1 /* Target dependent code for the Motorola 68000 series.
2 Copyright (C) 1990, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21 #include "ieee-float.h"
25 const struct ext_format ext_format_68881 = {
26 /* tot sbyte smask expbyte manbyte */
27 12, 0, 0x80, 0,1, 4,8 /* mc68881 */
31 /* Things needed for making the inferior call functions.
32 It seems like every m68k based machine has almost identical definitions
33 in the individual machine's configuration files. Most other cpu types
34 (mips, i386, etc) have routines in their *-tdep.c files to handle this
35 for most configurations. The m68k family should be able to do this as
36 well. These macros can still be overridden when necessary. */
38 /* Push an empty stack frame, to record the current PC, etc. */
41 m68k_push_dummy_frame ()
43 register CORE_ADDR sp = read_register (SP_REGNUM);
47 sp = push_word (sp, read_register (PC_REGNUM));
48 sp = push_word (sp, read_register (FP_REGNUM));
49 write_register (FP_REGNUM, sp);
50 #if defined (HAVE_68881)
51 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
53 read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
54 sp = push_bytes (sp, raw_buffer, 12);
57 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
59 sp = push_word (sp, read_register (regnum));
61 sp = push_word (sp, read_register (PS_REGNUM));
62 write_register (SP_REGNUM, sp);
65 /* Discard from the stack the innermost frame,
66 restoring all saved registers. */
71 register FRAME frame = get_current_frame ();
72 register CORE_ADDR fp;
74 struct frame_saved_regs fsr;
75 struct frame_info *fi;
78 fi = get_frame_info (frame);
80 get_frame_saved_regs (fi, &fsr);
81 #if defined (HAVE_68881)
82 for (regnum = FP0_REGNUM + 7 ; regnum >= FP0_REGNUM ; regnum--)
86 read_memory (fsr.regs[regnum], raw_buffer, 12);
87 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
91 for (regnum = FP_REGNUM - 1 ; regnum >= 0 ; regnum--)
95 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
98 if (fsr.regs[PS_REGNUM])
100 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
102 write_register (FP_REGNUM, read_memory_integer (fp, 4));
103 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
104 write_register (SP_REGNUM, fp + 8);
105 flush_cached_frames ();
106 set_current_frame (create_new_frame (read_register (FP_REGNUM),
111 /* Given an ip value corresponding to the start of a function,
112 return the ip of the first instruction after the function
113 prologue. This is the generic m68k support. Machines which
114 require something different can override the SKIP_PROLOGUE
115 macro to point elsewhere.
117 Some instructions which typically may appear in a function
120 A link instruction, word form:
122 link.w %a6,&0 4e56 XXXX
124 A link instruction, long form:
126 link.l %fp,&F%1 480e XXXX XXXX
128 A movm instruction to preserve integer regs:
130 movm.l &M%1,(4,%sp) 48ef XXXX XXXX
132 A fmovm instruction to preserve float regs:
134 fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX
136 Some profiling setup code (FIXME, not recognized yet):
138 lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX
139 bsr _mcount 61ff XXXX XXXX
143 #define P_LINK_L 0x480e
144 #define P_LINK_W 0x4e56
145 #define P_MOV_L 0x207c
148 #define P_LEA_L 0x43fb
149 #define P_MOVM_L 0x48ef
150 #define P_FMOVM 0xf237
151 #define P_TRAP 0x4e40
154 m68k_skip_prologue (ip)
157 register CORE_ADDR limit;
158 struct symtab_and_line sal;
161 /* Find out if there is a known limit for the extent of the prologue.
162 If so, ensure we don't go past it. If not, assume "infinity". */
164 sal = find_pc_line (ip, 0);
165 limit = (sal.end) ? sal.end : (CORE_ADDR) ~0;
169 op = read_memory_integer (ip, 2);
174 ip += 4; /* Skip link.w */
176 else if (op == P_LINK_L)
178 ip += 6; /* Skip link.l */
180 else if (op == P_MOVM_L)
182 ip += 6; /* Skip movm.l */
184 else if (op == P_FMOVM)
186 ip += 10; /* Skip fmovm */
190 break; /* Found unknown code, bail out. */
196 #ifdef USE_PROC_FS /* Target dependent support for /proc */
198 #include <sys/procfs.h>
200 /* The /proc interface divides the target machine's register set up into
201 two different sets, the general register set (gregset) and the floating
202 point register set (fpregset). For each set, there is an ioctl to get
203 the current register set and another ioctl to set the current values.
205 The actual structure passed through the ioctl interface is, of course,
206 naturally machine dependent, and is different for each set of registers.
207 For the m68k for example, the general register set is typically defined
210 typedef int gregset_t[18];
216 and the floating point set by:
218 typedef struct fpregset {
222 int f_fpregs[8][3]; (8 regs, 96 bits each)
225 These routines provide the packing and unpacking of gregset_t and
226 fpregset_t formatted data.
231 /* Given a pointer to a general register set in /proc format (gregset_t *),
232 unpack the register contents and supply them as gdb's idea of the current
236 supply_gregset (gregsetp)
240 register greg_t *regp = (greg_t *) gregsetp;
242 for (regi = 0 ; regi < R_PC ; regi++)
244 supply_register (regi, (char *) (regp + regi));
246 supply_register (PS_REGNUM, (char *) (regp + R_PS));
247 supply_register (PC_REGNUM, (char *) (regp + R_PC));
251 fill_gregset (gregsetp, regno)
256 register greg_t *regp = (greg_t *) gregsetp;
257 extern char registers[];
259 for (regi = 0 ; regi < R_PC ; regi++)
261 if ((regno == -1) || (regno == regi))
263 *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
266 if ((regno == -1) || (regno == PS_REGNUM))
268 *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
270 if ((regno == -1) || (regno == PC_REGNUM))
272 *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
276 #if defined (FP0_REGNUM)
278 /* Given a pointer to a floating point register set in /proc format
279 (fpregset_t *), unpack the register contents and supply them as gdb's
280 idea of the current floating point register values. */
283 supply_fpregset (fpregsetp)
284 fpregset_t *fpregsetp;
289 for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
291 from = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]);
292 supply_register (regi, from);
294 supply_register (FPC_REGNUM, (char *) &(fpregsetp -> f_pcr));
295 supply_register (FPS_REGNUM, (char *) &(fpregsetp -> f_psr));
296 supply_register (FPI_REGNUM, (char *) &(fpregsetp -> f_fpiaddr));
299 /* Given a pointer to a floating point register set in /proc format
300 (fpregset_t *), update the register specified by REGNO from gdb's idea
301 of the current floating point register set. If REGNO is -1, update
305 fill_fpregset (fpregsetp, regno)
306 fpregset_t *fpregsetp;
312 extern char registers[];
314 for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
316 if ((regno == -1) || (regno == regi))
318 from = (char *) ®isters[REGISTER_BYTE (regi)];
319 to = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]);
320 bcopy (from, to, REGISTER_RAW_SIZE (regi));
323 if ((regno == -1) || (regno == FPC_REGNUM))
325 fpregsetp -> f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)];
327 if ((regno == -1) || (regno == FPS_REGNUM))
329 fpregsetp -> f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
331 if ((regno == -1) || (regno == FPI_REGNUM))
333 fpregsetp -> f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)];
337 #endif /* defined (FP0_REGNUM) */
339 #endif /* USE_PROC_FS */
341 #ifdef GET_LONGJMP_TARGET
342 /* Figure out where the longjmp will land. Slurp the args out of the stack.
343 We expect the first arg to be a pointer to the jmp_buf structure from which
344 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
345 This routine returns true on success. */
348 get_longjmp_target(pc)
351 CORE_ADDR sp, jb_addr;
353 sp = read_register(SP_REGNUM);
355 if (target_read_memory(sp + SP_ARG0, /* Offset of first arg on stack */
361 SWAP_TARGET_AND_HOST(&jb_addr, sizeof(CORE_ADDR));
363 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, pc,
367 SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));
371 #endif /* GET_LONGJMP_TARGET */
373 /* Immediately after a function call, return the saved pc before the frame
374 is setup. We check for the common case of being inside of a system call,
375 and if so, we know that Sun pushes the call # on the stack prior to doing
379 m68k_saved_pc_after_call(frame)
380 struct frame_info *frame;
385 op = read_memory_integer (frame->pc, 2);
389 return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
392 return read_memory_integer (read_register (SP_REGNUM), 4);