1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
40 #include "complaints.h"
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
47 #include "stabsread.h" /* Our own declarations */
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
60 struct nextfield *next;
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
69 struct next_fnfieldlist
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
79 static long read_huge_number PARAMS ((char **, int, int *));
81 static struct type *error_type PARAMS ((char **));
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
88 fix_common_block PARAMS ((struct symbol *, int));
91 read_type_number PARAMS ((char **, int *));
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
106 rs6000_builtin_type PARAMS ((int));
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
189 struct complaint unresolved_sym_chain_complaint =
190 {"%s: `%s' from global_sym_chain unresolved", 0, 0};
192 struct complaint stabs_general_complaint =
195 /* Make a list of forward references which haven't been defined. */
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (); \
208 /* FIXME: These probably should be our own types (like rs6000_builtin_type
209 has its own types) rather than builtin_type_*. */
210 static struct type **os9k_type_vector[] = {
216 &builtin_type_unsigned_char,
217 &builtin_type_unsigned_short,
218 &builtin_type_unsigned_long,
219 &builtin_type_unsigned_int,
221 &builtin_type_double,
223 &builtin_type_long_double
226 static void os9k_init_type_vector PARAMS ((struct type **));
229 os9k_init_type_vector(tv)
233 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
234 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
245 dbx_lookup_type (typenums)
248 register int filenum = typenums[0];
249 register int index = typenums[1];
251 register int real_filenum;
252 register struct header_file *f;
255 if (filenum == -1) /* -1,-1 is for temporary types. */
258 if (filenum < 0 || filenum >= n_this_object_header_files)
260 static struct complaint msg = {"\
261 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
263 complain (&msg, filenum, index, symnum);
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
278 temp_type = rs6000_builtin_type(index);
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
286 old_len = type_vector_length;
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = (struct type **)
291 malloc (type_vector_length * sizeof (struct type *));
293 while (index >= type_vector_length)
295 type_vector_length *= 2;
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
304 /* Deal with OS9000 fundamental types. */
305 os9k_init_type_vector (type_vector);
307 return (&type_vector[index]);
311 real_filenum = this_object_header_files[filenum];
313 if (real_filenum >= n_header_files)
315 struct type *temp_type;
316 struct type **temp_type_p;
318 warning ("GDB internal error: bad real_filenum");
321 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
322 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
323 *temp_type_p = temp_type;
327 f = &header_files[real_filenum];
329 f_orig_length = f->length;
330 if (index >= f_orig_length)
332 while (index >= f->length)
336 f->vector = (struct type **)
337 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
338 memset (&f->vector[f_orig_length], 0,
339 (f->length - f_orig_length) * sizeof (struct type *));
341 return (&f->vector[index]);
345 /* Make sure there is a type allocated for type numbers TYPENUMS
346 and return the type object.
347 This can create an empty (zeroed) type object.
348 TYPENUMS may be (-1, -1) to return a new type object that is not
349 put into the type vector, and so may not be referred to by number. */
352 dbx_alloc_type (typenums, objfile)
354 struct objfile *objfile;
356 register struct type **type_addr;
358 if (typenums[0] == -1)
360 return (alloc_type (objfile));
363 type_addr = dbx_lookup_type (typenums);
365 /* If we are referring to a type not known at all yet,
366 allocate an empty type for it.
367 We will fill it in later if we find out how. */
370 *type_addr = alloc_type (objfile);
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
380 patch_block_stabs (symbols, stabs, objfile)
381 struct pending *symbols;
382 struct pending_stabs *stabs;
383 struct objfile *objfile;
393 /* for all the stab entries, find their corresponding symbols and
394 patch their types! */
396 for (ii = 0; ii < stabs->count; ++ii)
398 name = stabs->stab[ii];
399 pp = (char*) strchr (name, ':');
403 pp = (char *)strchr(pp, ':');
405 sym = find_symbol_in_list (symbols, name, pp-name);
408 /* FIXME-maybe: it would be nice if we noticed whether
409 the variable was defined *anywhere*, not just whether
410 it is defined in this compilation unit. But neither
411 xlc or GCC seem to need such a definition, and until
412 we do psymtabs (so that the minimal symbols from all
413 compilation units are available now), I'm not sure
414 how to get the information. */
416 /* On xcoff, if a global is defined and never referenced,
417 ld will remove it from the executable. There is then
418 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
419 sym = (struct symbol *)
420 obstack_alloc (&objfile->symbol_obstack,
421 sizeof (struct symbol));
423 memset (sym, 0, sizeof (struct symbol));
424 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
425 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
427 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
429 if (*(pp-1) == 'F' || *(pp-1) == 'f')
431 /* I don't think the linker does this with functions,
432 so as far as I know this is never executed.
433 But it doesn't hurt to check. */
435 lookup_function_type (read_type (&pp, objfile));
439 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
441 add_symbol_to_list (sym, &global_symbols);
446 if (*(pp-1) == 'F' || *(pp-1) == 'f')
449 lookup_function_type (read_type (&pp, objfile));
453 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
461 /* Read a number by which a type is referred to in dbx data,
462 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
463 Just a single number N is equivalent to (0,N).
464 Return the two numbers by storing them in the vector TYPENUMS.
465 TYPENUMS will then be used as an argument to dbx_lookup_type.
467 Returns 0 for success, -1 for error. */
470 read_type_number (pp, typenums)
472 register int *typenums;
478 typenums[0] = read_huge_number (pp, ',', &nbits);
479 if (nbits != 0) return -1;
480 typenums[1] = read_huge_number (pp, ')', &nbits);
481 if (nbits != 0) return -1;
486 typenums[1] = read_huge_number (pp, 0, &nbits);
487 if (nbits != 0) return -1;
493 /* To handle GNU C++ typename abbreviation, we need to be able to
494 fill in a type's name as soon as space for that type is allocated.
495 `type_synonym_name' is the name of the type being allocated.
496 It is cleared as soon as it is used (lest all allocated types
499 static char *type_synonym_name;
501 #if !defined (REG_STRUCT_HAS_ADDR)
502 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
507 define_symbol (valu, string, desc, type, objfile)
512 struct objfile *objfile;
514 register struct symbol *sym;
515 char *p = (char *) strchr (string, ':');
520 /* We would like to eliminate nameless symbols, but keep their types.
521 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
522 to type 2, but, should not create a symbol to address that type. Since
523 the symbol will be nameless, there is no way any user can refer to it. */
527 /* Ignore syms with empty names. */
531 /* Ignore old-style symbols from cc -go */
541 /* If a nameless stab entry, all we need is the type, not the symbol.
542 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
543 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
545 sym = (struct symbol *)
546 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
547 memset (sym, 0, sizeof (struct symbol));
549 switch (type & N_TYPE)
552 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
555 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
558 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
562 if (processing_gcc_compilation)
564 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
565 number of bytes occupied by a type or object, which we ignore. */
566 SYMBOL_LINE(sym) = desc;
570 SYMBOL_LINE(sym) = 0; /* unknown */
573 if (string[0] == CPLUS_MARKER)
575 /* Special GNU C++ names. */
579 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
580 &objfile -> symbol_obstack);
583 case 'v': /* $vtbl_ptr_type */
584 /* Was: SYMBOL_NAME (sym) = "vptr"; */
588 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
589 &objfile -> symbol_obstack);
593 /* This was an anonymous type that was never fixed up. */
597 complain (&unrecognized_cplus_name_complaint, string);
598 goto normal; /* Do *something* with it */
604 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
605 SYMBOL_NAME (sym) = (char *)
606 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
607 /* Open-coded memcpy--saves function call time. */
608 /* FIXME: Does it really? Try replacing with simple strcpy and
609 try it on an executable with a large symbol table. */
610 /* FIXME: considering that gcc can open code memcpy anyway, I
611 doubt it. xoxorich. */
613 register char *p1 = string;
614 register char *p2 = SYMBOL_NAME (sym);
622 /* If this symbol is from a C++ compilation, then attempt to cache the
623 demangled form for future reference. This is a typical time versus
624 space tradeoff, that was decided in favor of time because it sped up
625 C++ symbol lookups by a factor of about 20. */
627 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
631 /* Determine the type of name being defined. */
633 /* Getting GDB to correctly skip the symbol on an undefined symbol
634 descriptor and not ever dump core is a very dodgy proposition if
635 we do things this way. I say the acorn RISC machine can just
636 fix their compiler. */
637 /* The Acorn RISC machine's compiler can put out locals that don't
638 start with "234=" or "(3,4)=", so assume anything other than the
639 deftypes we know how to handle is a local. */
640 if (!strchr ("cfFGpPrStTvVXCR", *p))
642 if (isdigit (*p) || *p == '(' || *p == '-')
651 /* c is a special case, not followed by a type-number.
652 SYMBOL:c=iVALUE for an integer constant symbol.
653 SYMBOL:c=rVALUE for a floating constant symbol.
654 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
655 e.g. "b:c=e6,0" for "const b = blob1"
656 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
659 SYMBOL_CLASS (sym) = LOC_CONST;
660 SYMBOL_TYPE (sym) = error_type (&p);
661 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
662 add_symbol_to_list (sym, &file_symbols);
673 /* FIXME-if-picky-about-floating-accuracy: Should be using
674 target arithmetic to get the value. real.c in GCC
675 probably has the necessary code. */
677 /* FIXME: lookup_fundamental_type is a hack. We should be
678 creating a type especially for the type of float constants.
679 Problem is, what type should it be?
681 Also, what should the name of this type be? Should we
682 be using 'S' constants (see stabs.texinfo) instead? */
684 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
687 obstack_alloc (&objfile -> symbol_obstack,
688 TYPE_LENGTH (SYMBOL_TYPE (sym)));
689 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
690 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
691 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
696 /* Defining integer constants this way is kind of silly,
697 since 'e' constants allows the compiler to give not
698 only the value, but the type as well. C has at least
699 int, long, unsigned int, and long long as constant
700 types; other languages probably should have at least
701 unsigned as well as signed constants. */
703 /* We just need one int constant type for all objfiles.
704 It doesn't depend on languages or anything (arguably its
705 name should be a language-specific name for a type of
706 that size, but I'm inclined to say that if the compiler
707 wants a nice name for the type, it can use 'e'). */
708 static struct type *int_const_type;
710 /* Yes, this is as long as a *host* int. That is because we
712 if (int_const_type == NULL)
714 init_type (TYPE_CODE_INT,
715 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
717 (struct objfile *)NULL);
718 SYMBOL_TYPE (sym) = int_const_type;
719 SYMBOL_VALUE (sym) = atoi (p);
720 SYMBOL_CLASS (sym) = LOC_CONST;
724 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
725 can be represented as integral.
726 e.g. "b:c=e6,0" for "const b = blob1"
727 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
729 SYMBOL_CLASS (sym) = LOC_CONST;
730 SYMBOL_TYPE (sym) = read_type (&p, objfile);
734 SYMBOL_TYPE (sym) = error_type (&p);
739 /* If the value is too big to fit in an int (perhaps because
740 it is unsigned), or something like that, we silently get
741 a bogus value. The type and everything else about it is
742 correct. Ideally, we should be using whatever we have
743 available for parsing unsigned and long long values,
745 SYMBOL_VALUE (sym) = atoi (p);
750 SYMBOL_CLASS (sym) = LOC_CONST;
751 SYMBOL_TYPE (sym) = error_type (&p);
754 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
755 add_symbol_to_list (sym, &file_symbols);
759 /* The name of a caught exception. */
760 SYMBOL_TYPE (sym) = read_type (&p, objfile);
761 SYMBOL_CLASS (sym) = LOC_LABEL;
762 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
763 SYMBOL_VALUE_ADDRESS (sym) = valu;
764 add_symbol_to_list (sym, &local_symbols);
768 /* A static function definition. */
769 SYMBOL_TYPE (sym) = read_type (&p, objfile);
770 SYMBOL_CLASS (sym) = LOC_BLOCK;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &file_symbols);
773 /* fall into process_function_types. */
775 process_function_types:
776 /* Function result types are described as the result type in stabs.
777 We need to convert this to the function-returning-type-X type
778 in GDB. E.g. "int" is converted to "function returning int". */
779 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
782 /* This code doesn't work -- it needs to realloc and can't. */
783 /* Attempt to set up to record a function prototype... */
784 struct type *new = alloc_type (objfile);
786 /* Generate a template for the type of this function. The
787 types of the arguments will be added as we read the symbol
789 *new = *lookup_function_type (SYMBOL_TYPE(sym));
790 SYMBOL_TYPE(sym) = new;
791 TYPE_OBJFILE (new) = objfile;
792 in_function_type = new;
794 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
797 /* fall into process_prototype_types */
799 process_prototype_types:
800 /* Sun acc puts declared types of arguments here. We don't care
801 about their actual types (FIXME -- we should remember the whole
802 function prototype), but the list may define some new types
803 that we have to remember, so we must scan it now. */
806 read_type (&p, objfile);
811 /* A global function definition. */
812 SYMBOL_TYPE (sym) = read_type (&p, objfile);
813 SYMBOL_CLASS (sym) = LOC_BLOCK;
814 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
815 add_symbol_to_list (sym, &global_symbols);
816 goto process_function_types;
819 /* For a class G (global) symbol, it appears that the
820 value is not correct. It is necessary to search for the
821 corresponding linker definition to find the value.
822 These definitions appear at the end of the namelist. */
823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
824 i = hashname (SYMBOL_NAME (sym));
825 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
826 global_sym_chain[i] = sym;
827 SYMBOL_CLASS (sym) = LOC_STATIC;
828 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
829 add_symbol_to_list (sym, &global_symbols);
832 /* This case is faked by a conditional above,
833 when there is no code letter in the dbx data.
834 Dbx data never actually contains 'l'. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_LOCAL;
839 SYMBOL_VALUE (sym) = valu;
840 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
841 add_symbol_to_list (sym, &local_symbols);
846 /* pF is a two-letter code that means a function parameter in Fortran.
847 The type-number specifies the type of the return value.
848 Translate it into a pointer-to-function type. */
852 = lookup_pointer_type
853 (lookup_function_type (read_type (&p, objfile)));
856 SYMBOL_TYPE (sym) = read_type (&p, objfile);
858 /* Normally this is a parameter, a LOC_ARG. On the i960, it
859 can also be a LOC_LOCAL_ARG depending on symbol type. */
860 #ifndef DBX_PARM_SYMBOL_CLASS
861 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
864 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
865 SYMBOL_VALUE (sym) = valu;
866 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
868 /* This doesn't work yet. */
869 add_param_to_type (&in_function_type, sym);
871 add_symbol_to_list (sym, &local_symbols);
873 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
875 /* On little-endian machines, this crud is never necessary,
876 and, if the extra bytes contain garbage, is harmful. */
880 /* If it's gcc-compiled, if it says `short', believe it. */
881 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
884 #if !BELIEVE_PCC_PROMOTION
886 /* This is the signed type which arguments get promoted to. */
887 static struct type *pcc_promotion_type;
888 /* This is the unsigned type which arguments get promoted to. */
889 static struct type *pcc_unsigned_promotion_type;
891 /* Call it "int" because this is mainly C lossage. */
892 if (pcc_promotion_type == NULL)
894 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
897 if (pcc_unsigned_promotion_type == NULL)
898 pcc_unsigned_promotion_type =
899 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
900 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
902 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
903 /* This macro is defined on machines (e.g. sparc) where
904 we should believe the type of a PCC 'short' argument,
905 but shouldn't believe the address (the address is
906 the address of the corresponding int).
908 My guess is that this correction, as opposed to changing
909 the parameter to an 'int' (as done below, for PCC
910 on most machines), is the right thing to do
911 on all machines, but I don't want to risk breaking
912 something that already works. On most PCC machines,
913 the sparc problem doesn't come up because the calling
914 function has to zero the top bytes (not knowing whether
915 the called function wants an int or a short), so there
916 is little practical difference between an int and a short
917 (except perhaps what happens when the GDB user types
918 "print short_arg = 0x10000;").
921 actually produces the correct address (we don't need to fix it
922 up). I made this code adapt so that it will offset the symbol
923 if it was pointing at an int-aligned location and not
924 otherwise. This way you can use the same gdb for 4.0.x and
927 If the parameter is shorter than an int, and is integral
928 (e.g. char, short, or unsigned equivalent), and is claimed to
929 be passed on an integer boundary, don't believe it! Offset the
930 parameter's address to the tail-end of that integer. */
932 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
933 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
934 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
936 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
937 - TYPE_LENGTH (SYMBOL_TYPE (sym));
941 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
943 /* If PCC says a parameter is a short or a char,
944 it is really an int. */
945 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
946 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
949 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
950 ? pcc_unsigned_promotion_type
951 : pcc_promotion_type;
955 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
957 #endif /* !BELIEVE_PCC_PROMOTION. */
960 /* acc seems to use P to delare the prototypes of functions that
961 are referenced by this file. gdb is not prepared to deal
962 with this extra information. FIXME, it ought to. */
965 read_type (&p, objfile);
966 goto process_prototype_types;
971 /* Parameter which is in a register. */
972 SYMBOL_TYPE (sym) = read_type (&p, objfile);
973 SYMBOL_CLASS (sym) = LOC_REGPARM;
974 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
975 if (SYMBOL_VALUE (sym) >= NUM_REGS)
977 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
978 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
980 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
981 add_symbol_to_list (sym, &local_symbols);
985 /* Register variable (either global or local). */
986 SYMBOL_TYPE (sym) = read_type (&p, objfile);
987 SYMBOL_CLASS (sym) = LOC_REGISTER;
988 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
989 if (SYMBOL_VALUE (sym) >= NUM_REGS)
991 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
992 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
994 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
997 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
998 name to represent an argument passed in a register.
999 GCC uses 'P' for the same case. So if we find such a symbol pair
1000 we combine it into one 'P' symbol. For Sun cc we need to do this
1001 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1002 the 'p' symbol even if it never saves the argument onto the stack.
1004 On most machines, we want to preserve both symbols, so that
1005 we can still get information about what is going on with the
1006 stack (VAX for computing args_printed, using stack slots instead
1007 of saved registers in backtraces, etc.).
1009 Note that this code illegally combines
1010 main(argc) struct foo argc; { register struct foo argc; }
1011 but this case is considered pathological and causes a warning
1012 from a decent compiler. */
1015 && local_symbols->nsyms > 0
1016 #ifndef USE_REGISTER_NOT_ARG
1017 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1019 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1020 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1024 struct symbol *prev_sym;
1025 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1026 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1027 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1028 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1030 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1031 /* Use the type from the LOC_REGISTER; that is the type
1032 that is actually in that register. */
1033 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1034 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1039 add_symbol_to_list (sym, &local_symbols);
1042 add_symbol_to_list (sym, &file_symbols);
1046 /* Static symbol at top level of file */
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1048 SYMBOL_CLASS (sym) = LOC_STATIC;
1049 SYMBOL_VALUE_ADDRESS (sym) = valu;
1050 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1051 add_symbol_to_list (sym, &file_symbols);
1055 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1057 /* For a nameless type, we don't want a create a symbol, thus we
1058 did not use `sym'. Return without further processing. */
1059 if (nameless) return NULL;
1061 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1062 SYMBOL_VALUE (sym) = valu;
1063 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1064 /* C++ vagaries: we may have a type which is derived from
1065 a base type which did not have its name defined when the
1066 derived class was output. We fill in the derived class's
1067 base part member's name here in that case. */
1068 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1069 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1070 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1071 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1074 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1075 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1076 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1077 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1080 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1082 /* gcc-2.6 or later (when using -fvtable-thunks)
1083 emits a unique named type for a vtable entry.
1084 Some gdb code depends on that specific name. */
1085 extern const char vtbl_ptr_name[];
1087 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1088 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1089 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1091 /* If we are giving a name to a type such as "pointer to
1092 foo" or "function returning foo", we better not set
1093 the TYPE_NAME. If the program contains "typedef char
1094 *caddr_t;", we don't want all variables of type char
1095 * to print as caddr_t. This is not just a
1096 consequence of GDB's type management; PCC and GCC (at
1097 least through version 2.4) both output variables of
1098 either type char * or caddr_t with the type number
1099 defined in the 't' symbol for caddr_t. If a future
1100 compiler cleans this up it GDB is not ready for it
1101 yet, but if it becomes ready we somehow need to
1102 disable this check (without breaking the PCC/GCC2.4
1107 Fortunately, this check seems not to be necessary
1108 for anything except pointers or functions. */
1111 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1114 add_symbol_to_list (sym, &file_symbols);
1118 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1119 by 't' which means we are typedef'ing it as well. */
1120 synonym = *p == 't';
1125 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1126 strlen (SYMBOL_NAME (sym)),
1127 &objfile -> symbol_obstack);
1129 /* The semantics of C++ state that "struct foo { ... }" also defines
1130 a typedef for "foo". Unfortunately, cfront never makes the typedef
1131 when translating C++ into C. We make the typedef here so that
1132 "ptype foo" works as expected for cfront translated code. */
1133 else if (current_subfile->language == language_cplus)
1136 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1137 strlen (SYMBOL_NAME (sym)),
1138 &objfile -> symbol_obstack);
1141 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1143 /* For a nameless type, we don't want a create a symbol, thus we
1144 did not use `sym'. Return without further processing. */
1145 if (nameless) return NULL;
1147 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1148 SYMBOL_VALUE (sym) = valu;
1149 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1150 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1151 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1152 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1153 add_symbol_to_list (sym, &file_symbols);
1157 /* Clone the sym and then modify it. */
1158 register struct symbol *typedef_sym = (struct symbol *)
1159 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1160 *typedef_sym = *sym;
1161 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1162 SYMBOL_VALUE (typedef_sym) = valu;
1163 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1164 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1165 TYPE_NAME (SYMBOL_TYPE (sym))
1166 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1167 add_symbol_to_list (typedef_sym, &file_symbols);
1172 /* Static symbol of local scope */
1173 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1174 SYMBOL_CLASS (sym) = LOC_STATIC;
1175 SYMBOL_VALUE_ADDRESS (sym) = valu;
1176 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1178 add_symbol_to_list (sym, &global_symbols);
1180 add_symbol_to_list (sym, &local_symbols);
1184 /* Reference parameter */
1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1186 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1187 SYMBOL_VALUE (sym) = valu;
1188 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1189 add_symbol_to_list (sym, &local_symbols);
1193 /* Reference parameter which is in a register. */
1194 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1195 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1196 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1197 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1199 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
1200 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1202 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1203 add_symbol_to_list (sym, &local_symbols);
1207 /* This is used by Sun FORTRAN for "function result value".
1208 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1209 that Pascal uses it too, but when I tried it Pascal used
1210 "x:3" (local symbol) instead. */
1211 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1212 SYMBOL_CLASS (sym) = LOC_LOCAL;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1215 add_symbol_to_list (sym, &local_symbols);
1219 SYMBOL_TYPE (sym) = error_type (&p);
1220 SYMBOL_CLASS (sym) = LOC_CONST;
1221 SYMBOL_VALUE (sym) = 0;
1222 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1223 add_symbol_to_list (sym, &file_symbols);
1227 /* When passing structures to a function, some systems sometimes pass
1228 the address in a register, not the structure itself.
1230 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1231 to LOC_REGPARM_ADDR for structures and unions. */
1233 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1234 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1236 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1237 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1238 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1240 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1241 subsequent arguments on the sparc, for example). */
1242 if (SYMBOL_CLASS (sym) == LOC_ARG
1243 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1245 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1246 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1247 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1253 /* Skip rest of this symbol and return an error type.
1255 General notes on error recovery: error_type always skips to the
1256 end of the symbol (modulo cretinous dbx symbol name continuation).
1257 Thus code like this:
1259 if (*(*pp)++ != ';')
1260 return error_type (pp);
1262 is wrong because if *pp starts out pointing at '\0' (typically as the
1263 result of an earlier error), it will be incremented to point to the
1264 start of the next symbol, which might produce strange results, at least
1265 if you run off the end of the string table. Instead use
1268 return error_type (pp);
1274 foo = error_type (pp);
1278 And in case it isn't obvious, the point of all this hair is so the compiler
1279 can define new types and new syntaxes, and old versions of the
1280 debugger will be able to read the new symbol tables. */
1282 static struct type *
1286 complain (&error_type_complaint);
1289 /* Skip to end of symbol. */
1290 while (**pp != '\0')
1295 /* Check for and handle cretinous dbx symbol name continuation! */
1296 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1298 *pp = next_symbol_text ();
1305 return (builtin_type_error);
1309 /* Read type information or a type definition; return the type. Even
1310 though this routine accepts either type information or a type
1311 definition, the distinction is relevant--some parts of stabsread.c
1312 assume that type information starts with a digit, '-', or '(' in
1313 deciding whether to call read_type. */
1316 read_type (pp, objfile)
1318 struct objfile *objfile;
1320 register struct type *type = 0;
1324 char type_descriptor;
1326 /* Size in bits of type if specified by a type attribute, or -1 if
1327 there is no size attribute. */
1330 /* Used to distinguish string and bitstring from char-array and set. */
1333 /* Read type number if present. The type number may be omitted.
1334 for instance in a two-dimensional array declared with type
1335 "ar1;1;10;ar1;1;10;4". */
1336 if ((**pp >= '0' && **pp <= '9')
1340 if (read_type_number (pp, typenums) != 0)
1341 return error_type (pp);
1343 /* Type is not being defined here. Either it already exists,
1344 or this is a forward reference to it. dbx_alloc_type handles
1347 return dbx_alloc_type (typenums, objfile);
1349 /* Type is being defined here. */
1356 /* It might be a type attribute or a member type. */
1357 if (isdigit (*p) || *p == '(' || *p == '-')
1362 /* Type attributes. */
1365 /* Skip to the semicolon. */
1366 while (*p != ';' && *p != '\0')
1370 return error_type (pp);
1372 /* Skip the semicolon. */
1378 type_size = atoi (attr + 1);
1388 /* Ignore unrecognized type attributes, so future compilers
1389 can invent new ones. */
1394 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1399 /* 'typenums=' not present, type is anonymous. Read and return
1400 the definition, but don't put it in the type vector. */
1401 typenums[0] = typenums[1] = -1;
1405 type_descriptor = (*pp)[-1];
1406 switch (type_descriptor)
1410 enum type_code code;
1412 /* Used to index through file_symbols. */
1413 struct pending *ppt;
1416 /* Name including "struct", etc. */
1420 char *from, *to, *p, *q1, *q2;
1422 /* Set the type code according to the following letter. */
1426 code = TYPE_CODE_STRUCT;
1429 code = TYPE_CODE_UNION;
1432 code = TYPE_CODE_ENUM;
1436 /* Complain and keep going, so compilers can invent new
1437 cross-reference types. */
1438 static struct complaint msg =
1439 {"Unrecognized cross-reference type `%c'", 0, 0};
1440 complain (&msg, (*pp)[0]);
1441 code = TYPE_CODE_STRUCT;
1446 q1 = strchr(*pp, '<');
1447 p = strchr(*pp, ':');
1449 return error_type (pp);
1450 while (q1 && p > q1 && p[1] == ':')
1452 q2 = strchr(q1, '>');
1458 return error_type (pp);
1461 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1463 /* Copy the name. */
1469 /* Set the pointer ahead of the name which we just read, and
1474 /* Now check to see whether the type has already been
1475 declared. This was written for arrays of cross-referenced
1476 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1477 sure it is not necessary anymore. But it might be a good
1478 idea, to save a little memory. */
1480 for (ppt = file_symbols; ppt; ppt = ppt->next)
1481 for (i = 0; i < ppt->nsyms; i++)
1483 struct symbol *sym = ppt->symbol[i];
1485 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1486 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1487 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1488 && STREQ (SYMBOL_NAME (sym), type_name))
1490 obstack_free (&objfile -> type_obstack, type_name);
1491 type = SYMBOL_TYPE (sym);
1496 /* Didn't find the type to which this refers, so we must
1497 be dealing with a forward reference. Allocate a type
1498 structure for it, and keep track of it so we can
1499 fill in the rest of the fields when we get the full
1501 type = dbx_alloc_type (typenums, objfile);
1502 TYPE_CODE (type) = code;
1503 TYPE_TAG_NAME (type) = type_name;
1504 INIT_CPLUS_SPECIFIC(type);
1505 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1507 add_undefined_type (type);
1511 case '-': /* RS/6000 built-in type */
1530 /* Peek ahead at the number to detect void. */
1531 if (read_type_number (pp, xtypenums) != 0)
1532 return error_type (pp);
1534 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1535 /* It's being defined as itself. That means it is "void". */
1536 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1541 /* Go back to the number and have read_type get it. This means
1542 that we can deal with something like t(1,2)=(3,4)=... which
1543 the Lucid compiler uses. */
1545 xtype = read_type (pp, objfile);
1547 /* The type is being defined to another type. So we copy the type.
1548 This loses if we copy a C++ class and so we lose track of how
1549 the names are mangled (but g++ doesn't output stabs like this
1552 type = alloc_type (objfile);
1553 memcpy (type, xtype, sizeof (struct type));
1555 /* The idea behind clearing the names is that the only purpose
1556 for defining a type to another type is so that the name of
1557 one can be different. So we probably don't need to worry much
1558 about the case where the compiler doesn't give a name to the
1560 TYPE_NAME (type) = NULL;
1561 TYPE_TAG_NAME (type) = NULL;
1563 if (typenums[0] != -1)
1564 *dbx_lookup_type (typenums) = type;
1568 /* In the following types, we must be sure to overwrite any existing
1569 type that the typenums refer to, rather than allocating a new one
1570 and making the typenums point to the new one. This is because there
1571 may already be pointers to the existing type (if it had been
1572 forward-referenced), and we must change it to a pointer, function,
1573 reference, or whatever, *in-place*. */
1576 type1 = read_type (pp, objfile);
1577 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1580 case '&': /* Reference to another type */
1581 type1 = read_type (pp, objfile);
1582 type = make_reference_type (type1, dbx_lookup_type (typenums));
1585 case 'f': /* Function returning another type */
1586 if (os9k_stabs && **pp == '(')
1588 /* Function prototype; parse it.
1589 We must conditionalize this on os9k_stabs because otherwise
1590 it could be confused with a Sun-style (1,3) typenumber
1596 t = read_type(pp, objfile);
1597 if (**pp == ',') ++*pp;
1600 type1 = read_type (pp, objfile);
1601 type = make_function_type (type1, dbx_lookup_type (typenums));
1604 case 'k': /* Const qualifier on some type (Sun) */
1605 case 'c': /* Const qualifier on some type (OS9000) */
1606 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1607 only accept 'c' in the os9k_stabs case. */
1608 if (type_descriptor == 'c' && !os9k_stabs)
1609 return error_type (pp);
1610 type = read_type (pp, objfile);
1611 /* FIXME! For now, we ignore const and volatile qualifiers. */
1614 case 'B': /* Volatile qual on some type (Sun) */
1615 case 'i': /* Volatile qual on some type (OS9000) */
1616 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1617 only accept 'i' in the os9k_stabs case. */
1618 if (type_descriptor == 'i' && !os9k_stabs)
1619 return error_type (pp);
1620 type = read_type (pp, objfile);
1621 /* FIXME! For now, we ignore const and volatile qualifiers. */
1624 /* FIXME -- we should be doing smash_to_XXX types here. */
1625 case '@': /* Member (class & variable) type */
1627 struct type *domain = read_type (pp, objfile);
1628 struct type *memtype;
1631 /* Invalid member type data format. */
1632 return error_type (pp);
1635 memtype = read_type (pp, objfile);
1636 type = dbx_alloc_type (typenums, objfile);
1637 smash_to_member_type (type, domain, memtype);
1641 case '#': /* Method (class & fn) type */
1642 if ((*pp)[0] == '#')
1644 /* We'll get the parameter types from the name. */
1645 struct type *return_type;
1648 return_type = read_type (pp, objfile);
1649 if (*(*pp)++ != ';')
1650 complain (&invalid_member_complaint, symnum);
1651 type = allocate_stub_method (return_type);
1652 if (typenums[0] != -1)
1653 *dbx_lookup_type (typenums) = type;
1657 struct type *domain = read_type (pp, objfile);
1658 struct type *return_type;
1662 /* Invalid member type data format. */
1663 return error_type (pp);
1667 return_type = read_type (pp, objfile);
1668 args = read_args (pp, ';', objfile);
1669 type = dbx_alloc_type (typenums, objfile);
1670 smash_to_method_type (type, domain, return_type, args);
1674 case 'r': /* Range type */
1675 type = read_range_type (pp, typenums, objfile);
1676 if (typenums[0] != -1)
1677 *dbx_lookup_type (typenums) = type;
1682 /* Const and volatile qualified type. */
1683 type = read_type (pp, objfile);
1686 /* Sun ACC builtin int type */
1687 type = read_sun_builtin_type (pp, typenums, objfile);
1688 if (typenums[0] != -1)
1689 *dbx_lookup_type (typenums) = type;
1693 case 'R': /* Sun ACC builtin float type */
1694 type = read_sun_floating_type (pp, typenums, objfile);
1695 if (typenums[0] != -1)
1696 *dbx_lookup_type (typenums) = type;
1699 case 'e': /* Enumeration type */
1700 type = dbx_alloc_type (typenums, objfile);
1701 type = read_enum_type (pp, type, objfile);
1702 if (typenums[0] != -1)
1703 *dbx_lookup_type (typenums) = type;
1706 case 's': /* Struct type */
1707 case 'u': /* Union type */
1708 type = dbx_alloc_type (typenums, objfile);
1709 if (!TYPE_NAME (type))
1711 TYPE_NAME (type) = type_synonym_name;
1713 type_synonym_name = NULL;
1714 switch (type_descriptor)
1717 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1720 TYPE_CODE (type) = TYPE_CODE_UNION;
1723 type = read_struct_type (pp, type, objfile);
1726 case 'a': /* Array type */
1728 return error_type (pp);
1731 type = dbx_alloc_type (typenums, objfile);
1732 type = read_array_type (pp, type, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_STRING;
1738 type1 = read_type (pp, objfile);
1739 type = create_set_type ((struct type*) NULL, type1);
1741 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1742 if (typenums[0] != -1)
1743 *dbx_lookup_type (typenums) = type;
1747 --*pp; /* Go back to the symbol in error */
1748 /* Particularly important if it was \0! */
1749 return error_type (pp);
1754 warning ("GDB internal error, type is NULL in stabsread.c\n");
1755 return error_type (pp);
1758 /* Size specified in a type attribute overrides any other size. */
1759 if (type_size != -1)
1760 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1765 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1766 Return the proper type node for a given builtin type number. */
1768 static struct type *
1769 rs6000_builtin_type (typenum)
1772 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1773 #define NUMBER_RECOGNIZED 30
1774 /* This includes an empty slot for type number -0. */
1775 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1776 struct type *rettype = NULL;
1778 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1780 complain (&rs6000_builtin_complaint, typenum);
1781 return builtin_type_error;
1783 if (negative_types[-typenum] != NULL)
1784 return negative_types[-typenum];
1786 #if TARGET_CHAR_BIT != 8
1787 #error This code wrong for TARGET_CHAR_BIT not 8
1788 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1789 that if that ever becomes not true, the correct fix will be to
1790 make the size in the struct type to be in bits, not in units of
1797 /* The size of this and all the other types are fixed, defined
1798 by the debugging format. If there is a type called "int" which
1799 is other than 32 bits, then it should use a new negative type
1800 number (or avoid negative type numbers for that case).
1801 See stabs.texinfo. */
1802 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1805 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1808 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1811 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1814 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1815 "unsigned char", NULL);
1818 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1821 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1822 "unsigned short", NULL);
1825 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1826 "unsigned int", NULL);
1829 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1832 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1833 "unsigned long", NULL);
1836 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1839 /* IEEE single precision (32 bit). */
1840 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1843 /* IEEE double precision (64 bit). */
1844 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1847 /* This is an IEEE double on the RS/6000, and different machines with
1848 different sizes for "long double" should use different negative
1849 type numbers. See stabs.texinfo. */
1850 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1853 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1856 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1859 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1862 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1865 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1868 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1872 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1876 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1880 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1884 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1888 /* Complex type consisting of two IEEE single precision values. */
1889 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1892 /* Complex type consisting of two IEEE double precision values. */
1893 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1896 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1899 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1902 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1905 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1908 negative_types[-typenum] = rettype;
1912 /* This page contains subroutines of read_type. */
1914 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1915 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1916 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1917 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1919 /* Read member function stabs info for C++ classes. The form of each member
1922 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1924 An example with two member functions is:
1926 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1928 For the case of overloaded operators, the format is op$::*.funcs, where
1929 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1930 name (such as `+=') and `.' marks the end of the operator name.
1932 Returns 1 for success, 0 for failure. */
1935 read_member_functions (fip, pp, type, objfile)
1936 struct field_info *fip;
1939 struct objfile *objfile;
1943 /* Total number of member functions defined in this class. If the class
1944 defines two `f' functions, and one `g' function, then this will have
1946 int total_length = 0;
1950 struct next_fnfield *next;
1951 struct fn_field fn_field;
1953 struct type *look_ahead_type;
1954 struct next_fnfieldlist *new_fnlist;
1955 struct next_fnfield *new_sublist;
1959 /* Process each list until we find something that is not a member function
1960 or find the end of the functions. */
1964 /* We should be positioned at the start of the function name.
1965 Scan forward to find the first ':' and if it is not the
1966 first of a "::" delimiter, then this is not a member function. */
1978 look_ahead_type = NULL;
1981 new_fnlist = (struct next_fnfieldlist *)
1982 xmalloc (sizeof (struct next_fnfieldlist));
1983 make_cleanup (free, new_fnlist);
1984 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1986 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1988 /* This is a completely wierd case. In order to stuff in the
1989 names that might contain colons (the usual name delimiter),
1990 Mike Tiemann defined a different name format which is
1991 signalled if the identifier is "op$". In that case, the
1992 format is "op$::XXXX." where XXXX is the name. This is
1993 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1994 /* This lets the user type "break operator+".
1995 We could just put in "+" as the name, but that wouldn't
1997 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1998 char *o = opname + 3;
2000 /* Skip past '::'. */
2003 STABS_CONTINUE (pp);
2009 main_fn_name = savestring (opname, o - opname);
2015 main_fn_name = savestring (*pp, p - *pp);
2016 /* Skip past '::'. */
2019 new_fnlist -> fn_fieldlist.name = main_fn_name;
2024 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2025 make_cleanup (free, new_sublist);
2026 memset (new_sublist, 0, sizeof (struct next_fnfield));
2028 /* Check for and handle cretinous dbx symbol name continuation! */
2029 if (look_ahead_type == NULL)
2032 STABS_CONTINUE (pp);
2034 new_sublist -> fn_field.type = read_type (pp, objfile);
2037 /* Invalid symtab info for member function. */
2043 /* g++ version 1 kludge */
2044 new_sublist -> fn_field.type = look_ahead_type;
2045 look_ahead_type = NULL;
2055 /* If this is just a stub, then we don't have the real name here. */
2057 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2059 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2060 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2061 new_sublist -> fn_field.is_stub = 1;
2063 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2066 /* Set this member function's visibility fields. */
2069 case VISIBILITY_PRIVATE:
2070 new_sublist -> fn_field.is_private = 1;
2072 case VISIBILITY_PROTECTED:
2073 new_sublist -> fn_field.is_protected = 1;
2077 STABS_CONTINUE (pp);
2080 case 'A': /* Normal functions. */
2081 new_sublist -> fn_field.is_const = 0;
2082 new_sublist -> fn_field.is_volatile = 0;
2085 case 'B': /* `const' member functions. */
2086 new_sublist -> fn_field.is_const = 1;
2087 new_sublist -> fn_field.is_volatile = 0;
2090 case 'C': /* `volatile' member function. */
2091 new_sublist -> fn_field.is_const = 0;
2092 new_sublist -> fn_field.is_volatile = 1;
2095 case 'D': /* `const volatile' member function. */
2096 new_sublist -> fn_field.is_const = 1;
2097 new_sublist -> fn_field.is_volatile = 1;
2100 case '*': /* File compiled with g++ version 1 -- no info */
2105 complain (&const_vol_complaint, **pp);
2114 /* virtual member function, followed by index.
2115 The sign bit is set to distinguish pointers-to-methods
2116 from virtual function indicies. Since the array is
2117 in words, the quantity must be shifted left by 1
2118 on 16 bit machine, and by 2 on 32 bit machine, forcing
2119 the sign bit out, and usable as a valid index into
2120 the array. Remove the sign bit here. */
2121 new_sublist -> fn_field.voffset =
2122 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2126 STABS_CONTINUE (pp);
2127 if (**pp == ';' || **pp == '\0')
2129 /* Must be g++ version 1. */
2130 new_sublist -> fn_field.fcontext = 0;
2134 /* Figure out from whence this virtual function came.
2135 It may belong to virtual function table of
2136 one of its baseclasses. */
2137 look_ahead_type = read_type (pp, objfile);
2140 /* g++ version 1 overloaded methods. */
2144 new_sublist -> fn_field.fcontext = look_ahead_type;
2153 look_ahead_type = NULL;
2159 /* static member function. */
2160 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2161 if (strncmp (new_sublist -> fn_field.physname,
2162 main_fn_name, strlen (main_fn_name)))
2164 new_sublist -> fn_field.is_stub = 1;
2170 complain (&member_fn_complaint, (*pp)[-1]);
2171 /* Fall through into normal member function. */
2174 /* normal member function. */
2175 new_sublist -> fn_field.voffset = 0;
2176 new_sublist -> fn_field.fcontext = 0;
2180 new_sublist -> next = sublist;
2181 sublist = new_sublist;
2183 STABS_CONTINUE (pp);
2185 while (**pp != ';' && **pp != '\0');
2189 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2190 obstack_alloc (&objfile -> type_obstack,
2191 sizeof (struct fn_field) * length);
2192 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2193 sizeof (struct fn_field) * length);
2194 for (i = length; (i--, sublist); sublist = sublist -> next)
2196 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2199 new_fnlist -> fn_fieldlist.length = length;
2200 new_fnlist -> next = fip -> fnlist;
2201 fip -> fnlist = new_fnlist;
2203 total_length += length;
2204 STABS_CONTINUE (pp);
2209 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2210 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2211 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2212 memset (TYPE_FN_FIELDLISTS (type), 0,
2213 sizeof (struct fn_fieldlist) * nfn_fields);
2214 TYPE_NFN_FIELDS (type) = nfn_fields;
2215 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2221 /* Special GNU C++ name.
2223 Returns 1 for success, 0 for failure. "failure" means that we can't
2224 keep parsing and it's time for error_type(). */
2227 read_cpp_abbrev (fip, pp, type, objfile)
2228 struct field_info *fip;
2231 struct objfile *objfile;
2236 struct type *context;
2246 /* At this point, *pp points to something like "22:23=*22...",
2247 where the type number before the ':' is the "context" and
2248 everything after is a regular type definition. Lookup the
2249 type, find it's name, and construct the field name. */
2251 context = read_type (pp, objfile);
2255 case 'f': /* $vf -- a virtual function table pointer */
2256 fip->list->field.name =
2257 obconcat (&objfile->type_obstack, vptr_name, "", "");
2260 case 'b': /* $vb -- a virtual bsomethingorother */
2261 name = type_name_no_tag (context);
2264 complain (&invalid_cpp_type_complaint, symnum);
2267 fip->list->field.name =
2268 obconcat (&objfile->type_obstack, vb_name, name, "");
2272 complain (&invalid_cpp_abbrev_complaint, *pp);
2273 fip->list->field.name =
2274 obconcat (&objfile->type_obstack,
2275 "INVALID_CPLUSPLUS_ABBREV", "", "");
2279 /* At this point, *pp points to the ':'. Skip it and read the
2285 complain (&invalid_cpp_abbrev_complaint, *pp);
2288 fip->list->field.type = read_type (pp, objfile);
2290 (*pp)++; /* Skip the comma. */
2296 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2300 /* This field is unpacked. */
2301 fip->list->field.bitsize = 0;
2302 fip->list->visibility = VISIBILITY_PRIVATE;
2306 complain (&invalid_cpp_abbrev_complaint, *pp);
2307 /* We have no idea what syntax an unrecognized abbrev would have, so
2308 better return 0. If we returned 1, we would need to at least advance
2309 *pp to avoid an infinite loop. */
2316 read_one_struct_field (fip, pp, p, type, objfile)
2317 struct field_info *fip;
2321 struct objfile *objfile;
2323 fip -> list -> field.name =
2324 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2327 /* This means we have a visibility for a field coming. */
2331 fip -> list -> visibility = *(*pp)++;
2335 /* normal dbx-style format, no explicit visibility */
2336 fip -> list -> visibility = VISIBILITY_PUBLIC;
2339 fip -> list -> field.type = read_type (pp, objfile);
2344 /* Possible future hook for nested types. */
2347 fip -> list -> field.bitpos = (long)-2; /* nested type */
2353 /* Static class member. */
2354 fip -> list -> field.bitpos = (long) -1;
2360 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2364 else if (**pp != ',')
2366 /* Bad structure-type format. */
2367 complain (&stabs_general_complaint, "bad structure-type format");
2371 (*pp)++; /* Skip the comma. */
2375 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2378 complain (&stabs_general_complaint, "bad structure-type format");
2381 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2384 complain (&stabs_general_complaint, "bad structure-type format");
2389 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2391 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2392 it is a field which has been optimized out. The correct stab for
2393 this case is to use VISIBILITY_IGNORE, but that is a recent
2394 invention. (2) It is a 0-size array. For example
2395 union { int num; char str[0]; } foo. Printing "<no value>" for
2396 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2397 will continue to work, and a 0-size array as a whole doesn't
2398 have any contents to print.
2400 I suspect this probably could also happen with gcc -gstabs (not
2401 -gstabs+) for static fields, and perhaps other C++ extensions.
2402 Hopefully few people use -gstabs with gdb, since it is intended
2403 for dbx compatibility. */
2405 /* Ignore this field. */
2406 fip -> list-> visibility = VISIBILITY_IGNORE;
2410 /* Detect an unpacked field and mark it as such.
2411 dbx gives a bit size for all fields.
2412 Note that forward refs cannot be packed,
2413 and treat enums as if they had the width of ints. */
2415 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2416 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2418 fip -> list -> field.bitsize = 0;
2420 if ((fip -> list -> field.bitsize
2421 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2422 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2423 && (fip -> list -> field.bitsize
2428 fip -> list -> field.bitpos % 8 == 0)
2430 fip -> list -> field.bitsize = 0;
2436 /* Read struct or class data fields. They have the form:
2438 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2440 At the end, we see a semicolon instead of a field.
2442 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2445 The optional VISIBILITY is one of:
2447 '/0' (VISIBILITY_PRIVATE)
2448 '/1' (VISIBILITY_PROTECTED)
2449 '/2' (VISIBILITY_PUBLIC)
2450 '/9' (VISIBILITY_IGNORE)
2452 or nothing, for C style fields with public visibility.
2454 Returns 1 for success, 0 for failure. */
2457 read_struct_fields (fip, pp, type, objfile)
2458 struct field_info *fip;
2461 struct objfile *objfile;
2464 struct nextfield *new;
2466 /* We better set p right now, in case there are no fields at all... */
2470 /* Read each data member type until we find the terminating ';' at the end of
2471 the data member list, or break for some other reason such as finding the
2472 start of the member function list. */
2476 if (os9k_stabs && **pp == ',') break;
2477 STABS_CONTINUE (pp);
2478 /* Get space to record the next field's data. */
2479 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2480 make_cleanup (free, new);
2481 memset (new, 0, sizeof (struct nextfield));
2482 new -> next = fip -> list;
2485 /* Get the field name. */
2488 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2489 unless the CPLUS_MARKER is followed by an underscore, in
2490 which case it is just the name of an anonymous type, which we
2491 should handle like any other type name. We accept either '$'
2492 or '.', because a field name can never contain one of these
2493 characters except as a CPLUS_MARKER (we probably should be
2494 doing that in most parts of GDB). */
2496 if ((*p == '$' || *p == '.') && p[1] != '_')
2498 if (!read_cpp_abbrev (fip, pp, type, objfile))
2503 /* Look for the ':' that separates the field name from the field
2504 values. Data members are delimited by a single ':', while member
2505 functions are delimited by a pair of ':'s. When we hit the member
2506 functions (if any), terminate scan loop and return. */
2508 while (*p != ':' && *p != '\0')
2515 /* Check to see if we have hit the member functions yet. */
2520 read_one_struct_field (fip, pp, p, type, objfile);
2522 if (p[0] == ':' && p[1] == ':')
2524 /* chill the list of fields: the last entry (at the head) is a
2525 partially constructed entry which we now scrub. */
2526 fip -> list = fip -> list -> next;
2531 /* The stabs for C++ derived classes contain baseclass information which
2532 is marked by a '!' character after the total size. This function is
2533 called when we encounter the baseclass marker, and slurps up all the
2534 baseclass information.
2536 Immediately following the '!' marker is the number of base classes that
2537 the class is derived from, followed by information for each base class.
2538 For each base class, there are two visibility specifiers, a bit offset
2539 to the base class information within the derived class, a reference to
2540 the type for the base class, and a terminating semicolon.
2542 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2544 Baseclass information marker __________________|| | | | | | |
2545 Number of baseclasses __________________________| | | | | | |
2546 Visibility specifiers (2) ________________________| | | | | |
2547 Offset in bits from start of class _________________| | | | |
2548 Type number for base class ___________________________| | | |
2549 Visibility specifiers (2) _______________________________| | |
2550 Offset in bits from start of class ________________________| |
2551 Type number of base class ____________________________________|
2553 Return 1 for success, 0 for (error-type-inducing) failure. */
2556 read_baseclasses (fip, pp, type, objfile)
2557 struct field_info *fip;
2560 struct objfile *objfile;
2563 struct nextfield *new;
2571 /* Skip the '!' baseclass information marker. */
2575 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2578 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2584 /* Some stupid compilers have trouble with the following, so break
2585 it up into simpler expressions. */
2586 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2587 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2590 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2593 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2594 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2598 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2600 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2602 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2603 make_cleanup (free, new);
2604 memset (new, 0, sizeof (struct nextfield));
2605 new -> next = fip -> list;
2607 new -> field.bitsize = 0; /* this should be an unpacked field! */
2609 STABS_CONTINUE (pp);
2613 /* Nothing to do. */
2616 SET_TYPE_FIELD_VIRTUAL (type, i);
2619 /* Unknown character. Complain and treat it as non-virtual. */
2621 static struct complaint msg = {
2622 "Unknown virtual character `%c' for baseclass", 0, 0};
2623 complain (&msg, **pp);
2628 new -> visibility = *(*pp)++;
2629 switch (new -> visibility)
2631 case VISIBILITY_PRIVATE:
2632 case VISIBILITY_PROTECTED:
2633 case VISIBILITY_PUBLIC:
2636 /* Bad visibility format. Complain and treat it as
2639 static struct complaint msg = {
2640 "Unknown visibility `%c' for baseclass", 0, 0};
2641 complain (&msg, new -> visibility);
2642 new -> visibility = VISIBILITY_PUBLIC;
2649 /* The remaining value is the bit offset of the portion of the object
2650 corresponding to this baseclass. Always zero in the absence of
2651 multiple inheritance. */
2653 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2658 /* The last piece of baseclass information is the type of the
2659 base class. Read it, and remember it's type name as this
2662 new -> field.type = read_type (pp, objfile);
2663 new -> field.name = type_name_no_tag (new -> field.type);
2665 /* skip trailing ';' and bump count of number of fields seen */
2674 /* The tail end of stabs for C++ classes that contain a virtual function
2675 pointer contains a tilde, a %, and a type number.
2676 The type number refers to the base class (possibly this class itself) which
2677 contains the vtable pointer for the current class.
2679 This function is called when we have parsed all the method declarations,
2680 so we can look for the vptr base class info. */
2683 read_tilde_fields (fip, pp, type, objfile)
2684 struct field_info *fip;
2687 struct objfile *objfile;
2691 STABS_CONTINUE (pp);
2693 /* If we are positioned at a ';', then skip it. */
2703 if (**pp == '=' || **pp == '+' || **pp == '-')
2705 /* Obsolete flags that used to indicate the presence
2706 of constructors and/or destructors. */
2710 /* Read either a '%' or the final ';'. */
2711 if (*(*pp)++ == '%')
2713 /* The next number is the type number of the base class
2714 (possibly our own class) which supplies the vtable for
2715 this class. Parse it out, and search that class to find
2716 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2717 and TYPE_VPTR_FIELDNO. */
2722 t = read_type (pp, objfile);
2724 while (*p != '\0' && *p != ';')
2730 /* Premature end of symbol. */
2734 TYPE_VPTR_BASETYPE (type) = t;
2735 if (type == t) /* Our own class provides vtbl ptr */
2737 for (i = TYPE_NFIELDS (t) - 1;
2738 i >= TYPE_N_BASECLASSES (t);
2741 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2742 sizeof (vptr_name) - 1))
2744 TYPE_VPTR_FIELDNO (type) = i;
2748 /* Virtual function table field not found. */
2749 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2754 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2765 attach_fn_fields_to_type (fip, type)
2766 struct field_info *fip;
2767 register struct type *type;
2771 for (n = TYPE_NFN_FIELDS (type);
2772 fip -> fnlist != NULL;
2773 fip -> fnlist = fip -> fnlist -> next)
2775 --n; /* Circumvent Sun3 compiler bug */
2776 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2781 /* Create the vector of fields, and record how big it is.
2782 We need this info to record proper virtual function table information
2783 for this class's virtual functions. */
2786 attach_fields_to_type (fip, type, objfile)
2787 struct field_info *fip;
2788 register struct type *type;
2789 struct objfile *objfile;
2791 register int nfields = 0;
2792 register int non_public_fields = 0;
2793 register struct nextfield *scan;
2795 /* Count up the number of fields that we have, as well as taking note of
2796 whether or not there are any non-public fields, which requires us to
2797 allocate and build the private_field_bits and protected_field_bits
2800 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2803 if (scan -> visibility != VISIBILITY_PUBLIC)
2805 non_public_fields++;
2809 /* Now we know how many fields there are, and whether or not there are any
2810 non-public fields. Record the field count, allocate space for the
2811 array of fields, and create blank visibility bitfields if necessary. */
2813 TYPE_NFIELDS (type) = nfields;
2814 TYPE_FIELDS (type) = (struct field *)
2815 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2816 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2818 if (non_public_fields)
2820 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2822 TYPE_FIELD_PRIVATE_BITS (type) =
2823 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2824 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2826 TYPE_FIELD_PROTECTED_BITS (type) =
2827 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2828 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2830 TYPE_FIELD_IGNORE_BITS (type) =
2831 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2832 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2835 /* Copy the saved-up fields into the field vector. Start from the head
2836 of the list, adding to the tail of the field array, so that they end
2837 up in the same order in the array in which they were added to the list. */
2839 while (nfields-- > 0)
2841 TYPE_FIELD (type, nfields) = fip -> list -> field;
2842 switch (fip -> list -> visibility)
2844 case VISIBILITY_PRIVATE:
2845 SET_TYPE_FIELD_PRIVATE (type, nfields);
2848 case VISIBILITY_PROTECTED:
2849 SET_TYPE_FIELD_PROTECTED (type, nfields);
2852 case VISIBILITY_IGNORE:
2853 SET_TYPE_FIELD_IGNORE (type, nfields);
2856 case VISIBILITY_PUBLIC:
2860 /* Unknown visibility. Complain and treat it as public. */
2862 static struct complaint msg = {
2863 "Unknown visibility `%c' for field", 0, 0};
2864 complain (&msg, fip -> list -> visibility);
2868 fip -> list = fip -> list -> next;
2873 /* Read the description of a structure (or union type) and return an object
2874 describing the type.
2876 PP points to a character pointer that points to the next unconsumed token
2877 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2878 *PP will point to "4a:1,0,32;;".
2880 TYPE points to an incomplete type that needs to be filled in.
2882 OBJFILE points to the current objfile from which the stabs information is
2883 being read. (Note that it is redundant in that TYPE also contains a pointer
2884 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2887 static struct type *
2888 read_struct_type (pp, type, objfile)
2891 struct objfile *objfile;
2893 struct cleanup *back_to;
2894 struct field_info fi;
2899 back_to = make_cleanup (null_cleanup, 0);
2901 INIT_CPLUS_SPECIFIC (type);
2902 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2904 /* First comes the total size in bytes. */
2908 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2910 return error_type (pp);
2913 /* Now read the baseclasses, if any, read the regular C struct or C++
2914 class member fields, attach the fields to the type, read the C++
2915 member functions, attach them to the type, and then read any tilde
2916 field (baseclass specifier for the class holding the main vtable). */
2918 if (!read_baseclasses (&fi, pp, type, objfile)
2919 || !read_struct_fields (&fi, pp, type, objfile)
2920 || !attach_fields_to_type (&fi, type, objfile)
2921 || !read_member_functions (&fi, pp, type, objfile)
2922 || !attach_fn_fields_to_type (&fi, type)
2923 || !read_tilde_fields (&fi, pp, type, objfile))
2925 do_cleanups (back_to);
2926 return (error_type (pp));
2929 do_cleanups (back_to);
2933 /* Read a definition of an array type,
2934 and create and return a suitable type object.
2935 Also creates a range type which represents the bounds of that
2938 static struct type *
2939 read_array_type (pp, type, objfile)
2941 register struct type *type;
2942 struct objfile *objfile;
2944 struct type *index_type, *element_type, *range_type;
2949 /* Format of an array type:
2950 "ar<index type>;lower;upper;<array_contents_type>".
2951 OS9000: "arlower,upper;<array_contents_type>".
2953 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2954 for these, produce a type like float[][]. */
2957 index_type = builtin_type_int;
2960 index_type = read_type (pp, objfile);
2962 /* Improper format of array type decl. */
2963 return error_type (pp);
2967 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2972 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2974 return error_type (pp);
2976 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2981 upper = read_huge_number (pp, ';', &nbits);
2983 return error_type (pp);
2985 element_type = read_type (pp, objfile);
2994 create_range_type ((struct type *) NULL, index_type, lower, upper);
2995 type = create_array_type (type, element_type, range_type);
2997 /* If we have an array whose element type is not yet known, but whose
2998 bounds *are* known, record it to be adjusted at the end of the file. */
3000 if ((TYPE_FLAGS (element_type) & TYPE_FLAG_STUB) && !adjustable)
3002 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
3003 add_undefined_type (type);
3010 /* Read a definition of an enumeration type,
3011 and create and return a suitable type object.
3012 Also defines the symbols that represent the values of the type. */
3014 static struct type *
3015 read_enum_type (pp, type, objfile)
3017 register struct type *type;
3018 struct objfile *objfile;
3023 register struct symbol *sym;
3025 struct pending **symlist;
3026 struct pending *osyms, *syms;
3031 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3032 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3033 to do? For now, force all enum values to file scope. */
3034 if (within_function)
3035 symlist = &local_symbols;
3038 symlist = &file_symbols;
3040 o_nsyms = osyms ? osyms->nsyms : 0;
3044 /* Size. Perhaps this does not have to be conditionalized on
3045 os9k_stabs (assuming the name of an enum constant can't start
3047 read_huge_number (pp, 0, &nbits);
3049 return error_type (pp);
3052 /* Read the value-names and their values.
3053 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3054 A semicolon or comma instead of a NAME means the end. */
3055 while (**pp && **pp != ';' && **pp != ',')
3057 STABS_CONTINUE (pp);
3059 while (*p != ':') p++;
3060 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3062 n = read_huge_number (pp, ',', &nbits);
3064 return error_type (pp);
3066 sym = (struct symbol *)
3067 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3068 memset (sym, 0, sizeof (struct symbol));
3069 SYMBOL_NAME (sym) = name;
3070 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3071 SYMBOL_CLASS (sym) = LOC_CONST;
3072 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3073 SYMBOL_VALUE (sym) = n;
3074 add_symbol_to_list (sym, symlist);
3079 (*pp)++; /* Skip the semicolon. */
3081 /* Now fill in the fields of the type-structure. */
3083 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3084 TYPE_CODE (type) = TYPE_CODE_ENUM;
3085 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3086 TYPE_NFIELDS (type) = nsyms;
3087 TYPE_FIELDS (type) = (struct field *)
3088 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3089 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3091 /* Find the symbols for the values and put them into the type.
3092 The symbols can be found in the symlist that we put them on
3093 to cause them to be defined. osyms contains the old value
3094 of that symlist; everything up to there was defined by us. */
3095 /* Note that we preserve the order of the enum constants, so
3096 that in something like "enum {FOO, LAST_THING=FOO}" we print
3097 FOO, not LAST_THING. */
3099 for (syms = *symlist, n = nsyms - 1; ; syms = syms->next)
3101 int last = syms == osyms ? o_nsyms : 0;
3102 int j = syms->nsyms;
3103 for (; --j >= last; --n)
3105 struct symbol *xsym = syms->symbol[j];
3106 SYMBOL_TYPE (xsym) = type;
3107 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3108 TYPE_FIELD_VALUE (type, n) = 0;
3109 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3110 TYPE_FIELD_BITSIZE (type, n) = 0;
3119 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3120 typedefs in every file (for int, long, etc):
3122 type = b <signed> <width>; <offset>; <nbits>
3123 signed = u or s. Possible c in addition to u or s (for char?).
3124 offset = offset from high order bit to start bit of type.
3125 width is # bytes in object of this type, nbits is # bits in type.
3127 The width/offset stuff appears to be for small objects stored in
3128 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3131 static struct type *
3132 read_sun_builtin_type (pp, typenums, objfile)
3135 struct objfile *objfile;
3150 return error_type (pp);
3154 /* For some odd reason, all forms of char put a c here. This is strange
3155 because no other type has this honor. We can safely ignore this because
3156 we actually determine 'char'acterness by the number of bits specified in
3162 /* The first number appears to be the number of bytes occupied
3163 by this type, except that unsigned short is 4 instead of 2.
3164 Since this information is redundant with the third number,
3165 we will ignore it. */
3166 read_huge_number (pp, ';', &nbits);
3168 return error_type (pp);
3170 /* The second number is always 0, so ignore it too. */
3171 read_huge_number (pp, ';', &nbits);
3173 return error_type (pp);
3175 /* The third number is the number of bits for this type. */
3176 type_bits = read_huge_number (pp, 0, &nbits);
3178 return error_type (pp);
3179 /* The type *should* end with a semicolon. If it are embedded
3180 in a larger type the semicolon may be the only way to know where
3181 the type ends. If this type is at the end of the stabstring we
3182 can deal with the omitted semicolon (but we don't have to like
3183 it). Don't bother to complain(), Sun's compiler omits the semicolon
3189 return init_type (TYPE_CODE_VOID, 1,
3190 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3193 return init_type (TYPE_CODE_INT,
3194 type_bits / TARGET_CHAR_BIT,
3195 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3199 static struct type *
3200 read_sun_floating_type (pp, typenums, objfile)
3203 struct objfile *objfile;
3209 /* The first number has more details about the type, for example
3211 details = read_huge_number (pp, ';', &nbits);
3213 return error_type (pp);
3215 /* The second number is the number of bytes occupied by this type */
3216 nbytes = read_huge_number (pp, ';', &nbits);
3218 return error_type (pp);
3220 if (details == NF_COMPLEX || details == NF_COMPLEX16
3221 || details == NF_COMPLEX32)
3222 /* This is a type we can't handle, but we do know the size.
3223 We also will be able to give it a name. */
3224 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3226 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3229 /* Read a number from the string pointed to by *PP.
3230 The value of *PP is advanced over the number.
3231 If END is nonzero, the character that ends the
3232 number must match END, or an error happens;
3233 and that character is skipped if it does match.
3234 If END is zero, *PP is left pointing to that character.
3236 If the number fits in a long, set *BITS to 0 and return the value.
3237 If not, set *BITS to be the number of bits in the number and return 0.
3239 If encounter garbage, set *BITS to -1 and return 0. */
3242 read_huge_number (pp, end, bits)
3262 /* Leading zero means octal. GCC uses this to output values larger
3263 than an int (because that would be hard in decimal). */
3271 upper_limit = ULONG_MAX / radix;
3273 upper_limit = LONG_MAX / radix;
3275 while ((c = *p++) >= '0' && c < ('0' + radix))
3277 if (n <= upper_limit)
3280 n += c - '0'; /* FIXME this overflows anyway */
3285 /* This depends on large values being output in octal, which is
3292 /* Ignore leading zeroes. */
3296 else if (c == '2' || c == '3')
3322 /* Large decimal constants are an error (because it is hard to
3323 count how many bits are in them). */
3329 /* -0x7f is the same as 0x80. So deal with it by adding one to
3330 the number of bits. */
3342 /* It's *BITS which has the interesting information. */
3346 static struct type *
3347 read_range_type (pp, typenums, objfile)
3350 struct objfile *objfile;
3356 struct type *result_type;
3357 struct type *index_type;
3359 /* First comes a type we are a subrange of.
3360 In C it is usually 0, 1 or the type being defined. */
3361 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3362 not just a type number. */
3363 if (read_type_number (pp, rangenums) != 0)
3364 return error_type (pp);
3365 self_subrange = (rangenums[0] == typenums[0] &&
3366 rangenums[1] == typenums[1]);
3368 /* A semicolon should now follow; skip it. */
3372 /* The remaining two operands are usually lower and upper bounds
3373 of the range. But in some special cases they mean something else. */
3374 n2 = read_huge_number (pp, ';', &n2bits);
3375 n3 = read_huge_number (pp, ';', &n3bits);
3377 if (n2bits == -1 || n3bits == -1)
3378 return error_type (pp);
3380 /* If limits are huge, must be large integral type. */
3381 if (n2bits != 0 || n3bits != 0)
3383 char got_signed = 0;
3384 char got_unsigned = 0;
3385 /* Number of bits in the type. */
3388 /* Range from 0 to <large number> is an unsigned large integral type. */
3389 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3394 /* Range from <large number> to <large number>-1 is a large signed
3395 integral type. Take care of the case where <large number> doesn't
3396 fit in a long but <large number>-1 does. */
3397 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3398 || (n2bits != 0 && n3bits == 0
3399 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3406 if (got_signed || got_unsigned)
3408 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3409 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3413 return error_type (pp);
3416 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3417 if (self_subrange && n2 == 0 && n3 == 0)
3418 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3420 /* If n3 is zero and n2 is not, we want a floating type,
3421 and n2 is the width in bytes.
3423 Fortran programs appear to use this for complex types also,
3424 and they give no way to distinguish between double and single-complex!
3426 GDB does not have complex types.
3428 Just return the complex as a float of that size. It won't work right
3429 for the complex values, but at least it makes the file loadable. */
3431 if (n3 == 0 && n2 > 0)
3433 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3436 /* If the upper bound is -1, it must really be an unsigned int. */
3438 else if (n2 == 0 && n3 == -1)
3440 /* It is unsigned int or unsigned long. */
3441 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3442 compatibility hack. */
3443 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3444 TYPE_FLAG_UNSIGNED, NULL, objfile);
3447 /* Special case: char is defined (Who knows why) as a subrange of
3448 itself with range 0-127. */
3449 else if (self_subrange && n2 == 0 && n3 == 127)
3450 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3452 /* We used to do this only for subrange of self or subrange of int. */
3456 /* n3 actually gives the size. */
3457 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3460 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3462 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3464 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3465 "unsigned long", and we already checked for that,
3466 so don't need to test for it here. */
3468 /* I think this is for Convex "long long". Since I don't know whether
3469 Convex sets self_subrange, I also accept that particular size regardless
3470 of self_subrange. */
3471 else if (n3 == 0 && n2 < 0
3473 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3474 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3475 else if (n2 == -n3 -1)
3478 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3480 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3481 if (n3 == 0x7fffffff)
3482 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3485 /* We have a real range type on our hands. Allocate space and
3486 return a real pointer. */
3488 /* At this point I don't have the faintest idea how to deal with
3489 a self_subrange type; I'm going to assume that this is used
3490 as an idiom, and that all of them are special cases. So . . . */
3492 return error_type (pp);
3494 index_type = *dbx_lookup_type (rangenums);
3495 if (index_type == NULL)
3497 /* Does this actually ever happen? Is that why we are worrying
3498 about dealing with it rather than just calling error_type? */
3500 static struct type *range_type_index;
3502 complain (&range_type_base_complaint, rangenums[1]);
3503 if (range_type_index == NULL)
3505 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3506 0, "range type index type", NULL);
3507 index_type = range_type_index;
3510 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3511 return (result_type);
3514 /* Read in an argument list. This is a list of types, separated by commas
3515 and terminated with END. Return the list of types read in, or (struct type
3516 **)-1 if there is an error. */
3518 static struct type **
3519 read_args (pp, end, objfile)
3522 struct objfile *objfile;
3524 /* FIXME! Remove this arbitrary limit! */
3525 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3531 /* Invalid argument list: no ','. */
3532 return (struct type **)-1;
3534 STABS_CONTINUE (pp);
3535 types[n++] = read_type (pp, objfile);
3537 (*pp)++; /* get past `end' (the ':' character) */
3541 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3543 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3545 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3546 memset (rval + n, 0, sizeof (struct type *));
3550 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3552 memcpy (rval, types, n * sizeof (struct type *));
3556 /* Common block handling. */
3558 /* List of symbols declared since the last BCOMM. This list is a tail
3559 of local_symbols. When ECOMM is seen, the symbols on the list
3560 are noted so their proper addresses can be filled in later,
3561 using the common block base address gotten from the assembler
3564 static struct pending *common_block;
3565 static int common_block_i;
3567 /* Name of the current common block. We get it from the BCOMM instead of the
3568 ECOMM to match IBM documentation (even though IBM puts the name both places
3569 like everyone else). */
3570 static char *common_block_name;
3572 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3573 to remain after this function returns. */
3576 common_block_start (name, objfile)
3578 struct objfile *objfile;
3580 if (common_block_name != NULL)
3582 static struct complaint msg = {
3583 "Invalid symbol data: common block within common block",
3587 common_block = local_symbols;
3588 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3589 common_block_name = obsavestring (name, strlen (name),
3590 &objfile -> symbol_obstack);
3593 /* Process a N_ECOMM symbol. */
3596 common_block_end (objfile)
3597 struct objfile *objfile;
3599 /* Symbols declared since the BCOMM are to have the common block
3600 start address added in when we know it. common_block and
3601 common_block_i point to the first symbol after the BCOMM in
3602 the local_symbols list; copy the list and hang it off the
3603 symbol for the common block name for later fixup. */
3606 struct pending *new = 0;
3607 struct pending *next;
3610 if (common_block_name == NULL)
3612 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3617 sym = (struct symbol *)
3618 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3619 memset (sym, 0, sizeof (struct symbol));
3620 SYMBOL_NAME (sym) = common_block_name;
3621 SYMBOL_CLASS (sym) = LOC_BLOCK;
3623 /* Now we copy all the symbols which have been defined since the BCOMM. */
3625 /* Copy all the struct pendings before common_block. */
3626 for (next = local_symbols;
3627 next != NULL && next != common_block;
3630 for (j = 0; j < next->nsyms; j++)
3631 add_symbol_to_list (next->symbol[j], &new);
3634 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3635 NULL, it means copy all the local symbols (which we already did
3638 if (common_block != NULL)
3639 for (j = common_block_i; j < common_block->nsyms; j++)
3640 add_symbol_to_list (common_block->symbol[j], &new);
3642 SYMBOL_TYPE (sym) = (struct type *) new;
3644 /* Should we be putting local_symbols back to what it was?
3647 i = hashname (SYMBOL_NAME (sym));
3648 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3649 global_sym_chain[i] = sym;
3650 common_block_name = NULL;
3653 /* Add a common block's start address to the offset of each symbol
3654 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3655 the common block name). */
3658 fix_common_block (sym, valu)
3662 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3663 for ( ; next; next = next->next)
3666 for (j = next->nsyms - 1; j >= 0; j--)
3667 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3673 /* What about types defined as forward references inside of a small lexical
3675 /* Add a type to the list of undefined types to be checked through
3676 once this file has been read in. */
3679 add_undefined_type (type)
3682 if (undef_types_length == undef_types_allocated)
3684 undef_types_allocated *= 2;
3685 undef_types = (struct type **)
3686 xrealloc ((char *) undef_types,
3687 undef_types_allocated * sizeof (struct type *));
3689 undef_types[undef_types_length++] = type;
3692 /* Go through each undefined type, see if it's still undefined, and fix it
3693 up if possible. We have two kinds of undefined types:
3695 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3696 Fix: update array length using the element bounds
3697 and the target type's length.
3698 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3699 yet defined at the time a pointer to it was made.
3700 Fix: Do a full lookup on the struct/union tag. */
3702 cleanup_undefined_types ()
3706 for (type = undef_types; type < undef_types + undef_types_length; type++)
3708 switch (TYPE_CODE (*type))
3711 case TYPE_CODE_STRUCT:
3712 case TYPE_CODE_UNION:
3713 case TYPE_CODE_ENUM:
3715 /* Check if it has been defined since. Need to do this here
3716 as well as in check_stub_type to deal with the (legitimate in
3717 C though not C++) case of several types with the same name
3718 in different source files. */
3719 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3721 struct pending *ppt;
3723 /* Name of the type, without "struct" or "union" */
3724 char *typename = TYPE_TAG_NAME (*type);
3726 if (typename == NULL)
3728 static struct complaint msg = {"need a type name", 0, 0};
3732 for (ppt = file_symbols; ppt; ppt = ppt->next)
3734 for (i = 0; i < ppt->nsyms; i++)
3736 struct symbol *sym = ppt->symbol[i];
3738 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3739 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3740 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3742 && STREQ (SYMBOL_NAME (sym), typename))
3744 memcpy (*type, SYMBOL_TYPE (sym),
3745 sizeof (struct type));
3753 case TYPE_CODE_ARRAY:
3755 /* This is a kludge which is here for historical reasons
3756 because I suspect that check_stub_type does not get
3757 called everywhere it needs to be called for arrays. Even
3758 with this kludge, those places are broken for the case
3759 where the stub type is defined in another compilation
3760 unit, but this kludge at least deals with it for the case
3761 in which it is the same compilation unit.
3763 Don't try to do this by calling check_stub_type; it might
3764 cause symbols to be read in lookup_symbol, and the symbol
3765 reader is not reentrant. */
3767 struct type *range_type;
3770 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3772 if (TYPE_NFIELDS (*type) != 1)
3774 range_type = TYPE_FIELD_TYPE (*type, 0);
3775 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3778 /* Now recompute the length of the array type, based on its
3779 number of elements and the target type's length. */
3780 lower = TYPE_FIELD_BITPOS (range_type, 0);
3781 upper = TYPE_FIELD_BITPOS (range_type, 1);
3782 TYPE_LENGTH (*type) = (upper - lower + 1)
3783 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3785 /* If the target type is not a stub, we could be clearing
3786 TYPE_FLAG_TARGET_STUB for *type. */
3793 static struct complaint msg = {"\
3794 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3795 complain (&msg, TYPE_CODE (*type));
3801 undef_types_length = 0;
3804 /* Scan through all of the global symbols defined in the object file,
3805 assigning values to the debugging symbols that need to be assigned
3806 to. Get these symbols from the minimal symbol table.
3807 Return 1 if there might still be unresolved debugging symbols, else 0. */
3809 static int scan_file_globals_1 PARAMS ((struct objfile *));
3812 scan_file_globals_1 (objfile)
3813 struct objfile *objfile;
3816 struct minimal_symbol *msymbol;
3817 struct symbol *sym, *prev;
3819 /* Avoid expensive loop through all minimal symbols if there are
3820 no unresolved symbols. */
3821 for (hash = 0; hash < HASHSIZE; hash++)
3823 if (global_sym_chain[hash])
3826 if (hash >= HASHSIZE)
3829 if (objfile->msymbols == 0) /* Beware the null file. */
3832 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3836 /* Skip static symbols. */
3837 switch (MSYMBOL_TYPE (msymbol))
3849 /* Get the hash index and check all the symbols
3850 under that hash index. */
3852 hash = hashname (SYMBOL_NAME (msymbol));
3854 for (sym = global_sym_chain[hash]; sym;)
3856 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3857 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3859 /* Splice this symbol out of the hash chain and
3860 assign the value we have to it. */
3863 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3867 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3870 /* Check to see whether we need to fix up a common block. */
3871 /* Note: this code might be executed several times for
3872 the same symbol if there are multiple references. */
3874 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3876 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3880 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3883 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3887 sym = SYMBOL_VALUE_CHAIN (prev);
3891 sym = global_sym_chain[hash];
3897 sym = SYMBOL_VALUE_CHAIN (sym);
3904 /* Assign values to global debugging symbols.
3905 Search the passed objfile first, then try the runtime common symbols.
3906 Complain about any remaining unresolved symbols and remove them
3910 scan_file_globals (objfile)
3911 struct objfile *objfile;
3914 struct symbol *sym, *prev;
3916 if (scan_file_globals_1 (objfile) == 0)
3918 if (rt_common_objfile && scan_file_globals_1 (rt_common_objfile) == 0)
3921 for (hash = 0; hash < HASHSIZE; hash++)
3923 sym = global_sym_chain[hash];
3926 complain (&unresolved_sym_chain_complaint,
3927 objfile->name, SYMBOL_NAME (sym));
3929 /* Change the symbol address from the misleading chain value
3932 sym = SYMBOL_VALUE_CHAIN (sym);
3933 SYMBOL_VALUE_ADDRESS (prev) = 0;
3936 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3939 /* Initialize anything that needs initializing when starting to read
3940 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3948 /* Initialize anything that needs initializing when a completely new
3949 symbol file is specified (not just adding some symbols from another
3950 file, e.g. a shared library). */
3953 stabsread_new_init ()
3955 /* Empty the hash table of global syms looking for values. */
3956 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3959 /* Initialize anything that needs initializing at the same time as
3960 start_symtab() is called. */
3964 global_stabs = NULL; /* AIX COFF */
3965 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3966 n_this_object_header_files = 1;
3967 type_vector_length = 0;
3968 type_vector = (struct type **) 0;
3970 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3971 common_block_name = NULL;
3976 /* Call after end_symtab() */
3982 free ((char *) type_vector);
3985 type_vector_length = 0;
3986 previous_stab_code = 0;
3990 finish_global_stabs (objfile)
3991 struct objfile *objfile;
3995 patch_block_stabs (global_symbols, global_stabs, objfile);
3996 free ((PTR) global_stabs);
3997 global_stabs = NULL;
4001 /* Initializer for this module */
4004 _initialize_stabsread ()
4006 undef_types_allocated = 20;
4007 undef_types_length = 0;
4008 undef_types = (struct type **)
4009 xmalloc (undef_types_allocated * sizeof (struct type *));