1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield *next;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type *error_type (char **, struct objfile *);
99 patch_block_stabs (struct pending *, struct pending_stabs *,
102 static void fix_common_block (struct symbol *, int);
104 static int read_type_number (char **, int *);
106 static struct type *read_type (char **, struct objfile *);
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112 static struct type *read_sun_floating_type (char **, int[2],
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117 static struct type *rs6000_builtin_type (int, struct objfile *);
120 read_member_functions (struct field_info *, char **, struct type *,
124 read_struct_fields (struct field_info *, char **, struct type *,
128 read_baseclasses (struct field_info *, char **, struct type *,
132 read_tilde_fields (struct field_info *, char **, struct type *,
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 static int attach_fields_to_type (struct field_info *, struct type *,
140 static struct type *read_struct_type (char **, struct type *,
144 static struct type *read_array_type (char **, struct type *,
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149 static void add_undefined_type (struct type *, int[2]);
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 static char *find_name_end (char *name);
157 static int process_reference (char **string);
159 void stabsread_clear_cache (void);
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1)
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint (&symfile_complaints, "%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
223 int filenum = typenums[0];
224 int index = typenums[1];
227 struct header_file *f;
230 if (filenum == -1) /* -1,-1 is for temporary types. */
233 if (filenum < 0 || filenum >= n_this_object_header_files)
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number "
237 "(%d,%d) out of range at symtab pos %d."),
238 filenum, index, symnum);
246 /* Caller wants address of address of type. We think
247 that negative (rs6k builtin) types will never appear as
248 "lvalues", (nor should they), so we stuff the real type
249 pointer into a temp, and return its address. If referenced,
250 this will do the right thing. */
251 static struct type *temp_type;
253 temp_type = rs6000_builtin_type (index, objfile);
257 /* Type is defined outside of header files.
258 Find it in this object file's type vector. */
259 if (index >= type_vector_length)
261 old_len = type_vector_length;
264 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
265 type_vector = (struct type **)
266 xmalloc (type_vector_length * sizeof (struct type *));
268 while (index >= type_vector_length)
270 type_vector_length *= 2;
272 type_vector = (struct type **)
273 xrealloc ((char *) type_vector,
274 (type_vector_length * sizeof (struct type *)));
275 memset (&type_vector[old_len], 0,
276 (type_vector_length - old_len) * sizeof (struct type *));
278 return (&type_vector[index]);
282 real_filenum = this_object_header_files[filenum];
284 if (real_filenum >= N_HEADER_FILES (objfile))
286 static struct type *temp_type;
288 warning (_("GDB internal error: bad real_filenum"));
291 temp_type = objfile_type (objfile)->builtin_error;
295 f = HEADER_FILES (objfile) + real_filenum;
297 f_orig_length = f->length;
298 if (index >= f_orig_length)
300 while (index >= f->length)
304 f->vector = (struct type **)
305 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
306 memset (&f->vector[f_orig_length], 0,
307 (f->length - f_orig_length) * sizeof (struct type *));
309 return (&f->vector[index]);
313 /* Make sure there is a type allocated for type numbers TYPENUMS
314 and return the type object.
315 This can create an empty (zeroed) type object.
316 TYPENUMS may be (-1, -1) to return a new type object that is not
317 put into the type vector, and so may not be referred to by number. */
320 dbx_alloc_type (int typenums[2], struct objfile *objfile)
322 struct type **type_addr;
324 if (typenums[0] == -1)
326 return (alloc_type (objfile));
329 type_addr = dbx_lookup_type (typenums, objfile);
331 /* If we are referring to a type not known at all yet,
332 allocate an empty type for it.
333 We will fill it in later if we find out how. */
336 *type_addr = alloc_type (objfile);
342 /* for all the stabs in a given stab vector, build appropriate types
343 and fix their symbols in given symbol vector. */
346 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
347 struct objfile *objfile)
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
359 for (ii = 0; ii < stabs->count; ++ii)
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
367 pp = (char *) strchr (pp, ':');
369 sym = find_symbol_in_list (symbols, name, pp - name);
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
400 lookup_function_type (read_type (&pp, objfile));
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 add_symbol_to_list (sym, &global_symbols);
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
414 lookup_function_type (read_type (&pp, objfile));
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
432 Returns 0 for success, -1 for error. */
435 read_type_number (char **pp, int *typenums)
442 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
445 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
452 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
460 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
461 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
462 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
463 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
465 /* Structure for storing pointers to reference definitions for fast lookup
466 during "process_later". */
475 #define MAX_CHUNK_REFS 100
476 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
477 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
479 static struct ref_map *ref_map;
481 /* Ptr to free cell in chunk's linked list. */
482 static int ref_count = 0;
484 /* Number of chunks malloced. */
485 static int ref_chunk = 0;
487 /* This file maintains a cache of stabs aliases found in the symbol
488 table. If the symbol table changes, this cache must be cleared
489 or we are left holding onto data in invalid obstacks. */
491 stabsread_clear_cache (void)
497 /* Create array of pointers mapping refids to symbols and stab strings.
498 Add pointers to reference definition symbols and/or their values as we
499 find them, using their reference numbers as our index.
500 These will be used later when we resolve references. */
502 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
506 if (refnum >= ref_count)
507 ref_count = refnum + 1;
508 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
510 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
511 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
513 ref_map = (struct ref_map *)
514 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
515 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
516 new_chunks * REF_CHUNK_SIZE);
517 ref_chunk += new_chunks;
519 ref_map[refnum].stabs = stabs;
520 ref_map[refnum].sym = sym;
521 ref_map[refnum].value = value;
524 /* Return defined sym for the reference REFNUM. */
526 ref_search (int refnum)
528 if (refnum < 0 || refnum > ref_count)
530 return ref_map[refnum].sym;
533 /* Parse a reference id in STRING and return the resulting
534 reference number. Move STRING beyond the reference id. */
537 process_reference (char **string)
545 /* Advance beyond the initial '#'. */
548 /* Read number as reference id. */
549 while (*p && isdigit (*p))
551 refnum = refnum * 10 + *p - '0';
558 /* If STRING defines a reference, store away a pointer to the reference
559 definition for later use. Return the reference number. */
562 symbol_reference_defined (char **string)
567 refnum = process_reference (&p);
569 /* Defining symbols end in '=' */
572 /* Symbol is being defined here. */
578 /* Must be a reference. Either the symbol has already been defined,
579 or this is a forward reference to it. */
586 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
588 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
590 if (regno >= gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
593 reg_value_complaint (regno,
594 gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch),
596 SYMBOL_PRINT_NAME (sym));
598 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
604 static const struct symbol_register_ops stab_register_funcs = {
609 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 struct objfile *objfile)
612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
614 char *p = (char *) find_name_end (string);
618 char *new_name = NULL;
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
627 /* Ignore syms with empty names. */
631 /* Ignore old-style symbols from cc -go */
641 /* If a nameless stab entry, all we need is the type, not the symbol.
642 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
643 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
645 current_symbol = sym = (struct symbol *)
646 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
647 memset (sym, 0, sizeof (struct symbol));
649 switch (type & N_TYPE)
652 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
655 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
658 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
662 if (processing_gcc_compilation)
664 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
665 number of bytes occupied by a type or object, which we ignore. */
666 SYMBOL_LINE (sym) = desc;
670 SYMBOL_LINE (sym) = 0; /* unknown */
673 if (is_cplus_marker (string[0]))
675 /* Special GNU C++ names. */
679 SYMBOL_SET_LINKAGE_NAME (sym, "this");
682 case 'v': /* $vtbl_ptr_type */
686 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
690 /* This was an anonymous type that was never fixed up. */
694 /* SunPRO (3.0 at least) static variable encoding. */
695 if (gdbarch_static_transform_name_p (gdbarch))
697 /* ... fall through ... */
700 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
702 goto normal; /* Do *something* with it */
708 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
709 if (SYMBOL_LANGUAGE (sym) == language_cplus)
711 char *name = alloca (p - string + 1);
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
717 if (new_name != NULL)
719 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
723 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
725 if (SYMBOL_LANGUAGE (sym) == language_cplus)
726 cp_scan_for_anonymous_namespaces (sym);
731 /* Determine the type of name being defined. */
733 /* Getting GDB to correctly skip the symbol on an undefined symbol
734 descriptor and not ever dump core is a very dodgy proposition if
735 we do things this way. I say the acorn RISC machine can just
736 fix their compiler. */
737 /* The Acorn RISC machine's compiler can put out locals that don't
738 start with "234=" or "(3,4)=", so assume anything other than the
739 deftypes we know how to handle is a local. */
740 if (!strchr ("cfFGpPrStTvVXCR", *p))
742 if (isdigit (*p) || *p == '(' || *p == '-')
751 /* c is a special case, not followed by a type-number.
752 SYMBOL:c=iVALUE for an integer constant symbol.
753 SYMBOL:c=rVALUE for a floating constant symbol.
754 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
755 e.g. "b:c=e6,0" for "const b = blob1"
756 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
759 SYMBOL_CLASS (sym) = LOC_CONST;
760 SYMBOL_TYPE (sym) = error_type (&p, objfile);
761 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
762 add_symbol_to_list (sym, &file_symbols);
772 struct type *dbl_type;
774 /* FIXME-if-picky-about-floating-accuracy: Should be using
775 target arithmetic to get the value. real.c in GCC
776 probably has the necessary code. */
778 dbl_type = objfile_type (objfile)->builtin_double;
780 obstack_alloc (&objfile->objfile_obstack,
781 TYPE_LENGTH (dbl_type));
782 store_typed_floating (dbl_valu, dbl_type, d);
784 SYMBOL_TYPE (sym) = dbl_type;
785 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
786 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
791 /* Defining integer constants this way is kind of silly,
792 since 'e' constants allows the compiler to give not
793 only the value, but the type as well. C has at least
794 int, long, unsigned int, and long long as constant
795 types; other languages probably should have at least
796 unsigned as well as signed constants. */
798 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
799 SYMBOL_VALUE (sym) = atoi (p);
800 SYMBOL_CLASS (sym) = LOC_CONST;
806 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
807 SYMBOL_VALUE (sym) = atoi (p);
808 SYMBOL_CLASS (sym) = LOC_CONST;
814 struct type *range_type;
817 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
818 gdb_byte *string_value;
820 if (quote != '\'' && quote != '"')
822 SYMBOL_CLASS (sym) = LOC_CONST;
823 SYMBOL_TYPE (sym) = error_type (&p, objfile);
824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
825 add_symbol_to_list (sym, &file_symbols);
829 /* Find matching quote, rejecting escaped quotes. */
830 while (*p && *p != quote)
832 if (*p == '\\' && p[1] == quote)
834 string_local[ind] = (gdb_byte) quote;
840 string_local[ind] = (gdb_byte) (*p);
847 SYMBOL_CLASS (sym) = LOC_CONST;
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
854 /* NULL terminate the string. */
855 string_local[ind] = 0;
857 = create_range_type (NULL,
858 objfile_type (objfile)->builtin_int,
860 SYMBOL_TYPE (sym) = create_array_type (NULL,
861 objfile_type (objfile)->builtin_char,
863 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
864 memcpy (string_value, string_local, ind + 1);
867 SYMBOL_VALUE_BYTES (sym) = string_value;
868 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
873 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
874 can be represented as integral.
875 e.g. "b:c=e6,0" for "const b = blob1"
876 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
878 SYMBOL_CLASS (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = read_type (&p, objfile);
883 SYMBOL_TYPE (sym) = error_type (&p, objfile);
888 /* If the value is too big to fit in an int (perhaps because
889 it is unsigned), or something like that, we silently get
890 a bogus value. The type and everything else about it is
891 correct. Ideally, we should be using whatever we have
892 available for parsing unsigned and long long values,
894 SYMBOL_VALUE (sym) = atoi (p);
899 SYMBOL_CLASS (sym) = LOC_CONST;
900 SYMBOL_TYPE (sym) = error_type (&p, objfile);
903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
904 add_symbol_to_list (sym, &file_symbols);
908 /* The name of a caught exception. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_LABEL;
911 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
912 SYMBOL_VALUE_ADDRESS (sym) = valu;
913 add_symbol_to_list (sym, &local_symbols);
917 /* A static function definition. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_CLASS (sym) = LOC_BLOCK;
920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
921 add_symbol_to_list (sym, &file_symbols);
922 /* fall into process_function_types. */
924 process_function_types:
925 /* Function result types are described as the result type in stabs.
926 We need to convert this to the function-returning-type-X type
927 in GDB. E.g. "int" is converted to "function returning int". */
928 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
929 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
931 /* All functions in C++ have prototypes. Stabs does not offer an
932 explicit way to identify prototyped or unprototyped functions,
933 but both GCC and Sun CC emit stabs for the "call-as" type rather
934 than the "declared-as" type for unprototyped functions, so
935 we treat all functions as if they were prototyped. This is used
936 primarily for promotion when calling the function from GDB. */
937 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
939 /* fall into process_prototype_types */
941 process_prototype_types:
942 /* Sun acc puts declared types of arguments here. */
945 struct type *ftype = SYMBOL_TYPE (sym);
950 /* Obtain a worst case guess for the number of arguments
951 by counting the semicolons. */
958 /* Allocate parameter information fields and fill them in. */
959 TYPE_FIELDS (ftype) = (struct field *)
960 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
965 /* A type number of zero indicates the start of varargs.
966 FIXME: GDB currently ignores vararg functions. */
967 if (p[0] == '0' && p[1] == '\0')
969 ptype = read_type (&p, objfile);
971 /* The Sun compilers mark integer arguments, which should
972 be promoted to the width of the calling conventions, with
973 a type which references itself. This type is turned into
974 a TYPE_CODE_VOID type by read_type, and we have to turn
975 it back into builtin_int here.
976 FIXME: Do we need a new builtin_promoted_int_arg ? */
977 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
978 ptype = objfile_type (objfile)->builtin_int;
979 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
980 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
982 TYPE_NFIELDS (ftype) = nparams;
983 TYPE_PROTOTYPED (ftype) = 1;
988 /* A global function definition. */
989 SYMBOL_TYPE (sym) = read_type (&p, objfile);
990 SYMBOL_CLASS (sym) = LOC_BLOCK;
991 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
992 add_symbol_to_list (sym, &global_symbols);
993 goto process_function_types;
996 /* For a class G (global) symbol, it appears that the
997 value is not correct. It is necessary to search for the
998 corresponding linker definition to find the value.
999 These definitions appear at the end of the namelist. */
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 SYMBOL_CLASS (sym) = LOC_STATIC;
1002 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1003 /* Don't add symbol references to global_sym_chain.
1004 Symbol references don't have valid names and wont't match up with
1005 minimal symbols when the global_sym_chain is relocated.
1006 We'll fixup symbol references when we fixup the defining symbol. */
1007 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1009 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1010 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1011 global_sym_chain[i] = sym;
1013 add_symbol_to_list (sym, &global_symbols);
1016 /* This case is faked by a conditional above,
1017 when there is no code letter in the dbx data.
1018 Dbx data never actually contains 'l'. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_CLASS (sym) = LOC_LOCAL;
1023 SYMBOL_VALUE (sym) = valu;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, &local_symbols);
1030 /* pF is a two-letter code that means a function parameter in Fortran.
1031 The type-number specifies the type of the return value.
1032 Translate it into a pointer-to-function type. */
1036 = lookup_pointer_type
1037 (lookup_function_type (read_type (&p, objfile)));
1040 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1042 SYMBOL_CLASS (sym) = LOC_ARG;
1043 SYMBOL_VALUE (sym) = valu;
1044 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1045 SYMBOL_IS_ARGUMENT (sym) = 1;
1046 add_symbol_to_list (sym, &local_symbols);
1048 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1050 /* On little-endian machines, this crud is never necessary,
1051 and, if the extra bytes contain garbage, is harmful. */
1055 /* If it's gcc-compiled, if it says `short', believe it. */
1056 if (processing_gcc_compilation
1057 || gdbarch_believe_pcc_promotion (gdbarch))
1060 if (!gdbarch_believe_pcc_promotion (gdbarch))
1062 /* If PCC says a parameter is a short or a char, it is
1064 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1065 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1066 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1069 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1070 ? objfile_type (objfile)->builtin_unsigned_int
1071 : objfile_type (objfile)->builtin_int;
1077 /* acc seems to use P to declare the prototypes of functions that
1078 are referenced by this file. gdb is not prepared to deal
1079 with this extra information. FIXME, it ought to. */
1082 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1083 goto process_prototype_types;
1088 /* Parameter which is in a register. */
1089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1090 SYMBOL_CLASS (sym) = LOC_REGISTER;
1091 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1092 SYMBOL_IS_ARGUMENT (sym) = 1;
1093 SYMBOL_VALUE (sym) = valu;
1094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1095 add_symbol_to_list (sym, &local_symbols);
1099 /* Register variable (either global or local). */
1100 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1101 SYMBOL_CLASS (sym) = LOC_REGISTER;
1102 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1103 SYMBOL_VALUE (sym) = valu;
1104 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1105 if (within_function)
1107 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1108 the same name to represent an argument passed in a
1109 register. GCC uses 'P' for the same case. So if we find
1110 such a symbol pair we combine it into one 'P' symbol.
1111 For Sun cc we need to do this regardless of
1112 stabs_argument_has_addr, because the compiler puts out
1113 the 'p' symbol even if it never saves the argument onto
1116 On most machines, we want to preserve both symbols, so
1117 that we can still get information about what is going on
1118 with the stack (VAX for computing args_printed, using
1119 stack slots instead of saved registers in backtraces,
1122 Note that this code illegally combines
1123 main(argc) struct foo argc; { register struct foo argc; }
1124 but this case is considered pathological and causes a warning
1125 from a decent compiler. */
1128 && local_symbols->nsyms > 0
1129 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1131 struct symbol *prev_sym;
1133 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1134 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1135 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1136 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1137 SYMBOL_LINKAGE_NAME (sym)) == 0)
1139 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1140 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1141 /* Use the type from the LOC_REGISTER; that is the type
1142 that is actually in that register. */
1143 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1144 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1149 add_symbol_to_list (sym, &local_symbols);
1152 add_symbol_to_list (sym, &file_symbols);
1156 /* Static symbol at top level of file */
1157 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1158 SYMBOL_CLASS (sym) = LOC_STATIC;
1159 SYMBOL_VALUE_ADDRESS (sym) = valu;
1160 if (gdbarch_static_transform_name_p (gdbarch)
1161 && gdbarch_static_transform_name (gdbarch,
1162 SYMBOL_LINKAGE_NAME (sym))
1163 != SYMBOL_LINKAGE_NAME (sym))
1165 struct minimal_symbol *msym;
1167 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1171 char *new_name = gdbarch_static_transform_name
1172 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1174 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1175 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1178 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1179 add_symbol_to_list (sym, &file_symbols);
1183 /* In Ada, there is no distinction between typedef and non-typedef;
1184 any type declaration implicitly has the equivalent of a typedef,
1185 and thus 't' is in fact equivalent to 'Tt'.
1187 Therefore, for Ada units, we check the character immediately
1188 before the 't', and if we do not find a 'T', then make sure to
1189 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1190 will be stored in the VAR_DOMAIN). If the symbol was indeed
1191 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1192 elsewhere, so we don't need to take care of that.
1194 This is important to do, because of forward references:
1195 The cleanup of undefined types stored in undef_types only uses
1196 STRUCT_DOMAIN symbols to perform the replacement. */
1197 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1200 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1202 /* For a nameless type, we don't want a create a symbol, thus we
1203 did not use `sym'. Return without further processing. */
1207 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1208 SYMBOL_VALUE (sym) = valu;
1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1210 /* C++ vagaries: we may have a type which is derived from
1211 a base type which did not have its name defined when the
1212 derived class was output. We fill in the derived class's
1213 base part member's name here in that case. */
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1215 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1216 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1217 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1221 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1222 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1223 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1224 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1227 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1229 /* gcc-2.6 or later (when using -fvtable-thunks)
1230 emits a unique named type for a vtable entry.
1231 Some gdb code depends on that specific name. */
1232 extern const char vtbl_ptr_name[];
1234 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1235 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1236 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char()
1260 typedef char *caddr_t;
1272 /* Pascal accepts names for pointer types. */
1273 if (current_subfile->language == language_pascal)
1275 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1279 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1282 add_symbol_to_list (sym, &file_symbols);
1286 /* Create the STRUCT_DOMAIN clone. */
1287 struct symbol *struct_sym = (struct symbol *)
1288 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1291 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1292 SYMBOL_VALUE (struct_sym) = valu;
1293 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1294 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1295 TYPE_NAME (SYMBOL_TYPE (sym))
1296 = obconcat (&objfile->objfile_obstack,
1297 SYMBOL_LINKAGE_NAME (sym),
1299 add_symbol_to_list (struct_sym, &file_symbols);
1305 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1306 by 't' which means we are typedef'ing it as well. */
1307 synonym = *p == 't';
1312 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1314 /* For a nameless type, we don't want a create a symbol, thus we
1315 did not use `sym'. Return without further processing. */
1319 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1320 SYMBOL_VALUE (sym) = valu;
1321 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1322 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1323 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1324 = obconcat (&objfile->objfile_obstack,
1325 SYMBOL_LINKAGE_NAME (sym),
1327 add_symbol_to_list (sym, &file_symbols);
1331 /* Clone the sym and then modify it. */
1332 struct symbol *typedef_sym = (struct symbol *)
1333 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1335 *typedef_sym = *sym;
1336 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1337 SYMBOL_VALUE (typedef_sym) = valu;
1338 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1339 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1340 TYPE_NAME (SYMBOL_TYPE (sym))
1341 = obconcat (&objfile->objfile_obstack,
1342 SYMBOL_LINKAGE_NAME (sym),
1344 add_symbol_to_list (typedef_sym, &file_symbols);
1349 /* Static symbol of local scope */
1350 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1351 SYMBOL_CLASS (sym) = LOC_STATIC;
1352 SYMBOL_VALUE_ADDRESS (sym) = valu;
1353 if (gdbarch_static_transform_name_p (gdbarch)
1354 && gdbarch_static_transform_name (gdbarch,
1355 SYMBOL_LINKAGE_NAME (sym))
1356 != SYMBOL_LINKAGE_NAME (sym))
1358 struct minimal_symbol *msym;
1360 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1364 char *new_name = gdbarch_static_transform_name
1365 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1367 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1368 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1371 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1372 add_symbol_to_list (sym, &local_symbols);
1376 /* Reference parameter */
1377 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1378 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1379 SYMBOL_IS_ARGUMENT (sym) = 1;
1380 SYMBOL_VALUE (sym) = valu;
1381 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1382 add_symbol_to_list (sym, &local_symbols);
1386 /* Reference parameter which is in a register. */
1387 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1388 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1389 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1390 SYMBOL_IS_ARGUMENT (sym) = 1;
1391 SYMBOL_VALUE (sym) = valu;
1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1393 add_symbol_to_list (sym, &local_symbols);
1397 /* This is used by Sun FORTRAN for "function result value".
1398 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1399 that Pascal uses it too, but when I tried it Pascal used
1400 "x:3" (local symbol) instead. */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_CLASS (sym) = LOC_LOCAL;
1403 SYMBOL_VALUE (sym) = valu;
1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1405 add_symbol_to_list (sym, &local_symbols);
1409 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1410 SYMBOL_CLASS (sym) = LOC_CONST;
1411 SYMBOL_VALUE (sym) = 0;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, &file_symbols);
1417 /* Some systems pass variables of certain types by reference instead
1418 of by value, i.e. they will pass the address of a structure (in a
1419 register or on the stack) instead of the structure itself. */
1421 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1422 && SYMBOL_IS_ARGUMENT (sym))
1424 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1425 variables passed in a register). */
1426 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1427 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1428 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1429 and subsequent arguments on SPARC, for example). */
1430 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1431 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1437 /* Skip rest of this symbol and return an error type.
1439 General notes on error recovery: error_type always skips to the
1440 end of the symbol (modulo cretinous dbx symbol name continuation).
1441 Thus code like this:
1443 if (*(*pp)++ != ';')
1444 return error_type (pp, objfile);
1446 is wrong because if *pp starts out pointing at '\0' (typically as the
1447 result of an earlier error), it will be incremented to point to the
1448 start of the next symbol, which might produce strange results, at least
1449 if you run off the end of the string table. Instead use
1452 return error_type (pp, objfile);
1458 foo = error_type (pp, objfile);
1462 And in case it isn't obvious, the point of all this hair is so the compiler
1463 can define new types and new syntaxes, and old versions of the
1464 debugger will be able to read the new symbol tables. */
1466 static struct type *
1467 error_type (char **pp, struct objfile *objfile)
1469 complaint (&symfile_complaints,
1470 _("couldn't parse type; debugger out of date?"));
1473 /* Skip to end of symbol. */
1474 while (**pp != '\0')
1479 /* Check for and handle cretinous dbx symbol name continuation! */
1480 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1482 *pp = next_symbol_text (objfile);
1489 return objfile_type (objfile)->builtin_error;
1493 /* Read type information or a type definition; return the type. Even
1494 though this routine accepts either type information or a type
1495 definition, the distinction is relevant--some parts of stabsread.c
1496 assume that type information starts with a digit, '-', or '(' in
1497 deciding whether to call read_type. */
1499 static struct type *
1500 read_type (char **pp, struct objfile *objfile)
1502 struct type *type = 0;
1505 char type_descriptor;
1507 /* Size in bits of type if specified by a type attribute, or -1 if
1508 there is no size attribute. */
1511 /* Used to distinguish string and bitstring from char-array and set. */
1514 /* Used to distinguish vector from array. */
1517 /* Read type number if present. The type number may be omitted.
1518 for instance in a two-dimensional array declared with type
1519 "ar1;1;10;ar1;1;10;4". */
1520 if ((**pp >= '0' && **pp <= '9')
1524 if (read_type_number (pp, typenums) != 0)
1525 return error_type (pp, objfile);
1529 /* Type is not being defined here. Either it already
1530 exists, or this is a forward reference to it.
1531 dbx_alloc_type handles both cases. */
1532 type = dbx_alloc_type (typenums, objfile);
1534 /* If this is a forward reference, arrange to complain if it
1535 doesn't get patched up by the time we're done
1537 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1538 add_undefined_type (type, typenums);
1543 /* Type is being defined here. */
1545 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 /* 'typenums=' not present, type is anonymous. Read and return
1551 the definition, but don't put it in the type vector. */
1552 typenums[0] = typenums[1] = -1;
1557 type_descriptor = (*pp)[-1];
1558 switch (type_descriptor)
1562 enum type_code code;
1564 /* Used to index through file_symbols. */
1565 struct pending *ppt;
1568 /* Name including "struct", etc. */
1572 char *from, *to, *p, *q1, *q2;
1574 /* Set the type code according to the following letter. */
1578 code = TYPE_CODE_STRUCT;
1581 code = TYPE_CODE_UNION;
1584 code = TYPE_CODE_ENUM;
1588 /* Complain and keep going, so compilers can invent new
1589 cross-reference types. */
1590 complaint (&symfile_complaints,
1591 _("Unrecognized cross-reference type `%c'"),
1593 code = TYPE_CODE_STRUCT;
1598 q1 = strchr (*pp, '<');
1599 p = strchr (*pp, ':');
1601 return error_type (pp, objfile);
1602 if (q1 && p > q1 && p[1] == ':')
1604 int nesting_level = 0;
1606 for (q2 = q1; *q2; q2++)
1610 else if (*q2 == '>')
1612 else if (*q2 == ':' && nesting_level == 0)
1617 return error_type (pp, objfile);
1620 if (current_subfile->language == language_cplus)
1622 char *new_name, *name = alloca (p - *pp + 1);
1624 memcpy (name, *pp, p - *pp);
1625 name[p - *pp] = '\0';
1626 new_name = cp_canonicalize_string (name);
1627 if (new_name != NULL)
1629 type_name = obsavestring (new_name, strlen (new_name),
1630 &objfile->objfile_obstack);
1634 if (type_name == NULL)
1636 to = type_name = (char *)
1637 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1639 /* Copy the name. */
1646 /* Set the pointer ahead of the name which we just read, and
1651 /* If this type has already been declared, then reuse the same
1652 type, rather than allocating a new one. This saves some
1655 for (ppt = file_symbols; ppt; ppt = ppt->next)
1656 for (i = 0; i < ppt->nsyms; i++)
1658 struct symbol *sym = ppt->symbol[i];
1660 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1661 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1662 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1663 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1665 obstack_free (&objfile->objfile_obstack, type_name);
1666 type = SYMBOL_TYPE (sym);
1667 if (typenums[0] != -1)
1668 *dbx_lookup_type (typenums, objfile) = type;
1673 /* Didn't find the type to which this refers, so we must
1674 be dealing with a forward reference. Allocate a type
1675 structure for it, and keep track of it so we can
1676 fill in the rest of the fields when we get the full
1678 type = dbx_alloc_type (typenums, objfile);
1679 TYPE_CODE (type) = code;
1680 TYPE_TAG_NAME (type) = type_name;
1681 INIT_CPLUS_SPECIFIC (type);
1682 TYPE_STUB (type) = 1;
1684 add_undefined_type (type, typenums);
1688 case '-': /* RS/6000 built-in type */
1702 /* We deal with something like t(1,2)=(3,4)=... which
1703 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1705 /* Allocate and enter the typedef type first.
1706 This handles recursive types. */
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1710 struct type *xtype = read_type (pp, objfile);
1714 /* It's being defined as itself. That means it is "void". */
1715 TYPE_CODE (type) = TYPE_CODE_VOID;
1716 TYPE_LENGTH (type) = 1;
1718 else if (type_size >= 0 || is_string)
1720 /* This is the absolute wrong way to construct types. Every
1721 other debug format has found a way around this problem and
1722 the related problems with unnecessarily stubbed types;
1723 someone motivated should attempt to clean up the issue
1724 here as well. Once a type pointed to has been created it
1725 should not be modified.
1727 Well, it's not *absolutely* wrong. Constructing recursive
1728 types (trees, linked lists) necessarily entails modifying
1729 types after creating them. Constructing any loop structure
1730 entails side effects. The Dwarf 2 reader does handle this
1731 more gracefully (it never constructs more than once
1732 instance of a type object, so it doesn't have to copy type
1733 objects wholesale), but it still mutates type objects after
1734 other folks have references to them.
1736 Keep in mind that this circularity/mutation issue shows up
1737 at the source language level, too: C's "incomplete types",
1738 for example. So the proper cleanup, I think, would be to
1739 limit GDB's type smashing to match exactly those required
1740 by the source language. So GDB could have a
1741 "complete_this_type" function, but never create unnecessary
1742 copies of a type otherwise. */
1743 replace_type (type, xtype);
1744 TYPE_NAME (type) = NULL;
1745 TYPE_TAG_NAME (type) = NULL;
1749 TYPE_TARGET_STUB (type) = 1;
1750 TYPE_TARGET_TYPE (type) = xtype;
1755 /* In the following types, we must be sure to overwrite any existing
1756 type that the typenums refer to, rather than allocating a new one
1757 and making the typenums point to the new one. This is because there
1758 may already be pointers to the existing type (if it had been
1759 forward-referenced), and we must change it to a pointer, function,
1760 reference, or whatever, *in-place*. */
1762 case '*': /* Pointer to another type */
1763 type1 = read_type (pp, objfile);
1764 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1767 case '&': /* Reference to another type */
1768 type1 = read_type (pp, objfile);
1769 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1772 case 'f': /* Function returning another type */
1773 type1 = read_type (pp, objfile);
1774 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1777 case 'g': /* Prototyped function. (Sun) */
1779 /* Unresolved questions:
1781 - According to Sun's ``STABS Interface Manual'', for 'f'
1782 and 'F' symbol descriptors, a `0' in the argument type list
1783 indicates a varargs function. But it doesn't say how 'g'
1784 type descriptors represent that info. Someone with access
1785 to Sun's toolchain should try it out.
1787 - According to the comment in define_symbol (search for
1788 `process_prototype_types:'), Sun emits integer arguments as
1789 types which ref themselves --- like `void' types. Do we
1790 have to deal with that here, too? Again, someone with
1791 access to Sun's toolchain should try it out and let us
1794 const char *type_start = (*pp) - 1;
1795 struct type *return_type = read_type (pp, objfile);
1796 struct type *func_type
1797 = make_function_type (return_type,
1798 dbx_lookup_type (typenums, objfile));
1801 struct type_list *next;
1805 while (**pp && **pp != '#')
1807 struct type *arg_type = read_type (pp, objfile);
1808 struct type_list *new = alloca (sizeof (*new));
1809 new->type = arg_type;
1810 new->next = arg_types;
1818 complaint (&symfile_complaints,
1819 _("Prototyped function type didn't "
1820 "end arguments with `#':\n%s"),
1824 /* If there is just one argument whose type is `void', then
1825 that's just an empty argument list. */
1827 && ! arg_types->next
1828 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1831 TYPE_FIELDS (func_type)
1832 = (struct field *) TYPE_ALLOC (func_type,
1833 num_args * sizeof (struct field));
1834 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1837 struct type_list *t;
1839 /* We stuck each argument type onto the front of the list
1840 when we read it, so the list is reversed. Build the
1841 fields array right-to-left. */
1842 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1843 TYPE_FIELD_TYPE (func_type, i) = t->type;
1845 TYPE_NFIELDS (func_type) = num_args;
1846 TYPE_PROTOTYPED (func_type) = 1;
1852 case 'k': /* Const qualifier on some type (Sun) */
1853 type = read_type (pp, objfile);
1854 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1855 dbx_lookup_type (typenums, objfile));
1858 case 'B': /* Volatile qual on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (TYPE_CONST (type), 1, type,
1861 dbx_lookup_type (typenums, objfile));
1865 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1866 { /* Member (class & variable) type */
1867 /* FIXME -- we should be doing smash_to_XXX types here. */
1869 struct type *domain = read_type (pp, objfile);
1870 struct type *memtype;
1873 /* Invalid member type data format. */
1874 return error_type (pp, objfile);
1877 memtype = read_type (pp, objfile);
1878 type = dbx_alloc_type (typenums, objfile);
1879 smash_to_memberptr_type (type, domain, memtype);
1882 /* type attribute */
1886 /* Skip to the semicolon. */
1887 while (**pp != ';' && **pp != '\0')
1890 return error_type (pp, objfile);
1892 ++ * pp; /* Skip the semicolon. */
1896 case 's': /* Size attribute */
1897 type_size = atoi (attr + 1);
1902 case 'S': /* String attribute */
1903 /* FIXME: check to see if following type is array? */
1907 case 'V': /* Vector attribute */
1908 /* FIXME: check to see if following type is array? */
1913 /* Ignore unrecognized type attributes, so future compilers
1914 can invent new ones. */
1922 case '#': /* Method (class & fn) type */
1923 if ((*pp)[0] == '#')
1925 /* We'll get the parameter types from the name. */
1926 struct type *return_type;
1929 return_type = read_type (pp, objfile);
1930 if (*(*pp)++ != ';')
1931 complaint (&symfile_complaints,
1932 _("invalid (minimal) member type "
1933 "data format at symtab pos %d."),
1935 type = allocate_stub_method (return_type);
1936 if (typenums[0] != -1)
1937 *dbx_lookup_type (typenums, objfile) = type;
1941 struct type *domain = read_type (pp, objfile);
1942 struct type *return_type;
1947 /* Invalid member type data format. */
1948 return error_type (pp, objfile);
1952 return_type = read_type (pp, objfile);
1953 args = read_args (pp, ';', objfile, &nargs, &varargs);
1955 return error_type (pp, objfile);
1956 type = dbx_alloc_type (typenums, objfile);
1957 smash_to_method_type (type, domain, return_type, args,
1962 case 'r': /* Range type */
1963 type = read_range_type (pp, typenums, type_size, objfile);
1964 if (typenums[0] != -1)
1965 *dbx_lookup_type (typenums, objfile) = type;
1970 /* Sun ACC builtin int type */
1971 type = read_sun_builtin_type (pp, typenums, objfile);
1972 if (typenums[0] != -1)
1973 *dbx_lookup_type (typenums, objfile) = type;
1977 case 'R': /* Sun ACC builtin float type */
1978 type = read_sun_floating_type (pp, typenums, objfile);
1979 if (typenums[0] != -1)
1980 *dbx_lookup_type (typenums, objfile) = type;
1983 case 'e': /* Enumeration type */
1984 type = dbx_alloc_type (typenums, objfile);
1985 type = read_enum_type (pp, type, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1990 case 's': /* Struct type */
1991 case 'u': /* Union type */
1993 enum type_code type_code = TYPE_CODE_UNDEF;
1994 type = dbx_alloc_type (typenums, objfile);
1995 switch (type_descriptor)
1998 type_code = TYPE_CODE_STRUCT;
2001 type_code = TYPE_CODE_UNION;
2004 type = read_struct_type (pp, type, type_code, objfile);
2008 case 'a': /* Array type */
2010 return error_type (pp, objfile);
2013 type = dbx_alloc_type (typenums, objfile);
2014 type = read_array_type (pp, type, objfile);
2016 TYPE_CODE (type) = TYPE_CODE_STRING;
2018 make_vector_type (type);
2021 case 'S': /* Set or bitstring type */
2022 type1 = read_type (pp, objfile);
2023 type = create_set_type ((struct type *) NULL, type1);
2025 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2026 if (typenums[0] != -1)
2027 *dbx_lookup_type (typenums, objfile) = type;
2031 --*pp; /* Go back to the symbol in error */
2032 /* Particularly important if it was \0! */
2033 return error_type (pp, objfile);
2038 warning (_("GDB internal error, type is NULL in stabsread.c."));
2039 return error_type (pp, objfile);
2042 /* Size specified in a type attribute overrides any other size. */
2043 if (type_size != -1)
2044 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2050 Return the proper type node for a given builtin type number. */
2052 static const struct objfile_data *rs6000_builtin_type_data;
2054 static struct type *
2055 rs6000_builtin_type (int typenum, struct objfile *objfile)
2057 struct type **negative_types = objfile_data (objfile,
2058 rs6000_builtin_type_data);
2060 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2061 #define NUMBER_RECOGNIZED 34
2062 struct type *rettype = NULL;
2064 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2066 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2067 return objfile_type (objfile)->builtin_error;
2070 if (!negative_types)
2072 /* This includes an empty slot for type number -0. */
2073 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2074 NUMBER_RECOGNIZED + 1, struct type *);
2075 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2078 if (negative_types[-typenum] != NULL)
2079 return negative_types[-typenum];
2081 #if TARGET_CHAR_BIT != 8
2082 #error This code wrong for TARGET_CHAR_BIT not 8
2083 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2084 that if that ever becomes not true, the correct fix will be to
2085 make the size in the struct type to be in bits, not in units of
2092 /* The size of this and all the other types are fixed, defined
2093 by the debugging format. If there is a type called "int" which
2094 is other than 32 bits, then it should use a new negative type
2095 number (or avoid negative type numbers for that case).
2096 See stabs.texinfo. */
2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2100 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2103 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2106 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2109 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2110 "unsigned char", objfile);
2113 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2116 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2117 "unsigned short", objfile);
2120 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2121 "unsigned int", objfile);
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2125 "unsigned", objfile);
2127 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2128 "unsigned long", objfile);
2131 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2134 /* IEEE single precision (32 bit). */
2135 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2138 /* IEEE double precision (64 bit). */
2139 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2142 /* This is an IEEE double on the RS/6000, and different machines with
2143 different sizes for "long double" should use different negative
2144 type numbers. See stabs.texinfo. */
2145 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2148 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2151 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2152 "boolean", objfile);
2155 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2158 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2161 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2164 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2165 "character", objfile);
2168 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2169 "logical*1", objfile);
2172 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2173 "logical*2", objfile);
2176 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2177 "logical*4", objfile);
2180 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2181 "logical", objfile);
2184 /* Complex type consisting of two IEEE single precision values. */
2185 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2186 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2190 /* Complex type consisting of two IEEE double precision values. */
2191 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2192 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2196 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2199 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2202 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2205 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2208 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2211 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2212 "unsigned long long", objfile);
2215 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2216 "logical*8", objfile);
2219 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2222 negative_types[-typenum] = rettype;
2226 /* This page contains subroutines of read_type. */
2228 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2231 update_method_name_from_physname (char **old_name, char *physname)
2235 method_name = method_name_from_physname (physname);
2237 if (method_name == NULL)
2239 complaint (&symfile_complaints,
2240 _("Method has bad physname %s\n"), physname);
2244 if (strcmp (*old_name, method_name) != 0)
2247 *old_name = method_name;
2250 xfree (method_name);
2253 /* Read member function stabs info for C++ classes. The form of each member
2256 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2258 An example with two member functions is:
2260 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2262 For the case of overloaded operators, the format is op$::*.funcs, where
2263 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2264 name (such as `+=') and `.' marks the end of the operator name.
2266 Returns 1 for success, 0 for failure. */
2269 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2270 struct objfile *objfile)
2274 /* Total number of member functions defined in this class. If the class
2275 defines two `f' functions, and one `g' function, then this will have
2277 int total_length = 0;
2281 struct next_fnfield *next;
2282 struct fn_field fn_field;
2285 struct type *look_ahead_type;
2286 struct next_fnfieldlist *new_fnlist;
2287 struct next_fnfield *new_sublist;
2291 /* Process each list until we find something that is not a member function
2292 or find the end of the functions. */
2296 /* We should be positioned at the start of the function name.
2297 Scan forward to find the first ':' and if it is not the
2298 first of a "::" delimiter, then this is not a member function. */
2310 look_ahead_type = NULL;
2313 new_fnlist = (struct next_fnfieldlist *)
2314 xmalloc (sizeof (struct next_fnfieldlist));
2315 make_cleanup (xfree, new_fnlist);
2316 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2318 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2320 /* This is a completely wierd case. In order to stuff in the
2321 names that might contain colons (the usual name delimiter),
2322 Mike Tiemann defined a different name format which is
2323 signalled if the identifier is "op$". In that case, the
2324 format is "op$::XXXX." where XXXX is the name. This is
2325 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2326 /* This lets the user type "break operator+".
2327 We could just put in "+" as the name, but that wouldn't
2329 static char opname[32] = "op$";
2330 char *o = opname + 3;
2332 /* Skip past '::'. */
2335 STABS_CONTINUE (pp, objfile);
2341 main_fn_name = savestring (opname, o - opname);
2347 main_fn_name = savestring (*pp, p - *pp);
2348 /* Skip past '::'. */
2351 new_fnlist->fn_fieldlist.name = main_fn_name;
2356 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2357 make_cleanup (xfree, new_sublist);
2358 memset (new_sublist, 0, sizeof (struct next_fnfield));
2360 /* Check for and handle cretinous dbx symbol name continuation! */
2361 if (look_ahead_type == NULL)
2364 STABS_CONTINUE (pp, objfile);
2366 new_sublist->fn_field.type = read_type (pp, objfile);
2369 /* Invalid symtab info for member function. */
2375 /* g++ version 1 kludge */
2376 new_sublist->fn_field.type = look_ahead_type;
2377 look_ahead_type = NULL;
2387 /* If this is just a stub, then we don't have the real name here. */
2389 if (TYPE_STUB (new_sublist->fn_field.type))
2391 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2392 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2393 new_sublist->fn_field.is_stub = 1;
2395 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2398 /* Set this member function's visibility fields. */
2401 case VISIBILITY_PRIVATE:
2402 new_sublist->fn_field.is_private = 1;
2404 case VISIBILITY_PROTECTED:
2405 new_sublist->fn_field.is_protected = 1;
2409 STABS_CONTINUE (pp, objfile);
2412 case 'A': /* Normal functions. */
2413 new_sublist->fn_field.is_const = 0;
2414 new_sublist->fn_field.is_volatile = 0;
2417 case 'B': /* `const' member functions. */
2418 new_sublist->fn_field.is_const = 1;
2419 new_sublist->fn_field.is_volatile = 0;
2422 case 'C': /* `volatile' member function. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 1;
2427 case 'D': /* `const volatile' member function. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 1;
2432 case '*': /* File compiled with g++ version 1 --
2438 complaint (&symfile_complaints,
2439 _("const/volatile indicator missing, got '%c'"),
2449 /* virtual member function, followed by index.
2450 The sign bit is set to distinguish pointers-to-methods
2451 from virtual function indicies. Since the array is
2452 in words, the quantity must be shifted left by 1
2453 on 16 bit machine, and by 2 on 32 bit machine, forcing
2454 the sign bit out, and usable as a valid index into
2455 the array. Remove the sign bit here. */
2456 new_sublist->fn_field.voffset =
2457 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2461 STABS_CONTINUE (pp, objfile);
2462 if (**pp == ';' || **pp == '\0')
2464 /* Must be g++ version 1. */
2465 new_sublist->fn_field.fcontext = 0;
2469 /* Figure out from whence this virtual function came.
2470 It may belong to virtual function table of
2471 one of its baseclasses. */
2472 look_ahead_type = read_type (pp, objfile);
2475 /* g++ version 1 overloaded methods. */
2479 new_sublist->fn_field.fcontext = look_ahead_type;
2488 look_ahead_type = NULL;
2494 /* static member function. */
2496 int slen = strlen (main_fn_name);
2498 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2500 /* For static member functions, we can't tell if they
2501 are stubbed, as they are put out as functions, and not as
2503 GCC v2 emits the fully mangled name if
2504 dbxout.c:flag_minimal_debug is not set, so we have to
2505 detect a fully mangled physname here and set is_stub
2506 accordingly. Fully mangled physnames in v2 start with
2507 the member function name, followed by two underscores.
2508 GCC v3 currently always emits stubbed member functions,
2509 but with fully mangled physnames, which start with _Z. */
2510 if (!(strncmp (new_sublist->fn_field.physname,
2511 main_fn_name, slen) == 0
2512 && new_sublist->fn_field.physname[slen] == '_'
2513 && new_sublist->fn_field.physname[slen + 1] == '_'))
2515 new_sublist->fn_field.is_stub = 1;
2522 complaint (&symfile_complaints,
2523 _("member function type missing, got '%c'"),
2525 /* Fall through into normal member function. */
2528 /* normal member function. */
2529 new_sublist->fn_field.voffset = 0;
2530 new_sublist->fn_field.fcontext = 0;
2534 new_sublist->next = sublist;
2535 sublist = new_sublist;
2537 STABS_CONTINUE (pp, objfile);
2539 while (**pp != ';' && **pp != '\0');
2542 STABS_CONTINUE (pp, objfile);
2544 /* Skip GCC 3.X member functions which are duplicates of the callable
2545 constructor/destructor. */
2546 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2547 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2548 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2550 xfree (main_fn_name);
2555 int has_destructor = 0, has_other = 0;
2557 struct next_fnfield *tmp_sublist;
2559 /* Various versions of GCC emit various mostly-useless
2560 strings in the name field for special member functions.
2562 For stub methods, we need to defer correcting the name
2563 until we are ready to unstub the method, because the current
2564 name string is used by gdb_mangle_name. The only stub methods
2565 of concern here are GNU v2 operators; other methods have their
2566 names correct (see caveat below).
2568 For non-stub methods, in GNU v3, we have a complete physname.
2569 Therefore we can safely correct the name now. This primarily
2570 affects constructors and destructors, whose name will be
2571 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2572 operators will also have incorrect names; for instance,
2573 "operator int" will be named "operator i" (i.e. the type is
2576 For non-stub methods in GNU v2, we have no easy way to
2577 know if we have a complete physname or not. For most
2578 methods the result depends on the platform (if CPLUS_MARKER
2579 can be `$' or `.', it will use minimal debug information, or
2580 otherwise the full physname will be included).
2582 Rather than dealing with this, we take a different approach.
2583 For v3 mangled names, we can use the full physname; for v2,
2584 we use cplus_demangle_opname (which is actually v2 specific),
2585 because the only interesting names are all operators - once again
2586 barring the caveat below. Skip this process if any method in the
2587 group is a stub, to prevent our fouling up the workings of
2590 The caveat: GCC 2.95.x (and earlier?) put constructors and
2591 destructors in the same method group. We need to split this
2592 into two groups, because they should have different names.
2593 So for each method group we check whether it contains both
2594 routines whose physname appears to be a destructor (the physnames
2595 for and destructors are always provided, due to quirks in v2
2596 mangling) and routines whose physname does not appear to be a
2597 destructor. If so then we break up the list into two halves.
2598 Even if the constructors and destructors aren't in the same group
2599 the destructor will still lack the leading tilde, so that also
2602 So, to summarize what we expect and handle here:
2604 Given Given Real Real Action
2605 method name physname physname method name
2607 __opi [none] __opi__3Foo operator int opname
2609 Foo _._3Foo _._3Foo ~Foo separate and
2611 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2612 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2615 tmp_sublist = sublist;
2616 while (tmp_sublist != NULL)
2618 if (tmp_sublist->fn_field.is_stub)
2620 if (tmp_sublist->fn_field.physname[0] == '_'
2621 && tmp_sublist->fn_field.physname[1] == 'Z')
2624 if (is_destructor_name (tmp_sublist->fn_field.physname))
2629 tmp_sublist = tmp_sublist->next;
2632 if (has_destructor && has_other)
2634 struct next_fnfieldlist *destr_fnlist;
2635 struct next_fnfield *last_sublist;
2637 /* Create a new fn_fieldlist for the destructors. */
2639 destr_fnlist = (struct next_fnfieldlist *)
2640 xmalloc (sizeof (struct next_fnfieldlist));
2641 make_cleanup (xfree, destr_fnlist);
2642 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2643 destr_fnlist->fn_fieldlist.name
2644 = obconcat (&objfile->objfile_obstack, "~",
2645 new_fnlist->fn_fieldlist.name, (char *) NULL);
2647 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2648 obstack_alloc (&objfile->objfile_obstack,
2649 sizeof (struct fn_field) * has_destructor);
2650 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2651 sizeof (struct fn_field) * has_destructor);
2652 tmp_sublist = sublist;
2653 last_sublist = NULL;
2655 while (tmp_sublist != NULL)
2657 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 tmp_sublist = tmp_sublist->next;
2663 destr_fnlist->fn_fieldlist.fn_fields[i++]
2664 = tmp_sublist->fn_field;
2666 last_sublist->next = tmp_sublist->next;
2668 sublist = tmp_sublist->next;
2669 last_sublist = tmp_sublist;
2670 tmp_sublist = tmp_sublist->next;
2673 destr_fnlist->fn_fieldlist.length = has_destructor;
2674 destr_fnlist->next = fip->fnlist;
2675 fip->fnlist = destr_fnlist;
2677 total_length += has_destructor;
2678 length -= has_destructor;
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
2689 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2690 sublist->fn_field.physname);
2692 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2694 new_fnlist->fn_fieldlist.name =
2695 concat ("~", main_fn_name, (char *)NULL);
2696 xfree (main_fn_name);
2700 char dem_opname[256];
2703 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2704 dem_opname, DMGL_ANSI);
2706 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2709 new_fnlist->fn_fieldlist.name
2710 = obsavestring (dem_opname, strlen (dem_opname),
2711 &objfile->objfile_obstack);
2714 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2715 obstack_alloc (&objfile->objfile_obstack,
2716 sizeof (struct fn_field) * length);
2717 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2718 sizeof (struct fn_field) * length);
2719 for (i = length; (i--, sublist); sublist = sublist->next)
2721 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2724 new_fnlist->fn_fieldlist.length = length;
2725 new_fnlist->next = fip->fnlist;
2726 fip->fnlist = new_fnlist;
2728 total_length += length;
2734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2735 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2736 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2737 memset (TYPE_FN_FIELDLISTS (type), 0,
2738 sizeof (struct fn_fieldlist) * nfn_fields);
2739 TYPE_NFN_FIELDS (type) = nfn_fields;
2740 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2746 /* Special GNU C++ name.
2748 Returns 1 for success, 0 for failure. "failure" means that we can't
2749 keep parsing and it's time for error_type(). */
2752 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2753 struct objfile *objfile)
2758 struct type *context;
2768 /* At this point, *pp points to something like "22:23=*22...",
2769 where the type number before the ':' is the "context" and
2770 everything after is a regular type definition. Lookup the
2771 type, find it's name, and construct the field name. */
2773 context = read_type (pp, objfile);
2777 case 'f': /* $vf -- a virtual function table pointer */
2778 name = type_name_no_tag (context);
2783 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2784 vptr_name, name, (char *) NULL);
2787 case 'b': /* $vb -- a virtual bsomethingorother */
2788 name = type_name_no_tag (context);
2791 complaint (&symfile_complaints,
2792 _("C++ abbreviated type name "
2793 "unknown at symtab pos %d"),
2797 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2798 name, (char *) NULL);
2802 invalid_cpp_abbrev_complaint (*pp);
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 "INVALID_CPLUSPLUS_ABBREV",
2809 /* At this point, *pp points to the ':'. Skip it and read the
2815 invalid_cpp_abbrev_complaint (*pp);
2818 fip->list->field.type = read_type (pp, objfile);
2820 (*pp)++; /* Skip the comma. */
2827 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2832 /* This field is unpacked. */
2833 FIELD_BITSIZE (fip->list->field) = 0;
2834 fip->list->visibility = VISIBILITY_PRIVATE;
2838 invalid_cpp_abbrev_complaint (*pp);
2839 /* We have no idea what syntax an unrecognized abbrev would have, so
2840 better return 0. If we returned 1, we would need to at least advance
2841 *pp to avoid an infinite loop. */
2848 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2849 struct type *type, struct objfile *objfile)
2851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2853 fip->list->field.name =
2854 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2857 /* This means we have a visibility for a field coming. */
2861 fip->list->visibility = *(*pp)++;
2865 /* normal dbx-style format, no explicit visibility */
2866 fip->list->visibility = VISIBILITY_PUBLIC;
2869 fip->list->field.type = read_type (pp, objfile);
2874 /* Possible future hook for nested types. */
2877 fip->list->field.bitpos = (long) -2; /* nested type */
2887 /* Static class member. */
2888 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2892 else if (**pp != ',')
2894 /* Bad structure-type format. */
2895 stabs_general_complaint ("bad structure-type format");
2899 (*pp)++; /* Skip the comma. */
2904 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2907 stabs_general_complaint ("bad structure-type format");
2910 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2913 stabs_general_complaint ("bad structure-type format");
2918 if (FIELD_BITPOS (fip->list->field) == 0
2919 && FIELD_BITSIZE (fip->list->field) == 0)
2921 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2922 it is a field which has been optimized out. The correct stab for
2923 this case is to use VISIBILITY_IGNORE, but that is a recent
2924 invention. (2) It is a 0-size array. For example
2925 union { int num; char str[0]; } foo. Printing _("<no value>" for
2926 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2927 will continue to work, and a 0-size array as a whole doesn't
2928 have any contents to print.
2930 I suspect this probably could also happen with gcc -gstabs (not
2931 -gstabs+) for static fields, and perhaps other C++ extensions.
2932 Hopefully few people use -gstabs with gdb, since it is intended
2933 for dbx compatibility. */
2935 /* Ignore this field. */
2936 fip->list->visibility = VISIBILITY_IGNORE;
2940 /* Detect an unpacked field and mark it as such.
2941 dbx gives a bit size for all fields.
2942 Note that forward refs cannot be packed,
2943 and treat enums as if they had the width of ints. */
2945 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2947 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2948 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2949 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2950 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2952 FIELD_BITSIZE (fip->list->field) = 0;
2954 if ((FIELD_BITSIZE (fip->list->field)
2955 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2956 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2957 && FIELD_BITSIZE (fip->list->field)
2958 == gdbarch_int_bit (gdbarch))
2961 FIELD_BITPOS (fip->list->field) % 8 == 0)
2963 FIELD_BITSIZE (fip->list->field) = 0;
2969 /* Read struct or class data fields. They have the form:
2971 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2973 At the end, we see a semicolon instead of a field.
2975 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2978 The optional VISIBILITY is one of:
2980 '/0' (VISIBILITY_PRIVATE)
2981 '/1' (VISIBILITY_PROTECTED)
2982 '/2' (VISIBILITY_PUBLIC)
2983 '/9' (VISIBILITY_IGNORE)
2985 or nothing, for C style fields with public visibility.
2987 Returns 1 for success, 0 for failure. */
2990 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2991 struct objfile *objfile)
2994 struct nextfield *new;
2996 /* We better set p right now, in case there are no fields at all... */
3000 /* Read each data member type until we find the terminating ';' at the end of
3001 the data member list, or break for some other reason such as finding the
3002 start of the member function list. */
3003 /* Stab string for structure/union does not end with two ';' in
3004 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3006 while (**pp != ';' && **pp != '\0')
3008 STABS_CONTINUE (pp, objfile);
3009 /* Get space to record the next field's data. */
3010 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3011 make_cleanup (xfree, new);
3012 memset (new, 0, sizeof (struct nextfield));
3013 new->next = fip->list;
3016 /* Get the field name. */
3019 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3020 unless the CPLUS_MARKER is followed by an underscore, in
3021 which case it is just the name of an anonymous type, which we
3022 should handle like any other type name. */
3024 if (is_cplus_marker (p[0]) && p[1] != '_')
3026 if (!read_cpp_abbrev (fip, pp, type, objfile))
3031 /* Look for the ':' that separates the field name from the field
3032 values. Data members are delimited by a single ':', while member
3033 functions are delimited by a pair of ':'s. When we hit the member
3034 functions (if any), terminate scan loop and return. */
3036 while (*p != ':' && *p != '\0')
3043 /* Check to see if we have hit the member functions yet. */
3048 read_one_struct_field (fip, pp, p, type, objfile);
3050 if (p[0] == ':' && p[1] == ':')
3052 /* (the deleted) chill the list of fields: the last entry (at
3053 the head) is a partially constructed entry which we now
3055 fip->list = fip->list->next;
3060 /* The stabs for C++ derived classes contain baseclass information which
3061 is marked by a '!' character after the total size. This function is
3062 called when we encounter the baseclass marker, and slurps up all the
3063 baseclass information.
3065 Immediately following the '!' marker is the number of base classes that
3066 the class is derived from, followed by information for each base class.
3067 For each base class, there are two visibility specifiers, a bit offset
3068 to the base class information within the derived class, a reference to
3069 the type for the base class, and a terminating semicolon.
3071 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3073 Baseclass information marker __________________|| | | | | | |
3074 Number of baseclasses __________________________| | | | | | |
3075 Visibility specifiers (2) ________________________| | | | | |
3076 Offset in bits from start of class _________________| | | | |
3077 Type number for base class ___________________________| | | |
3078 Visibility specifiers (2) _______________________________| | |
3079 Offset in bits from start of class ________________________| |
3080 Type number of base class ____________________________________|
3082 Return 1 for success, 0 for (error-type-inducing) failure. */
3088 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3089 struct objfile *objfile)
3092 struct nextfield *new;
3100 /* Skip the '!' baseclass information marker. */
3104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3108 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3114 /* Some stupid compilers have trouble with the following, so break
3115 it up into simpler expressions. */
3116 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3117 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3120 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3123 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3128 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3130 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3132 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3133 make_cleanup (xfree, new);
3134 memset (new, 0, sizeof (struct nextfield));
3135 new->next = fip->list;
3137 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3139 STABS_CONTINUE (pp, objfile);
3143 /* Nothing to do. */
3146 SET_TYPE_FIELD_VIRTUAL (type, i);
3149 /* Unknown character. Complain and treat it as non-virtual. */
3151 complaint (&symfile_complaints,
3152 _("Unknown virtual character `%c' for baseclass"),
3158 new->visibility = *(*pp)++;
3159 switch (new->visibility)
3161 case VISIBILITY_PRIVATE:
3162 case VISIBILITY_PROTECTED:
3163 case VISIBILITY_PUBLIC:
3166 /* Bad visibility format. Complain and treat it as
3169 complaint (&symfile_complaints,
3170 _("Unknown visibility `%c' for baseclass"),
3172 new->visibility = VISIBILITY_PUBLIC;
3179 /* The remaining value is the bit offset of the portion of the object
3180 corresponding to this baseclass. Always zero in the absence of
3181 multiple inheritance. */
3183 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3188 /* The last piece of baseclass information is the type of the
3189 base class. Read it, and remember it's type name as this
3192 new->field.type = read_type (pp, objfile);
3193 new->field.name = type_name_no_tag (new->field.type);
3195 /* skip trailing ';' and bump count of number of fields seen */
3204 /* The tail end of stabs for C++ classes that contain a virtual function
3205 pointer contains a tilde, a %, and a type number.
3206 The type number refers to the base class (possibly this class itself) which
3207 contains the vtable pointer for the current class.
3209 This function is called when we have parsed all the method declarations,
3210 so we can look for the vptr base class info. */
3213 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3214 struct objfile *objfile)
3218 STABS_CONTINUE (pp, objfile);
3220 /* If we are positioned at a ';', then skip it. */
3230 if (**pp == '=' || **pp == '+' || **pp == '-')
3232 /* Obsolete flags that used to indicate the presence
3233 of constructors and/or destructors. */
3237 /* Read either a '%' or the final ';'. */
3238 if (*(*pp)++ == '%')
3240 /* The next number is the type number of the base class
3241 (possibly our own class) which supplies the vtable for
3242 this class. Parse it out, and search that class to find
3243 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3244 and TYPE_VPTR_FIELDNO. */
3249 t = read_type (pp, objfile);
3251 while (*p != '\0' && *p != ';')
3257 /* Premature end of symbol. */
3261 TYPE_VPTR_BASETYPE (type) = t;
3262 if (type == t) /* Our own class provides vtbl ptr */
3264 for (i = TYPE_NFIELDS (t) - 1;
3265 i >= TYPE_N_BASECLASSES (t);
3268 char *name = TYPE_FIELD_NAME (t, i);
3270 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3271 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3273 TYPE_VPTR_FIELDNO (type) = i;
3277 /* Virtual function table field not found. */
3278 complaint (&symfile_complaints,
3279 _("virtual function table pointer "
3280 "not found when defining class `%s'"),
3286 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3297 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3301 for (n = TYPE_NFN_FIELDS (type);
3302 fip->fnlist != NULL;
3303 fip->fnlist = fip->fnlist->next)
3305 --n; /* Circumvent Sun3 compiler bug */
3306 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3311 /* Create the vector of fields, and record how big it is.
3312 We need this info to record proper virtual function table information
3313 for this class's virtual functions. */
3316 attach_fields_to_type (struct field_info *fip, struct type *type,
3317 struct objfile *objfile)
3320 int non_public_fields = 0;
3321 struct nextfield *scan;
3323 /* Count up the number of fields that we have, as well as taking note of
3324 whether or not there are any non-public fields, which requires us to
3325 allocate and build the private_field_bits and protected_field_bits
3328 for (scan = fip->list; scan != NULL; scan = scan->next)
3331 if (scan->visibility != VISIBILITY_PUBLIC)
3333 non_public_fields++;
3337 /* Now we know how many fields there are, and whether or not there are any
3338 non-public fields. Record the field count, allocate space for the
3339 array of fields, and create blank visibility bitfields if necessary. */
3341 TYPE_NFIELDS (type) = nfields;
3342 TYPE_FIELDS (type) = (struct field *)
3343 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3344 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3346 if (non_public_fields)
3348 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3350 TYPE_FIELD_PRIVATE_BITS (type) =
3351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3352 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3354 TYPE_FIELD_PROTECTED_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3358 TYPE_FIELD_IGNORE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3363 /* Copy the saved-up fields into the field vector. Start from the head
3364 of the list, adding to the tail of the field array, so that they end
3365 up in the same order in the array in which they were added to the list. */
3367 while (nfields-- > 0)
3369 TYPE_FIELD (type, nfields) = fip->list->field;
3370 switch (fip->list->visibility)
3372 case VISIBILITY_PRIVATE:
3373 SET_TYPE_FIELD_PRIVATE (type, nfields);
3376 case VISIBILITY_PROTECTED:
3377 SET_TYPE_FIELD_PROTECTED (type, nfields);
3380 case VISIBILITY_IGNORE:
3381 SET_TYPE_FIELD_IGNORE (type, nfields);
3384 case VISIBILITY_PUBLIC:
3388 /* Unknown visibility. Complain and treat it as public. */
3390 complaint (&symfile_complaints,
3391 _("Unknown visibility `%c' for field"),
3392 fip->list->visibility);
3396 fip->list = fip->list->next;
3402 /* Complain that the compiler has emitted more than one definition for the
3403 structure type TYPE. */
3405 complain_about_struct_wipeout (struct type *type)
3410 if (TYPE_TAG_NAME (type))
3412 name = TYPE_TAG_NAME (type);
3413 switch (TYPE_CODE (type))
3415 case TYPE_CODE_STRUCT: kind = "struct "; break;
3416 case TYPE_CODE_UNION: kind = "union "; break;
3417 case TYPE_CODE_ENUM: kind = "enum "; break;
3421 else if (TYPE_NAME (type))
3423 name = TYPE_NAME (type);
3432 complaint (&symfile_complaints,
3433 _("struct/union type gets multiply defined: %s%s"), kind, name);
3436 /* Set the length for all variants of a same main_type, which are
3437 connected in the closed chain.
3439 This is something that needs to be done when a type is defined *after*
3440 some cross references to this type have already been read. Consider
3441 for instance the following scenario where we have the following two
3444 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3445 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3447 A stubbed version of type dummy is created while processing the first
3448 stabs entry. The length of that type is initially set to zero, since
3449 it is unknown at this point. Also, a "constant" variation of type
3450 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3453 The second stabs entry allows us to replace the stubbed definition
3454 with the real definition. However, we still need to adjust the length
3455 of the "constant" variation of that type, as its length was left
3456 untouched during the main type replacement... */
3459 set_length_in_type_chain (struct type *type)
3461 struct type *ntype = TYPE_CHAIN (type);
3463 while (ntype != type)
3465 if (TYPE_LENGTH(ntype) == 0)
3466 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3468 complain_about_struct_wipeout (ntype);
3469 ntype = TYPE_CHAIN (ntype);
3473 /* Read the description of a structure (or union type) and return an object
3474 describing the type.
3476 PP points to a character pointer that points to the next unconsumed token
3477 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3478 *PP will point to "4a:1,0,32;;".
3480 TYPE points to an incomplete type that needs to be filled in.
3482 OBJFILE points to the current objfile from which the stabs information is
3483 being read. (Note that it is redundant in that TYPE also contains a pointer
3484 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3487 static struct type *
3488 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3489 struct objfile *objfile)
3491 struct cleanup *back_to;
3492 struct field_info fi;
3497 /* When describing struct/union/class types in stabs, G++ always drops
3498 all qualifications from the name. So if you've got:
3499 struct A { ... struct B { ... }; ... };
3500 then G++ will emit stabs for `struct A::B' that call it simply
3501 `struct B'. Obviously, if you've got a real top-level definition for
3502 `struct B', or other nested definitions, this is going to cause
3505 Obviously, GDB can't fix this by itself, but it can at least avoid
3506 scribbling on existing structure type objects when new definitions
3508 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3509 || TYPE_STUB (type)))
3511 complain_about_struct_wipeout (type);
3513 /* It's probably best to return the type unchanged. */
3517 back_to = make_cleanup (null_cleanup, 0);
3519 INIT_CPLUS_SPECIFIC (type);
3520 TYPE_CODE (type) = type_code;
3521 TYPE_STUB (type) = 0;
3523 /* First comes the total size in bytes. */
3528 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3530 return error_type (pp, objfile);
3531 set_length_in_type_chain (type);
3534 /* Now read the baseclasses, if any, read the regular C struct or C++
3535 class member fields, attach the fields to the type, read the C++
3536 member functions, attach them to the type, and then read any tilde
3537 field (baseclass specifier for the class holding the main vtable). */
3539 if (!read_baseclasses (&fi, pp, type, objfile)
3540 || !read_struct_fields (&fi, pp, type, objfile)
3541 || !attach_fields_to_type (&fi, type, objfile)
3542 || !read_member_functions (&fi, pp, type, objfile)
3543 || !attach_fn_fields_to_type (&fi, type)
3544 || !read_tilde_fields (&fi, pp, type, objfile))
3546 type = error_type (pp, objfile);
3549 do_cleanups (back_to);
3553 /* Read a definition of an array type,
3554 and create and return a suitable type object.
3555 Also creates a range type which represents the bounds of that
3558 static struct type *
3559 read_array_type (char **pp, struct type *type,
3560 struct objfile *objfile)
3562 struct type *index_type, *element_type, *range_type;
3567 /* Format of an array type:
3568 "ar<index type>;lower;upper;<array_contents_type>".
3569 OS9000: "arlower,upper;<array_contents_type>".
3571 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3572 for these, produce a type like float[][]. */
3575 index_type = read_type (pp, objfile);
3577 /* Improper format of array type decl. */
3578 return error_type (pp, objfile);
3582 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3587 lower = read_huge_number (pp, ';', &nbits, 0);
3590 return error_type (pp, objfile);
3592 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3597 upper = read_huge_number (pp, ';', &nbits, 0);
3599 return error_type (pp, objfile);
3601 element_type = read_type (pp, objfile);
3610 create_range_type ((struct type *) NULL, index_type, lower, upper);
3611 type = create_array_type (type, element_type, range_type);
3617 /* Read a definition of an enumeration type,
3618 and create and return a suitable type object.
3619 Also defines the symbols that represent the values of the type. */
3621 static struct type *
3622 read_enum_type (char **pp, struct type *type,
3623 struct objfile *objfile)
3625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3631 struct pending **symlist;
3632 struct pending *osyms, *syms;
3635 int unsigned_enum = 1;
3638 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3639 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3640 to do? For now, force all enum values to file scope. */
3641 if (within_function)
3642 symlist = &local_symbols;
3645 symlist = &file_symbols;
3647 o_nsyms = osyms ? osyms->nsyms : 0;
3649 /* The aix4 compiler emits an extra field before the enum members;
3650 my guess is it's a type of some sort. Just ignore it. */
3653 /* Skip over the type. */
3657 /* Skip over the colon. */
3661 /* Read the value-names and their values.
3662 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3663 A semicolon or comma instead of a NAME means the end. */
3664 while (**pp && **pp != ';' && **pp != ',')
3666 STABS_CONTINUE (pp, objfile);
3670 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3672 n = read_huge_number (pp, ',', &nbits, 0);
3674 return error_type (pp, objfile);
3676 sym = (struct symbol *)
3677 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3678 memset (sym, 0, sizeof (struct symbol));
3679 SYMBOL_SET_LINKAGE_NAME (sym, name);
3680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3681 SYMBOL_CLASS (sym) = LOC_CONST;
3682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3683 SYMBOL_VALUE (sym) = n;
3686 add_symbol_to_list (sym, symlist);
3691 (*pp)++; /* Skip the semicolon. */
3693 /* Now fill in the fields of the type-structure. */
3695 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3696 set_length_in_type_chain (type);
3697 TYPE_CODE (type) = TYPE_CODE_ENUM;
3698 TYPE_STUB (type) = 0;
3700 TYPE_UNSIGNED (type) = 1;
3701 TYPE_NFIELDS (type) = nsyms;
3702 TYPE_FIELDS (type) = (struct field *)
3703 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3704 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3706 /* Find the symbols for the values and put them into the type.
3707 The symbols can be found in the symlist that we put them on
3708 to cause them to be defined. osyms contains the old value
3709 of that symlist; everything up to there was defined by us. */
3710 /* Note that we preserve the order of the enum constants, so
3711 that in something like "enum {FOO, LAST_THING=FOO}" we print
3712 FOO, not LAST_THING. */
3714 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3716 int last = syms == osyms ? o_nsyms : 0;
3717 int j = syms->nsyms;
3719 for (; --j >= last; --n)
3721 struct symbol *xsym = syms->symbol[j];
3723 SYMBOL_TYPE (xsym) = type;
3724 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3725 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3726 TYPE_FIELD_BITSIZE (type, n) = 0;
3735 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3736 typedefs in every file (for int, long, etc):
3738 type = b <signed> <width> <format type>; <offset>; <nbits>
3740 optional format type = c or b for char or boolean.
3741 offset = offset from high order bit to start bit of type.
3742 width is # bytes in object of this type, nbits is # bits in type.
3744 The width/offset stuff appears to be for small objects stored in
3745 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3748 static struct type *
3749 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3754 enum type_code code = TYPE_CODE_INT;
3765 return error_type (pp, objfile);
3769 /* For some odd reason, all forms of char put a c here. This is strange
3770 because no other type has this honor. We can safely ignore this because
3771 we actually determine 'char'acterness by the number of bits specified in
3773 Boolean forms, e.g Fortran logical*X, put a b here. */
3777 else if (**pp == 'b')
3779 code = TYPE_CODE_BOOL;
3783 /* The first number appears to be the number of bytes occupied
3784 by this type, except that unsigned short is 4 instead of 2.
3785 Since this information is redundant with the third number,
3786 we will ignore it. */
3787 read_huge_number (pp, ';', &nbits, 0);
3789 return error_type (pp, objfile);
3791 /* The second number is always 0, so ignore it too. */
3792 read_huge_number (pp, ';', &nbits, 0);
3794 return error_type (pp, objfile);
3796 /* The third number is the number of bits for this type. */
3797 type_bits = read_huge_number (pp, 0, &nbits, 0);
3799 return error_type (pp, objfile);
3800 /* The type *should* end with a semicolon. If it are embedded
3801 in a larger type the semicolon may be the only way to know where
3802 the type ends. If this type is at the end of the stabstring we
3803 can deal with the omitted semicolon (but we don't have to like
3804 it). Don't bother to complain(), Sun's compiler omits the semicolon
3810 return init_type (TYPE_CODE_VOID, 1,
3811 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3814 return init_type (code,
3815 type_bits / TARGET_CHAR_BIT,
3816 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3820 static struct type *
3821 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3826 struct type *rettype;
3828 /* The first number has more details about the type, for example
3830 details = read_huge_number (pp, ';', &nbits, 0);
3832 return error_type (pp, objfile);
3834 /* The second number is the number of bytes occupied by this type */
3835 nbytes = read_huge_number (pp, ';', &nbits, 0);
3837 return error_type (pp, objfile);
3839 if (details == NF_COMPLEX || details == NF_COMPLEX16
3840 || details == NF_COMPLEX32)
3842 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3843 TYPE_TARGET_TYPE (rettype)
3844 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3848 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3851 /* Read a number from the string pointed to by *PP.
3852 The value of *PP is advanced over the number.
3853 If END is nonzero, the character that ends the
3854 number must match END, or an error happens;
3855 and that character is skipped if it does match.
3856 If END is zero, *PP is left pointing to that character.
3858 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3859 the number is represented in an octal representation, assume that
3860 it is represented in a 2's complement representation with a size of
3861 TWOS_COMPLEMENT_BITS.
3863 If the number fits in a long, set *BITS to 0 and return the value.
3864 If not, set *BITS to be the number of bits in the number and return 0.
3866 If encounter garbage, set *BITS to -1 and return 0. */
3869 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3880 int twos_complement_representation = 0;
3888 /* Leading zero means octal. GCC uses this to output values larger
3889 than an int (because that would be hard in decimal). */
3896 /* Skip extra zeros. */
3900 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3902 /* Octal, possibly signed. Check if we have enough chars for a
3908 while ((c = *p1) >= '0' && c < '8')
3912 if (len > twos_complement_bits / 3
3913 || (twos_complement_bits % 3 == 0
3914 && len == twos_complement_bits / 3))
3916 /* Ok, we have enough characters for a signed value, check
3917 for signness by testing if the sign bit is set. */
3918 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3920 if (c & (1 << sign_bit))
3922 /* Definitely signed. */
3923 twos_complement_representation = 1;
3929 upper_limit = LONG_MAX / radix;
3931 while ((c = *p++) >= '0' && c < ('0' + radix))
3933 if (n <= upper_limit)
3935 if (twos_complement_representation)
3937 /* Octal, signed, twos complement representation. In
3938 this case, n is the corresponding absolute value. */
3941 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3953 /* unsigned representation */
3955 n += c - '0'; /* FIXME this overflows anyway */
3961 /* This depends on large values being output in octal, which is
3968 /* Ignore leading zeroes. */
3972 else if (c == '2' || c == '3')
3993 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3995 /* We were supposed to parse a number with maximum
3996 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4007 /* Large decimal constants are an error (because it is hard to
4008 count how many bits are in them). */
4014 /* -0x7f is the same as 0x80. So deal with it by adding one to
4015 the number of bits. Two's complement represention octals
4016 can't have a '-' in front. */
4017 if (sign == -1 && !twos_complement_representation)
4028 /* It's *BITS which has the interesting information. */
4032 static struct type *
4033 read_range_type (char **pp, int typenums[2], int type_size,
4034 struct objfile *objfile)
4036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4037 char *orig_pp = *pp;
4042 struct type *result_type;
4043 struct type *index_type = NULL;
4045 /* First comes a type we are a subrange of.
4046 In C it is usually 0, 1 or the type being defined. */
4047 if (read_type_number (pp, rangenums) != 0)
4048 return error_type (pp, objfile);
4049 self_subrange = (rangenums[0] == typenums[0] &&
4050 rangenums[1] == typenums[1]);
4055 index_type = read_type (pp, objfile);
4058 /* A semicolon should now follow; skip it. */
4062 /* The remaining two operands are usually lower and upper bounds
4063 of the range. But in some special cases they mean something else. */
4064 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4065 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4067 if (n2bits == -1 || n3bits == -1)
4068 return error_type (pp, objfile);
4071 goto handle_true_range;
4073 /* If limits are huge, must be large integral type. */
4074 if (n2bits != 0 || n3bits != 0)
4076 char got_signed = 0;
4077 char got_unsigned = 0;
4078 /* Number of bits in the type. */
4081 /* If a type size attribute has been specified, the bounds of
4082 the range should fit in this size. If the lower bounds needs
4083 more bits than the upper bound, then the type is signed. */
4084 if (n2bits <= type_size && n3bits <= type_size)
4086 if (n2bits == type_size && n2bits > n3bits)
4092 /* Range from 0 to <large number> is an unsigned large integral type. */
4093 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4098 /* Range from <large number> to <large number>-1 is a large signed
4099 integral type. Take care of the case where <large number> doesn't
4100 fit in a long but <large number>-1 does. */
4101 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4102 || (n2bits != 0 && n3bits == 0
4103 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4110 if (got_signed || got_unsigned)
4112 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4113 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4117 return error_type (pp, objfile);
4120 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4121 if (self_subrange && n2 == 0 && n3 == 0)
4122 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4124 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4125 is the width in bytes.
4127 Fortran programs appear to use this for complex types also. To
4128 distinguish between floats and complex, g77 (and others?) seem
4129 to use self-subranges for the complexes, and subranges of int for
4132 Also note that for complexes, g77 sets n2 to the size of one of
4133 the member floats, not the whole complex beast. My guess is that
4134 this was to work well with pre-COMPLEX versions of gdb. */
4136 if (n3 == 0 && n2 > 0)
4138 struct type *float_type
4139 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4143 struct type *complex_type =
4144 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4146 TYPE_TARGET_TYPE (complex_type) = float_type;
4147 return complex_type;
4153 /* If the upper bound is -1, it must really be an unsigned integral. */
4155 else if (n2 == 0 && n3 == -1)
4157 int bits = type_size;
4161 /* We don't know its size. It is unsigned int or unsigned
4162 long. GCC 2.3.3 uses this for long long too, but that is
4163 just a GDB 3.5 compatibility hack. */
4164 bits = gdbarch_int_bit (gdbarch);
4167 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4168 TYPE_FLAG_UNSIGNED, NULL, objfile);
4171 /* Special case: char is defined (Who knows why) as a subrange of
4172 itself with range 0-127. */
4173 else if (self_subrange && n2 == 0 && n3 == 127)
4174 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4176 /* We used to do this only for subrange of self or subrange of int. */
4179 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4180 "unsigned long", and we already checked for that,
4181 so don't need to test for it here. */
4184 /* n3 actually gives the size. */
4185 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4188 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4189 unsigned n-byte integer. But do require n to be a power of
4190 two; we don't want 3- and 5-byte integers flying around. */
4196 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4199 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4200 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4204 /* I think this is for Convex "long long". Since I don't know whether
4205 Convex sets self_subrange, I also accept that particular size regardless
4206 of self_subrange. */
4207 else if (n3 == 0 && n2 < 0
4209 || n2 == -gdbarch_long_long_bit
4210 (gdbarch) / TARGET_CHAR_BIT))
4211 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4212 else if (n2 == -n3 - 1)
4215 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4217 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4218 if (n3 == 0x7fffffff)
4219 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4222 /* We have a real range type on our hands. Allocate space and
4223 return a real pointer. */
4227 index_type = objfile_type (objfile)->builtin_int;
4229 index_type = *dbx_lookup_type (rangenums, objfile);
4230 if (index_type == NULL)
4232 /* Does this actually ever happen? Is that why we are worrying
4233 about dealing with it rather than just calling error_type? */
4235 complaint (&symfile_complaints,
4236 _("base type %d of range type is not defined"), rangenums[1]);
4238 index_type = objfile_type (objfile)->builtin_int;
4241 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4242 return (result_type);
4245 /* Read in an argument list. This is a list of types, separated by commas
4246 and terminated with END. Return the list of types read in, or NULL
4247 if there is an error. */
4249 static struct field *
4250 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4253 /* FIXME! Remove this arbitrary limit! */
4254 struct type *types[1024]; /* allow for fns of 1023 parameters */
4261 /* Invalid argument list: no ','. */
4264 STABS_CONTINUE (pp, objfile);
4265 types[n++] = read_type (pp, objfile);
4267 (*pp)++; /* get past `end' (the ':' character) */
4271 /* We should read at least the THIS parameter here. Some broken stabs
4272 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4273 have been present ";-16,(0,43)" reference instead. This way the
4274 excessive ";" marker prematurely stops the parameters parsing. */
4276 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4279 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4287 rval = (struct field *) xmalloc (n * sizeof (struct field));
4288 memset (rval, 0, n * sizeof (struct field));
4289 for (i = 0; i < n; i++)
4290 rval[i].type = types[i];
4295 /* Common block handling. */
4297 /* List of symbols declared since the last BCOMM. This list is a tail
4298 of local_symbols. When ECOMM is seen, the symbols on the list
4299 are noted so their proper addresses can be filled in later,
4300 using the common block base address gotten from the assembler
4303 static struct pending *common_block;
4304 static int common_block_i;
4306 /* Name of the current common block. We get it from the BCOMM instead of the
4307 ECOMM to match IBM documentation (even though IBM puts the name both places
4308 like everyone else). */
4309 static char *common_block_name;
4311 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4312 to remain after this function returns. */
4315 common_block_start (char *name, struct objfile *objfile)
4317 if (common_block_name != NULL)
4319 complaint (&symfile_complaints,
4320 _("Invalid symbol data: common block within common block"));
4322 common_block = local_symbols;
4323 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4324 common_block_name = obsavestring (name, strlen (name),
4325 &objfile->objfile_obstack);
4328 /* Process a N_ECOMM symbol. */
4331 common_block_end (struct objfile *objfile)
4333 /* Symbols declared since the BCOMM are to have the common block
4334 start address added in when we know it. common_block and
4335 common_block_i point to the first symbol after the BCOMM in
4336 the local_symbols list; copy the list and hang it off the
4337 symbol for the common block name for later fixup. */
4340 struct pending *new = 0;
4341 struct pending *next;
4344 if (common_block_name == NULL)
4346 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4350 sym = (struct symbol *)
4351 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4352 memset (sym, 0, sizeof (struct symbol));
4353 /* Note: common_block_name already saved on objfile_obstack */
4354 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4355 SYMBOL_CLASS (sym) = LOC_BLOCK;
4357 /* Now we copy all the symbols which have been defined since the BCOMM. */
4359 /* Copy all the struct pendings before common_block. */
4360 for (next = local_symbols;
4361 next != NULL && next != common_block;
4364 for (j = 0; j < next->nsyms; j++)
4365 add_symbol_to_list (next->symbol[j], &new);
4368 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4369 NULL, it means copy all the local symbols (which we already did
4372 if (common_block != NULL)
4373 for (j = common_block_i; j < common_block->nsyms; j++)
4374 add_symbol_to_list (common_block->symbol[j], &new);
4376 SYMBOL_TYPE (sym) = (struct type *) new;
4378 /* Should we be putting local_symbols back to what it was?
4381 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4382 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4383 global_sym_chain[i] = sym;
4384 common_block_name = NULL;
4387 /* Add a common block's start address to the offset of each symbol
4388 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4389 the common block name). */
4392 fix_common_block (struct symbol *sym, int valu)
4394 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4396 for (; next; next = next->next)
4400 for (j = next->nsyms - 1; j >= 0; j--)
4401 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4407 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4408 See add_undefined_type for more details. */
4411 add_undefined_type_noname (struct type *type, int typenums[2])
4415 nat.typenums[0] = typenums [0];
4416 nat.typenums[1] = typenums [1];
4419 if (noname_undefs_length == noname_undefs_allocated)
4421 noname_undefs_allocated *= 2;
4422 noname_undefs = (struct nat *)
4423 xrealloc ((char *) noname_undefs,
4424 noname_undefs_allocated * sizeof (struct nat));
4426 noname_undefs[noname_undefs_length++] = nat;
4429 /* Add TYPE to the UNDEF_TYPES vector.
4430 See add_undefined_type for more details. */
4433 add_undefined_type_1 (struct type *type)
4435 if (undef_types_length == undef_types_allocated)
4437 undef_types_allocated *= 2;
4438 undef_types = (struct type **)
4439 xrealloc ((char *) undef_types,
4440 undef_types_allocated * sizeof (struct type *));
4442 undef_types[undef_types_length++] = type;
4445 /* What about types defined as forward references inside of a small lexical
4447 /* Add a type to the list of undefined types to be checked through
4448 once this file has been read in.
4450 In practice, we actually maintain two such lists: The first list
4451 (UNDEF_TYPES) is used for types whose name has been provided, and
4452 concerns forward references (eg 'xs' or 'xu' forward references);
4453 the second list (NONAME_UNDEFS) is used for types whose name is
4454 unknown at creation time, because they were referenced through
4455 their type number before the actual type was declared.
4456 This function actually adds the given type to the proper list. */
4459 add_undefined_type (struct type *type, int typenums[2])
4461 if (TYPE_TAG_NAME (type) == NULL)
4462 add_undefined_type_noname (type, typenums);
4464 add_undefined_type_1 (type);
4467 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4470 cleanup_undefined_types_noname (struct objfile *objfile)
4474 for (i = 0; i < noname_undefs_length; i++)
4476 struct nat nat = noname_undefs[i];
4479 type = dbx_lookup_type (nat.typenums, objfile);
4480 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4482 /* The instance flags of the undefined type are still unset,
4483 and needs to be copied over from the reference type.
4484 Since replace_type expects them to be identical, we need
4485 to set these flags manually before hand. */
4486 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4487 replace_type (nat.type, *type);
4491 noname_undefs_length = 0;
4494 /* Go through each undefined type, see if it's still undefined, and fix it
4495 up if possible. We have two kinds of undefined types:
4497 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4498 Fix: update array length using the element bounds
4499 and the target type's length.
4500 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4501 yet defined at the time a pointer to it was made.
4502 Fix: Do a full lookup on the struct/union tag. */
4505 cleanup_undefined_types_1 (void)
4509 /* Iterate over every undefined type, and look for a symbol whose type
4510 matches our undefined type. The symbol matches if:
4511 1. It is a typedef in the STRUCT domain;
4512 2. It has the same name, and same type code;
4513 3. The instance flags are identical.
4515 It is important to check the instance flags, because we have seen
4516 examples where the debug info contained definitions such as:
4518 "foo_t:t30=B31=xefoo_t:"
4520 In this case, we have created an undefined type named "foo_t" whose
4521 instance flags is null (when processing "xefoo_t"), and then created
4522 another type with the same name, but with different instance flags
4523 ('B' means volatile). I think that the definition above is wrong,
4524 since the same type cannot be volatile and non-volatile at the same
4525 time, but we need to be able to cope with it when it happens. The
4526 approach taken here is to treat these two types as different. */
4528 for (type = undef_types; type < undef_types + undef_types_length; type++)
4530 switch (TYPE_CODE (*type))
4533 case TYPE_CODE_STRUCT:
4534 case TYPE_CODE_UNION:
4535 case TYPE_CODE_ENUM:
4537 /* Check if it has been defined since. Need to do this here
4538 as well as in check_typedef to deal with the (legitimate in
4539 C though not C++) case of several types with the same name
4540 in different source files. */
4541 if (TYPE_STUB (*type))
4543 struct pending *ppt;
4545 /* Name of the type, without "struct" or "union" */
4546 char *typename = TYPE_TAG_NAME (*type);
4548 if (typename == NULL)
4550 complaint (&symfile_complaints, _("need a type name"));
4553 for (ppt = file_symbols; ppt; ppt = ppt->next)
4555 for (i = 0; i < ppt->nsyms; i++)
4557 struct symbol *sym = ppt->symbol[i];
4559 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4560 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4561 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4563 && (TYPE_INSTANCE_FLAGS (*type) ==
4564 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4565 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4567 replace_type (*type, SYMBOL_TYPE (sym));
4576 complaint (&symfile_complaints,
4577 _("forward-referenced types left unresolved, "
4585 undef_types_length = 0;
4588 /* Try to fix all the undefined types we ecountered while processing
4592 cleanup_undefined_types (struct objfile *objfile)
4594 cleanup_undefined_types_1 ();
4595 cleanup_undefined_types_noname (objfile);
4598 /* Scan through all of the global symbols defined in the object file,
4599 assigning values to the debugging symbols that need to be assigned
4600 to. Get these symbols from the minimal symbol table. */
4603 scan_file_globals (struct objfile *objfile)
4606 struct minimal_symbol *msymbol;
4607 struct symbol *sym, *prev;
4608 struct objfile *resolve_objfile;
4610 /* SVR4 based linkers copy referenced global symbols from shared
4611 libraries to the main executable.
4612 If we are scanning the symbols for a shared library, try to resolve
4613 them from the minimal symbols of the main executable first. */
4615 if (symfile_objfile && objfile != symfile_objfile)
4616 resolve_objfile = symfile_objfile;
4618 resolve_objfile = objfile;
4622 /* Avoid expensive loop through all minimal symbols if there are
4623 no unresolved symbols. */
4624 for (hash = 0; hash < HASHSIZE; hash++)
4626 if (global_sym_chain[hash])
4629 if (hash >= HASHSIZE)
4632 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4636 /* Skip static symbols. */
4637 switch (MSYMBOL_TYPE (msymbol))
4649 /* Get the hash index and check all the symbols
4650 under that hash index. */
4652 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4654 for (sym = global_sym_chain[hash]; sym;)
4656 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4657 SYMBOL_LINKAGE_NAME (sym)) == 0)
4659 /* Splice this symbol out of the hash chain and
4660 assign the value we have to it. */
4663 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4667 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4670 /* Check to see whether we need to fix up a common block. */
4671 /* Note: this code might be executed several times for
4672 the same symbol if there are multiple references. */
4675 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4677 fix_common_block (sym,
4678 SYMBOL_VALUE_ADDRESS (msymbol));
4682 SYMBOL_VALUE_ADDRESS (sym)
4683 = SYMBOL_VALUE_ADDRESS (msymbol);
4685 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4690 sym = SYMBOL_VALUE_CHAIN (prev);
4694 sym = global_sym_chain[hash];
4700 sym = SYMBOL_VALUE_CHAIN (sym);
4704 if (resolve_objfile == objfile)
4706 resolve_objfile = objfile;
4709 /* Change the storage class of any remaining unresolved globals to
4710 LOC_UNRESOLVED and remove them from the chain. */
4711 for (hash = 0; hash < HASHSIZE; hash++)
4713 sym = global_sym_chain[hash];
4717 sym = SYMBOL_VALUE_CHAIN (sym);
4719 /* Change the symbol address from the misleading chain value
4721 SYMBOL_VALUE_ADDRESS (prev) = 0;
4723 /* Complain about unresolved common block symbols. */
4724 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4725 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4727 complaint (&symfile_complaints,
4728 _("%s: common block `%s' from "
4729 "global_sym_chain unresolved"),
4730 objfile->name, SYMBOL_PRINT_NAME (prev));
4733 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4736 /* Initialize anything that needs initializing when starting to read
4737 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4741 stabsread_init (void)
4745 /* Initialize anything that needs initializing when a completely new
4746 symbol file is specified (not just adding some symbols from another
4747 file, e.g. a shared library). */
4750 stabsread_new_init (void)
4752 /* Empty the hash table of global syms looking for values. */
4753 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4756 /* Initialize anything that needs initializing at the same time as
4757 start_symtab() is called. */
4762 global_stabs = NULL; /* AIX COFF */
4763 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4764 n_this_object_header_files = 1;
4765 type_vector_length = 0;
4766 type_vector = (struct type **) 0;
4768 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4769 common_block_name = NULL;
4772 /* Call after end_symtab() */
4779 xfree (type_vector);
4782 type_vector_length = 0;
4783 previous_stab_code = 0;
4787 finish_global_stabs (struct objfile *objfile)
4791 patch_block_stabs (global_symbols, global_stabs, objfile);
4792 xfree (global_stabs);
4793 global_stabs = NULL;
4797 /* Find the end of the name, delimited by a ':', but don't match
4798 ObjC symbols which look like -[Foo bar::]:bla. */
4800 find_name_end (char *name)
4804 if (s[0] == '-' || *s == '+')
4806 /* Must be an ObjC method symbol. */
4809 error (_("invalid symbol name \"%s\""), name);
4811 s = strchr (s, ']');
4814 error (_("invalid symbol name \"%s\""), name);
4816 return strchr (s, ':');
4820 return strchr (s, ':');
4824 /* Initializer for this module */
4827 _initialize_stabsread (void)
4829 rs6000_builtin_type_data = register_objfile_data ();
4831 undef_types_allocated = 20;
4832 undef_types_length = 0;
4833 undef_types = (struct type **)
4834 xmalloc (undef_types_allocated * sizeof (struct type *));
4836 noname_undefs_allocated = 20;
4837 noname_undefs_length = 0;
4838 noname_undefs = (struct nat *)
4839 xmalloc (noname_undefs_allocated * sizeof (struct nat));