1 /* Target-struct-independent code to start (run) and stop an inferior
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
34 #include "cli/cli-script.h"
36 #include "gdbthread.h"
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
53 /* Prototypes for local functions */
55 static void signals_info (char *, int);
57 static void handle_command (char *, int);
59 static void sig_print_info (enum target_signal);
61 static void sig_print_header (void);
63 static void resume_cleanups (void *);
65 static int hook_stop_stub (void *);
67 static int restore_selected_frame (void *);
69 static void build_infrun (void);
71 static int follow_fork (void);
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
76 static int currently_stepping (struct thread_info *tp);
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
80 static void xdb_handle_command (char *args, int from_tty);
82 static int prepare_to_proceed (int);
84 void _initialize_infrun (void);
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
97 /* In asynchronous mode, but simulating synchronous execution. */
99 int sync_execution = 0;
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
105 static ptid_t previous_inferior_ptid;
107 int debug_displaced = 0;
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
115 static int debug_infrun = 0;
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 /* Tables of how to react to signals; the user sets them. */
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
191 #define SET_SIGS(nsigs,sigs,flags) \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
199 #define UNSET_SIGS(nsigs,sigs,flags) \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
207 /* Value to pass to target_resume() to cause all threads to resume */
209 #define RESUME_ALL (pid_to_ptid (-1))
211 /* Command list pointer for the "stop" placeholder. */
213 static struct cmd_list_element *stop_command;
215 /* Function inferior was in as of last step command. */
217 static struct symbol *step_start_function;
219 /* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221 static int stop_on_solib_events;
223 show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
230 /* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
235 /* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
240 struct regcache *stop_registers;
242 /* Nonzero after stop if current stack frame should be printed. */
244 static int stop_print_frame;
246 /* This is a cached copy of the pid/waitstatus of the last event
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
249 static ptid_t target_last_wait_ptid;
250 static struct target_waitstatus target_last_waitstatus;
252 static void context_switch (ptid_t ptid);
254 void init_thread_stepping_state (struct thread_info *tss);
256 void init_infwait_state (void);
258 /* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
264 enum target_waitkind kind;
271 char *execd_pathname;
275 static const char follow_fork_mode_child[] = "child";
276 static const char follow_fork_mode_parent[] = "parent";
278 static const char *follow_fork_mode_kind_names[] = {
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
284 static const char *follow_fork_mode_string = follow_fork_mode_parent;
286 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
289 fprintf_filtered (file, _("\
290 Debugger response to a program call of fork or vfork is \"%s\".\n"),
298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
300 return target_follow_fork (follow_child);
304 follow_inferior_reset_breakpoints (void)
306 struct thread_info *tp = inferior_thread ();
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
327 breakpoint_re_set ();
328 insert_breakpoints ();
331 /* EXECD_PATHNAME is assumed to be non-NULL. */
334 follow_exec (ptid_t pid, char *execd_pathname)
336 struct target_ops *tgt;
337 struct thread_info *th = inferior_thread ();
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
367 /* What is this a.out's name? */
368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
373 gdb_flush (gdb_stdout);
375 breakpoint_init_inferior (inf_execd);
377 if (gdb_sysroot && *gdb_sysroot)
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
398 /* Load the main file's symbols. */
399 symbol_file_add_main (execd_pathname, 0);
401 #ifdef SOLIB_CREATE_INFERIOR_HOOK
402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
404 solib_create_inferior_hook ();
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
418 /* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421 static int singlestep_breakpoints_inserted_p = 0;
423 /* The thread we inserted single-step breakpoints for. */
424 static ptid_t singlestep_ptid;
426 /* PC when we started this single-step. */
427 static CORE_ADDR singlestep_pc;
429 /* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431 static ptid_t saved_singlestep_ptid;
432 static int stepping_past_singlestep_breakpoint;
434 /* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441 static ptid_t deferred_step_ptid;
443 /* Displaced stepping. */
445 /* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
455 a0) Initially, all threads are stopped, and breakpoints are not
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
477 This approach depends on the following gdbarch methods:
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
492 - gdbarch_displaced_step_free_closure provides cleanup.
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
503 See the comments in gdbarch.sh for details.
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
531 /* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534 static ptid_t displaced_step_ptid;
536 struct displaced_step_request
539 struct displaced_step_request *next;
542 /* A queue of pending displaced stepping requests. */
543 struct displaced_step_request *displaced_step_request_queue;
545 /* The architecture the thread had when we stepped it. */
546 static struct gdbarch *displaced_step_gdbarch;
548 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550 static struct displaced_step_closure *displaced_step_closure;
552 /* The address of the original instruction, and the copy we made. */
553 static CORE_ADDR displaced_step_original, displaced_step_copy;
555 /* Saved contents of copy area. */
556 static gdb_byte *displaced_step_saved_copy;
558 /* Enum strings for "set|show displaced-stepping". */
560 static const char can_use_displaced_stepping_auto[] = "auto";
561 static const char can_use_displaced_stepping_on[] = "on";
562 static const char can_use_displaced_stepping_off[] = "off";
563 static const char *can_use_displaced_stepping_enum[] =
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
571 /* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
579 static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589 Debugger's willingness to use displaced stepping to step over \
590 breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
593 fprintf_filtered (file, _("\
594 Debugger's willingness to use displaced stepping to step over \
595 breakpoints is %s.\n"), value);
598 /* Return non-zero if displaced stepping can/should be used to step
602 use_displaced_stepping (struct gdbarch *gdbarch)
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
610 /* Clean out any stray displaced stepping state. */
612 displaced_step_clear (void)
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
617 if (displaced_step_closure)
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
626 cleanup_displaced_step_closure (void *ptr)
628 struct displaced_step_closure *closure = ptr;
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
635 displaced_step_dump_bytes (struct ui_file *file,
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
646 /* Prepare to single-step, using displaced stepping.
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
661 displaced_step_prepare (ptid_t ptid)
663 struct cleanup *old_cleanups, *ignore_cleanups;
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
668 struct displaced_step_closure *closure;
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
674 /* For the first cut, we're displaced stepping one thread at a
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
692 if (displaced_step_request_queue)
694 for (req = displaced_step_request_queue;
701 displaced_step_request_queue = new_req;
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
713 displaced_step_clear ();
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
718 original = regcache_read_pc (regcache);
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
741 make_cleanup (cleanup_displaced_step_closure, closure);
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
746 discard_cleanups (ignore_cleanups);
748 do_cleanups (old_cleanups);
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
754 /* Save the information we need to fix things up if the step
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
765 displaced_step_clear_cleanup (void *ignore)
767 displaced_step_clear ();
771 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
780 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
782 struct cleanup *old_cleanups;
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
791 /* Restore the contents of the copy area. */
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
809 get_thread_regcache (displaced_step_ptid));
813 /* Since the instruction didn't complete, all we can do is
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
817 pc = displaced_step_original + (pc - displaced_step_copy);
818 regcache_write_pc (regcache, pc);
821 do_cleanups (old_cleanups);
823 displaced_step_ptid = null_ptid;
825 /* Are there any pending displaced stepping requests? If so, run
827 while (displaced_step_request_queue)
829 struct displaced_step_request *head;
833 head = displaced_step_request_queue;
835 displaced_step_request_queue = head->next;
838 context_switch (ptid);
840 actual_pc = read_pc ();
842 if (breakpoint_here_p (actual_pc))
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
849 displaced_step_prepare (ptid);
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
863 /* Done, we're stepping a thread. */
869 struct thread_info *tp = inferior_thread ();
871 /* The breakpoint we were sitting under has since been
873 tp->trap_expected = 0;
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
891 /* Update global variables holding ptids to hold NEW_PTID if they were
894 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
896 struct displaced_step_request *it;
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
918 /* Things to clean up if we QUIT out of resume (). */
920 resume_cleanups (void *ignore)
925 static const char schedlock_off[] = "off";
926 static const char schedlock_on[] = "on";
927 static const char schedlock_step[] = "step";
928 static const char *scheduler_enums[] = {
934 static const char *scheduler_mode = schedlock_off;
936 show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
939 fprintf_filtered (file, _("\
940 Mode for locking scheduler during execution is \"%s\".\n"),
945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
947 if (!target_can_lock_scheduler)
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
955 /* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
964 resume (int step, enum target_signal sig)
966 int should_resume = 1;
967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
969 /* Note that these must be reset if we follow a fork below. */
970 struct regcache *regcache = get_current_regcache ();
971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
972 struct thread_info *tp = inferior_thread ();
973 CORE_ADDR pc = regcache_read_pc (regcache);
978 fprintf_unfiltered (gdb_stdlog,
979 "infrun: resume (step=%d, signal=%d), "
980 "trap_expected=%d\n",
981 step, sig, tp->trap_expected);
983 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
984 over an instruction that causes a page fault without triggering
985 a hardware watchpoint. The kernel properly notices that it shouldn't
986 stop, because the hardware watchpoint is not triggered, but it forgets
987 the step request and continues the program normally.
988 Work around the problem by removing hardware watchpoints if a step is
989 requested, GDB will check for a hardware watchpoint trigger after the
991 if (CANNOT_STEP_HW_WATCHPOINTS && step)
992 remove_hw_watchpoints ();
995 /* Normally, by the time we reach `resume', the breakpoints are either
996 removed or inserted, as appropriate. The exception is if we're sitting
997 at a permanent breakpoint; we need to step over it, but permanent
998 breakpoints can't be removed. So we have to test for it here. */
999 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1001 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1002 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1005 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1006 how to step past a permanent breakpoint on this architecture. Try using\n\
1007 a command like `return' or `jump' to continue execution."));
1010 /* If enabled, step over breakpoints by executing a copy of the
1011 instruction at a different address.
1013 We can't use displaced stepping when we have a signal to deliver;
1014 the comments for displaced_step_prepare explain why. The
1015 comments in the handle_inferior event for dealing with 'random
1016 signals' explain what we do instead. */
1017 if (use_displaced_stepping (gdbarch)
1018 && tp->trap_expected
1019 && sig == TARGET_SIGNAL_0)
1021 if (!displaced_step_prepare (inferior_ptid))
1023 /* Got placed in displaced stepping queue. Will be resumed
1024 later when all the currently queued displaced stepping
1025 requests finish. The thread is not executing at this point,
1026 and the call to set_executing will be made later. But we
1027 need to call set_running here, since from frontend point of view,
1028 the thread is running. */
1029 set_running (inferior_ptid, 1);
1030 discard_cleanups (old_cleanups);
1035 if (step && gdbarch_software_single_step_p (gdbarch))
1037 /* Do it the hard way, w/temp breakpoints */
1038 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1040 /* ...and don't ask hardware to do it. */
1042 /* and do not pull these breakpoints until after a `wait' in
1043 `wait_for_inferior' */
1044 singlestep_breakpoints_inserted_p = 1;
1045 singlestep_ptid = inferior_ptid;
1050 /* If there were any forks/vforks/execs that were caught and are
1051 now to be followed, then do so. */
1052 switch (pending_follow.kind)
1054 case TARGET_WAITKIND_FORKED:
1055 case TARGET_WAITKIND_VFORKED:
1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1060 /* Following a child fork will change our notion of current
1062 tp = inferior_thread ();
1063 regcache = get_current_regcache ();
1064 gdbarch = get_regcache_arch (regcache);
1065 pc = regcache_read_pc (regcache);
1068 case TARGET_WAITKIND_EXECD:
1069 /* follow_exec is called as soon as the exec event is seen. */
1070 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1077 /* Install inferior's terminal modes. */
1078 target_terminal_inferior ();
1084 resume_ptid = RESUME_ALL; /* Default */
1086 /* If STEP is set, it's a request to use hardware stepping
1087 facilities. But in that case, we should never
1088 use singlestep breakpoint. */
1089 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1091 if (singlestep_breakpoints_inserted_p
1092 && stepping_past_singlestep_breakpoint)
1094 /* The situation here is as follows. In thread T1 we wanted to
1095 single-step. Lacking hardware single-stepping we've
1096 set breakpoint at the PC of the next instruction -- call it
1097 P. After resuming, we've hit that breakpoint in thread T2.
1098 Now we've removed original breakpoint, inserted breakpoint
1099 at P+1, and try to step to advance T2 past breakpoint.
1100 We need to step only T2, as if T1 is allowed to freely run,
1101 it can run past P, and if other threads are allowed to run,
1102 they can hit breakpoint at P+1, and nested hits of single-step
1103 breakpoints is not something we'd want -- that's complicated
1104 to support, and has no value. */
1105 resume_ptid = inferior_ptid;
1108 if ((step || singlestep_breakpoints_inserted_p)
1109 && tp->trap_expected)
1111 /* We're allowing a thread to run past a breakpoint it has
1112 hit, by single-stepping the thread with the breakpoint
1113 removed. In which case, we need to single-step only this
1114 thread, and keep others stopped, as they can miss this
1115 breakpoint if allowed to run.
1117 The current code actually removes all breakpoints when
1118 doing this, not just the one being stepped over, so if we
1119 let other threads run, we can actually miss any
1120 breakpoint, not just the one at PC. */
1121 resume_ptid = inferior_ptid;
1126 /* With non-stop mode on, threads are always handled
1128 resume_ptid = inferior_ptid;
1130 else if ((scheduler_mode == schedlock_on)
1131 || (scheduler_mode == schedlock_step
1132 && (step || singlestep_breakpoints_inserted_p)))
1134 /* User-settable 'scheduler' mode requires solo thread resume. */
1135 resume_ptid = inferior_ptid;
1138 if (gdbarch_cannot_step_breakpoint (gdbarch))
1140 /* Most targets can step a breakpoint instruction, thus
1141 executing it normally. But if this one cannot, just
1142 continue and we will hit it anyway. */
1143 if (step && breakpoint_inserted_here_p (pc))
1148 && use_displaced_stepping (gdbarch)
1149 && tp->trap_expected)
1151 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1152 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1155 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1156 paddr_nz (actual_pc));
1157 read_memory (actual_pc, buf, sizeof (buf));
1158 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1161 /* Avoid confusing the next resume, if the next stop/resume
1162 happens to apply to another thread. */
1163 tp->stop_signal = TARGET_SIGNAL_0;
1165 target_resume (resume_ptid, step, sig);
1168 discard_cleanups (old_cleanups);
1173 /* Clear out all variables saying what to do when inferior is continued.
1174 First do this, then set the ones you want, then call `proceed'. */
1177 clear_proceed_status_thread (struct thread_info *tp)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "infrun: clear_proceed_status_thread (%s)\n",
1182 target_pid_to_str (tp->ptid));
1184 tp->trap_expected = 0;
1185 tp->step_range_start = 0;
1186 tp->step_range_end = 0;
1187 tp->step_frame_id = null_frame_id;
1188 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1189 tp->stop_requested = 0;
1193 tp->proceed_to_finish = 0;
1195 /* Discard any remaining commands or status from previous stop. */
1196 bpstat_clear (&tp->stop_bpstat);
1200 clear_proceed_status_callback (struct thread_info *tp, void *data)
1202 if (is_exited (tp->ptid))
1205 clear_proceed_status_thread (tp);
1210 clear_proceed_status (void)
1212 if (!ptid_equal (inferior_ptid, null_ptid))
1214 struct inferior *inferior;
1218 /* If in non-stop mode, only delete the per-thread status
1219 of the current thread. */
1220 clear_proceed_status_thread (inferior_thread ());
1224 /* In all-stop mode, delete the per-thread status of
1226 iterate_over_threads (clear_proceed_status_callback, NULL);
1229 inferior = current_inferior ();
1230 inferior->stop_soon = NO_STOP_QUIETLY;
1233 stop_after_trap = 0;
1234 breakpoint_proceeded = 1; /* We're about to proceed... */
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1243 /* This should be suitable for any targets that support threads. */
1246 prepare_to_proceed (int step)
1249 struct target_waitstatus wait_status;
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1254 /* Make sure we were stopped at a breakpoint. */
1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1261 /* Switched over from WAIT_PID. */
1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
1263 && !ptid_equal (inferior_ptid, wait_ptid))
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
1269 /* If stepping, remember current thread to switch back to. */
1271 deferred_step_ptid = inferior_ptid;
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1286 /* Basic routine for continuing the program in various fashions.
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
1290 or -1 for act according to how it stopped.
1291 STEP is nonzero if should trap after one instruction.
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
1296 You should call clear_proceed_status before calling proceed. */
1299 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 struct thread_info *tp;
1304 CORE_ADDR pc = regcache_read_pc (regcache);
1308 step_start_function = find_pc_function (pc);
1310 stop_after_trap = 1;
1312 if (addr == (CORE_ADDR) -1)
1314 if (pc == stop_pc && breakpoint_here_p (pc)
1315 && execution_direction != EXEC_REVERSE)
1316 /* There is a breakpoint at the address we will resume at,
1317 step one instruction before inserting breakpoints so that
1318 we do not stop right away (and report a second hit at this
1321 Note, we don't do this in reverse, because we won't
1322 actually be executing the breakpoint insn anyway.
1323 We'll be (un-)executing the previous instruction. */
1326 else if (gdbarch_single_step_through_delay_p (gdbarch)
1327 && gdbarch_single_step_through_delay (gdbarch,
1328 get_current_frame ()))
1329 /* We stepped onto an instruction that needs to be stepped
1330 again before re-inserting the breakpoint, do so. */
1335 regcache_write_pc (regcache, addr);
1339 fprintf_unfiltered (gdb_stdlog,
1340 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1341 paddr_nz (addr), siggnal, step);
1344 /* In non-stop, each thread is handled individually. The context
1345 must already be set to the right thread here. */
1349 /* In a multi-threaded task we may select another thread and
1350 then continue or step.
1352 But if the old thread was stopped at a breakpoint, it will
1353 immediately cause another breakpoint stop without any
1354 execution (i.e. it will report a breakpoint hit incorrectly).
1355 So we must step over it first.
1357 prepare_to_proceed checks the current thread against the
1358 thread that reported the most recent event. If a step-over
1359 is required it returns TRUE and sets the current thread to
1361 if (prepare_to_proceed (step))
1365 /* prepare_to_proceed may change the current thread. */
1366 tp = inferior_thread ();
1370 tp->trap_expected = 1;
1371 /* If displaced stepping is enabled, we can step over the
1372 breakpoint without hitting it, so leave all breakpoints
1373 inserted. Otherwise we need to disable all breakpoints, step
1374 one instruction, and then re-add them when that step is
1376 if (!use_displaced_stepping (gdbarch))
1377 remove_breakpoints ();
1380 /* We can insert breakpoints if we're not trying to step over one,
1381 or if we are stepping over one but we're using displaced stepping
1383 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1384 insert_breakpoints ();
1388 /* Pass the last stop signal to the thread we're resuming,
1389 irrespective of whether the current thread is the thread that
1390 got the last event or not. This was historically GDB's
1391 behaviour before keeping a stop_signal per thread. */
1393 struct thread_info *last_thread;
1395 struct target_waitstatus last_status;
1397 get_last_target_status (&last_ptid, &last_status);
1398 if (!ptid_equal (inferior_ptid, last_ptid)
1399 && !ptid_equal (last_ptid, null_ptid)
1400 && !ptid_equal (last_ptid, minus_one_ptid))
1402 last_thread = find_thread_pid (last_ptid);
1405 tp->stop_signal = last_thread->stop_signal;
1406 last_thread->stop_signal = TARGET_SIGNAL_0;
1411 if (siggnal != TARGET_SIGNAL_DEFAULT)
1412 tp->stop_signal = siggnal;
1413 /* If this signal should not be seen by program,
1414 give it zero. Used for debugging signals. */
1415 else if (!signal_program[tp->stop_signal])
1416 tp->stop_signal = TARGET_SIGNAL_0;
1418 annotate_starting ();
1420 /* Make sure that output from GDB appears before output from the
1422 gdb_flush (gdb_stdout);
1424 /* Refresh prev_pc value just prior to resuming. This used to be
1425 done in stop_stepping, however, setting prev_pc there did not handle
1426 scenarios such as inferior function calls or returning from
1427 a function via the return command. In those cases, the prev_pc
1428 value was not set properly for subsequent commands. The prev_pc value
1429 is used to initialize the starting line number in the ecs. With an
1430 invalid value, the gdb next command ends up stopping at the position
1431 represented by the next line table entry past our start position.
1432 On platforms that generate one line table entry per line, this
1433 is not a problem. However, on the ia64, the compiler generates
1434 extraneous line table entries that do not increase the line number.
1435 When we issue the gdb next command on the ia64 after an inferior call
1436 or a return command, we often end up a few instructions forward, still
1437 within the original line we started.
1439 An attempt was made to have init_execution_control_state () refresh
1440 the prev_pc value before calculating the line number. This approach
1441 did not work because on platforms that use ptrace, the pc register
1442 cannot be read unless the inferior is stopped. At that point, we
1443 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1444 call can fail. Setting the prev_pc value here ensures the value is
1445 updated correctly when the inferior is stopped. */
1446 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1448 /* Fill in with reasonable starting values. */
1449 init_thread_stepping_state (tp);
1451 /* Reset to normal state. */
1452 init_infwait_state ();
1454 /* Resume inferior. */
1455 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1457 /* Wait for it to stop (if not standalone)
1458 and in any case decode why it stopped, and act accordingly. */
1459 /* Do this only if we are not using the event loop, or if the target
1460 does not support asynchronous execution. */
1461 if (!target_can_async_p ())
1463 wait_for_inferior (0);
1469 /* Start remote-debugging of a machine over a serial link. */
1472 start_remote (int from_tty)
1474 struct inferior *inferior;
1475 init_wait_for_inferior ();
1477 inferior = current_inferior ();
1478 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1480 /* Always go on waiting for the target, regardless of the mode. */
1481 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1482 indicate to wait_for_inferior that a target should timeout if
1483 nothing is returned (instead of just blocking). Because of this,
1484 targets expecting an immediate response need to, internally, set
1485 things up so that the target_wait() is forced to eventually
1487 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1488 differentiate to its caller what the state of the target is after
1489 the initial open has been performed. Here we're assuming that
1490 the target has stopped. It should be possible to eventually have
1491 target_open() return to the caller an indication that the target
1492 is currently running and GDB state should be set to the same as
1493 for an async run. */
1494 wait_for_inferior (0);
1496 /* Now that the inferior has stopped, do any bookkeeping like
1497 loading shared libraries. We want to do this before normal_stop,
1498 so that the displayed frame is up to date. */
1499 post_create_inferior (¤t_target, from_tty);
1504 /* Initialize static vars when a new inferior begins. */
1507 init_wait_for_inferior (void)
1509 /* These are meaningless until the first time through wait_for_inferior. */
1511 breakpoint_init_inferior (inf_starting);
1513 /* The first resume is not following a fork/vfork/exec. */
1514 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1516 clear_proceed_status ();
1518 stepping_past_singlestep_breakpoint = 0;
1519 deferred_step_ptid = null_ptid;
1521 target_last_wait_ptid = minus_one_ptid;
1523 previous_inferior_ptid = null_ptid;
1524 init_infwait_state ();
1526 displaced_step_clear ();
1530 /* This enum encodes possible reasons for doing a target_wait, so that
1531 wfi can call target_wait in one place. (Ultimately the call will be
1532 moved out of the infinite loop entirely.) */
1536 infwait_normal_state,
1537 infwait_thread_hop_state,
1538 infwait_step_watch_state,
1539 infwait_nonstep_watch_state
1542 /* Why did the inferior stop? Used to print the appropriate messages
1543 to the interface from within handle_inferior_event(). */
1544 enum inferior_stop_reason
1546 /* Step, next, nexti, stepi finished. */
1548 /* Inferior terminated by signal. */
1550 /* Inferior exited. */
1552 /* Inferior received signal, and user asked to be notified. */
1554 /* Reverse execution -- target ran out of history info. */
1558 /* The PTID we'll do a target_wait on.*/
1561 /* Current inferior wait state. */
1562 enum infwait_states infwait_state;
1564 /* Data to be passed around while handling an event. This data is
1565 discarded between events. */
1566 struct execution_control_state
1569 /* The thread that got the event, if this was a thread event; NULL
1571 struct thread_info *event_thread;
1573 struct target_waitstatus ws;
1575 CORE_ADDR stop_func_start;
1576 CORE_ADDR stop_func_end;
1577 char *stop_func_name;
1578 int new_thread_event;
1582 void init_execution_control_state (struct execution_control_state *ecs);
1584 void handle_inferior_event (struct execution_control_state *ecs);
1586 static void handle_step_into_function (struct execution_control_state *ecs);
1587 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1588 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1589 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1590 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1591 struct frame_id sr_id);
1592 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1594 static void stop_stepping (struct execution_control_state *ecs);
1595 static void prepare_to_wait (struct execution_control_state *ecs);
1596 static void keep_going (struct execution_control_state *ecs);
1597 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1600 /* Callback for iterate over threads. If the thread is stopped, but
1601 the user/frontend doesn't know about that yet, go through
1602 normal_stop, as if the thread had just stopped now. ARG points at
1603 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1604 ptid_is_pid(PTID) is true, applies to all threads of the process
1605 pointed at by PTID. Otherwise, apply only to the thread pointed by
1609 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1611 ptid_t ptid = * (ptid_t *) arg;
1613 if ((ptid_equal (info->ptid, ptid)
1614 || ptid_equal (minus_one_ptid, ptid)
1615 || (ptid_is_pid (ptid)
1616 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1617 && is_running (info->ptid)
1618 && !is_executing (info->ptid))
1620 struct cleanup *old_chain;
1621 struct execution_control_state ecss;
1622 struct execution_control_state *ecs = &ecss;
1624 memset (ecs, 0, sizeof (*ecs));
1626 old_chain = make_cleanup_restore_current_thread ();
1628 switch_to_thread (info->ptid);
1630 /* Go through handle_inferior_event/normal_stop, so we always
1631 have consistent output as if the stop event had been
1633 ecs->ptid = info->ptid;
1634 ecs->event_thread = find_thread_pid (info->ptid);
1635 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1636 ecs->ws.value.sig = TARGET_SIGNAL_0;
1638 handle_inferior_event (ecs);
1640 if (!ecs->wait_some_more)
1642 struct thread_info *tp;
1646 /* Finish off the continuations. The continations
1647 themselves are responsible for realising the thread
1648 didn't finish what it was supposed to do. */
1649 tp = inferior_thread ();
1650 do_all_intermediate_continuations_thread (tp);
1651 do_all_continuations_thread (tp);
1654 do_cleanups (old_chain);
1660 /* This function is attached as a "thread_stop_requested" observer.
1661 Cleanup local state that assumed the PTID was to be resumed, and
1662 report the stop to the frontend. */
1665 infrun_thread_stop_requested (ptid_t ptid)
1667 struct displaced_step_request *it, *next, *prev = NULL;
1669 /* PTID was requested to stop. Remove it from the displaced
1670 stepping queue, so we don't try to resume it automatically. */
1671 for (it = displaced_step_request_queue; it; it = next)
1675 if (ptid_equal (it->ptid, ptid)
1676 || ptid_equal (minus_one_ptid, ptid)
1677 || (ptid_is_pid (ptid)
1678 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1680 if (displaced_step_request_queue == it)
1681 displaced_step_request_queue = it->next;
1683 prev->next = it->next;
1691 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1694 /* Callback for iterate_over_threads. */
1697 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1699 if (is_exited (info->ptid))
1702 delete_step_resume_breakpoint (info);
1706 /* In all-stop, delete the step resume breakpoint of any thread that
1707 had one. In non-stop, delete the step resume breakpoint of the
1708 thread that just stopped. */
1711 delete_step_thread_step_resume_breakpoint (void)
1713 if (!target_has_execution
1714 || ptid_equal (inferior_ptid, null_ptid))
1715 /* If the inferior has exited, we have already deleted the step
1716 resume breakpoints out of GDB's lists. */
1721 /* If in non-stop mode, only delete the step-resume or
1722 longjmp-resume breakpoint of the thread that just stopped
1724 struct thread_info *tp = inferior_thread ();
1725 delete_step_resume_breakpoint (tp);
1728 /* In all-stop mode, delete all step-resume and longjmp-resume
1729 breakpoints of any thread that had them. */
1730 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1733 /* A cleanup wrapper. */
1736 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1738 delete_step_thread_step_resume_breakpoint ();
1741 /* Wait for control to return from inferior to debugger.
1743 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1744 as if they were SIGTRAP signals. This can be useful during
1745 the startup sequence on some targets such as HP/UX, where
1746 we receive an EXEC event instead of the expected SIGTRAP.
1748 If inferior gets a signal, we may decide to start it up again
1749 instead of returning. That is why there is a loop in this function.
1750 When this function actually returns it means the inferior
1751 should be left stopped and GDB should read more commands. */
1754 wait_for_inferior (int treat_exec_as_sigtrap)
1756 struct cleanup *old_cleanups;
1757 struct execution_control_state ecss;
1758 struct execution_control_state *ecs;
1762 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1763 treat_exec_as_sigtrap);
1766 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1769 memset (ecs, 0, sizeof (*ecs));
1771 overlay_cache_invalid = 1;
1773 /* We'll update this if & when we switch to a new thread. */
1774 previous_inferior_ptid = inferior_ptid;
1776 /* We have to invalidate the registers BEFORE calling target_wait
1777 because they can be loaded from the target while in target_wait.
1778 This makes remote debugging a bit more efficient for those
1779 targets that provide critical registers as part of their normal
1780 status mechanism. */
1782 registers_changed ();
1786 if (deprecated_target_wait_hook)
1787 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1789 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1791 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1793 xfree (ecs->ws.value.execd_pathname);
1794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1795 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1798 /* Now figure out what to do with the result of the result. */
1799 handle_inferior_event (ecs);
1801 if (!ecs->wait_some_more)
1805 do_cleanups (old_cleanups);
1808 /* Asynchronous version of wait_for_inferior. It is called by the
1809 event loop whenever a change of state is detected on the file
1810 descriptor corresponding to the target. It can be called more than
1811 once to complete a single execution command. In such cases we need
1812 to keep the state in a global variable ECSS. If it is the last time
1813 that this function is called for a single execution command, then
1814 report to the user that the inferior has stopped, and do the
1815 necessary cleanups. */
1818 fetch_inferior_event (void *client_data)
1820 struct execution_control_state ecss;
1821 struct execution_control_state *ecs = &ecss;
1822 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1823 int was_sync = sync_execution;
1825 memset (ecs, 0, sizeof (*ecs));
1827 overlay_cache_invalid = 1;
1829 /* We can only rely on wait_for_more being correct before handling
1830 the event in all-stop, but previous_inferior_ptid isn't used in
1832 if (!ecs->wait_some_more)
1833 /* We'll update this if & when we switch to a new thread. */
1834 previous_inferior_ptid = inferior_ptid;
1837 /* In non-stop mode, the user/frontend should not notice a thread
1838 switch due to internal events. Make sure we reverse to the
1839 user selected thread and frame after handling the event and
1840 running any breakpoint commands. */
1841 make_cleanup_restore_current_thread ();
1843 /* We have to invalidate the registers BEFORE calling target_wait
1844 because they can be loaded from the target while in target_wait.
1845 This makes remote debugging a bit more efficient for those
1846 targets that provide critical registers as part of their normal
1847 status mechanism. */
1849 registers_changed ();
1851 if (deprecated_target_wait_hook)
1853 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1855 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1858 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1859 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1860 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1861 /* In non-stop mode, each thread is handled individually. Switch
1862 early, so the global state is set correctly for this
1864 context_switch (ecs->ptid);
1866 /* Now figure out what to do with the result of the result. */
1867 handle_inferior_event (ecs);
1869 if (!ecs->wait_some_more)
1871 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1873 delete_step_thread_step_resume_breakpoint ();
1875 /* We may not find an inferior if this was a process exit. */
1876 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1879 if (target_has_execution
1880 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1881 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1882 && ecs->event_thread->step_multi
1883 && ecs->event_thread->stop_step)
1884 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1886 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1889 /* Revert thread and frame. */
1890 do_cleanups (old_chain);
1892 /* If the inferior was in sync execution mode, and now isn't,
1893 restore the prompt. */
1894 if (was_sync && !sync_execution)
1895 display_gdb_prompt (0);
1898 /* Prepare an execution control state for looping through a
1899 wait_for_inferior-type loop. */
1902 init_execution_control_state (struct execution_control_state *ecs)
1904 ecs->random_signal = 0;
1907 /* Clear context switchable stepping state. */
1910 init_thread_stepping_state (struct thread_info *tss)
1912 struct symtab_and_line sal;
1914 tss->stepping_over_breakpoint = 0;
1915 tss->step_after_step_resume_breakpoint = 0;
1916 tss->stepping_through_solib_after_catch = 0;
1917 tss->stepping_through_solib_catchpoints = NULL;
1919 sal = find_pc_line (tss->prev_pc, 0);
1920 tss->current_line = sal.line;
1921 tss->current_symtab = sal.symtab;
1924 /* Return the cached copy of the last pid/waitstatus returned by
1925 target_wait()/deprecated_target_wait_hook(). The data is actually
1926 cached by handle_inferior_event(), which gets called immediately
1927 after target_wait()/deprecated_target_wait_hook(). */
1930 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1932 *ptidp = target_last_wait_ptid;
1933 *status = target_last_waitstatus;
1937 nullify_last_target_wait_ptid (void)
1939 target_last_wait_ptid = minus_one_ptid;
1942 /* Switch thread contexts. */
1945 context_switch (ptid_t ptid)
1949 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1950 target_pid_to_str (inferior_ptid));
1951 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1952 target_pid_to_str (ptid));
1955 switch_to_thread (ptid);
1959 adjust_pc_after_break (struct execution_control_state *ecs)
1961 struct regcache *regcache;
1962 struct gdbarch *gdbarch;
1963 CORE_ADDR breakpoint_pc;
1965 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1966 we aren't, just return.
1968 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1969 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1970 implemented by software breakpoints should be handled through the normal
1973 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1974 different signals (SIGILL or SIGEMT for instance), but it is less
1975 clear where the PC is pointing afterwards. It may not match
1976 gdbarch_decr_pc_after_break. I don't know any specific target that
1977 generates these signals at breakpoints (the code has been in GDB since at
1978 least 1992) so I can not guess how to handle them here.
1980 In earlier versions of GDB, a target with
1981 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1982 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1983 target with both of these set in GDB history, and it seems unlikely to be
1984 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1986 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1989 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1992 /* In reverse execution, when a breakpoint is hit, the instruction
1993 under it has already been de-executed. The reported PC always
1994 points at the breakpoint address, so adjusting it further would
1995 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1998 B1 0x08000000 : INSN1
1999 B2 0x08000001 : INSN2
2001 PC -> 0x08000003 : INSN4
2003 Say you're stopped at 0x08000003 as above. Reverse continuing
2004 from that point should hit B2 as below. Reading the PC when the
2005 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2006 been de-executed already.
2008 B1 0x08000000 : INSN1
2009 B2 PC -> 0x08000001 : INSN2
2013 We can't apply the same logic as for forward execution, because
2014 we would wrongly adjust the PC to 0x08000000, since there's a
2015 breakpoint at PC - 1. We'd then report a hit on B1, although
2016 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2018 if (execution_direction == EXEC_REVERSE)
2021 /* If this target does not decrement the PC after breakpoints, then
2022 we have nothing to do. */
2023 regcache = get_thread_regcache (ecs->ptid);
2024 gdbarch = get_regcache_arch (regcache);
2025 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2028 /* Find the location where (if we've hit a breakpoint) the
2029 breakpoint would be. */
2030 breakpoint_pc = regcache_read_pc (regcache)
2031 - gdbarch_decr_pc_after_break (gdbarch);
2033 /* Check whether there actually is a software breakpoint inserted at
2036 If in non-stop mode, a race condition is possible where we've
2037 removed a breakpoint, but stop events for that breakpoint were
2038 already queued and arrive later. To suppress those spurious
2039 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2040 and retire them after a number of stop events are reported. */
2041 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2042 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2044 /* When using hardware single-step, a SIGTRAP is reported for both
2045 a completed single-step and a software breakpoint. Need to
2046 differentiate between the two, as the latter needs adjusting
2047 but the former does not.
2049 The SIGTRAP can be due to a completed hardware single-step only if
2050 - we didn't insert software single-step breakpoints
2051 - the thread to be examined is still the current thread
2052 - this thread is currently being stepped
2054 If any of these events did not occur, we must have stopped due
2055 to hitting a software breakpoint, and have to back up to the
2058 As a special case, we could have hardware single-stepped a
2059 software breakpoint. In this case (prev_pc == breakpoint_pc),
2060 we also need to back up to the breakpoint address. */
2062 if (singlestep_breakpoints_inserted_p
2063 || !ptid_equal (ecs->ptid, inferior_ptid)
2064 || !currently_stepping (ecs->event_thread)
2065 || ecs->event_thread->prev_pc == breakpoint_pc)
2066 regcache_write_pc (regcache, breakpoint_pc);
2071 init_infwait_state (void)
2073 waiton_ptid = pid_to_ptid (-1);
2074 infwait_state = infwait_normal_state;
2078 error_is_running (void)
2081 Cannot execute this command while the selected thread is running."));
2085 ensure_not_running (void)
2087 if (is_running (inferior_ptid))
2088 error_is_running ();
2091 /* Given an execution control state that has been freshly filled in
2092 by an event from the inferior, figure out what it means and take
2093 appropriate action. */
2096 handle_inferior_event (struct execution_control_state *ecs)
2098 int sw_single_step_trap_p = 0;
2099 int stopped_by_watchpoint;
2100 int stepped_after_stopped_by_watchpoint = 0;
2101 struct symtab_and_line stop_pc_sal;
2102 enum stop_kind stop_soon;
2104 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2105 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2106 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2108 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2110 stop_soon = inf->stop_soon;
2113 stop_soon = NO_STOP_QUIETLY;
2115 /* Cache the last pid/waitstatus. */
2116 target_last_wait_ptid = ecs->ptid;
2117 target_last_waitstatus = ecs->ws;
2119 /* Always clear state belonging to the previous time we stopped. */
2120 stop_stack_dummy = 0;
2122 /* If it's a new process, add it to the thread database */
2124 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2125 && !ptid_equal (ecs->ptid, minus_one_ptid)
2126 && !in_thread_list (ecs->ptid));
2128 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2129 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2130 add_thread (ecs->ptid);
2132 ecs->event_thread = find_thread_pid (ecs->ptid);
2134 /* Dependent on valid ECS->EVENT_THREAD. */
2135 adjust_pc_after_break (ecs);
2137 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2138 reinit_frame_cache ();
2140 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2142 breakpoint_retire_moribund ();
2144 /* Mark the non-executing threads accordingly. In all-stop, all
2145 threads of all processes are stopped when we get any event
2146 reported. In non-stop mode, only the event thread stops. If
2147 we're handling a process exit in non-stop mode, there's
2148 nothing to do, as threads of the dead process are gone, and
2149 threads of any other process were left running. */
2151 set_executing (minus_one_ptid, 0);
2152 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2153 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2154 set_executing (inferior_ptid, 0);
2157 switch (infwait_state)
2159 case infwait_thread_hop_state:
2161 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2162 /* Cancel the waiton_ptid. */
2163 waiton_ptid = pid_to_ptid (-1);
2166 case infwait_normal_state:
2168 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2171 case infwait_step_watch_state:
2173 fprintf_unfiltered (gdb_stdlog,
2174 "infrun: infwait_step_watch_state\n");
2176 stepped_after_stopped_by_watchpoint = 1;
2179 case infwait_nonstep_watch_state:
2181 fprintf_unfiltered (gdb_stdlog,
2182 "infrun: infwait_nonstep_watch_state\n");
2183 insert_breakpoints ();
2185 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2186 handle things like signals arriving and other things happening
2187 in combination correctly? */
2188 stepped_after_stopped_by_watchpoint = 1;
2192 internal_error (__FILE__, __LINE__, _("bad switch"));
2194 infwait_state = infwait_normal_state;
2196 switch (ecs->ws.kind)
2198 case TARGET_WAITKIND_LOADED:
2200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2201 /* Ignore gracefully during startup of the inferior, as it might
2202 be the shell which has just loaded some objects, otherwise
2203 add the symbols for the newly loaded objects. Also ignore at
2204 the beginning of an attach or remote session; we will query
2205 the full list of libraries once the connection is
2207 if (stop_soon == NO_STOP_QUIETLY)
2209 /* Check for any newly added shared libraries if we're
2210 supposed to be adding them automatically. Switch
2211 terminal for any messages produced by
2212 breakpoint_re_set. */
2213 target_terminal_ours_for_output ();
2214 /* NOTE: cagney/2003-11-25: Make certain that the target
2215 stack's section table is kept up-to-date. Architectures,
2216 (e.g., PPC64), use the section table to perform
2217 operations such as address => section name and hence
2218 require the table to contain all sections (including
2219 those found in shared libraries). */
2220 /* NOTE: cagney/2003-11-25: Pass current_target and not
2221 exec_ops to SOLIB_ADD. This is because current GDB is
2222 only tooled to propagate section_table changes out from
2223 the "current_target" (see target_resize_to_sections), and
2224 not up from the exec stratum. This, of course, isn't
2225 right. "infrun.c" should only interact with the
2226 exec/process stratum, instead relying on the target stack
2227 to propagate relevant changes (stop, section table
2228 changed, ...) up to other layers. */
2230 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
2232 solib_add (NULL, 0, ¤t_target, auto_solib_add);
2234 target_terminal_inferior ();
2236 /* If requested, stop when the dynamic linker notifies
2237 gdb of events. This allows the user to get control
2238 and place breakpoints in initializer routines for
2239 dynamically loaded objects (among other things). */
2240 if (stop_on_solib_events)
2242 stop_stepping (ecs);
2246 /* NOTE drow/2007-05-11: This might be a good place to check
2247 for "catch load". */
2250 /* If we are skipping through a shell, or through shared library
2251 loading that we aren't interested in, resume the program. If
2252 we're running the program normally, also resume. But stop if
2253 we're attaching or setting up a remote connection. */
2254 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2256 /* Loading of shared libraries might have changed breakpoint
2257 addresses. Make sure new breakpoints are inserted. */
2258 if (stop_soon == NO_STOP_QUIETLY
2259 && !breakpoints_always_inserted_mode ())
2260 insert_breakpoints ();
2261 resume (0, TARGET_SIGNAL_0);
2262 prepare_to_wait (ecs);
2268 case TARGET_WAITKIND_SPURIOUS:
2270 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2271 resume (0, TARGET_SIGNAL_0);
2272 prepare_to_wait (ecs);
2275 case TARGET_WAITKIND_EXITED:
2277 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2278 inferior_ptid = ecs->ptid;
2279 target_terminal_ours (); /* Must do this before mourn anyway */
2280 print_stop_reason (EXITED, ecs->ws.value.integer);
2282 /* Record the exit code in the convenience variable $_exitcode, so
2283 that the user can inspect this again later. */
2284 set_internalvar (lookup_internalvar ("_exitcode"),
2285 value_from_longest (builtin_type_int32,
2286 (LONGEST) ecs->ws.value.integer));
2287 gdb_flush (gdb_stdout);
2288 target_mourn_inferior ();
2289 singlestep_breakpoints_inserted_p = 0;
2290 stop_print_frame = 0;
2291 stop_stepping (ecs);
2294 case TARGET_WAITKIND_SIGNALLED:
2296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2297 inferior_ptid = ecs->ptid;
2298 stop_print_frame = 0;
2299 target_terminal_ours (); /* Must do this before mourn anyway */
2301 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2302 reach here unless the inferior is dead. However, for years
2303 target_kill() was called here, which hints that fatal signals aren't
2304 really fatal on some systems. If that's true, then some changes
2306 target_mourn_inferior ();
2308 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2309 singlestep_breakpoints_inserted_p = 0;
2310 stop_stepping (ecs);
2313 /* The following are the only cases in which we keep going;
2314 the above cases end in a continue or goto. */
2315 case TARGET_WAITKIND_FORKED:
2316 case TARGET_WAITKIND_VFORKED:
2318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2319 pending_follow.kind = ecs->ws.kind;
2321 pending_follow.fork_event.parent_pid = ecs->ptid;
2322 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2324 if (!ptid_equal (ecs->ptid, inferior_ptid))
2326 context_switch (ecs->ptid);
2327 reinit_frame_cache ();
2330 stop_pc = read_pc ();
2332 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2334 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2336 /* If no catchpoint triggered for this, then keep going. */
2337 if (ecs->random_signal)
2339 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2343 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2344 goto process_event_stop_test;
2346 case TARGET_WAITKIND_EXECD:
2348 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2349 pending_follow.execd_pathname =
2350 savestring (ecs->ws.value.execd_pathname,
2351 strlen (ecs->ws.value.execd_pathname));
2353 if (!ptid_equal (ecs->ptid, inferior_ptid))
2355 context_switch (ecs->ptid);
2356 reinit_frame_cache ();
2359 stop_pc = read_pc ();
2361 /* This causes the eventpoints and symbol table to be reset.
2362 Must do this now, before trying to determine whether to
2364 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2365 xfree (pending_follow.execd_pathname);
2367 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2368 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2370 /* If no catchpoint triggered for this, then keep going. */
2371 if (ecs->random_signal)
2373 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2377 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2378 goto process_event_stop_test;
2380 /* Be careful not to try to gather much state about a thread
2381 that's in a syscall. It's frequently a losing proposition. */
2382 case TARGET_WAITKIND_SYSCALL_ENTRY:
2384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2385 resume (0, TARGET_SIGNAL_0);
2386 prepare_to_wait (ecs);
2389 /* Before examining the threads further, step this thread to
2390 get it entirely out of the syscall. (We get notice of the
2391 event when the thread is just on the verge of exiting a
2392 syscall. Stepping one instruction seems to get it back
2394 case TARGET_WAITKIND_SYSCALL_RETURN:
2396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2397 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2398 prepare_to_wait (ecs);
2401 case TARGET_WAITKIND_STOPPED:
2403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2404 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2407 case TARGET_WAITKIND_NO_HISTORY:
2408 /* Reverse execution: target ran out of history info. */
2409 stop_pc = read_pc ();
2410 print_stop_reason (NO_HISTORY, 0);
2411 stop_stepping (ecs);
2414 /* We had an event in the inferior, but we are not interested
2415 in handling it at this level. The lower layers have already
2416 done what needs to be done, if anything.
2418 One of the possible circumstances for this is when the
2419 inferior produces output for the console. The inferior has
2420 not stopped, and we are ignoring the event. Another possible
2421 circumstance is any event which the lower level knows will be
2422 reported multiple times without an intervening resume. */
2423 case TARGET_WAITKIND_IGNORE:
2425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2426 prepare_to_wait (ecs);
2430 if (ecs->new_thread_event)
2433 /* Non-stop assumes that the target handles adding new threads
2434 to the thread list. */
2435 internal_error (__FILE__, __LINE__, "\
2436 targets should add new threads to the thread list themselves in non-stop mode.");
2438 /* We may want to consider not doing a resume here in order to
2439 give the user a chance to play with the new thread. It might
2440 be good to make that a user-settable option. */
2442 /* At this point, all threads are stopped (happens automatically
2443 in either the OS or the native code). Therefore we need to
2444 continue all threads in order to make progress. */
2446 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2447 prepare_to_wait (ecs);
2451 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2453 /* Do we need to clean up the state of a thread that has
2454 completed a displaced single-step? (Doing so usually affects
2455 the PC, so do it here, before we set stop_pc.) */
2456 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2458 /* If we either finished a single-step or hit a breakpoint, but
2459 the user wanted this thread to be stopped, pretend we got a
2460 SIG0 (generic unsignaled stop). */
2462 if (ecs->event_thread->stop_requested
2463 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2464 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2467 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2471 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2472 paddr_nz (stop_pc));
2473 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2476 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2478 if (target_stopped_data_address (¤t_target, &addr))
2479 fprintf_unfiltered (gdb_stdlog,
2480 "infrun: stopped data address = 0x%s\n",
2483 fprintf_unfiltered (gdb_stdlog,
2484 "infrun: (no data address available)\n");
2488 if (stepping_past_singlestep_breakpoint)
2490 gdb_assert (singlestep_breakpoints_inserted_p);
2491 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2492 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2494 stepping_past_singlestep_breakpoint = 0;
2496 /* We've either finished single-stepping past the single-step
2497 breakpoint, or stopped for some other reason. It would be nice if
2498 we could tell, but we can't reliably. */
2499 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2502 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2503 /* Pull the single step breakpoints out of the target. */
2504 remove_single_step_breakpoints ();
2505 singlestep_breakpoints_inserted_p = 0;
2507 ecs->random_signal = 0;
2509 context_switch (saved_singlestep_ptid);
2510 if (deprecated_context_hook)
2511 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2513 resume (1, TARGET_SIGNAL_0);
2514 prepare_to_wait (ecs);
2519 if (!ptid_equal (deferred_step_ptid, null_ptid))
2521 /* In non-stop mode, there's never a deferred_step_ptid set. */
2522 gdb_assert (!non_stop);
2524 /* If we stopped for some other reason than single-stepping, ignore
2525 the fact that we were supposed to switch back. */
2526 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2529 fprintf_unfiltered (gdb_stdlog,
2530 "infrun: handling deferred step\n");
2532 /* Pull the single step breakpoints out of the target. */
2533 if (singlestep_breakpoints_inserted_p)
2535 remove_single_step_breakpoints ();
2536 singlestep_breakpoints_inserted_p = 0;
2539 /* Note: We do not call context_switch at this point, as the
2540 context is already set up for stepping the original thread. */
2541 switch_to_thread (deferred_step_ptid);
2542 deferred_step_ptid = null_ptid;
2543 /* Suppress spurious "Switching to ..." message. */
2544 previous_inferior_ptid = inferior_ptid;
2546 resume (1, TARGET_SIGNAL_0);
2547 prepare_to_wait (ecs);
2551 deferred_step_ptid = null_ptid;
2554 /* See if a thread hit a thread-specific breakpoint that was meant for
2555 another thread. If so, then step that thread past the breakpoint,
2558 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2560 int thread_hop_needed = 0;
2562 /* Check if a regular breakpoint has been hit before checking
2563 for a potential single step breakpoint. Otherwise, GDB will
2564 not see this breakpoint hit when stepping onto breakpoints. */
2565 if (regular_breakpoint_inserted_here_p (stop_pc))
2567 ecs->random_signal = 0;
2568 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2569 thread_hop_needed = 1;
2571 else if (singlestep_breakpoints_inserted_p)
2573 /* We have not context switched yet, so this should be true
2574 no matter which thread hit the singlestep breakpoint. */
2575 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2577 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2579 target_pid_to_str (ecs->ptid));
2581 ecs->random_signal = 0;
2582 /* The call to in_thread_list is necessary because PTIDs sometimes
2583 change when we go from single-threaded to multi-threaded. If
2584 the singlestep_ptid is still in the list, assume that it is
2585 really different from ecs->ptid. */
2586 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2587 && in_thread_list (singlestep_ptid))
2589 /* If the PC of the thread we were trying to single-step
2590 has changed, discard this event (which we were going
2591 to ignore anyway), and pretend we saw that thread
2592 trap. This prevents us continuously moving the
2593 single-step breakpoint forward, one instruction at a
2594 time. If the PC has changed, then the thread we were
2595 trying to single-step has trapped or been signalled,
2596 but the event has not been reported to GDB yet.
2598 There might be some cases where this loses signal
2599 information, if a signal has arrived at exactly the
2600 same time that the PC changed, but this is the best
2601 we can do with the information available. Perhaps we
2602 should arrange to report all events for all threads
2603 when they stop, or to re-poll the remote looking for
2604 this particular thread (i.e. temporarily enable
2607 CORE_ADDR new_singlestep_pc
2608 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2610 if (new_singlestep_pc != singlestep_pc)
2612 enum target_signal stop_signal;
2615 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2616 " but expected thread advanced also\n");
2618 /* The current context still belongs to
2619 singlestep_ptid. Don't swap here, since that's
2620 the context we want to use. Just fudge our
2621 state and continue. */
2622 stop_signal = ecs->event_thread->stop_signal;
2623 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2624 ecs->ptid = singlestep_ptid;
2625 ecs->event_thread = find_thread_pid (ecs->ptid);
2626 ecs->event_thread->stop_signal = stop_signal;
2627 stop_pc = new_singlestep_pc;
2632 fprintf_unfiltered (gdb_stdlog,
2633 "infrun: unexpected thread\n");
2635 thread_hop_needed = 1;
2636 stepping_past_singlestep_breakpoint = 1;
2637 saved_singlestep_ptid = singlestep_ptid;
2642 if (thread_hop_needed)
2644 int remove_status = 0;
2647 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2649 /* Saw a breakpoint, but it was hit by the wrong thread.
2652 if (singlestep_breakpoints_inserted_p)
2654 /* Pull the single step breakpoints out of the target. */
2655 remove_single_step_breakpoints ();
2656 singlestep_breakpoints_inserted_p = 0;
2659 /* If the arch can displace step, don't remove the
2661 if (!use_displaced_stepping (current_gdbarch))
2662 remove_status = remove_breakpoints ();
2664 /* Did we fail to remove breakpoints? If so, try
2665 to set the PC past the bp. (There's at least
2666 one situation in which we can fail to remove
2667 the bp's: On HP-UX's that use ttrace, we can't
2668 change the address space of a vforking child
2669 process until the child exits (well, okay, not
2670 then either :-) or execs. */
2671 if (remove_status != 0)
2672 error (_("Cannot step over breakpoint hit in wrong thread"));
2675 if (!ptid_equal (inferior_ptid, ecs->ptid))
2676 context_switch (ecs->ptid);
2680 /* Only need to require the next event from this
2681 thread in all-stop mode. */
2682 waiton_ptid = ecs->ptid;
2683 infwait_state = infwait_thread_hop_state;
2686 ecs->event_thread->stepping_over_breakpoint = 1;
2688 registers_changed ();
2692 else if (singlestep_breakpoints_inserted_p)
2694 sw_single_step_trap_p = 1;
2695 ecs->random_signal = 0;
2699 ecs->random_signal = 1;
2701 /* See if something interesting happened to the non-current thread. If
2702 so, then switch to that thread. */
2703 if (!ptid_equal (ecs->ptid, inferior_ptid))
2706 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2708 context_switch (ecs->ptid);
2710 if (deprecated_context_hook)
2711 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2714 if (singlestep_breakpoints_inserted_p)
2716 /* Pull the single step breakpoints out of the target. */
2717 remove_single_step_breakpoints ();
2718 singlestep_breakpoints_inserted_p = 0;
2721 if (stepped_after_stopped_by_watchpoint)
2722 stopped_by_watchpoint = 0;
2724 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2726 /* If necessary, step over this watchpoint. We'll be back to display
2728 if (stopped_by_watchpoint
2729 && (HAVE_STEPPABLE_WATCHPOINT
2730 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2732 /* At this point, we are stopped at an instruction which has
2733 attempted to write to a piece of memory under control of
2734 a watchpoint. The instruction hasn't actually executed
2735 yet. If we were to evaluate the watchpoint expression
2736 now, we would get the old value, and therefore no change
2737 would seem to have occurred.
2739 In order to make watchpoints work `right', we really need
2740 to complete the memory write, and then evaluate the
2741 watchpoint expression. We do this by single-stepping the
2744 It may not be necessary to disable the watchpoint to stop over
2745 it. For example, the PA can (with some kernel cooperation)
2746 single step over a watchpoint without disabling the watchpoint.
2748 It is far more common to need to disable a watchpoint to step
2749 the inferior over it. If we have non-steppable watchpoints,
2750 we must disable the current watchpoint; it's simplest to
2751 disable all watchpoints and breakpoints. */
2753 if (!HAVE_STEPPABLE_WATCHPOINT)
2754 remove_breakpoints ();
2755 registers_changed ();
2756 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2757 waiton_ptid = ecs->ptid;
2758 if (HAVE_STEPPABLE_WATCHPOINT)
2759 infwait_state = infwait_step_watch_state;
2761 infwait_state = infwait_nonstep_watch_state;
2762 prepare_to_wait (ecs);
2766 ecs->stop_func_start = 0;
2767 ecs->stop_func_end = 0;
2768 ecs->stop_func_name = 0;
2769 /* Don't care about return value; stop_func_start and stop_func_name
2770 will both be 0 if it doesn't work. */
2771 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2772 &ecs->stop_func_start, &ecs->stop_func_end);
2773 ecs->stop_func_start
2774 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2775 ecs->event_thread->stepping_over_breakpoint = 0;
2776 bpstat_clear (&ecs->event_thread->stop_bpstat);
2777 ecs->event_thread->stop_step = 0;
2778 stop_print_frame = 1;
2779 ecs->random_signal = 0;
2780 stopped_by_random_signal = 0;
2782 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2783 && ecs->event_thread->trap_expected
2784 && gdbarch_single_step_through_delay_p (current_gdbarch)
2785 && currently_stepping (ecs->event_thread))
2787 /* We're trying to step off a breakpoint. Turns out that we're
2788 also on an instruction that needs to be stepped multiple
2789 times before it's been fully executing. E.g., architectures
2790 with a delay slot. It needs to be stepped twice, once for
2791 the instruction and once for the delay slot. */
2792 int step_through_delay
2793 = gdbarch_single_step_through_delay (current_gdbarch,
2794 get_current_frame ());
2795 if (debug_infrun && step_through_delay)
2796 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2797 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2799 /* The user issued a continue when stopped at a breakpoint.
2800 Set up for another trap and get out of here. */
2801 ecs->event_thread->stepping_over_breakpoint = 1;
2805 else if (step_through_delay)
2807 /* The user issued a step when stopped at a breakpoint.
2808 Maybe we should stop, maybe we should not - the delay
2809 slot *might* correspond to a line of source. In any
2810 case, don't decide that here, just set
2811 ecs->stepping_over_breakpoint, making sure we
2812 single-step again before breakpoints are re-inserted. */
2813 ecs->event_thread->stepping_over_breakpoint = 1;
2817 /* Look at the cause of the stop, and decide what to do.
2818 The alternatives are:
2819 1) stop_stepping and return; to really stop and return to the debugger,
2820 2) keep_going and return to start up again
2821 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2822 3) set ecs->random_signal to 1, and the decision between 1 and 2
2823 will be made according to the signal handling tables. */
2825 /* First, distinguish signals caused by the debugger from signals
2826 that have to do with the program's own actions. Note that
2827 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2828 on the operating system version. Here we detect when a SIGILL or
2829 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2830 something similar for SIGSEGV, since a SIGSEGV will be generated
2831 when we're trying to execute a breakpoint instruction on a
2832 non-executable stack. This happens for call dummy breakpoints
2833 for architectures like SPARC that place call dummies on the
2836 If we're doing a displaced step past a breakpoint, then the
2837 breakpoint is always inserted at the original instruction;
2838 non-standard signals can't be explained by the breakpoint. */
2839 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2840 || (! ecs->event_thread->trap_expected
2841 && breakpoint_inserted_here_p (stop_pc)
2842 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2843 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2844 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2845 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2846 || stop_soon == STOP_QUIETLY_REMOTE)
2848 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2851 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2852 stop_print_frame = 0;
2853 stop_stepping (ecs);
2857 /* This is originated from start_remote(), start_inferior() and
2858 shared libraries hook functions. */
2859 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2862 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2863 stop_stepping (ecs);
2867 /* This originates from attach_command(). We need to overwrite
2868 the stop_signal here, because some kernels don't ignore a
2869 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2870 See more comments in inferior.h. On the other hand, if we
2871 get a non-SIGSTOP, report it to the user - assume the backend
2872 will handle the SIGSTOP if it should show up later.
2874 Also consider that the attach is complete when we see a
2875 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2876 target extended-remote report it instead of a SIGSTOP
2877 (e.g. gdbserver). We already rely on SIGTRAP being our
2878 signal, so this is no exception.
2880 Also consider that the attach is complete when we see a
2881 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2882 the target to stop all threads of the inferior, in case the
2883 low level attach operation doesn't stop them implicitly. If
2884 they weren't stopped implicitly, then the stub will report a
2885 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2886 other than GDB's request. */
2887 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2888 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2889 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2890 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2892 stop_stepping (ecs);
2893 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2897 /* See if there is a breakpoint at the current PC. */
2898 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2900 /* Following in case break condition called a
2902 stop_print_frame = 1;
2904 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2905 at one stage in the past included checks for an inferior
2906 function call's call dummy's return breakpoint. The original
2907 comment, that went with the test, read:
2909 ``End of a stack dummy. Some systems (e.g. Sony news) give
2910 another signal besides SIGTRAP, so check here as well as
2913 If someone ever tries to get call dummys on a
2914 non-executable stack to work (where the target would stop
2915 with something like a SIGSEGV), then those tests might need
2916 to be re-instated. Given, however, that the tests were only
2917 enabled when momentary breakpoints were not being used, I
2918 suspect that it won't be the case.
2920 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2921 be necessary for call dummies on a non-executable stack on
2924 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2926 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2927 || ecs->event_thread->trap_expected
2928 || (ecs->event_thread->step_range_end
2929 && ecs->event_thread->step_resume_breakpoint == NULL));
2932 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2933 if (!ecs->random_signal)
2934 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2938 /* When we reach this point, we've pretty much decided
2939 that the reason for stopping must've been a random
2940 (unexpected) signal. */
2943 ecs->random_signal = 1;
2945 process_event_stop_test:
2946 /* For the program's own signals, act according to
2947 the signal handling tables. */
2949 if (ecs->random_signal)
2951 /* Signal not for debugging purposes. */
2955 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2956 ecs->event_thread->stop_signal);
2958 stopped_by_random_signal = 1;
2960 if (signal_print[ecs->event_thread->stop_signal])
2963 target_terminal_ours_for_output ();
2964 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2966 /* Always stop on signals if we're either just gaining control
2967 of the program, or the user explicitly requested this thread
2968 to remain stopped. */
2969 if (stop_soon != NO_STOP_QUIETLY
2970 || ecs->event_thread->stop_requested
2971 || signal_stop_state (ecs->event_thread->stop_signal))
2973 stop_stepping (ecs);
2976 /* If not going to stop, give terminal back
2977 if we took it away. */
2979 target_terminal_inferior ();
2981 /* Clear the signal if it should not be passed. */
2982 if (signal_program[ecs->event_thread->stop_signal] == 0)
2983 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2985 if (ecs->event_thread->prev_pc == read_pc ()
2986 && ecs->event_thread->trap_expected
2987 && ecs->event_thread->step_resume_breakpoint == NULL)
2989 /* We were just starting a new sequence, attempting to
2990 single-step off of a breakpoint and expecting a SIGTRAP.
2991 Instead this signal arrives. This signal will take us out
2992 of the stepping range so GDB needs to remember to, when
2993 the signal handler returns, resume stepping off that
2995 /* To simplify things, "continue" is forced to use the same
2996 code paths as single-step - set a breakpoint at the
2997 signal return address and then, once hit, step off that
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: signal arrived while stepping over "
3004 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3005 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3010 if (ecs->event_thread->step_range_end != 0
3011 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3012 && (ecs->event_thread->step_range_start <= stop_pc
3013 && stop_pc < ecs->event_thread->step_range_end)
3014 && frame_id_eq (get_frame_id (get_current_frame ()),
3015 ecs->event_thread->step_frame_id)
3016 && ecs->event_thread->step_resume_breakpoint == NULL)
3018 /* The inferior is about to take a signal that will take it
3019 out of the single step range. Set a breakpoint at the
3020 current PC (which is presumably where the signal handler
3021 will eventually return) and then allow the inferior to
3024 Note that this is only needed for a signal delivered
3025 while in the single-step range. Nested signals aren't a
3026 problem as they eventually all return. */
3028 fprintf_unfiltered (gdb_stdlog,
3029 "infrun: signal may take us out of "
3030 "single-step range\n");
3032 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3037 /* Note: step_resume_breakpoint may be non-NULL. This occures
3038 when either there's a nested signal, or when there's a
3039 pending signal enabled just as the signal handler returns
3040 (leaving the inferior at the step-resume-breakpoint without
3041 actually executing it). Either way continue until the
3042 breakpoint is really hit. */
3047 /* Handle cases caused by hitting a breakpoint. */
3049 CORE_ADDR jmp_buf_pc;
3050 struct bpstat_what what;
3052 what = bpstat_what (ecs->event_thread->stop_bpstat);
3054 if (what.call_dummy)
3056 stop_stack_dummy = 1;
3059 switch (what.main_action)
3061 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3062 /* If we hit the breakpoint at longjmp while stepping, we
3063 install a momentary breakpoint at the target of the
3067 fprintf_unfiltered (gdb_stdlog,
3068 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3070 ecs->event_thread->stepping_over_breakpoint = 1;
3072 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3073 || !gdbarch_get_longjmp_target (current_gdbarch,
3074 get_current_frame (), &jmp_buf_pc))
3077 fprintf_unfiltered (gdb_stdlog, "\
3078 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3083 /* We're going to replace the current step-resume breakpoint
3084 with a longjmp-resume breakpoint. */
3085 delete_step_resume_breakpoint (ecs->event_thread);
3087 /* Insert a breakpoint at resume address. */
3088 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3093 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3095 fprintf_unfiltered (gdb_stdlog,
3096 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3098 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3099 delete_step_resume_breakpoint (ecs->event_thread);
3101 ecs->event_thread->stop_step = 1;
3102 print_stop_reason (END_STEPPING_RANGE, 0);
3103 stop_stepping (ecs);
3106 case BPSTAT_WHAT_SINGLE:
3108 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3109 ecs->event_thread->stepping_over_breakpoint = 1;
3110 /* Still need to check other stuff, at least the case
3111 where we are stepping and step out of the right range. */
3114 case BPSTAT_WHAT_STOP_NOISY:
3116 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3117 stop_print_frame = 1;
3119 /* We are about to nuke the step_resume_breakpointt via the
3120 cleanup chain, so no need to worry about it here. */
3122 stop_stepping (ecs);
3125 case BPSTAT_WHAT_STOP_SILENT:
3127 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3128 stop_print_frame = 0;
3130 /* We are about to nuke the step_resume_breakpoin via the
3131 cleanup chain, so no need to worry about it here. */
3133 stop_stepping (ecs);
3136 case BPSTAT_WHAT_STEP_RESUME:
3138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3140 delete_step_resume_breakpoint (ecs->event_thread);
3141 if (ecs->event_thread->step_after_step_resume_breakpoint)
3143 /* Back when the step-resume breakpoint was inserted, we
3144 were trying to single-step off a breakpoint. Go back
3146 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3147 ecs->event_thread->stepping_over_breakpoint = 1;
3151 if (stop_pc == ecs->stop_func_start
3152 && execution_direction == EXEC_REVERSE)
3154 /* We are stepping over a function call in reverse, and
3155 just hit the step-resume breakpoint at the start
3156 address of the function. Go back to single-stepping,
3157 which should take us back to the function call. */
3158 ecs->event_thread->stepping_over_breakpoint = 1;
3164 case BPSTAT_WHAT_CHECK_SHLIBS:
3167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3169 /* Check for any newly added shared libraries if we're
3170 supposed to be adding them automatically. Switch
3171 terminal for any messages produced by
3172 breakpoint_re_set. */
3173 target_terminal_ours_for_output ();
3174 /* NOTE: cagney/2003-11-25: Make certain that the target
3175 stack's section table is kept up-to-date. Architectures,
3176 (e.g., PPC64), use the section table to perform
3177 operations such as address => section name and hence
3178 require the table to contain all sections (including
3179 those found in shared libraries). */
3180 /* NOTE: cagney/2003-11-25: Pass current_target and not
3181 exec_ops to SOLIB_ADD. This is because current GDB is
3182 only tooled to propagate section_table changes out from
3183 the "current_target" (see target_resize_to_sections), and
3184 not up from the exec stratum. This, of course, isn't
3185 right. "infrun.c" should only interact with the
3186 exec/process stratum, instead relying on the target stack
3187 to propagate relevant changes (stop, section table
3188 changed, ...) up to other layers. */
3190 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
3192 solib_add (NULL, 0, ¤t_target, auto_solib_add);
3194 target_terminal_inferior ();
3196 /* If requested, stop when the dynamic linker notifies
3197 gdb of events. This allows the user to get control
3198 and place breakpoints in initializer routines for
3199 dynamically loaded objects (among other things). */
3200 if (stop_on_solib_events || stop_stack_dummy)
3202 stop_stepping (ecs);
3207 /* We want to step over this breakpoint, then keep going. */
3208 ecs->event_thread->stepping_over_breakpoint = 1;
3214 case BPSTAT_WHAT_LAST:
3215 /* Not a real code, but listed here to shut up gcc -Wall. */
3217 case BPSTAT_WHAT_KEEP_CHECKING:
3222 /* We come here if we hit a breakpoint but should not
3223 stop for it. Possibly we also were stepping
3224 and should stop for that. So fall through and
3225 test for stepping. But, if not stepping,
3228 /* In all-stop mode, if we're currently stepping but have stopped in
3229 some other thread, we need to switch back to the stepped thread. */
3232 struct thread_info *tp;
3233 tp = iterate_over_threads (currently_stepping_callback,
3237 /* However, if the current thread is blocked on some internal
3238 breakpoint, and we simply need to step over that breakpoint
3239 to get it going again, do that first. */
3240 if ((ecs->event_thread->trap_expected
3241 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3242 || ecs->event_thread->stepping_over_breakpoint)
3248 /* Otherwise, we no longer expect a trap in the current thread.
3249 Clear the trap_expected flag before switching back -- this is
3250 what keep_going would do as well, if we called it. */
3251 ecs->event_thread->trap_expected = 0;
3254 fprintf_unfiltered (gdb_stdlog,
3255 "infrun: switching back to stepped thread\n");
3257 ecs->event_thread = tp;
3258 ecs->ptid = tp->ptid;
3259 context_switch (ecs->ptid);
3265 /* Are we stepping to get the inferior out of the dynamic linker's
3266 hook (and possibly the dld itself) after catching a shlib
3268 if (ecs->event_thread->stepping_through_solib_after_catch)
3270 #if defined(SOLIB_ADD)
3271 /* Have we reached our destination? If not, keep going. */
3272 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3275 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3276 ecs->event_thread->stepping_over_breakpoint = 1;
3282 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3283 /* Else, stop and report the catchpoint(s) whose triggering
3284 caused us to begin stepping. */
3285 ecs->event_thread->stepping_through_solib_after_catch = 0;
3286 bpstat_clear (&ecs->event_thread->stop_bpstat);
3287 ecs->event_thread->stop_bpstat
3288 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3289 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3290 stop_print_frame = 1;
3291 stop_stepping (ecs);
3295 if (ecs->event_thread->step_resume_breakpoint)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "infrun: step-resume breakpoint is inserted\n");
3301 /* Having a step-resume breakpoint overrides anything
3302 else having to do with stepping commands until
3303 that breakpoint is reached. */
3308 if (ecs->event_thread->step_range_end == 0)
3311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3312 /* Likewise if we aren't even stepping. */
3317 /* If stepping through a line, keep going if still within it.
3319 Note that step_range_end is the address of the first instruction
3320 beyond the step range, and NOT the address of the last instruction
3322 if (stop_pc >= ecs->event_thread->step_range_start
3323 && stop_pc < ecs->event_thread->step_range_end)
3326 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3327 paddr_nz (ecs->event_thread->step_range_start),
3328 paddr_nz (ecs->event_thread->step_range_end));
3330 /* When stepping backward, stop at beginning of line range
3331 (unless it's the function entry point, in which case
3332 keep going back to the call point). */
3333 if (stop_pc == ecs->event_thread->step_range_start
3334 && stop_pc != ecs->stop_func_start
3335 && execution_direction == EXEC_REVERSE)
3337 ecs->event_thread->stop_step = 1;
3338 print_stop_reason (END_STEPPING_RANGE, 0);
3339 stop_stepping (ecs);
3347 /* We stepped out of the stepping range. */
3349 /* If we are stepping at the source level and entered the runtime
3350 loader dynamic symbol resolution code, we keep on single stepping
3351 until we exit the run time loader code and reach the callee's
3353 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3354 && in_solib_dynsym_resolve_code (stop_pc))
3356 CORE_ADDR pc_after_resolver =
3357 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3360 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3362 if (pc_after_resolver)
3364 /* Set up a step-resume breakpoint at the address
3365 indicated by SKIP_SOLIB_RESOLVER. */
3366 struct symtab_and_line sr_sal;
3368 sr_sal.pc = pc_after_resolver;
3370 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3377 if (ecs->event_thread->step_range_end != 1
3378 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3379 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3380 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3383 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3384 /* The inferior, while doing a "step" or "next", has ended up in
3385 a signal trampoline (either by a signal being delivered or by
3386 the signal handler returning). Just single-step until the
3387 inferior leaves the trampoline (either by calling the handler
3393 /* Check for subroutine calls. The check for the current frame
3394 equalling the step ID is not necessary - the check of the
3395 previous frame's ID is sufficient - but it is a common case and
3396 cheaper than checking the previous frame's ID.
3398 NOTE: frame_id_eq will never report two invalid frame IDs as
3399 being equal, so to get into this block, both the current and
3400 previous frame must have valid frame IDs. */
3401 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3402 ecs->event_thread->step_frame_id)
3403 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3404 ecs->event_thread->step_frame_id)
3405 || execution_direction == EXEC_REVERSE))
3407 CORE_ADDR real_stop_pc;
3410 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3412 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3413 || ((ecs->event_thread->step_range_end == 1)
3414 && in_prologue (ecs->event_thread->prev_pc,
3415 ecs->stop_func_start)))
3417 /* I presume that step_over_calls is only 0 when we're
3418 supposed to be stepping at the assembly language level
3419 ("stepi"). Just stop. */
3420 /* Also, maybe we just did a "nexti" inside a prolog, so we
3421 thought it was a subroutine call but it was not. Stop as
3423 ecs->event_thread->stop_step = 1;
3424 print_stop_reason (END_STEPPING_RANGE, 0);
3425 stop_stepping (ecs);
3429 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3431 /* We're doing a "next".
3433 Normal (forward) execution: set a breakpoint at the
3434 callee's return address (the address at which the caller
3437 Reverse (backward) execution. set the step-resume
3438 breakpoint at the start of the function that we just
3439 stepped into (backwards), and continue to there. When we
3440 get there, we'll need to single-step back to the caller. */
3442 if (execution_direction == EXEC_REVERSE)
3444 struct symtab_and_line sr_sal;
3446 if (ecs->stop_func_start == 0
3447 && in_solib_dynsym_resolve_code (stop_pc))
3449 /* Stepped into runtime loader dynamic symbol
3450 resolution code. Since we're in reverse,
3451 we have already backed up through the runtime
3452 loader and the dynamic function. This is just
3453 the trampoline (jump table).
3455 Just keep stepping, we'll soon be home.
3460 /* Normal (staticly linked) function call return. */
3462 sr_sal.pc = ecs->stop_func_start;
3463 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3466 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3472 /* If we are in a function call trampoline (a stub between the
3473 calling routine and the real function), locate the real
3474 function. That's what tells us (a) whether we want to step
3475 into it at all, and (b) what prologue we want to run to the
3476 end of, if we do step into it. */
3477 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3478 if (real_stop_pc == 0)
3479 real_stop_pc = gdbarch_skip_trampoline_code
3480 (current_gdbarch, get_current_frame (), stop_pc);
3481 if (real_stop_pc != 0)
3482 ecs->stop_func_start = real_stop_pc;
3484 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3486 struct symtab_and_line sr_sal;
3488 sr_sal.pc = ecs->stop_func_start;
3490 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3495 /* If we have line number information for the function we are
3496 thinking of stepping into, step into it.
3498 If there are several symtabs at that PC (e.g. with include
3499 files), just want to know whether *any* of them have line
3500 numbers. find_pc_line handles this. */
3502 struct symtab_and_line tmp_sal;
3504 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3505 if (tmp_sal.line != 0)
3507 if (execution_direction == EXEC_REVERSE)
3508 handle_step_into_function_backward (ecs);
3510 handle_step_into_function (ecs);
3515 /* If we have no line number and the step-stop-if-no-debug is
3516 set, we stop the step so that the user has a chance to switch
3517 in assembly mode. */
3518 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3519 && step_stop_if_no_debug)
3521 ecs->event_thread->stop_step = 1;
3522 print_stop_reason (END_STEPPING_RANGE, 0);
3523 stop_stepping (ecs);
3527 if (execution_direction == EXEC_REVERSE)
3529 /* Set a breakpoint at callee's start address.
3530 From there we can step once and be back in the caller. */
3531 struct symtab_and_line sr_sal;
3533 sr_sal.pc = ecs->stop_func_start;
3534 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3537 /* Set a breakpoint at callee's return address (the address
3538 at which the caller will resume). */
3539 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3545 /* If we're in the return path from a shared library trampoline,
3546 we want to proceed through the trampoline when stepping. */
3547 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3548 stop_pc, ecs->stop_func_name))
3550 /* Determine where this trampoline returns. */
3551 CORE_ADDR real_stop_pc;
3552 real_stop_pc = gdbarch_skip_trampoline_code
3553 (current_gdbarch, get_current_frame (), stop_pc);
3556 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3558 /* Only proceed through if we know where it's going. */
3561 /* And put the step-breakpoint there and go until there. */
3562 struct symtab_and_line sr_sal;
3564 init_sal (&sr_sal); /* initialize to zeroes */
3565 sr_sal.pc = real_stop_pc;
3566 sr_sal.section = find_pc_overlay (sr_sal.pc);
3568 /* Do not specify what the fp should be when we stop since
3569 on some machines the prologue is where the new fp value
3571 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3573 /* Restart without fiddling with the step ranges or
3580 stop_pc_sal = find_pc_line (stop_pc, 0);
3582 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3583 the trampoline processing logic, however, there are some trampolines
3584 that have no names, so we should do trampoline handling first. */
3585 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3586 && ecs->stop_func_name == NULL
3587 && stop_pc_sal.line == 0)
3590 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3592 /* The inferior just stepped into, or returned to, an
3593 undebuggable function (where there is no debugging information
3594 and no line number corresponding to the address where the
3595 inferior stopped). Since we want to skip this kind of code,
3596 we keep going until the inferior returns from this
3597 function - unless the user has asked us not to (via
3598 set step-mode) or we no longer know how to get back
3599 to the call site. */
3600 if (step_stop_if_no_debug
3601 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3603 /* If we have no line number and the step-stop-if-no-debug
3604 is set, we stop the step so that the user has a chance to
3605 switch in assembly mode. */
3606 ecs->event_thread->stop_step = 1;
3607 print_stop_reason (END_STEPPING_RANGE, 0);
3608 stop_stepping (ecs);
3613 /* Set a breakpoint at callee's return address (the address
3614 at which the caller will resume). */
3615 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3621 if (ecs->event_thread->step_range_end == 1)
3623 /* It is stepi or nexti. We always want to stop stepping after
3626 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3627 ecs->event_thread->stop_step = 1;
3628 print_stop_reason (END_STEPPING_RANGE, 0);
3629 stop_stepping (ecs);
3633 if (stop_pc_sal.line == 0)
3635 /* We have no line number information. That means to stop
3636 stepping (does this always happen right after one instruction,
3637 when we do "s" in a function with no line numbers,
3638 or can this happen as a result of a return or longjmp?). */
3640 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3641 ecs->event_thread->stop_step = 1;
3642 print_stop_reason (END_STEPPING_RANGE, 0);
3643 stop_stepping (ecs);
3647 if ((stop_pc == stop_pc_sal.pc)
3648 && (ecs->event_thread->current_line != stop_pc_sal.line
3649 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3651 /* We are at the start of a different line. So stop. Note that
3652 we don't stop if we step into the middle of a different line.
3653 That is said to make things like for (;;) statements work
3656 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3657 ecs->event_thread->stop_step = 1;
3658 print_stop_reason (END_STEPPING_RANGE, 0);
3659 stop_stepping (ecs);
3663 /* We aren't done stepping.
3665 Optimize by setting the stepping range to the line.
3666 (We might not be in the original line, but if we entered a
3667 new line in mid-statement, we continue stepping. This makes
3668 things like for(;;) statements work better.) */
3670 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3671 ecs->event_thread->step_range_end = stop_pc_sal.end;
3672 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3673 ecs->event_thread->current_line = stop_pc_sal.line;
3674 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3677 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3681 /* Are we in the middle of stepping? */
3684 currently_stepping_thread (struct thread_info *tp)
3686 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3687 || tp->trap_expected
3688 || tp->stepping_through_solib_after_catch;
3692 currently_stepping_callback (struct thread_info *tp, void *data)
3694 /* Return true if any thread *but* the one passed in "data" is
3695 in the middle of stepping. */
3696 return tp != data && currently_stepping_thread (tp);
3700 currently_stepping (struct thread_info *tp)
3702 return currently_stepping_thread (tp) || bpstat_should_step ();
3705 /* Inferior has stepped into a subroutine call with source code that
3706 we should not step over. Do step to the first line of code in
3710 handle_step_into_function (struct execution_control_state *ecs)
3713 struct symtab_and_line stop_func_sal, sr_sal;
3715 s = find_pc_symtab (stop_pc);
3716 if (s && s->language != language_asm)
3717 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3718 ecs->stop_func_start);
3720 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3721 /* Use the step_resume_break to step until the end of the prologue,
3722 even if that involves jumps (as it seems to on the vax under
3724 /* If the prologue ends in the middle of a source line, continue to
3725 the end of that source line (if it is still within the function).
3726 Otherwise, just go to end of prologue. */
3727 if (stop_func_sal.end
3728 && stop_func_sal.pc != ecs->stop_func_start
3729 && stop_func_sal.end < ecs->stop_func_end)
3730 ecs->stop_func_start = stop_func_sal.end;
3732 /* Architectures which require breakpoint adjustment might not be able
3733 to place a breakpoint at the computed address. If so, the test
3734 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3735 ecs->stop_func_start to an address at which a breakpoint may be
3736 legitimately placed.
3738 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3739 made, GDB will enter an infinite loop when stepping through
3740 optimized code consisting of VLIW instructions which contain
3741 subinstructions corresponding to different source lines. On
3742 FR-V, it's not permitted to place a breakpoint on any but the
3743 first subinstruction of a VLIW instruction. When a breakpoint is
3744 set, GDB will adjust the breakpoint address to the beginning of
3745 the VLIW instruction. Thus, we need to make the corresponding
3746 adjustment here when computing the stop address. */
3748 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3750 ecs->stop_func_start
3751 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3752 ecs->stop_func_start);
3755 if (ecs->stop_func_start == stop_pc)
3757 /* We are already there: stop now. */
3758 ecs->event_thread->stop_step = 1;
3759 print_stop_reason (END_STEPPING_RANGE, 0);
3760 stop_stepping (ecs);
3765 /* Put the step-breakpoint there and go until there. */
3766 init_sal (&sr_sal); /* initialize to zeroes */
3767 sr_sal.pc = ecs->stop_func_start;
3768 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3770 /* Do not specify what the fp should be when we stop since on
3771 some machines the prologue is where the new fp value is
3773 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3775 /* And make sure stepping stops right away then. */
3776 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3781 /* Inferior has stepped backward into a subroutine call with source
3782 code that we should not step over. Do step to the beginning of the
3783 last line of code in it. */
3786 handle_step_into_function_backward (struct execution_control_state *ecs)
3789 struct symtab_and_line stop_func_sal, sr_sal;
3791 s = find_pc_symtab (stop_pc);
3792 if (s && s->language != language_asm)
3793 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3794 ecs->stop_func_start);
3796 stop_func_sal = find_pc_line (stop_pc, 0);
3798 /* OK, we're just going to keep stepping here. */
3799 if (stop_func_sal.pc == stop_pc)
3801 /* We're there already. Just stop stepping now. */
3802 ecs->event_thread->stop_step = 1;
3803 print_stop_reason (END_STEPPING_RANGE, 0);
3804 stop_stepping (ecs);
3808 /* Else just reset the step range and keep going.
3809 No step-resume breakpoint, they don't work for
3810 epilogues, which can have multiple entry paths. */
3811 ecs->event_thread->step_range_start = stop_func_sal.pc;
3812 ecs->event_thread->step_range_end = stop_func_sal.end;
3818 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3819 This is used to both functions and to skip over code. */
3822 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3823 struct frame_id sr_id)
3825 /* There should never be more than one step-resume or longjmp-resume
3826 breakpoint per thread, so we should never be setting a new
3827 step_resume_breakpoint when one is already active. */
3828 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3831 fprintf_unfiltered (gdb_stdlog,
3832 "infrun: inserting step-resume breakpoint at 0x%s\n",
3833 paddr_nz (sr_sal.pc));
3835 inferior_thread ()->step_resume_breakpoint
3836 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3839 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3840 to skip a potential signal handler.
3842 This is called with the interrupted function's frame. The signal
3843 handler, when it returns, will resume the interrupted function at
3847 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3849 struct symtab_and_line sr_sal;
3851 gdb_assert (return_frame != NULL);
3852 init_sal (&sr_sal); /* initialize to zeros */
3854 sr_sal.pc = gdbarch_addr_bits_remove
3855 (current_gdbarch, get_frame_pc (return_frame));
3856 sr_sal.section = find_pc_overlay (sr_sal.pc);
3858 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3861 /* Similar to insert_step_resume_breakpoint_at_frame, except
3862 but a breakpoint at the previous frame's PC. This is used to
3863 skip a function after stepping into it (for "next" or if the called
3864 function has no debugging information).
3866 The current function has almost always been reached by single
3867 stepping a call or return instruction. NEXT_FRAME belongs to the
3868 current function, and the breakpoint will be set at the caller's
3871 This is a separate function rather than reusing
3872 insert_step_resume_breakpoint_at_frame in order to avoid
3873 get_prev_frame, which may stop prematurely (see the implementation
3874 of frame_unwind_id for an example). */
3877 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3879 struct symtab_and_line sr_sal;
3881 /* We shouldn't have gotten here if we don't know where the call site
3883 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3885 init_sal (&sr_sal); /* initialize to zeros */
3887 sr_sal.pc = gdbarch_addr_bits_remove
3888 (current_gdbarch, frame_pc_unwind (next_frame));
3889 sr_sal.section = find_pc_overlay (sr_sal.pc);
3891 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3894 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3895 new breakpoint at the target of a jmp_buf. The handling of
3896 longjmp-resume uses the same mechanisms used for handling
3897 "step-resume" breakpoints. */
3900 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3902 /* There should never be more than one step-resume or longjmp-resume
3903 breakpoint per thread, so we should never be setting a new
3904 longjmp_resume_breakpoint when one is already active. */
3905 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3908 fprintf_unfiltered (gdb_stdlog,
3909 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3912 inferior_thread ()->step_resume_breakpoint =
3913 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3917 stop_stepping (struct execution_control_state *ecs)
3920 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3922 /* Let callers know we don't want to wait for the inferior anymore. */
3923 ecs->wait_some_more = 0;
3926 /* This function handles various cases where we need to continue
3927 waiting for the inferior. */
3928 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3931 keep_going (struct execution_control_state *ecs)
3933 /* Save the pc before execution, to compare with pc after stop. */
3934 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3936 /* If we did not do break;, it means we should keep running the
3937 inferior and not return to debugger. */
3939 if (ecs->event_thread->trap_expected
3940 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3942 /* We took a signal (which we are supposed to pass through to
3943 the inferior, else we'd not get here) and we haven't yet
3944 gotten our trap. Simply continue. */
3945 resume (currently_stepping (ecs->event_thread),
3946 ecs->event_thread->stop_signal);
3950 /* Either the trap was not expected, but we are continuing
3951 anyway (the user asked that this signal be passed to the
3954 The signal was SIGTRAP, e.g. it was our signal, but we
3955 decided we should resume from it.
3957 We're going to run this baby now!
3959 Note that insert_breakpoints won't try to re-insert
3960 already inserted breakpoints. Therefore, we don't
3961 care if breakpoints were already inserted, or not. */
3963 if (ecs->event_thread->stepping_over_breakpoint)
3965 if (! use_displaced_stepping (current_gdbarch))
3966 /* Since we can't do a displaced step, we have to remove
3967 the breakpoint while we step it. To keep things
3968 simple, we remove them all. */
3969 remove_breakpoints ();
3973 struct gdb_exception e;
3974 /* Stop stepping when inserting breakpoints
3976 TRY_CATCH (e, RETURN_MASK_ERROR)
3978 insert_breakpoints ();
3982 stop_stepping (ecs);
3987 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3989 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3990 specifies that such a signal should be delivered to the
3993 Typically, this would occure when a user is debugging a
3994 target monitor on a simulator: the target monitor sets a
3995 breakpoint; the simulator encounters this break-point and
3996 halts the simulation handing control to GDB; GDB, noteing
3997 that the break-point isn't valid, returns control back to the
3998 simulator; the simulator then delivers the hardware
3999 equivalent of a SIGNAL_TRAP to the program being debugged. */
4001 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4002 && !signal_program[ecs->event_thread->stop_signal])
4003 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4005 resume (currently_stepping (ecs->event_thread),
4006 ecs->event_thread->stop_signal);
4009 prepare_to_wait (ecs);
4012 /* This function normally comes after a resume, before
4013 handle_inferior_event exits. It takes care of any last bits of
4014 housekeeping, and sets the all-important wait_some_more flag. */
4017 prepare_to_wait (struct execution_control_state *ecs)
4020 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4021 if (infwait_state == infwait_normal_state)
4023 overlay_cache_invalid = 1;
4025 /* We have to invalidate the registers BEFORE calling
4026 target_wait because they can be loaded from the target while
4027 in target_wait. This makes remote debugging a bit more
4028 efficient for those targets that provide critical registers
4029 as part of their normal status mechanism. */
4031 registers_changed ();
4032 waiton_ptid = pid_to_ptid (-1);
4034 /* This is the old end of the while loop. Let everybody know we
4035 want to wait for the inferior some more and get called again
4037 ecs->wait_some_more = 1;
4040 /* Print why the inferior has stopped. We always print something when
4041 the inferior exits, or receives a signal. The rest of the cases are
4042 dealt with later on in normal_stop() and print_it_typical(). Ideally
4043 there should be a call to this function from handle_inferior_event()
4044 each time stop_stepping() is called.*/
4046 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4048 switch (stop_reason)
4050 case END_STEPPING_RANGE:
4051 /* We are done with a step/next/si/ni command. */
4052 /* For now print nothing. */
4053 /* Print a message only if not in the middle of doing a "step n"
4054 operation for n > 1 */
4055 if (!inferior_thread ()->step_multi
4056 || !inferior_thread ()->stop_step)
4057 if (ui_out_is_mi_like_p (uiout))
4060 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4063 /* The inferior was terminated by a signal. */
4064 annotate_signalled ();
4065 if (ui_out_is_mi_like_p (uiout))
4068 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4069 ui_out_text (uiout, "\nProgram terminated with signal ");
4070 annotate_signal_name ();
4071 ui_out_field_string (uiout, "signal-name",
4072 target_signal_to_name (stop_info));
4073 annotate_signal_name_end ();
4074 ui_out_text (uiout, ", ");
4075 annotate_signal_string ();
4076 ui_out_field_string (uiout, "signal-meaning",
4077 target_signal_to_string (stop_info));
4078 annotate_signal_string_end ();
4079 ui_out_text (uiout, ".\n");
4080 ui_out_text (uiout, "The program no longer exists.\n");
4083 /* The inferior program is finished. */
4084 annotate_exited (stop_info);
4087 if (ui_out_is_mi_like_p (uiout))
4088 ui_out_field_string (uiout, "reason",
4089 async_reason_lookup (EXEC_ASYNC_EXITED));
4090 ui_out_text (uiout, "\nProgram exited with code ");
4091 ui_out_field_fmt (uiout, "exit-code", "0%o",
4092 (unsigned int) stop_info);
4093 ui_out_text (uiout, ".\n");
4097 if (ui_out_is_mi_like_p (uiout))
4100 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4101 ui_out_text (uiout, "\nProgram exited normally.\n");
4103 /* Support the --return-child-result option. */
4104 return_child_result_value = stop_info;
4106 case SIGNAL_RECEIVED:
4107 /* Signal received. The signal table tells us to print about
4111 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4113 struct thread_info *t = inferior_thread ();
4115 ui_out_text (uiout, "\n[");
4116 ui_out_field_string (uiout, "thread-name",
4117 target_pid_to_str (t->ptid));
4118 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4119 ui_out_text (uiout, " stopped");
4123 ui_out_text (uiout, "\nProgram received signal ");
4124 annotate_signal_name ();
4125 if (ui_out_is_mi_like_p (uiout))
4127 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4128 ui_out_field_string (uiout, "signal-name",
4129 target_signal_to_name (stop_info));
4130 annotate_signal_name_end ();
4131 ui_out_text (uiout, ", ");
4132 annotate_signal_string ();
4133 ui_out_field_string (uiout, "signal-meaning",
4134 target_signal_to_string (stop_info));
4135 annotate_signal_string_end ();
4137 ui_out_text (uiout, ".\n");
4140 /* Reverse execution: target ran out of history info. */
4141 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4144 internal_error (__FILE__, __LINE__,
4145 _("print_stop_reason: unrecognized enum value"));
4151 /* Here to return control to GDB when the inferior stops for real.
4152 Print appropriate messages, remove breakpoints, give terminal our modes.
4154 STOP_PRINT_FRAME nonzero means print the executing frame
4155 (pc, function, args, file, line number and line text).
4156 BREAKPOINTS_FAILED nonzero means stop was due to error
4157 attempting to insert breakpoints. */
4162 struct target_waitstatus last;
4165 get_last_target_status (&last_ptid, &last);
4167 /* In non-stop mode, we don't want GDB to switch threads behind the
4168 user's back, to avoid races where the user is typing a command to
4169 apply to thread x, but GDB switches to thread y before the user
4170 finishes entering the command. */
4172 /* As with the notification of thread events, we want to delay
4173 notifying the user that we've switched thread context until
4174 the inferior actually stops.
4176 There's no point in saying anything if the inferior has exited.
4177 Note that SIGNALLED here means "exited with a signal", not
4178 "received a signal". */
4180 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4181 && target_has_execution
4182 && last.kind != TARGET_WAITKIND_SIGNALLED
4183 && last.kind != TARGET_WAITKIND_EXITED)
4185 target_terminal_ours_for_output ();
4186 printf_filtered (_("[Switching to %s]\n"),
4187 target_pid_to_str (inferior_ptid));
4188 annotate_thread_changed ();
4189 previous_inferior_ptid = inferior_ptid;
4192 /* NOTE drow/2004-01-17: Is this still necessary? */
4193 /* Make sure that the current_frame's pc is correct. This
4194 is a correction for setting up the frame info before doing
4195 gdbarch_decr_pc_after_break */
4196 if (target_has_execution)
4197 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4198 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4199 frame code to check for this and sort out any resultant mess.
4200 gdbarch_decr_pc_after_break needs to just go away. */
4201 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4203 if (!breakpoints_always_inserted_mode () && target_has_execution)
4205 if (remove_breakpoints ())
4207 target_terminal_ours_for_output ();
4208 printf_filtered (_("\
4209 Cannot remove breakpoints because program is no longer writable.\n\
4210 It might be running in another process.\n\
4211 Further execution is probably impossible.\n"));
4215 /* If an auto-display called a function and that got a signal,
4216 delete that auto-display to avoid an infinite recursion. */
4218 if (stopped_by_random_signal)
4219 disable_current_display ();
4221 /* Don't print a message if in the middle of doing a "step n"
4222 operation for n > 1 */
4223 if (target_has_execution
4224 && last.kind != TARGET_WAITKIND_SIGNALLED
4225 && last.kind != TARGET_WAITKIND_EXITED
4226 && inferior_thread ()->step_multi
4227 && inferior_thread ()->stop_step)
4230 target_terminal_ours ();
4232 /* Set the current source location. This will also happen if we
4233 display the frame below, but the current SAL will be incorrect
4234 during a user hook-stop function. */
4235 if (target_has_stack && !stop_stack_dummy)
4236 set_current_sal_from_frame (get_current_frame (), 1);
4238 if (!target_has_stack)
4241 if (last.kind == TARGET_WAITKIND_SIGNALLED
4242 || last.kind == TARGET_WAITKIND_EXITED)
4245 /* Select innermost stack frame - i.e., current frame is frame 0,
4246 and current location is based on that.
4247 Don't do this on return from a stack dummy routine,
4248 or if the program has exited. */
4250 if (!stop_stack_dummy)
4252 select_frame (get_current_frame ());
4254 /* Print current location without a level number, if
4255 we have changed functions or hit a breakpoint.
4256 Print source line if we have one.
4257 bpstat_print() contains the logic deciding in detail
4258 what to print, based on the event(s) that just occurred. */
4260 /* If --batch-silent is enabled then there's no need to print the current
4261 source location, and to try risks causing an error message about
4262 missing source files. */
4263 if (stop_print_frame && !batch_silent)
4267 int do_frame_printing = 1;
4268 struct thread_info *tp = inferior_thread ();
4270 bpstat_ret = bpstat_print (tp->stop_bpstat);
4274 /* If we had hit a shared library event breakpoint,
4275 bpstat_print would print out this message. If we hit
4276 an OS-level shared library event, do the same
4278 if (last.kind == TARGET_WAITKIND_LOADED)
4280 printf_filtered (_("Stopped due to shared library event\n"));
4281 source_flag = SRC_LINE; /* something bogus */
4282 do_frame_printing = 0;
4286 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4287 (or should) carry around the function and does (or
4288 should) use that when doing a frame comparison. */
4290 && frame_id_eq (tp->step_frame_id,
4291 get_frame_id (get_current_frame ()))
4292 && step_start_function == find_pc_function (stop_pc))
4293 source_flag = SRC_LINE; /* finished step, just print source line */
4295 source_flag = SRC_AND_LOC; /* print location and source line */
4297 case PRINT_SRC_AND_LOC:
4298 source_flag = SRC_AND_LOC; /* print location and source line */
4300 case PRINT_SRC_ONLY:
4301 source_flag = SRC_LINE;
4304 source_flag = SRC_LINE; /* something bogus */
4305 do_frame_printing = 0;
4308 internal_error (__FILE__, __LINE__, _("Unknown value."));
4311 if (ui_out_is_mi_like_p (uiout))
4314 ui_out_field_int (uiout, "thread-id",
4315 pid_to_thread_id (inferior_ptid));
4318 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4319 (uiout, "stopped-threads");
4320 ui_out_field_int (uiout, NULL,
4321 pid_to_thread_id (inferior_ptid));
4322 do_cleanups (back_to);
4325 ui_out_field_string (uiout, "stopped-threads", "all");
4327 /* The behavior of this routine with respect to the source
4329 SRC_LINE: Print only source line
4330 LOCATION: Print only location
4331 SRC_AND_LOC: Print location and source line */
4332 if (do_frame_printing)
4333 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4335 /* Display the auto-display expressions. */
4340 /* Save the function value return registers, if we care.
4341 We might be about to restore their previous contents. */
4342 if (inferior_thread ()->proceed_to_finish)
4344 /* This should not be necessary. */
4346 regcache_xfree (stop_registers);
4348 /* NB: The copy goes through to the target picking up the value of
4349 all the registers. */
4350 stop_registers = regcache_dup (get_current_regcache ());
4353 if (stop_stack_dummy)
4355 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4356 ends with a setting of the current frame, so we can use that
4358 frame_pop (get_current_frame ());
4359 /* Set stop_pc to what it was before we called the function.
4360 Can't rely on restore_inferior_status because that only gets
4361 called if we don't stop in the called function. */
4362 stop_pc = read_pc ();
4363 select_frame (get_current_frame ());
4367 annotate_stopped ();
4368 if (!suppress_stop_observer
4369 && !(target_has_execution
4370 && last.kind != TARGET_WAITKIND_SIGNALLED
4371 && last.kind != TARGET_WAITKIND_EXITED
4372 && inferior_thread ()->step_multi))
4374 if (!ptid_equal (inferior_ptid, null_ptid))
4375 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4377 observer_notify_normal_stop (NULL);
4380 if (target_has_execution)
4382 if (last.kind != TARGET_WAITKIND_SIGNALLED
4383 && last.kind != TARGET_WAITKIND_EXITED)
4384 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4385 Delete any breakpoint that is to be deleted at the next stop. */
4386 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4388 /* Mark the stopped threads accordingly. In all-stop, all
4389 threads of all processes are stopped when we get any event
4390 reported. In non-stop mode, only the event thread stops. If
4391 we're handling a process exit in non-stop mode, there's
4392 nothing to do, as threads of the dead process are gone, and
4393 threads of any other process were left running. */
4395 set_running (minus_one_ptid, 0);
4396 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4397 && last.kind != TARGET_WAITKIND_EXITED)
4398 set_running (inferior_ptid, 0);
4401 /* Look up the hook_stop and run it (CLI internally handles problem
4402 of stop_command's pre-hook not existing). */
4404 catch_errors (hook_stop_stub, stop_command,
4405 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4410 hook_stop_stub (void *cmd)
4412 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4417 signal_stop_state (int signo)
4419 return signal_stop[signo];
4423 signal_print_state (int signo)
4425 return signal_print[signo];
4429 signal_pass_state (int signo)
4431 return signal_program[signo];
4435 signal_stop_update (int signo, int state)
4437 int ret = signal_stop[signo];
4438 signal_stop[signo] = state;
4443 signal_print_update (int signo, int state)
4445 int ret = signal_print[signo];
4446 signal_print[signo] = state;
4451 signal_pass_update (int signo, int state)
4453 int ret = signal_program[signo];
4454 signal_program[signo] = state;
4459 sig_print_header (void)
4461 printf_filtered (_("\
4462 Signal Stop\tPrint\tPass to program\tDescription\n"));
4466 sig_print_info (enum target_signal oursig)
4468 char *name = target_signal_to_name (oursig);
4469 int name_padding = 13 - strlen (name);
4471 if (name_padding <= 0)
4474 printf_filtered ("%s", name);
4475 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4476 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4477 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4478 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4479 printf_filtered ("%s\n", target_signal_to_string (oursig));
4482 /* Specify how various signals in the inferior should be handled. */
4485 handle_command (char *args, int from_tty)
4488 int digits, wordlen;
4489 int sigfirst, signum, siglast;
4490 enum target_signal oursig;
4493 unsigned char *sigs;
4494 struct cleanup *old_chain;
4498 error_no_arg (_("signal to handle"));
4501 /* Allocate and zero an array of flags for which signals to handle. */
4503 nsigs = (int) TARGET_SIGNAL_LAST;
4504 sigs = (unsigned char *) alloca (nsigs);
4505 memset (sigs, 0, nsigs);
4507 /* Break the command line up into args. */
4509 argv = gdb_buildargv (args);
4510 old_chain = make_cleanup_freeargv (argv);
4512 /* Walk through the args, looking for signal oursigs, signal names, and
4513 actions. Signal numbers and signal names may be interspersed with
4514 actions, with the actions being performed for all signals cumulatively
4515 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4517 while (*argv != NULL)
4519 wordlen = strlen (*argv);
4520 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4524 sigfirst = siglast = -1;
4526 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4528 /* Apply action to all signals except those used by the
4529 debugger. Silently skip those. */
4532 siglast = nsigs - 1;
4534 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4536 SET_SIGS (nsigs, sigs, signal_stop);
4537 SET_SIGS (nsigs, sigs, signal_print);
4539 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4541 UNSET_SIGS (nsigs, sigs, signal_program);
4543 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4545 SET_SIGS (nsigs, sigs, signal_print);
4547 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4549 SET_SIGS (nsigs, sigs, signal_program);
4551 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4553 UNSET_SIGS (nsigs, sigs, signal_stop);
4555 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4557 SET_SIGS (nsigs, sigs, signal_program);
4559 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4561 UNSET_SIGS (nsigs, sigs, signal_print);
4562 UNSET_SIGS (nsigs, sigs, signal_stop);
4564 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4566 UNSET_SIGS (nsigs, sigs, signal_program);
4568 else if (digits > 0)
4570 /* It is numeric. The numeric signal refers to our own
4571 internal signal numbering from target.h, not to host/target
4572 signal number. This is a feature; users really should be
4573 using symbolic names anyway, and the common ones like
4574 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4576 sigfirst = siglast = (int)
4577 target_signal_from_command (atoi (*argv));
4578 if ((*argv)[digits] == '-')
4581 target_signal_from_command (atoi ((*argv) + digits + 1));
4583 if (sigfirst > siglast)
4585 /* Bet he didn't figure we'd think of this case... */
4593 oursig = target_signal_from_name (*argv);
4594 if (oursig != TARGET_SIGNAL_UNKNOWN)
4596 sigfirst = siglast = (int) oursig;
4600 /* Not a number and not a recognized flag word => complain. */
4601 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4605 /* If any signal numbers or symbol names were found, set flags for
4606 which signals to apply actions to. */
4608 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4610 switch ((enum target_signal) signum)
4612 case TARGET_SIGNAL_TRAP:
4613 case TARGET_SIGNAL_INT:
4614 if (!allsigs && !sigs[signum])
4616 if (query ("%s is used by the debugger.\n\
4617 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4623 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4624 gdb_flush (gdb_stdout);
4628 case TARGET_SIGNAL_0:
4629 case TARGET_SIGNAL_DEFAULT:
4630 case TARGET_SIGNAL_UNKNOWN:
4631 /* Make sure that "all" doesn't print these. */
4642 for (signum = 0; signum < nsigs; signum++)
4645 target_notice_signals (inferior_ptid);
4649 /* Show the results. */
4650 sig_print_header ();
4651 for (; signum < nsigs; signum++)
4653 sig_print_info (signum);
4659 do_cleanups (old_chain);
4663 xdb_handle_command (char *args, int from_tty)
4666 struct cleanup *old_chain;
4669 error_no_arg (_("xdb command"));
4671 /* Break the command line up into args. */
4673 argv = gdb_buildargv (args);
4674 old_chain = make_cleanup_freeargv (argv);
4675 if (argv[1] != (char *) NULL)
4680 bufLen = strlen (argv[0]) + 20;
4681 argBuf = (char *) xmalloc (bufLen);
4685 enum target_signal oursig;
4687 oursig = target_signal_from_name (argv[0]);
4688 memset (argBuf, 0, bufLen);
4689 if (strcmp (argv[1], "Q") == 0)
4690 sprintf (argBuf, "%s %s", argv[0], "noprint");
4693 if (strcmp (argv[1], "s") == 0)
4695 if (!signal_stop[oursig])
4696 sprintf (argBuf, "%s %s", argv[0], "stop");
4698 sprintf (argBuf, "%s %s", argv[0], "nostop");
4700 else if (strcmp (argv[1], "i") == 0)
4702 if (!signal_program[oursig])
4703 sprintf (argBuf, "%s %s", argv[0], "pass");
4705 sprintf (argBuf, "%s %s", argv[0], "nopass");
4707 else if (strcmp (argv[1], "r") == 0)
4709 if (!signal_print[oursig])
4710 sprintf (argBuf, "%s %s", argv[0], "print");
4712 sprintf (argBuf, "%s %s", argv[0], "noprint");
4718 handle_command (argBuf, from_tty);
4720 printf_filtered (_("Invalid signal handling flag.\n"));
4725 do_cleanups (old_chain);
4728 /* Print current contents of the tables set by the handle command.
4729 It is possible we should just be printing signals actually used
4730 by the current target (but for things to work right when switching
4731 targets, all signals should be in the signal tables). */
4734 signals_info (char *signum_exp, int from_tty)
4736 enum target_signal oursig;
4737 sig_print_header ();
4741 /* First see if this is a symbol name. */
4742 oursig = target_signal_from_name (signum_exp);
4743 if (oursig == TARGET_SIGNAL_UNKNOWN)
4745 /* No, try numeric. */
4747 target_signal_from_command (parse_and_eval_long (signum_exp));
4749 sig_print_info (oursig);
4753 printf_filtered ("\n");
4754 /* These ugly casts brought to you by the native VAX compiler. */
4755 for (oursig = TARGET_SIGNAL_FIRST;
4756 (int) oursig < (int) TARGET_SIGNAL_LAST;
4757 oursig = (enum target_signal) ((int) oursig + 1))
4761 if (oursig != TARGET_SIGNAL_UNKNOWN
4762 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4763 sig_print_info (oursig);
4766 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4769 struct inferior_status
4771 enum target_signal stop_signal;
4775 int stop_stack_dummy;
4776 int stopped_by_random_signal;
4777 int stepping_over_breakpoint;
4778 CORE_ADDR step_range_start;
4779 CORE_ADDR step_range_end;
4780 struct frame_id step_frame_id;
4781 enum step_over_calls_kind step_over_calls;
4782 CORE_ADDR step_resume_break_address;
4783 int stop_after_trap;
4786 /* These are here because if call_function_by_hand has written some
4787 registers and then decides to call error(), we better not have changed
4789 struct regcache *registers;
4791 /* A frame unique identifier. */
4792 struct frame_id selected_frame_id;
4794 int breakpoint_proceeded;
4795 int restore_stack_info;
4796 int proceed_to_finish;
4799 /* Save all of the information associated with the inferior<==>gdb
4800 connection. INF_STATUS is a pointer to a "struct inferior_status"
4801 (defined in inferior.h). */
4803 struct inferior_status *
4804 save_inferior_status (int restore_stack_info)
4806 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4807 struct thread_info *tp = inferior_thread ();
4808 struct inferior *inf = current_inferior ();
4810 inf_status->stop_signal = tp->stop_signal;
4811 inf_status->stop_pc = stop_pc;
4812 inf_status->stop_step = tp->stop_step;
4813 inf_status->stop_stack_dummy = stop_stack_dummy;
4814 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4815 inf_status->stepping_over_breakpoint = tp->trap_expected;
4816 inf_status->step_range_start = tp->step_range_start;
4817 inf_status->step_range_end = tp->step_range_end;
4818 inf_status->step_frame_id = tp->step_frame_id;
4819 inf_status->step_over_calls = tp->step_over_calls;
4820 inf_status->stop_after_trap = stop_after_trap;
4821 inf_status->stop_soon = inf->stop_soon;
4822 /* Save original bpstat chain here; replace it with copy of chain.
4823 If caller's caller is walking the chain, they'll be happier if we
4824 hand them back the original chain when restore_inferior_status is
4826 inf_status->stop_bpstat = tp->stop_bpstat;
4827 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4828 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4829 inf_status->restore_stack_info = restore_stack_info;
4830 inf_status->proceed_to_finish = tp->proceed_to_finish;
4832 inf_status->registers = regcache_dup (get_current_regcache ());
4834 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4839 restore_selected_frame (void *args)
4841 struct frame_id *fid = (struct frame_id *) args;
4842 struct frame_info *frame;
4844 frame = frame_find_by_id (*fid);
4846 /* If inf_status->selected_frame_id is NULL, there was no previously
4850 warning (_("Unable to restore previously selected frame."));
4854 select_frame (frame);
4860 restore_inferior_status (struct inferior_status *inf_status)
4862 struct thread_info *tp = inferior_thread ();
4863 struct inferior *inf = current_inferior ();
4865 tp->stop_signal = inf_status->stop_signal;
4866 stop_pc = inf_status->stop_pc;
4867 tp->stop_step = inf_status->stop_step;
4868 stop_stack_dummy = inf_status->stop_stack_dummy;
4869 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4870 tp->trap_expected = inf_status->stepping_over_breakpoint;
4871 tp->step_range_start = inf_status->step_range_start;
4872 tp->step_range_end = inf_status->step_range_end;
4873 tp->step_frame_id = inf_status->step_frame_id;
4874 tp->step_over_calls = inf_status->step_over_calls;
4875 stop_after_trap = inf_status->stop_after_trap;
4876 inf->stop_soon = inf_status->stop_soon;
4877 bpstat_clear (&tp->stop_bpstat);
4878 tp->stop_bpstat = inf_status->stop_bpstat;
4879 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4880 tp->proceed_to_finish = inf_status->proceed_to_finish;
4882 /* The inferior can be gone if the user types "print exit(0)"
4883 (and perhaps other times). */
4884 if (target_has_execution)
4885 /* NB: The register write goes through to the target. */
4886 regcache_cpy (get_current_regcache (), inf_status->registers);
4887 regcache_xfree (inf_status->registers);
4889 /* FIXME: If we are being called after stopping in a function which
4890 is called from gdb, we should not be trying to restore the
4891 selected frame; it just prints a spurious error message (The
4892 message is useful, however, in detecting bugs in gdb (like if gdb
4893 clobbers the stack)). In fact, should we be restoring the
4894 inferior status at all in that case? . */
4896 if (target_has_stack && inf_status->restore_stack_info)
4898 /* The point of catch_errors is that if the stack is clobbered,
4899 walking the stack might encounter a garbage pointer and
4900 error() trying to dereference it. */
4902 (restore_selected_frame, &inf_status->selected_frame_id,
4903 "Unable to restore previously selected frame:\n",
4904 RETURN_MASK_ERROR) == 0)
4905 /* Error in restoring the selected frame. Select the innermost
4907 select_frame (get_current_frame ());
4915 do_restore_inferior_status_cleanup (void *sts)
4917 restore_inferior_status (sts);
4921 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4923 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4927 discard_inferior_status (struct inferior_status *inf_status)
4929 /* See save_inferior_status for info on stop_bpstat. */
4930 bpstat_clear (&inf_status->stop_bpstat);
4931 regcache_xfree (inf_status->registers);
4936 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4938 struct target_waitstatus last;
4941 get_last_target_status (&last_ptid, &last);
4943 if (last.kind != TARGET_WAITKIND_FORKED)
4946 if (!ptid_equal (last_ptid, pid))
4949 *child_pid = last.value.related_pid;
4954 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4956 struct target_waitstatus last;
4959 get_last_target_status (&last_ptid, &last);
4961 if (last.kind != TARGET_WAITKIND_VFORKED)
4964 if (!ptid_equal (last_ptid, pid))
4967 *child_pid = last.value.related_pid;
4972 inferior_has_execd (ptid_t pid, char **execd_pathname)
4974 struct target_waitstatus last;
4977 get_last_target_status (&last_ptid, &last);
4979 if (last.kind != TARGET_WAITKIND_EXECD)
4982 if (!ptid_equal (last_ptid, pid))
4985 *execd_pathname = xstrdup (last.value.execd_pathname);
4989 /* Oft used ptids */
4991 ptid_t minus_one_ptid;
4993 /* Create a ptid given the necessary PID, LWP, and TID components. */
4996 ptid_build (int pid, long lwp, long tid)
5006 /* Create a ptid from just a pid. */
5009 pid_to_ptid (int pid)
5011 return ptid_build (pid, 0, 0);
5014 /* Fetch the pid (process id) component from a ptid. */
5017 ptid_get_pid (ptid_t ptid)
5022 /* Fetch the lwp (lightweight process) component from a ptid. */
5025 ptid_get_lwp (ptid_t ptid)
5030 /* Fetch the tid (thread id) component from a ptid. */
5033 ptid_get_tid (ptid_t ptid)
5038 /* ptid_equal() is used to test equality of two ptids. */
5041 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5043 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5044 && ptid1.tid == ptid2.tid);
5047 /* Returns true if PTID represents a process. */
5050 ptid_is_pid (ptid_t ptid)
5052 if (ptid_equal (minus_one_ptid, ptid))
5054 if (ptid_equal (null_ptid, ptid))
5057 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5060 /* restore_inferior_ptid() will be used by the cleanup machinery
5061 to restore the inferior_ptid value saved in a call to
5062 save_inferior_ptid(). */
5065 restore_inferior_ptid (void *arg)
5067 ptid_t *saved_ptid_ptr = arg;
5068 inferior_ptid = *saved_ptid_ptr;
5072 /* Save the value of inferior_ptid so that it may be restored by a
5073 later call to do_cleanups(). Returns the struct cleanup pointer
5074 needed for later doing the cleanup. */
5077 save_inferior_ptid (void)
5079 ptid_t *saved_ptid_ptr;
5081 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5082 *saved_ptid_ptr = inferior_ptid;
5083 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5087 /* User interface for reverse debugging:
5088 Set exec-direction / show exec-direction commands
5089 (returns error unless target implements to_set_exec_direction method). */
5091 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5092 static const char exec_forward[] = "forward";
5093 static const char exec_reverse[] = "reverse";
5094 static const char *exec_direction = exec_forward;
5095 static const char *exec_direction_names[] = {
5102 set_exec_direction_func (char *args, int from_tty,
5103 struct cmd_list_element *cmd)
5105 if (target_can_execute_reverse)
5107 if (!strcmp (exec_direction, exec_forward))
5108 execution_direction = EXEC_FORWARD;
5109 else if (!strcmp (exec_direction, exec_reverse))
5110 execution_direction = EXEC_REVERSE;
5115 show_exec_direction_func (struct ui_file *out, int from_tty,
5116 struct cmd_list_element *cmd, const char *value)
5118 switch (execution_direction) {
5120 fprintf_filtered (out, _("Forward.\n"));
5123 fprintf_filtered (out, _("Reverse.\n"));
5127 fprintf_filtered (out,
5128 _("Forward (target `%s' does not support exec-direction).\n"),
5134 /* User interface for non-stop mode. */
5137 static int non_stop_1 = 0;
5140 set_non_stop (char *args, int from_tty,
5141 struct cmd_list_element *c)
5143 if (target_has_execution)
5145 non_stop_1 = non_stop;
5146 error (_("Cannot change this setting while the inferior is running."));
5149 non_stop = non_stop_1;
5153 show_non_stop (struct ui_file *file, int from_tty,
5154 struct cmd_list_element *c, const char *value)
5156 fprintf_filtered (file,
5157 _("Controlling the inferior in non-stop mode is %s.\n"),
5163 _initialize_infrun (void)
5167 struct cmd_list_element *c;
5169 add_info ("signals", signals_info, _("\
5170 What debugger does when program gets various signals.\n\
5171 Specify a signal as argument to print info on that signal only."));
5172 add_info_alias ("handle", "signals", 0);
5174 add_com ("handle", class_run, handle_command, _("\
5175 Specify how to handle a signal.\n\
5176 Args are signals and actions to apply to those signals.\n\
5177 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5178 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5179 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5180 The special arg \"all\" is recognized to mean all signals except those\n\
5181 used by the debugger, typically SIGTRAP and SIGINT.\n\
5182 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5183 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5184 Stop means reenter debugger if this signal happens (implies print).\n\
5185 Print means print a message if this signal happens.\n\
5186 Pass means let program see this signal; otherwise program doesn't know.\n\
5187 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5188 Pass and Stop may be combined."));
5191 add_com ("lz", class_info, signals_info, _("\
5192 What debugger does when program gets various signals.\n\
5193 Specify a signal as argument to print info on that signal only."));
5194 add_com ("z", class_run, xdb_handle_command, _("\
5195 Specify how to handle a signal.\n\
5196 Args are signals and actions to apply to those signals.\n\
5197 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5198 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5199 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5200 The special arg \"all\" is recognized to mean all signals except those\n\
5201 used by the debugger, typically SIGTRAP and SIGINT.\n\
5202 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5203 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5204 nopass), \"Q\" (noprint)\n\
5205 Stop means reenter debugger if this signal happens (implies print).\n\
5206 Print means print a message if this signal happens.\n\
5207 Pass means let program see this signal; otherwise program doesn't know.\n\
5208 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5209 Pass and Stop may be combined."));
5213 stop_command = add_cmd ("stop", class_obscure,
5214 not_just_help_class_command, _("\
5215 There is no `stop' command, but you can set a hook on `stop'.\n\
5216 This allows you to set a list of commands to be run each time execution\n\
5217 of the program stops."), &cmdlist);
5219 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5220 Set inferior debugging."), _("\
5221 Show inferior debugging."), _("\
5222 When non-zero, inferior specific debugging is enabled."),
5225 &setdebuglist, &showdebuglist);
5227 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5228 Set displaced stepping debugging."), _("\
5229 Show displaced stepping debugging."), _("\
5230 When non-zero, displaced stepping specific debugging is enabled."),
5232 show_debug_displaced,
5233 &setdebuglist, &showdebuglist);
5235 add_setshow_boolean_cmd ("non-stop", no_class,
5237 Set whether gdb controls the inferior in non-stop mode."), _("\
5238 Show whether gdb controls the inferior in non-stop mode."), _("\
5239 When debugging a multi-threaded program and this setting is\n\
5240 off (the default, also called all-stop mode), when one thread stops\n\
5241 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5242 all other threads in the program while you interact with the thread of\n\
5243 interest. When you continue or step a thread, you can allow the other\n\
5244 threads to run, or have them remain stopped, but while you inspect any\n\
5245 thread's state, all threads stop.\n\
5247 In non-stop mode, when one thread stops, other threads can continue\n\
5248 to run freely. You'll be able to step each thread independently,\n\
5249 leave it stopped or free to run as needed."),
5255 numsigs = (int) TARGET_SIGNAL_LAST;
5256 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5257 signal_print = (unsigned char *)
5258 xmalloc (sizeof (signal_print[0]) * numsigs);
5259 signal_program = (unsigned char *)
5260 xmalloc (sizeof (signal_program[0]) * numsigs);
5261 for (i = 0; i < numsigs; i++)
5264 signal_print[i] = 1;
5265 signal_program[i] = 1;
5268 /* Signals caused by debugger's own actions
5269 should not be given to the program afterwards. */
5270 signal_program[TARGET_SIGNAL_TRAP] = 0;
5271 signal_program[TARGET_SIGNAL_INT] = 0;
5273 /* Signals that are not errors should not normally enter the debugger. */
5274 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5275 signal_print[TARGET_SIGNAL_ALRM] = 0;
5276 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5277 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5278 signal_stop[TARGET_SIGNAL_PROF] = 0;
5279 signal_print[TARGET_SIGNAL_PROF] = 0;
5280 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5281 signal_print[TARGET_SIGNAL_CHLD] = 0;
5282 signal_stop[TARGET_SIGNAL_IO] = 0;
5283 signal_print[TARGET_SIGNAL_IO] = 0;
5284 signal_stop[TARGET_SIGNAL_POLL] = 0;
5285 signal_print[TARGET_SIGNAL_POLL] = 0;
5286 signal_stop[TARGET_SIGNAL_URG] = 0;
5287 signal_print[TARGET_SIGNAL_URG] = 0;
5288 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5289 signal_print[TARGET_SIGNAL_WINCH] = 0;
5291 /* These signals are used internally by user-level thread
5292 implementations. (See signal(5) on Solaris.) Like the above
5293 signals, a healthy program receives and handles them as part of
5294 its normal operation. */
5295 signal_stop[TARGET_SIGNAL_LWP] = 0;
5296 signal_print[TARGET_SIGNAL_LWP] = 0;
5297 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5298 signal_print[TARGET_SIGNAL_WAITING] = 0;
5299 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5300 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5302 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5303 &stop_on_solib_events, _("\
5304 Set stopping for shared library events."), _("\
5305 Show stopping for shared library events."), _("\
5306 If nonzero, gdb will give control to the user when the dynamic linker\n\
5307 notifies gdb of shared library events. The most common event of interest\n\
5308 to the user would be loading/unloading of a new library."),
5310 show_stop_on_solib_events,
5311 &setlist, &showlist);
5313 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5314 follow_fork_mode_kind_names,
5315 &follow_fork_mode_string, _("\
5316 Set debugger response to a program call of fork or vfork."), _("\
5317 Show debugger response to a program call of fork or vfork."), _("\
5318 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5319 parent - the original process is debugged after a fork\n\
5320 child - the new process is debugged after a fork\n\
5321 The unfollowed process will continue to run.\n\
5322 By default, the debugger will follow the parent process."),
5324 show_follow_fork_mode_string,
5325 &setlist, &showlist);
5327 add_setshow_enum_cmd ("scheduler-locking", class_run,
5328 scheduler_enums, &scheduler_mode, _("\
5329 Set mode for locking scheduler during execution."), _("\
5330 Show mode for locking scheduler during execution."), _("\
5331 off == no locking (threads may preempt at any time)\n\
5332 on == full locking (no thread except the current thread may run)\n\
5333 step == scheduler locked during every single-step operation.\n\
5334 In this mode, no other thread may run during a step command.\n\
5335 Other threads may run while stepping over a function call ('next')."),
5336 set_schedlock_func, /* traps on target vector */
5337 show_scheduler_mode,
5338 &setlist, &showlist);
5340 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5341 Set mode of the step operation."), _("\
5342 Show mode of the step operation."), _("\
5343 When set, doing a step over a function without debug line information\n\
5344 will stop at the first instruction of that function. Otherwise, the\n\
5345 function is skipped and the step command stops at a different source line."),
5347 show_step_stop_if_no_debug,
5348 &setlist, &showlist);
5350 add_setshow_enum_cmd ("displaced-stepping", class_run,
5351 can_use_displaced_stepping_enum,
5352 &can_use_displaced_stepping, _("\
5353 Set debugger's willingness to use displaced stepping."), _("\
5354 Show debugger's willingness to use displaced stepping."), _("\
5355 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5356 supported by the target architecture. If off, gdb will not use displaced\n\
5357 stepping to step over breakpoints, even if such is supported by the target\n\
5358 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5359 if the target architecture supports it and non-stop mode is active, but will not\n\
5360 use it in all-stop mode (see help set non-stop)."),
5362 show_can_use_displaced_stepping,
5363 &setlist, &showlist);
5365 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5366 &exec_direction, _("Set direction of execution.\n\
5367 Options are 'forward' or 'reverse'."),
5368 _("Show direction of execution (forward/reverse)."),
5369 _("Tells gdb whether to execute forward or backward."),
5370 set_exec_direction_func, show_exec_direction_func,
5371 &setlist, &showlist);
5373 /* ptid initializations */
5374 null_ptid = ptid_build (0, 0, 0);
5375 minus_one_ptid = ptid_build (-1, 0, 0);
5376 inferior_ptid = null_ptid;
5377 target_last_wait_ptid = minus_one_ptid;
5378 displaced_step_ptid = null_ptid;
5380 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5381 observer_attach_thread_stop_requested (infrun_thread_stop_requested);