1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "complaints.h"
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
43 #include "stabsread.h" /* Our own declarations */
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
56 struct nextfield *next;
60 struct next_fnfieldlist
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
70 static long read_huge_number PARAMS ((char **, int, int *));
72 static struct type *error_type PARAMS ((char **));
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
79 fix_common_block PARAMS ((struct symbol *, int));
82 read_type_number PARAMS ((char **, int *));
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
97 rs6000_builtin_type PARAMS ((int));
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
158 static char *long_kludge_name;
162 struct complaint dbx_class_complaint =
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
204 struct complaint stabs_general_complaint =
207 /* Make a list of forward references which haven't been defined. */
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
220 /* Look up a dbx type-number pair. Return the address of the slot
221 where the type for that number-pair is stored.
222 The number-pair is in TYPENUMS.
224 This can be used for finding the type associated with that pair
225 or for associating a new type with the pair. */
228 dbx_lookup_type (typenums)
231 register int filenum = typenums[0];
232 register int index = typenums[1];
234 register int real_filenum;
235 register struct header_file *f;
238 if (filenum == -1) /* -1,-1 is for temporary types. */
241 if (filenum < 0 || filenum >= n_this_object_header_files)
243 static struct complaint msg = {"\
244 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
246 complain (&msg, filenum, index, symnum);
254 /* Caller wants address of address of type. We think
255 that negative (rs6k builtin) types will never appear as
256 "lvalues", (nor should they), so we stuff the real type
257 pointer into a temp, and return its address. If referenced,
258 this will do the right thing. */
259 static struct type *temp_type;
261 temp_type = rs6000_builtin_type(index);
265 /* Type is defined outside of header files.
266 Find it in this object file's type vector. */
267 if (index >= type_vector_length)
269 old_len = type_vector_length;
272 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
273 type_vector = (struct type **)
274 malloc (type_vector_length * sizeof (struct type *));
276 while (index >= type_vector_length)
278 type_vector_length *= 2;
280 type_vector = (struct type **)
281 xrealloc ((char *) type_vector,
282 (type_vector_length * sizeof (struct type *)));
283 memset (&type_vector[old_len], 0,
284 (type_vector_length - old_len) * sizeof (struct type *));
286 return (&type_vector[index]);
290 real_filenum = this_object_header_files[filenum];
292 if (real_filenum >= n_header_files)
294 struct type *temp_type;
295 struct type **temp_type_p;
297 warning ("GDB internal error: bad real_filenum");
300 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
301 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
302 *temp_type_p = temp_type;
306 f = &header_files[real_filenum];
308 f_orig_length = f->length;
309 if (index >= f_orig_length)
311 while (index >= f->length)
315 f->vector = (struct type **)
316 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
317 memset (&f->vector[f_orig_length], 0,
318 (f->length - f_orig_length) * sizeof (struct type *));
320 return (&f->vector[index]);
324 /* Make sure there is a type allocated for type numbers TYPENUMS
325 and return the type object.
326 This can create an empty (zeroed) type object.
327 TYPENUMS may be (-1, -1) to return a new type object that is not
328 put into the type vector, and so may not be referred to by number. */
331 dbx_alloc_type (typenums, objfile)
333 struct objfile *objfile;
335 register struct type **type_addr;
337 if (typenums[0] == -1)
339 return (alloc_type (objfile));
342 type_addr = dbx_lookup_type (typenums);
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
349 *type_addr = alloc_type (objfile);
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
359 patch_block_stabs (symbols, stabs, objfile)
360 struct pending *symbols;
361 struct pending_stabs *stabs;
362 struct objfile *objfile;
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
375 for (ii = 0; ii < stabs->count; ++ii)
377 name = stabs->stab[ii];
378 pp = (char*) strchr (name, ':');
379 sym = find_symbol_in_list (symbols, name, pp-name);
382 /* On xcoff, if a global is defined and never referenced,
383 ld will remove it from the executable. There is then
384 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
385 sym = (struct symbol *)
386 obstack_alloc (&objfile->symbol_obstack,
387 sizeof (struct symbol));
389 memset (sym, 0, sizeof (struct symbol));
390 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
391 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
393 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
395 if (*(pp-1) == 'F' || *(pp-1) == 'f')
397 /* I don't think the linker does this with functions,
398 so as far as I know this is never executed.
399 But it doesn't hurt to check. */
401 lookup_function_type (read_type (&pp, objfile));
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
407 add_symbol_to_list (sym, &global_symbols);
412 if (*(pp-1) == 'F' || *(pp-1) == 'f')
415 lookup_function_type (read_type (&pp, objfile));
419 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
427 /* Read a number by which a type is referred to in dbx data,
428 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
429 Just a single number N is equivalent to (0,N).
430 Return the two numbers by storing them in the vector TYPENUMS.
431 TYPENUMS will then be used as an argument to dbx_lookup_type.
433 Returns 0 for success, -1 for error. */
436 read_type_number (pp, typenums)
438 register int *typenums;
444 typenums[0] = read_huge_number (pp, ',', &nbits);
445 if (nbits != 0) return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits);
447 if (nbits != 0) return -1;
452 typenums[1] = read_huge_number (pp, 0, &nbits);
453 if (nbits != 0) return -1;
459 /* To handle GNU C++ typename abbreviation, we need to be able to
460 fill in a type's name as soon as space for that type is allocated.
461 `type_synonym_name' is the name of the type being allocated.
462 It is cleared as soon as it is used (lest all allocated types
465 static char *type_synonym_name;
469 define_symbol (valu, string, desc, type, objfile)
474 struct objfile *objfile;
476 register struct symbol *sym;
477 char *p = (char *) strchr (string, ':');
482 /* We would like to eliminate nameless symbols, but keep their types.
483 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
484 to type 2, but, should not create a symbol to address that type. Since
485 the symbol will be nameless, there is no way any user can refer to it. */
489 /* Ignore syms with empty names. */
493 /* Ignore old-style symbols from cc -go */
497 /* If a nameless stab entry, all we need is the type, not the symbol.
498 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
499 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
501 sym = (struct symbol *)
502 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
503 memset (sym, 0, sizeof (struct symbol));
505 if (processing_gcc_compilation)
507 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
508 number of bytes occupied by a type or object, which we ignore. */
509 SYMBOL_LINE(sym) = desc;
513 SYMBOL_LINE(sym) = 0; /* unknown */
516 if (string[0] == CPLUS_MARKER)
518 /* Special GNU C++ names. */
522 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
523 &objfile -> symbol_obstack);
526 case 'v': /* $vtbl_ptr_type */
527 /* Was: SYMBOL_NAME (sym) = "vptr"; */
531 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
532 &objfile -> symbol_obstack);
536 /* This was an anonymous type that was never fixed up. */
540 complain (&unrecognized_cplus_name_complaint, string);
541 goto normal; /* Do *something* with it */
547 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
548 SYMBOL_NAME (sym) = (char *)
549 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
550 /* Open-coded bcopy--saves function call time. */
551 /* FIXME: Does it really? Try replacing with simple strcpy and
552 try it on an executable with a large symbol table. */
554 register char *p1 = string;
555 register char *p2 = SYMBOL_NAME (sym);
563 /* If this symbol is from a C++ compilation, then attempt to cache the
564 demangled form for future reference. This is a typical time versus
565 space tradeoff, that was decided in favor of time because it sped up
566 C++ symbol lookups by a factor of about 20. */
568 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
572 /* Determine the type of name being defined. */
574 /* Getting GDB to correctly skip the symbol on an undefined symbol
575 descriptor and not ever dump core is a very dodgy proposition if
576 we do things this way. I say the acorn RISC machine can just
577 fix their compiler. */
578 /* The Acorn RISC machine's compiler can put out locals that don't
579 start with "234=" or "(3,4)=", so assume anything other than the
580 deftypes we know how to handle is a local. */
581 if (!strchr ("cfFGpPrStTvVXCR", *p))
583 if (isdigit (*p) || *p == '(' || *p == '-')
592 /* c is a special case, not followed by a type-number.
593 SYMBOL:c=iVALUE for an integer constant symbol.
594 SYMBOL:c=rVALUE for a floating constant symbol.
595 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
596 e.g. "b:c=e6,0" for "const b = blob1"
597 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
600 SYMBOL_CLASS (sym) = LOC_CONST;
601 SYMBOL_TYPE (sym) = error_type (&p);
602 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
603 add_symbol_to_list (sym, &file_symbols);
614 /* FIXME: lookup_fundamental_type is a hack. We should be
615 creating a type especially for the type of float constants.
616 Problem is, what type should it be? We currently have to
617 read this in host floating point format, but what type
618 represents a host format "double"?
620 Also, what should the name of this type be? Should we
621 be using 'S' constants (see stabs.texinfo) instead? */
623 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
626 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
627 memcpy (dbl_valu, &d, sizeof (double));
628 /* Put it in target byte order, but it's still in host
629 floating point format. */
630 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
631 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
632 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
637 /* Defining integer constants this way is kind of silly,
638 since 'e' constants allows the compiler to give not
639 only the value, but the type as well. C has at least
640 int, long, unsigned int, and long long as constant
641 types; other languages probably should have at least
642 unsigned as well as signed constants. */
644 /* We just need one int constant type for all objfiles.
645 It doesn't depend on languages or anything (arguably its
646 name should be a language-specific name for a type of
647 that size, but I'm inclined to say that if the compiler
648 wants a nice name for the type, it can use 'e'). */
649 static struct type *int_const_type;
651 /* Yes, this is as long as a *host* int. That is because we
653 if (int_const_type == NULL)
655 init_type (TYPE_CODE_INT,
656 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
658 (struct objfile *)NULL);
659 SYMBOL_TYPE (sym) = int_const_type;
660 SYMBOL_VALUE (sym) = atoi (p);
661 SYMBOL_CLASS (sym) = LOC_CONST;
665 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
666 can be represented as integral.
667 e.g. "b:c=e6,0" for "const b = blob1"
668 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
670 SYMBOL_CLASS (sym) = LOC_CONST;
671 SYMBOL_TYPE (sym) = read_type (&p, objfile);
675 SYMBOL_TYPE (sym) = error_type (&p);
680 /* If the value is too big to fit in an int (perhaps because
681 it is unsigned), or something like that, we silently get
682 a bogus value. The type and everything else about it is
683 correct. Ideally, we should be using whatever we have
684 available for parsing unsigned and long long values,
686 SYMBOL_VALUE (sym) = atoi (p);
691 SYMBOL_CLASS (sym) = LOC_CONST;
692 SYMBOL_TYPE (sym) = error_type (&p);
695 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
696 add_symbol_to_list (sym, &file_symbols);
700 /* The name of a caught exception. */
701 SYMBOL_TYPE (sym) = read_type (&p, objfile);
702 SYMBOL_CLASS (sym) = LOC_LABEL;
703 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
704 SYMBOL_VALUE_ADDRESS (sym) = valu;
705 add_symbol_to_list (sym, &local_symbols);
709 /* A static function definition. */
710 SYMBOL_TYPE (sym) = read_type (&p, objfile);
711 SYMBOL_CLASS (sym) = LOC_BLOCK;
712 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
713 add_symbol_to_list (sym, &file_symbols);
714 /* fall into process_function_types. */
716 process_function_types:
717 /* Function result types are described as the result type in stabs.
718 We need to convert this to the function-returning-type-X type
719 in GDB. E.g. "int" is converted to "function returning int". */
720 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
723 /* This code doesn't work -- it needs to realloc and can't. */
724 /* Attempt to set up to record a function prototype... */
725 struct type *new = alloc_type (objfile);
727 /* Generate a template for the type of this function. The
728 types of the arguments will be added as we read the symbol
730 *new = *lookup_function_type (SYMBOL_TYPE(sym));
731 SYMBOL_TYPE(sym) = new;
732 TYPE_OBJFILE (new) = objfile;
733 in_function_type = new;
735 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
738 /* fall into process_prototype_types */
740 process_prototype_types:
741 /* Sun acc puts declared types of arguments here. We don't care
742 about their actual types (FIXME -- we should remember the whole
743 function prototype), but the list may define some new types
744 that we have to remember, so we must scan it now. */
747 read_type (&p, objfile);
752 /* A global function definition. */
753 SYMBOL_TYPE (sym) = read_type (&p, objfile);
754 SYMBOL_CLASS (sym) = LOC_BLOCK;
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &global_symbols);
757 goto process_function_types;
760 /* For a class G (global) symbol, it appears that the
761 value is not correct. It is necessary to search for the
762 corresponding linker definition to find the value.
763 These definitions appear at the end of the namelist. */
764 SYMBOL_TYPE (sym) = read_type (&p, objfile);
765 i = hashname (SYMBOL_NAME (sym));
766 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
767 global_sym_chain[i] = sym;
768 SYMBOL_CLASS (sym) = LOC_STATIC;
769 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
770 add_symbol_to_list (sym, &global_symbols);
773 /* This case is faked by a conditional above,
774 when there is no code letter in the dbx data.
775 Dbx data never actually contains 'l'. */
777 SYMBOL_TYPE (sym) = read_type (&p, objfile);
778 SYMBOL_CLASS (sym) = LOC_LOCAL;
779 SYMBOL_VALUE (sym) = valu;
780 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
781 add_symbol_to_list (sym, &local_symbols);
786 /* pF is a two-letter code that means a function parameter in Fortran.
787 The type-number specifies the type of the return value.
788 Translate it into a pointer-to-function type. */
792 = lookup_pointer_type
793 (lookup_function_type (read_type (&p, objfile)));
796 SYMBOL_TYPE (sym) = read_type (&p, objfile);
798 /* Normally this is a parameter, a LOC_ARG. On the i960, it
799 can also be a LOC_LOCAL_ARG depending on symbol type. */
800 #ifndef DBX_PARM_SYMBOL_CLASS
801 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
804 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
805 SYMBOL_VALUE (sym) = valu;
806 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
808 /* This doesn't work yet. */
809 add_param_to_type (&in_function_type, sym);
811 add_symbol_to_list (sym, &local_symbols);
813 /* If it's gcc-compiled, if it says `short', believe it. */
814 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
817 #if !BELIEVE_PCC_PROMOTION
819 /* This is the signed type which arguments get promoted to. */
820 static struct type *pcc_promotion_type;
821 /* This is the unsigned type which arguments get promoted to. */
822 static struct type *pcc_unsigned_promotion_type;
824 /* Call it "int" because this is mainly C lossage. */
825 if (pcc_promotion_type == NULL)
827 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
830 if (pcc_unsigned_promotion_type == NULL)
831 pcc_unsigned_promotion_type =
832 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
833 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
835 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
836 /* This macro is defined on machines (e.g. sparc) where
837 we should believe the type of a PCC 'short' argument,
838 but shouldn't believe the address (the address is
839 the address of the corresponding int). Note that
840 this is only different from the BELIEVE_PCC_PROMOTION
841 case on big-endian machines.
843 My guess is that this correction, as opposed to changing
844 the parameter to an 'int' (as done below, for PCC
845 on most machines), is the right thing to do
846 on all machines, but I don't want to risk breaking
847 something that already works. On most PCC machines,
848 the sparc problem doesn't come up because the calling
849 function has to zero the top bytes (not knowing whether
850 the called function wants an int or a short), so there
851 is no practical difference between an int and a short
852 (except perhaps what happens when the GDB user types
853 "print short_arg = 0x10000;").
856 actually produces the correct address (we don't need to fix it
857 up). I made this code adapt so that it will offset the symbol
858 if it was pointing at an int-aligned location and not
859 otherwise. This way you can use the same gdb for 4.0.x and
862 If the parameter is shorter than an int, and is integral
863 (e.g. char, short, or unsigned equivalent), and is claimed to
864 be passed on an integer boundary, don't believe it! Offset the
865 parameter's address to the tail-end of that integer. */
867 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
868 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
869 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
871 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
872 - TYPE_LENGTH (SYMBOL_TYPE (sym));
876 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
878 /* If PCC says a parameter is a short or a char,
879 it is really an int. */
880 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
881 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
884 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
885 ? pcc_unsigned_promotion_type
886 : pcc_promotion_type;
890 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
892 #endif /* !BELIEVE_PCC_PROMOTION. */
895 /* acc seems to use P to delare the prototypes of functions that
896 are referenced by this file. gdb is not prepared to deal
897 with this extra information. FIXME, it ought to. */
900 read_type (&p, objfile);
901 goto process_prototype_types;
906 /* Parameter which is in a register. */
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908 SYMBOL_CLASS (sym) = LOC_REGPARM;
909 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
910 if (SYMBOL_VALUE (sym) >= NUM_REGS)
912 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
913 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
915 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
916 add_symbol_to_list (sym, &local_symbols);
920 /* Register variable (either global or local). */
921 SYMBOL_TYPE (sym) = read_type (&p, objfile);
922 SYMBOL_CLASS (sym) = LOC_REGISTER;
923 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
924 if (SYMBOL_VALUE (sym) >= NUM_REGS)
926 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
927 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
929 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
932 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
933 name to represent an argument passed in a register.
934 GCC uses 'P' for the same case. So if we find such a symbol pair
935 we combine it into one 'P' symbol.
936 Note that this code illegally combines
937 main(argc) int argc; { register int argc = 1; }
938 but this case is considered pathological and causes a warning
939 from a decent compiler. */
941 && local_symbols->nsyms > 0)
943 struct symbol *prev_sym;
944 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
945 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
946 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
948 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
949 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
954 add_symbol_to_list (sym, &local_symbols);
957 add_symbol_to_list (sym, &file_symbols);
961 /* Static symbol at top level of file */
962 SYMBOL_TYPE (sym) = read_type (&p, objfile);
963 SYMBOL_CLASS (sym) = LOC_STATIC;
964 SYMBOL_VALUE_ADDRESS (sym) = valu;
965 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
966 add_symbol_to_list (sym, &file_symbols);
971 /* See comment where long_kludge_name is declared. */
972 /* Here we save the name of the symbol for read_range_type, which
973 ends up reading in the basic types. In stabs, unfortunately there
974 is no distinction between "int" and "long" types except their
975 names. Until we work out a saner type policy (eliminating most
976 builtin types and using the names specified in the files), we
977 save away the name so that far away from here in read_range_type,
978 we can examine it to decide between "int" and "long". FIXME. */
979 long_kludge_name = SYMBOL_NAME (sym);
981 SYMBOL_TYPE (sym) = read_type (&p, objfile);
983 /* For a nameless type, we don't want a create a symbol, thus we
984 did not use `sym'. Return without further processing. */
985 if (nameless) return NULL;
987 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
988 SYMBOL_VALUE (sym) = valu;
989 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
990 /* C++ vagaries: we may have a type which is derived from
991 a base type which did not have its name defined when the
992 derived class was output. We fill in the derived class's
993 base part member's name here in that case. */
994 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
995 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
996 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
997 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1000 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1001 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1002 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1003 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1006 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1008 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1009 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1011 /* If we are giving a name to a type such as "pointer to
1012 foo" or "function returning foo", we better not set
1013 the TYPE_NAME. If the program contains "typedef char
1014 *caddr_t;", we don't want all variables of type char
1015 * to print as caddr_t. This is not just a
1016 consequence of GDB's type management; PCC and GCC (at
1017 least through version 2.4) both output variables of
1018 either type char * or caddr_t with the type number
1019 defined in the 't' symbol for caddr_t. If a future
1020 compiler cleans this up it GDB is not ready for it
1021 yet, but if it becomes ready we somehow need to
1022 disable this check (without breaking the PCC/GCC2.4
1027 Fortunately, this check seems not to be necessary
1028 for anything except pointers or functions. */
1031 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1034 add_symbol_to_list (sym, &file_symbols);
1038 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1039 by 't' which means we are typedef'ing it as well. */
1040 synonym = *p == 't';
1045 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1046 strlen (SYMBOL_NAME (sym)),
1047 &objfile -> symbol_obstack);
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052 /* For a nameless type, we don't want a create a symbol, thus we
1053 did not use `sym'. Return without further processing. */
1054 if (nameless) return NULL;
1056 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1057 SYMBOL_VALUE (sym) = valu;
1058 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1059 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1060 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1061 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1062 add_symbol_to_list (sym, &file_symbols);
1066 /* Clone the sym and then modify it. */
1067 register struct symbol *typedef_sym = (struct symbol *)
1068 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1069 *typedef_sym = *sym;
1070 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1071 SYMBOL_VALUE (typedef_sym) = valu;
1072 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1073 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1074 TYPE_NAME (SYMBOL_TYPE (sym))
1075 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1076 add_symbol_to_list (typedef_sym, &file_symbols);
1081 /* Static symbol of local scope */
1082 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1083 SYMBOL_CLASS (sym) = LOC_STATIC;
1084 SYMBOL_VALUE_ADDRESS (sym) = valu;
1085 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1086 add_symbol_to_list (sym, &local_symbols);
1090 /* Reference parameter */
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1093 SYMBOL_VALUE (sym) = valu;
1094 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1095 add_symbol_to_list (sym, &local_symbols);
1099 /* This is used by Sun FORTRAN for "function result value".
1100 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1101 that Pascal uses it too, but when I tried it Pascal used
1102 "x:3" (local symbol) instead. */
1103 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1104 SYMBOL_CLASS (sym) = LOC_LOCAL;
1105 SYMBOL_VALUE (sym) = valu;
1106 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1107 add_symbol_to_list (sym, &local_symbols);
1111 SYMBOL_TYPE (sym) = error_type (&p);
1112 SYMBOL_CLASS (sym) = LOC_CONST;
1113 SYMBOL_VALUE (sym) = 0;
1114 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1115 add_symbol_to_list (sym, &file_symbols);
1119 /* When passing structures to a function, some systems sometimes pass
1120 the address in a register, not the structure itself.
1122 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1123 to LOC_REGPARM_ADDR for structures and unions. */
1125 #if !defined (REG_STRUCT_HAS_ADDR)
1126 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1129 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1130 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1131 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1132 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1133 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1139 /* Skip rest of this symbol and return an error type.
1141 General notes on error recovery: error_type always skips to the
1142 end of the symbol (modulo cretinous dbx symbol name continuation).
1143 Thus code like this:
1145 if (*(*pp)++ != ';')
1146 return error_type (pp);
1148 is wrong because if *pp starts out pointing at '\0' (typically as the
1149 result of an earlier error), it will be incremented to point to the
1150 start of the next symbol, which might produce strange results, at least
1151 if you run off the end of the string table. Instead use
1154 return error_type (pp);
1160 foo = error_type (pp);
1164 And in case it isn't obvious, the point of all this hair is so the compiler
1165 can define new types and new syntaxes, and old versions of the
1166 debugger will be able to read the new symbol tables. */
1168 static struct type *
1172 complain (&error_type_complaint);
1175 /* Skip to end of symbol. */
1176 while (**pp != '\0')
1181 /* Check for and handle cretinous dbx symbol name continuation! */
1182 if ((*pp)[-1] == '\\')
1184 *pp = next_symbol_text ();
1191 return (builtin_type_error);
1195 /* Read type information or a type definition; return the type. Even
1196 though this routine accepts either type information or a type
1197 definition, the distinction is relevant--some parts of stabsread.c
1198 assume that type information starts with a digit, '-', or '(' in
1199 deciding whether to call read_type. */
1202 read_type (pp, objfile)
1204 struct objfile *objfile;
1206 register struct type *type = 0;
1210 char type_descriptor;
1212 /* Read type number if present. The type number may be omitted.
1213 for instance in a two-dimensional array declared with type
1214 "ar1;1;10;ar1;1;10;4". */
1215 if ((**pp >= '0' && **pp <= '9')
1218 if (read_type_number (pp, typenums) != 0)
1219 return error_type (pp);
1221 /* Type is not being defined here. Either it already exists,
1222 or this is a forward reference to it. dbx_alloc_type handles
1225 return dbx_alloc_type (typenums, objfile);
1227 /* Type is being defined here. */
1234 /* It might be a type attribute or a member type. */
1235 if (isdigit (*p) || *p == '(' || *p == '-')
1240 /* Type attributes; skip to the semicolon. */
1241 while (*p != ';' && *p != '\0')
1245 return error_type (pp);
1247 /* Skip the semicolon. */
1251 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1256 /* 'typenums=' not present, type is anonymous. Read and return
1257 the definition, but don't put it in the type vector. */
1258 typenums[0] = typenums[1] = -1;
1262 type_descriptor = (*pp)[-1];
1263 switch (type_descriptor)
1267 enum type_code code;
1269 /* Used to index through file_symbols. */
1270 struct pending *ppt;
1273 /* Name including "struct", etc. */
1276 /* Name without "struct", etc. */
1277 char *type_name_only;
1283 /* Set the type code according to the following letter. */
1287 code = TYPE_CODE_STRUCT;
1290 code = TYPE_CODE_UNION;
1293 code = TYPE_CODE_ENUM;
1296 return error_type (pp);
1299 to = type_name = (char *)
1300 obstack_alloc (&objfile -> type_obstack,
1301 (((char *) strchr (*pp, ':') - (*pp)) + 1));
1303 /* Copy the name. */
1305 while ((*to++ = *from++) != ':')
1309 /* Set the pointer ahead of the name which we just read. */
1313 /* Now check to see whether the type has already been declared. */
1314 /* This is necessary at least in the case where the
1315 program says something like
1317 The compiler puts out a cross-reference; we better find
1318 set the length of the structure correctly so we can
1319 set the length of the array. */
1320 for (ppt = file_symbols; ppt; ppt = ppt->next)
1321 for (i = 0; i < ppt->nsyms; i++)
1323 struct symbol *sym = ppt->symbol[i];
1325 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1326 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1327 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1328 && STREQ (SYMBOL_NAME (sym), type_name))
1330 obstack_free (&objfile -> type_obstack, type_name);
1331 type = SYMBOL_TYPE (sym);
1336 /* Didn't find the type to which this refers, so we must
1337 be dealing with a forward reference. Allocate a type
1338 structure for it, and keep track of it so we can
1339 fill in the rest of the fields when we get the full
1341 type = dbx_alloc_type (typenums, objfile);
1342 TYPE_CODE (type) = code;
1343 TYPE_TAG_NAME (type) = type_name;
1344 INIT_CPLUS_SPECIFIC(type);
1345 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1347 add_undefined_type (type);
1351 case '-': /* RS/6000 built-in type */
1364 /* The type is being defined to another type. When we support
1365 Ada (and arguably for C, so "whatis foo" can give "size_t",
1366 "wchar_t", or whatever it was declared as) we'll need to
1367 allocate a distinct type here rather than returning the
1368 existing one. GCC is currently (deliberately) incapable of
1369 putting out the debugging information to do that, however. */
1372 if (read_type_number (pp, xtypenums) != 0)
1373 return error_type (pp);
1374 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1375 /* It's being defined as itself. That means it is "void". */
1376 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1378 type = *dbx_lookup_type (xtypenums);
1379 if (typenums[0] != -1)
1380 *dbx_lookup_type (typenums) = type;
1381 /* This can happen if we had '-' followed by a garbage character,
1384 return error_type (pp);
1387 /* In the following types, we must be sure to overwrite any existing
1388 type that the typenums refer to, rather than allocating a new one
1389 and making the typenums point to the new one. This is because there
1390 may already be pointers to the existing type (if it had been
1391 forward-referenced), and we must change it to a pointer, function,
1392 reference, or whatever, *in-place*. */
1395 type1 = read_type (pp, objfile);
1396 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1399 case '&': /* Reference to another type */
1400 type1 = read_type (pp, objfile);
1401 type = make_reference_type (type1, dbx_lookup_type (typenums));
1404 case 'f': /* Function returning another type */
1405 type1 = read_type (pp, objfile);
1406 type = make_function_type (type1, dbx_lookup_type (typenums));
1409 case 'k': /* Const qualifier on some type (Sun) */
1410 type = read_type (pp, objfile);
1411 /* FIXME! For now, we ignore const and volatile qualifiers. */
1414 case 'B': /* Volatile qual on some type (Sun) */
1415 type = read_type (pp, objfile);
1416 /* FIXME! For now, we ignore const and volatile qualifiers. */
1419 /* FIXME -- we should be doing smash_to_XXX types here. */
1420 case '@': /* Member (class & variable) type */
1422 struct type *domain = read_type (pp, objfile);
1423 struct type *memtype;
1426 /* Invalid member type data format. */
1427 return error_type (pp);
1430 memtype = read_type (pp, objfile);
1431 type = dbx_alloc_type (typenums, objfile);
1432 smash_to_member_type (type, domain, memtype);
1436 case '#': /* Method (class & fn) type */
1437 if ((*pp)[0] == '#')
1439 /* We'll get the parameter types from the name. */
1440 struct type *return_type;
1443 return_type = read_type (pp, objfile);
1444 if (*(*pp)++ != ';')
1445 complain (&invalid_member_complaint, symnum);
1446 type = allocate_stub_method (return_type);
1447 if (typenums[0] != -1)
1448 *dbx_lookup_type (typenums) = type;
1452 struct type *domain = read_type (pp, objfile);
1453 struct type *return_type;
1457 /* Invalid member type data format. */
1458 return error_type (pp);
1462 return_type = read_type (pp, objfile);
1463 args = read_args (pp, ';', objfile);
1464 type = dbx_alloc_type (typenums, objfile);
1465 smash_to_method_type (type, domain, return_type, args);
1469 case 'r': /* Range type */
1470 type = read_range_type (pp, typenums, objfile);
1471 if (typenums[0] != -1)
1472 *dbx_lookup_type (typenums) = type;
1475 case 'b': /* Sun ACC builtin int type */
1476 type = read_sun_builtin_type (pp, typenums, objfile);
1477 if (typenums[0] != -1)
1478 *dbx_lookup_type (typenums) = type;
1481 case 'R': /* Sun ACC builtin float type */
1482 type = read_sun_floating_type (pp, typenums, objfile);
1483 if (typenums[0] != -1)
1484 *dbx_lookup_type (typenums) = type;
1487 case 'e': /* Enumeration type */
1488 type = dbx_alloc_type (typenums, objfile);
1489 type = read_enum_type (pp, type, objfile);
1490 if (typenums[0] != -1)
1491 *dbx_lookup_type (typenums) = type;
1494 case 's': /* Struct type */
1495 case 'u': /* Union type */
1496 type = dbx_alloc_type (typenums, objfile);
1497 if (!TYPE_NAME (type))
1499 TYPE_NAME (type) = type_synonym_name;
1501 type_synonym_name = NULL;
1502 switch (type_descriptor)
1505 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1508 TYPE_CODE (type) = TYPE_CODE_UNION;
1511 type = read_struct_type (pp, type, objfile);
1514 case 'a': /* Array type */
1516 return error_type (pp);
1519 type = dbx_alloc_type (typenums, objfile);
1520 type = read_array_type (pp, type, objfile);
1524 --*pp; /* Go back to the symbol in error */
1525 /* Particularly important if it was \0! */
1526 return error_type (pp);
1531 warning ("GDB internal error, type is NULL in stabsread.c\n");
1532 return error_type (pp);
1538 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1539 Return the proper type node for a given builtin type number. */
1541 static struct type *
1542 rs6000_builtin_type (typenum)
1545 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1546 #define NUMBER_RECOGNIZED 30
1547 /* This includes an empty slot for type number -0. */
1548 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1549 struct type *rettype;
1551 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1553 complain (&rs6000_builtin_complaint, typenum);
1554 return builtin_type_error;
1556 if (negative_types[-typenum] != NULL)
1557 return negative_types[-typenum];
1559 #if TARGET_CHAR_BIT != 8
1560 #error This code wrong for TARGET_CHAR_BIT not 8
1561 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1562 that if that ever becomes not true, the correct fix will be to
1563 make the size in the struct type to be in bits, not in units of
1570 /* The size of this and all the other types are fixed, defined
1571 by the debugging format. If there is a type called "int" which
1572 is other than 32 bits, then it should use a new negative type
1573 number (or avoid negative type numbers for that case).
1574 See stabs.texinfo. */
1575 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1578 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1581 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1584 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1587 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1588 "unsigned char", NULL);
1591 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1594 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1595 "unsigned short", NULL);
1598 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1599 "unsigned int", NULL);
1602 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1605 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1606 "unsigned long", NULL);
1609 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1612 /* IEEE single precision (32 bit). */
1613 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1616 /* IEEE double precision (64 bit). */
1617 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1620 /* This is an IEEE double on the RS/6000, and different machines with
1621 different sizes for "long double" should use different negative
1622 type numbers. See stabs.texinfo. */
1623 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1626 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1629 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1632 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1635 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1638 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1641 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1645 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1649 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1653 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1657 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1661 /* Complex type consisting of two IEEE single precision values. */
1662 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1665 /* Complex type consisting of two IEEE double precision values. */
1666 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1669 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1672 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1675 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1678 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1681 negative_types[-typenum] = rettype;
1685 /* This page contains subroutines of read_type. */
1687 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1688 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1689 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1691 /* Read member function stabs info for C++ classes. The form of each member
1694 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1696 An example with two member functions is:
1698 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1700 For the case of overloaded operators, the format is op$::*.funcs, where
1701 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1702 name (such as `+=') and `.' marks the end of the operator name.
1704 Returns 1 for success, 0 for failure. */
1707 read_member_functions (fip, pp, type, objfile)
1708 struct field_info *fip;
1711 struct objfile *objfile;
1715 /* Total number of member functions defined in this class. If the class
1716 defines two `f' functions, and one `g' function, then this will have
1718 int total_length = 0;
1722 struct next_fnfield *next;
1723 struct fn_field fn_field;
1725 struct type *look_ahead_type;
1726 struct next_fnfieldlist *new_fnlist;
1727 struct next_fnfield *new_sublist;
1731 /* Process each list until we find something that is not a member function
1732 or find the end of the functions. */
1736 /* We should be positioned at the start of the function name.
1737 Scan forward to find the first ':' and if it is not the
1738 first of a "::" delimiter, then this is not a member function. */
1750 look_ahead_type = NULL;
1753 new_fnlist = (struct next_fnfieldlist *)
1754 xmalloc (sizeof (struct next_fnfieldlist));
1755 make_cleanup (free, new_fnlist);
1756 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1758 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1760 /* This is a completely wierd case. In order to stuff in the
1761 names that might contain colons (the usual name delimiter),
1762 Mike Tiemann defined a different name format which is
1763 signalled if the identifier is "op$". In that case, the
1764 format is "op$::XXXX." where XXXX is the name. This is
1765 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1766 /* This lets the user type "break operator+".
1767 We could just put in "+" as the name, but that wouldn't
1769 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1770 char *o = opname + 3;
1772 /* Skip past '::'. */
1775 STABS_CONTINUE (pp);
1781 main_fn_name = savestring (opname, o - opname);
1787 main_fn_name = savestring (*pp, p - *pp);
1788 /* Skip past '::'. */
1791 new_fnlist -> fn_fieldlist.name = main_fn_name;
1796 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1797 make_cleanup (free, new_sublist);
1798 memset (new_sublist, 0, sizeof (struct next_fnfield));
1800 /* Check for and handle cretinous dbx symbol name continuation! */
1801 if (look_ahead_type == NULL)
1804 STABS_CONTINUE (pp);
1806 new_sublist -> fn_field.type = read_type (pp, objfile);
1809 /* Invalid symtab info for member function. */
1815 /* g++ version 1 kludge */
1816 new_sublist -> fn_field.type = look_ahead_type;
1817 look_ahead_type = NULL;
1827 /* If this is just a stub, then we don't have the real name here. */
1829 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1831 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1832 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1833 new_sublist -> fn_field.is_stub = 1;
1835 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1838 /* Set this member function's visibility fields. */
1841 case VISIBILITY_PRIVATE:
1842 new_sublist -> fn_field.is_private = 1;
1844 case VISIBILITY_PROTECTED:
1845 new_sublist -> fn_field.is_protected = 1;
1849 STABS_CONTINUE (pp);
1852 case 'A': /* Normal functions. */
1853 new_sublist -> fn_field.is_const = 0;
1854 new_sublist -> fn_field.is_volatile = 0;
1857 case 'B': /* `const' member functions. */
1858 new_sublist -> fn_field.is_const = 1;
1859 new_sublist -> fn_field.is_volatile = 0;
1862 case 'C': /* `volatile' member function. */
1863 new_sublist -> fn_field.is_const = 0;
1864 new_sublist -> fn_field.is_volatile = 1;
1867 case 'D': /* `const volatile' member function. */
1868 new_sublist -> fn_field.is_const = 1;
1869 new_sublist -> fn_field.is_volatile = 1;
1872 case '*': /* File compiled with g++ version 1 -- no info */
1877 complain (&const_vol_complaint, **pp);
1886 /* virtual member function, followed by index.
1887 The sign bit is set to distinguish pointers-to-methods
1888 from virtual function indicies. Since the array is
1889 in words, the quantity must be shifted left by 1
1890 on 16 bit machine, and by 2 on 32 bit machine, forcing
1891 the sign bit out, and usable as a valid index into
1892 the array. Remove the sign bit here. */
1893 new_sublist -> fn_field.voffset =
1894 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1898 STABS_CONTINUE (pp);
1899 if (**pp == ';' || **pp == '\0')
1901 /* Must be g++ version 1. */
1902 new_sublist -> fn_field.fcontext = 0;
1906 /* Figure out from whence this virtual function came.
1907 It may belong to virtual function table of
1908 one of its baseclasses. */
1909 look_ahead_type = read_type (pp, objfile);
1912 /* g++ version 1 overloaded methods. */
1916 new_sublist -> fn_field.fcontext = look_ahead_type;
1925 look_ahead_type = NULL;
1931 /* static member function. */
1932 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1933 if (strncmp (new_sublist -> fn_field.physname,
1934 main_fn_name, strlen (main_fn_name)))
1936 new_sublist -> fn_field.is_stub = 1;
1942 complain (&member_fn_complaint, (*pp)[-1]);
1943 /* Fall through into normal member function. */
1946 /* normal member function. */
1947 new_sublist -> fn_field.voffset = 0;
1948 new_sublist -> fn_field.fcontext = 0;
1952 new_sublist -> next = sublist;
1953 sublist = new_sublist;
1955 STABS_CONTINUE (pp);
1957 while (**pp != ';' && **pp != '\0');
1961 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1962 obstack_alloc (&objfile -> type_obstack,
1963 sizeof (struct fn_field) * length);
1964 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
1965 sizeof (struct fn_field) * length);
1966 for (i = length; (i--, sublist); sublist = sublist -> next)
1968 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
1971 new_fnlist -> fn_fieldlist.length = length;
1972 new_fnlist -> next = fip -> fnlist;
1973 fip -> fnlist = new_fnlist;
1975 total_length += length;
1976 STABS_CONTINUE (pp);
1981 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1982 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
1983 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
1984 memset (TYPE_FN_FIELDLISTS (type), 0,
1985 sizeof (struct fn_fieldlist) * nfn_fields);
1986 TYPE_NFN_FIELDS (type) = nfn_fields;
1987 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
1993 /* Special GNU C++ name.
1995 Returns 1 for success, 0 for failure. "failure" means that we can't
1996 keep parsing and it's time for error_type(). */
1999 read_cpp_abbrev (fip, pp, type, objfile)
2000 struct field_info *fip;
2003 struct objfile *objfile;
2009 struct type *context;
2019 /* At this point, *pp points to something like "22:23=*22...",
2020 where the type number before the ':' is the "context" and
2021 everything after is a regular type definition. Lookup the
2022 type, find it's name, and construct the field name. */
2024 context = read_type (pp, objfile);
2028 case 'f': /* $vf -- a virtual function table pointer */
2029 fip->list->field.name =
2030 obconcat (&objfile->type_obstack, vptr_name, "", "");
2033 case 'b': /* $vb -- a virtual bsomethingorother */
2034 name = type_name_no_tag (context);
2037 complain (&invalid_cpp_type_complaint, symnum);
2040 fip->list->field.name =
2041 obconcat (&objfile->type_obstack, vb_name, name, "");
2045 complain (&invalid_cpp_abbrev_complaint, *pp);
2046 fip->list->field.name =
2047 obconcat (&objfile->type_obstack,
2048 "INVALID_CPLUSPLUS_ABBREV", "", "");
2052 /* At this point, *pp points to the ':'. Skip it and read the
2058 complain (&invalid_cpp_abbrev_complaint, *pp);
2061 fip->list->field.type = read_type (pp, objfile);
2063 (*pp)++; /* Skip the comma. */
2069 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2073 /* This field is unpacked. */
2074 fip->list->field.bitsize = 0;
2075 fip->list->visibility = VISIBILITY_PRIVATE;
2079 complain (&invalid_cpp_abbrev_complaint, *pp);
2080 /* We have no idea what syntax an unrecognized abbrev would have, so
2081 better return 0. If we returned 1, we would need to at least advance
2082 *pp to avoid an infinite loop. */
2089 read_one_struct_field (fip, pp, p, type, objfile)
2090 struct field_info *fip;
2094 struct objfile *objfile;
2096 fip -> list -> field.name =
2097 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2100 /* This means we have a visibility for a field coming. */
2104 fip -> list -> visibility = *(*pp)++;
2105 switch (fip -> list -> visibility)
2107 case VISIBILITY_PRIVATE:
2108 case VISIBILITY_PROTECTED:
2111 case VISIBILITY_PUBLIC:
2116 /* Unknown visibility specifier. */
2117 complain (&stabs_general_complaint,
2118 "unknown visibility specifier");
2125 /* normal dbx-style format, no explicit visibility */
2126 fip -> list -> visibility = VISIBILITY_PUBLIC;
2129 fip -> list -> field.type = read_type (pp, objfile);
2134 /* Possible future hook for nested types. */
2137 fip -> list -> field.bitpos = (long)-2; /* nested type */
2143 /* Static class member. */
2144 fip -> list -> field.bitpos = (long) -1;
2150 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2154 else if (**pp != ',')
2156 /* Bad structure-type format. */
2157 complain (&stabs_general_complaint, "bad structure-type format");
2161 (*pp)++; /* Skip the comma. */
2165 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2168 complain (&stabs_general_complaint, "bad structure-type format");
2171 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2174 complain (&stabs_general_complaint, "bad structure-type format");
2179 /* FIXME-tiemann: Can't the compiler put out something which
2180 lets us distinguish these? (or maybe just not put out anything
2181 for the field). What is the story here? What does the compiler
2182 really do? Also, patch gdb.texinfo for this case; I document
2183 it as a possible problem there. Search for "DBX-style". */
2185 /* This is wrong because this is identical to the symbols
2186 produced for GCC 0-size arrays. For example:
2191 The code which dumped core in such circumstances should be
2192 fixed not to dump core. */
2194 /* g++ -g0 can put out bitpos & bitsize zero for a static
2195 field. This does not give us any way of getting its
2196 class, so we can't know its name. But we can just
2197 ignore the field so we don't dump core and other nasty
2199 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2201 complain (&dbx_class_complaint);
2202 /* Ignore this field. */
2203 fip -> list = fip -> list -> next;
2208 /* Detect an unpacked field and mark it as such.
2209 dbx gives a bit size for all fields.
2210 Note that forward refs cannot be packed,
2211 and treat enums as if they had the width of ints. */
2213 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2214 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2216 fip -> list -> field.bitsize = 0;
2218 if ((fip -> list -> field.bitsize
2219 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2220 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2221 && (fip -> list -> field.bitsize
2226 fip -> list -> field.bitpos % 8 == 0)
2228 fip -> list -> field.bitsize = 0;
2234 /* Read struct or class data fields. They have the form:
2236 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2238 At the end, we see a semicolon instead of a field.
2240 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2243 The optional VISIBILITY is one of:
2245 '/0' (VISIBILITY_PRIVATE)
2246 '/1' (VISIBILITY_PROTECTED)
2247 '/2' (VISIBILITY_PUBLIC)
2249 or nothing, for C style fields with public visibility.
2251 Returns 1 for success, 0 for failure. */
2254 read_struct_fields (fip, pp, type, objfile)
2255 struct field_info *fip;
2258 struct objfile *objfile;
2261 struct nextfield *new;
2263 /* We better set p right now, in case there are no fields at all... */
2267 /* Read each data member type until we find the terminating ';' at the end of
2268 the data member list, or break for some other reason such as finding the
2269 start of the member function list. */
2273 STABS_CONTINUE (pp);
2274 /* Get space to record the next field's data. */
2275 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2276 make_cleanup (free, new);
2277 memset (new, 0, sizeof (struct nextfield));
2278 new -> next = fip -> list;
2281 /* Get the field name. */
2283 /* If is starts with CPLUS_MARKER it is a special abbreviation, unless
2284 the CPLUS_MARKER is followed by an underscore, in which case it is
2285 just the name of an anonymous type, which we should handle like any
2287 if (*p == CPLUS_MARKER && p[1] != '_')
2289 if (!read_cpp_abbrev (fip, pp, type, objfile))
2294 /* Look for the ':' that separates the field name from the field
2295 values. Data members are delimited by a single ':', while member
2296 functions are delimited by a pair of ':'s. When we hit the member
2297 functions (if any), terminate scan loop and return. */
2299 while (*p != ':' && *p != '\0')
2306 /* Check to see if we have hit the member functions yet. */
2311 read_one_struct_field (fip, pp, p, type, objfile);
2315 /* chill the list of fields: the last entry (at the head) is a
2316 partially constructed entry which we now scrub. */
2317 fip -> list = fip -> list -> next;
2322 /* The stabs for C++ derived classes contain baseclass information which
2323 is marked by a '!' character after the total size. This function is
2324 called when we encounter the baseclass marker, and slurps up all the
2325 baseclass information.
2327 Immediately following the '!' marker is the number of base classes that
2328 the class is derived from, followed by information for each base class.
2329 For each base class, there are two visibility specifiers, a bit offset
2330 to the base class information within the derived class, a reference to
2331 the type for the base class, and a terminating semicolon.
2333 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2335 Baseclass information marker __________________|| | | | | | |
2336 Number of baseclasses __________________________| | | | | | |
2337 Visibility specifiers (2) ________________________| | | | | |
2338 Offset in bits from start of class _________________| | | | |
2339 Type number for base class ___________________________| | | |
2340 Visibility specifiers (2) _______________________________| | |
2341 Offset in bits from start of class ________________________| |
2342 Type number of base class ____________________________________|
2344 Return 1 for success, 0 for (error-type-inducing) failure. */
2347 read_baseclasses (fip, pp, type, objfile)
2348 struct field_info *fip;
2351 struct objfile *objfile;
2354 struct nextfield *new;
2362 /* Skip the '!' baseclass information marker. */
2366 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2369 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2375 /* Some stupid compilers have trouble with the following, so break
2376 it up into simpler expressions. */
2377 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2378 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2381 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2384 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2385 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2389 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2391 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2393 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2394 make_cleanup (free, new);
2395 memset (new, 0, sizeof (struct nextfield));
2396 new -> next = fip -> list;
2398 new -> field.bitsize = 0; /* this should be an unpacked field! */
2400 STABS_CONTINUE (pp);
2404 /* Nothing to do. */
2407 SET_TYPE_FIELD_VIRTUAL (type, i);
2410 /* Bad visibility format. */
2414 new -> visibility = *(*pp)++;
2415 switch (new -> visibility)
2417 case VISIBILITY_PRIVATE:
2418 case VISIBILITY_PROTECTED:
2419 case VISIBILITY_PUBLIC:
2422 /* Bad visibility format. */
2429 /* The remaining value is the bit offset of the portion of the object
2430 corresponding to this baseclass. Always zero in the absence of
2431 multiple inheritance. */
2433 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2438 /* The last piece of baseclass information is the type of the
2439 base class. Read it, and remember it's type name as this
2442 new -> field.type = read_type (pp, objfile);
2443 new -> field.name = type_name_no_tag (new -> field.type);
2445 /* skip trailing ';' and bump count of number of fields seen */
2454 /* The tail end of stabs for C++ classes that contain a virtual function
2455 pointer contains a tilde, a %, and a type number.
2456 The type number refers to the base class (possibly this class itself) which
2457 contains the vtable pointer for the current class.
2459 This function is called when we have parsed all the method declarations,
2460 so we can look for the vptr base class info. */
2463 read_tilde_fields (fip, pp, type, objfile)
2464 struct field_info *fip;
2467 struct objfile *objfile;
2471 STABS_CONTINUE (pp);
2473 /* If we are positioned at a ';', then skip it. */
2483 if (**pp == '=' || **pp == '+' || **pp == '-')
2485 /* Obsolete flags that used to indicate the presence
2486 of constructors and/or destructors. */
2490 /* Read either a '%' or the final ';'. */
2491 if (*(*pp)++ == '%')
2493 /* The next number is the type number of the base class
2494 (possibly our own class) which supplies the vtable for
2495 this class. Parse it out, and search that class to find
2496 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2497 and TYPE_VPTR_FIELDNO. */
2502 t = read_type (pp, objfile);
2504 while (*p != '\0' && *p != ';')
2510 /* Premature end of symbol. */
2514 TYPE_VPTR_BASETYPE (type) = t;
2515 if (type == t) /* Our own class provides vtbl ptr */
2517 for (i = TYPE_NFIELDS (t) - 1;
2518 i >= TYPE_N_BASECLASSES (t);
2521 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2522 sizeof (vptr_name) - 1))
2524 TYPE_VPTR_FIELDNO (type) = i;
2528 /* Virtual function table field not found. */
2529 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2534 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2545 attach_fn_fields_to_type (fip, type)
2546 struct field_info *fip;
2547 register struct type *type;
2551 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2553 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2555 /* @@ Memory leak on objfile -> type_obstack? */
2558 TYPE_NFN_FIELDS_TOTAL (type) +=
2559 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2562 for (n = TYPE_NFN_FIELDS (type);
2563 fip -> fnlist != NULL;
2564 fip -> fnlist = fip -> fnlist -> next)
2566 --n; /* Circumvent Sun3 compiler bug */
2567 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2572 /* Create the vector of fields, and record how big it is.
2573 We need this info to record proper virtual function table information
2574 for this class's virtual functions. */
2577 attach_fields_to_type (fip, type, objfile)
2578 struct field_info *fip;
2579 register struct type *type;
2580 struct objfile *objfile;
2582 register int nfields = 0;
2583 register int non_public_fields = 0;
2584 register struct nextfield *scan;
2586 /* Count up the number of fields that we have, as well as taking note of
2587 whether or not there are any non-public fields, which requires us to
2588 allocate and build the private_field_bits and protected_field_bits
2591 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2594 if (scan -> visibility != VISIBILITY_PUBLIC)
2596 non_public_fields++;
2600 /* Now we know how many fields there are, and whether or not there are any
2601 non-public fields. Record the field count, allocate space for the
2602 array of fields, and create blank visibility bitfields if necessary. */
2604 TYPE_NFIELDS (type) = nfields;
2605 TYPE_FIELDS (type) = (struct field *)
2606 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2607 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2609 if (non_public_fields)
2611 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2613 TYPE_FIELD_PRIVATE_BITS (type) =
2614 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2615 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2617 TYPE_FIELD_PROTECTED_BITS (type) =
2618 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2619 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2622 /* Copy the saved-up fields into the field vector. Start from the head
2623 of the list, adding to the tail of the field array, so that they end
2624 up in the same order in the array in which they were added to the list. */
2626 while (nfields-- > 0)
2628 TYPE_FIELD (type, nfields) = fip -> list -> field;
2629 switch (fip -> list -> visibility)
2631 case VISIBILITY_PRIVATE:
2632 SET_TYPE_FIELD_PRIVATE (type, nfields);
2635 case VISIBILITY_PROTECTED:
2636 SET_TYPE_FIELD_PROTECTED (type, nfields);
2639 case VISIBILITY_PUBLIC:
2643 /* Should warn about this unknown visibility? */
2646 fip -> list = fip -> list -> next;
2651 /* Read the description of a structure (or union type) and return an object
2652 describing the type.
2654 PP points to a character pointer that points to the next unconsumed token
2655 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2656 *PP will point to "4a:1,0,32;;".
2658 TYPE points to an incomplete type that needs to be filled in.
2660 OBJFILE points to the current objfile from which the stabs information is
2661 being read. (Note that it is redundant in that TYPE also contains a pointer
2662 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2665 static struct type *
2666 read_struct_type (pp, type, objfile)
2669 struct objfile *objfile;
2671 struct cleanup *back_to;
2672 struct field_info fi;
2677 back_to = make_cleanup (null_cleanup, 0);
2679 INIT_CPLUS_SPECIFIC (type);
2680 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2682 /* First comes the total size in bytes. */
2686 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2688 return error_type (pp);
2691 /* Now read the baseclasses, if any, read the regular C struct or C++
2692 class member fields, attach the fields to the type, read the C++
2693 member functions, attach them to the type, and then read any tilde
2694 field (baseclass specifier for the class holding the main vtable). */
2696 if (!read_baseclasses (&fi, pp, type, objfile)
2697 || !read_struct_fields (&fi, pp, type, objfile)
2698 || !attach_fields_to_type (&fi, type, objfile)
2699 || !read_member_functions (&fi, pp, type, objfile)
2700 || !attach_fn_fields_to_type (&fi, type)
2701 || !read_tilde_fields (&fi, pp, type, objfile))
2703 do_cleanups (back_to);
2704 return (error_type (pp));
2707 do_cleanups (back_to);
2711 /* Read a definition of an array type,
2712 and create and return a suitable type object.
2713 Also creates a range type which represents the bounds of that
2716 static struct type *
2717 read_array_type (pp, type, objfile)
2719 register struct type *type;
2720 struct objfile *objfile;
2722 struct type *index_type, *element_type, *range_type;
2727 /* Format of an array type:
2728 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2731 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2732 for these, produce a type like float[][]. */
2734 index_type = read_type (pp, objfile);
2736 /* Improper format of array type decl. */
2737 return error_type (pp);
2740 if (!(**pp >= '0' && **pp <= '9'))
2745 lower = read_huge_number (pp, ';', &nbits);
2747 return error_type (pp);
2749 if (!(**pp >= '0' && **pp <= '9'))
2754 upper = read_huge_number (pp, ';', &nbits);
2756 return error_type (pp);
2758 element_type = read_type (pp, objfile);
2767 create_range_type ((struct type *) NULL, index_type, lower, upper);
2768 type = create_array_type (type, element_type, range_type);
2770 /* If we have an array whose element type is not yet known, but whose
2771 bounds *are* known, record it to be adjusted at the end of the file. */
2773 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2775 add_undefined_type (type);
2782 /* Read a definition of an enumeration type,
2783 and create and return a suitable type object.
2784 Also defines the symbols that represent the values of the type. */
2786 static struct type *
2787 read_enum_type (pp, type, objfile)
2789 register struct type *type;
2790 struct objfile *objfile;
2795 register struct symbol *sym;
2797 struct pending **symlist;
2798 struct pending *osyms, *syms;
2802 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2803 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2804 to do? For now, force all enum values to file scope. */
2805 if (within_function)
2806 symlist = &local_symbols;
2809 symlist = &file_symbols;
2811 o_nsyms = osyms ? osyms->nsyms : 0;
2813 /* Read the value-names and their values.
2814 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2815 A semicolon or comma instead of a NAME means the end. */
2816 while (**pp && **pp != ';' && **pp != ',')
2819 STABS_CONTINUE (pp);
2821 while (*p != ':') p++;
2822 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2824 n = read_huge_number (pp, ',', &nbits);
2826 return error_type (pp);
2828 sym = (struct symbol *)
2829 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2830 memset (sym, 0, sizeof (struct symbol));
2831 SYMBOL_NAME (sym) = name;
2832 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2833 SYMBOL_CLASS (sym) = LOC_CONST;
2834 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2835 SYMBOL_VALUE (sym) = n;
2836 add_symbol_to_list (sym, symlist);
2841 (*pp)++; /* Skip the semicolon. */
2843 /* Now fill in the fields of the type-structure. */
2845 TYPE_LENGTH (type) = sizeof (int);
2846 TYPE_CODE (type) = TYPE_CODE_ENUM;
2847 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2848 TYPE_NFIELDS (type) = nsyms;
2849 TYPE_FIELDS (type) = (struct field *)
2850 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2851 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2853 /* Find the symbols for the values and put them into the type.
2854 The symbols can be found in the symlist that we put them on
2855 to cause them to be defined. osyms contains the old value
2856 of that symlist; everything up to there was defined by us. */
2857 /* Note that we preserve the order of the enum constants, so
2858 that in something like "enum {FOO, LAST_THING=FOO}" we print
2859 FOO, not LAST_THING. */
2861 for (syms = *symlist, n = 0; syms; syms = syms->next)
2866 for (; j < syms->nsyms; j++,n++)
2868 struct symbol *xsym = syms->symbol[j];
2869 SYMBOL_TYPE (xsym) = type;
2870 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2871 TYPE_FIELD_VALUE (type, n) = 0;
2872 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2873 TYPE_FIELD_BITSIZE (type, n) = 0;
2880 /* This screws up perfectly good C programs with enums. FIXME. */
2881 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2882 if(TYPE_NFIELDS(type) == 2 &&
2883 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2884 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2885 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2886 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2887 TYPE_CODE(type) = TYPE_CODE_BOOL;
2893 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2894 typedefs in every file (for int, long, etc):
2896 type = b <signed> <width>; <offset>; <nbits>
2897 signed = u or s. Possible c in addition to u or s (for char?).
2898 offset = offset from high order bit to start bit of type.
2899 width is # bytes in object of this type, nbits is # bits in type.
2901 The width/offset stuff appears to be for small objects stored in
2902 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2905 static struct type *
2906 read_sun_builtin_type (pp, typenums, objfile)
2909 struct objfile *objfile;
2924 return error_type (pp);
2928 /* For some odd reason, all forms of char put a c here. This is strange
2929 because no other type has this honor. We can safely ignore this because
2930 we actually determine 'char'acterness by the number of bits specified in
2936 /* The first number appears to be the number of bytes occupied
2937 by this type, except that unsigned short is 4 instead of 2.
2938 Since this information is redundant with the third number,
2939 we will ignore it. */
2940 read_huge_number (pp, ';', &nbits);
2942 return error_type (pp);
2944 /* The second number is always 0, so ignore it too. */
2945 read_huge_number (pp, ';', &nbits);
2947 return error_type (pp);
2949 /* The third number is the number of bits for this type. */
2950 type_bits = read_huge_number (pp, 0, &nbits);
2952 return error_type (pp);
2955 /* FIXME. Here we should just be able to make a type of the right
2956 number of bits and signedness. FIXME. */
2958 if (type_bits == TARGET_LONG_LONG_BIT)
2959 return (lookup_fundamental_type (objfile,
2960 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2962 if (type_bits == TARGET_INT_BIT)
2964 /* FIXME -- the only way to distinguish `int' from `long'
2965 is to look at its name! */
2968 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2969 return lookup_fundamental_type (objfile, FT_LONG);
2971 return lookup_fundamental_type (objfile, FT_INTEGER);
2975 if (long_kludge_name
2976 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2977 long_kludge_name[9] == 'l' /* long */)
2978 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2979 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
2981 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
2985 if (type_bits == TARGET_SHORT_BIT)
2986 return (lookup_fundamental_type (objfile,
2987 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
2989 if (type_bits == TARGET_CHAR_BIT)
2990 return (lookup_fundamental_type (objfile,
2991 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
2994 return lookup_fundamental_type (objfile, FT_VOID);
2996 return error_type (pp);
2998 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
2999 type_bits / TARGET_CHAR_BIT,
3000 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3005 static struct type *
3006 read_sun_floating_type (pp, typenums, objfile)
3009 struct objfile *objfile;
3015 /* The first number has more details about the type, for example
3017 details = read_huge_number (pp, ';', &nbits);
3019 return error_type (pp);
3021 /* The second number is the number of bytes occupied by this type */
3022 nbytes = read_huge_number (pp, ';', &nbits);
3024 return error_type (pp);
3026 if (details == NF_COMPLEX || details == NF_COMPLEX16
3027 || details == NF_COMPLEX32)
3028 /* This is a type we can't handle, but we do know the size.
3029 We also will be able to give it a name. */
3030 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3032 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3035 /* Read a number from the string pointed to by *PP.
3036 The value of *PP is advanced over the number.
3037 If END is nonzero, the character that ends the
3038 number must match END, or an error happens;
3039 and that character is skipped if it does match.
3040 If END is zero, *PP is left pointing to that character.
3042 If the number fits in a long, set *BITS to 0 and return the value.
3043 If not, set *BITS to be the number of bits in the number and return 0.
3045 If encounter garbage, set *BITS to -1 and return 0. */
3048 read_huge_number (pp, end, bits)
3068 /* Leading zero means octal. GCC uses this to output values larger
3069 than an int (because that would be hard in decimal). */
3076 upper_limit = LONG_MAX / radix;
3077 while ((c = *p++) >= '0' && c < ('0' + radix))
3079 if (n <= upper_limit)
3082 n += c - '0'; /* FIXME this overflows anyway */
3087 /* This depends on large values being output in octal, which is
3094 /* Ignore leading zeroes. */
3098 else if (c == '2' || c == '3')
3124 /* Large decimal constants are an error (because it is hard to
3125 count how many bits are in them). */
3131 /* -0x7f is the same as 0x80. So deal with it by adding one to
3132 the number of bits. */
3144 /* It's *BITS which has the interesting information. */
3148 static struct type *
3149 read_range_type (pp, typenums, objfile)
3152 struct objfile *objfile;
3158 struct type *result_type;
3159 struct type *index_type;
3161 /* First comes a type we are a subrange of.
3162 In C it is usually 0, 1 or the type being defined. */
3163 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3164 not just a type number. */
3165 if (read_type_number (pp, rangenums) != 0)
3166 return error_type (pp);
3167 self_subrange = (rangenums[0] == typenums[0] &&
3168 rangenums[1] == typenums[1]);
3170 /* A semicolon should now follow; skip it. */
3174 /* The remaining two operands are usually lower and upper bounds
3175 of the range. But in some special cases they mean something else. */
3176 n2 = read_huge_number (pp, ';', &n2bits);
3177 n3 = read_huge_number (pp, ';', &n3bits);
3179 if (n2bits == -1 || n3bits == -1)
3180 return error_type (pp);
3182 /* If limits are huge, must be large integral type. */
3183 if (n2bits != 0 || n3bits != 0)
3185 char got_signed = 0;
3186 char got_unsigned = 0;
3187 /* Number of bits in the type. */
3190 /* Range from 0 to <large number> is an unsigned large integral type. */
3191 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3196 /* Range from <large number> to <large number>-1 is a large signed
3198 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3204 if (got_signed || got_unsigned)
3206 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3207 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3211 return error_type (pp);
3214 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3215 if (self_subrange && n2 == 0 && n3 == 0)
3216 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3218 /* If n3 is zero and n2 is not, we want a floating type,
3219 and n2 is the width in bytes.
3221 Fortran programs appear to use this for complex types also,
3222 and they give no way to distinguish between double and single-complex!
3224 GDB does not have complex types.
3226 Just return the complex as a float of that size. It won't work right
3227 for the complex values, but at least it makes the file loadable.
3229 FIXME, we may be able to distinguish these by their names. FIXME. */
3231 if (n3 == 0 && n2 > 0)
3233 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3236 /* If the upper bound is -1, it must really be an unsigned int. */
3238 else if (n2 == 0 && n3 == -1)
3240 /* It is unsigned int or unsigned long. */
3241 /* GCC sometimes uses this for long long too. We could
3242 distinguish it by the name, but we don't. */
3243 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3244 TYPE_FLAG_UNSIGNED, NULL, objfile);
3247 /* Special case: char is defined (Who knows why) as a subrange of
3248 itself with range 0-127. */
3249 else if (self_subrange && n2 == 0 && n3 == 127)
3250 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3252 /* We used to do this only for subrange of self or subrange of int. */
3256 /* n3 actually gives the size. */
3257 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3260 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3262 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3264 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3265 "unsigned long", and we already checked for that,
3266 so don't need to test for it here. */
3268 /* I think this is for Convex "long long". Since I don't know whether
3269 Convex sets self_subrange, I also accept that particular size regardless
3270 of self_subrange. */
3271 else if (n3 == 0 && n2 < 0
3273 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3274 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3275 else if (n2 == -n3 -1)
3278 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3280 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3281 if (n3 == 0x7fffffff)
3282 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3285 /* We have a real range type on our hands. Allocate space and
3286 return a real pointer. */
3288 /* At this point I don't have the faintest idea how to deal with
3289 a self_subrange type; I'm going to assume that this is used
3290 as an idiom, and that all of them are special cases. So . . . */
3292 return error_type (pp);
3294 index_type = *dbx_lookup_type (rangenums);
3295 if (index_type == NULL)
3297 /* Does this actually ever happen? Is that why we are worrying
3298 about dealing with it rather than just calling error_type? */
3300 static struct type *range_type_index;
3302 complain (&range_type_base_complaint, rangenums[1]);
3303 if (range_type_index == NULL)
3305 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3306 0, "range type index type", NULL);
3307 index_type = range_type_index;
3310 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3311 return (result_type);
3314 /* Read in an argument list. This is a list of types, separated by commas
3315 and terminated with END. Return the list of types read in, or (struct type
3316 **)-1 if there is an error. */
3318 static struct type **
3319 read_args (pp, end, objfile)
3322 struct objfile *objfile;
3324 /* FIXME! Remove this arbitrary limit! */
3325 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3331 /* Invalid argument list: no ','. */
3332 return (struct type **)-1;
3334 STABS_CONTINUE (pp);
3335 types[n++] = read_type (pp, objfile);
3337 (*pp)++; /* get past `end' (the ':' character) */
3341 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3343 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3345 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3346 memset (rval + n, 0, sizeof (struct type *));
3350 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3352 memcpy (rval, types, n * sizeof (struct type *));
3356 /* Add a common block's start address to the offset of each symbol
3357 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3358 the common block name). */
3361 fix_common_block (sym, valu)
3365 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3366 for ( ; next; next = next->next)
3369 for (j = next->nsyms - 1; j >= 0; j--)
3370 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3376 /* What about types defined as forward references inside of a small lexical
3378 /* Add a type to the list of undefined types to be checked through
3379 once this file has been read in. */
3382 add_undefined_type (type)
3385 if (undef_types_length == undef_types_allocated)
3387 undef_types_allocated *= 2;
3388 undef_types = (struct type **)
3389 xrealloc ((char *) undef_types,
3390 undef_types_allocated * sizeof (struct type *));
3392 undef_types[undef_types_length++] = type;
3395 /* Go through each undefined type, see if it's still undefined, and fix it
3396 up if possible. We have two kinds of undefined types:
3398 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3399 Fix: update array length using the element bounds
3400 and the target type's length.
3401 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3402 yet defined at the time a pointer to it was made.
3403 Fix: Do a full lookup on the struct/union tag. */
3405 cleanup_undefined_types ()
3409 for (type = undef_types; type < undef_types + undef_types_length; type++)
3411 switch (TYPE_CODE (*type))
3414 case TYPE_CODE_STRUCT:
3415 case TYPE_CODE_UNION:
3416 case TYPE_CODE_ENUM:
3418 /* Check if it has been defined since. */
3419 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3421 struct pending *ppt;
3423 /* Name of the type, without "struct" or "union" */
3424 char *typename = TYPE_TAG_NAME (*type);
3426 if (typename == NULL)
3428 static struct complaint msg = {"need a type name", 0, 0};
3432 for (ppt = file_symbols; ppt; ppt = ppt->next)
3434 for (i = 0; i < ppt->nsyms; i++)
3436 struct symbol *sym = ppt->symbol[i];
3438 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3439 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3440 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3442 && STREQ (SYMBOL_NAME (sym), typename))
3444 memcpy (*type, SYMBOL_TYPE (sym),
3445 sizeof (struct type));
3453 case TYPE_CODE_ARRAY:
3455 struct type *range_type;
3458 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3460 if (TYPE_NFIELDS (*type) != 1)
3462 range_type = TYPE_FIELD_TYPE (*type, 0);
3463 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3466 /* Now recompute the length of the array type, based on its
3467 number of elements and the target type's length. */
3468 lower = TYPE_FIELD_BITPOS (range_type, 0);
3469 upper = TYPE_FIELD_BITPOS (range_type, 1);
3470 TYPE_LENGTH (*type) = (upper - lower + 1)
3471 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3478 static struct complaint msg = {"\
3479 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3480 complain (&msg, TYPE_CODE (*type));
3485 undef_types_length = 0;
3488 /* Scan through all of the global symbols defined in the object file,
3489 assigning values to the debugging symbols that need to be assigned
3490 to. Get these symbols from the minimal symbol table. */
3493 scan_file_globals (objfile)
3494 struct objfile *objfile;
3497 struct minimal_symbol *msymbol;
3498 struct symbol *sym, *prev;
3500 if (objfile->msymbols == 0) /* Beware the null file. */
3503 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3509 /* Get the hash index and check all the symbols
3510 under that hash index. */
3512 hash = hashname (SYMBOL_NAME (msymbol));
3514 for (sym = global_sym_chain[hash]; sym;)
3516 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3517 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3519 /* Splice this symbol out of the hash chain and
3520 assign the value we have to it. */
3523 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3527 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3530 /* Check to see whether we need to fix up a common block. */
3531 /* Note: this code might be executed several times for
3532 the same symbol if there are multiple references. */
3534 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3536 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3540 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3545 sym = SYMBOL_VALUE_CHAIN (prev);
3549 sym = global_sym_chain[hash];
3555 sym = SYMBOL_VALUE_CHAIN (sym);
3561 /* Initialize anything that needs initializing when starting to read
3562 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3570 /* Initialize anything that needs initializing when a completely new
3571 symbol file is specified (not just adding some symbols from another
3572 file, e.g. a shared library). */
3575 stabsread_new_init ()
3577 /* Empty the hash table of global syms looking for values. */
3578 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3581 /* Initialize anything that needs initializing at the same time as
3582 start_symtab() is called. */
3586 global_stabs = NULL; /* AIX COFF */
3587 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3588 n_this_object_header_files = 1;
3589 type_vector_length = 0;
3590 type_vector = (struct type **) 0;
3593 /* Call after end_symtab() */
3599 free ((char *) type_vector);
3602 type_vector_length = 0;
3603 previous_stab_code = 0;
3607 finish_global_stabs (objfile)
3608 struct objfile *objfile;
3612 patch_block_stabs (global_symbols, global_stabs, objfile);
3613 free ((PTR) global_stabs);
3614 global_stabs = NULL;
3618 /* Initializer for this module */
3621 _initialize_stabsread ()
3623 undef_types_allocated = 20;
3624 undef_types_length = 0;
3625 undef_types = (struct type **)
3626 xmalloc (undef_types_allocated * sizeof (struct type *));