_struct_has_addr);
5887 set_gdbarch_use_struct_convention (gdbarch,
5888 mips_eabi_use_struct_convention);
5890 case MIPS_ABI_EABI64:
5891 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5892 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5893 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5894 tdep->mips_default_saved_regsize = 8;
5895 tdep->mips_default_stack_argsize = 8;
5896 tdep->mips_fp_register_double = 1;
5897 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5898 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5899 tdep->default_mask_address_p = 0;
5900 set_gdbarch_long_bit (gdbarch, 64);
5901 set_gdbarch_ptr_bit (gdbarch, 64);
5902 set_gdbarch_long_long_bit (gdbarch, 64);
5903 set_gdbarch_deprecated_reg_struct_has_addr
5904 (gdbarch, mips_eabi_reg_struct_has_addr);
5905 set_gdbarch_use_struct_convention (gdbarch,
5906 mips_eabi_use_struct_convention);
5909 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5910 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5911 tdep->mips_default_saved_regsize = 8;
5912 tdep->mips_default_stack_argsize = 8;
5913 tdep->mips_fp_register_double = 1;
5914 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5915 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5916 tdep->default_mask_address_p = 0;
5917 set_gdbarch_long_bit (gdbarch, 32);
5918 set_gdbarch_ptr_bit (gdbarch, 32);
5919 set_gdbarch_long_long_bit (gdbarch, 64);
5920 set_gdbarch_deprecated_reg_struct_has_addr
5921 (gdbarch, mips_n32n64_reg_struct_has_addr);
5924 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5925 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5926 tdep->mips_default_saved_regsize = 8;
5927 tdep->mips_default_stack_argsize = 8;
5928 tdep->mips_fp_register_double = 1;
5929 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5930 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5931 tdep->default_mask_address_p = 0;
5932 set_gdbarch_long_bit (gdbarch, 64);
5933 set_gdbarch_ptr_bit (gdbarch, 64);
5934 set_gdbarch_long_long_bit (gdbarch, 64);
5935 set_gdbarch_deprecated_reg_struct_has_addr
5936 (gdbarch, mips_n32n64_reg_struct_has_addr);
5939 internal_error (__FILE__, __LINE__,
5940 "unknown ABI in switch");
5943 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5944 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5947 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5948 flag in object files because to do so would make it impossible to
5949 link with libraries compiled without "-gp32". This is
5950 unnecessarily restrictive.
5952 We could solve this problem by adding "-gp32" multilibs to gcc,
5953 but to set this flag before gcc is built with such multilibs will
5954 break too many systems.''
5956 But even more unhelpfully, the default linker output target for
5957 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5958 for 64-bit programs - you need to change the ABI to change this,
5959 and not all gcc targets support that currently. Therefore using
5960 this flag to detect 32-bit mode would do the wrong thing given
5961 the current gcc - it would make GDB treat these 64-bit programs
5962 as 32-bit programs by default. */
5964 /* enable/disable the MIPS FPU */
5965 if (!mips_fpu_type_auto)
5966 tdep->mips_fpu_type = mips_fpu_type;
5967 else if (info.bfd_arch_info != NULL
5968 && info.bfd_arch_info->arch == bfd_arch_mips)
5969 switch (info.bfd_arch_info->mach)
5971 case bfd_mach_mips3900:
5972 case bfd_mach_mips4100:
5973 case bfd_mach_mips4111:
5974 tdep->mips_fpu_type = MIPS_FPU_NONE;
5976 case bfd_mach_mips4650:
5977 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5980 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5984 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5986 /* MIPS version of register names. */
5987 set_gdbarch_register_name (gdbarch, mips_register_name);
5988 if (info.osabi == GDB_OSABI_IRIX)
5989 tdep->mips_processor_reg_names = mips_irix_reg_names;
5990 else if (info.bfd_arch_info != NULL && info.bfd_arch_info->mach == bfd_mach_mips3900)
5991 tdep->mips_processor_reg_names = mips_tx39_reg_names;
5993 tdep->mips_processor_reg_names = mips_generic_reg_names;
5994 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5995 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5996 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5997 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5999 /* Add/remove bits from an address. The MIPS needs be careful to
6000 ensure that all 32 bit addresses are sign extended to 64 bits. */
6001 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6003 /* There's a mess in stack frame creation. See comments in
6004 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6005 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6007 /* Map debug register numbers onto internal register numbers. */
6008 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6009 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6010 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6011 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6012 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6014 /* Initialize a frame */
6015 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6016 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6018 /* MIPS version of CALL_DUMMY */
6020 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6021 replaced by a command, and all targets will default to on stack
6022 (regardless of the stack's execute status). */
6023 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6024 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6025 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6026 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6027 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6028 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6029 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6031 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6032 set_gdbarch_frameless_function_invocation (gdbarch,
6033 generic_frameless_function_invocation_not);
6034 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6035 set_gdbarch_frame_args_skip (gdbarch, 0);
6037 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6039 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6040 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6041 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6043 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6044 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6046 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6047 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6048 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6050 set_gdbarch_function_start_offset (gdbarch, 0);
6052 set_gdbarch_register_type (gdbarch, mips_register_type);
6054 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6055 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6057 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6059 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6060 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6061 need to all be folded into the target vector. Since they are
6062 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6063 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6065 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6067 /* Hook in OS ABI-specific overrides, if they have been registered. */
6068 gdbarch_init_osabi (info, gdbarch);
6070 set_gdbarch_extract_struct_value_address (gdbarch,
6071 mips_extract_struct_value_address);
6073 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6075 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6076 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6082 mips_abi_update (char *ignore_args, int from_tty,
6083 struct cmd_list_element *c)
6085 struct gdbarch_info info;
6087 /* Force the architecture to update, and (if it's a MIPS architecture)
6088 mips_gdbarch_init will take care of the rest. */
6089 gdbarch_info_init (&info);
6090 gdbarch_update_p (info);
6093 /* Print out which MIPS ABI is in use. */
6096 show_mips_abi (char *ignore_args, int from_tty)
6098 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6100 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6103 enum mips_abi global_abi = global_mips_abi ();
6104 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6105 const char *actual_abi_str = mips_abi_strings[actual_abi];
6107 if (global_abi == MIPS_ABI_UNKNOWN)
6108 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6110 else if (global_abi == actual_abi)
6112 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6116 /* Probably shouldn't happen... */
6118 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6120 mips_abi_strings[global_abi]);
6126 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6128 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6132 int ef_mips_32bitmode;
6133 /* determine the ISA */
6134 switch (tdep->elf_flags & EF_MIPS_ARCH)
6152 /* determine the size of a pointer */
6153 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: ef_mips_arch = %d\n",
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6166 mips_abi_strings[tdep->mips_abi]);
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6169 mips_mask_address_p (),
6170 tdep->default_mask_address_p);
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6174 FP_REGISTER_DOUBLE);
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6177 MIPS_DEFAULT_FPU_TYPE,
6178 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6179 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6180 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: MIPS_EABI = %d\n",
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6188 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6189 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6190 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6194 MIPS_DEFAULT_SAVED_REGSIZE);
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6197 FP_REGISTER_DOUBLE);
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6200 MIPS_DEFAULT_STACK_ARGSIZE);
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6203 MIPS_STACK_ARGSIZE);
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: A0_REGNUM = %d\n",
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6209 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6212 XSTRING (ATTACH_DETACH));
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6215 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6218 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6221 FIRST_EMBED_REGNUM);
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6224 XSTRING (IGNORE_HELPER_CALL (PC)));
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6227 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6230 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6234 #ifdef MACHINE_CPROC_FP_OFFSET
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6237 MACHINE_CPROC_FP_OFFSET);
6239 #ifdef MACHINE_CPROC_PC_OFFSET
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6242 MACHINE_CPROC_PC_OFFSET);
6244 #ifdef MACHINE_CPROC_SP_OFFSET
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6247 MACHINE_CPROC_SP_OFFSET);
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6261 MIPS_LAST_ARG_REGNUM,
6262 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6268 MIPS_SAVED_REGSIZE);
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: PRID_REGNUM = %d\n",
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: PROC_PC_REG = function?\n");
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: PS_REGNUM = %d\n",
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: RA_REGNUM = %d\n",
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: SAVED_BYTES = %d\n",
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: SAVED_FP = %d\n",
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: SAVED_PC = %d\n",
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6319 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6327 SIGFRAME_FPREGSAVE_OFF);
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6333 SIGFRAME_REGSAVE_OFF);
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6336 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6339 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6342 SOFTWARE_SINGLE_STEP_P ());
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6345 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6346 #ifdef STACK_END_ADDR
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6353 XSTRING (STEP_SKIPS_DELAY (PC)));
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6356 STEP_SKIPS_DELAY_P);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6359 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: T9_REGNUM = %d\n",
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6367 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6370 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6374 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6381 #ifdef TRACE_FLAVOR_SIZE
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_SET # %s\n",
6389 XSTRING (TRACE_SET (X,STATE)));
6391 #ifdef UNUSED_REGNUM
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: V0_REGNUM = %d\n",
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6401 (long) VM_MIN_ADDRESS);
6402 fprintf_unfiltered (file,
6403 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6410 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6413 _initialize_mips_tdep (void)
6415 static struct cmd_list_element *mipsfpulist = NULL;
6416 struct cmd_list_element *c;
6418 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6419 if (MIPS_ABI_LAST + 1
6420 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6421 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6423 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6425 /* Add root prefix command for all "set mips"/"show mips" commands */
6426 add_prefix_cmd ("mips", no_class, set_mips_command,
6427 "Various MIPS specific commands.",
6428 &setmipscmdlist, "set mips ", 0, &setlist);
6430 add_prefix_cmd ("mips", no_class, show_mips_command,
6431 "Various MIPS specific commands.",
6432 &showmipscmdlist, "show mips ", 0, &showlist);
6434 /* Allow the user to override the saved register size. */
6435 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6438 &mips_saved_regsize_string, "\
6439 Set size of general purpose registers saved on the stack.\n\
6440 This option can be set to one of:\n\
6441 32 - Force GDB to treat saved GP registers as 32-bit\n\
6442 64 - Force GDB to treat saved GP registers as 64-bit\n\
6443 auto - Allow GDB to use the target's default setting or autodetect the\n\
6444 saved GP register size from information contained in the executable.\n\
6449 /* Allow the user to override the argument stack size. */
6450 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6453 &mips_stack_argsize_string, "\
6454 Set the amount of stack space reserved for each argument.\n\
6455 This option can be set to one of:\n\
6456 32 - Force GDB to allocate 32-bit chunks per argument\n\
6457 64 - Force GDB to allocate 64-bit chunks per argument\n\
6458 auto - Allow GDB to determine the correct setting from the current\n\
6459 target and executable (default)",
6463 /* Allow the user to override the ABI. */
6464 c = add_set_enum_cmd
6465 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6466 "Set the ABI used by this program.\n"
6467 "This option can be set to one of:\n"
6468 " auto - the default ABI associated with the current binary\n"
6476 set_cmd_sfunc (c, mips_abi_update);
6477 add_cmd ("abi", class_obscure, show_mips_abi,
6478 "Show ABI in use by MIPS target", &showmipscmdlist);
6480 /* Let the user turn off floating point and set the fence post for
6481 heuristic_proc_start. */
6483 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6484 "Set use of MIPS floating-point coprocessor.",
6485 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6486 add_cmd ("single", class_support, set_mipsfpu_single_command,
6487 "Select single-precision MIPS floating-point coprocessor.",
6489 add_cmd ("double", class_support, set_mipsfpu_double_command,
6490 "Select double-precision MIPS floating-point coprocessor.",
6492 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6493 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6494 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6495 add_cmd ("none", class_support, set_mipsfpu_none_command,
6496 "Select no MIPS floating-point coprocessor.",
6498 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6499 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6500 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6501 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6502 "Select MIPS floating-point coprocessor automatically.",
6504 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6505 "Show current use of MIPS floating-point coprocessor target.",
6508 /* We really would like to have both "0" and "unlimited" work, but
6509 command.c doesn't deal with that. So make it a var_zinteger
6510 because the user can always use "999999" or some such for unlimited. */
6511 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6512 (char *) &heuristic_fence_post,
6514 Set the distance searched for the start of a function.\n\
6515 If you are debugging a stripped executable, GDB needs to search through the\n\
6516 program for the start of a function. This command sets the distance of the\n\
6517 search. The only need to set it is when debugging a stripped executable.",
6519 /* We need to throw away the frame cache when we set this, since it
6520 might change our ability to get backtraces. */
6521 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6522 add_show_from_set (c, &showlist);
6524 /* Allow the user to control whether the upper bits of 64-bit
6525 addresses should be zeroed. */
6526 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6527 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6528 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6529 allow GDB to determine the correct value.\n", "\
6530 Show zeroing of upper 32 bits of 64-bit addresses.",
6531 NULL, show_mask_address,
6532 &setmipscmdlist, &showmipscmdlist);
6534 /* Allow the user to control the size of 32 bit registers within the
6535 raw remote packet. */
6536 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6537 var_boolean, &mips64_transfers_32bit_regs_p, "\
6538 Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6539 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6540 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6541 64 bits for others. Use \"off\" to disable compatibility mode", "\
6542 Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6543 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6544 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6545 64 bits for others. Use \"off\" to disable compatibility mode",
6546 set_mips64_transfers_32bit_regs, NULL,
6547 &setlist, &showlist);
6549 /* Debug this files internals. */
6550 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6551 &mips_debug, "Set mips debugging.\n\
6552 When non-zero, mips specific debugging is enabled.", &setdebuglist),