1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
47 @cindex options for i386
48 @cindex options for x86-64
50 @cindex x86-64 options
52 The i386 version of @code{@value{AS}} has a few machine
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80 @cindex @samp{--divide} option, i386
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
131 In addition to the basic instruction set, the assembler can be told to
132 accept various extension mnemonics. For example,
133 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134 @var{vmx}. The following extensions are currently supported:
188 @code{avx512_4fmaps},
189 @code{avx512_4vnniw},
190 @code{avx512_vpopcntdq},
193 @code{avx512_bitalg},
203 @code{noavx512_4fmaps},
204 @code{noavx512_4vnniw},
205 @code{noavx512_vpopcntdq},
206 @code{noavx512_vbmi2},
207 @code{noavx512_vnni},
208 @code{noavx512_bitalg},
245 Note that rather than extending a basic instruction set, the extension
246 mnemonics starting with @code{no} revoke the respective functionality.
248 When the @code{.arch} directive is used with @option{-march}, the
249 @code{.arch} directive will take precedent.
251 @cindex @samp{-mtune=} option, i386
252 @cindex @samp{-mtune=} option, x86-64
253 @item -mtune=@var{CPU}
254 This option specifies a processor to optimize for. When used in
255 conjunction with the @option{-march} option, only instructions
256 of the processor specified by the @option{-march} option will be
259 Valid @var{CPU} values are identical to the processor list of
260 @option{-march=@var{CPU}}.
262 @cindex @samp{-msse2avx} option, i386
263 @cindex @samp{-msse2avx} option, x86-64
265 This option specifies that the assembler should encode SSE instructions
268 @cindex @samp{-msse-check=} option, i386
269 @cindex @samp{-msse-check=} option, x86-64
270 @item -msse-check=@var{none}
271 @itemx -msse-check=@var{warning}
272 @itemx -msse-check=@var{error}
273 These options control if the assembler should check SSE instructions.
274 @option{-msse-check=@var{none}} will make the assembler not to check SSE
275 instructions, which is the default. @option{-msse-check=@var{warning}}
276 will make the assembler issue a warning for any SSE instruction.
277 @option{-msse-check=@var{error}} will make the assembler issue an error
278 for any SSE instruction.
280 @cindex @samp{-mavxscalar=} option, i386
281 @cindex @samp{-mavxscalar=} option, x86-64
282 @item -mavxscalar=@var{128}
283 @itemx -mavxscalar=@var{256}
284 These options control how the assembler should encode scalar AVX
285 instructions. @option{-mavxscalar=@var{128}} will encode scalar
286 AVX instructions with 128bit vector length, which is the default.
287 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
288 with 256bit vector length.
290 @cindex @samp{-mevexlig=} option, i386
291 @cindex @samp{-mevexlig=} option, x86-64
292 @item -mevexlig=@var{128}
293 @itemx -mevexlig=@var{256}
294 @itemx -mevexlig=@var{512}
295 These options control how the assembler should encode length-ignored
296 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
297 EVEX instructions with 128bit vector length, which is the default.
298 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
299 encode LIG EVEX instructions with 256bit and 512bit vector length,
302 @cindex @samp{-mevexwig=} option, i386
303 @cindex @samp{-mevexwig=} option, x86-64
304 @item -mevexwig=@var{0}
305 @itemx -mevexwig=@var{1}
306 These options control how the assembler should encode w-ignored (WIG)
307 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
308 EVEX instructions with evex.w = 0, which is the default.
309 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
312 @cindex @samp{-mmnemonic=} option, i386
313 @cindex @samp{-mmnemonic=} option, x86-64
314 @item -mmnemonic=@var{att}
315 @itemx -mmnemonic=@var{intel}
316 This option specifies instruction mnemonic for matching instructions.
317 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
320 @cindex @samp{-msyntax=} option, i386
321 @cindex @samp{-msyntax=} option, x86-64
322 @item -msyntax=@var{att}
323 @itemx -msyntax=@var{intel}
324 This option specifies instruction syntax when processing instructions.
325 The @code{.att_syntax} and @code{.intel_syntax} directives will
328 @cindex @samp{-mnaked-reg} option, i386
329 @cindex @samp{-mnaked-reg} option, x86-64
331 This option specifies that registers don't require a @samp{%} prefix.
332 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
334 @cindex @samp{-madd-bnd-prefix} option, i386
335 @cindex @samp{-madd-bnd-prefix} option, x86-64
336 @item -madd-bnd-prefix
337 This option forces the assembler to add BND prefix to all branches, even
338 if such prefix was not explicitly specified in the source code.
340 @cindex @samp{-mshared} option, i386
341 @cindex @samp{-mshared} option, x86-64
343 On ELF target, the assembler normally optimizes out non-PLT relocations
344 against defined non-weak global branch targets with default visibility.
345 The @samp{-mshared} option tells the assembler to generate code which
346 may go into a shared library where all non-weak global branch targets
347 with default visibility can be preempted. The resulting code is
348 slightly bigger. This option only affects the handling of branch
351 @cindex @samp{-mbig-obj} option, x86-64
353 On x86-64 PE/COFF target this option forces the use of big object file
354 format, which allows more than 32768 sections.
356 @cindex @samp{-momit-lock-prefix=} option, i386
357 @cindex @samp{-momit-lock-prefix=} option, x86-64
358 @item -momit-lock-prefix=@var{no}
359 @itemx -momit-lock-prefix=@var{yes}
360 These options control how the assembler should encode lock prefix.
361 This option is intended as a workaround for processors, that fail on
362 lock prefix. This option can only be safely used with single-core,
363 single-thread computers
364 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
365 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
366 which is the default.
368 @cindex @samp{-mfence-as-lock-add=} option, i386
369 @cindex @samp{-mfence-as-lock-add=} option, x86-64
370 @item -mfence-as-lock-add=@var{no}
371 @itemx -mfence-as-lock-add=@var{yes}
372 These options control how the assembler should encode lfence, mfence and
374 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
375 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
376 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
377 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
378 sfence as usual, which is the default.
380 @cindex @samp{-mrelax-relocations=} option, i386
381 @cindex @samp{-mrelax-relocations=} option, x86-64
382 @item -mrelax-relocations=@var{no}
383 @itemx -mrelax-relocations=@var{yes}
384 These options control whether the assembler should generate relax
385 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
386 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
387 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
388 @option{-mrelax-relocations=@var{no}} will not generate relax
389 relocations. The default can be controlled by a configure option
390 @option{--enable-x86-relax-relocations}.
392 @cindex @samp{-mevexrcig=} option, i386
393 @cindex @samp{-mevexrcig=} option, x86-64
394 @item -mevexrcig=@var{rne}
395 @itemx -mevexrcig=@var{rd}
396 @itemx -mevexrcig=@var{ru}
397 @itemx -mevexrcig=@var{rz}
398 These options control how the assembler should encode SAE-only
399 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
400 of EVEX instruction with 00, which is the default.
401 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
402 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
403 with 01, 10 and 11 RC bits, respectively.
405 @cindex @samp{-mamd64} option, x86-64
406 @cindex @samp{-mintel64} option, x86-64
409 This option specifies that the assembler should accept only AMD64 or
410 Intel64 ISA in 64-bit mode. The default is to accept both.
415 @node i386-Directives
416 @section x86 specific Directives
418 @cindex machine directives, x86
419 @cindex x86 machine directives
422 @cindex @code{lcomm} directive, COFF
423 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
424 Reserve @var{length} (an absolute expression) bytes for a local common
425 denoted by @var{symbol}. The section and value of @var{symbol} are
426 those of the new local common. The addresses are allocated in the bss
427 section, so that at run-time the bytes start off zeroed. Since
428 @var{symbol} is not declared global, it is normally not visible to
429 @code{@value{LD}}. The optional third parameter, @var{alignment},
430 specifies the desired alignment of the symbol in the bss section.
432 This directive is only available for COFF based x86 targets.
434 @cindex @code{largecomm} directive, ELF
435 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
436 This directive behaves in the same way as the @code{comm} directive
437 except that the data is placed into the @var{.lbss} section instead of
438 the @var{.bss} section @ref{Comm}.
440 The directive is intended to be used for data which requires a large
441 amount of space, and it is only available for ELF based x86_64
444 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
449 @section i386 Syntactical Considerations
451 * i386-Variations:: AT&T Syntax versus Intel Syntax
452 * i386-Chars:: Special Characters
455 @node i386-Variations
456 @subsection AT&T Syntax versus Intel Syntax
458 @cindex i386 intel_syntax pseudo op
459 @cindex intel_syntax pseudo op, i386
460 @cindex i386 att_syntax pseudo op
461 @cindex att_syntax pseudo op, i386
462 @cindex i386 syntax compatibility
463 @cindex syntax compatibility, i386
464 @cindex x86-64 intel_syntax pseudo op
465 @cindex intel_syntax pseudo op, x86-64
466 @cindex x86-64 att_syntax pseudo op
467 @cindex att_syntax pseudo op, x86-64
468 @cindex x86-64 syntax compatibility
469 @cindex syntax compatibility, x86-64
471 @code{@value{AS}} now supports assembly using Intel assembler syntax.
472 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
473 back to the usual AT&T mode for compatibility with the output of
474 @code{@value{GCC}}. Either of these directives may have an optional
475 argument, @code{prefix}, or @code{noprefix} specifying whether registers
476 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
477 different from Intel syntax. We mention these differences because
478 almost all 80386 documents use Intel syntax. Notable differences
479 between the two syntaxes are:
481 @cindex immediate operands, i386
482 @cindex i386 immediate operands
483 @cindex register operands, i386
484 @cindex i386 register operands
485 @cindex jump/call operands, i386
486 @cindex i386 jump/call operands
487 @cindex operand delimiters, i386
489 @cindex immediate operands, x86-64
490 @cindex x86-64 immediate operands
491 @cindex register operands, x86-64
492 @cindex x86-64 register operands
493 @cindex jump/call operands, x86-64
494 @cindex x86-64 jump/call operands
495 @cindex operand delimiters, x86-64
498 AT&T immediate operands are preceded by @samp{$}; Intel immediate
499 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
500 AT&T register operands are preceded by @samp{%}; Intel register operands
501 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
502 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
504 @cindex i386 source, destination operands
505 @cindex source, destination operands; i386
506 @cindex x86-64 source, destination operands
507 @cindex source, destination operands; x86-64
509 AT&T and Intel syntax use the opposite order for source and destination
510 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
511 @samp{source, dest} convention is maintained for compatibility with
512 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
513 instructions with 2 immediate operands, such as the @samp{enter}
514 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
516 @cindex mnemonic suffixes, i386
517 @cindex sizes operands, i386
518 @cindex i386 size suffixes
519 @cindex mnemonic suffixes, x86-64
520 @cindex sizes operands, x86-64
521 @cindex x86-64 size suffixes
523 In AT&T syntax the size of memory operands is determined from the last
524 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
525 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
526 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
527 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
528 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
529 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
532 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
533 instruction with the 64-bit displacement or immediate operand.
535 @cindex return instructions, i386
536 @cindex i386 jump, call, return
537 @cindex return instructions, x86-64
538 @cindex x86-64 jump, call, return
540 Immediate form long jumps and calls are
541 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
543 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
545 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
546 @samp{ret far @var{stack-adjust}}.
548 @cindex sections, i386
549 @cindex i386 sections
550 @cindex sections, x86-64
551 @cindex x86-64 sections
553 The AT&T assembler does not provide support for multiple section
554 programs. Unix style systems expect all programs to be single sections.
558 @subsection Special Characters
560 @cindex line comment character, i386
561 @cindex i386 line comment character
562 The presence of a @samp{#} appearing anywhere on a line indicates the
563 start of a comment that extends to the end of that line.
565 If a @samp{#} appears as the first character of a line then the whole
566 line is treated as a comment, but in this case the line can also be a
567 logical line number directive (@pxref{Comments}) or a preprocessor
568 control command (@pxref{Preprocessing}).
570 If the @option{--divide} command line option has not been specified
571 then the @samp{/} character appearing anywhere on a line also
572 introduces a line comment.
574 @cindex line separator, i386
575 @cindex statement separator, i386
576 @cindex i386 line separator
577 The @samp{;} character can be used to separate statements on the same
581 @section i386-Mnemonics
582 @subsection Instruction Naming
584 @cindex i386 instruction naming
585 @cindex instruction naming, i386
586 @cindex x86-64 instruction naming
587 @cindex instruction naming, x86-64
589 Instruction mnemonics are suffixed with one character modifiers which
590 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
591 and @samp{q} specify byte, word, long and quadruple word operands. If
592 no suffix is specified by an instruction then @code{@value{AS}} tries to
593 fill in the missing suffix based on the destination register operand
594 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
595 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
596 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
597 assembler which assumes that a missing mnemonic suffix implies long
598 operand size. (This incompatibility does not affect compiler output
599 since compilers always explicitly specify the mnemonic suffix.)
601 Almost all instructions have the same names in AT&T and Intel format.
602 There are a few exceptions. The sign extend and zero extend
603 instructions need two sizes to specify them. They need a size to
604 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
605 is accomplished by using two instruction mnemonic suffixes in AT&T
606 syntax. Base names for sign extend and zero extend are
607 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
608 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
609 are tacked on to this base name, the @emph{from} suffix before the
610 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
611 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
612 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
613 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
614 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
617 @cindex encoding options, i386
618 @cindex encoding options, x86-64
620 Different encoding options can be specified via pseudo prefixes:
624 @samp{@{disp8@}} -- prefer 8-bit displacement.
627 @samp{@{disp32@}} -- prefer 32-bit displacement.
630 @samp{@{load@}} -- prefer load-form instruction.
633 @samp{@{store@}} -- prefer store-form instruction.
636 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
639 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
642 @samp{@{evex@}} -- encode with EVEX prefix.
645 @cindex conversion instructions, i386
646 @cindex i386 conversion instructions
647 @cindex conversion instructions, x86-64
648 @cindex x86-64 conversion instructions
649 The Intel-syntax conversion instructions
653 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
656 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
659 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
662 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
665 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
669 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
670 @samp{%rdx:%rax} (x86-64 only),
674 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
675 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
678 @cindex jump instructions, i386
679 @cindex call instructions, i386
680 @cindex jump instructions, x86-64
681 @cindex call instructions, x86-64
682 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
683 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
686 @subsection AT&T Mnemonic versus Intel Mnemonic
688 @cindex i386 mnemonic compatibility
689 @cindex mnemonic compatibility, i386
691 @code{@value{AS}} supports assembly using Intel mnemonic.
692 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
693 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
694 syntax for compatibility with the output of @code{@value{GCC}}.
695 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
696 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
697 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
698 assembler with different mnemonics from those in Intel IA32 specification.
699 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
702 @section Register Naming
704 @cindex i386 registers
705 @cindex registers, i386
706 @cindex x86-64 registers
707 @cindex registers, x86-64
708 Register operands are always prefixed with @samp{%}. The 80386 registers
713 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
714 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
715 frame pointer), and @samp{%esp} (the stack pointer).
718 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
719 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
722 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
723 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
724 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
725 @samp{%cx}, and @samp{%dx})
728 the 6 section registers @samp{%cs} (code section), @samp{%ds}
729 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
733 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
734 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
737 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
738 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
741 the 2 test registers @samp{%tr6} and @samp{%tr7}.
744 the 8 floating point register stack @samp{%st} or equivalently
745 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
746 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
747 These registers are overloaded by 8 MMX registers @samp{%mm0},
748 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
749 @samp{%mm6} and @samp{%mm7}.
752 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
753 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
756 The AMD x86-64 architecture extends the register set by:
760 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
761 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
762 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
766 the 8 extended registers @samp{%r8}--@samp{%r15}.
769 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
772 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
775 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
778 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
781 the 8 debug registers: @samp{%db8}--@samp{%db15}.
784 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
787 With the AVX extensions more registers were made available:
792 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
793 available in 32-bit mode). The bottom 128 bits are overlaid with the
794 @samp{xmm0}--@samp{xmm15} registers.
798 The AVX2 extensions made in 64-bit mode more registers available:
803 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
804 registers @samp{%ymm16}--@samp{%ymm31}.
808 The AVX512 extensions added the following registers:
813 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
814 available in 32-bit mode). The bottom 128 bits are overlaid with the
815 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
816 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
819 the 8 mask registers @samp{%k0}--@samp{%k7}.
824 @section Instruction Prefixes
826 @cindex i386 instruction prefixes
827 @cindex instruction prefixes, i386
828 @cindex prefixes, i386
829 Instruction prefixes are used to modify the following instruction. They
830 are used to repeat string instructions, to provide section overrides, to
831 perform bus lock operations, and to change operand and address sizes.
832 (Most instructions that normally operate on 32-bit operands will use
833 16-bit operands if the instruction has an ``operand size'' prefix.)
834 Instruction prefixes are best written on the same line as the instruction
835 they act upon. For example, the @samp{scas} (scan string) instruction is
839 repne scas %es:(%edi),%al
842 You may also place prefixes on the lines immediately preceding the
843 instruction, but this circumvents checks that @code{@value{AS}} does
844 with prefixes, and will not work with all prefixes.
846 Here is a list of instruction prefixes:
848 @cindex section override prefixes, i386
851 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
852 @samp{fs}, @samp{gs}. These are automatically added by specifying
853 using the @var{section}:@var{memory-operand} form for memory references.
855 @cindex size prefixes, i386
857 Operand/Address size prefixes @samp{data16} and @samp{addr16}
858 change 32-bit operands/addresses into 16-bit operands/addresses,
859 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
860 @code{.code16} section) into 32-bit operands/addresses. These prefixes
861 @emph{must} appear on the same line of code as the instruction they
862 modify. For example, in a 16-bit @code{.code16} section, you might
869 @cindex bus lock prefixes, i386
870 @cindex inhibiting interrupts, i386
872 The bus lock prefix @samp{lock} inhibits interrupts during execution of
873 the instruction it precedes. (This is only valid with certain
874 instructions; see a 80386 manual for details).
876 @cindex coprocessor wait, i386
878 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
879 complete the current instruction. This should never be needed for the
880 80386/80387 combination.
882 @cindex repeat prefixes, i386
884 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
885 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
886 times if the current address size is 16-bits).
887 @cindex REX prefixes, i386
889 The @samp{rex} family of prefixes is used by x86-64 to encode
890 extensions to i386 instruction set. The @samp{rex} prefix has four
891 bits --- an operand size overwrite (@code{64}) used to change operand size
892 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
895 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
896 instruction emits @samp{rex} prefix with all the bits set. By omitting
897 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
898 prefixes as well. Normally, there is no need to write the prefixes
899 explicitly, since gas will automatically generate them based on the
900 instruction operands.
904 @section Memory References
906 @cindex i386 memory references
907 @cindex memory references, i386
908 @cindex x86-64 memory references
909 @cindex memory references, x86-64
910 An Intel syntax indirect memory reference of the form
913 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
917 is translated into the AT&T syntax
920 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
924 where @var{base} and @var{index} are the optional 32-bit base and
925 index registers, @var{disp} is the optional displacement, and
926 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
927 to calculate the address of the operand. If no @var{scale} is
928 specified, @var{scale} is taken to be 1. @var{section} specifies the
929 optional section register for the memory operand, and may override the
930 default section register (see a 80386 manual for section register
931 defaults). Note that section overrides in AT&T syntax @emph{must}
932 be preceded by a @samp{%}. If you specify a section override which
933 coincides with the default section register, @code{@value{AS}} does @emph{not}
934 output any section register override prefixes to assemble the given
935 instruction. Thus, section overrides can be specified to emphasize which
936 section register is used for a given memory operand.
938 Here are some examples of Intel and AT&T style memory references:
941 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
942 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
943 missing, and the default section is used (@samp{%ss} for addressing with
944 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
946 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
947 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
948 @samp{foo}. All other fields are missing. The section register here
949 defaults to @samp{%ds}.
951 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
952 This uses the value pointed to by @samp{foo} as a memory operand.
953 Note that @var{base} and @var{index} are both missing, but there is only
954 @emph{one} @samp{,}. This is a syntactic exception.
956 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
957 This selects the contents of the variable @samp{foo} with section
958 register @var{section} being @samp{%gs}.
961 Absolute (as opposed to PC relative) call and jump operands must be
962 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
963 always chooses PC relative addressing for jump/call labels.
965 Any instruction that has a memory operand, but no register operand,
966 @emph{must} specify its size (byte, word, long, or quadruple) with an
967 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
970 The x86-64 architecture adds an RIP (instruction pointer relative)
971 addressing. This addressing mode is specified by using @samp{rip} as a
972 base register. Only constant offsets are valid. For example:
975 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
976 Points to the address 1234 bytes past the end of the current
979 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
980 Points to the @code{symbol} in RIP relative way, this is shorter than
981 the default absolute addressing.
984 Other addressing modes remain unchanged in x86-64 architecture, except
985 registers used are 64-bit instead of 32-bit.
988 @section Handling of Jump Instructions
990 @cindex jump optimization, i386
991 @cindex i386 jump optimization
992 @cindex jump optimization, x86-64
993 @cindex x86-64 jump optimization
994 Jump instructions are always optimized to use the smallest possible
995 displacements. This is accomplished by using byte (8-bit) displacement
996 jumps whenever the target is sufficiently close. If a byte displacement
997 is insufficient a long displacement is used. We do not support
998 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
999 instruction with the @samp{data16} instruction prefix), since the 80386
1000 insists upon masking @samp{%eip} to 16 bits after the word displacement
1001 is added. (See also @pxref{i386-Arch})
1003 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1004 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1005 displacements, so that if you use these instructions (@code{@value{GCC}} does
1006 not use them) you may get an error message (and incorrect code). The AT&T
1007 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1018 @section Floating Point
1020 @cindex i386 floating point
1021 @cindex floating point, i386
1022 @cindex x86-64 floating point
1023 @cindex floating point, x86-64
1024 All 80387 floating point types except packed BCD are supported.
1025 (BCD support may be added without much difficulty). These data
1026 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1027 double (64-bit), and extended (80-bit) precision floating point.
1028 Each supported type has an instruction mnemonic suffix and a constructor
1029 associated with it. Instruction mnemonic suffixes specify the operand's
1030 data type. Constructors build these data types into memory.
1032 @cindex @code{float} directive, i386
1033 @cindex @code{single} directive, i386
1034 @cindex @code{double} directive, i386
1035 @cindex @code{tfloat} directive, i386
1036 @cindex @code{float} directive, x86-64
1037 @cindex @code{single} directive, x86-64
1038 @cindex @code{double} directive, x86-64
1039 @cindex @code{tfloat} directive, x86-64
1042 Floating point constructors are @samp{.float} or @samp{.single},
1043 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1044 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1045 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1046 only supports this format via the @samp{fldt} (load 80-bit real to stack
1047 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1049 @cindex @code{word} directive, i386
1050 @cindex @code{long} directive, i386
1051 @cindex @code{int} directive, i386
1052 @cindex @code{quad} directive, i386
1053 @cindex @code{word} directive, x86-64
1054 @cindex @code{long} directive, x86-64
1055 @cindex @code{int} directive, x86-64
1056 @cindex @code{quad} directive, x86-64
1058 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1059 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1060 corresponding instruction mnemonic suffixes are @samp{s} (single),
1061 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1062 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1063 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1064 stack) instructions.
1067 Register to register operations should not use instruction mnemonic suffixes.
1068 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1069 wrote @samp{fst %st, %st(1)}, since all register to register operations
1070 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1071 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1072 then stores the result in the 4 byte location @samp{mem})
1075 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1078 @cindex 3DNow!, i386
1081 @cindex 3DNow!, x86-64
1082 @cindex SIMD, x86-64
1084 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1085 instructions for integer data), available on Intel's Pentium MMX
1086 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1087 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1088 instruction set (SIMD instructions for 32-bit floating point data)
1089 available on AMD's K6-2 processor and possibly others in the future.
1091 Currently, @code{@value{AS}} does not support Intel's floating point
1094 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1095 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1096 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1097 floating point values. The MMX registers cannot be used at the same time
1098 as the floating point stack.
1100 See Intel and AMD documentation, keeping in mind that the operand order in
1101 instructions is reversed from the Intel syntax.
1104 @section AMD's Lightweight Profiling Instructions
1109 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1110 instruction set, available on AMD's Family 15h (Orochi) processors.
1112 LWP enables applications to collect and manage performance data, and
1113 react to performance events. The collection of performance data
1114 requires no context switches. LWP runs in the context of a thread and
1115 so several counters can be used independently across multiple threads.
1116 LWP can be used in both 64-bit and legacy 32-bit modes.
1118 For detailed information on the LWP instruction set, see the
1119 @cite{AMD Lightweight Profiling Specification} available at
1120 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1123 @section Bit Manipulation Instructions
1128 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1130 BMI instructions provide several instructions implementing individual
1131 bit manipulation operations such as isolation, masking, setting, or
1134 @c Need to add a specification citation here when available.
1137 @section AMD's Trailing Bit Manipulation Instructions
1142 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1143 instruction set, available on AMD's BDVER2 processors (Trinity and
1146 TBM instructions provide instructions implementing individual bit
1147 manipulation operations such as isolating, masking, setting, resetting,
1148 complementing, and operations on trailing zeros and ones.
1150 @c Need to add a specification citation here when available.
1153 @section Writing 16-bit Code
1155 @cindex i386 16-bit code
1156 @cindex 16-bit code, i386
1157 @cindex real-mode code, i386
1158 @cindex @code{code16gcc} directive, i386
1159 @cindex @code{code16} directive, i386
1160 @cindex @code{code32} directive, i386
1161 @cindex @code{code64} directive, i386
1162 @cindex @code{code64} directive, x86-64
1163 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1164 or 64-bit x86-64 code depending on the default configuration,
1165 it also supports writing code to run in real mode or in 16-bit protected
1166 mode code segments. To do this, put a @samp{.code16} or
1167 @samp{.code16gcc} directive before the assembly language instructions to
1168 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1169 32-bit code with the @samp{.code32} directive or 64-bit code with the
1170 @samp{.code64} directive.
1172 @samp{.code16gcc} provides experimental support for generating 16-bit
1173 code from gcc, and differs from @samp{.code16} in that @samp{call},
1174 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1175 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1176 default to 32-bit size. This is so that the stack pointer is
1177 manipulated in the same way over function calls, allowing access to
1178 function parameters at the same stack offsets as in 32-bit mode.
1179 @samp{.code16gcc} also automatically adds address size prefixes where
1180 necessary to use the 32-bit addressing modes that gcc generates.
1182 The code which @code{@value{AS}} generates in 16-bit mode will not
1183 necessarily run on a 16-bit pre-80386 processor. To write code that
1184 runs on such a processor, you must refrain from using @emph{any} 32-bit
1185 constructs which require @code{@value{AS}} to output address or operand
1188 Note that writing 16-bit code instructions by explicitly specifying a
1189 prefix or an instruction mnemonic suffix within a 32-bit code section
1190 generates different machine instructions than those generated for a
1191 16-bit code segment. In a 32-bit code section, the following code
1192 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1193 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1199 The same code in a 16-bit code section would generate the machine
1200 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1201 is correct since the processor default operand size is assumed to be 16
1202 bits in a 16-bit code section.
1205 @section Specifying CPU Architecture
1207 @cindex arch directive, i386
1208 @cindex i386 arch directive
1209 @cindex arch directive, x86-64
1210 @cindex x86-64 arch directive
1212 @code{@value{AS}} may be told to assemble for a particular CPU
1213 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1214 directive enables a warning when gas detects an instruction that is not
1215 supported on the CPU specified. The choices for @var{cpu_type} are:
1217 @multitable @columnfractions .20 .20 .20 .20
1218 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1219 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1220 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1221 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1222 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1223 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1224 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1225 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1226 @item @samp{generic32} @tab @samp{generic64}
1227 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1228 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1229 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1230 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1231 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1232 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1233 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1234 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1235 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1236 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1237 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1238 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1239 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1240 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1241 @item @samp{.avx512_bitalg}
1242 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1243 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1244 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1245 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1246 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
1247 @item @samp{.vaes} @tab @samp{.vpclmulqdq}
1250 Apart from the warning, there are only two other effects on
1251 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1252 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1253 will automatically use a two byte opcode sequence. The larger three
1254 byte opcode sequence is used on the 486 (and when no architecture is
1255 specified) because it executes faster on the 486. Note that you can
1256 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1257 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1258 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1259 conditional jumps will be promoted when necessary to a two instruction
1260 sequence consisting of a conditional jump of the opposite sense around
1261 an unconditional jump to the target.
1263 Following the CPU architecture (but not a sub-architecture, which are those
1264 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1265 control automatic promotion of conditional jumps. @samp{jumps} is the
1266 default, and enables jump promotion; All external jumps will be of the long
1267 variety, and file-local jumps will be promoted as necessary.
1268 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1269 byte offset jumps, and warns about file-local conditional jumps that
1270 @code{@value{AS}} promotes.
1271 Unconditional jumps are treated as for @samp{jumps}.
1280 @section AT&T Syntax bugs
1282 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1283 assemblers, generate floating point instructions with reversed source
1284 and destination registers in certain cases. Unfortunately, gcc and
1285 possibly many other programs use this reversed syntax, so we're stuck
1294 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1295 than the expected @samp{%st(3) - %st}. This happens with all the
1296 non-commutative arithmetic floating point operations with two register
1297 operands where the source register is @samp{%st} and the destination
1298 register is @samp{%st(i)}.
1303 @cindex i386 @code{mul}, @code{imul} instructions
1304 @cindex @code{mul} instruction, i386
1305 @cindex @code{imul} instruction, i386
1306 @cindex @code{mul} instruction, x86-64
1307 @cindex @code{imul} instruction, x86-64
1308 There is some trickery concerning the @samp{mul} and @samp{imul}
1309 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1310 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1311 for @samp{imul}) can be output only in the one operand form. Thus,
1312 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1313 the expanding multiply would clobber the @samp{%edx} register, and this
1314 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1315 64-bit product in @samp{%edx:%eax}.
1317 We have added a two operand form of @samp{imul} when the first operand
1318 is an immediate mode expression and the second operand is a register.
1319 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1320 example, can be done with @samp{imul $69, %eax} rather than @samp{imul