1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
48 #include "gdb-demangle.h"
49 #include "filenames.h" /* for DOSish file names */
52 #include "complaints.h"
53 #include "dwarf2/expr.h"
54 #include "dwarf2/loc.h"
55 #include "cp-support.h"
61 #include "typeprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
72 #include "namespace.h"
73 #include "gdbsupport/function-view.h"
74 #include "gdbsupport/gdb_optional.h"
75 #include "gdbsupport/underlying.h"
76 #include "gdbsupport/hash_enum.h"
77 #include "filename-seen-cache.h"
81 #include <unordered_map>
82 #include "gdbsupport/selftest.h"
83 #include "rust-lang.h"
84 #include "gdbsupport/pathstuff.h"
85 #include "count-one-bits.h"
86 #include "debuginfod-support.h"
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
96 /* When non-zero, dump line number entries as they are read in. */
97 unsigned int dwarf_line_debug = 0;
99 /* When true, cross-check physname against demangler. */
100 static bool check_physname = false;
102 /* When true, do not reject deprecated .gdb_index sections. */
103 static bool use_deprecated_index_sections = false;
105 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
114 /* An index into a (C++) symbol name component in a symbol name as
115 recorded in the mapped_index's symbol table. For each C++ symbol
116 in the symbol table, we record one entry for the start of each
117 component in the symbol in a table of name components, and then
118 sort the table, in order to be able to binary search symbol names,
119 ignoring leading namespaces, both completion and regular look up.
120 For example, for symbol "A::B::C", we'll have an entry that points
121 to "A::B::C", another that points to "B::C", and another for "C".
122 Note that function symbols in GDB index have no parameter
123 information, just the function/method names. You can convert a
124 name_component to a "const char *" using the
125 'mapped_index::symbol_name_at(offset_type)' method. */
127 struct name_component
129 /* Offset in the symbol name where the component starts. Stored as
130 a (32-bit) offset instead of a pointer to save memory and improve
131 locality on 64-bit architectures. */
132 offset_type name_offset;
134 /* The symbol's index in the symbol and constant pool tables of a
139 /* Base class containing bits shared by both .gdb_index and
140 .debug_name indexes. */
142 struct mapped_index_base
144 mapped_index_base () = default;
145 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
147 /* The name_component table (a sorted vector). See name_component's
148 description above. */
149 std::vector<name_component> name_components;
151 /* How NAME_COMPONENTS is sorted. */
152 enum case_sensitivity name_components_casing;
154 /* Return the number of names in the symbol table. */
155 virtual size_t symbol_name_count () const = 0;
157 /* Get the name of the symbol at IDX in the symbol table. */
158 virtual const char *symbol_name_at (offset_type idx) const = 0;
160 /* Return whether the name at IDX in the symbol table should be
162 virtual bool symbol_name_slot_invalid (offset_type idx) const
167 /* Build the symbol name component sorted vector, if we haven't
169 void build_name_components ();
171 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
172 possible matches for LN_NO_PARAMS in the name component
174 std::pair<std::vector<name_component>::const_iterator,
175 std::vector<name_component>::const_iterator>
176 find_name_components_bounds (const lookup_name_info &ln_no_params,
177 enum language lang) const;
179 /* Prevent deleting/destroying via a base class pointer. */
181 ~mapped_index_base() = default;
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index final : public mapped_index_base
188 /* A slot/bucket in the symbol table hash. */
189 struct symbol_table_slot
191 const offset_type name;
192 const offset_type vec;
195 /* Index data format version. */
198 /* The address table data. */
199 gdb::array_view<const gdb_byte> address_table;
201 /* The symbol table, implemented as a hash table. */
202 gdb::array_view<symbol_table_slot> symbol_table;
204 /* A pointer to the constant pool. */
205 const char *constant_pool = nullptr;
207 bool symbol_name_slot_invalid (offset_type idx) const override
209 const auto &bucket = this->symbol_table[idx];
210 return bucket.name == 0 && bucket.vec == 0;
213 /* Convenience method to get at the name of the symbol at IDX in the
215 const char *symbol_name_at (offset_type idx) const override
216 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
218 size_t symbol_name_count () const override
219 { return this->symbol_table.size (); }
222 /* A description of the mapped .debug_names.
223 Uninitialized map has CU_COUNT 0. */
224 struct mapped_debug_names final : public mapped_index_base
226 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
227 : dwarf2_per_objfile (dwarf2_per_objfile_)
230 struct dwarf2_per_objfile *dwarf2_per_objfile;
231 bfd_endian dwarf5_byte_order;
232 bool dwarf5_is_dwarf64;
233 bool augmentation_is_gdb;
235 uint32_t cu_count = 0;
236 uint32_t tu_count, bucket_count, name_count;
237 const gdb_byte *cu_table_reordered, *tu_table_reordered;
238 const uint32_t *bucket_table_reordered, *hash_table_reordered;
239 const gdb_byte *name_table_string_offs_reordered;
240 const gdb_byte *name_table_entry_offs_reordered;
241 const gdb_byte *entry_pool;
248 /* Attribute name DW_IDX_*. */
251 /* Attribute form DW_FORM_*. */
254 /* Value if FORM is DW_FORM_implicit_const. */
255 LONGEST implicit_const;
257 std::vector<attr> attr_vec;
260 std::unordered_map<ULONGEST, index_val> abbrev_map;
262 const char *namei_to_name (uint32_t namei) const;
264 /* Implementation of the mapped_index_base virtual interface, for
265 the name_components cache. */
267 const char *symbol_name_at (offset_type idx) const override
268 { return namei_to_name (idx); }
270 size_t symbol_name_count () const override
271 { return this->name_count; }
274 /* See dwarf2read.h. */
277 get_dwarf2_per_objfile (struct objfile *objfile)
279 return dwarf2_objfile_data_key.get (objfile);
282 /* Default names of the debugging sections. */
284 /* Note that if the debugging section has been compressed, it might
285 have a name like .zdebug_info. */
287 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 { ".debug_info", ".zdebug_info" },
290 { ".debug_abbrev", ".zdebug_abbrev" },
291 { ".debug_line", ".zdebug_line" },
292 { ".debug_loc", ".zdebug_loc" },
293 { ".debug_loclists", ".zdebug_loclists" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_str_offsets", ".zdebug_str_offsets" },
298 { ".debug_line_str", ".zdebug_line_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_rnglists", ".zdebug_rnglists" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 { ".debug_names", ".zdebug_names" },
307 { ".debug_aranges", ".zdebug_aranges" },
311 /* List of DWO/DWP sections. */
313 static const struct dwop_section_names
315 struct dwarf2_section_names abbrev_dwo;
316 struct dwarf2_section_names info_dwo;
317 struct dwarf2_section_names line_dwo;
318 struct dwarf2_section_names loc_dwo;
319 struct dwarf2_section_names loclists_dwo;
320 struct dwarf2_section_names macinfo_dwo;
321 struct dwarf2_section_names macro_dwo;
322 struct dwarf2_section_names str_dwo;
323 struct dwarf2_section_names str_offsets_dwo;
324 struct dwarf2_section_names types_dwo;
325 struct dwarf2_section_names cu_index;
326 struct dwarf2_section_names tu_index;
330 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
331 { ".debug_info.dwo", ".zdebug_info.dwo" },
332 { ".debug_line.dwo", ".zdebug_line.dwo" },
333 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
334 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
335 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
336 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
337 { ".debug_str.dwo", ".zdebug_str.dwo" },
338 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
339 { ".debug_types.dwo", ".zdebug_types.dwo" },
340 { ".debug_cu_index", ".zdebug_cu_index" },
341 { ".debug_tu_index", ".zdebug_tu_index" },
344 /* local data types */
346 /* Type used for delaying computation of method physnames.
347 See comments for compute_delayed_physnames. */
348 struct delayed_method_info
350 /* The type to which the method is attached, i.e., its parent class. */
353 /* The index of the method in the type's function fieldlists. */
356 /* The index of the method in the fieldlist. */
359 /* The name of the DIE. */
362 /* The DIE associated with this method. */
363 struct die_info *die;
366 /* Internal state when decoding a particular compilation unit. */
369 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
372 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
374 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
375 Create the set of symtabs used by this TU, or if this TU is sharing
376 symtabs with another TU and the symtabs have already been created
377 then restore those symtabs in the line header.
378 We don't need the pc/line-number mapping for type units. */
379 void setup_type_unit_groups (struct die_info *die);
381 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
382 buildsym_compunit constructor. */
383 struct compunit_symtab *start_symtab (const char *name,
384 const char *comp_dir,
387 /* Reset the builder. */
388 void reset_builder () { m_builder.reset (); }
390 /* The header of the compilation unit. */
391 struct comp_unit_head header {};
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address = 0;
396 /* Non-zero if base_address has been set. */
399 /* The language we are debugging. */
400 enum language language = language_unknown;
401 const struct language_defn *language_defn = nullptr;
403 const char *producer = nullptr;
406 /* The symtab builder for this CU. This is only non-NULL when full
407 symbols are being read. */
408 std::unique_ptr<buildsym_compunit> m_builder;
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope = nullptr;
422 /* Hash table holding all the loaded partial DIEs
423 with partial_die->offset.SECT_OFF as hash. */
424 htab_t partial_dies = nullptr;
426 /* Storage for things with the same lifetime as this read-in compilation
427 unit, including partial DIEs. */
428 auto_obstack comp_unit_obstack;
430 /* When multiple dwarf2_cu structures are living in memory, this field
431 chains them all together, so that they can be released efficiently.
432 We will probably also want a generation counter so that most-recently-used
433 compilation units are cached... */
434 struct dwarf2_per_cu_data *read_in_chain = nullptr;
436 /* Backlink to our per_cu entry. */
437 struct dwarf2_per_cu_data *per_cu;
439 /* How many compilation units ago was this CU last referenced? */
442 /* A hash table of DIE cu_offset for following references with
443 die_info->offset.sect_off as hash. */
444 htab_t die_hash = nullptr;
446 /* Full DIEs if read in. */
447 struct die_info *dies = nullptr;
449 /* A set of pointers to dwarf2_per_cu_data objects for compilation
450 units referenced by this one. Only set during full symbol processing;
451 partial symbol tables do not have dependencies. */
452 htab_t dependencies = nullptr;
454 /* Header data from the line table, during full symbol processing. */
455 struct line_header *line_header = nullptr;
456 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
457 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
458 this is the DW_TAG_compile_unit die for this CU. We'll hold on
459 to the line header as long as this DIE is being processed. See
460 process_die_scope. */
461 die_info *line_header_die_owner = nullptr;
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 std::vector<delayed_method_info> method_list;
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab = nullptr;
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
479 struct dwo_unit *dwo_unit = nullptr;
481 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
482 Note this value comes from the Fission stub CU/TU's DIE. */
483 gdb::optional<ULONGEST> addr_base;
485 /* The DW_AT_rnglists_base attribute if present.
486 Note this value comes from the Fission stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base = 0;
496 /* When reading debug info generated by older versions of rustc, we
497 have to rewrite some union types to be struct types with a
498 variant part. This rewriting must be done after the CU is fully
499 read in, because otherwise at the point of rewriting some struct
500 type might not have been fully processed. So, we keep a list of
501 all such types here and process them after expansion. */
502 std::vector<struct type *> rust_unions;
504 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
505 files, the value is implicitly zero. For DWARF 5 version DWO files, the
506 value is often implicit and is the size of the header of
507 .debug_str_offsets section (8 or 4, depending on the address size). */
508 gdb::optional<ULONGEST> str_offsets_base;
510 /* Mark used when releasing cached dies. */
513 /* This CU references .debug_loc. See the symtab->locations_valid field.
514 This test is imperfect as there may exist optimized debug code not using
515 any location list and still facing inlining issues if handled as
516 unoptimized code. For a future better test see GCC PR other/32998. */
517 bool has_loclist : 1;
519 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
520 if all the producer_is_* fields are valid. This information is cached
521 because profiling CU expansion showed excessive time spent in
522 producer_is_gxx_lt_4_6. */
523 bool checked_producer : 1;
524 bool producer_is_gxx_lt_4_6 : 1;
525 bool producer_is_gcc_lt_4_3 : 1;
526 bool producer_is_icc : 1;
527 bool producer_is_icc_lt_14 : 1;
528 bool producer_is_codewarrior : 1;
530 /* When true, the file that we're processing is known to have
531 debugging info for C++ namespaces. GCC 3.3.x did not produce
532 this information, but later versions do. */
534 bool processing_has_namespace_info : 1;
536 struct partial_die_info *find_partial_die (sect_offset sect_off);
538 /* If this CU was inherited by another CU (via specification,
539 abstract_origin, etc), this is the ancestor CU. */
542 /* Get the buildsym_compunit for this CU. */
543 buildsym_compunit *get_builder ()
545 /* If this CU has a builder associated with it, use that. */
546 if (m_builder != nullptr)
547 return m_builder.get ();
549 /* Otherwise, search ancestors for a valid builder. */
550 if (ancestor != nullptr)
551 return ancestor->get_builder ();
557 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
558 This includes type_unit_group and quick_file_names. */
560 struct stmt_list_hash
562 /* The DWO unit this table is from or NULL if there is none. */
563 struct dwo_unit *dwo_unit;
565 /* Offset in .debug_line or .debug_line.dwo. */
566 sect_offset line_sect_off;
569 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
570 an object of this type. */
572 struct type_unit_group
574 /* dwarf2read.c's main "handle" on a TU symtab.
575 To simplify things we create an artificial CU that "includes" all the
576 type units using this stmt_list so that the rest of the code still has
577 a "per_cu" handle on the symtab. */
578 struct dwarf2_per_cu_data per_cu;
580 /* The TUs that share this DW_AT_stmt_list entry.
581 This is added to while parsing type units to build partial symtabs,
582 and is deleted afterwards and not used again. */
583 std::vector<signatured_type *> *tus;
585 /* The compunit symtab.
586 Type units in a group needn't all be defined in the same source file,
587 so we create an essentially anonymous symtab as the compunit symtab. */
588 struct compunit_symtab *compunit_symtab;
590 /* The data used to construct the hash key. */
591 struct stmt_list_hash hash;
593 /* The symbol tables for this TU (obtained from the files listed in
595 WARNING: The order of entries here must match the order of entries
596 in the line header. After the first TU using this type_unit_group, the
597 line header for the subsequent TUs is recreated from this. This is done
598 because we need to use the same symtabs for each TU using the same
599 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
600 there's no guarantee the line header doesn't have duplicate entries. */
601 struct symtab **symtabs;
604 /* These sections are what may appear in a (real or virtual) DWO file. */
608 struct dwarf2_section_info abbrev;
609 struct dwarf2_section_info line;
610 struct dwarf2_section_info loc;
611 struct dwarf2_section_info loclists;
612 struct dwarf2_section_info macinfo;
613 struct dwarf2_section_info macro;
614 struct dwarf2_section_info str;
615 struct dwarf2_section_info str_offsets;
616 /* In the case of a virtual DWO file, these two are unused. */
617 struct dwarf2_section_info info;
618 std::vector<dwarf2_section_info> types;
621 /* CUs/TUs in DWP/DWO files. */
625 /* Backlink to the containing struct dwo_file. */
626 struct dwo_file *dwo_file;
628 /* The "id" that distinguishes this CU/TU.
629 .debug_info calls this "dwo_id", .debug_types calls this "signature".
630 Since signatures came first, we stick with it for consistency. */
633 /* The section this CU/TU lives in, in the DWO file. */
634 struct dwarf2_section_info *section;
636 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
637 sect_offset sect_off;
640 /* For types, offset in the type's DIE of the type defined by this TU. */
641 cu_offset type_offset_in_tu;
644 /* include/dwarf2.h defines the DWP section codes.
645 It defines a max value but it doesn't define a min value, which we
646 use for error checking, so provide one. */
648 enum dwp_v2_section_ids
653 /* Data for one DWO file.
655 This includes virtual DWO files (a virtual DWO file is a DWO file as it
656 appears in a DWP file). DWP files don't really have DWO files per se -
657 comdat folding of types "loses" the DWO file they came from, and from
658 a high level view DWP files appear to contain a mass of random types.
659 However, to maintain consistency with the non-DWP case we pretend DWP
660 files contain virtual DWO files, and we assign each TU with one virtual
661 DWO file (generally based on the line and abbrev section offsets -
662 a heuristic that seems to work in practice). */
666 dwo_file () = default;
667 DISABLE_COPY_AND_ASSIGN (dwo_file);
669 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
670 For virtual DWO files the name is constructed from the section offsets
671 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
672 from related CU+TUs. */
673 const char *dwo_name = nullptr;
675 /* The DW_AT_comp_dir attribute. */
676 const char *comp_dir = nullptr;
678 /* The bfd, when the file is open. Otherwise this is NULL.
679 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
680 gdb_bfd_ref_ptr dbfd;
682 /* The sections that make up this DWO file.
683 Remember that for virtual DWO files in DWP V2, these are virtual
684 sections (for lack of a better name). */
685 struct dwo_sections sections {};
687 /* The CUs in the file.
688 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
689 an extension to handle LLVM's Link Time Optimization output (where
690 multiple source files may be compiled into a single object/dwo pair). */
693 /* Table of TUs in the file.
694 Each element is a struct dwo_unit. */
698 /* These sections are what may appear in a DWP file. */
702 /* These are used by both DWP version 1 and 2. */
703 struct dwarf2_section_info str;
704 struct dwarf2_section_info cu_index;
705 struct dwarf2_section_info tu_index;
707 /* These are only used by DWP version 2 files.
708 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
709 sections are referenced by section number, and are not recorded here.
710 In DWP version 2 there is at most one copy of all these sections, each
711 section being (effectively) comprised of the concatenation of all of the
712 individual sections that exist in the version 1 format.
713 To keep the code simple we treat each of these concatenated pieces as a
714 section itself (a virtual section?). */
715 struct dwarf2_section_info abbrev;
716 struct dwarf2_section_info info;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str_offsets;
722 struct dwarf2_section_info types;
725 /* These sections are what may appear in a virtual DWO file in DWP version 1.
726 A virtual DWO file is a DWO file as it appears in a DWP file. */
728 struct virtual_v1_dwo_sections
730 struct dwarf2_section_info abbrev;
731 struct dwarf2_section_info line;
732 struct dwarf2_section_info loc;
733 struct dwarf2_section_info macinfo;
734 struct dwarf2_section_info macro;
735 struct dwarf2_section_info str_offsets;
736 /* Each DWP hash table entry records one CU or one TU.
737 That is recorded here, and copied to dwo_unit.section. */
738 struct dwarf2_section_info info_or_types;
741 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
742 In version 2, the sections of the DWO files are concatenated together
743 and stored in one section of that name. Thus each ELF section contains
744 several "virtual" sections. */
746 struct virtual_v2_dwo_sections
748 bfd_size_type abbrev_offset;
749 bfd_size_type abbrev_size;
751 bfd_size_type line_offset;
752 bfd_size_type line_size;
754 bfd_size_type loc_offset;
755 bfd_size_type loc_size;
757 bfd_size_type macinfo_offset;
758 bfd_size_type macinfo_size;
760 bfd_size_type macro_offset;
761 bfd_size_type macro_size;
763 bfd_size_type str_offsets_offset;
764 bfd_size_type str_offsets_size;
766 /* Each DWP hash table entry records one CU or one TU.
767 That is recorded here, and copied to dwo_unit.section. */
768 bfd_size_type info_or_types_offset;
769 bfd_size_type info_or_types_size;
772 /* Contents of DWP hash tables. */
774 struct dwp_hash_table
776 uint32_t version, nr_columns;
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table;
783 const gdb_byte *indices;
787 /* This is indexed by column number and gives the id of the section
789 #define MAX_NR_V2_DWO_SECTIONS \
790 (1 /* .debug_info or .debug_types */ \
791 + 1 /* .debug_abbrev */ \
792 + 1 /* .debug_line */ \
793 + 1 /* .debug_loc */ \
794 + 1 /* .debug_str_offsets */ \
795 + 1 /* .debug_macro or .debug_macinfo */)
796 int section_ids[MAX_NR_V2_DWO_SECTIONS];
797 const gdb_byte *offsets;
798 const gdb_byte *sizes;
803 /* Data for one DWP file. */
807 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
809 dbfd (std::move (abfd))
813 /* Name of the file. */
816 /* File format version. */
820 gdb_bfd_ref_ptr dbfd;
822 /* Section info for this file. */
823 struct dwp_sections sections {};
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus = nullptr;
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus = nullptr;
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections = 0;
838 asection **elf_sections = nullptr;
841 /* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
846 struct die_reader_specs
848 /* The bfd of die_section. */
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
867 /* The abbreviation table to use when reading the DIEs. */
868 struct abbrev_table *abbrev_table;
871 /* A subclass of die_reader_specs that holds storage and has complex
872 constructor and destructor behavior. */
874 class cutu_reader : public die_reader_specs
878 cutu_reader (struct dwarf2_per_cu_data *this_cu,
879 struct abbrev_table *abbrev_table,
883 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
884 struct dwarf2_cu *parent_cu = nullptr,
885 struct dwo_file *dwo_file = nullptr);
887 DISABLE_COPY_AND_ASSIGN (cutu_reader);
889 const gdb_byte *info_ptr = nullptr;
890 struct die_info *comp_unit_die = nullptr;
891 bool dummy_p = false;
893 /* Release the new CU, putting it on the chain. This cannot be done
898 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
899 int use_existing_cu);
901 struct dwarf2_per_cu_data *m_this_cu;
902 std::unique_ptr<dwarf2_cu> m_new_cu;
904 /* The ordinary abbreviation table. */
905 abbrev_table_up m_abbrev_table_holder;
907 /* The DWO abbreviation table. */
908 abbrev_table_up m_dwo_abbrev_table;
911 /* When we construct a partial symbol table entry we only
912 need this much information. */
913 struct partial_die_info : public allocate_on_obstack
915 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
917 /* Disable assign but still keep copy ctor, which is needed
918 load_partial_dies. */
919 partial_die_info& operator=(const partial_die_info& rhs) = delete;
921 /* Adjust the partial die before generating a symbol for it. This
922 function may set the is_external flag or change the DIE's
924 void fixup (struct dwarf2_cu *cu);
926 /* Read a minimal amount of information into the minimal die
928 const gdb_byte *read (const struct die_reader_specs *reader,
929 const struct abbrev_info &abbrev,
930 const gdb_byte *info_ptr);
932 /* Offset of this DIE. */
933 const sect_offset sect_off;
935 /* DWARF-2 tag for this DIE. */
936 const ENUM_BITFIELD(dwarf_tag) tag : 16;
938 /* Assorted flags describing the data found in this DIE. */
939 const unsigned int has_children : 1;
941 unsigned int is_external : 1;
942 unsigned int is_declaration : 1;
943 unsigned int has_type : 1;
944 unsigned int has_specification : 1;
945 unsigned int has_pc_info : 1;
946 unsigned int may_be_inlined : 1;
948 /* This DIE has been marked DW_AT_main_subprogram. */
949 unsigned int main_subprogram : 1;
951 /* Flag set if the SCOPE field of this structure has been
953 unsigned int scope_set : 1;
955 /* Flag set if the DIE has a byte_size attribute. */
956 unsigned int has_byte_size : 1;
958 /* Flag set if the DIE has a DW_AT_const_value attribute. */
959 unsigned int has_const_value : 1;
961 /* Flag set if any of the DIE's children are template arguments. */
962 unsigned int has_template_arguments : 1;
964 /* Flag set if fixup has been called on this die. */
965 unsigned int fixup_called : 1;
967 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
968 unsigned int is_dwz : 1;
970 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
971 unsigned int spec_is_dwz : 1;
973 /* The name of this DIE. Normally the value of DW_AT_name, but
974 sometimes a default name for unnamed DIEs. */
975 const char *name = nullptr;
977 /* The linkage name, if present. */
978 const char *linkage_name = nullptr;
980 /* The scope to prepend to our children. This is generally
981 allocated on the comp_unit_obstack, so will disappear
982 when this compilation unit leaves the cache. */
983 const char *scope = nullptr;
985 /* Some data associated with the partial DIE. The tag determines
986 which field is live. */
989 /* The location description associated with this DIE, if any. */
990 struct dwarf_block *locdesc;
991 /* The offset of an import, for DW_TAG_imported_unit. */
992 sect_offset sect_off;
995 /* If HAS_PC_INFO, the PC range associated with this DIE. */
997 CORE_ADDR highpc = 0;
999 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1000 DW_AT_sibling, if any. */
1001 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1002 could return DW_AT_sibling values to its caller load_partial_dies. */
1003 const gdb_byte *sibling = nullptr;
1005 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1006 DW_AT_specification (or DW_AT_abstract_origin or
1007 DW_AT_extension). */
1008 sect_offset spec_offset {};
1010 /* Pointers to this DIE's parent, first child, and next sibling,
1012 struct partial_die_info *die_parent = nullptr;
1013 struct partial_die_info *die_child = nullptr;
1014 struct partial_die_info *die_sibling = nullptr;
1016 friend struct partial_die_info *
1017 dwarf2_cu::find_partial_die (sect_offset sect_off);
1020 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1021 partial_die_info (sect_offset sect_off)
1022 : partial_die_info (sect_off, DW_TAG_padding, 0)
1026 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1028 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1033 has_specification = 0;
1036 main_subprogram = 0;
1039 has_const_value = 0;
1040 has_template_arguments = 0;
1047 /* This data structure holds a complete die structure. */
1050 /* DWARF-2 tag for this DIE. */
1051 ENUM_BITFIELD(dwarf_tag) tag : 16;
1053 /* Number of attributes */
1054 unsigned char num_attrs;
1056 /* True if we're presently building the full type name for the
1057 type derived from this DIE. */
1058 unsigned char building_fullname : 1;
1060 /* True if this die is in process. PR 16581. */
1061 unsigned char in_process : 1;
1063 /* True if this DIE has children. */
1064 unsigned char has_children : 1;
1067 unsigned int abbrev;
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset sect_off;
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1086 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1087 but this would require a corresponding change in unpack_field_as_long
1089 static int bits_per_byte = 8;
1091 /* When reading a variant or variant part, we track a bit more
1092 information about the field, and store it in an object of this
1095 struct variant_field
1097 /* If we see a DW_TAG_variant, then this will be the discriminant
1099 ULONGEST discriminant_value;
1100 /* If we see a DW_TAG_variant, then this will be set if this is the
1102 bool default_branch;
1103 /* While reading a DW_TAG_variant_part, this will be set if this
1104 field is the discriminant. */
1105 bool is_discriminant;
1110 int accessibility = 0;
1112 /* Extra information to describe a variant or variant part. */
1113 struct variant_field variant {};
1114 struct field field {};
1119 const char *name = nullptr;
1120 std::vector<struct fn_field> fnfields;
1123 /* The routines that read and process dies for a C struct or C++ class
1124 pass lists of data member fields and lists of member function fields
1125 in an instance of a field_info structure, as defined below. */
1128 /* List of data member and baseclasses fields. */
1129 std::vector<struct nextfield> fields;
1130 std::vector<struct nextfield> baseclasses;
1132 /* Number of fields (including baseclasses). */
1135 /* Set if the accessibility of one of the fields is not public. */
1136 int non_public_fields = 0;
1138 /* Member function fieldlist array, contains name of possibly overloaded
1139 member function, number of overloaded member functions and a pointer
1140 to the head of the member function field chain. */
1141 std::vector<struct fnfieldlist> fnfieldlists;
1143 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1144 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1145 std::vector<struct decl_field> typedef_field_list;
1147 /* Nested types defined by this class and the number of elements in this
1149 std::vector<struct decl_field> nested_types_list;
1152 /* Loaded secondary compilation units are kept in memory until they
1153 have not been referenced for the processing of this many
1154 compilation units. Set this to zero to disable caching. Cache
1155 sizes of up to at least twenty will improve startup time for
1156 typical inter-CU-reference binaries, at an obvious memory cost. */
1157 static int dwarf_max_cache_age = 5;
1159 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1160 struct cmd_list_element *c, const char *value)
1162 fprintf_filtered (file, _("The upper bound on the age of cached "
1163 "DWARF compilation units is %s.\n"),
1167 /* local function prototypes */
1169 static void dwarf2_find_base_address (struct die_info *die,
1170 struct dwarf2_cu *cu);
1172 static dwarf2_psymtab *create_partial_symtab
1173 (struct dwarf2_per_cu_data *per_cu, const char *name);
1175 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1176 const gdb_byte *info_ptr,
1177 struct die_info *type_unit_die);
1179 static void dwarf2_build_psymtabs_hard
1180 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1182 static void scan_partial_symbols (struct partial_die_info *,
1183 CORE_ADDR *, CORE_ADDR *,
1184 int, struct dwarf2_cu *);
1186 static void add_partial_symbol (struct partial_die_info *,
1187 struct dwarf2_cu *);
1189 static void add_partial_namespace (struct partial_die_info *pdi,
1190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1191 int set_addrmap, struct dwarf2_cu *cu);
1193 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1194 CORE_ADDR *highpc, int set_addrmap,
1195 struct dwarf2_cu *cu);
1197 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1198 struct dwarf2_cu *cu);
1200 static void add_partial_subprogram (struct partial_die_info *pdi,
1201 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1202 int need_pc, struct dwarf2_cu *cu);
1204 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1206 static struct partial_die_info *load_partial_dies
1207 (const struct die_reader_specs *, const gdb_byte *, int);
1209 /* A pair of partial_die_info and compilation unit. */
1210 struct cu_partial_die_info
1212 /* The compilation unit of the partial_die_info. */
1213 struct dwarf2_cu *cu;
1214 /* A partial_die_info. */
1215 struct partial_die_info *pdi;
1217 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1223 cu_partial_die_info () = delete;
1226 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1227 struct dwarf2_cu *);
1229 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1230 struct attribute *, struct attr_abbrev *,
1231 const gdb_byte *, bool *need_reprocess);
1233 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1234 struct attribute *attr);
1236 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1238 static LONGEST read_checked_initial_length_and_offset
1239 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1240 unsigned int *, unsigned int *);
1242 static sect_offset read_abbrev_offset
1243 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1244 struct dwarf2_section_info *, sect_offset);
1246 static const char *read_indirect_string
1247 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1248 const struct comp_unit_head *, unsigned int *);
1250 static const char *read_indirect_line_string
1251 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1252 const struct comp_unit_head *, unsigned int *);
1254 static const char *read_indirect_string_at_offset
1255 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1256 LONGEST str_offset);
1258 static const char *read_indirect_string_from_dwz
1259 (struct objfile *objfile, struct dwz_file *, LONGEST);
1261 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1265 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1266 ULONGEST str_index);
1268 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1269 ULONGEST str_index);
1271 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1273 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1274 struct dwarf2_cu *);
1276 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1279 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1280 struct dwarf2_cu *cu);
1282 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1284 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1285 struct dwarf2_cu *cu);
1287 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1289 static struct die_info *die_specification (struct die_info *die,
1290 struct dwarf2_cu **);
1292 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1293 struct dwarf2_cu *cu);
1295 static void dwarf_decode_lines (struct line_header *, const char *,
1296 struct dwarf2_cu *, dwarf2_psymtab *,
1297 CORE_ADDR, int decode_mapping);
1299 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1302 static struct symbol *new_symbol (struct die_info *, struct type *,
1303 struct dwarf2_cu *, struct symbol * = NULL);
1305 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1306 struct dwarf2_cu *);
1308 static void dwarf2_const_value_attr (const struct attribute *attr,
1311 struct obstack *obstack,
1312 struct dwarf2_cu *cu, LONGEST *value,
1313 const gdb_byte **bytes,
1314 struct dwarf2_locexpr_baton **baton);
1316 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1318 static int need_gnat_info (struct dwarf2_cu *);
1320 static struct type *die_descriptive_type (struct die_info *,
1321 struct dwarf2_cu *);
1323 static void set_descriptive_type (struct type *, struct die_info *,
1324 struct dwarf2_cu *);
1326 static struct type *die_containing_type (struct die_info *,
1327 struct dwarf2_cu *);
1329 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1330 struct dwarf2_cu *);
1332 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1334 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1336 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1338 static char *typename_concat (struct obstack *obs, const char *prefix,
1339 const char *suffix, int physname,
1340 struct dwarf2_cu *cu);
1342 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1344 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1346 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1348 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1350 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1352 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1354 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1355 struct dwarf2_cu *, dwarf2_psymtab *);
1357 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1358 values. Keep the items ordered with increasing constraints compliance. */
1361 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1362 PC_BOUNDS_NOT_PRESENT,
1364 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1365 were present but they do not form a valid range of PC addresses. */
1368 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1371 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1375 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1376 CORE_ADDR *, CORE_ADDR *,
1380 static void get_scope_pc_bounds (struct die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 struct dwarf2_cu *);
1384 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1385 CORE_ADDR, struct dwarf2_cu *);
1387 static void dwarf2_add_field (struct field_info *, struct die_info *,
1388 struct dwarf2_cu *);
1390 static void dwarf2_attach_fields_to_type (struct field_info *,
1391 struct type *, struct dwarf2_cu *);
1393 static void dwarf2_add_member_fn (struct field_info *,
1394 struct die_info *, struct type *,
1395 struct dwarf2_cu *);
1397 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1399 struct dwarf2_cu *);
1401 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1403 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1405 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1407 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1409 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1411 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1413 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1415 static struct type *read_module_type (struct die_info *die,
1416 struct dwarf2_cu *cu);
1418 static const char *namespace_name (struct die_info *die,
1419 int *is_anonymous, struct dwarf2_cu *);
1421 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1423 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1425 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1426 struct dwarf2_cu *);
1428 static struct die_info *read_die_and_siblings_1
1429 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1432 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1433 const gdb_byte *info_ptr,
1434 const gdb_byte **new_info_ptr,
1435 struct die_info *parent);
1437 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1438 struct die_info **, const gdb_byte *,
1441 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1442 struct die_info **, const gdb_byte *);
1444 static void process_die (struct die_info *, struct dwarf2_cu *);
1446 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1449 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1451 static const char *dwarf2_full_name (const char *name,
1452 struct die_info *die,
1453 struct dwarf2_cu *cu);
1455 static const char *dwarf2_physname (const char *name, struct die_info *die,
1456 struct dwarf2_cu *cu);
1458 static struct die_info *dwarf2_extension (struct die_info *die,
1459 struct dwarf2_cu **);
1461 static const char *dwarf_tag_name (unsigned int);
1463 static const char *dwarf_attr_name (unsigned int);
1465 static const char *dwarf_form_name (unsigned int);
1467 static const char *dwarf_bool_name (unsigned int);
1469 static const char *dwarf_type_encoding_name (unsigned int);
1471 static struct die_info *sibling_die (struct die_info *);
1473 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1475 static void dump_die_for_error (struct die_info *);
1477 static void dump_die_1 (struct ui_file *, int level, int max_level,
1480 /*static*/ void dump_die (struct die_info *, int max_level);
1482 static void store_in_ref_table (struct die_info *,
1483 struct dwarf2_cu *);
1485 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1487 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1510 static void read_signatured_type (struct signatured_type *);
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1516 /* memory allocation interface */
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1530 struct dwarf2_cu *cu,
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1537 static hashval_t partial_die_hash (const void *item);
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1572 static void dwarf2_mark (struct dwarf2_cu *);
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1591 class dwarf2_queue_guard
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1611 dwarf2_per_objfile *m_per_objfile;
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1629 struct file_and_directory
1631 /* The filename. This is never NULL. */
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1648 static htab_up allocate_signatured_type_table ();
1650 static htab_up allocate_dwo_unit_table ();
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1668 /* A unique pointer to a dwo_file. */
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1674 static void check_producer (struct dwarf2_cu *cu);
1676 static void free_line_header_voidp (void *arg);
1678 /* Various complaints about symbol reading that don't abort the process. */
1681 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1683 complaint (_("statement list doesn't fit in .debug_line section"));
1687 dwarf2_debug_line_missing_file_complaint (void)
1689 complaint (_(".debug_line section has line data without a file"));
1693 dwarf2_debug_line_missing_end_sequence_complaint (void)
1695 complaint (_(".debug_line section has line "
1696 "program sequence without an end"));
1700 dwarf2_complex_location_expr_complaint (void)
1702 complaint (_("location expression too complex"));
1706 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1709 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1714 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1716 complaint (_("debug info runs off end of %s section"
1718 section->get_name (),
1719 section->get_file_name ());
1723 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1725 complaint (_("macro debug info contains a "
1726 "malformed macro definition:\n`%s'"),
1731 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1733 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1737 /* Hash function for line_header_hash. */
1740 line_header_hash (const struct line_header *ofs)
1742 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1745 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1748 line_header_hash_voidp (const void *item)
1750 const struct line_header *ofs = (const struct line_header *) item;
1752 return line_header_hash (ofs);
1755 /* Equality function for line_header_hash. */
1758 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1760 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1761 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1763 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1764 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1769 /* See declaration. */
1771 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1772 const dwarf2_debug_sections *names,
1774 : objfile (objfile_),
1775 can_copy (can_copy_)
1778 names = &dwarf2_elf_names;
1780 bfd *obfd = objfile->obfd;
1782 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1783 locate_sections (obfd, sec, *names);
1786 dwarf2_per_objfile::~dwarf2_per_objfile ()
1788 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1789 free_cached_comp_units ();
1791 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1792 per_cu->imported_symtabs_free ();
1794 for (signatured_type *sig_type : all_type_units)
1795 sig_type->per_cu.imported_symtabs_free ();
1797 /* Everything else should be on the objfile obstack. */
1800 /* See declaration. */
1803 dwarf2_per_objfile::free_cached_comp_units ()
1805 dwarf2_per_cu_data *per_cu = read_in_chain;
1806 dwarf2_per_cu_data **last_chain = &read_in_chain;
1807 while (per_cu != NULL)
1809 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1812 *last_chain = next_cu;
1817 /* A helper class that calls free_cached_comp_units on
1820 class free_cached_comp_units
1824 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1825 : m_per_objfile (per_objfile)
1829 ~free_cached_comp_units ()
1831 m_per_objfile->free_cached_comp_units ();
1834 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1838 dwarf2_per_objfile *m_per_objfile;
1841 /* Try to locate the sections we need for DWARF 2 debugging
1842 information and return true if we have enough to do something.
1843 NAMES points to the dwarf2 section names, or is NULL if the standard
1844 ELF names are used. CAN_COPY is true for formats where symbol
1845 interposition is possible and so symbol values must follow copy
1846 relocation rules. */
1849 dwarf2_has_info (struct objfile *objfile,
1850 const struct dwarf2_debug_sections *names,
1853 if (objfile->flags & OBJF_READNEVER)
1856 struct dwarf2_per_objfile *dwarf2_per_objfile
1857 = get_dwarf2_per_objfile (objfile);
1859 if (dwarf2_per_objfile == NULL)
1860 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1864 return (!dwarf2_per_objfile->info.is_virtual
1865 && dwarf2_per_objfile->info.s.section != NULL
1866 && !dwarf2_per_objfile->abbrev.is_virtual
1867 && dwarf2_per_objfile->abbrev.s.section != NULL);
1870 /* When loading sections, we look either for uncompressed section or for
1871 compressed section names. */
1874 section_is_p (const char *section_name,
1875 const struct dwarf2_section_names *names)
1877 if (names->normal != NULL
1878 && strcmp (section_name, names->normal) == 0)
1880 if (names->compressed != NULL
1881 && strcmp (section_name, names->compressed) == 0)
1886 /* See declaration. */
1889 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1890 const dwarf2_debug_sections &names)
1892 flagword aflag = bfd_section_flags (sectp);
1894 if ((aflag & SEC_HAS_CONTENTS) == 0)
1897 else if (elf_section_data (sectp)->this_hdr.sh_size
1898 > bfd_get_file_size (abfd))
1900 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1901 warning (_("Discarding section %s which has a section size (%s"
1902 ") larger than the file size [in module %s]"),
1903 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1904 bfd_get_filename (abfd));
1906 else if (section_is_p (sectp->name, &names.info))
1908 this->info.s.section = sectp;
1909 this->info.size = bfd_section_size (sectp);
1911 else if (section_is_p (sectp->name, &names.abbrev))
1913 this->abbrev.s.section = sectp;
1914 this->abbrev.size = bfd_section_size (sectp);
1916 else if (section_is_p (sectp->name, &names.line))
1918 this->line.s.section = sectp;
1919 this->line.size = bfd_section_size (sectp);
1921 else if (section_is_p (sectp->name, &names.loc))
1923 this->loc.s.section = sectp;
1924 this->loc.size = bfd_section_size (sectp);
1926 else if (section_is_p (sectp->name, &names.loclists))
1928 this->loclists.s.section = sectp;
1929 this->loclists.size = bfd_section_size (sectp);
1931 else if (section_is_p (sectp->name, &names.macinfo))
1933 this->macinfo.s.section = sectp;
1934 this->macinfo.size = bfd_section_size (sectp);
1936 else if (section_is_p (sectp->name, &names.macro))
1938 this->macro.s.section = sectp;
1939 this->macro.size = bfd_section_size (sectp);
1941 else if (section_is_p (sectp->name, &names.str))
1943 this->str.s.section = sectp;
1944 this->str.size = bfd_section_size (sectp);
1946 else if (section_is_p (sectp->name, &names.str_offsets))
1948 this->str_offsets.s.section = sectp;
1949 this->str_offsets.size = bfd_section_size (sectp);
1951 else if (section_is_p (sectp->name, &names.line_str))
1953 this->line_str.s.section = sectp;
1954 this->line_str.size = bfd_section_size (sectp);
1956 else if (section_is_p (sectp->name, &names.addr))
1958 this->addr.s.section = sectp;
1959 this->addr.size = bfd_section_size (sectp);
1961 else if (section_is_p (sectp->name, &names.frame))
1963 this->frame.s.section = sectp;
1964 this->frame.size = bfd_section_size (sectp);
1966 else if (section_is_p (sectp->name, &names.eh_frame))
1968 this->eh_frame.s.section = sectp;
1969 this->eh_frame.size = bfd_section_size (sectp);
1971 else if (section_is_p (sectp->name, &names.ranges))
1973 this->ranges.s.section = sectp;
1974 this->ranges.size = bfd_section_size (sectp);
1976 else if (section_is_p (sectp->name, &names.rnglists))
1978 this->rnglists.s.section = sectp;
1979 this->rnglists.size = bfd_section_size (sectp);
1981 else if (section_is_p (sectp->name, &names.types))
1983 struct dwarf2_section_info type_section;
1985 memset (&type_section, 0, sizeof (type_section));
1986 type_section.s.section = sectp;
1987 type_section.size = bfd_section_size (sectp);
1989 this->types.push_back (type_section);
1991 else if (section_is_p (sectp->name, &names.gdb_index))
1993 this->gdb_index.s.section = sectp;
1994 this->gdb_index.size = bfd_section_size (sectp);
1996 else if (section_is_p (sectp->name, &names.debug_names))
1998 this->debug_names.s.section = sectp;
1999 this->debug_names.size = bfd_section_size (sectp);
2001 else if (section_is_p (sectp->name, &names.debug_aranges))
2003 this->debug_aranges.s.section = sectp;
2004 this->debug_aranges.size = bfd_section_size (sectp);
2007 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2008 && bfd_section_vma (sectp) == 0)
2009 this->has_section_at_zero = true;
2012 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2016 dwarf2_get_section_info (struct objfile *objfile,
2017 enum dwarf2_section_enum sect,
2018 asection **sectp, const gdb_byte **bufp,
2019 bfd_size_type *sizep)
2021 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2022 struct dwarf2_section_info *info;
2024 /* We may see an objfile without any DWARF, in which case we just
2035 case DWARF2_DEBUG_FRAME:
2036 info = &data->frame;
2038 case DWARF2_EH_FRAME:
2039 info = &data->eh_frame;
2042 gdb_assert_not_reached ("unexpected section");
2045 info->read (objfile);
2047 *sectp = info->get_bfd_section ();
2048 *bufp = info->buffer;
2049 *sizep = info->size;
2052 /* A helper function to find the sections for a .dwz file. */
2055 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2057 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2059 /* Note that we only support the standard ELF names, because .dwz
2060 is ELF-only (at the time of writing). */
2061 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2063 dwz_file->abbrev.s.section = sectp;
2064 dwz_file->abbrev.size = bfd_section_size (sectp);
2066 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2068 dwz_file->info.s.section = sectp;
2069 dwz_file->info.size = bfd_section_size (sectp);
2071 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2073 dwz_file->str.s.section = sectp;
2074 dwz_file->str.size = bfd_section_size (sectp);
2076 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2078 dwz_file->line.s.section = sectp;
2079 dwz_file->line.size = bfd_section_size (sectp);
2081 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2083 dwz_file->macro.s.section = sectp;
2084 dwz_file->macro.size = bfd_section_size (sectp);
2086 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2088 dwz_file->gdb_index.s.section = sectp;
2089 dwz_file->gdb_index.size = bfd_section_size (sectp);
2091 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2093 dwz_file->debug_names.s.section = sectp;
2094 dwz_file->debug_names.size = bfd_section_size (sectp);
2098 /* See dwarf2read.h. */
2101 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2103 const char *filename;
2104 bfd_size_type buildid_len_arg;
2108 if (dwarf2_per_objfile->dwz_file != NULL)
2109 return dwarf2_per_objfile->dwz_file.get ();
2111 bfd_set_error (bfd_error_no_error);
2112 gdb::unique_xmalloc_ptr<char> data
2113 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2114 &buildid_len_arg, &buildid));
2117 if (bfd_get_error () == bfd_error_no_error)
2119 error (_("could not read '.gnu_debugaltlink' section: %s"),
2120 bfd_errmsg (bfd_get_error ()));
2123 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2125 buildid_len = (size_t) buildid_len_arg;
2127 filename = data.get ();
2129 std::string abs_storage;
2130 if (!IS_ABSOLUTE_PATH (filename))
2132 gdb::unique_xmalloc_ptr<char> abs
2133 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2135 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2136 filename = abs_storage.c_str ();
2139 /* First try the file name given in the section. If that doesn't
2140 work, try to use the build-id instead. */
2141 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2142 if (dwz_bfd != NULL)
2144 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2145 dwz_bfd.reset (nullptr);
2148 if (dwz_bfd == NULL)
2149 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2151 if (dwz_bfd == nullptr)
2153 gdb::unique_xmalloc_ptr<char> alt_filename;
2154 const char *origname = dwarf2_per_objfile->objfile->original_name;
2156 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2163 /* File successfully retrieved from server. */
2164 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2166 if (dwz_bfd == nullptr)
2167 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2168 alt_filename.get ());
2169 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2170 dwz_bfd.reset (nullptr);
2174 if (dwz_bfd == NULL)
2175 error (_("could not find '.gnu_debugaltlink' file for %s"),
2176 objfile_name (dwarf2_per_objfile->objfile));
2178 std::unique_ptr<struct dwz_file> result
2179 (new struct dwz_file (std::move (dwz_bfd)));
2181 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2184 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2185 result->dwz_bfd.get ());
2186 dwarf2_per_objfile->dwz_file = std::move (result);
2187 return dwarf2_per_objfile->dwz_file.get ();
2190 /* DWARF quick_symbols_functions support. */
2192 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2193 unique line tables, so we maintain a separate table of all .debug_line
2194 derived entries to support the sharing.
2195 All the quick functions need is the list of file names. We discard the
2196 line_header when we're done and don't need to record it here. */
2197 struct quick_file_names
2199 /* The data used to construct the hash key. */
2200 struct stmt_list_hash hash;
2202 /* The number of entries in file_names, real_names. */
2203 unsigned int num_file_names;
2205 /* The file names from the line table, after being run through
2207 const char **file_names;
2209 /* The file names from the line table after being run through
2210 gdb_realpath. These are computed lazily. */
2211 const char **real_names;
2214 /* When using the index (and thus not using psymtabs), each CU has an
2215 object of this type. This is used to hold information needed by
2216 the various "quick" methods. */
2217 struct dwarf2_per_cu_quick_data
2219 /* The file table. This can be NULL if there was no file table
2220 or it's currently not read in.
2221 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2222 struct quick_file_names *file_names;
2224 /* The corresponding symbol table. This is NULL if symbols for this
2225 CU have not yet been read. */
2226 struct compunit_symtab *compunit_symtab;
2228 /* A temporary mark bit used when iterating over all CUs in
2229 expand_symtabs_matching. */
2230 unsigned int mark : 1;
2232 /* True if we've tried to read the file table and found there isn't one.
2233 There will be no point in trying to read it again next time. */
2234 unsigned int no_file_data : 1;
2237 /* Utility hash function for a stmt_list_hash. */
2240 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2244 if (stmt_list_hash->dwo_unit != NULL)
2245 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2246 v += to_underlying (stmt_list_hash->line_sect_off);
2250 /* Utility equality function for a stmt_list_hash. */
2253 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2254 const struct stmt_list_hash *rhs)
2256 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2258 if (lhs->dwo_unit != NULL
2259 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2262 return lhs->line_sect_off == rhs->line_sect_off;
2265 /* Hash function for a quick_file_names. */
2268 hash_file_name_entry (const void *e)
2270 const struct quick_file_names *file_data
2271 = (const struct quick_file_names *) e;
2273 return hash_stmt_list_entry (&file_data->hash);
2276 /* Equality function for a quick_file_names. */
2279 eq_file_name_entry (const void *a, const void *b)
2281 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2282 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2284 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2287 /* Delete function for a quick_file_names. */
2290 delete_file_name_entry (void *e)
2292 struct quick_file_names *file_data = (struct quick_file_names *) e;
2295 for (i = 0; i < file_data->num_file_names; ++i)
2297 xfree ((void*) file_data->file_names[i]);
2298 if (file_data->real_names)
2299 xfree ((void*) file_data->real_names[i]);
2302 /* The space for the struct itself lives on objfile_obstack,
2303 so we don't free it here. */
2306 /* Create a quick_file_names hash table. */
2309 create_quick_file_names_table (unsigned int nr_initial_entries)
2311 return htab_up (htab_create_alloc (nr_initial_entries,
2312 hash_file_name_entry, eq_file_name_entry,
2313 delete_file_name_entry, xcalloc, xfree));
2316 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2317 have to be created afterwards. You should call age_cached_comp_units after
2318 processing PER_CU->CU. dw2_setup must have been already called. */
2321 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2323 if (per_cu->is_debug_types)
2324 load_full_type_unit (per_cu);
2326 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2328 if (per_cu->cu == NULL)
2329 return; /* Dummy CU. */
2331 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2334 /* Read in the symbols for PER_CU. */
2337 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2339 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2341 /* Skip type_unit_groups, reading the type units they contain
2342 is handled elsewhere. */
2343 if (per_cu->type_unit_group_p ())
2346 /* The destructor of dwarf2_queue_guard frees any entries left on
2347 the queue. After this point we're guaranteed to leave this function
2348 with the dwarf queue empty. */
2349 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2351 if (dwarf2_per_objfile->using_index
2352 ? per_cu->v.quick->compunit_symtab == NULL
2353 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2355 queue_comp_unit (per_cu, language_minimal);
2356 load_cu (per_cu, skip_partial);
2358 /* If we just loaded a CU from a DWO, and we're working with an index
2359 that may badly handle TUs, load all the TUs in that DWO as well.
2360 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2361 if (!per_cu->is_debug_types
2362 && per_cu->cu != NULL
2363 && per_cu->cu->dwo_unit != NULL
2364 && dwarf2_per_objfile->index_table != NULL
2365 && dwarf2_per_objfile->index_table->version <= 7
2366 /* DWP files aren't supported yet. */
2367 && get_dwp_file (dwarf2_per_objfile) == NULL)
2368 queue_and_load_all_dwo_tus (per_cu);
2371 process_queue (dwarf2_per_objfile);
2373 /* Age the cache, releasing compilation units that have not
2374 been used recently. */
2375 age_cached_comp_units (dwarf2_per_objfile);
2378 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2379 the objfile from which this CU came. Returns the resulting symbol
2382 static struct compunit_symtab *
2383 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2385 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2387 gdb_assert (dwarf2_per_objfile->using_index);
2388 if (!per_cu->v.quick->compunit_symtab)
2390 free_cached_comp_units freer (dwarf2_per_objfile);
2391 scoped_restore decrementer = increment_reading_symtab ();
2392 dw2_do_instantiate_symtab (per_cu, skip_partial);
2393 process_cu_includes (dwarf2_per_objfile);
2396 return per_cu->v.quick->compunit_symtab;
2399 /* See declaration. */
2401 dwarf2_per_cu_data *
2402 dwarf2_per_objfile::get_cutu (int index)
2404 if (index >= this->all_comp_units.size ())
2406 index -= this->all_comp_units.size ();
2407 gdb_assert (index < this->all_type_units.size ());
2408 return &this->all_type_units[index]->per_cu;
2411 return this->all_comp_units[index];
2414 /* See declaration. */
2416 dwarf2_per_cu_data *
2417 dwarf2_per_objfile::get_cu (int index)
2419 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2421 return this->all_comp_units[index];
2424 /* See declaration. */
2427 dwarf2_per_objfile::get_tu (int index)
2429 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2431 return this->all_type_units[index];
2434 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2435 objfile_obstack, and constructed with the specified field
2438 static dwarf2_per_cu_data *
2439 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 struct dwarf2_section_info *section,
2442 sect_offset sect_off, ULONGEST length)
2444 struct objfile *objfile = dwarf2_per_objfile->objfile;
2445 dwarf2_per_cu_data *the_cu
2446 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2447 struct dwarf2_per_cu_data);
2448 the_cu->sect_off = sect_off;
2449 the_cu->length = length;
2450 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2451 the_cu->section = section;
2452 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2453 struct dwarf2_per_cu_quick_data);
2454 the_cu->is_dwz = is_dwz;
2458 /* A helper for create_cus_from_index that handles a given list of
2462 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2463 const gdb_byte *cu_list, offset_type n_elements,
2464 struct dwarf2_section_info *section,
2467 for (offset_type i = 0; i < n_elements; i += 2)
2469 gdb_static_assert (sizeof (ULONGEST) >= 8);
2471 sect_offset sect_off
2472 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2473 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2476 dwarf2_per_cu_data *per_cu
2477 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2479 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2483 /* Read the CU list from the mapped index, and use it to create all
2484 the CU objects for this objfile. */
2487 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 const gdb_byte *cu_list, offset_type cu_list_elements,
2489 const gdb_byte *dwz_list, offset_type dwz_elements)
2491 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2492 dwarf2_per_objfile->all_comp_units.reserve
2493 ((cu_list_elements + dwz_elements) / 2);
2495 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2496 &dwarf2_per_objfile->info, 0);
2498 if (dwz_elements == 0)
2501 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2502 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2506 /* Create the signatured type hash table from the index. */
2509 create_signatured_type_table_from_index
2510 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2511 struct dwarf2_section_info *section,
2512 const gdb_byte *bytes,
2513 offset_type elements)
2515 struct objfile *objfile = dwarf2_per_objfile->objfile;
2517 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2518 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2520 htab_up sig_types_hash = allocate_signatured_type_table ();
2522 for (offset_type i = 0; i < elements; i += 3)
2524 struct signatured_type *sig_type;
2527 cu_offset type_offset_in_tu;
2529 gdb_static_assert (sizeof (ULONGEST) >= 8);
2530 sect_offset sect_off
2531 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2533 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2535 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2538 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2539 struct signatured_type);
2540 sig_type->signature = signature;
2541 sig_type->type_offset_in_tu = type_offset_in_tu;
2542 sig_type->per_cu.is_debug_types = 1;
2543 sig_type->per_cu.section = section;
2544 sig_type->per_cu.sect_off = sect_off;
2545 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2546 sig_type->per_cu.v.quick
2547 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2548 struct dwarf2_per_cu_quick_data);
2550 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2553 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2556 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2559 /* Create the signatured type hash table from .debug_names. */
2562 create_signatured_type_table_from_debug_names
2563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2564 const mapped_debug_names &map,
2565 struct dwarf2_section_info *section,
2566 struct dwarf2_section_info *abbrev_section)
2568 struct objfile *objfile = dwarf2_per_objfile->objfile;
2570 section->read (objfile);
2571 abbrev_section->read (objfile);
2573 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2574 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2576 htab_up sig_types_hash = allocate_signatured_type_table ();
2578 for (uint32_t i = 0; i < map.tu_count; ++i)
2580 struct signatured_type *sig_type;
2583 sect_offset sect_off
2584 = (sect_offset) (extract_unsigned_integer
2585 (map.tu_table_reordered + i * map.offset_size,
2587 map.dwarf5_byte_order));
2589 comp_unit_head cu_header;
2590 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2592 section->buffer + to_underlying (sect_off),
2595 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2596 struct signatured_type);
2597 sig_type->signature = cu_header.signature;
2598 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2599 sig_type->per_cu.is_debug_types = 1;
2600 sig_type->per_cu.section = section;
2601 sig_type->per_cu.sect_off = sect_off;
2602 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2603 sig_type->per_cu.v.quick
2604 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2605 struct dwarf2_per_cu_quick_data);
2607 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2610 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2613 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2616 /* Read the address map data from the mapped index, and use it to
2617 populate the objfile's psymtabs_addrmap. */
2620 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2621 struct mapped_index *index)
2623 struct objfile *objfile = dwarf2_per_objfile->objfile;
2624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2625 const gdb_byte *iter, *end;
2626 struct addrmap *mutable_map;
2629 auto_obstack temp_obstack;
2631 mutable_map = addrmap_create_mutable (&temp_obstack);
2633 iter = index->address_table.data ();
2634 end = iter + index->address_table.size ();
2636 baseaddr = objfile->text_section_offset ();
2640 ULONGEST hi, lo, cu_index;
2641 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2643 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2645 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2650 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2651 hex_string (lo), hex_string (hi));
2655 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2657 complaint (_(".gdb_index address table has invalid CU number %u"),
2658 (unsigned) cu_index);
2662 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2663 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2664 addrmap_set_empty (mutable_map, lo, hi - 1,
2665 dwarf2_per_objfile->get_cu (cu_index));
2668 objfile->partial_symtabs->psymtabs_addrmap
2669 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2672 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2673 populate the objfile's psymtabs_addrmap. */
2676 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2677 struct dwarf2_section_info *section)
2679 struct objfile *objfile = dwarf2_per_objfile->objfile;
2680 bfd *abfd = objfile->obfd;
2681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2682 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2684 auto_obstack temp_obstack;
2685 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2687 std::unordered_map<sect_offset,
2688 dwarf2_per_cu_data *,
2689 gdb::hash_enum<sect_offset>>
2690 debug_info_offset_to_per_cu;
2691 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2693 const auto insertpair
2694 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2695 if (!insertpair.second)
2697 warning (_("Section .debug_aranges in %s has duplicate "
2698 "debug_info_offset %s, ignoring .debug_aranges."),
2699 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2704 section->read (objfile);
2706 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2708 const gdb_byte *addr = section->buffer;
2710 while (addr < section->buffer + section->size)
2712 const gdb_byte *const entry_addr = addr;
2713 unsigned int bytes_read;
2715 const LONGEST entry_length = read_initial_length (abfd, addr,
2719 const gdb_byte *const entry_end = addr + entry_length;
2720 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2721 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2722 if (addr + entry_length > section->buffer + section->size)
2724 warning (_("Section .debug_aranges in %s entry at offset %s "
2725 "length %s exceeds section length %s, "
2726 "ignoring .debug_aranges."),
2727 objfile_name (objfile),
2728 plongest (entry_addr - section->buffer),
2729 plongest (bytes_read + entry_length),
2730 pulongest (section->size));
2734 /* The version number. */
2735 const uint16_t version = read_2_bytes (abfd, addr);
2739 warning (_("Section .debug_aranges in %s entry at offset %s "
2740 "has unsupported version %d, ignoring .debug_aranges."),
2741 objfile_name (objfile),
2742 plongest (entry_addr - section->buffer), version);
2746 const uint64_t debug_info_offset
2747 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2748 addr += offset_size;
2749 const auto per_cu_it
2750 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2751 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "debug_info_offset %s does not exists, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 pulongest (debug_info_offset));
2761 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2763 const uint8_t address_size = *addr++;
2764 if (address_size < 1 || address_size > 8)
2766 warning (_("Section .debug_aranges in %s entry at offset %s "
2767 "address_size %u is invalid, ignoring .debug_aranges."),
2768 objfile_name (objfile),
2769 plongest (entry_addr - section->buffer), address_size);
2773 const uint8_t segment_selector_size = *addr++;
2774 if (segment_selector_size != 0)
2776 warning (_("Section .debug_aranges in %s entry at offset %s "
2777 "segment_selector_size %u is not supported, "
2778 "ignoring .debug_aranges."),
2779 objfile_name (objfile),
2780 plongest (entry_addr - section->buffer),
2781 segment_selector_size);
2785 /* Must pad to an alignment boundary that is twice the address
2786 size. It is undocumented by the DWARF standard but GCC does
2788 for (size_t padding = ((-(addr - section->buffer))
2789 & (2 * address_size - 1));
2790 padding > 0; padding--)
2793 warning (_("Section .debug_aranges in %s entry at offset %s "
2794 "padding is not zero, ignoring .debug_aranges."),
2795 objfile_name (objfile),
2796 plongest (entry_addr - section->buffer));
2802 if (addr + 2 * address_size > entry_end)
2804 warning (_("Section .debug_aranges in %s entry at offset %s "
2805 "address list is not properly terminated, "
2806 "ignoring .debug_aranges."),
2807 objfile_name (objfile),
2808 plongest (entry_addr - section->buffer));
2811 ULONGEST start = extract_unsigned_integer (addr, address_size,
2813 addr += address_size;
2814 ULONGEST length = extract_unsigned_integer (addr, address_size,
2816 addr += address_size;
2817 if (start == 0 && length == 0)
2819 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2821 /* Symbol was eliminated due to a COMDAT group. */
2824 ULONGEST end = start + length;
2825 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2827 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2829 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2833 objfile->partial_symtabs->psymtabs_addrmap
2834 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2837 /* Find a slot in the mapped index INDEX for the object named NAME.
2838 If NAME is found, set *VEC_OUT to point to the CU vector in the
2839 constant pool and return true. If NAME cannot be found, return
2843 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2844 offset_type **vec_out)
2847 offset_type slot, step;
2848 int (*cmp) (const char *, const char *);
2850 gdb::unique_xmalloc_ptr<char> without_params;
2851 if (current_language->la_language == language_cplus
2852 || current_language->la_language == language_fortran
2853 || current_language->la_language == language_d)
2855 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2858 if (strchr (name, '(') != NULL)
2860 without_params = cp_remove_params (name);
2862 if (without_params != NULL)
2863 name = without_params.get ();
2867 /* Index version 4 did not support case insensitive searches. But the
2868 indices for case insensitive languages are built in lowercase, therefore
2869 simulate our NAME being searched is also lowercased. */
2870 hash = mapped_index_string_hash ((index->version == 4
2871 && case_sensitivity == case_sensitive_off
2872 ? 5 : index->version),
2875 slot = hash & (index->symbol_table.size () - 1);
2876 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2877 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2883 const auto &bucket = index->symbol_table[slot];
2884 if (bucket.name == 0 && bucket.vec == 0)
2887 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2888 if (!cmp (name, str))
2890 *vec_out = (offset_type *) (index->constant_pool
2891 + MAYBE_SWAP (bucket.vec));
2895 slot = (slot + step) & (index->symbol_table.size () - 1);
2899 /* A helper function that reads the .gdb_index from BUFFER and fills
2900 in MAP. FILENAME is the name of the file containing the data;
2901 it is used for error reporting. DEPRECATED_OK is true if it is
2902 ok to use deprecated sections.
2904 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2905 out parameters that are filled in with information about the CU and
2906 TU lists in the section.
2908 Returns true if all went well, false otherwise. */
2911 read_gdb_index_from_buffer (struct objfile *objfile,
2912 const char *filename,
2914 gdb::array_view<const gdb_byte> buffer,
2915 struct mapped_index *map,
2916 const gdb_byte **cu_list,
2917 offset_type *cu_list_elements,
2918 const gdb_byte **types_list,
2919 offset_type *types_list_elements)
2921 const gdb_byte *addr = &buffer[0];
2923 /* Version check. */
2924 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2925 /* Versions earlier than 3 emitted every copy of a psymbol. This
2926 causes the index to behave very poorly for certain requests. Version 3
2927 contained incomplete addrmap. So, it seems better to just ignore such
2931 static int warning_printed = 0;
2932 if (!warning_printed)
2934 warning (_("Skipping obsolete .gdb_index section in %s."),
2936 warning_printed = 1;
2940 /* Index version 4 uses a different hash function than index version
2943 Versions earlier than 6 did not emit psymbols for inlined
2944 functions. Using these files will cause GDB not to be able to
2945 set breakpoints on inlined functions by name, so we ignore these
2946 indices unless the user has done
2947 "set use-deprecated-index-sections on". */
2948 if (version < 6 && !deprecated_ok)
2950 static int warning_printed = 0;
2951 if (!warning_printed)
2954 Skipping deprecated .gdb_index section in %s.\n\
2955 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2956 to use the section anyway."),
2958 warning_printed = 1;
2962 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2963 of the TU (for symbols coming from TUs),
2964 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2965 Plus gold-generated indices can have duplicate entries for global symbols,
2966 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2967 These are just performance bugs, and we can't distinguish gdb-generated
2968 indices from gold-generated ones, so issue no warning here. */
2970 /* Indexes with higher version than the one supported by GDB may be no
2971 longer backward compatible. */
2975 map->version = version;
2977 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2980 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2981 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2985 *types_list = addr + MAYBE_SWAP (metadata[i]);
2986 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2987 - MAYBE_SWAP (metadata[i]))
2991 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2992 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2994 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2997 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2998 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3000 = gdb::array_view<mapped_index::symbol_table_slot>
3001 ((mapped_index::symbol_table_slot *) symbol_table,
3002 (mapped_index::symbol_table_slot *) symbol_table_end);
3005 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3010 /* Callback types for dwarf2_read_gdb_index. */
3012 typedef gdb::function_view
3013 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3014 get_gdb_index_contents_ftype;
3015 typedef gdb::function_view
3016 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3017 get_gdb_index_contents_dwz_ftype;
3019 /* Read .gdb_index. If everything went ok, initialize the "quick"
3020 elements of all the CUs and return 1. Otherwise, return 0. */
3023 dwarf2_read_gdb_index
3024 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3025 get_gdb_index_contents_ftype get_gdb_index_contents,
3026 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3028 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3029 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3030 struct dwz_file *dwz;
3031 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033 gdb::array_view<const gdb_byte> main_index_contents
3034 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3036 if (main_index_contents.empty ())
3039 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3040 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3041 use_deprecated_index_sections,
3042 main_index_contents, map.get (), &cu_list,
3043 &cu_list_elements, &types_list,
3044 &types_list_elements))
3047 /* Don't use the index if it's empty. */
3048 if (map->symbol_table.empty ())
3051 /* If there is a .dwz file, read it so we can get its CU list as
3053 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3056 struct mapped_index dwz_map;
3057 const gdb_byte *dwz_types_ignore;
3058 offset_type dwz_types_elements_ignore;
3060 gdb::array_view<const gdb_byte> dwz_index_content
3061 = get_gdb_index_contents_dwz (objfile, dwz);
3063 if (dwz_index_content.empty ())
3066 if (!read_gdb_index_from_buffer (objfile,
3067 bfd_get_filename (dwz->dwz_bfd.get ()),
3068 1, dwz_index_content, &dwz_map,
3069 &dwz_list, &dwz_list_elements,
3071 &dwz_types_elements_ignore))
3073 warning (_("could not read '.gdb_index' section from %s; skipping"),
3074 bfd_get_filename (dwz->dwz_bfd.get ()));
3079 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3080 dwz_list, dwz_list_elements);
3082 if (types_list_elements)
3084 /* We can only handle a single .debug_types when we have an
3086 if (dwarf2_per_objfile->types.size () != 1)
3089 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3091 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3092 types_list, types_list_elements);
3095 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3097 dwarf2_per_objfile->index_table = std::move (map);
3098 dwarf2_per_objfile->using_index = 1;
3099 dwarf2_per_objfile->quick_file_names_table =
3100 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3105 /* die_reader_func for dw2_get_file_names. */
3108 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3109 const gdb_byte *info_ptr,
3110 struct die_info *comp_unit_die)
3112 struct dwarf2_cu *cu = reader->cu;
3113 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3114 struct dwarf2_per_objfile *dwarf2_per_objfile
3115 = cu->per_cu->dwarf2_per_objfile;
3116 struct objfile *objfile = dwarf2_per_objfile->objfile;
3117 struct dwarf2_per_cu_data *lh_cu;
3118 struct attribute *attr;
3120 struct quick_file_names *qfn;
3122 gdb_assert (! this_cu->is_debug_types);
3124 /* Our callers never want to match partial units -- instead they
3125 will match the enclosing full CU. */
3126 if (comp_unit_die->tag == DW_TAG_partial_unit)
3128 this_cu->v.quick->no_file_data = 1;
3136 sect_offset line_offset {};
3138 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3139 if (attr != nullptr)
3141 struct quick_file_names find_entry;
3143 line_offset = (sect_offset) DW_UNSND (attr);
3145 /* We may have already read in this line header (TU line header sharing).
3146 If we have we're done. */
3147 find_entry.hash.dwo_unit = cu->dwo_unit;
3148 find_entry.hash.line_sect_off = line_offset;
3149 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3150 &find_entry, INSERT);
3153 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3157 lh = dwarf_decode_line_header (line_offset, cu);
3161 lh_cu->v.quick->no_file_data = 1;
3165 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3166 qfn->hash.dwo_unit = cu->dwo_unit;
3167 qfn->hash.line_sect_off = line_offset;
3168 gdb_assert (slot != NULL);
3171 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3174 if (strcmp (fnd.name, "<unknown>") != 0)
3177 qfn->num_file_names = offset + lh->file_names_size ();
3179 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3181 qfn->file_names[0] = xstrdup (fnd.name);
3182 for (int i = 0; i < lh->file_names_size (); ++i)
3183 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3184 fnd.comp_dir).release ();
3185 qfn->real_names = NULL;
3187 lh_cu->v.quick->file_names = qfn;
3190 /* A helper for the "quick" functions which attempts to read the line
3191 table for THIS_CU. */
3193 static struct quick_file_names *
3194 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3196 /* This should never be called for TUs. */
3197 gdb_assert (! this_cu->is_debug_types);
3198 /* Nor type unit groups. */
3199 gdb_assert (! this_cu->type_unit_group_p ());
3201 if (this_cu->v.quick->file_names != NULL)
3202 return this_cu->v.quick->file_names;
3203 /* If we know there is no line data, no point in looking again. */
3204 if (this_cu->v.quick->no_file_data)
3207 cutu_reader reader (this_cu);
3208 if (!reader.dummy_p)
3209 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3211 if (this_cu->v.quick->no_file_data)
3213 return this_cu->v.quick->file_names;
3216 /* A helper for the "quick" functions which computes and caches the
3217 real path for a given file name from the line table. */
3220 dw2_get_real_path (struct objfile *objfile,
3221 struct quick_file_names *qfn, int index)
3223 if (qfn->real_names == NULL)
3224 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3225 qfn->num_file_names, const char *);
3227 if (qfn->real_names[index] == NULL)
3228 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3230 return qfn->real_names[index];
3233 static struct symtab *
3234 dw2_find_last_source_symtab (struct objfile *objfile)
3236 struct dwarf2_per_objfile *dwarf2_per_objfile
3237 = get_dwarf2_per_objfile (objfile);
3238 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3239 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3244 return compunit_primary_filetab (cust);
3247 /* Traversal function for dw2_forget_cached_source_info. */
3250 dw2_free_cached_file_names (void **slot, void *info)
3252 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3254 if (file_data->real_names)
3258 for (i = 0; i < file_data->num_file_names; ++i)
3260 xfree ((void*) file_data->real_names[i]);
3261 file_data->real_names[i] = NULL;
3269 dw2_forget_cached_source_info (struct objfile *objfile)
3271 struct dwarf2_per_objfile *dwarf2_per_objfile
3272 = get_dwarf2_per_objfile (objfile);
3274 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3275 dw2_free_cached_file_names, NULL);
3278 /* Helper function for dw2_map_symtabs_matching_filename that expands
3279 the symtabs and calls the iterator. */
3282 dw2_map_expand_apply (struct objfile *objfile,
3283 struct dwarf2_per_cu_data *per_cu,
3284 const char *name, const char *real_path,
3285 gdb::function_view<bool (symtab *)> callback)
3287 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3289 /* Don't visit already-expanded CUs. */
3290 if (per_cu->v.quick->compunit_symtab)
3293 /* This may expand more than one symtab, and we want to iterate over
3295 dw2_instantiate_symtab (per_cu, false);
3297 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3298 last_made, callback);
3301 /* Implementation of the map_symtabs_matching_filename method. */
3304 dw2_map_symtabs_matching_filename
3305 (struct objfile *objfile, const char *name, const char *real_path,
3306 gdb::function_view<bool (symtab *)> callback)
3308 const char *name_basename = lbasename (name);
3309 struct dwarf2_per_objfile *dwarf2_per_objfile
3310 = get_dwarf2_per_objfile (objfile);
3312 /* The rule is CUs specify all the files, including those used by
3313 any TU, so there's no need to scan TUs here. */
3315 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3317 /* We only need to look at symtabs not already expanded. */
3318 if (per_cu->v.quick->compunit_symtab)
3321 quick_file_names *file_data = dw2_get_file_names (per_cu);
3322 if (file_data == NULL)
3325 for (int j = 0; j < file_data->num_file_names; ++j)
3327 const char *this_name = file_data->file_names[j];
3328 const char *this_real_name;
3330 if (compare_filenames_for_search (this_name, name))
3332 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3338 /* Before we invoke realpath, which can get expensive when many
3339 files are involved, do a quick comparison of the basenames. */
3340 if (! basenames_may_differ
3341 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3344 this_real_name = dw2_get_real_path (objfile, file_data, j);
3345 if (compare_filenames_for_search (this_real_name, name))
3347 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3353 if (real_path != NULL)
3355 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3356 gdb_assert (IS_ABSOLUTE_PATH (name));
3357 if (this_real_name != NULL
3358 && FILENAME_CMP (real_path, this_real_name) == 0)
3360 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3372 /* Struct used to manage iterating over all CUs looking for a symbol. */
3374 struct dw2_symtab_iterator
3376 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3377 struct dwarf2_per_objfile *dwarf2_per_objfile;
3378 /* If set, only look for symbols that match that block. Valid values are
3379 GLOBAL_BLOCK and STATIC_BLOCK. */
3380 gdb::optional<block_enum> block_index;
3381 /* The kind of symbol we're looking for. */
3383 /* The list of CUs from the index entry of the symbol,
3384 or NULL if not found. */
3386 /* The next element in VEC to look at. */
3388 /* The number of elements in VEC, or zero if there is no match. */
3390 /* Have we seen a global version of the symbol?
3391 If so we can ignore all further global instances.
3392 This is to work around gold/15646, inefficient gold-generated
3397 /* Initialize the index symtab iterator ITER. */
3400 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3401 struct dwarf2_per_objfile *dwarf2_per_objfile,
3402 gdb::optional<block_enum> block_index,
3406 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3407 iter->block_index = block_index;
3408 iter->domain = domain;
3410 iter->global_seen = 0;
3412 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3414 /* index is NULL if OBJF_READNOW. */
3415 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3416 iter->length = MAYBE_SWAP (*iter->vec);
3424 /* Return the next matching CU or NULL if there are no more. */
3426 static struct dwarf2_per_cu_data *
3427 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3429 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3431 for ( ; iter->next < iter->length; ++iter->next)
3433 offset_type cu_index_and_attrs =
3434 MAYBE_SWAP (iter->vec[iter->next + 1]);
3435 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3436 gdb_index_symbol_kind symbol_kind =
3437 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3438 /* Only check the symbol attributes if they're present.
3439 Indices prior to version 7 don't record them,
3440 and indices >= 7 may elide them for certain symbols
3441 (gold does this). */
3443 (dwarf2_per_objfile->index_table->version >= 7
3444 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3446 /* Don't crash on bad data. */
3447 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3448 + dwarf2_per_objfile->all_type_units.size ()))
3450 complaint (_(".gdb_index entry has bad CU index"
3452 objfile_name (dwarf2_per_objfile->objfile));
3456 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3458 /* Skip if already read in. */
3459 if (per_cu->v.quick->compunit_symtab)
3462 /* Check static vs global. */
3465 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3467 if (iter->block_index.has_value ())
3469 bool want_static = *iter->block_index == STATIC_BLOCK;
3471 if (is_static != want_static)
3475 /* Work around gold/15646. */
3476 if (!is_static && iter->global_seen)
3479 iter->global_seen = 1;
3482 /* Only check the symbol's kind if it has one. */
3485 switch (iter->domain)
3488 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3489 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3490 /* Some types are also in VAR_DOMAIN. */
3491 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3495 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3499 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3503 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3518 static struct compunit_symtab *
3519 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3520 const char *name, domain_enum domain)
3522 struct compunit_symtab *stab_best = NULL;
3523 struct dwarf2_per_objfile *dwarf2_per_objfile
3524 = get_dwarf2_per_objfile (objfile);
3526 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3528 struct dw2_symtab_iterator iter;
3529 struct dwarf2_per_cu_data *per_cu;
3531 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3533 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3535 struct symbol *sym, *with_opaque = NULL;
3536 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3537 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3538 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3540 sym = block_find_symbol (block, name, domain,
3541 block_find_non_opaque_type_preferred,
3544 /* Some caution must be observed with overloaded functions
3545 and methods, since the index will not contain any overload
3546 information (but NAME might contain it). */
3549 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3551 if (with_opaque != NULL
3552 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3555 /* Keep looking through other CUs. */
3562 dw2_print_stats (struct objfile *objfile)
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566 int total = (dwarf2_per_objfile->all_comp_units.size ()
3567 + dwarf2_per_objfile->all_type_units.size ());
3570 for (int i = 0; i < total; ++i)
3572 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3574 if (!per_cu->v.quick->compunit_symtab)
3577 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3578 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3581 /* This dumps minimal information about the index.
3582 It is called via "mt print objfiles".
3583 One use is to verify .gdb_index has been loaded by the
3584 gdb.dwarf2/gdb-index.exp testcase. */
3587 dw2_dump (struct objfile *objfile)
3589 struct dwarf2_per_objfile *dwarf2_per_objfile
3590 = get_dwarf2_per_objfile (objfile);
3592 gdb_assert (dwarf2_per_objfile->using_index);
3593 printf_filtered (".gdb_index:");
3594 if (dwarf2_per_objfile->index_table != NULL)
3596 printf_filtered (" version %d\n",
3597 dwarf2_per_objfile->index_table->version);
3600 printf_filtered (" faked for \"readnow\"\n");
3601 printf_filtered ("\n");
3605 dw2_expand_symtabs_for_function (struct objfile *objfile,
3606 const char *func_name)
3608 struct dwarf2_per_objfile *dwarf2_per_objfile
3609 = get_dwarf2_per_objfile (objfile);
3611 struct dw2_symtab_iterator iter;
3612 struct dwarf2_per_cu_data *per_cu;
3614 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3616 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3617 dw2_instantiate_symtab (per_cu, false);
3622 dw2_expand_all_symtabs (struct objfile *objfile)
3624 struct dwarf2_per_objfile *dwarf2_per_objfile
3625 = get_dwarf2_per_objfile (objfile);
3626 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3627 + dwarf2_per_objfile->all_type_units.size ());
3629 for (int i = 0; i < total_units; ++i)
3631 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3633 /* We don't want to directly expand a partial CU, because if we
3634 read it with the wrong language, then assertion failures can
3635 be triggered later on. See PR symtab/23010. So, tell
3636 dw2_instantiate_symtab to skip partial CUs -- any important
3637 partial CU will be read via DW_TAG_imported_unit anyway. */
3638 dw2_instantiate_symtab (per_cu, true);
3643 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3644 const char *fullname)
3646 struct dwarf2_per_objfile *dwarf2_per_objfile
3647 = get_dwarf2_per_objfile (objfile);
3649 /* We don't need to consider type units here.
3650 This is only called for examining code, e.g. expand_line_sal.
3651 There can be an order of magnitude (or more) more type units
3652 than comp units, and we avoid them if we can. */
3654 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3656 /* We only need to look at symtabs not already expanded. */
3657 if (per_cu->v.quick->compunit_symtab)
3660 quick_file_names *file_data = dw2_get_file_names (per_cu);
3661 if (file_data == NULL)
3664 for (int j = 0; j < file_data->num_file_names; ++j)
3666 const char *this_fullname = file_data->file_names[j];
3668 if (filename_cmp (this_fullname, fullname) == 0)
3670 dw2_instantiate_symtab (per_cu, false);
3678 dw2_map_matching_symbols
3679 (struct objfile *objfile,
3680 const lookup_name_info &name, domain_enum domain,
3682 gdb::function_view<symbol_found_callback_ftype> callback,
3683 symbol_compare_ftype *ordered_compare)
3685 /* Currently unimplemented; used for Ada. The function can be called if the
3686 current language is Ada for a non-Ada objfile using GNU index. As Ada
3687 does not look for non-Ada symbols this function should just return. */
3690 /* Starting from a search name, return the string that finds the upper
3691 bound of all strings that start with SEARCH_NAME in a sorted name
3692 list. Returns the empty string to indicate that the upper bound is
3693 the end of the list. */
3696 make_sort_after_prefix_name (const char *search_name)
3698 /* When looking to complete "func", we find the upper bound of all
3699 symbols that start with "func" by looking for where we'd insert
3700 the closest string that would follow "func" in lexicographical
3701 order. Usually, that's "func"-with-last-character-incremented,
3702 i.e. "fund". Mind non-ASCII characters, though. Usually those
3703 will be UTF-8 multi-byte sequences, but we can't be certain.
3704 Especially mind the 0xff character, which is a valid character in
3705 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3706 rule out compilers allowing it in identifiers. Note that
3707 conveniently, strcmp/strcasecmp are specified to compare
3708 characters interpreted as unsigned char. So what we do is treat
3709 the whole string as a base 256 number composed of a sequence of
3710 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3711 to 0, and carries 1 to the following more-significant position.
3712 If the very first character in SEARCH_NAME ends up incremented
3713 and carries/overflows, then the upper bound is the end of the
3714 list. The string after the empty string is also the empty
3717 Some examples of this operation:
3719 SEARCH_NAME => "+1" RESULT
3723 "\xff" "a" "\xff" => "\xff" "b"
3728 Then, with these symbols for example:
3734 completing "func" looks for symbols between "func" and
3735 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3736 which finds "func" and "func1", but not "fund".
3740 funcÿ (Latin1 'ÿ' [0xff])
3744 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3745 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3749 ÿÿ (Latin1 'ÿ' [0xff])
3752 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3753 the end of the list.
3755 std::string after = search_name;
3756 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 if (!after.empty ())
3759 after.back () = (unsigned char) after.back () + 1;
3763 /* See declaration. */
3765 std::pair<std::vector<name_component>::const_iterator,
3766 std::vector<name_component>::const_iterator>
3767 mapped_index_base::find_name_components_bounds
3768 (const lookup_name_info &lookup_name_without_params, language lang) const
3771 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773 const char *lang_name
3774 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3776 /* Comparison function object for lower_bound that matches against a
3777 given symbol name. */
3778 auto lookup_compare_lower = [&] (const name_component &elem,
3781 const char *elem_qualified = this->symbol_name_at (elem.idx);
3782 const char *elem_name = elem_qualified + elem.name_offset;
3783 return name_cmp (elem_name, name) < 0;
3786 /* Comparison function object for upper_bound that matches against a
3787 given symbol name. */
3788 auto lookup_compare_upper = [&] (const char *name,
3789 const name_component &elem)
3791 const char *elem_qualified = this->symbol_name_at (elem.idx);
3792 const char *elem_name = elem_qualified + elem.name_offset;
3793 return name_cmp (name, elem_name) < 0;
3796 auto begin = this->name_components.begin ();
3797 auto end = this->name_components.end ();
3799 /* Find the lower bound. */
3802 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3805 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3808 /* Find the upper bound. */
3811 if (lookup_name_without_params.completion_mode ())
3813 /* In completion mode, we want UPPER to point past all
3814 symbols names that have the same prefix. I.e., with
3815 these symbols, and completing "func":
3817 function << lower bound
3819 other_function << upper bound
3821 We find the upper bound by looking for the insertion
3822 point of "func"-with-last-character-incremented,
3824 std::string after = make_sort_after_prefix_name (lang_name);
3827 return std::lower_bound (lower, end, after.c_str (),
3828 lookup_compare_lower);
3831 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3834 return {lower, upper};
3837 /* See declaration. */
3840 mapped_index_base::build_name_components ()
3842 if (!this->name_components.empty ())
3845 this->name_components_casing = case_sensitivity;
3847 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849 /* The code below only knows how to break apart components of C++
3850 symbol names (and other languages that use '::' as
3851 namespace/module separator) and Ada symbol names. */
3852 auto count = this->symbol_name_count ();
3853 for (offset_type idx = 0; idx < count; idx++)
3855 if (this->symbol_name_slot_invalid (idx))
3858 const char *name = this->symbol_name_at (idx);
3860 /* Add each name component to the name component table. */
3861 unsigned int previous_len = 0;
3863 if (strstr (name, "::") != nullptr)
3865 for (unsigned int current_len = cp_find_first_component (name);
3866 name[current_len] != '\0';
3867 current_len += cp_find_first_component (name + current_len))
3869 gdb_assert (name[current_len] == ':');
3870 this->name_components.push_back ({previous_len, idx});
3871 /* Skip the '::'. */
3873 previous_len = current_len;
3878 /* Handle the Ada encoded (aka mangled) form here. */
3879 for (const char *iter = strstr (name, "__");
3881 iter = strstr (iter, "__"))
3883 this->name_components.push_back ({previous_len, idx});
3885 previous_len = iter - name;
3889 this->name_components.push_back ({previous_len, idx});
3892 /* Sort name_components elements by name. */
3893 auto name_comp_compare = [&] (const name_component &left,
3894 const name_component &right)
3896 const char *left_qualified = this->symbol_name_at (left.idx);
3897 const char *right_qualified = this->symbol_name_at (right.idx);
3899 const char *left_name = left_qualified + left.name_offset;
3900 const char *right_name = right_qualified + right.name_offset;
3902 return name_cmp (left_name, right_name) < 0;
3905 std::sort (this->name_components.begin (),
3906 this->name_components.end (),
3910 /* Helper for dw2_expand_symtabs_matching that works with a
3911 mapped_index_base instead of the containing objfile. This is split
3912 to a separate function in order to be able to unit test the
3913 name_components matching using a mock mapped_index_base. For each
3914 symbol name that matches, calls MATCH_CALLBACK, passing it the
3915 symbol's index in the mapped_index_base symbol table. */
3918 dw2_expand_symtabs_matching_symbol
3919 (mapped_index_base &index,
3920 const lookup_name_info &lookup_name_in,
3921 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3922 enum search_domain kind,
3923 gdb::function_view<bool (offset_type)> match_callback)
3925 lookup_name_info lookup_name_without_params
3926 = lookup_name_in.make_ignore_params ();
3928 /* Build the symbol name component sorted vector, if we haven't
3930 index.build_name_components ();
3932 /* The same symbol may appear more than once in the range though.
3933 E.g., if we're looking for symbols that complete "w", and we have
3934 a symbol named "w1::w2", we'll find the two name components for
3935 that same symbol in the range. To be sure we only call the
3936 callback once per symbol, we first collect the symbol name
3937 indexes that matched in a temporary vector and ignore
3939 std::vector<offset_type> matches;
3941 struct name_and_matcher
3943 symbol_name_matcher_ftype *matcher;
3944 const std::string &name;
3946 bool operator== (const name_and_matcher &other) const
3948 return matcher == other.matcher && name == other.name;
3952 /* A vector holding all the different symbol name matchers, for all
3954 std::vector<name_and_matcher> matchers;
3956 for (int i = 0; i < nr_languages; i++)
3958 enum language lang_e = (enum language) i;
3960 const language_defn *lang = language_def (lang_e);
3961 symbol_name_matcher_ftype *name_matcher
3962 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964 name_and_matcher key {
3966 lookup_name_without_params.language_lookup_name (lang_e)
3969 /* Don't insert the same comparison routine more than once.
3970 Note that we do this linear walk. This is not a problem in
3971 practice because the number of supported languages is
3973 if (std::find (matchers.begin (), matchers.end (), key)
3976 matchers.push_back (std::move (key));
3979 = index.find_name_components_bounds (lookup_name_without_params,
3982 /* Now for each symbol name in range, check to see if we have a name
3983 match, and if so, call the MATCH_CALLBACK callback. */
3985 for (; bounds.first != bounds.second; ++bounds.first)
3987 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3990 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3993 matches.push_back (bounds.first->idx);
3997 std::sort (matches.begin (), matches.end ());
3999 /* Finally call the callback, once per match. */
4001 for (offset_type idx : matches)
4005 if (!match_callback (idx))
4011 /* Above we use a type wider than idx's for 'prev', since 0 and
4012 (offset_type)-1 are both possible values. */
4013 static_assert (sizeof (prev) > sizeof (offset_type), "");
4018 namespace selftests { namespace dw2_expand_symtabs_matching {
4020 /* A mock .gdb_index/.debug_names-like name index table, enough to
4021 exercise dw2_expand_symtabs_matching_symbol, which works with the
4022 mapped_index_base interface. Builds an index from the symbol list
4023 passed as parameter to the constructor. */
4024 class mock_mapped_index : public mapped_index_base
4027 mock_mapped_index (gdb::array_view<const char *> symbols)
4028 : m_symbol_table (symbols)
4031 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033 /* Return the number of names in the symbol table. */
4034 size_t symbol_name_count () const override
4036 return m_symbol_table.size ();
4039 /* Get the name of the symbol at IDX in the symbol table. */
4040 const char *symbol_name_at (offset_type idx) const override
4042 return m_symbol_table[idx];
4046 gdb::array_view<const char *> m_symbol_table;
4049 /* Convenience function that converts a NULL pointer to a "<null>"
4050 string, to pass to print routines. */
4053 string_or_null (const char *str)
4055 return str != NULL ? str : "<null>";
4058 /* Check if a lookup_name_info built from
4059 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4060 index. EXPECTED_LIST is the list of expected matches, in expected
4061 matching order. If no match expected, then an empty list is
4062 specified. Returns true on success. On failure prints a warning
4063 indicating the file:line that failed, and returns false. */
4066 check_match (const char *file, int line,
4067 mock_mapped_index &mock_index,
4068 const char *name, symbol_name_match_type match_type,
4069 bool completion_mode,
4070 std::initializer_list<const char *> expected_list)
4072 lookup_name_info lookup_name (name, match_type, completion_mode);
4074 bool matched = true;
4076 auto mismatch = [&] (const char *expected_str,
4079 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4080 "expected=\"%s\", got=\"%s\"\n"),
4082 (match_type == symbol_name_match_type::FULL
4084 name, string_or_null (expected_str), string_or_null (got));
4088 auto expected_it = expected_list.begin ();
4089 auto expected_end = expected_list.end ();
4091 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 [&] (offset_type idx)
4095 const char *matched_name = mock_index.symbol_name_at (idx);
4096 const char *expected_str
4097 = expected_it == expected_end ? NULL : *expected_it++;
4099 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4100 mismatch (expected_str, matched_name);
4104 const char *expected_str
4105 = expected_it == expected_end ? NULL : *expected_it++;
4106 if (expected_str != NULL)
4107 mismatch (expected_str, NULL);
4112 /* The symbols added to the mock mapped_index for testing (in
4114 static const char *test_symbols[] = {
4123 "ns2::tmpl<int>::foo2",
4124 "(anonymous namespace)::A::B::C",
4126 /* These are used to check that the increment-last-char in the
4127 matching algorithm for completion doesn't match "t1_fund" when
4128 completing "t1_func". */
4134 /* A UTF-8 name with multi-byte sequences to make sure that
4135 cp-name-parser understands this as a single identifier ("função"
4136 is "function" in PT). */
4139 /* \377 (0xff) is Latin1 'ÿ'. */
4142 /* \377 (0xff) is Latin1 'ÿ'. */
4146 /* A name with all sorts of complications. Starts with "z" to make
4147 it easier for the completion tests below. */
4148 #define Z_SYM_NAME \
4149 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4150 "::tuple<(anonymous namespace)::ui*, " \
4151 "std::default_delete<(anonymous namespace)::ui>, void>"
4156 /* Returns true if the mapped_index_base::find_name_component_bounds
4157 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4158 in completion mode. */
4161 check_find_bounds_finds (mapped_index_base &index,
4162 const char *search_name,
4163 gdb::array_view<const char *> expected_syms)
4165 lookup_name_info lookup_name (search_name,
4166 symbol_name_match_type::FULL, true);
4168 auto bounds = index.find_name_components_bounds (lookup_name,
4171 size_t distance = std::distance (bounds.first, bounds.second);
4172 if (distance != expected_syms.size ())
4175 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 auto nc_elem = bounds.first + exp_elem;
4178 const char *qualified = index.symbol_name_at (nc_elem->idx);
4179 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4186 /* Test the lower-level mapped_index::find_name_component_bounds
4190 test_mapped_index_find_name_component_bounds ()
4192 mock_mapped_index mock_index (test_symbols);
4194 mock_index.build_name_components ();
4196 /* Test the lower-level mapped_index::find_name_component_bounds
4197 method in completion mode. */
4199 static const char *expected_syms[] = {
4204 SELF_CHECK (check_find_bounds_finds (mock_index,
4205 "t1_func", expected_syms));
4208 /* Check that the increment-last-char in the name matching algorithm
4209 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 static const char *expected_syms1[] = {
4215 SELF_CHECK (check_find_bounds_finds (mock_index,
4216 "\377", expected_syms1));
4218 static const char *expected_syms2[] = {
4221 SELF_CHECK (check_find_bounds_finds (mock_index,
4222 "\377\377", expected_syms2));
4226 /* Test dw2_expand_symtabs_matching_symbol. */
4229 test_dw2_expand_symtabs_matching_symbol ()
4231 mock_mapped_index mock_index (test_symbols);
4233 /* We let all tests run until the end even if some fails, for debug
4235 bool any_mismatch = false;
4237 /* Create the expected symbols list (an initializer_list). Needed
4238 because lists have commas, and we need to pass them to CHECK,
4239 which is a macro. */
4240 #define EXPECT(...) { __VA_ARGS__ }
4242 /* Wrapper for check_match that passes down the current
4243 __FILE__/__LINE__. */
4244 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4245 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 NAME, MATCH_TYPE, COMPLETION_MODE, \
4250 /* Identity checks. */
4251 for (const char *sym : test_symbols)
4253 /* Should be able to match all existing symbols. */
4254 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4257 /* Should be able to match all existing symbols with
4259 std::string with_params = std::string (sym) + "(int)";
4260 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4263 /* Should be able to match all existing symbols with
4264 parameters and qualifiers. */
4265 with_params = std::string (sym) + " ( int ) const";
4266 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4269 /* This should really find sym, but cp-name-parser.y doesn't
4270 know about lvalue/rvalue qualifiers yet. */
4271 with_params = std::string (sym) + " ( int ) &&";
4272 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4276 /* Check that the name matching algorithm for completion doesn't get
4277 confused with Latin1 'ÿ' / 0xff. */
4279 static const char str[] = "\377";
4280 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4281 EXPECT ("\377", "\377\377123"));
4284 /* Check that the increment-last-char in the matching algorithm for
4285 completion doesn't match "t1_fund" when completing "t1_func". */
4287 static const char str[] = "t1_func";
4288 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4289 EXPECT ("t1_func", "t1_func1"));
4292 /* Check that completion mode works at each prefix of the expected
4295 static const char str[] = "function(int)";
4296 size_t len = strlen (str);
4299 for (size_t i = 1; i < len; i++)
4301 lookup.assign (str, i);
4302 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4303 EXPECT ("function"));
4307 /* While "w" is a prefix of both components, the match function
4308 should still only be called once. */
4310 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4316 /* Same, with a "complicated" symbol. */
4318 static const char str[] = Z_SYM_NAME;
4319 size_t len = strlen (str);
4322 for (size_t i = 1; i < len; i++)
4324 lookup.assign (str, i);
4325 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4326 EXPECT (Z_SYM_NAME));
4330 /* In FULL mode, an incomplete symbol doesn't match. */
4332 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4336 /* A complete symbol with parameters matches any overload, since the
4337 index has no overload info. */
4339 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4340 EXPECT ("std::zfunction", "std::zfunction2"));
4341 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4342 EXPECT ("std::zfunction", "std::zfunction2"));
4343 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4344 EXPECT ("std::zfunction", "std::zfunction2"));
4347 /* Check that whitespace is ignored appropriately. A symbol with a
4348 template argument list. */
4350 static const char expected[] = "ns::foo<int>";
4351 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4357 /* Check that whitespace is ignored appropriately. A symbol with a
4358 template argument list that includes a pointer. */
4360 static const char expected[] = "ns::foo<char*>";
4361 /* Try both completion and non-completion modes. */
4362 static const bool completion_mode[2] = {false, true};
4363 for (size_t i = 0; i < 2; i++)
4365 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4366 completion_mode[i], EXPECT (expected));
4367 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4368 completion_mode[i], EXPECT (expected));
4370 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4371 completion_mode[i], EXPECT (expected));
4372 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4373 completion_mode[i], EXPECT (expected));
4378 /* Check method qualifiers are ignored. */
4379 static const char expected[] = "ns::foo<char*>";
4380 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4381 symbol_name_match_type::FULL, true, EXPECT (expected));
4382 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4383 symbol_name_match_type::FULL, true, EXPECT (expected));
4384 CHECK_MATCH ("foo < char * > ( int ) const",
4385 symbol_name_match_type::WILD, true, EXPECT (expected));
4386 CHECK_MATCH ("foo < char * > ( int ) &&",
4387 symbol_name_match_type::WILD, true, EXPECT (expected));
4390 /* Test lookup names that don't match anything. */
4392 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4395 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4399 /* Some wild matching tests, exercising "(anonymous namespace)",
4400 which should not be confused with a parameter list. */
4402 static const char *syms[] = {
4406 "A :: B :: C ( int )",
4411 for (const char *s : syms)
4413 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4414 EXPECT ("(anonymous namespace)::A::B::C"));
4419 static const char expected[] = "ns2::tmpl<int>::foo2";
4420 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4426 SELF_CHECK (!any_mismatch);
4435 test_mapped_index_find_name_component_bounds ();
4436 test_dw2_expand_symtabs_matching_symbol ();
4439 }} // namespace selftests::dw2_expand_symtabs_matching
4441 #endif /* GDB_SELF_TEST */
4443 /* If FILE_MATCHER is NULL or if PER_CU has
4444 dwarf2_per_cu_quick_data::MARK set (see
4445 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4446 EXPANSION_NOTIFY on it. */
4449 dw2_expand_symtabs_matching_one
4450 (struct dwarf2_per_cu_data *per_cu,
4451 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4452 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 bool symtab_was_null
4457 = (per_cu->v.quick->compunit_symtab == NULL);
4459 dw2_instantiate_symtab (per_cu, false);
4461 if (expansion_notify != NULL
4463 && per_cu->v.quick->compunit_symtab != NULL)
4464 expansion_notify (per_cu->v.quick->compunit_symtab);
4468 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4469 matched, to expand corresponding CUs that were marked. IDX is the
4470 index of the symbol name that matched. */
4473 dw2_expand_marked_cus
4474 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4475 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4476 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4479 offset_type *vec, vec_len, vec_idx;
4480 bool global_seen = false;
4481 mapped_index &index = *dwarf2_per_objfile->index_table;
4483 vec = (offset_type *) (index.constant_pool
4484 + MAYBE_SWAP (index.symbol_table[idx].vec));
4485 vec_len = MAYBE_SWAP (vec[0]);
4486 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4489 /* This value is only valid for index versions >= 7. */
4490 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4491 gdb_index_symbol_kind symbol_kind =
4492 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4493 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4494 /* Only check the symbol attributes if they're present.
4495 Indices prior to version 7 don't record them,
4496 and indices >= 7 may elide them for certain symbols
4497 (gold does this). */
4500 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502 /* Work around gold/15646. */
4505 if (!is_static && global_seen)
4511 /* Only check the symbol's kind if it has one. */
4516 case VARIABLES_DOMAIN:
4517 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4520 case FUNCTIONS_DOMAIN:
4521 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4525 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4528 case MODULES_DOMAIN:
4529 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4537 /* Don't crash on bad data. */
4538 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4539 + dwarf2_per_objfile->all_type_units.size ()))
4541 complaint (_(".gdb_index entry has bad CU index"
4543 objfile_name (dwarf2_per_objfile->objfile));
4547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4548 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4553 /* If FILE_MATCHER is non-NULL, set all the
4554 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4555 that match FILE_MATCHER. */
4558 dw_expand_symtabs_matching_file_matcher
4559 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4560 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 if (file_matcher == NULL)
4565 objfile *const objfile = dwarf2_per_objfile->objfile;
4567 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 NULL, xcalloc, xfree));
4570 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 NULL, xcalloc, xfree));
4574 /* The rule is CUs specify all the files, including those used by
4575 any TU, so there's no need to scan TUs here. */
4577 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4581 per_cu->v.quick->mark = 0;
4583 /* We only need to look at symtabs not already expanded. */
4584 if (per_cu->v.quick->compunit_symtab)
4587 quick_file_names *file_data = dw2_get_file_names (per_cu);
4588 if (file_data == NULL)
4591 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 per_cu->v.quick->mark = 1;
4599 for (int j = 0; j < file_data->num_file_names; ++j)
4601 const char *this_real_name;
4603 if (file_matcher (file_data->file_names[j], false))
4605 per_cu->v.quick->mark = 1;
4609 /* Before we invoke realpath, which can get expensive when many
4610 files are involved, do a quick comparison of the basenames. */
4611 if (!basenames_may_differ
4612 && !file_matcher (lbasename (file_data->file_names[j]),
4616 this_real_name = dw2_get_real_path (objfile, file_data, j);
4617 if (file_matcher (this_real_name, false))
4619 per_cu->v.quick->mark = 1;
4624 void **slot = htab_find_slot (per_cu->v.quick->mark
4625 ? visited_found.get ()
4626 : visited_not_found.get (),
4633 dw2_expand_symtabs_matching
4634 (struct objfile *objfile,
4635 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4636 const lookup_name_info &lookup_name,
4637 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4638 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4639 enum search_domain kind)
4641 struct dwarf2_per_objfile *dwarf2_per_objfile
4642 = get_dwarf2_per_objfile (objfile);
4644 /* index_table is NULL if OBJF_READNOW. */
4645 if (!dwarf2_per_objfile->index_table)
4648 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650 mapped_index &index = *dwarf2_per_objfile->index_table;
4652 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4654 kind, [&] (offset_type idx)
4656 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4657 expansion_notify, kind);
4662 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4665 static struct compunit_symtab *
4666 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4671 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4672 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4675 if (cust->includes == NULL)
4678 for (i = 0; cust->includes[i]; ++i)
4680 struct compunit_symtab *s = cust->includes[i];
4682 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4690 static struct compunit_symtab *
4691 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4692 struct bound_minimal_symbol msymbol,
4694 struct obj_section *section,
4697 struct dwarf2_per_cu_data *data;
4698 struct compunit_symtab *result;
4700 if (!objfile->partial_symtabs->psymtabs_addrmap)
4703 CORE_ADDR baseaddr = objfile->text_section_offset ();
4704 data = (struct dwarf2_per_cu_data *) addrmap_find
4705 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4709 if (warn_if_readin && data->v.quick->compunit_symtab)
4710 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4711 paddress (get_objfile_arch (objfile), pc));
4714 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4717 gdb_assert (result != NULL);
4722 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4723 void *data, int need_fullname)
4725 struct dwarf2_per_objfile *dwarf2_per_objfile
4726 = get_dwarf2_per_objfile (objfile);
4728 if (!dwarf2_per_objfile->filenames_cache)
4730 dwarf2_per_objfile->filenames_cache.emplace ();
4732 htab_up visited (htab_create_alloc (10,
4733 htab_hash_pointer, htab_eq_pointer,
4734 NULL, xcalloc, xfree));
4736 /* The rule is CUs specify all the files, including those used
4737 by any TU, so there's no need to scan TUs here. We can
4738 ignore file names coming from already-expanded CUs. */
4740 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4742 if (per_cu->v.quick->compunit_symtab)
4744 void **slot = htab_find_slot (visited.get (),
4745 per_cu->v.quick->file_names,
4748 *slot = per_cu->v.quick->file_names;
4752 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 /* We only need to look at symtabs not already expanded. */
4755 if (per_cu->v.quick->compunit_symtab)
4758 quick_file_names *file_data = dw2_get_file_names (per_cu);
4759 if (file_data == NULL)
4762 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4765 /* Already visited. */
4770 for (int j = 0; j < file_data->num_file_names; ++j)
4772 const char *filename = file_data->file_names[j];
4773 dwarf2_per_objfile->filenames_cache->seen (filename);
4778 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4780 gdb::unique_xmalloc_ptr<char> this_real_name;
4783 this_real_name = gdb_realpath (filename);
4784 (*fun) (filename, this_real_name.get (), data);
4789 dw2_has_symbols (struct objfile *objfile)
4794 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4797 dw2_find_last_source_symtab,
4798 dw2_forget_cached_source_info,
4799 dw2_map_symtabs_matching_filename,
4803 dw2_expand_symtabs_for_function,
4804 dw2_expand_all_symtabs,
4805 dw2_expand_symtabs_with_fullname,
4806 dw2_map_matching_symbols,
4807 dw2_expand_symtabs_matching,
4808 dw2_find_pc_sect_compunit_symtab,
4810 dw2_map_symbol_filenames
4813 /* DWARF-5 debug_names reader. */
4815 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4816 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4818 /* A helper function that reads the .debug_names section in SECTION
4819 and fills in MAP. FILENAME is the name of the file containing the
4820 section; it is used for error reporting.
4822 Returns true if all went well, false otherwise. */
4825 read_debug_names_from_section (struct objfile *objfile,
4826 const char *filename,
4827 struct dwarf2_section_info *section,
4828 mapped_debug_names &map)
4830 if (section->empty ())
4833 /* Older elfutils strip versions could keep the section in the main
4834 executable while splitting it for the separate debug info file. */
4835 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4838 section->read (objfile);
4840 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
4842 const gdb_byte *addr = section->buffer;
4844 bfd *const abfd = section->get_bfd_owner ();
4846 unsigned int bytes_read;
4847 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4850 map.dwarf5_is_dwarf64 = bytes_read != 4;
4851 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4852 if (bytes_read + length != section->size)
4854 /* There may be multiple per-CU indices. */
4855 warning (_("Section .debug_names in %s length %s does not match "
4856 "section length %s, ignoring .debug_names."),
4857 filename, plongest (bytes_read + length),
4858 pulongest (section->size));
4862 /* The version number. */
4863 uint16_t version = read_2_bytes (abfd, addr);
4867 warning (_("Section .debug_names in %s has unsupported version %d, "
4868 "ignoring .debug_names."),
4874 uint16_t padding = read_2_bytes (abfd, addr);
4878 warning (_("Section .debug_names in %s has unsupported padding %d, "
4879 "ignoring .debug_names."),
4884 /* comp_unit_count - The number of CUs in the CU list. */
4885 map.cu_count = read_4_bytes (abfd, addr);
4888 /* local_type_unit_count - The number of TUs in the local TU
4890 map.tu_count = read_4_bytes (abfd, addr);
4893 /* foreign_type_unit_count - The number of TUs in the foreign TU
4895 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4897 if (foreign_tu_count != 0)
4899 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4900 "ignoring .debug_names."),
4901 filename, static_cast<unsigned long> (foreign_tu_count));
4905 /* bucket_count - The number of hash buckets in the hash lookup
4907 map.bucket_count = read_4_bytes (abfd, addr);
4910 /* name_count - The number of unique names in the index. */
4911 map.name_count = read_4_bytes (abfd, addr);
4914 /* abbrev_table_size - The size in bytes of the abbreviations
4916 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4919 /* augmentation_string_size - The size in bytes of the augmentation
4920 string. This value is rounded up to a multiple of 4. */
4921 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4923 map.augmentation_is_gdb = ((augmentation_string_size
4924 == sizeof (dwarf5_augmentation))
4925 && memcmp (addr, dwarf5_augmentation,
4926 sizeof (dwarf5_augmentation)) == 0);
4927 augmentation_string_size += (-augmentation_string_size) & 3;
4928 addr += augmentation_string_size;
4931 map.cu_table_reordered = addr;
4932 addr += map.cu_count * map.offset_size;
4934 /* List of Local TUs */
4935 map.tu_table_reordered = addr;
4936 addr += map.tu_count * map.offset_size;
4938 /* Hash Lookup Table */
4939 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4940 addr += map.bucket_count * 4;
4941 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4942 addr += map.name_count * 4;
4945 map.name_table_string_offs_reordered = addr;
4946 addr += map.name_count * map.offset_size;
4947 map.name_table_entry_offs_reordered = addr;
4948 addr += map.name_count * map.offset_size;
4950 const gdb_byte *abbrev_table_start = addr;
4953 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4958 const auto insertpair
4959 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4960 if (!insertpair.second)
4962 warning (_("Section .debug_names in %s has duplicate index %s, "
4963 "ignoring .debug_names."),
4964 filename, pulongest (index_num));
4967 mapped_debug_names::index_val &indexval = insertpair.first->second;
4968 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4973 mapped_debug_names::index_val::attr attr;
4974 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4976 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4978 if (attr.form == DW_FORM_implicit_const)
4980 attr.implicit_const = read_signed_leb128 (abfd, addr,
4984 if (attr.dw_idx == 0 && attr.form == 0)
4986 indexval.attr_vec.push_back (std::move (attr));
4989 if (addr != abbrev_table_start + abbrev_table_size)
4991 warning (_("Section .debug_names in %s has abbreviation_table "
4992 "of size %s vs. written as %u, ignoring .debug_names."),
4993 filename, plongest (addr - abbrev_table_start),
4997 map.entry_pool = addr;
5002 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5006 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5007 const mapped_debug_names &map,
5008 dwarf2_section_info §ion,
5011 sect_offset sect_off_prev;
5012 for (uint32_t i = 0; i <= map.cu_count; ++i)
5014 sect_offset sect_off_next;
5015 if (i < map.cu_count)
5018 = (sect_offset) (extract_unsigned_integer
5019 (map.cu_table_reordered + i * map.offset_size,
5021 map.dwarf5_byte_order));
5024 sect_off_next = (sect_offset) section.size;
5027 const ULONGEST length = sect_off_next - sect_off_prev;
5028 dwarf2_per_cu_data *per_cu
5029 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5030 sect_off_prev, length);
5031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5033 sect_off_prev = sect_off_next;
5037 /* Read the CU list from the mapped index, and use it to create all
5038 the CU objects for this dwarf2_per_objfile. */
5041 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5042 const mapped_debug_names &map,
5043 const mapped_debug_names &dwz_map)
5045 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5046 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5048 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5049 dwarf2_per_objfile->info,
5050 false /* is_dwz */);
5052 if (dwz_map.cu_count == 0)
5055 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5056 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5060 /* Read .debug_names. If everything went ok, initialize the "quick"
5061 elements of all the CUs and return true. Otherwise, return false. */
5064 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5066 std::unique_ptr<mapped_debug_names> map
5067 (new mapped_debug_names (dwarf2_per_objfile));
5068 mapped_debug_names dwz_map (dwarf2_per_objfile);
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5071 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5072 &dwarf2_per_objfile->debug_names,
5076 /* Don't use the index if it's empty. */
5077 if (map->name_count == 0)
5080 /* If there is a .dwz file, read it so we can get its CU list as
5082 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5085 if (!read_debug_names_from_section (objfile,
5086 bfd_get_filename (dwz->dwz_bfd.get ()),
5087 &dwz->debug_names, dwz_map))
5089 warning (_("could not read '.debug_names' section from %s; skipping"),
5090 bfd_get_filename (dwz->dwz_bfd.get ()));
5095 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5097 if (map->tu_count != 0)
5099 /* We can only handle a single .debug_types when we have an
5101 if (dwarf2_per_objfile->types.size () != 1)
5104 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5106 create_signatured_type_table_from_debug_names
5107 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5110 create_addrmap_from_aranges (dwarf2_per_objfile,
5111 &dwarf2_per_objfile->debug_aranges);
5113 dwarf2_per_objfile->debug_names_table = std::move (map);
5114 dwarf2_per_objfile->using_index = 1;
5115 dwarf2_per_objfile->quick_file_names_table =
5116 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5121 /* Type used to manage iterating over all CUs looking for a symbol for
5124 class dw2_debug_names_iterator
5127 dw2_debug_names_iterator (const mapped_debug_names &map,
5128 gdb::optional<block_enum> block_index,
5131 : m_map (map), m_block_index (block_index), m_domain (domain),
5132 m_addr (find_vec_in_debug_names (map, name))
5135 dw2_debug_names_iterator (const mapped_debug_names &map,
5136 search_domain search, uint32_t namei)
5139 m_addr (find_vec_in_debug_names (map, namei))
5142 dw2_debug_names_iterator (const mapped_debug_names &map,
5143 block_enum block_index, domain_enum domain,
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, namei))
5149 /* Return the next matching CU or NULL if there are no more. */
5150 dwarf2_per_cu_data *next ();
5153 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5155 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5158 /* The internalized form of .debug_names. */
5159 const mapped_debug_names &m_map;
5161 /* If set, only look for symbols that match that block. Valid values are
5162 GLOBAL_BLOCK and STATIC_BLOCK. */
5163 const gdb::optional<block_enum> m_block_index;
5165 /* The kind of symbol we're looking for. */
5166 const domain_enum m_domain = UNDEF_DOMAIN;
5167 const search_domain m_search = ALL_DOMAIN;
5169 /* The list of CUs from the index entry of the symbol, or NULL if
5171 const gdb_byte *m_addr;
5175 mapped_debug_names::namei_to_name (uint32_t namei) const
5177 const ULONGEST namei_string_offs
5178 = extract_unsigned_integer ((name_table_string_offs_reordered
5179 + namei * offset_size),
5182 return read_indirect_string_at_offset
5183 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5186 /* Find a slot in .debug_names for the object named NAME. If NAME is
5187 found, return pointer to its pool data. If NAME cannot be found,
5191 dw2_debug_names_iterator::find_vec_in_debug_names
5192 (const mapped_debug_names &map, const char *name)
5194 int (*cmp) (const char *, const char *);
5196 gdb::unique_xmalloc_ptr<char> without_params;
5197 if (current_language->la_language == language_cplus
5198 || current_language->la_language == language_fortran
5199 || current_language->la_language == language_d)
5201 /* NAME is already canonical. Drop any qualifiers as
5202 .debug_names does not contain any. */
5204 if (strchr (name, '(') != NULL)
5206 without_params = cp_remove_params (name);
5207 if (without_params != NULL)
5208 name = without_params.get ();
5212 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5214 const uint32_t full_hash = dwarf5_djb_hash (name);
5216 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5217 (map.bucket_table_reordered
5218 + (full_hash % map.bucket_count)), 4,
5219 map.dwarf5_byte_order);
5223 if (namei >= map.name_count)
5225 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5227 namei, map.name_count,
5228 objfile_name (map.dwarf2_per_objfile->objfile));
5234 const uint32_t namei_full_hash
5235 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5236 (map.hash_table_reordered + namei), 4,
5237 map.dwarf5_byte_order);
5238 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5241 if (full_hash == namei_full_hash)
5243 const char *const namei_string = map.namei_to_name (namei);
5245 #if 0 /* An expensive sanity check. */
5246 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5248 complaint (_("Wrong .debug_names hash for string at index %u "
5250 namei, objfile_name (dwarf2_per_objfile->objfile));
5255 if (cmp (namei_string, name) == 0)
5257 const ULONGEST namei_entry_offs
5258 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5259 + namei * map.offset_size),
5260 map.offset_size, map.dwarf5_byte_order);
5261 return map.entry_pool + namei_entry_offs;
5266 if (namei >= map.name_count)
5272 dw2_debug_names_iterator::find_vec_in_debug_names
5273 (const mapped_debug_names &map, uint32_t namei)
5275 if (namei >= map.name_count)
5277 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5279 namei, map.name_count,
5280 objfile_name (map.dwarf2_per_objfile->objfile));
5284 const ULONGEST namei_entry_offs
5285 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5286 + namei * map.offset_size),
5287 map.offset_size, map.dwarf5_byte_order);
5288 return map.entry_pool + namei_entry_offs;
5291 /* See dw2_debug_names_iterator. */
5293 dwarf2_per_cu_data *
5294 dw2_debug_names_iterator::next ()
5299 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5300 struct objfile *objfile = dwarf2_per_objfile->objfile;
5301 bfd *const abfd = objfile->obfd;
5305 unsigned int bytes_read;
5306 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5307 m_addr += bytes_read;
5311 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5312 if (indexval_it == m_map.abbrev_map.cend ())
5314 complaint (_("Wrong .debug_names undefined abbrev code %s "
5316 pulongest (abbrev), objfile_name (objfile));
5319 const mapped_debug_names::index_val &indexval = indexval_it->second;
5320 enum class symbol_linkage {
5324 } symbol_linkage_ = symbol_linkage::unknown;
5325 dwarf2_per_cu_data *per_cu = NULL;
5326 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5331 case DW_FORM_implicit_const:
5332 ull = attr.implicit_const;
5334 case DW_FORM_flag_present:
5338 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5339 m_addr += bytes_read;
5342 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5343 dwarf_form_name (attr.form),
5344 objfile_name (objfile));
5347 switch (attr.dw_idx)
5349 case DW_IDX_compile_unit:
5350 /* Don't crash on bad data. */
5351 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5353 complaint (_(".debug_names entry has bad CU index %s"
5356 objfile_name (dwarf2_per_objfile->objfile));
5359 per_cu = dwarf2_per_objfile->get_cutu (ull);
5361 case DW_IDX_type_unit:
5362 /* Don't crash on bad data. */
5363 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5365 complaint (_(".debug_names entry has bad TU index %s"
5368 objfile_name (dwarf2_per_objfile->objfile));
5371 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5373 case DW_IDX_GNU_internal:
5374 if (!m_map.augmentation_is_gdb)
5376 symbol_linkage_ = symbol_linkage::static_;
5378 case DW_IDX_GNU_external:
5379 if (!m_map.augmentation_is_gdb)
5381 symbol_linkage_ = symbol_linkage::extern_;
5386 /* Skip if already read in. */
5387 if (per_cu->v.quick->compunit_symtab)
5390 /* Check static vs global. */
5391 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5393 const bool want_static = *m_block_index == STATIC_BLOCK;
5394 const bool symbol_is_static =
5395 symbol_linkage_ == symbol_linkage::static_;
5396 if (want_static != symbol_is_static)
5400 /* Match dw2_symtab_iter_next, symbol_kind
5401 and debug_names::psymbol_tag. */
5405 switch (indexval.dwarf_tag)
5407 case DW_TAG_variable:
5408 case DW_TAG_subprogram:
5409 /* Some types are also in VAR_DOMAIN. */
5410 case DW_TAG_typedef:
5411 case DW_TAG_structure_type:
5418 switch (indexval.dwarf_tag)
5420 case DW_TAG_typedef:
5421 case DW_TAG_structure_type:
5428 switch (indexval.dwarf_tag)
5431 case DW_TAG_variable:
5438 switch (indexval.dwarf_tag)
5450 /* Match dw2_expand_symtabs_matching, symbol_kind and
5451 debug_names::psymbol_tag. */
5454 case VARIABLES_DOMAIN:
5455 switch (indexval.dwarf_tag)
5457 case DW_TAG_variable:
5463 case FUNCTIONS_DOMAIN:
5464 switch (indexval.dwarf_tag)
5466 case DW_TAG_subprogram:
5473 switch (indexval.dwarf_tag)
5475 case DW_TAG_typedef:
5476 case DW_TAG_structure_type:
5482 case MODULES_DOMAIN:
5483 switch (indexval.dwarf_tag)
5497 static struct compunit_symtab *
5498 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5499 const char *name, domain_enum domain)
5501 struct dwarf2_per_objfile *dwarf2_per_objfile
5502 = get_dwarf2_per_objfile (objfile);
5504 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5507 /* index is NULL if OBJF_READNOW. */
5510 const auto &map = *mapp;
5512 dw2_debug_names_iterator iter (map, block_index, domain, name);
5514 struct compunit_symtab *stab_best = NULL;
5515 struct dwarf2_per_cu_data *per_cu;
5516 while ((per_cu = iter.next ()) != NULL)
5518 struct symbol *sym, *with_opaque = NULL;
5519 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5520 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5521 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5523 sym = block_find_symbol (block, name, domain,
5524 block_find_non_opaque_type_preferred,
5527 /* Some caution must be observed with overloaded functions and
5528 methods, since the index will not contain any overload
5529 information (but NAME might contain it). */
5532 && strcmp_iw (sym->search_name (), name) == 0)
5534 if (with_opaque != NULL
5535 && strcmp_iw (with_opaque->search_name (), name) == 0)
5538 /* Keep looking through other CUs. */
5544 /* This dumps minimal information about .debug_names. It is called
5545 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5546 uses this to verify that .debug_names has been loaded. */
5549 dw2_debug_names_dump (struct objfile *objfile)
5551 struct dwarf2_per_objfile *dwarf2_per_objfile
5552 = get_dwarf2_per_objfile (objfile);
5554 gdb_assert (dwarf2_per_objfile->using_index);
5555 printf_filtered (".debug_names:");
5556 if (dwarf2_per_objfile->debug_names_table)
5557 printf_filtered (" exists\n");
5559 printf_filtered (" faked for \"readnow\"\n");
5560 printf_filtered ("\n");
5564 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5565 const char *func_name)
5567 struct dwarf2_per_objfile *dwarf2_per_objfile
5568 = get_dwarf2_per_objfile (objfile);
5570 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5571 if (dwarf2_per_objfile->debug_names_table)
5573 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5575 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5577 struct dwarf2_per_cu_data *per_cu;
5578 while ((per_cu = iter.next ()) != NULL)
5579 dw2_instantiate_symtab (per_cu, false);
5584 dw2_debug_names_map_matching_symbols
5585 (struct objfile *objfile,
5586 const lookup_name_info &name, domain_enum domain,
5588 gdb::function_view<symbol_found_callback_ftype> callback,
5589 symbol_compare_ftype *ordered_compare)
5591 struct dwarf2_per_objfile *dwarf2_per_objfile
5592 = get_dwarf2_per_objfile (objfile);
5594 /* debug_names_table is NULL if OBJF_READNOW. */
5595 if (!dwarf2_per_objfile->debug_names_table)
5598 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5599 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5601 const char *match_name = name.ada ().lookup_name ().c_str ();
5602 auto matcher = [&] (const char *symname)
5604 if (ordered_compare == nullptr)
5606 return ordered_compare (symname, match_name) == 0;
5609 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5610 [&] (offset_type namei)
5612 /* The name was matched, now expand corresponding CUs that were
5614 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5616 struct dwarf2_per_cu_data *per_cu;
5617 while ((per_cu = iter.next ()) != NULL)
5618 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5622 /* It's a shame we couldn't do this inside the
5623 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5624 that have already been expanded. Instead, this loop matches what
5625 the psymtab code does. */
5626 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5628 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5629 if (cust != nullptr)
5631 const struct block *block
5632 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5633 if (!iterate_over_symbols_terminated (block, name,
5641 dw2_debug_names_expand_symtabs_matching
5642 (struct objfile *objfile,
5643 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5644 const lookup_name_info &lookup_name,
5645 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5646 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5647 enum search_domain kind)
5649 struct dwarf2_per_objfile *dwarf2_per_objfile
5650 = get_dwarf2_per_objfile (objfile);
5652 /* debug_names_table is NULL if OBJF_READNOW. */
5653 if (!dwarf2_per_objfile->debug_names_table)
5656 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5658 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5660 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5662 kind, [&] (offset_type namei)
5664 /* The name was matched, now expand corresponding CUs that were
5666 dw2_debug_names_iterator iter (map, kind, namei);
5668 struct dwarf2_per_cu_data *per_cu;
5669 while ((per_cu = iter.next ()) != NULL)
5670 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5676 const struct quick_symbol_functions dwarf2_debug_names_functions =
5679 dw2_find_last_source_symtab,
5680 dw2_forget_cached_source_info,
5681 dw2_map_symtabs_matching_filename,
5682 dw2_debug_names_lookup_symbol,
5684 dw2_debug_names_dump,
5685 dw2_debug_names_expand_symtabs_for_function,
5686 dw2_expand_all_symtabs,
5687 dw2_expand_symtabs_with_fullname,
5688 dw2_debug_names_map_matching_symbols,
5689 dw2_debug_names_expand_symtabs_matching,
5690 dw2_find_pc_sect_compunit_symtab,
5692 dw2_map_symbol_filenames
5695 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5696 to either a dwarf2_per_objfile or dwz_file object. */
5698 template <typename T>
5699 static gdb::array_view<const gdb_byte>
5700 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5702 dwarf2_section_info *section = §ion_owner->gdb_index;
5704 if (section->empty ())
5707 /* Older elfutils strip versions could keep the section in the main
5708 executable while splitting it for the separate debug info file. */
5709 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5712 section->read (obj);
5714 /* dwarf2_section_info::size is a bfd_size_type, while
5715 gdb::array_view works with size_t. On 32-bit hosts, with
5716 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5717 is 32-bit. So we need an explicit narrowing conversion here.
5718 This is fine, because it's impossible to allocate or mmap an
5719 array/buffer larger than what size_t can represent. */
5720 return gdb::make_array_view (section->buffer, section->size);
5723 /* Lookup the index cache for the contents of the index associated to
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5729 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5730 if (build_id == nullptr)
5733 return global_index_cache.lookup_gdb_index (build_id,
5734 &dwarf2_obj->index_cache_res);
5737 /* Same as the above, but for DWZ. */
5739 static gdb::array_view<const gdb_byte>
5740 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5742 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5743 if (build_id == nullptr)
5746 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5749 /* See symfile.h. */
5752 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5754 struct dwarf2_per_objfile *dwarf2_per_objfile
5755 = get_dwarf2_per_objfile (objfile);
5757 /* If we're about to read full symbols, don't bother with the
5758 indices. In this case we also don't care if some other debug
5759 format is making psymtabs, because they are all about to be
5761 if ((objfile->flags & OBJF_READNOW))
5763 dwarf2_per_objfile->using_index = 1;
5764 create_all_comp_units (dwarf2_per_objfile);
5765 create_all_type_units (dwarf2_per_objfile);
5766 dwarf2_per_objfile->quick_file_names_table
5767 = create_quick_file_names_table
5768 (dwarf2_per_objfile->all_comp_units.size ());
5770 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5771 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5773 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5775 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5776 struct dwarf2_per_cu_quick_data);
5779 /* Return 1 so that gdb sees the "quick" functions. However,
5780 these functions will be no-ops because we will have expanded
5782 *index_kind = dw_index_kind::GDB_INDEX;
5786 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5788 *index_kind = dw_index_kind::DEBUG_NAMES;
5792 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5793 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5794 get_gdb_index_contents_from_section<dwz_file>))
5796 *index_kind = dw_index_kind::GDB_INDEX;
5800 /* ... otherwise, try to find the index in the index cache. */
5801 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5802 get_gdb_index_contents_from_cache,
5803 get_gdb_index_contents_from_cache_dwz))
5805 global_index_cache.hit ();
5806 *index_kind = dw_index_kind::GDB_INDEX;
5810 global_index_cache.miss ();
5816 /* Build a partial symbol table. */
5819 dwarf2_build_psymtabs (struct objfile *objfile)
5821 struct dwarf2_per_objfile *dwarf2_per_objfile
5822 = get_dwarf2_per_objfile (objfile);
5824 init_psymbol_list (objfile, 1024);
5828 /* This isn't really ideal: all the data we allocate on the
5829 objfile's obstack is still uselessly kept around. However,
5830 freeing it seems unsafe. */
5831 psymtab_discarder psymtabs (objfile);
5832 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5835 /* (maybe) store an index in the cache. */
5836 global_index_cache.store (dwarf2_per_objfile);
5838 catch (const gdb_exception_error &except)
5840 exception_print (gdb_stderr, except);
5844 /* Find the base address of the compilation unit for range lists and
5845 location lists. It will normally be specified by DW_AT_low_pc.
5846 In DWARF-3 draft 4, the base address could be overridden by
5847 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5848 compilation units with discontinuous ranges. */
5851 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5853 struct attribute *attr;
5856 cu->base_address = 0;
5858 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5859 if (attr != nullptr)
5861 cu->base_address = attr->value_as_address ();
5866 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5867 if (attr != nullptr)
5869 cu->base_address = attr->value_as_address ();
5875 /* Helper function that returns the proper abbrev section for
5878 static struct dwarf2_section_info *
5879 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5881 struct dwarf2_section_info *abbrev;
5882 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5884 if (this_cu->is_dwz)
5885 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5887 abbrev = &dwarf2_per_objfile->abbrev;
5892 /* Fetch the abbreviation table offset from a comp or type unit header. */
5895 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5896 struct dwarf2_section_info *section,
5897 sect_offset sect_off)
5899 bfd *abfd = section->get_bfd_owner ();
5900 const gdb_byte *info_ptr;
5901 unsigned int initial_length_size, offset_size;
5904 section->read (dwarf2_per_objfile->objfile);
5905 info_ptr = section->buffer + to_underlying (sect_off);
5906 read_initial_length (abfd, info_ptr, &initial_length_size);
5907 offset_size = initial_length_size == 4 ? 4 : 8;
5908 info_ptr += initial_length_size;
5910 version = read_2_bytes (abfd, info_ptr);
5914 /* Skip unit type and address size. */
5918 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5921 /* Allocate a new partial symtab for file named NAME and mark this new
5922 partial symtab as being an include of PST. */
5925 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5926 struct objfile *objfile)
5928 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
5930 if (!IS_ABSOLUTE_PATH (subpst->filename))
5932 /* It shares objfile->objfile_obstack. */
5933 subpst->dirname = pst->dirname;
5936 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5937 subpst->dependencies[0] = pst;
5938 subpst->number_of_dependencies = 1;
5940 /* No private part is necessary for include psymtabs. This property
5941 can be used to differentiate between such include psymtabs and
5942 the regular ones. */
5943 subpst->per_cu_data = nullptr;
5946 /* Read the Line Number Program data and extract the list of files
5947 included by the source file represented by PST. Build an include
5948 partial symtab for each of these included files. */
5951 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5952 struct die_info *die,
5953 dwarf2_psymtab *pst)
5956 struct attribute *attr;
5958 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5959 if (attr != nullptr)
5960 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5962 return; /* No linetable, so no includes. */
5964 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5965 that we pass in the raw text_low here; that is ok because we're
5966 only decoding the line table to make include partial symtabs, and
5967 so the addresses aren't really used. */
5968 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
5969 pst->raw_text_low (), 1);
5973 hash_signatured_type (const void *item)
5975 const struct signatured_type *sig_type
5976 = (const struct signatured_type *) item;
5978 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5979 return sig_type->signature;
5983 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5985 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5986 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5988 return lhs->signature == rhs->signature;
5991 /* Allocate a hash table for signatured types. */
5994 allocate_signatured_type_table ()
5996 return htab_up (htab_create_alloc (41,
5997 hash_signatured_type,
5999 NULL, xcalloc, xfree));
6002 /* A helper function to add a signatured type CU to a table. */
6005 add_signatured_type_cu_to_table (void **slot, void *datum)
6007 struct signatured_type *sigt = (struct signatured_type *) *slot;
6008 std::vector<signatured_type *> *all_type_units
6009 = (std::vector<signatured_type *> *) datum;
6011 all_type_units->push_back (sigt);
6016 /* A helper for create_debug_types_hash_table. Read types from SECTION
6017 and fill them into TYPES_HTAB. It will process only type units,
6018 therefore DW_UT_type. */
6021 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6022 struct dwo_file *dwo_file,
6023 dwarf2_section_info *section, htab_up &types_htab,
6024 rcuh_kind section_kind)
6026 struct objfile *objfile = dwarf2_per_objfile->objfile;
6027 struct dwarf2_section_info *abbrev_section;
6029 const gdb_byte *info_ptr, *end_ptr;
6031 abbrev_section = (dwo_file != NULL
6032 ? &dwo_file->sections.abbrev
6033 : &dwarf2_per_objfile->abbrev);
6035 if (dwarf_read_debug)
6036 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6037 section->get_name (),
6038 abbrev_section->get_file_name ());
6040 section->read (objfile);
6041 info_ptr = section->buffer;
6043 if (info_ptr == NULL)
6046 /* We can't set abfd until now because the section may be empty or
6047 not present, in which case the bfd is unknown. */
6048 abfd = section->get_bfd_owner ();
6050 /* We don't use cutu_reader here because we don't need to read
6051 any dies: the signature is in the header. */
6053 end_ptr = info_ptr + section->size;
6054 while (info_ptr < end_ptr)
6056 struct signatured_type *sig_type;
6057 struct dwo_unit *dwo_tu;
6059 const gdb_byte *ptr = info_ptr;
6060 struct comp_unit_head header;
6061 unsigned int length;
6063 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6065 /* Initialize it due to a false compiler warning. */
6066 header.signature = -1;
6067 header.type_cu_offset_in_tu = (cu_offset) -1;
6069 /* We need to read the type's signature in order to build the hash
6070 table, but we don't need anything else just yet. */
6072 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6073 abbrev_section, ptr, section_kind);
6075 length = header.get_length ();
6077 /* Skip dummy type units. */
6078 if (ptr >= info_ptr + length
6079 || peek_abbrev_code (abfd, ptr) == 0
6080 || header.unit_type != DW_UT_type)
6086 if (types_htab == NULL)
6089 types_htab = allocate_dwo_unit_table ();
6091 types_htab = allocate_signatured_type_table ();
6097 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6099 dwo_tu->dwo_file = dwo_file;
6100 dwo_tu->signature = header.signature;
6101 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6102 dwo_tu->section = section;
6103 dwo_tu->sect_off = sect_off;
6104 dwo_tu->length = length;
6108 /* N.B.: type_offset is not usable if this type uses a DWO file.
6109 The real type_offset is in the DWO file. */
6111 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6112 struct signatured_type);
6113 sig_type->signature = header.signature;
6114 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6116 sig_type->per_cu.is_debug_types = 1;
6117 sig_type->per_cu.section = section;
6118 sig_type->per_cu.sect_off = sect_off;
6119 sig_type->per_cu.length = length;
6122 slot = htab_find_slot (types_htab.get (),
6123 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6125 gdb_assert (slot != NULL);
6128 sect_offset dup_sect_off;
6132 const struct dwo_unit *dup_tu
6133 = (const struct dwo_unit *) *slot;
6135 dup_sect_off = dup_tu->sect_off;
6139 const struct signatured_type *dup_tu
6140 = (const struct signatured_type *) *slot;
6142 dup_sect_off = dup_tu->per_cu.sect_off;
6145 complaint (_("debug type entry at offset %s is duplicate to"
6146 " the entry at offset %s, signature %s"),
6147 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6148 hex_string (header.signature));
6150 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6152 if (dwarf_read_debug > 1)
6153 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6154 sect_offset_str (sect_off),
6155 hex_string (header.signature));
6161 /* Create the hash table of all entries in the .debug_types
6162 (or .debug_types.dwo) section(s).
6163 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6164 otherwise it is NULL.
6166 The result is a pointer to the hash table or NULL if there are no types.
6168 Note: This function processes DWO files only, not DWP files. */
6171 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6172 struct dwo_file *dwo_file,
6173 gdb::array_view<dwarf2_section_info> type_sections,
6174 htab_up &types_htab)
6176 for (dwarf2_section_info §ion : type_sections)
6177 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, §ion,
6178 types_htab, rcuh_kind::TYPE);
6181 /* Create the hash table of all entries in the .debug_types section,
6182 and initialize all_type_units.
6183 The result is zero if there is an error (e.g. missing .debug_types section),
6184 otherwise non-zero. */
6187 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6191 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6192 &dwarf2_per_objfile->info, types_htab,
6193 rcuh_kind::COMPILE);
6194 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6195 dwarf2_per_objfile->types, types_htab);
6196 if (types_htab == NULL)
6198 dwarf2_per_objfile->signatured_types = NULL;
6202 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6204 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6205 dwarf2_per_objfile->all_type_units.reserve
6206 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6208 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6209 add_signatured_type_cu_to_table,
6210 &dwarf2_per_objfile->all_type_units);
6215 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6216 If SLOT is non-NULL, it is the entry to use in the hash table.
6217 Otherwise we find one. */
6219 static struct signatured_type *
6220 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6223 struct objfile *objfile = dwarf2_per_objfile->objfile;
6225 if (dwarf2_per_objfile->all_type_units.size ()
6226 == dwarf2_per_objfile->all_type_units.capacity ())
6227 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6229 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6230 struct signatured_type);
6232 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6233 sig_type->signature = sig;
6234 sig_type->per_cu.is_debug_types = 1;
6235 if (dwarf2_per_objfile->using_index)
6237 sig_type->per_cu.v.quick =
6238 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6239 struct dwarf2_per_cu_quick_data);
6244 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6247 gdb_assert (*slot == NULL);
6249 /* The rest of sig_type must be filled in by the caller. */
6253 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6254 Fill in SIG_ENTRY with DWO_ENTRY. */
6257 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6258 struct signatured_type *sig_entry,
6259 struct dwo_unit *dwo_entry)
6261 /* Make sure we're not clobbering something we don't expect to. */
6262 gdb_assert (! sig_entry->per_cu.queued);
6263 gdb_assert (sig_entry->per_cu.cu == NULL);
6264 if (dwarf2_per_objfile->using_index)
6266 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6267 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6270 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6271 gdb_assert (sig_entry->signature == dwo_entry->signature);
6272 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6273 gdb_assert (sig_entry->type_unit_group == NULL);
6274 gdb_assert (sig_entry->dwo_unit == NULL);
6276 sig_entry->per_cu.section = dwo_entry->section;
6277 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6278 sig_entry->per_cu.length = dwo_entry->length;
6279 sig_entry->per_cu.reading_dwo_directly = 1;
6280 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6281 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6282 sig_entry->dwo_unit = dwo_entry;
6285 /* Subroutine of lookup_signatured_type.
6286 If we haven't read the TU yet, create the signatured_type data structure
6287 for a TU to be read in directly from a DWO file, bypassing the stub.
6288 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6289 using .gdb_index, then when reading a CU we want to stay in the DWO file
6290 containing that CU. Otherwise we could end up reading several other DWO
6291 files (due to comdat folding) to process the transitive closure of all the
6292 mentioned TUs, and that can be slow. The current DWO file will have every
6293 type signature that it needs.
6294 We only do this for .gdb_index because in the psymtab case we already have
6295 to read all the DWOs to build the type unit groups. */
6297 static struct signatured_type *
6298 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6300 struct dwarf2_per_objfile *dwarf2_per_objfile
6301 = cu->per_cu->dwarf2_per_objfile;
6302 struct dwo_file *dwo_file;
6303 struct dwo_unit find_dwo_entry, *dwo_entry;
6304 struct signatured_type find_sig_entry, *sig_entry;
6307 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6309 /* If TU skeletons have been removed then we may not have read in any
6311 if (dwarf2_per_objfile->signatured_types == NULL)
6312 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6314 /* We only ever need to read in one copy of a signatured type.
6315 Use the global signatured_types array to do our own comdat-folding
6316 of types. If this is the first time we're reading this TU, and
6317 the TU has an entry in .gdb_index, replace the recorded data from
6318 .gdb_index with this TU. */
6320 find_sig_entry.signature = sig;
6321 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6322 &find_sig_entry, INSERT);
6323 sig_entry = (struct signatured_type *) *slot;
6325 /* We can get here with the TU already read, *or* in the process of being
6326 read. Don't reassign the global entry to point to this DWO if that's
6327 the case. Also note that if the TU is already being read, it may not
6328 have come from a DWO, the program may be a mix of Fission-compiled
6329 code and non-Fission-compiled code. */
6331 /* Have we already tried to read this TU?
6332 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6333 needn't exist in the global table yet). */
6334 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6337 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6338 dwo_unit of the TU itself. */
6339 dwo_file = cu->dwo_unit->dwo_file;
6341 /* Ok, this is the first time we're reading this TU. */
6342 if (dwo_file->tus == NULL)
6344 find_dwo_entry.signature = sig;
6345 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6347 if (dwo_entry == NULL)
6350 /* If the global table doesn't have an entry for this TU, add one. */
6351 if (sig_entry == NULL)
6352 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6354 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6355 sig_entry->per_cu.tu_read = 1;
6359 /* Subroutine of lookup_signatured_type.
6360 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6361 then try the DWP file. If the TU stub (skeleton) has been removed then
6362 it won't be in .gdb_index. */
6364 static struct signatured_type *
6365 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6370 struct dwo_unit *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375 gdb_assert (dwp_file != NULL);
6377 /* If TU skeletons have been removed then we may not have read in any
6379 if (dwarf2_per_objfile->signatured_types == NULL)
6380 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6382 find_sig_entry.signature = sig;
6383 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6384 &find_sig_entry, INSERT);
6385 sig_entry = (struct signatured_type *) *slot;
6387 /* Have we already tried to read this TU?
6388 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6389 needn't exist in the global table yet). */
6390 if (sig_entry != NULL)
6393 if (dwp_file->tus == NULL)
6395 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6396 sig, 1 /* is_debug_types */);
6397 if (dwo_entry == NULL)
6400 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6406 /* Lookup a signature based type for DW_FORM_ref_sig8.
6407 Returns NULL if signature SIG is not present in the table.
6408 It is up to the caller to complain about this. */
6410 static struct signatured_type *
6411 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6413 struct dwarf2_per_objfile *dwarf2_per_objfile
6414 = cu->per_cu->dwarf2_per_objfile;
6417 && dwarf2_per_objfile->using_index)
6419 /* We're in a DWO/DWP file, and we're using .gdb_index.
6420 These cases require special processing. */
6421 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6422 return lookup_dwo_signatured_type (cu, sig);
6424 return lookup_dwp_signatured_type (cu, sig);
6428 struct signatured_type find_entry, *entry;
6430 if (dwarf2_per_objfile->signatured_types == NULL)
6432 find_entry.signature = sig;
6433 entry = ((struct signatured_type *)
6434 htab_find (dwarf2_per_objfile->signatured_types.get (),
6440 /* Return the address base of the compile unit, which, if exists, is stored
6441 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6442 static gdb::optional<ULONGEST>
6443 lookup_addr_base (struct die_info *comp_unit_die)
6445 struct attribute *attr;
6446 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6447 if (attr == nullptr)
6448 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6449 if (attr == nullptr)
6450 return gdb::optional<ULONGEST> ();
6451 return DW_UNSND (attr);
6454 /* Return range lists base of the compile unit, which, if exists, is stored
6455 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6457 lookup_ranges_base (struct die_info *comp_unit_die)
6459 struct attribute *attr;
6460 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6461 if (attr == nullptr)
6462 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6463 if (attr == nullptr)
6465 return DW_UNSND (attr);
6468 /* Low level DIE reading support. */
6470 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6473 init_cu_die_reader (struct die_reader_specs *reader,
6474 struct dwarf2_cu *cu,
6475 struct dwarf2_section_info *section,
6476 struct dwo_file *dwo_file,
6477 struct abbrev_table *abbrev_table)
6479 gdb_assert (section->readin && section->buffer != NULL);
6480 reader->abfd = section->get_bfd_owner ();
6482 reader->dwo_file = dwo_file;
6483 reader->die_section = section;
6484 reader->buffer = section->buffer;
6485 reader->buffer_end = section->buffer + section->size;
6486 reader->abbrev_table = abbrev_table;
6489 /* Subroutine of cutu_reader to simplify it.
6490 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6491 There's just a lot of work to do, and cutu_reader is big enough
6494 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6495 from it to the DIE in the DWO. If NULL we are skipping the stub.
6496 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6497 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6498 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6499 STUB_COMP_DIR may be non-NULL.
6500 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6501 are filled in with the info of the DIE from the DWO file.
6502 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6503 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6504 kept around for at least as long as *RESULT_READER.
6506 The result is non-zero if a valid (non-dummy) DIE was found. */
6509 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6510 struct dwo_unit *dwo_unit,
6511 struct die_info *stub_comp_unit_die,
6512 const char *stub_comp_dir,
6513 struct die_reader_specs *result_reader,
6514 const gdb_byte **result_info_ptr,
6515 struct die_info **result_comp_unit_die,
6516 abbrev_table_up *result_dwo_abbrev_table)
6518 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6519 struct objfile *objfile = dwarf2_per_objfile->objfile;
6520 struct dwarf2_cu *cu = this_cu->cu;
6522 const gdb_byte *begin_info_ptr, *info_ptr;
6523 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6524 int i,num_extra_attrs;
6525 struct dwarf2_section_info *dwo_abbrev_section;
6526 struct die_info *comp_unit_die;
6528 /* At most one of these may be provided. */
6529 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6531 /* These attributes aren't processed until later:
6532 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6533 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6534 referenced later. However, these attributes are found in the stub
6535 which we won't have later. In order to not impose this complication
6536 on the rest of the code, we read them here and copy them to the
6545 if (stub_comp_unit_die != NULL)
6547 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6549 if (! this_cu->is_debug_types)
6550 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6551 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6552 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6553 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6554 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6556 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6558 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6559 here (if needed). We need the value before we can process
6561 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6563 else if (stub_comp_dir != NULL)
6565 /* Reconstruct the comp_dir attribute to simplify the code below. */
6566 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6567 comp_dir->name = DW_AT_comp_dir;
6568 comp_dir->form = DW_FORM_string;
6569 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6570 DW_STRING (comp_dir) = stub_comp_dir;
6573 /* Set up for reading the DWO CU/TU. */
6574 cu->dwo_unit = dwo_unit;
6575 dwarf2_section_info *section = dwo_unit->section;
6576 section->read (objfile);
6577 abfd = section->get_bfd_owner ();
6578 begin_info_ptr = info_ptr = (section->buffer
6579 + to_underlying (dwo_unit->sect_off));
6580 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6582 if (this_cu->is_debug_types)
6584 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6586 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6587 &cu->header, section,
6589 info_ptr, rcuh_kind::TYPE);
6590 /* This is not an assert because it can be caused by bad debug info. */
6591 if (sig_type->signature != cu->header.signature)
6593 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6594 " TU at offset %s [in module %s]"),
6595 hex_string (sig_type->signature),
6596 hex_string (cu->header.signature),
6597 sect_offset_str (dwo_unit->sect_off),
6598 bfd_get_filename (abfd));
6600 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6601 /* For DWOs coming from DWP files, we don't know the CU length
6602 nor the type's offset in the TU until now. */
6603 dwo_unit->length = cu->header.get_length ();
6604 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6606 /* Establish the type offset that can be used to lookup the type.
6607 For DWO files, we don't know it until now. */
6608 sig_type->type_offset_in_section
6609 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6613 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6614 &cu->header, section,
6616 info_ptr, rcuh_kind::COMPILE);
6617 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6618 /* For DWOs coming from DWP files, we don't know the CU length
6620 dwo_unit->length = cu->header.get_length ();
6623 *result_dwo_abbrev_table
6624 = abbrev_table::read (objfile, dwo_abbrev_section,
6625 cu->header.abbrev_sect_off);
6626 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6627 result_dwo_abbrev_table->get ());
6629 /* Read in the die, but leave space to copy over the attributes
6630 from the stub. This has the benefit of simplifying the rest of
6631 the code - all the work to maintain the illusion of a single
6632 DW_TAG_{compile,type}_unit DIE is done here. */
6633 num_extra_attrs = ((stmt_list != NULL)
6637 + (comp_dir != NULL));
6638 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6641 /* Copy over the attributes from the stub to the DIE we just read in. */
6642 comp_unit_die = *result_comp_unit_die;
6643 i = comp_unit_die->num_attrs;
6644 if (stmt_list != NULL)
6645 comp_unit_die->attrs[i++] = *stmt_list;
6647 comp_unit_die->attrs[i++] = *low_pc;
6648 if (high_pc != NULL)
6649 comp_unit_die->attrs[i++] = *high_pc;
6651 comp_unit_die->attrs[i++] = *ranges;
6652 if (comp_dir != NULL)
6653 comp_unit_die->attrs[i++] = *comp_dir;
6654 comp_unit_die->num_attrs += num_extra_attrs;
6656 if (dwarf_die_debug)
6658 fprintf_unfiltered (gdb_stdlog,
6659 "Read die from %s@0x%x of %s:\n",
6660 section->get_name (),
6661 (unsigned) (begin_info_ptr - section->buffer),
6662 bfd_get_filename (abfd));
6663 dump_die (comp_unit_die, dwarf_die_debug);
6666 /* Skip dummy compilation units. */
6667 if (info_ptr >= begin_info_ptr + dwo_unit->length
6668 || peek_abbrev_code (abfd, info_ptr) == 0)
6671 *result_info_ptr = info_ptr;
6675 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6676 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6677 signature is part of the header. */
6678 static gdb::optional<ULONGEST>
6679 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6681 if (cu->header.version >= 5)
6682 return cu->header.signature;
6683 struct attribute *attr;
6684 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6685 if (attr == nullptr)
6686 return gdb::optional<ULONGEST> ();
6687 return DW_UNSND (attr);
6690 /* Subroutine of cutu_reader to simplify it.
6691 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6692 Returns NULL if the specified DWO unit cannot be found. */
6694 static struct dwo_unit *
6695 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6696 struct die_info *comp_unit_die,
6697 const char *dwo_name)
6699 struct dwarf2_cu *cu = this_cu->cu;
6700 struct dwo_unit *dwo_unit;
6701 const char *comp_dir;
6703 gdb_assert (cu != NULL);
6705 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6706 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6707 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6709 if (this_cu->is_debug_types)
6711 struct signatured_type *sig_type;
6713 /* Since this_cu is the first member of struct signatured_type,
6714 we can go from a pointer to one to a pointer to the other. */
6715 sig_type = (struct signatured_type *) this_cu;
6716 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6720 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6721 if (!signature.has_value ())
6722 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6724 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6725 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6732 /* Subroutine of cutu_reader to simplify it.
6733 See it for a description of the parameters.
6734 Read a TU directly from a DWO file, bypassing the stub. */
6737 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6738 int use_existing_cu)
6740 struct signatured_type *sig_type;
6741 struct die_reader_specs reader;
6743 /* Verify we can do the following downcast, and that we have the
6745 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6746 sig_type = (struct signatured_type *) this_cu;
6747 gdb_assert (sig_type->dwo_unit != NULL);
6749 if (use_existing_cu && this_cu->cu != NULL)
6751 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6752 /* There's no need to do the rereading_dwo_cu handling that
6753 cutu_reader does since we don't read the stub. */
6757 /* If !use_existing_cu, this_cu->cu must be NULL. */
6758 gdb_assert (this_cu->cu == NULL);
6759 m_new_cu.reset (new dwarf2_cu (this_cu));
6762 /* A future optimization, if needed, would be to use an existing
6763 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6764 could share abbrev tables. */
6766 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6767 NULL /* stub_comp_unit_die */,
6768 sig_type->dwo_unit->dwo_file->comp_dir,
6771 &m_dwo_abbrev_table) == 0)
6778 /* Initialize a CU (or TU) and read its DIEs.
6779 If the CU defers to a DWO file, read the DWO file as well.
6781 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6782 Otherwise the table specified in the comp unit header is read in and used.
6783 This is an optimization for when we already have the abbrev table.
6785 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6786 Otherwise, a new CU is allocated with xmalloc. */
6788 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6789 struct abbrev_table *abbrev_table,
6790 int use_existing_cu,
6792 : die_reader_specs {},
6795 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6796 struct objfile *objfile = dwarf2_per_objfile->objfile;
6797 struct dwarf2_section_info *section = this_cu->section;
6798 bfd *abfd = section->get_bfd_owner ();
6799 struct dwarf2_cu *cu;
6800 const gdb_byte *begin_info_ptr;
6801 struct signatured_type *sig_type = NULL;
6802 struct dwarf2_section_info *abbrev_section;
6803 /* Non-zero if CU currently points to a DWO file and we need to
6804 reread it. When this happens we need to reread the skeleton die
6805 before we can reread the DWO file (this only applies to CUs, not TUs). */
6806 int rereading_dwo_cu = 0;
6808 if (dwarf_die_debug)
6809 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6810 this_cu->is_debug_types ? "type" : "comp",
6811 sect_offset_str (this_cu->sect_off));
6813 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6814 file (instead of going through the stub), short-circuit all of this. */
6815 if (this_cu->reading_dwo_directly)
6817 /* Narrow down the scope of possibilities to have to understand. */
6818 gdb_assert (this_cu->is_debug_types);
6819 gdb_assert (abbrev_table == NULL);
6820 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6824 /* This is cheap if the section is already read in. */
6825 section->read (objfile);
6827 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6829 abbrev_section = get_abbrev_section_for_cu (this_cu);
6831 if (use_existing_cu && this_cu->cu != NULL)
6834 /* If this CU is from a DWO file we need to start over, we need to
6835 refetch the attributes from the skeleton CU.
6836 This could be optimized by retrieving those attributes from when we
6837 were here the first time: the previous comp_unit_die was stored in
6838 comp_unit_obstack. But there's no data yet that we need this
6840 if (cu->dwo_unit != NULL)
6841 rereading_dwo_cu = 1;
6845 /* If !use_existing_cu, this_cu->cu must be NULL. */
6846 gdb_assert (this_cu->cu == NULL);
6847 m_new_cu.reset (new dwarf2_cu (this_cu));
6848 cu = m_new_cu.get ();
6851 /* Get the header. */
6852 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6854 /* We already have the header, there's no need to read it in again. */
6855 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6859 if (this_cu->is_debug_types)
6861 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6862 &cu->header, section,
6863 abbrev_section, info_ptr,
6866 /* Since per_cu is the first member of struct signatured_type,
6867 we can go from a pointer to one to a pointer to the other. */
6868 sig_type = (struct signatured_type *) this_cu;
6869 gdb_assert (sig_type->signature == cu->header.signature);
6870 gdb_assert (sig_type->type_offset_in_tu
6871 == cu->header.type_cu_offset_in_tu);
6872 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6874 /* LENGTH has not been set yet for type units if we're
6875 using .gdb_index. */
6876 this_cu->length = cu->header.get_length ();
6878 /* Establish the type offset that can be used to lookup the type. */
6879 sig_type->type_offset_in_section =
6880 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6882 this_cu->dwarf_version = cu->header.version;
6886 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6887 &cu->header, section,
6890 rcuh_kind::COMPILE);
6892 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6893 gdb_assert (this_cu->length == cu->header.get_length ());
6894 this_cu->dwarf_version = cu->header.version;
6898 /* Skip dummy compilation units. */
6899 if (info_ptr >= begin_info_ptr + this_cu->length
6900 || peek_abbrev_code (abfd, info_ptr) == 0)
6906 /* If we don't have them yet, read the abbrevs for this compilation unit.
6907 And if we need to read them now, make sure they're freed when we're
6909 if (abbrev_table != NULL)
6910 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6913 m_abbrev_table_holder
6914 = abbrev_table::read (objfile, abbrev_section,
6915 cu->header.abbrev_sect_off);
6916 abbrev_table = m_abbrev_table_holder.get ();
6919 /* Read the top level CU/TU die. */
6920 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6921 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6923 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6929 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6930 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6931 table from the DWO file and pass the ownership over to us. It will be
6932 referenced from READER, so we must make sure to free it after we're done
6935 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6936 DWO CU, that this test will fail (the attribute will not be present). */
6937 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6938 if (dwo_name != nullptr)
6940 struct dwo_unit *dwo_unit;
6941 struct die_info *dwo_comp_unit_die;
6943 if (comp_unit_die->has_children)
6945 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6946 " has children (offset %s) [in module %s]"),
6947 sect_offset_str (this_cu->sect_off),
6948 bfd_get_filename (abfd));
6950 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6951 if (dwo_unit != NULL)
6953 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6954 comp_unit_die, NULL,
6957 &m_dwo_abbrev_table) == 0)
6963 comp_unit_die = dwo_comp_unit_die;
6967 /* Yikes, we couldn't find the rest of the DIE, we only have
6968 the stub. A complaint has already been logged. There's
6969 not much more we can do except pass on the stub DIE to
6970 die_reader_func. We don't want to throw an error on bad
6977 cutu_reader::keep ()
6979 /* Done, clean up. */
6980 gdb_assert (!dummy_p);
6981 if (m_new_cu != NULL)
6983 struct dwarf2_per_objfile *dwarf2_per_objfile
6984 = m_this_cu->dwarf2_per_objfile;
6985 /* Link this CU into read_in_chain. */
6986 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6987 dwarf2_per_objfile->read_in_chain = m_this_cu;
6988 /* The chain owns it now. */
6989 m_new_cu.release ();
6993 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
6994 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
6995 assumed to have already done the lookup to find the DWO file).
6997 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6998 THIS_CU->is_debug_types, but nothing else.
7000 We fill in THIS_CU->length.
7002 THIS_CU->cu is always freed when done.
7003 This is done in order to not leave THIS_CU->cu in a state where we have
7004 to care whether it refers to the "main" CU or the DWO CU.
7006 When parent_cu is passed, it is used to provide a default value for
7007 str_offsets_base and addr_base from the parent. */
7009 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7010 struct dwarf2_cu *parent_cu,
7011 struct dwo_file *dwo_file)
7012 : die_reader_specs {},
7015 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7016 struct objfile *objfile = dwarf2_per_objfile->objfile;
7017 struct dwarf2_section_info *section = this_cu->section;
7018 bfd *abfd = section->get_bfd_owner ();
7019 struct dwarf2_section_info *abbrev_section;
7020 const gdb_byte *begin_info_ptr, *info_ptr;
7022 if (dwarf_die_debug)
7023 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7024 this_cu->is_debug_types ? "type" : "comp",
7025 sect_offset_str (this_cu->sect_off));
7027 gdb_assert (this_cu->cu == NULL);
7029 abbrev_section = (dwo_file != NULL
7030 ? &dwo_file->sections.abbrev
7031 : get_abbrev_section_for_cu (this_cu));
7033 /* This is cheap if the section is already read in. */
7034 section->read (objfile);
7036 m_new_cu.reset (new dwarf2_cu (this_cu));
7038 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7039 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7040 &m_new_cu->header, section,
7041 abbrev_section, info_ptr,
7042 (this_cu->is_debug_types
7044 : rcuh_kind::COMPILE));
7046 if (parent_cu != nullptr)
7048 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7049 m_new_cu->addr_base = parent_cu->addr_base;
7051 this_cu->length = m_new_cu->header.get_length ();
7053 /* Skip dummy compilation units. */
7054 if (info_ptr >= begin_info_ptr + this_cu->length
7055 || peek_abbrev_code (abfd, info_ptr) == 0)
7061 m_abbrev_table_holder
7062 = abbrev_table::read (objfile, abbrev_section,
7063 m_new_cu->header.abbrev_sect_off);
7065 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7066 m_abbrev_table_holder.get ());
7067 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7071 /* Type Unit Groups.
7073 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7074 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7075 so that all types coming from the same compilation (.o file) are grouped
7076 together. A future step could be to put the types in the same symtab as
7077 the CU the types ultimately came from. */
7080 hash_type_unit_group (const void *item)
7082 const struct type_unit_group *tu_group
7083 = (const struct type_unit_group *) item;
7085 return hash_stmt_list_entry (&tu_group->hash);
7089 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7091 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7092 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7094 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7097 /* Allocate a hash table for type unit groups. */
7100 allocate_type_unit_groups_table ()
7102 return htab_up (htab_create_alloc (3,
7103 hash_type_unit_group,
7105 NULL, xcalloc, xfree));
7108 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7109 partial symtabs. We combine several TUs per psymtab to not let the size
7110 of any one psymtab grow too big. */
7111 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7112 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7114 /* Helper routine for get_type_unit_group.
7115 Create the type_unit_group object used to hold one or more TUs. */
7117 static struct type_unit_group *
7118 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7120 struct dwarf2_per_objfile *dwarf2_per_objfile
7121 = cu->per_cu->dwarf2_per_objfile;
7122 struct objfile *objfile = dwarf2_per_objfile->objfile;
7123 struct dwarf2_per_cu_data *per_cu;
7124 struct type_unit_group *tu_group;
7126 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7127 struct type_unit_group);
7128 per_cu = &tu_group->per_cu;
7129 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7131 if (dwarf2_per_objfile->using_index)
7133 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7134 struct dwarf2_per_cu_quick_data);
7138 unsigned int line_offset = to_underlying (line_offset_struct);
7139 dwarf2_psymtab *pst;
7142 /* Give the symtab a useful name for debug purposes. */
7143 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7144 name = string_printf ("<type_units_%d>",
7145 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7147 name = string_printf ("<type_units_at_0x%x>", line_offset);
7149 pst = create_partial_symtab (per_cu, name.c_str ());
7150 pst->anonymous = true;
7153 tu_group->hash.dwo_unit = cu->dwo_unit;
7154 tu_group->hash.line_sect_off = line_offset_struct;
7159 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7160 STMT_LIST is a DW_AT_stmt_list attribute. */
7162 static struct type_unit_group *
7163 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7165 struct dwarf2_per_objfile *dwarf2_per_objfile
7166 = cu->per_cu->dwarf2_per_objfile;
7167 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7168 struct type_unit_group *tu_group;
7170 unsigned int line_offset;
7171 struct type_unit_group type_unit_group_for_lookup;
7173 if (dwarf2_per_objfile->type_unit_groups == NULL)
7174 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7176 /* Do we need to create a new group, or can we use an existing one? */
7180 line_offset = DW_UNSND (stmt_list);
7181 ++tu_stats->nr_symtab_sharers;
7185 /* Ugh, no stmt_list. Rare, but we have to handle it.
7186 We can do various things here like create one group per TU or
7187 spread them over multiple groups to split up the expansion work.
7188 To avoid worst case scenarios (too many groups or too large groups)
7189 we, umm, group them in bunches. */
7190 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7191 | (tu_stats->nr_stmt_less_type_units
7192 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7193 ++tu_stats->nr_stmt_less_type_units;
7196 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7197 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7198 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7199 &type_unit_group_for_lookup, INSERT);
7202 tu_group = (struct type_unit_group *) *slot;
7203 gdb_assert (tu_group != NULL);
7207 sect_offset line_offset_struct = (sect_offset) line_offset;
7208 tu_group = create_type_unit_group (cu, line_offset_struct);
7210 ++tu_stats->nr_symtabs;
7216 /* Partial symbol tables. */
7218 /* Create a psymtab named NAME and assign it to PER_CU.
7220 The caller must fill in the following details:
7221 dirname, textlow, texthigh. */
7223 static dwarf2_psymtab *
7224 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7226 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7227 dwarf2_psymtab *pst;
7229 pst = new dwarf2_psymtab (name, objfile, 0);
7231 pst->psymtabs_addrmap_supported = true;
7233 /* This is the glue that links PST into GDB's symbol API. */
7234 pst->per_cu_data = per_cu;
7235 per_cu->v.psymtab = pst;
7240 /* DIE reader function for process_psymtab_comp_unit. */
7243 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7244 const gdb_byte *info_ptr,
7245 struct die_info *comp_unit_die,
7246 enum language pretend_language)
7248 struct dwarf2_cu *cu = reader->cu;
7249 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7251 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7253 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7254 dwarf2_psymtab *pst;
7255 enum pc_bounds_kind cu_bounds_kind;
7256 const char *filename;
7258 gdb_assert (! per_cu->is_debug_types);
7260 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7262 /* Allocate a new partial symbol table structure. */
7263 gdb::unique_xmalloc_ptr<char> debug_filename;
7264 static const char artificial[] = "<artificial>";
7265 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7266 if (filename == NULL)
7268 else if (strcmp (filename, artificial) == 0)
7270 debug_filename.reset (concat (artificial, "@",
7271 sect_offset_str (per_cu->sect_off),
7273 filename = debug_filename.get ();
7276 pst = create_partial_symtab (per_cu, filename);
7278 /* This must be done before calling dwarf2_build_include_psymtabs. */
7279 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7281 baseaddr = objfile->text_section_offset ();
7283 dwarf2_find_base_address (comp_unit_die, cu);
7285 /* Possibly set the default values of LOWPC and HIGHPC from
7287 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7288 &best_highpc, cu, pst);
7289 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7292 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7295 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7297 /* Store the contiguous range if it is not empty; it can be
7298 empty for CUs with no code. */
7299 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7303 /* Check if comp unit has_children.
7304 If so, read the rest of the partial symbols from this comp unit.
7305 If not, there's no more debug_info for this comp unit. */
7306 if (comp_unit_die->has_children)
7308 struct partial_die_info *first_die;
7309 CORE_ADDR lowpc, highpc;
7311 lowpc = ((CORE_ADDR) -1);
7312 highpc = ((CORE_ADDR) 0);
7314 first_die = load_partial_dies (reader, info_ptr, 1);
7316 scan_partial_symbols (first_die, &lowpc, &highpc,
7317 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7319 /* If we didn't find a lowpc, set it to highpc to avoid
7320 complaints from `maint check'. */
7321 if (lowpc == ((CORE_ADDR) -1))
7324 /* If the compilation unit didn't have an explicit address range,
7325 then use the information extracted from its child dies. */
7326 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7329 best_highpc = highpc;
7332 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7333 best_lowpc + baseaddr)
7335 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7336 best_highpc + baseaddr)
7339 end_psymtab_common (objfile, pst);
7341 if (!cu->per_cu->imported_symtabs_empty ())
7344 int len = cu->per_cu->imported_symtabs_size ();
7346 /* Fill in 'dependencies' here; we fill in 'users' in a
7348 pst->number_of_dependencies = len;
7350 = objfile->partial_symtabs->allocate_dependencies (len);
7351 for (i = 0; i < len; ++i)
7353 pst->dependencies[i]
7354 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7357 cu->per_cu->imported_symtabs_free ();
7360 /* Get the list of files included in the current compilation unit,
7361 and build a psymtab for each of them. */
7362 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7364 if (dwarf_read_debug)
7365 fprintf_unfiltered (gdb_stdlog,
7366 "Psymtab for %s unit @%s: %s - %s"
7367 ", %d global, %d static syms\n",
7368 per_cu->is_debug_types ? "type" : "comp",
7369 sect_offset_str (per_cu->sect_off),
7370 paddress (gdbarch, pst->text_low (objfile)),
7371 paddress (gdbarch, pst->text_high (objfile)),
7372 pst->n_global_syms, pst->n_static_syms);
7375 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7376 Process compilation unit THIS_CU for a psymtab. */
7379 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7380 bool want_partial_unit,
7381 enum language pretend_language)
7383 /* If this compilation unit was already read in, free the
7384 cached copy in order to read it in again. This is
7385 necessary because we skipped some symbols when we first
7386 read in the compilation unit (see load_partial_dies).
7387 This problem could be avoided, but the benefit is unclear. */
7388 if (this_cu->cu != NULL)
7389 free_one_cached_comp_unit (this_cu);
7391 cutu_reader reader (this_cu, NULL, 0, false);
7397 else if (this_cu->is_debug_types)
7398 build_type_psymtabs_reader (&reader, reader.info_ptr,
7399 reader.comp_unit_die);
7400 else if (want_partial_unit
7401 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7402 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7403 reader.comp_unit_die,
7406 /* Age out any secondary CUs. */
7407 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7410 /* Reader function for build_type_psymtabs. */
7413 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7414 const gdb_byte *info_ptr,
7415 struct die_info *type_unit_die)
7417 struct dwarf2_per_objfile *dwarf2_per_objfile
7418 = reader->cu->per_cu->dwarf2_per_objfile;
7419 struct objfile *objfile = dwarf2_per_objfile->objfile;
7420 struct dwarf2_cu *cu = reader->cu;
7421 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7422 struct signatured_type *sig_type;
7423 struct type_unit_group *tu_group;
7424 struct attribute *attr;
7425 struct partial_die_info *first_die;
7426 CORE_ADDR lowpc, highpc;
7427 dwarf2_psymtab *pst;
7429 gdb_assert (per_cu->is_debug_types);
7430 sig_type = (struct signatured_type *) per_cu;
7432 if (! type_unit_die->has_children)
7435 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7436 tu_group = get_type_unit_group (cu, attr);
7438 if (tu_group->tus == nullptr)
7439 tu_group->tus = new std::vector<signatured_type *>;
7440 tu_group->tus->push_back (sig_type);
7442 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7443 pst = create_partial_symtab (per_cu, "");
7444 pst->anonymous = true;
7446 first_die = load_partial_dies (reader, info_ptr, 1);
7448 lowpc = (CORE_ADDR) -1;
7449 highpc = (CORE_ADDR) 0;
7450 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7452 end_psymtab_common (objfile, pst);
7455 /* Struct used to sort TUs by their abbreviation table offset. */
7457 struct tu_abbrev_offset
7459 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7460 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7463 signatured_type *sig_type;
7464 sect_offset abbrev_offset;
7467 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7470 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7471 const struct tu_abbrev_offset &b)
7473 return a.abbrev_offset < b.abbrev_offset;
7476 /* Efficiently read all the type units.
7477 This does the bulk of the work for build_type_psymtabs.
7479 The efficiency is because we sort TUs by the abbrev table they use and
7480 only read each abbrev table once. In one program there are 200K TUs
7481 sharing 8K abbrev tables.
7483 The main purpose of this function is to support building the
7484 dwarf2_per_objfile->type_unit_groups table.
7485 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7486 can collapse the search space by grouping them by stmt_list.
7487 The savings can be significant, in the same program from above the 200K TUs
7488 share 8K stmt_list tables.
7490 FUNC is expected to call get_type_unit_group, which will create the
7491 struct type_unit_group if necessary and add it to
7492 dwarf2_per_objfile->type_unit_groups. */
7495 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7497 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7498 abbrev_table_up abbrev_table;
7499 sect_offset abbrev_offset;
7501 /* It's up to the caller to not call us multiple times. */
7502 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7504 if (dwarf2_per_objfile->all_type_units.empty ())
7507 /* TUs typically share abbrev tables, and there can be way more TUs than
7508 abbrev tables. Sort by abbrev table to reduce the number of times we
7509 read each abbrev table in.
7510 Alternatives are to punt or to maintain a cache of abbrev tables.
7511 This is simpler and efficient enough for now.
7513 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7514 symtab to use). Typically TUs with the same abbrev offset have the same
7515 stmt_list value too so in practice this should work well.
7517 The basic algorithm here is:
7519 sort TUs by abbrev table
7520 for each TU with same abbrev table:
7521 read abbrev table if first user
7522 read TU top level DIE
7523 [IWBN if DWO skeletons had DW_AT_stmt_list]
7526 if (dwarf_read_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7529 /* Sort in a separate table to maintain the order of all_type_units
7530 for .gdb_index: TU indices directly index all_type_units. */
7531 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7532 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7534 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7535 sorted_by_abbrev.emplace_back
7536 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7537 sig_type->per_cu.section,
7538 sig_type->per_cu.sect_off));
7540 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7541 sort_tu_by_abbrev_offset);
7543 abbrev_offset = (sect_offset) ~(unsigned) 0;
7545 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7547 /* Switch to the next abbrev table if necessary. */
7548 if (abbrev_table == NULL
7549 || tu.abbrev_offset != abbrev_offset)
7551 abbrev_offset = tu.abbrev_offset;
7553 abbrev_table::read (dwarf2_per_objfile->objfile,
7554 &dwarf2_per_objfile->abbrev,
7556 ++tu_stats->nr_uniq_abbrev_tables;
7559 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7561 if (!reader.dummy_p)
7562 build_type_psymtabs_reader (&reader, reader.info_ptr,
7563 reader.comp_unit_die);
7567 /* Print collected type unit statistics. */
7570 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7572 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7574 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7575 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7576 dwarf2_per_objfile->all_type_units.size ());
7577 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7578 tu_stats->nr_uniq_abbrev_tables);
7579 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7580 tu_stats->nr_symtabs);
7581 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7582 tu_stats->nr_symtab_sharers);
7583 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7584 tu_stats->nr_stmt_less_type_units);
7585 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7586 tu_stats->nr_all_type_units_reallocs);
7589 /* Traversal function for build_type_psymtabs. */
7592 build_type_psymtab_dependencies (void **slot, void *info)
7594 struct dwarf2_per_objfile *dwarf2_per_objfile
7595 = (struct dwarf2_per_objfile *) info;
7596 struct objfile *objfile = dwarf2_per_objfile->objfile;
7597 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7598 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7599 dwarf2_psymtab *pst = per_cu->v.psymtab;
7600 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7603 gdb_assert (len > 0);
7604 gdb_assert (per_cu->type_unit_group_p ());
7606 pst->number_of_dependencies = len;
7607 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7608 for (i = 0; i < len; ++i)
7610 struct signatured_type *iter = tu_group->tus->at (i);
7611 gdb_assert (iter->per_cu.is_debug_types);
7612 pst->dependencies[i] = iter->per_cu.v.psymtab;
7613 iter->type_unit_group = tu_group;
7616 delete tu_group->tus;
7617 tu_group->tus = nullptr;
7622 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7623 Build partial symbol tables for the .debug_types comp-units. */
7626 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7628 if (! create_all_type_units (dwarf2_per_objfile))
7631 build_type_psymtabs_1 (dwarf2_per_objfile);
7634 /* Traversal function for process_skeletonless_type_unit.
7635 Read a TU in a DWO file and build partial symbols for it. */
7638 process_skeletonless_type_unit (void **slot, void *info)
7640 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7641 struct dwarf2_per_objfile *dwarf2_per_objfile
7642 = (struct dwarf2_per_objfile *) info;
7643 struct signatured_type find_entry, *entry;
7645 /* If this TU doesn't exist in the global table, add it and read it in. */
7647 if (dwarf2_per_objfile->signatured_types == NULL)
7648 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7650 find_entry.signature = dwo_unit->signature;
7651 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7652 &find_entry, INSERT);
7653 /* If we've already seen this type there's nothing to do. What's happening
7654 is we're doing our own version of comdat-folding here. */
7658 /* This does the job that create_all_type_units would have done for
7660 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7661 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7664 /* This does the job that build_type_psymtabs_1 would have done. */
7665 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7666 if (!reader.dummy_p)
7667 build_type_psymtabs_reader (&reader, reader.info_ptr,
7668 reader.comp_unit_die);
7673 /* Traversal function for process_skeletonless_type_units. */
7676 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7678 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7680 if (dwo_file->tus != NULL)
7681 htab_traverse_noresize (dwo_file->tus.get (),
7682 process_skeletonless_type_unit, info);
7687 /* Scan all TUs of DWO files, verifying we've processed them.
7688 This is needed in case a TU was emitted without its skeleton.
7689 Note: This can't be done until we know what all the DWO files are. */
7692 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7694 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7695 if (get_dwp_file (dwarf2_per_objfile) == NULL
7696 && dwarf2_per_objfile->dwo_files != NULL)
7698 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7699 process_dwo_file_for_skeletonless_type_units,
7700 dwarf2_per_objfile);
7704 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7707 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7709 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7711 dwarf2_psymtab *pst = per_cu->v.psymtab;
7716 for (int j = 0; j < pst->number_of_dependencies; ++j)
7718 /* Set the 'user' field only if it is not already set. */
7719 if (pst->dependencies[j]->user == NULL)
7720 pst->dependencies[j]->user = pst;
7725 /* Build the partial symbol table by doing a quick pass through the
7726 .debug_info and .debug_abbrev sections. */
7729 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7731 struct objfile *objfile = dwarf2_per_objfile->objfile;
7733 if (dwarf_read_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7736 objfile_name (objfile));
7739 scoped_restore restore_reading_psyms
7740 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7743 dwarf2_per_objfile->info.read (objfile);
7745 /* Any cached compilation units will be linked by the per-objfile
7746 read_in_chain. Make sure to free them when we're done. */
7747 free_cached_comp_units freer (dwarf2_per_objfile);
7749 build_type_psymtabs (dwarf2_per_objfile);
7751 create_all_comp_units (dwarf2_per_objfile);
7753 /* Create a temporary address map on a temporary obstack. We later
7754 copy this to the final obstack. */
7755 auto_obstack temp_obstack;
7757 scoped_restore save_psymtabs_addrmap
7758 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7759 addrmap_create_mutable (&temp_obstack));
7761 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7762 process_psymtab_comp_unit (per_cu, false, language_minimal);
7764 /* This has to wait until we read the CUs, we need the list of DWOs. */
7765 process_skeletonless_type_units (dwarf2_per_objfile);
7767 /* Now that all TUs have been processed we can fill in the dependencies. */
7768 if (dwarf2_per_objfile->type_unit_groups != NULL)
7770 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7771 build_type_psymtab_dependencies, dwarf2_per_objfile);
7774 if (dwarf_read_debug)
7775 print_tu_stats (dwarf2_per_objfile);
7777 set_partial_user (dwarf2_per_objfile);
7779 objfile->partial_symtabs->psymtabs_addrmap
7780 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7781 objfile->partial_symtabs->obstack ());
7782 /* At this point we want to keep the address map. */
7783 save_psymtabs_addrmap.release ();
7785 if (dwarf_read_debug)
7786 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7787 objfile_name (objfile));
7790 /* Load the partial DIEs for a secondary CU into memory.
7791 This is also used when rereading a primary CU with load_all_dies. */
7794 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7796 cutu_reader reader (this_cu, NULL, 1, false);
7798 if (!reader.dummy_p)
7800 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7803 /* Check if comp unit has_children.
7804 If so, read the rest of the partial symbols from this comp unit.
7805 If not, there's no more debug_info for this comp unit. */
7806 if (reader.comp_unit_die->has_children)
7807 load_partial_dies (&reader, reader.info_ptr, 0);
7814 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7815 struct dwarf2_section_info *section,
7816 struct dwarf2_section_info *abbrev_section,
7817 unsigned int is_dwz)
7819 const gdb_byte *info_ptr;
7820 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 if (dwarf_read_debug)
7823 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7824 section->get_name (),
7825 section->get_file_name ());
7827 section->read (objfile);
7829 info_ptr = section->buffer;
7831 while (info_ptr < section->buffer + section->size)
7833 struct dwarf2_per_cu_data *this_cu;
7835 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7837 comp_unit_head cu_header;
7838 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7839 abbrev_section, info_ptr,
7840 rcuh_kind::COMPILE);
7842 /* Save the compilation unit for later lookup. */
7843 if (cu_header.unit_type != DW_UT_type)
7845 this_cu = XOBNEW (&objfile->objfile_obstack,
7846 struct dwarf2_per_cu_data);
7847 memset (this_cu, 0, sizeof (*this_cu));
7851 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7852 struct signatured_type);
7853 memset (sig_type, 0, sizeof (*sig_type));
7854 sig_type->signature = cu_header.signature;
7855 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7856 this_cu = &sig_type->per_cu;
7858 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7859 this_cu->sect_off = sect_off;
7860 this_cu->length = cu_header.length + cu_header.initial_length_size;
7861 this_cu->is_dwz = is_dwz;
7862 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7863 this_cu->section = section;
7865 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7867 info_ptr = info_ptr + this_cu->length;
7871 /* Create a list of all compilation units in OBJFILE.
7872 This is only done for -readnow and building partial symtabs. */
7875 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7877 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7878 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7879 &dwarf2_per_objfile->abbrev, 0);
7881 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7883 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7887 /* Process all loaded DIEs for compilation unit CU, starting at
7888 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7889 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7890 DW_AT_ranges). See the comments of add_partial_subprogram on how
7891 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7894 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7895 CORE_ADDR *highpc, int set_addrmap,
7896 struct dwarf2_cu *cu)
7898 struct partial_die_info *pdi;
7900 /* Now, march along the PDI's, descending into ones which have
7901 interesting children but skipping the children of the other ones,
7902 until we reach the end of the compilation unit. */
7910 /* Anonymous namespaces or modules have no name but have interesting
7911 children, so we need to look at them. Ditto for anonymous
7914 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7915 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7916 || pdi->tag == DW_TAG_imported_unit
7917 || pdi->tag == DW_TAG_inlined_subroutine)
7921 case DW_TAG_subprogram:
7922 case DW_TAG_inlined_subroutine:
7923 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7925 case DW_TAG_constant:
7926 case DW_TAG_variable:
7927 case DW_TAG_typedef:
7928 case DW_TAG_union_type:
7929 if (!pdi->is_declaration)
7931 add_partial_symbol (pdi, cu);
7934 case DW_TAG_class_type:
7935 case DW_TAG_interface_type:
7936 case DW_TAG_structure_type:
7937 if (!pdi->is_declaration)
7939 add_partial_symbol (pdi, cu);
7941 if ((cu->language == language_rust
7942 || cu->language == language_cplus) && pdi->has_children)
7943 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7946 case DW_TAG_enumeration_type:
7947 if (!pdi->is_declaration)
7948 add_partial_enumeration (pdi, cu);
7950 case DW_TAG_base_type:
7951 case DW_TAG_subrange_type:
7952 /* File scope base type definitions are added to the partial
7954 add_partial_symbol (pdi, cu);
7956 case DW_TAG_namespace:
7957 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7960 if (!pdi->is_declaration)
7961 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7963 case DW_TAG_imported_unit:
7965 struct dwarf2_per_cu_data *per_cu;
7967 /* For now we don't handle imported units in type units. */
7968 if (cu->per_cu->is_debug_types)
7970 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7971 " supported in type units [in module %s]"),
7972 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7975 per_cu = dwarf2_find_containing_comp_unit
7976 (pdi->d.sect_off, pdi->is_dwz,
7977 cu->per_cu->dwarf2_per_objfile);
7979 /* Go read the partial unit, if needed. */
7980 if (per_cu->v.psymtab == NULL)
7981 process_psymtab_comp_unit (per_cu, true, cu->language);
7983 cu->per_cu->imported_symtabs_push (per_cu);
7986 case DW_TAG_imported_declaration:
7987 add_partial_symbol (pdi, cu);
7994 /* If the die has a sibling, skip to the sibling. */
7996 pdi = pdi->die_sibling;
8000 /* Functions used to compute the fully scoped name of a partial DIE.
8002 Normally, this is simple. For C++, the parent DIE's fully scoped
8003 name is concatenated with "::" and the partial DIE's name.
8004 Enumerators are an exception; they use the scope of their parent
8005 enumeration type, i.e. the name of the enumeration type is not
8006 prepended to the enumerator.
8008 There are two complexities. One is DW_AT_specification; in this
8009 case "parent" means the parent of the target of the specification,
8010 instead of the direct parent of the DIE. The other is compilers
8011 which do not emit DW_TAG_namespace; in this case we try to guess
8012 the fully qualified name of structure types from their members'
8013 linkage names. This must be done using the DIE's children rather
8014 than the children of any DW_AT_specification target. We only need
8015 to do this for structures at the top level, i.e. if the target of
8016 any DW_AT_specification (if any; otherwise the DIE itself) does not
8019 /* Compute the scope prefix associated with PDI's parent, in
8020 compilation unit CU. The result will be allocated on CU's
8021 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8022 field. NULL is returned if no prefix is necessary. */
8024 partial_die_parent_scope (struct partial_die_info *pdi,
8025 struct dwarf2_cu *cu)
8027 const char *grandparent_scope;
8028 struct partial_die_info *parent, *real_pdi;
8030 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8031 then this means the parent of the specification DIE. */
8034 while (real_pdi->has_specification)
8036 auto res = find_partial_die (real_pdi->spec_offset,
8037 real_pdi->spec_is_dwz, cu);
8042 parent = real_pdi->die_parent;
8046 if (parent->scope_set)
8047 return parent->scope;
8051 grandparent_scope = partial_die_parent_scope (parent, cu);
8053 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8054 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8055 Work around this problem here. */
8056 if (cu->language == language_cplus
8057 && parent->tag == DW_TAG_namespace
8058 && strcmp (parent->name, "::") == 0
8059 && grandparent_scope == NULL)
8061 parent->scope = NULL;
8062 parent->scope_set = 1;
8066 /* Nested subroutines in Fortran get a prefix. */
8067 if (pdi->tag == DW_TAG_enumerator)
8068 /* Enumerators should not get the name of the enumeration as a prefix. */
8069 parent->scope = grandparent_scope;
8070 else if (parent->tag == DW_TAG_namespace
8071 || parent->tag == DW_TAG_module
8072 || parent->tag == DW_TAG_structure_type
8073 || parent->tag == DW_TAG_class_type
8074 || parent->tag == DW_TAG_interface_type
8075 || parent->tag == DW_TAG_union_type
8076 || parent->tag == DW_TAG_enumeration_type
8077 || (cu->language == language_fortran
8078 && parent->tag == DW_TAG_subprogram
8079 && pdi->tag == DW_TAG_subprogram))
8081 if (grandparent_scope == NULL)
8082 parent->scope = parent->name;
8084 parent->scope = typename_concat (&cu->comp_unit_obstack,
8086 parent->name, 0, cu);
8090 /* FIXME drow/2004-04-01: What should we be doing with
8091 function-local names? For partial symbols, we should probably be
8093 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8094 dwarf_tag_name (parent->tag),
8095 sect_offset_str (pdi->sect_off));
8096 parent->scope = grandparent_scope;
8099 parent->scope_set = 1;
8100 return parent->scope;
8103 /* Return the fully scoped name associated with PDI, from compilation unit
8104 CU. The result will be allocated with malloc. */
8106 static gdb::unique_xmalloc_ptr<char>
8107 partial_die_full_name (struct partial_die_info *pdi,
8108 struct dwarf2_cu *cu)
8110 const char *parent_scope;
8112 /* If this is a template instantiation, we can not work out the
8113 template arguments from partial DIEs. So, unfortunately, we have
8114 to go through the full DIEs. At least any work we do building
8115 types here will be reused if full symbols are loaded later. */
8116 if (pdi->has_template_arguments)
8120 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8122 struct die_info *die;
8123 struct attribute attr;
8124 struct dwarf2_cu *ref_cu = cu;
8126 /* DW_FORM_ref_addr is using section offset. */
8127 attr.name = (enum dwarf_attribute) 0;
8128 attr.form = DW_FORM_ref_addr;
8129 attr.u.unsnd = to_underlying (pdi->sect_off);
8130 die = follow_die_ref (NULL, &attr, &ref_cu);
8132 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8136 parent_scope = partial_die_parent_scope (pdi, cu);
8137 if (parent_scope == NULL)
8140 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8145 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8147 struct dwarf2_per_objfile *dwarf2_per_objfile
8148 = cu->per_cu->dwarf2_per_objfile;
8149 struct objfile *objfile = dwarf2_per_objfile->objfile;
8150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8152 const char *actual_name = NULL;
8155 baseaddr = objfile->text_section_offset ();
8157 gdb::unique_xmalloc_ptr<char> built_actual_name
8158 = partial_die_full_name (pdi, cu);
8159 if (built_actual_name != NULL)
8160 actual_name = built_actual_name.get ();
8162 if (actual_name == NULL)
8163 actual_name = pdi->name;
8167 case DW_TAG_inlined_subroutine:
8168 case DW_TAG_subprogram:
8169 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8171 if (pdi->is_external
8172 || cu->language == language_ada
8173 || (cu->language == language_fortran
8174 && pdi->die_parent != NULL
8175 && pdi->die_parent->tag == DW_TAG_subprogram))
8177 /* Normally, only "external" DIEs are part of the global scope.
8178 But in Ada and Fortran, we want to be able to access nested
8179 procedures globally. So all Ada and Fortran subprograms are
8180 stored in the global scope. */
8181 add_psymbol_to_list (actual_name,
8182 built_actual_name != NULL,
8183 VAR_DOMAIN, LOC_BLOCK,
8184 SECT_OFF_TEXT (objfile),
8185 psymbol_placement::GLOBAL,
8187 cu->language, objfile);
8191 add_psymbol_to_list (actual_name,
8192 built_actual_name != NULL,
8193 VAR_DOMAIN, LOC_BLOCK,
8194 SECT_OFF_TEXT (objfile),
8195 psymbol_placement::STATIC,
8196 addr, cu->language, objfile);
8199 if (pdi->main_subprogram && actual_name != NULL)
8200 set_objfile_main_name (objfile, actual_name, cu->language);
8202 case DW_TAG_constant:
8203 add_psymbol_to_list (actual_name,
8204 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8205 -1, (pdi->is_external
8206 ? psymbol_placement::GLOBAL
8207 : psymbol_placement::STATIC),
8208 0, cu->language, objfile);
8210 case DW_TAG_variable:
8212 addr = decode_locdesc (pdi->d.locdesc, cu);
8216 && !dwarf2_per_objfile->has_section_at_zero)
8218 /* A global or static variable may also have been stripped
8219 out by the linker if unused, in which case its address
8220 will be nullified; do not add such variables into partial
8221 symbol table then. */
8223 else if (pdi->is_external)
8226 Don't enter into the minimal symbol tables as there is
8227 a minimal symbol table entry from the ELF symbols already.
8228 Enter into partial symbol table if it has a location
8229 descriptor or a type.
8230 If the location descriptor is missing, new_symbol will create
8231 a LOC_UNRESOLVED symbol, the address of the variable will then
8232 be determined from the minimal symbol table whenever the variable
8234 The address for the partial symbol table entry is not
8235 used by GDB, but it comes in handy for debugging partial symbol
8238 if (pdi->d.locdesc || pdi->has_type)
8239 add_psymbol_to_list (actual_name,
8240 built_actual_name != NULL,
8241 VAR_DOMAIN, LOC_STATIC,
8242 SECT_OFF_TEXT (objfile),
8243 psymbol_placement::GLOBAL,
8244 addr, cu->language, objfile);
8248 int has_loc = pdi->d.locdesc != NULL;
8250 /* Static Variable. Skip symbols whose value we cannot know (those
8251 without location descriptors or constant values). */
8252 if (!has_loc && !pdi->has_const_value)
8255 add_psymbol_to_list (actual_name,
8256 built_actual_name != NULL,
8257 VAR_DOMAIN, LOC_STATIC,
8258 SECT_OFF_TEXT (objfile),
8259 psymbol_placement::STATIC,
8261 cu->language, objfile);
8264 case DW_TAG_typedef:
8265 case DW_TAG_base_type:
8266 case DW_TAG_subrange_type:
8267 add_psymbol_to_list (actual_name,
8268 built_actual_name != NULL,
8269 VAR_DOMAIN, LOC_TYPEDEF, -1,
8270 psymbol_placement::STATIC,
8271 0, cu->language, objfile);
8273 case DW_TAG_imported_declaration:
8274 case DW_TAG_namespace:
8275 add_psymbol_to_list (actual_name,
8276 built_actual_name != NULL,
8277 VAR_DOMAIN, LOC_TYPEDEF, -1,
8278 psymbol_placement::GLOBAL,
8279 0, cu->language, objfile);
8282 /* With Fortran 77 there might be a "BLOCK DATA" module
8283 available without any name. If so, we skip the module as it
8284 doesn't bring any value. */
8285 if (actual_name != nullptr)
8286 add_psymbol_to_list (actual_name,
8287 built_actual_name != NULL,
8288 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8289 psymbol_placement::GLOBAL,
8290 0, cu->language, objfile);
8292 case DW_TAG_class_type:
8293 case DW_TAG_interface_type:
8294 case DW_TAG_structure_type:
8295 case DW_TAG_union_type:
8296 case DW_TAG_enumeration_type:
8297 /* Skip external references. The DWARF standard says in the section
8298 about "Structure, Union, and Class Type Entries": "An incomplete
8299 structure, union or class type is represented by a structure,
8300 union or class entry that does not have a byte size attribute
8301 and that has a DW_AT_declaration attribute." */
8302 if (!pdi->has_byte_size && pdi->is_declaration)
8305 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8306 static vs. global. */
8307 add_psymbol_to_list (actual_name,
8308 built_actual_name != NULL,
8309 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8310 cu->language == language_cplus
8311 ? psymbol_placement::GLOBAL
8312 : psymbol_placement::STATIC,
8313 0, cu->language, objfile);
8316 case DW_TAG_enumerator:
8317 add_psymbol_to_list (actual_name,
8318 built_actual_name != NULL,
8319 VAR_DOMAIN, LOC_CONST, -1,
8320 cu->language == language_cplus
8321 ? psymbol_placement::GLOBAL
8322 : psymbol_placement::STATIC,
8323 0, cu->language, objfile);
8330 /* Read a partial die corresponding to a namespace; also, add a symbol
8331 corresponding to that namespace to the symbol table. NAMESPACE is
8332 the name of the enclosing namespace. */
8335 add_partial_namespace (struct partial_die_info *pdi,
8336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8337 int set_addrmap, struct dwarf2_cu *cu)
8339 /* Add a symbol for the namespace. */
8341 add_partial_symbol (pdi, cu);
8343 /* Now scan partial symbols in that namespace. */
8345 if (pdi->has_children)
8346 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8349 /* Read a partial die corresponding to a Fortran module. */
8352 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8353 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8355 /* Add a symbol for the namespace. */
8357 add_partial_symbol (pdi, cu);
8359 /* Now scan partial symbols in that module. */
8361 if (pdi->has_children)
8362 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8365 /* Read a partial die corresponding to a subprogram or an inlined
8366 subprogram and create a partial symbol for that subprogram.
8367 When the CU language allows it, this routine also defines a partial
8368 symbol for each nested subprogram that this subprogram contains.
8369 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8370 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8372 PDI may also be a lexical block, in which case we simply search
8373 recursively for subprograms defined inside that lexical block.
8374 Again, this is only performed when the CU language allows this
8375 type of definitions. */
8378 add_partial_subprogram (struct partial_die_info *pdi,
8379 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8380 int set_addrmap, struct dwarf2_cu *cu)
8382 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8384 if (pdi->has_pc_info)
8386 if (pdi->lowpc < *lowpc)
8387 *lowpc = pdi->lowpc;
8388 if (pdi->highpc > *highpc)
8389 *highpc = pdi->highpc;
8392 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8393 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8395 CORE_ADDR this_highpc;
8396 CORE_ADDR this_lowpc;
8398 baseaddr = objfile->text_section_offset ();
8400 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8401 pdi->lowpc + baseaddr)
8404 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8405 pdi->highpc + baseaddr)
8407 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8408 this_lowpc, this_highpc - 1,
8409 cu->per_cu->v.psymtab);
8413 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8415 if (!pdi->is_declaration)
8416 /* Ignore subprogram DIEs that do not have a name, they are
8417 illegal. Do not emit a complaint at this point, we will
8418 do so when we convert this psymtab into a symtab. */
8420 add_partial_symbol (pdi, cu);
8424 if (! pdi->has_children)
8427 if (cu->language == language_ada || cu->language == language_fortran)
8429 pdi = pdi->die_child;
8433 if (pdi->tag == DW_TAG_subprogram
8434 || pdi->tag == DW_TAG_inlined_subroutine
8435 || pdi->tag == DW_TAG_lexical_block)
8436 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8437 pdi = pdi->die_sibling;
8442 /* Read a partial die corresponding to an enumeration type. */
8445 add_partial_enumeration (struct partial_die_info *enum_pdi,
8446 struct dwarf2_cu *cu)
8448 struct partial_die_info *pdi;
8450 if (enum_pdi->name != NULL)
8451 add_partial_symbol (enum_pdi, cu);
8453 pdi = enum_pdi->die_child;
8456 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8457 complaint (_("malformed enumerator DIE ignored"));
8459 add_partial_symbol (pdi, cu);
8460 pdi = pdi->die_sibling;
8464 /* Return the initial uleb128 in the die at INFO_PTR. */
8467 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8469 unsigned int bytes_read;
8471 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8474 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8475 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8477 Return the corresponding abbrev, or NULL if the number is zero (indicating
8478 an empty DIE). In either case *BYTES_READ will be set to the length of
8479 the initial number. */
8481 static struct abbrev_info *
8482 peek_die_abbrev (const die_reader_specs &reader,
8483 const gdb_byte *info_ptr, unsigned int *bytes_read)
8485 dwarf2_cu *cu = reader.cu;
8486 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8487 unsigned int abbrev_number
8488 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8490 if (abbrev_number == 0)
8493 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8496 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8497 " at offset %s [in module %s]"),
8498 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8499 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8505 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8506 Returns a pointer to the end of a series of DIEs, terminated by an empty
8507 DIE. Any children of the skipped DIEs will also be skipped. */
8509 static const gdb_byte *
8510 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8514 unsigned int bytes_read;
8515 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8518 return info_ptr + bytes_read;
8520 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8524 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8525 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8526 abbrev corresponding to that skipped uleb128 should be passed in
8527 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8530 static const gdb_byte *
8531 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8532 struct abbrev_info *abbrev)
8534 unsigned int bytes_read;
8535 struct attribute attr;
8536 bfd *abfd = reader->abfd;
8537 struct dwarf2_cu *cu = reader->cu;
8538 const gdb_byte *buffer = reader->buffer;
8539 const gdb_byte *buffer_end = reader->buffer_end;
8540 unsigned int form, i;
8542 for (i = 0; i < abbrev->num_attrs; i++)
8544 /* The only abbrev we care about is DW_AT_sibling. */
8545 if (abbrev->attrs[i].name == DW_AT_sibling)
8548 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8550 if (attr.form == DW_FORM_ref_addr)
8551 complaint (_("ignoring absolute DW_AT_sibling"));
8554 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8555 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8557 if (sibling_ptr < info_ptr)
8558 complaint (_("DW_AT_sibling points backwards"));
8559 else if (sibling_ptr > reader->buffer_end)
8560 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8566 /* If it isn't DW_AT_sibling, skip this attribute. */
8567 form = abbrev->attrs[i].form;
8571 case DW_FORM_ref_addr:
8572 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8573 and later it is offset sized. */
8574 if (cu->header.version == 2)
8575 info_ptr += cu->header.addr_size;
8577 info_ptr += cu->header.offset_size;
8579 case DW_FORM_GNU_ref_alt:
8580 info_ptr += cu->header.offset_size;
8583 info_ptr += cu->header.addr_size;
8591 case DW_FORM_flag_present:
8592 case DW_FORM_implicit_const:
8609 case DW_FORM_ref_sig8:
8612 case DW_FORM_data16:
8615 case DW_FORM_string:
8616 read_direct_string (abfd, info_ptr, &bytes_read);
8617 info_ptr += bytes_read;
8619 case DW_FORM_sec_offset:
8621 case DW_FORM_GNU_strp_alt:
8622 info_ptr += cu->header.offset_size;
8624 case DW_FORM_exprloc:
8626 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8627 info_ptr += bytes_read;
8629 case DW_FORM_block1:
8630 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8632 case DW_FORM_block2:
8633 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8635 case DW_FORM_block4:
8636 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8642 case DW_FORM_ref_udata:
8643 case DW_FORM_GNU_addr_index:
8644 case DW_FORM_GNU_str_index:
8645 case DW_FORM_rnglistx:
8646 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8648 case DW_FORM_indirect:
8649 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8650 info_ptr += bytes_read;
8651 /* We need to continue parsing from here, so just go back to
8653 goto skip_attribute;
8656 error (_("Dwarf Error: Cannot handle %s "
8657 "in DWARF reader [in module %s]"),
8658 dwarf_form_name (form),
8659 bfd_get_filename (abfd));
8663 if (abbrev->has_children)
8664 return skip_children (reader, info_ptr);
8669 /* Locate ORIG_PDI's sibling.
8670 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8672 static const gdb_byte *
8673 locate_pdi_sibling (const struct die_reader_specs *reader,
8674 struct partial_die_info *orig_pdi,
8675 const gdb_byte *info_ptr)
8677 /* Do we know the sibling already? */
8679 if (orig_pdi->sibling)
8680 return orig_pdi->sibling;
8682 /* Are there any children to deal with? */
8684 if (!orig_pdi->has_children)
8687 /* Skip the children the long way. */
8689 return skip_children (reader, info_ptr);
8692 /* Expand this partial symbol table into a full symbol table. SELF is
8696 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8698 struct dwarf2_per_objfile *dwarf2_per_objfile
8699 = get_dwarf2_per_objfile (objfile);
8701 gdb_assert (!readin);
8702 /* If this psymtab is constructed from a debug-only objfile, the
8703 has_section_at_zero flag will not necessarily be correct. We
8704 can get the correct value for this flag by looking at the data
8705 associated with the (presumably stripped) associated objfile. */
8706 if (objfile->separate_debug_objfile_backlink)
8708 struct dwarf2_per_objfile *dpo_backlink
8709 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8711 dwarf2_per_objfile->has_section_at_zero
8712 = dpo_backlink->has_section_at_zero;
8715 expand_psymtab (objfile);
8717 process_cu_includes (dwarf2_per_objfile);
8720 /* Reading in full CUs. */
8722 /* Add PER_CU to the queue. */
8725 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8726 enum language pretend_language)
8729 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8732 /* If PER_CU is not yet queued, add it to the queue.
8733 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8735 The result is non-zero if PER_CU was queued, otherwise the result is zero
8736 meaning either PER_CU is already queued or it is already loaded.
8738 N.B. There is an invariant here that if a CU is queued then it is loaded.
8739 The caller is required to load PER_CU if we return non-zero. */
8742 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8743 struct dwarf2_per_cu_data *per_cu,
8744 enum language pretend_language)
8746 /* We may arrive here during partial symbol reading, if we need full
8747 DIEs to process an unusual case (e.g. template arguments). Do
8748 not queue PER_CU, just tell our caller to load its DIEs. */
8749 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8751 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8756 /* Mark the dependence relation so that we don't flush PER_CU
8758 if (dependent_cu != NULL)
8759 dwarf2_add_dependence (dependent_cu, per_cu);
8761 /* If it's already on the queue, we have nothing to do. */
8765 /* If the compilation unit is already loaded, just mark it as
8767 if (per_cu->cu != NULL)
8769 per_cu->cu->last_used = 0;
8773 /* Add it to the queue. */
8774 queue_comp_unit (per_cu, pretend_language);
8779 /* Process the queue. */
8782 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8784 if (dwarf_read_debug)
8786 fprintf_unfiltered (gdb_stdlog,
8787 "Expanding one or more symtabs of objfile %s ...\n",
8788 objfile_name (dwarf2_per_objfile->objfile));
8791 /* The queue starts out with one item, but following a DIE reference
8792 may load a new CU, adding it to the end of the queue. */
8793 while (!dwarf2_per_objfile->queue.empty ())
8795 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8797 if ((dwarf2_per_objfile->using_index
8798 ? !item.per_cu->v.quick->compunit_symtab
8799 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8800 /* Skip dummy CUs. */
8801 && item.per_cu->cu != NULL)
8803 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8804 unsigned int debug_print_threshold;
8807 if (per_cu->is_debug_types)
8809 struct signatured_type *sig_type =
8810 (struct signatured_type *) per_cu;
8812 sprintf (buf, "TU %s at offset %s",
8813 hex_string (sig_type->signature),
8814 sect_offset_str (per_cu->sect_off));
8815 /* There can be 100s of TUs.
8816 Only print them in verbose mode. */
8817 debug_print_threshold = 2;
8821 sprintf (buf, "CU at offset %s",
8822 sect_offset_str (per_cu->sect_off));
8823 debug_print_threshold = 1;
8826 if (dwarf_read_debug >= debug_print_threshold)
8827 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8829 if (per_cu->is_debug_types)
8830 process_full_type_unit (per_cu, item.pretend_language);
8832 process_full_comp_unit (per_cu, item.pretend_language);
8834 if (dwarf_read_debug >= debug_print_threshold)
8835 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8838 item.per_cu->queued = 0;
8839 dwarf2_per_objfile->queue.pop ();
8842 if (dwarf_read_debug)
8844 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8845 objfile_name (dwarf2_per_objfile->objfile));
8849 /* Read in full symbols for PST, and anything it depends on. */
8852 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8854 struct dwarf2_per_cu_data *per_cu;
8859 read_dependencies (objfile);
8861 per_cu = per_cu_data;
8865 /* It's an include file, no symbols to read for it.
8866 Everything is in the parent symtab. */
8871 dw2_do_instantiate_symtab (per_cu, false);
8874 /* Trivial hash function for die_info: the hash value of a DIE
8875 is its offset in .debug_info for this objfile. */
8878 die_hash (const void *item)
8880 const struct die_info *die = (const struct die_info *) item;
8882 return to_underlying (die->sect_off);
8885 /* Trivial comparison function for die_info structures: two DIEs
8886 are equal if they have the same offset. */
8889 die_eq (const void *item_lhs, const void *item_rhs)
8891 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8892 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8894 return die_lhs->sect_off == die_rhs->sect_off;
8897 /* Load the DIEs associated with PER_CU into memory. */
8900 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8902 enum language pretend_language)
8904 gdb_assert (! this_cu->is_debug_types);
8906 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8910 struct dwarf2_cu *cu = reader.cu;
8911 const gdb_byte *info_ptr = reader.info_ptr;
8913 gdb_assert (cu->die_hash == NULL);
8915 htab_create_alloc_ex (cu->header.length / 12,
8919 &cu->comp_unit_obstack,
8920 hashtab_obstack_allocate,
8921 dummy_obstack_deallocate);
8923 if (reader.comp_unit_die->has_children)
8924 reader.comp_unit_die->child
8925 = read_die_and_siblings (&reader, reader.info_ptr,
8926 &info_ptr, reader.comp_unit_die);
8927 cu->dies = reader.comp_unit_die;
8928 /* comp_unit_die is not stored in die_hash, no need. */
8930 /* We try not to read any attributes in this function, because not
8931 all CUs needed for references have been loaded yet, and symbol
8932 table processing isn't initialized. But we have to set the CU language,
8933 or we won't be able to build types correctly.
8934 Similarly, if we do not read the producer, we can not apply
8935 producer-specific interpretation. */
8936 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8941 /* Add a DIE to the delayed physname list. */
8944 add_to_method_list (struct type *type, int fnfield_index, int index,
8945 const char *name, struct die_info *die,
8946 struct dwarf2_cu *cu)
8948 struct delayed_method_info mi;
8950 mi.fnfield_index = fnfield_index;
8954 cu->method_list.push_back (mi);
8957 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8958 "const" / "volatile". If so, decrements LEN by the length of the
8959 modifier and return true. Otherwise return false. */
8963 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8965 size_t mod_len = sizeof (mod) - 1;
8966 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8974 /* Compute the physnames of any methods on the CU's method list.
8976 The computation of method physnames is delayed in order to avoid the
8977 (bad) condition that one of the method's formal parameters is of an as yet
8981 compute_delayed_physnames (struct dwarf2_cu *cu)
8983 /* Only C++ delays computing physnames. */
8984 if (cu->method_list.empty ())
8986 gdb_assert (cu->language == language_cplus);
8988 for (const delayed_method_info &mi : cu->method_list)
8990 const char *physname;
8991 struct fn_fieldlist *fn_flp
8992 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
8993 physname = dwarf2_physname (mi.name, mi.die, cu);
8994 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
8995 = physname ? physname : "";
8997 /* Since there's no tag to indicate whether a method is a
8998 const/volatile overload, extract that information out of the
9000 if (physname != NULL)
9002 size_t len = strlen (physname);
9006 if (physname[len] == ')') /* shortcut */
9008 else if (check_modifier (physname, len, " const"))
9009 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9010 else if (check_modifier (physname, len, " volatile"))
9011 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9018 /* The list is no longer needed. */
9019 cu->method_list.clear ();
9022 /* Go objects should be embedded in a DW_TAG_module DIE,
9023 and it's not clear if/how imported objects will appear.
9024 To keep Go support simple until that's worked out,
9025 go back through what we've read and create something usable.
9026 We could do this while processing each DIE, and feels kinda cleaner,
9027 but that way is more invasive.
9028 This is to, for example, allow the user to type "p var" or "b main"
9029 without having to specify the package name, and allow lookups
9030 of module.object to work in contexts that use the expression
9034 fixup_go_packaging (struct dwarf2_cu *cu)
9036 gdb::unique_xmalloc_ptr<char> package_name;
9037 struct pending *list;
9040 for (list = *cu->get_builder ()->get_global_symbols ();
9044 for (i = 0; i < list->nsyms; ++i)
9046 struct symbol *sym = list->symbol[i];
9048 if (sym->language () == language_go
9049 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9051 gdb::unique_xmalloc_ptr<char> this_package_name
9052 (go_symbol_package_name (sym));
9054 if (this_package_name == NULL)
9056 if (package_name == NULL)
9057 package_name = std::move (this_package_name);
9060 struct objfile *objfile
9061 = cu->per_cu->dwarf2_per_objfile->objfile;
9062 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9063 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9064 (symbol_symtab (sym) != NULL
9065 ? symtab_to_filename_for_display
9066 (symbol_symtab (sym))
9067 : objfile_name (objfile)),
9068 this_package_name.get (), package_name.get ());
9074 if (package_name != NULL)
9076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9077 const char *saved_package_name
9078 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9079 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9080 saved_package_name);
9083 sym = allocate_symbol (objfile);
9084 sym->set_language (language_go, &objfile->objfile_obstack);
9085 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9086 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9087 e.g., "main" finds the "main" module and not C's main(). */
9088 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9089 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9090 SYMBOL_TYPE (sym) = type;
9092 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9096 /* Allocate a fully-qualified name consisting of the two parts on the
9100 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9102 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9105 /* A helper that allocates a struct discriminant_info to attach to a
9108 static struct discriminant_info *
9109 alloc_discriminant_info (struct type *type, int discriminant_index,
9112 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9113 gdb_assert (discriminant_index == -1
9114 || (discriminant_index >= 0
9115 && discriminant_index < TYPE_NFIELDS (type)));
9116 gdb_assert (default_index == -1
9117 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9119 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9121 struct discriminant_info *disc
9122 = ((struct discriminant_info *)
9124 offsetof (struct discriminant_info, discriminants)
9125 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9126 disc->default_index = default_index;
9127 disc->discriminant_index = discriminant_index;
9129 struct dynamic_prop prop;
9130 prop.kind = PROP_UNDEFINED;
9131 prop.data.baton = disc;
9133 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9138 /* Some versions of rustc emitted enums in an unusual way.
9140 Ordinary enums were emitted as unions. The first element of each
9141 structure in the union was named "RUST$ENUM$DISR". This element
9142 held the discriminant.
9144 These versions of Rust also implemented the "non-zero"
9145 optimization. When the enum had two values, and one is empty and
9146 the other holds a pointer that cannot be zero, the pointer is used
9147 as the discriminant, with a zero value meaning the empty variant.
9148 Here, the union's first member is of the form
9149 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9150 where the fieldnos are the indices of the fields that should be
9151 traversed in order to find the field (which may be several fields deep)
9152 and the variantname is the name of the variant of the case when the
9155 This function recognizes whether TYPE is of one of these forms,
9156 and, if so, smashes it to be a variant type. */
9159 quirk_rust_enum (struct type *type, struct objfile *objfile)
9161 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9163 /* We don't need to deal with empty enums. */
9164 if (TYPE_NFIELDS (type) == 0)
9167 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9168 if (TYPE_NFIELDS (type) == 1
9169 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9171 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9173 /* Decode the field name to find the offset of the
9175 ULONGEST bit_offset = 0;
9176 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9177 while (name[0] >= '0' && name[0] <= '9')
9180 unsigned long index = strtoul (name, &tail, 10);
9183 || index >= TYPE_NFIELDS (field_type)
9184 || (TYPE_FIELD_LOC_KIND (field_type, index)
9185 != FIELD_LOC_KIND_BITPOS))
9187 complaint (_("Could not parse Rust enum encoding string \"%s\""
9189 TYPE_FIELD_NAME (type, 0),
9190 objfile_name (objfile));
9195 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9196 field_type = TYPE_FIELD_TYPE (field_type, index);
9199 /* Make a union to hold the variants. */
9200 struct type *union_type = alloc_type (objfile);
9201 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9202 TYPE_NFIELDS (union_type) = 3;
9203 TYPE_FIELDS (union_type)
9204 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9205 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9206 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9208 /* Put the discriminant must at index 0. */
9209 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9210 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9211 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9212 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9214 /* The order of fields doesn't really matter, so put the real
9215 field at index 1 and the data-less field at index 2. */
9216 struct discriminant_info *disc
9217 = alloc_discriminant_info (union_type, 0, 1);
9218 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9219 TYPE_FIELD_NAME (union_type, 1)
9220 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9221 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9222 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9223 TYPE_FIELD_NAME (union_type, 1));
9225 const char *dataless_name
9226 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9228 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9230 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9231 /* NAME points into the original discriminant name, which
9232 already has the correct lifetime. */
9233 TYPE_FIELD_NAME (union_type, 2) = name;
9234 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9235 disc->discriminants[2] = 0;
9237 /* Smash this type to be a structure type. We have to do this
9238 because the type has already been recorded. */
9239 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9240 TYPE_NFIELDS (type) = 1;
9242 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9244 /* Install the variant part. */
9245 TYPE_FIELD_TYPE (type, 0) = union_type;
9246 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9247 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9249 /* A union with a single anonymous field is probably an old-style
9251 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9253 /* Smash this type to be a structure type. We have to do this
9254 because the type has already been recorded. */
9255 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9257 /* Make a union to hold the variants. */
9258 struct type *union_type = alloc_type (objfile);
9259 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9260 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9261 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9262 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9263 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9265 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9266 const char *variant_name
9267 = rust_last_path_segment (TYPE_NAME (field_type));
9268 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9269 TYPE_NAME (field_type)
9270 = rust_fully_qualify (&objfile->objfile_obstack,
9271 TYPE_NAME (type), variant_name);
9273 /* Install the union in the outer struct type. */
9274 TYPE_NFIELDS (type) = 1;
9276 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9277 TYPE_FIELD_TYPE (type, 0) = union_type;
9278 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9279 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9281 alloc_discriminant_info (union_type, -1, 0);
9285 struct type *disr_type = nullptr;
9286 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9288 disr_type = TYPE_FIELD_TYPE (type, i);
9290 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9292 /* All fields of a true enum will be structs. */
9295 else if (TYPE_NFIELDS (disr_type) == 0)
9297 /* Could be data-less variant, so keep going. */
9298 disr_type = nullptr;
9300 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9301 "RUST$ENUM$DISR") != 0)
9303 /* Not a Rust enum. */
9313 /* If we got here without a discriminant, then it's probably
9315 if (disr_type == nullptr)
9318 /* Smash this type to be a structure type. We have to do this
9319 because the type has already been recorded. */
9320 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9322 /* Make a union to hold the variants. */
9323 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9324 struct type *union_type = alloc_type (objfile);
9325 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9326 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9327 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9328 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9329 TYPE_FIELDS (union_type)
9330 = (struct field *) TYPE_ZALLOC (union_type,
9331 (TYPE_NFIELDS (union_type)
9332 * sizeof (struct field)));
9334 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9335 TYPE_NFIELDS (type) * sizeof (struct field));
9337 /* Install the discriminant at index 0 in the union. */
9338 TYPE_FIELD (union_type, 0) = *disr_field;
9339 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9340 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9342 /* Install the union in the outer struct type. */
9343 TYPE_FIELD_TYPE (type, 0) = union_type;
9344 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9345 TYPE_NFIELDS (type) = 1;
9347 /* Set the size and offset of the union type. */
9348 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9350 /* We need a way to find the correct discriminant given a
9351 variant name. For convenience we build a map here. */
9352 struct type *enum_type = FIELD_TYPE (*disr_field);
9353 std::unordered_map<std::string, ULONGEST> discriminant_map;
9354 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9356 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9359 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9360 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9364 int n_fields = TYPE_NFIELDS (union_type);
9365 struct discriminant_info *disc
9366 = alloc_discriminant_info (union_type, 0, -1);
9367 /* Skip the discriminant here. */
9368 for (int i = 1; i < n_fields; ++i)
9370 /* Find the final word in the name of this variant's type.
9371 That name can be used to look up the correct
9373 const char *variant_name
9374 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9377 auto iter = discriminant_map.find (variant_name);
9378 if (iter != discriminant_map.end ())
9379 disc->discriminants[i] = iter->second;
9381 /* Remove the discriminant field, if it exists. */
9382 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9383 if (TYPE_NFIELDS (sub_type) > 0)
9385 --TYPE_NFIELDS (sub_type);
9386 ++TYPE_FIELDS (sub_type);
9388 TYPE_FIELD_NAME (union_type, i) = variant_name;
9389 TYPE_NAME (sub_type)
9390 = rust_fully_qualify (&objfile->objfile_obstack,
9391 TYPE_NAME (type), variant_name);
9396 /* Rewrite some Rust unions to be structures with variants parts. */
9399 rust_union_quirks (struct dwarf2_cu *cu)
9401 gdb_assert (cu->language == language_rust);
9402 for (type *type_ : cu->rust_unions)
9403 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9404 /* We don't need this any more. */
9405 cu->rust_unions.clear ();
9408 /* Return the symtab for PER_CU. This works properly regardless of
9409 whether we're using the index or psymtabs. */
9411 static struct compunit_symtab *
9412 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9414 return (per_cu->dwarf2_per_objfile->using_index
9415 ? per_cu->v.quick->compunit_symtab
9416 : per_cu->v.psymtab->compunit_symtab);
9419 /* A helper function for computing the list of all symbol tables
9420 included by PER_CU. */
9423 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9424 htab_t all_children, htab_t all_type_symtabs,
9425 struct dwarf2_per_cu_data *per_cu,
9426 struct compunit_symtab *immediate_parent)
9429 struct compunit_symtab *cust;
9431 slot = htab_find_slot (all_children, per_cu, INSERT);
9434 /* This inclusion and its children have been processed. */
9439 /* Only add a CU if it has a symbol table. */
9440 cust = get_compunit_symtab (per_cu);
9443 /* If this is a type unit only add its symbol table if we haven't
9444 seen it yet (type unit per_cu's can share symtabs). */
9445 if (per_cu->is_debug_types)
9447 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9451 result->push_back (cust);
9452 if (cust->user == NULL)
9453 cust->user = immediate_parent;
9458 result->push_back (cust);
9459 if (cust->user == NULL)
9460 cust->user = immediate_parent;
9464 if (!per_cu->imported_symtabs_empty ())
9465 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9467 recursively_compute_inclusions (result, all_children,
9468 all_type_symtabs, ptr, cust);
9472 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9476 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9478 gdb_assert (! per_cu->is_debug_types);
9480 if (!per_cu->imported_symtabs_empty ())
9483 std::vector<compunit_symtab *> result_symtabs;
9484 htab_t all_children, all_type_symtabs;
9485 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9487 /* If we don't have a symtab, we can just skip this case. */
9491 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9492 NULL, xcalloc, xfree);
9493 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9494 NULL, xcalloc, xfree);
9496 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9498 recursively_compute_inclusions (&result_symtabs, all_children,
9499 all_type_symtabs, ptr, cust);
9502 /* Now we have a transitive closure of all the included symtabs. */
9503 len = result_symtabs.size ();
9505 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9506 struct compunit_symtab *, len + 1);
9507 memcpy (cust->includes, result_symtabs.data (),
9508 len * sizeof (compunit_symtab *));
9509 cust->includes[len] = NULL;
9511 htab_delete (all_children);
9512 htab_delete (all_type_symtabs);
9516 /* Compute the 'includes' field for the symtabs of all the CUs we just
9520 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9522 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9524 if (! iter->is_debug_types)
9525 compute_compunit_symtab_includes (iter);
9528 dwarf2_per_objfile->just_read_cus.clear ();
9531 /* Generate full symbol information for PER_CU, whose DIEs have
9532 already been loaded into memory. */
9535 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9536 enum language pretend_language)
9538 struct dwarf2_cu *cu = per_cu->cu;
9539 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9540 struct objfile *objfile = dwarf2_per_objfile->objfile;
9541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9542 CORE_ADDR lowpc, highpc;
9543 struct compunit_symtab *cust;
9545 struct block *static_block;
9548 baseaddr = objfile->text_section_offset ();
9550 /* Clear the list here in case something was left over. */
9551 cu->method_list.clear ();
9553 cu->language = pretend_language;
9554 cu->language_defn = language_def (cu->language);
9556 /* Do line number decoding in read_file_scope () */
9557 process_die (cu->dies, cu);
9559 /* For now fudge the Go package. */
9560 if (cu->language == language_go)
9561 fixup_go_packaging (cu);
9563 /* Now that we have processed all the DIEs in the CU, all the types
9564 should be complete, and it should now be safe to compute all of the
9566 compute_delayed_physnames (cu);
9568 if (cu->language == language_rust)
9569 rust_union_quirks (cu);
9571 /* Some compilers don't define a DW_AT_high_pc attribute for the
9572 compilation unit. If the DW_AT_high_pc is missing, synthesize
9573 it, by scanning the DIE's below the compilation unit. */
9574 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9576 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9577 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9579 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9580 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9581 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9582 addrmap to help ensure it has an accurate map of pc values belonging to
9584 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9586 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9587 SECT_OFF_TEXT (objfile),
9592 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9594 /* Set symtab language to language from DW_AT_language. If the
9595 compilation is from a C file generated by language preprocessors, do
9596 not set the language if it was already deduced by start_subfile. */
9597 if (!(cu->language == language_c
9598 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9599 COMPUNIT_FILETABS (cust)->language = cu->language;
9601 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9602 produce DW_AT_location with location lists but it can be possibly
9603 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9604 there were bugs in prologue debug info, fixed later in GCC-4.5
9605 by "unwind info for epilogues" patch (which is not directly related).
9607 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9608 needed, it would be wrong due to missing DW_AT_producer there.
9610 Still one can confuse GDB by using non-standard GCC compilation
9611 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9613 if (cu->has_loclist && gcc_4_minor >= 5)
9614 cust->locations_valid = 1;
9616 if (gcc_4_minor >= 5)
9617 cust->epilogue_unwind_valid = 1;
9619 cust->call_site_htab = cu->call_site_htab;
9622 if (dwarf2_per_objfile->using_index)
9623 per_cu->v.quick->compunit_symtab = cust;
9626 dwarf2_psymtab *pst = per_cu->v.psymtab;
9627 pst->compunit_symtab = cust;
9631 /* Push it for inclusion processing later. */
9632 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9634 /* Not needed any more. */
9635 cu->reset_builder ();
9638 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9639 already been loaded into memory. */
9642 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9643 enum language pretend_language)
9645 struct dwarf2_cu *cu = per_cu->cu;
9646 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9647 struct objfile *objfile = dwarf2_per_objfile->objfile;
9648 struct compunit_symtab *cust;
9649 struct signatured_type *sig_type;
9651 gdb_assert (per_cu->is_debug_types);
9652 sig_type = (struct signatured_type *) per_cu;
9654 /* Clear the list here in case something was left over. */
9655 cu->method_list.clear ();
9657 cu->language = pretend_language;
9658 cu->language_defn = language_def (cu->language);
9660 /* The symbol tables are set up in read_type_unit_scope. */
9661 process_die (cu->dies, cu);
9663 /* For now fudge the Go package. */
9664 if (cu->language == language_go)
9665 fixup_go_packaging (cu);
9667 /* Now that we have processed all the DIEs in the CU, all the types
9668 should be complete, and it should now be safe to compute all of the
9670 compute_delayed_physnames (cu);
9672 if (cu->language == language_rust)
9673 rust_union_quirks (cu);
9675 /* TUs share symbol tables.
9676 If this is the first TU to use this symtab, complete the construction
9677 of it with end_expandable_symtab. Otherwise, complete the addition of
9678 this TU's symbols to the existing symtab. */
9679 if (sig_type->type_unit_group->compunit_symtab == NULL)
9681 buildsym_compunit *builder = cu->get_builder ();
9682 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9683 sig_type->type_unit_group->compunit_symtab = cust;
9687 /* Set symtab language to language from DW_AT_language. If the
9688 compilation is from a C file generated by language preprocessors,
9689 do not set the language if it was already deduced by
9691 if (!(cu->language == language_c
9692 && COMPUNIT_FILETABS (cust)->language != language_c))
9693 COMPUNIT_FILETABS (cust)->language = cu->language;
9698 cu->get_builder ()->augment_type_symtab ();
9699 cust = sig_type->type_unit_group->compunit_symtab;
9702 if (dwarf2_per_objfile->using_index)
9703 per_cu->v.quick->compunit_symtab = cust;
9706 dwarf2_psymtab *pst = per_cu->v.psymtab;
9707 pst->compunit_symtab = cust;
9711 /* Not needed any more. */
9712 cu->reset_builder ();
9715 /* Process an imported unit DIE. */
9718 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9720 struct attribute *attr;
9722 /* For now we don't handle imported units in type units. */
9723 if (cu->per_cu->is_debug_types)
9725 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9726 " supported in type units [in module %s]"),
9727 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9730 attr = dwarf2_attr (die, DW_AT_import, cu);
9733 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9734 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9735 dwarf2_per_cu_data *per_cu
9736 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9737 cu->per_cu->dwarf2_per_objfile);
9739 /* If necessary, add it to the queue and load its DIEs. */
9740 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9741 load_full_comp_unit (per_cu, false, cu->language);
9743 cu->per_cu->imported_symtabs_push (per_cu);
9747 /* RAII object that represents a process_die scope: i.e.,
9748 starts/finishes processing a DIE. */
9749 class process_die_scope
9752 process_die_scope (die_info *die, dwarf2_cu *cu)
9753 : m_die (die), m_cu (cu)
9755 /* We should only be processing DIEs not already in process. */
9756 gdb_assert (!m_die->in_process);
9757 m_die->in_process = true;
9760 ~process_die_scope ()
9762 m_die->in_process = false;
9764 /* If we're done processing the DIE for the CU that owns the line
9765 header, we don't need the line header anymore. */
9766 if (m_cu->line_header_die_owner == m_die)
9768 delete m_cu->line_header;
9769 m_cu->line_header = NULL;
9770 m_cu->line_header_die_owner = NULL;
9779 /* Process a die and its children. */
9782 process_die (struct die_info *die, struct dwarf2_cu *cu)
9784 process_die_scope scope (die, cu);
9788 case DW_TAG_padding:
9790 case DW_TAG_compile_unit:
9791 case DW_TAG_partial_unit:
9792 read_file_scope (die, cu);
9794 case DW_TAG_type_unit:
9795 read_type_unit_scope (die, cu);
9797 case DW_TAG_subprogram:
9798 /* Nested subprograms in Fortran get a prefix. */
9799 if (cu->language == language_fortran
9800 && die->parent != NULL
9801 && die->parent->tag == DW_TAG_subprogram)
9802 cu->processing_has_namespace_info = true;
9804 case DW_TAG_inlined_subroutine:
9805 read_func_scope (die, cu);
9807 case DW_TAG_lexical_block:
9808 case DW_TAG_try_block:
9809 case DW_TAG_catch_block:
9810 read_lexical_block_scope (die, cu);
9812 case DW_TAG_call_site:
9813 case DW_TAG_GNU_call_site:
9814 read_call_site_scope (die, cu);
9816 case DW_TAG_class_type:
9817 case DW_TAG_interface_type:
9818 case DW_TAG_structure_type:
9819 case DW_TAG_union_type:
9820 process_structure_scope (die, cu);
9822 case DW_TAG_enumeration_type:
9823 process_enumeration_scope (die, cu);
9826 /* These dies have a type, but processing them does not create
9827 a symbol or recurse to process the children. Therefore we can
9828 read them on-demand through read_type_die. */
9829 case DW_TAG_subroutine_type:
9830 case DW_TAG_set_type:
9831 case DW_TAG_array_type:
9832 case DW_TAG_pointer_type:
9833 case DW_TAG_ptr_to_member_type:
9834 case DW_TAG_reference_type:
9835 case DW_TAG_rvalue_reference_type:
9836 case DW_TAG_string_type:
9839 case DW_TAG_base_type:
9840 case DW_TAG_subrange_type:
9841 case DW_TAG_typedef:
9842 /* Add a typedef symbol for the type definition, if it has a
9844 new_symbol (die, read_type_die (die, cu), cu);
9846 case DW_TAG_common_block:
9847 read_common_block (die, cu);
9849 case DW_TAG_common_inclusion:
9851 case DW_TAG_namespace:
9852 cu->processing_has_namespace_info = true;
9853 read_namespace (die, cu);
9856 cu->processing_has_namespace_info = true;
9857 read_module (die, cu);
9859 case DW_TAG_imported_declaration:
9860 cu->processing_has_namespace_info = true;
9861 if (read_namespace_alias (die, cu))
9863 /* The declaration is not a global namespace alias. */
9865 case DW_TAG_imported_module:
9866 cu->processing_has_namespace_info = true;
9867 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9868 || cu->language != language_fortran))
9869 complaint (_("Tag '%s' has unexpected children"),
9870 dwarf_tag_name (die->tag));
9871 read_import_statement (die, cu);
9874 case DW_TAG_imported_unit:
9875 process_imported_unit_die (die, cu);
9878 case DW_TAG_variable:
9879 read_variable (die, cu);
9883 new_symbol (die, NULL, cu);
9888 /* DWARF name computation. */
9890 /* A helper function for dwarf2_compute_name which determines whether DIE
9891 needs to have the name of the scope prepended to the name listed in the
9895 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9897 struct attribute *attr;
9901 case DW_TAG_namespace:
9902 case DW_TAG_typedef:
9903 case DW_TAG_class_type:
9904 case DW_TAG_interface_type:
9905 case DW_TAG_structure_type:
9906 case DW_TAG_union_type:
9907 case DW_TAG_enumeration_type:
9908 case DW_TAG_enumerator:
9909 case DW_TAG_subprogram:
9910 case DW_TAG_inlined_subroutine:
9912 case DW_TAG_imported_declaration:
9915 case DW_TAG_variable:
9916 case DW_TAG_constant:
9917 /* We only need to prefix "globally" visible variables. These include
9918 any variable marked with DW_AT_external or any variable that
9919 lives in a namespace. [Variables in anonymous namespaces
9920 require prefixing, but they are not DW_AT_external.] */
9922 if (dwarf2_attr (die, DW_AT_specification, cu))
9924 struct dwarf2_cu *spec_cu = cu;
9926 return die_needs_namespace (die_specification (die, &spec_cu),
9930 attr = dwarf2_attr (die, DW_AT_external, cu);
9931 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9932 && die->parent->tag != DW_TAG_module)
9934 /* A variable in a lexical block of some kind does not need a
9935 namespace, even though in C++ such variables may be external
9936 and have a mangled name. */
9937 if (die->parent->tag == DW_TAG_lexical_block
9938 || die->parent->tag == DW_TAG_try_block
9939 || die->parent->tag == DW_TAG_catch_block
9940 || die->parent->tag == DW_TAG_subprogram)
9949 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9950 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9951 defined for the given DIE. */
9953 static struct attribute *
9954 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9956 struct attribute *attr;
9958 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9960 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9965 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9966 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9967 defined for the given DIE. */
9970 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9972 const char *linkage_name;
9974 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9975 if (linkage_name == NULL)
9976 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9978 return linkage_name;
9981 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9982 compute the physname for the object, which include a method's:
9983 - formal parameters (C++),
9984 - receiver type (Go),
9986 The term "physname" is a bit confusing.
9987 For C++, for example, it is the demangled name.
9988 For Go, for example, it's the mangled name.
9990 For Ada, return the DIE's linkage name rather than the fully qualified
9991 name. PHYSNAME is ignored..
9993 The result is allocated on the objfile_obstack and canonicalized. */
9996 dwarf2_compute_name (const char *name,
9997 struct die_info *die, struct dwarf2_cu *cu,
10000 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10003 name = dwarf2_name (die, cu);
10005 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10006 but otherwise compute it by typename_concat inside GDB.
10007 FIXME: Actually this is not really true, or at least not always true.
10008 It's all very confusing. compute_and_set_names doesn't try to demangle
10009 Fortran names because there is no mangling standard. So new_symbol
10010 will set the demangled name to the result of dwarf2_full_name, and it is
10011 the demangled name that GDB uses if it exists. */
10012 if (cu->language == language_ada
10013 || (cu->language == language_fortran && physname))
10015 /* For Ada unit, we prefer the linkage name over the name, as
10016 the former contains the exported name, which the user expects
10017 to be able to reference. Ideally, we want the user to be able
10018 to reference this entity using either natural or linkage name,
10019 but we haven't started looking at this enhancement yet. */
10020 const char *linkage_name = dw2_linkage_name (die, cu);
10022 if (linkage_name != NULL)
10023 return linkage_name;
10026 /* These are the only languages we know how to qualify names in. */
10028 && (cu->language == language_cplus
10029 || cu->language == language_fortran || cu->language == language_d
10030 || cu->language == language_rust))
10032 if (die_needs_namespace (die, cu))
10034 const char *prefix;
10035 const char *canonical_name = NULL;
10039 prefix = determine_prefix (die, cu);
10040 if (*prefix != '\0')
10042 gdb::unique_xmalloc_ptr<char> prefixed_name
10043 (typename_concat (NULL, prefix, name, physname, cu));
10045 buf.puts (prefixed_name.get ());
10050 /* Template parameters may be specified in the DIE's DW_AT_name, or
10051 as children with DW_TAG_template_type_param or
10052 DW_TAG_value_type_param. If the latter, add them to the name
10053 here. If the name already has template parameters, then
10054 skip this step; some versions of GCC emit both, and
10055 it is more efficient to use the pre-computed name.
10057 Something to keep in mind about this process: it is very
10058 unlikely, or in some cases downright impossible, to produce
10059 something that will match the mangled name of a function.
10060 If the definition of the function has the same debug info,
10061 we should be able to match up with it anyway. But fallbacks
10062 using the minimal symbol, for instance to find a method
10063 implemented in a stripped copy of libstdc++, will not work.
10064 If we do not have debug info for the definition, we will have to
10065 match them up some other way.
10067 When we do name matching there is a related problem with function
10068 templates; two instantiated function templates are allowed to
10069 differ only by their return types, which we do not add here. */
10071 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10073 struct attribute *attr;
10074 struct die_info *child;
10077 die->building_fullname = 1;
10079 for (child = die->child; child != NULL; child = child->sibling)
10083 const gdb_byte *bytes;
10084 struct dwarf2_locexpr_baton *baton;
10087 if (child->tag != DW_TAG_template_type_param
10088 && child->tag != DW_TAG_template_value_param)
10099 attr = dwarf2_attr (child, DW_AT_type, cu);
10102 complaint (_("template parameter missing DW_AT_type"));
10103 buf.puts ("UNKNOWN_TYPE");
10106 type = die_type (child, cu);
10108 if (child->tag == DW_TAG_template_type_param)
10110 c_print_type (type, "", &buf, -1, 0, cu->language,
10111 &type_print_raw_options);
10115 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10118 complaint (_("template parameter missing "
10119 "DW_AT_const_value"));
10120 buf.puts ("UNKNOWN_VALUE");
10124 dwarf2_const_value_attr (attr, type, name,
10125 &cu->comp_unit_obstack, cu,
10126 &value, &bytes, &baton);
10128 if (TYPE_NOSIGN (type))
10129 /* GDB prints characters as NUMBER 'CHAR'. If that's
10130 changed, this can use value_print instead. */
10131 c_printchar (value, type, &buf);
10134 struct value_print_options opts;
10137 v = dwarf2_evaluate_loc_desc (type, NULL,
10141 else if (bytes != NULL)
10143 v = allocate_value (type);
10144 memcpy (value_contents_writeable (v), bytes,
10145 TYPE_LENGTH (type));
10148 v = value_from_longest (type, value);
10150 /* Specify decimal so that we do not depend on
10152 get_formatted_print_options (&opts, 'd');
10154 value_print (v, &buf, &opts);
10159 die->building_fullname = 0;
10163 /* Close the argument list, with a space if necessary
10164 (nested templates). */
10165 if (!buf.empty () && buf.string ().back () == '>')
10172 /* For C++ methods, append formal parameter type
10173 information, if PHYSNAME. */
10175 if (physname && die->tag == DW_TAG_subprogram
10176 && cu->language == language_cplus)
10178 struct type *type = read_type_die (die, cu);
10180 c_type_print_args (type, &buf, 1, cu->language,
10181 &type_print_raw_options);
10183 if (cu->language == language_cplus)
10185 /* Assume that an artificial first parameter is
10186 "this", but do not crash if it is not. RealView
10187 marks unnamed (and thus unused) parameters as
10188 artificial; there is no way to differentiate
10190 if (TYPE_NFIELDS (type) > 0
10191 && TYPE_FIELD_ARTIFICIAL (type, 0)
10192 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10193 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10195 buf.puts (" const");
10199 const std::string &intermediate_name = buf.string ();
10201 if (cu->language == language_cplus)
10203 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10204 &objfile->per_bfd->storage_obstack);
10206 /* If we only computed INTERMEDIATE_NAME, or if
10207 INTERMEDIATE_NAME is already canonical, then we need to
10208 copy it to the appropriate obstack. */
10209 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10210 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10211 intermediate_name);
10213 name = canonical_name;
10220 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10221 If scope qualifiers are appropriate they will be added. The result
10222 will be allocated on the storage_obstack, or NULL if the DIE does
10223 not have a name. NAME may either be from a previous call to
10224 dwarf2_name or NULL.
10226 The output string will be canonicalized (if C++). */
10228 static const char *
10229 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10231 return dwarf2_compute_name (name, die, cu, 0);
10234 /* Construct a physname for the given DIE in CU. NAME may either be
10235 from a previous call to dwarf2_name or NULL. The result will be
10236 allocated on the objfile_objstack or NULL if the DIE does not have a
10239 The output string will be canonicalized (if C++). */
10241 static const char *
10242 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10244 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10245 const char *retval, *mangled = NULL, *canon = NULL;
10248 /* In this case dwarf2_compute_name is just a shortcut not building anything
10250 if (!die_needs_namespace (die, cu))
10251 return dwarf2_compute_name (name, die, cu, 1);
10253 mangled = dw2_linkage_name (die, cu);
10255 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10256 See https://github.com/rust-lang/rust/issues/32925. */
10257 if (cu->language == language_rust && mangled != NULL
10258 && strchr (mangled, '{') != NULL)
10261 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10263 gdb::unique_xmalloc_ptr<char> demangled;
10264 if (mangled != NULL)
10267 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10269 /* Do nothing (do not demangle the symbol name). */
10271 else if (cu->language == language_go)
10273 /* This is a lie, but we already lie to the caller new_symbol.
10274 new_symbol assumes we return the mangled name.
10275 This just undoes that lie until things are cleaned up. */
10279 /* Use DMGL_RET_DROP for C++ template functions to suppress
10280 their return type. It is easier for GDB users to search
10281 for such functions as `name(params)' than `long name(params)'.
10282 In such case the minimal symbol names do not match the full
10283 symbol names but for template functions there is never a need
10284 to look up their definition from their declaration so
10285 the only disadvantage remains the minimal symbol variant
10286 `long name(params)' does not have the proper inferior type. */
10287 demangled.reset (gdb_demangle (mangled,
10288 (DMGL_PARAMS | DMGL_ANSI
10289 | DMGL_RET_DROP)));
10292 canon = demangled.get ();
10300 if (canon == NULL || check_physname)
10302 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10304 if (canon != NULL && strcmp (physname, canon) != 0)
10306 /* It may not mean a bug in GDB. The compiler could also
10307 compute DW_AT_linkage_name incorrectly. But in such case
10308 GDB would need to be bug-to-bug compatible. */
10310 complaint (_("Computed physname <%s> does not match demangled <%s> "
10311 "(from linkage <%s>) - DIE at %s [in module %s]"),
10312 physname, canon, mangled, sect_offset_str (die->sect_off),
10313 objfile_name (objfile));
10315 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10316 is available here - over computed PHYSNAME. It is safer
10317 against both buggy GDB and buggy compilers. */
10331 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10336 /* Inspect DIE in CU for a namespace alias. If one exists, record
10337 a new symbol for it.
10339 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10342 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10344 struct attribute *attr;
10346 /* If the die does not have a name, this is not a namespace
10348 attr = dwarf2_attr (die, DW_AT_name, cu);
10352 struct die_info *d = die;
10353 struct dwarf2_cu *imported_cu = cu;
10355 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10356 keep inspecting DIEs until we hit the underlying import. */
10357 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10358 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10360 attr = dwarf2_attr (d, DW_AT_import, cu);
10364 d = follow_die_ref (d, attr, &imported_cu);
10365 if (d->tag != DW_TAG_imported_declaration)
10369 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10371 complaint (_("DIE at %s has too many recursively imported "
10372 "declarations"), sect_offset_str (d->sect_off));
10379 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10381 type = get_die_type_at_offset (sect_off, cu->per_cu);
10382 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10384 /* This declaration is a global namespace alias. Add
10385 a symbol for it whose type is the aliased namespace. */
10386 new_symbol (die, type, cu);
10395 /* Return the using directives repository (global or local?) to use in the
10396 current context for CU.
10398 For Ada, imported declarations can materialize renamings, which *may* be
10399 global. However it is impossible (for now?) in DWARF to distinguish
10400 "external" imported declarations and "static" ones. As all imported
10401 declarations seem to be static in all other languages, make them all CU-wide
10402 global only in Ada. */
10404 static struct using_direct **
10405 using_directives (struct dwarf2_cu *cu)
10407 if (cu->language == language_ada
10408 && cu->get_builder ()->outermost_context_p ())
10409 return cu->get_builder ()->get_global_using_directives ();
10411 return cu->get_builder ()->get_local_using_directives ();
10414 /* Read the import statement specified by the given die and record it. */
10417 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10419 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10420 struct attribute *import_attr;
10421 struct die_info *imported_die, *child_die;
10422 struct dwarf2_cu *imported_cu;
10423 const char *imported_name;
10424 const char *imported_name_prefix;
10425 const char *canonical_name;
10426 const char *import_alias;
10427 const char *imported_declaration = NULL;
10428 const char *import_prefix;
10429 std::vector<const char *> excludes;
10431 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10432 if (import_attr == NULL)
10434 complaint (_("Tag '%s' has no DW_AT_import"),
10435 dwarf_tag_name (die->tag));
10440 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10441 imported_name = dwarf2_name (imported_die, imported_cu);
10442 if (imported_name == NULL)
10444 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10446 The import in the following code:
10460 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10461 <52> DW_AT_decl_file : 1
10462 <53> DW_AT_decl_line : 6
10463 <54> DW_AT_import : <0x75>
10464 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10465 <59> DW_AT_name : B
10466 <5b> DW_AT_decl_file : 1
10467 <5c> DW_AT_decl_line : 2
10468 <5d> DW_AT_type : <0x6e>
10470 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10471 <76> DW_AT_byte_size : 4
10472 <77> DW_AT_encoding : 5 (signed)
10474 imports the wrong die ( 0x75 instead of 0x58 ).
10475 This case will be ignored until the gcc bug is fixed. */
10479 /* Figure out the local name after import. */
10480 import_alias = dwarf2_name (die, cu);
10482 /* Figure out where the statement is being imported to. */
10483 import_prefix = determine_prefix (die, cu);
10485 /* Figure out what the scope of the imported die is and prepend it
10486 to the name of the imported die. */
10487 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10489 if (imported_die->tag != DW_TAG_namespace
10490 && imported_die->tag != DW_TAG_module)
10492 imported_declaration = imported_name;
10493 canonical_name = imported_name_prefix;
10495 else if (strlen (imported_name_prefix) > 0)
10496 canonical_name = obconcat (&objfile->objfile_obstack,
10497 imported_name_prefix,
10498 (cu->language == language_d ? "." : "::"),
10499 imported_name, (char *) NULL);
10501 canonical_name = imported_name;
10503 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10504 for (child_die = die->child; child_die && child_die->tag;
10505 child_die = sibling_die (child_die))
10507 /* DWARF-4: A Fortran use statement with a “rename list” may be
10508 represented by an imported module entry with an import attribute
10509 referring to the module and owned entries corresponding to those
10510 entities that are renamed as part of being imported. */
10512 if (child_die->tag != DW_TAG_imported_declaration)
10514 complaint (_("child DW_TAG_imported_declaration expected "
10515 "- DIE at %s [in module %s]"),
10516 sect_offset_str (child_die->sect_off),
10517 objfile_name (objfile));
10521 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10522 if (import_attr == NULL)
10524 complaint (_("Tag '%s' has no DW_AT_import"),
10525 dwarf_tag_name (child_die->tag));
10530 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10532 imported_name = dwarf2_name (imported_die, imported_cu);
10533 if (imported_name == NULL)
10535 complaint (_("child DW_TAG_imported_declaration has unknown "
10536 "imported name - DIE at %s [in module %s]"),
10537 sect_offset_str (child_die->sect_off),
10538 objfile_name (objfile));
10542 excludes.push_back (imported_name);
10544 process_die (child_die, cu);
10547 add_using_directive (using_directives (cu),
10551 imported_declaration,
10554 &objfile->objfile_obstack);
10557 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10558 types, but gives them a size of zero. Starting with version 14,
10559 ICC is compatible with GCC. */
10562 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10564 if (!cu->checked_producer)
10565 check_producer (cu);
10567 return cu->producer_is_icc_lt_14;
10570 /* ICC generates a DW_AT_type for C void functions. This was observed on
10571 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10572 which says that void functions should not have a DW_AT_type. */
10575 producer_is_icc (struct dwarf2_cu *cu)
10577 if (!cu->checked_producer)
10578 check_producer (cu);
10580 return cu->producer_is_icc;
10583 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10584 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10585 this, it was first present in GCC release 4.3.0. */
10588 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10590 if (!cu->checked_producer)
10591 check_producer (cu);
10593 return cu->producer_is_gcc_lt_4_3;
10596 static file_and_directory
10597 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10599 file_and_directory res;
10601 /* Find the filename. Do not use dwarf2_name here, since the filename
10602 is not a source language identifier. */
10603 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10604 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10606 if (res.comp_dir == NULL
10607 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10608 && IS_ABSOLUTE_PATH (res.name))
10610 res.comp_dir_storage = ldirname (res.name);
10611 if (!res.comp_dir_storage.empty ())
10612 res.comp_dir = res.comp_dir_storage.c_str ();
10614 if (res.comp_dir != NULL)
10616 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10617 directory, get rid of it. */
10618 const char *cp = strchr (res.comp_dir, ':');
10620 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10621 res.comp_dir = cp + 1;
10624 if (res.name == NULL)
10625 res.name = "<unknown>";
10630 /* Handle DW_AT_stmt_list for a compilation unit.
10631 DIE is the DW_TAG_compile_unit die for CU.
10632 COMP_DIR is the compilation directory. LOWPC is passed to
10633 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10636 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10637 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10639 struct dwarf2_per_objfile *dwarf2_per_objfile
10640 = cu->per_cu->dwarf2_per_objfile;
10641 struct attribute *attr;
10642 struct line_header line_header_local;
10643 hashval_t line_header_local_hash;
10645 int decode_mapping;
10647 gdb_assert (! cu->per_cu->is_debug_types);
10649 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10653 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10655 /* The line header hash table is only created if needed (it exists to
10656 prevent redundant reading of the line table for partial_units).
10657 If we're given a partial_unit, we'll need it. If we're given a
10658 compile_unit, then use the line header hash table if it's already
10659 created, but don't create one just yet. */
10661 if (dwarf2_per_objfile->line_header_hash == NULL
10662 && die->tag == DW_TAG_partial_unit)
10664 dwarf2_per_objfile->line_header_hash
10665 .reset (htab_create_alloc (127, line_header_hash_voidp,
10666 line_header_eq_voidp,
10667 free_line_header_voidp,
10671 line_header_local.sect_off = line_offset;
10672 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10673 line_header_local_hash = line_header_hash (&line_header_local);
10674 if (dwarf2_per_objfile->line_header_hash != NULL)
10676 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10677 &line_header_local,
10678 line_header_local_hash, NO_INSERT);
10680 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10681 is not present in *SLOT (since if there is something in *SLOT then
10682 it will be for a partial_unit). */
10683 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10685 gdb_assert (*slot != NULL);
10686 cu->line_header = (struct line_header *) *slot;
10691 /* dwarf_decode_line_header does not yet provide sufficient information.
10692 We always have to call also dwarf_decode_lines for it. */
10693 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10697 cu->line_header = lh.release ();
10698 cu->line_header_die_owner = die;
10700 if (dwarf2_per_objfile->line_header_hash == NULL)
10704 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10705 &line_header_local,
10706 line_header_local_hash, INSERT);
10707 gdb_assert (slot != NULL);
10709 if (slot != NULL && *slot == NULL)
10711 /* This newly decoded line number information unit will be owned
10712 by line_header_hash hash table. */
10713 *slot = cu->line_header;
10714 cu->line_header_die_owner = NULL;
10718 /* We cannot free any current entry in (*slot) as that struct line_header
10719 may be already used by multiple CUs. Create only temporary decoded
10720 line_header for this CU - it may happen at most once for each line
10721 number information unit. And if we're not using line_header_hash
10722 then this is what we want as well. */
10723 gdb_assert (die->tag != DW_TAG_partial_unit);
10725 decode_mapping = (die->tag != DW_TAG_partial_unit);
10726 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10731 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10734 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10736 struct dwarf2_per_objfile *dwarf2_per_objfile
10737 = cu->per_cu->dwarf2_per_objfile;
10738 struct objfile *objfile = dwarf2_per_objfile->objfile;
10739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10740 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10741 CORE_ADDR highpc = ((CORE_ADDR) 0);
10742 struct attribute *attr;
10743 struct die_info *child_die;
10744 CORE_ADDR baseaddr;
10746 prepare_one_comp_unit (cu, die, cu->language);
10747 baseaddr = objfile->text_section_offset ();
10749 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10751 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10752 from finish_block. */
10753 if (lowpc == ((CORE_ADDR) -1))
10755 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10757 file_and_directory fnd = find_file_and_directory (die, cu);
10759 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10760 standardised yet. As a workaround for the language detection we fall
10761 back to the DW_AT_producer string. */
10762 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10763 cu->language = language_opencl;
10765 /* Similar hack for Go. */
10766 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10767 set_cu_language (DW_LANG_Go, cu);
10769 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10771 /* Decode line number information if present. We do this before
10772 processing child DIEs, so that the line header table is available
10773 for DW_AT_decl_file. */
10774 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10776 /* Process all dies in compilation unit. */
10777 if (die->child != NULL)
10779 child_die = die->child;
10780 while (child_die && child_die->tag)
10782 process_die (child_die, cu);
10783 child_die = sibling_die (child_die);
10787 /* Decode macro information, if present. Dwarf 2 macro information
10788 refers to information in the line number info statement program
10789 header, so we can only read it if we've read the header
10791 attr = dwarf2_attr (die, DW_AT_macros, cu);
10793 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10794 if (attr && cu->line_header)
10796 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10797 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10799 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10803 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10804 if (attr && cu->line_header)
10806 unsigned int macro_offset = DW_UNSND (attr);
10808 dwarf_decode_macros (cu, macro_offset, 0);
10814 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10816 struct type_unit_group *tu_group;
10818 struct attribute *attr;
10820 struct signatured_type *sig_type;
10822 gdb_assert (per_cu->is_debug_types);
10823 sig_type = (struct signatured_type *) per_cu;
10825 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10827 /* If we're using .gdb_index (includes -readnow) then
10828 per_cu->type_unit_group may not have been set up yet. */
10829 if (sig_type->type_unit_group == NULL)
10830 sig_type->type_unit_group = get_type_unit_group (this, attr);
10831 tu_group = sig_type->type_unit_group;
10833 /* If we've already processed this stmt_list there's no real need to
10834 do it again, we could fake it and just recreate the part we need
10835 (file name,index -> symtab mapping). If data shows this optimization
10836 is useful we can do it then. */
10837 first_time = tu_group->compunit_symtab == NULL;
10839 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10844 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10845 lh = dwarf_decode_line_header (line_offset, this);
10850 start_symtab ("", NULL, 0);
10853 gdb_assert (tu_group->symtabs == NULL);
10854 gdb_assert (m_builder == nullptr);
10855 struct compunit_symtab *cust = tu_group->compunit_symtab;
10856 m_builder.reset (new struct buildsym_compunit
10857 (COMPUNIT_OBJFILE (cust), "",
10858 COMPUNIT_DIRNAME (cust),
10859 compunit_language (cust),
10865 line_header = lh.release ();
10866 line_header_die_owner = die;
10870 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10872 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10873 still initializing it, and our caller (a few levels up)
10874 process_full_type_unit still needs to know if this is the first
10878 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10879 struct symtab *, line_header->file_names_size ());
10881 auto &file_names = line_header->file_names ();
10882 for (i = 0; i < file_names.size (); ++i)
10884 file_entry &fe = file_names[i];
10885 dwarf2_start_subfile (this, fe.name,
10886 fe.include_dir (line_header));
10887 buildsym_compunit *b = get_builder ();
10888 if (b->get_current_subfile ()->symtab == NULL)
10890 /* NOTE: start_subfile will recognize when it's been
10891 passed a file it has already seen. So we can't
10892 assume there's a simple mapping from
10893 cu->line_header->file_names to subfiles, plus
10894 cu->line_header->file_names may contain dups. */
10895 b->get_current_subfile ()->symtab
10896 = allocate_symtab (cust, b->get_current_subfile ()->name);
10899 fe.symtab = b->get_current_subfile ()->symtab;
10900 tu_group->symtabs[i] = fe.symtab;
10905 gdb_assert (m_builder == nullptr);
10906 struct compunit_symtab *cust = tu_group->compunit_symtab;
10907 m_builder.reset (new struct buildsym_compunit
10908 (COMPUNIT_OBJFILE (cust), "",
10909 COMPUNIT_DIRNAME (cust),
10910 compunit_language (cust),
10913 auto &file_names = line_header->file_names ();
10914 for (i = 0; i < file_names.size (); ++i)
10916 file_entry &fe = file_names[i];
10917 fe.symtab = tu_group->symtabs[i];
10921 /* The main symtab is allocated last. Type units don't have DW_AT_name
10922 so they don't have a "real" (so to speak) symtab anyway.
10923 There is later code that will assign the main symtab to all symbols
10924 that don't have one. We need to handle the case of a symbol with a
10925 missing symtab (DW_AT_decl_file) anyway. */
10928 /* Process DW_TAG_type_unit.
10929 For TUs we want to skip the first top level sibling if it's not the
10930 actual type being defined by this TU. In this case the first top
10931 level sibling is there to provide context only. */
10934 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10936 struct die_info *child_die;
10938 prepare_one_comp_unit (cu, die, language_minimal);
10940 /* Initialize (or reinitialize) the machinery for building symtabs.
10941 We do this before processing child DIEs, so that the line header table
10942 is available for DW_AT_decl_file. */
10943 cu->setup_type_unit_groups (die);
10945 if (die->child != NULL)
10947 child_die = die->child;
10948 while (child_die && child_die->tag)
10950 process_die (child_die, cu);
10951 child_die = sibling_die (child_die);
10958 http://gcc.gnu.org/wiki/DebugFission
10959 http://gcc.gnu.org/wiki/DebugFissionDWP
10961 To simplify handling of both DWO files ("object" files with the DWARF info)
10962 and DWP files (a file with the DWOs packaged up into one file), we treat
10963 DWP files as having a collection of virtual DWO files. */
10966 hash_dwo_file (const void *item)
10968 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10971 hash = htab_hash_string (dwo_file->dwo_name);
10972 if (dwo_file->comp_dir != NULL)
10973 hash += htab_hash_string (dwo_file->comp_dir);
10978 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10980 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10981 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10983 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10985 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10986 return lhs->comp_dir == rhs->comp_dir;
10987 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10990 /* Allocate a hash table for DWO files. */
10993 allocate_dwo_file_hash_table ()
10995 auto delete_dwo_file = [] (void *item)
10997 struct dwo_file *dwo_file = (struct dwo_file *) item;
11002 return htab_up (htab_create_alloc (41,
11009 /* Lookup DWO file DWO_NAME. */
11012 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11013 const char *dwo_name,
11014 const char *comp_dir)
11016 struct dwo_file find_entry;
11019 if (dwarf2_per_objfile->dwo_files == NULL)
11020 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11022 find_entry.dwo_name = dwo_name;
11023 find_entry.comp_dir = comp_dir;
11024 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11031 hash_dwo_unit (const void *item)
11033 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11035 /* This drops the top 32 bits of the id, but is ok for a hash. */
11036 return dwo_unit->signature;
11040 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11042 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11043 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11045 /* The signature is assumed to be unique within the DWO file.
11046 So while object file CU dwo_id's always have the value zero,
11047 that's OK, assuming each object file DWO file has only one CU,
11048 and that's the rule for now. */
11049 return lhs->signature == rhs->signature;
11052 /* Allocate a hash table for DWO CUs,TUs.
11053 There is one of these tables for each of CUs,TUs for each DWO file. */
11056 allocate_dwo_unit_table ()
11058 /* Start out with a pretty small number.
11059 Generally DWO files contain only one CU and maybe some TUs. */
11060 return htab_up (htab_create_alloc (3,
11063 NULL, xcalloc, xfree));
11066 /* die_reader_func for create_dwo_cu. */
11069 create_dwo_cu_reader (const struct die_reader_specs *reader,
11070 const gdb_byte *info_ptr,
11071 struct die_info *comp_unit_die,
11072 struct dwo_file *dwo_file,
11073 struct dwo_unit *dwo_unit)
11075 struct dwarf2_cu *cu = reader->cu;
11076 sect_offset sect_off = cu->per_cu->sect_off;
11077 struct dwarf2_section_info *section = cu->per_cu->section;
11079 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11080 if (!signature.has_value ())
11082 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11083 " its dwo_id [in module %s]"),
11084 sect_offset_str (sect_off), dwo_file->dwo_name);
11088 dwo_unit->dwo_file = dwo_file;
11089 dwo_unit->signature = *signature;
11090 dwo_unit->section = section;
11091 dwo_unit->sect_off = sect_off;
11092 dwo_unit->length = cu->per_cu->length;
11094 if (dwarf_read_debug)
11095 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11096 sect_offset_str (sect_off),
11097 hex_string (dwo_unit->signature));
11100 /* Create the dwo_units for the CUs in a DWO_FILE.
11101 Note: This function processes DWO files only, not DWP files. */
11104 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11105 dwarf2_cu *cu, struct dwo_file &dwo_file,
11106 dwarf2_section_info §ion, htab_up &cus_htab)
11108 struct objfile *objfile = dwarf2_per_objfile->objfile;
11109 const gdb_byte *info_ptr, *end_ptr;
11111 section.read (objfile);
11112 info_ptr = section.buffer;
11114 if (info_ptr == NULL)
11117 if (dwarf_read_debug)
11119 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11120 section.get_name (),
11121 section.get_file_name ());
11124 end_ptr = info_ptr + section.size;
11125 while (info_ptr < end_ptr)
11127 struct dwarf2_per_cu_data per_cu;
11128 struct dwo_unit read_unit {};
11129 struct dwo_unit *dwo_unit;
11131 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11133 memset (&per_cu, 0, sizeof (per_cu));
11134 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11135 per_cu.is_debug_types = 0;
11136 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11137 per_cu.section = §ion;
11139 cutu_reader reader (&per_cu, cu, &dwo_file);
11140 if (!reader.dummy_p)
11141 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11142 &dwo_file, &read_unit);
11143 info_ptr += per_cu.length;
11145 // If the unit could not be parsed, skip it.
11146 if (read_unit.dwo_file == NULL)
11149 if (cus_htab == NULL)
11150 cus_htab = allocate_dwo_unit_table ();
11152 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11153 *dwo_unit = read_unit;
11154 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11155 gdb_assert (slot != NULL);
11158 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11159 sect_offset dup_sect_off = dup_cu->sect_off;
11161 complaint (_("debug cu entry at offset %s is duplicate to"
11162 " the entry at offset %s, signature %s"),
11163 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11164 hex_string (dwo_unit->signature));
11166 *slot = (void *)dwo_unit;
11170 /* DWP file .debug_{cu,tu}_index section format:
11171 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11175 Both index sections have the same format, and serve to map a 64-bit
11176 signature to a set of section numbers. Each section begins with a header,
11177 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11178 indexes, and a pool of 32-bit section numbers. The index sections will be
11179 aligned at 8-byte boundaries in the file.
11181 The index section header consists of:
11183 V, 32 bit version number
11185 N, 32 bit number of compilation units or type units in the index
11186 M, 32 bit number of slots in the hash table
11188 Numbers are recorded using the byte order of the application binary.
11190 The hash table begins at offset 16 in the section, and consists of an array
11191 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11192 order of the application binary). Unused slots in the hash table are 0.
11193 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11195 The parallel table begins immediately after the hash table
11196 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11197 array of 32-bit indexes (using the byte order of the application binary),
11198 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11199 table contains a 32-bit index into the pool of section numbers. For unused
11200 hash table slots, the corresponding entry in the parallel table will be 0.
11202 The pool of section numbers begins immediately following the hash table
11203 (at offset 16 + 12 * M from the beginning of the section). The pool of
11204 section numbers consists of an array of 32-bit words (using the byte order
11205 of the application binary). Each item in the array is indexed starting
11206 from 0. The hash table entry provides the index of the first section
11207 number in the set. Additional section numbers in the set follow, and the
11208 set is terminated by a 0 entry (section number 0 is not used in ELF).
11210 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11211 section must be the first entry in the set, and the .debug_abbrev.dwo must
11212 be the second entry. Other members of the set may follow in any order.
11218 DWP Version 2 combines all the .debug_info, etc. sections into one,
11219 and the entries in the index tables are now offsets into these sections.
11220 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11223 Index Section Contents:
11225 Hash Table of Signatures dwp_hash_table.hash_table
11226 Parallel Table of Indices dwp_hash_table.unit_table
11227 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11228 Table of Section Sizes dwp_hash_table.v2.sizes
11230 The index section header consists of:
11232 V, 32 bit version number
11233 L, 32 bit number of columns in the table of section offsets
11234 N, 32 bit number of compilation units or type units in the index
11235 M, 32 bit number of slots in the hash table
11237 Numbers are recorded using the byte order of the application binary.
11239 The hash table has the same format as version 1.
11240 The parallel table of indices has the same format as version 1,
11241 except that the entries are origin-1 indices into the table of sections
11242 offsets and the table of section sizes.
11244 The table of offsets begins immediately following the parallel table
11245 (at offset 16 + 12 * M from the beginning of the section). The table is
11246 a two-dimensional array of 32-bit words (using the byte order of the
11247 application binary), with L columns and N+1 rows, in row-major order.
11248 Each row in the array is indexed starting from 0. The first row provides
11249 a key to the remaining rows: each column in this row provides an identifier
11250 for a debug section, and the offsets in the same column of subsequent rows
11251 refer to that section. The section identifiers are:
11253 DW_SECT_INFO 1 .debug_info.dwo
11254 DW_SECT_TYPES 2 .debug_types.dwo
11255 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11256 DW_SECT_LINE 4 .debug_line.dwo
11257 DW_SECT_LOC 5 .debug_loc.dwo
11258 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11259 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11260 DW_SECT_MACRO 8 .debug_macro.dwo
11262 The offsets provided by the CU and TU index sections are the base offsets
11263 for the contributions made by each CU or TU to the corresponding section
11264 in the package file. Each CU and TU header contains an abbrev_offset
11265 field, used to find the abbreviations table for that CU or TU within the
11266 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11267 be interpreted as relative to the base offset given in the index section.
11268 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11269 should be interpreted as relative to the base offset for .debug_line.dwo,
11270 and offsets into other debug sections obtained from DWARF attributes should
11271 also be interpreted as relative to the corresponding base offset.
11273 The table of sizes begins immediately following the table of offsets.
11274 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11275 with L columns and N rows, in row-major order. Each row in the array is
11276 indexed starting from 1 (row 0 is shared by the two tables).
11280 Hash table lookup is handled the same in version 1 and 2:
11282 We assume that N and M will not exceed 2^32 - 1.
11283 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11285 Given a 64-bit compilation unit signature or a type signature S, an entry
11286 in the hash table is located as follows:
11288 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11289 the low-order k bits all set to 1.
11291 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11293 3) If the hash table entry at index H matches the signature, use that
11294 entry. If the hash table entry at index H is unused (all zeroes),
11295 terminate the search: the signature is not present in the table.
11297 4) Let H = (H + H') modulo M. Repeat at Step 3.
11299 Because M > N and H' and M are relatively prime, the search is guaranteed
11300 to stop at an unused slot or find the match. */
11302 /* Create a hash table to map DWO IDs to their CU/TU entry in
11303 .debug_{info,types}.dwo in DWP_FILE.
11304 Returns NULL if there isn't one.
11305 Note: This function processes DWP files only, not DWO files. */
11307 static struct dwp_hash_table *
11308 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11309 struct dwp_file *dwp_file, int is_debug_types)
11311 struct objfile *objfile = dwarf2_per_objfile->objfile;
11312 bfd *dbfd = dwp_file->dbfd.get ();
11313 const gdb_byte *index_ptr, *index_end;
11314 struct dwarf2_section_info *index;
11315 uint32_t version, nr_columns, nr_units, nr_slots;
11316 struct dwp_hash_table *htab;
11318 if (is_debug_types)
11319 index = &dwp_file->sections.tu_index;
11321 index = &dwp_file->sections.cu_index;
11323 if (index->empty ())
11325 index->read (objfile);
11327 index_ptr = index->buffer;
11328 index_end = index_ptr + index->size;
11330 version = read_4_bytes (dbfd, index_ptr);
11333 nr_columns = read_4_bytes (dbfd, index_ptr);
11337 nr_units = read_4_bytes (dbfd, index_ptr);
11339 nr_slots = read_4_bytes (dbfd, index_ptr);
11342 if (version != 1 && version != 2)
11344 error (_("Dwarf Error: unsupported DWP file version (%s)"
11345 " [in module %s]"),
11346 pulongest (version), dwp_file->name);
11348 if (nr_slots != (nr_slots & -nr_slots))
11350 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11351 " is not power of 2 [in module %s]"),
11352 pulongest (nr_slots), dwp_file->name);
11355 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11356 htab->version = version;
11357 htab->nr_columns = nr_columns;
11358 htab->nr_units = nr_units;
11359 htab->nr_slots = nr_slots;
11360 htab->hash_table = index_ptr;
11361 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11363 /* Exit early if the table is empty. */
11364 if (nr_slots == 0 || nr_units == 0
11365 || (version == 2 && nr_columns == 0))
11367 /* All must be zero. */
11368 if (nr_slots != 0 || nr_units != 0
11369 || (version == 2 && nr_columns != 0))
11371 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11372 " all zero [in modules %s]"),
11380 htab->section_pool.v1.indices =
11381 htab->unit_table + sizeof (uint32_t) * nr_slots;
11382 /* It's harder to decide whether the section is too small in v1.
11383 V1 is deprecated anyway so we punt. */
11387 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11388 int *ids = htab->section_pool.v2.section_ids;
11389 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11390 /* Reverse map for error checking. */
11391 int ids_seen[DW_SECT_MAX + 1];
11394 if (nr_columns < 2)
11396 error (_("Dwarf Error: bad DWP hash table, too few columns"
11397 " in section table [in module %s]"),
11400 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11402 error (_("Dwarf Error: bad DWP hash table, too many columns"
11403 " in section table [in module %s]"),
11406 memset (ids, 255, sizeof_ids);
11407 memset (ids_seen, 255, sizeof (ids_seen));
11408 for (i = 0; i < nr_columns; ++i)
11410 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11412 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11414 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11415 " in section table [in module %s]"),
11416 id, dwp_file->name);
11418 if (ids_seen[id] != -1)
11420 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11421 " id %d in section table [in module %s]"),
11422 id, dwp_file->name);
11427 /* Must have exactly one info or types section. */
11428 if (((ids_seen[DW_SECT_INFO] != -1)
11429 + (ids_seen[DW_SECT_TYPES] != -1))
11432 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11433 " DWO info/types section [in module %s]"),
11436 /* Must have an abbrev section. */
11437 if (ids_seen[DW_SECT_ABBREV] == -1)
11439 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11440 " section [in module %s]"),
11443 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11444 htab->section_pool.v2.sizes =
11445 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11446 * nr_units * nr_columns);
11447 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11448 * nr_units * nr_columns))
11451 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11452 " [in module %s]"),
11460 /* Update SECTIONS with the data from SECTP.
11462 This function is like the other "locate" section routines that are
11463 passed to bfd_map_over_sections, but in this context the sections to
11464 read comes from the DWP V1 hash table, not the full ELF section table.
11466 The result is non-zero for success, or zero if an error was found. */
11469 locate_v1_virtual_dwo_sections (asection *sectp,
11470 struct virtual_v1_dwo_sections *sections)
11472 const struct dwop_section_names *names = &dwop_section_names;
11474 if (section_is_p (sectp->name, &names->abbrev_dwo))
11476 /* There can be only one. */
11477 if (sections->abbrev.s.section != NULL)
11479 sections->abbrev.s.section = sectp;
11480 sections->abbrev.size = bfd_section_size (sectp);
11482 else if (section_is_p (sectp->name, &names->info_dwo)
11483 || section_is_p (sectp->name, &names->types_dwo))
11485 /* There can be only one. */
11486 if (sections->info_or_types.s.section != NULL)
11488 sections->info_or_types.s.section = sectp;
11489 sections->info_or_types.size = bfd_section_size (sectp);
11491 else if (section_is_p (sectp->name, &names->line_dwo))
11493 /* There can be only one. */
11494 if (sections->line.s.section != NULL)
11496 sections->line.s.section = sectp;
11497 sections->line.size = bfd_section_size (sectp);
11499 else if (section_is_p (sectp->name, &names->loc_dwo))
11501 /* There can be only one. */
11502 if (sections->loc.s.section != NULL)
11504 sections->loc.s.section = sectp;
11505 sections->loc.size = bfd_section_size (sectp);
11507 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11509 /* There can be only one. */
11510 if (sections->macinfo.s.section != NULL)
11512 sections->macinfo.s.section = sectp;
11513 sections->macinfo.size = bfd_section_size (sectp);
11515 else if (section_is_p (sectp->name, &names->macro_dwo))
11517 /* There can be only one. */
11518 if (sections->macro.s.section != NULL)
11520 sections->macro.s.section = sectp;
11521 sections->macro.size = bfd_section_size (sectp);
11523 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11525 /* There can be only one. */
11526 if (sections->str_offsets.s.section != NULL)
11528 sections->str_offsets.s.section = sectp;
11529 sections->str_offsets.size = bfd_section_size (sectp);
11533 /* No other kind of section is valid. */
11540 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11541 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11542 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11543 This is for DWP version 1 files. */
11545 static struct dwo_unit *
11546 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11547 struct dwp_file *dwp_file,
11548 uint32_t unit_index,
11549 const char *comp_dir,
11550 ULONGEST signature, int is_debug_types)
11552 struct objfile *objfile = dwarf2_per_objfile->objfile;
11553 const struct dwp_hash_table *dwp_htab =
11554 is_debug_types ? dwp_file->tus : dwp_file->cus;
11555 bfd *dbfd = dwp_file->dbfd.get ();
11556 const char *kind = is_debug_types ? "TU" : "CU";
11557 struct dwo_file *dwo_file;
11558 struct dwo_unit *dwo_unit;
11559 struct virtual_v1_dwo_sections sections;
11560 void **dwo_file_slot;
11563 gdb_assert (dwp_file->version == 1);
11565 if (dwarf_read_debug)
11567 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11569 pulongest (unit_index), hex_string (signature),
11573 /* Fetch the sections of this DWO unit.
11574 Put a limit on the number of sections we look for so that bad data
11575 doesn't cause us to loop forever. */
11577 #define MAX_NR_V1_DWO_SECTIONS \
11578 (1 /* .debug_info or .debug_types */ \
11579 + 1 /* .debug_abbrev */ \
11580 + 1 /* .debug_line */ \
11581 + 1 /* .debug_loc */ \
11582 + 1 /* .debug_str_offsets */ \
11583 + 1 /* .debug_macro or .debug_macinfo */ \
11584 + 1 /* trailing zero */)
11586 memset (§ions, 0, sizeof (sections));
11588 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11591 uint32_t section_nr =
11592 read_4_bytes (dbfd,
11593 dwp_htab->section_pool.v1.indices
11594 + (unit_index + i) * sizeof (uint32_t));
11596 if (section_nr == 0)
11598 if (section_nr >= dwp_file->num_sections)
11600 error (_("Dwarf Error: bad DWP hash table, section number too large"
11601 " [in module %s]"),
11605 sectp = dwp_file->elf_sections[section_nr];
11606 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
11608 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11609 " [in module %s]"),
11615 || sections.info_or_types.empty ()
11616 || sections.abbrev.empty ())
11618 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11619 " [in module %s]"),
11622 if (i == MAX_NR_V1_DWO_SECTIONS)
11624 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11625 " [in module %s]"),
11629 /* It's easier for the rest of the code if we fake a struct dwo_file and
11630 have dwo_unit "live" in that. At least for now.
11632 The DWP file can be made up of a random collection of CUs and TUs.
11633 However, for each CU + set of TUs that came from the same original DWO
11634 file, we can combine them back into a virtual DWO file to save space
11635 (fewer struct dwo_file objects to allocate). Remember that for really
11636 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11638 std::string virtual_dwo_name =
11639 string_printf ("virtual-dwo/%d-%d-%d-%d",
11640 sections.abbrev.get_id (),
11641 sections.line.get_id (),
11642 sections.loc.get_id (),
11643 sections.str_offsets.get_id ());
11644 /* Can we use an existing virtual DWO file? */
11645 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11646 virtual_dwo_name.c_str (),
11648 /* Create one if necessary. */
11649 if (*dwo_file_slot == NULL)
11651 if (dwarf_read_debug)
11653 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11654 virtual_dwo_name.c_str ());
11656 dwo_file = new struct dwo_file;
11657 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11659 dwo_file->comp_dir = comp_dir;
11660 dwo_file->sections.abbrev = sections.abbrev;
11661 dwo_file->sections.line = sections.line;
11662 dwo_file->sections.loc = sections.loc;
11663 dwo_file->sections.macinfo = sections.macinfo;
11664 dwo_file->sections.macro = sections.macro;
11665 dwo_file->sections.str_offsets = sections.str_offsets;
11666 /* The "str" section is global to the entire DWP file. */
11667 dwo_file->sections.str = dwp_file->sections.str;
11668 /* The info or types section is assigned below to dwo_unit,
11669 there's no need to record it in dwo_file.
11670 Also, we can't simply record type sections in dwo_file because
11671 we record a pointer into the vector in dwo_unit. As we collect more
11672 types we'll grow the vector and eventually have to reallocate space
11673 for it, invalidating all copies of pointers into the previous
11675 *dwo_file_slot = dwo_file;
11679 if (dwarf_read_debug)
11681 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11682 virtual_dwo_name.c_str ());
11684 dwo_file = (struct dwo_file *) *dwo_file_slot;
11687 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11688 dwo_unit->dwo_file = dwo_file;
11689 dwo_unit->signature = signature;
11690 dwo_unit->section =
11691 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11692 *dwo_unit->section = sections.info_or_types;
11693 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11698 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11699 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11700 piece within that section used by a TU/CU, return a virtual section
11701 of just that piece. */
11703 static struct dwarf2_section_info
11704 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11705 struct dwarf2_section_info *section,
11706 bfd_size_type offset, bfd_size_type size)
11708 struct dwarf2_section_info result;
11711 gdb_assert (section != NULL);
11712 gdb_assert (!section->is_virtual);
11714 memset (&result, 0, sizeof (result));
11715 result.s.containing_section = section;
11716 result.is_virtual = true;
11721 sectp = section->get_bfd_section ();
11723 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11724 bounds of the real section. This is a pretty-rare event, so just
11725 flag an error (easier) instead of a warning and trying to cope. */
11727 || offset + size > bfd_section_size (sectp))
11729 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11730 " in section %s [in module %s]"),
11731 sectp ? bfd_section_name (sectp) : "<unknown>",
11732 objfile_name (dwarf2_per_objfile->objfile));
11735 result.virtual_offset = offset;
11736 result.size = size;
11740 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11741 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11742 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11743 This is for DWP version 2 files. */
11745 static struct dwo_unit *
11746 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11747 struct dwp_file *dwp_file,
11748 uint32_t unit_index,
11749 const char *comp_dir,
11750 ULONGEST signature, int is_debug_types)
11752 struct objfile *objfile = dwarf2_per_objfile->objfile;
11753 const struct dwp_hash_table *dwp_htab =
11754 is_debug_types ? dwp_file->tus : dwp_file->cus;
11755 bfd *dbfd = dwp_file->dbfd.get ();
11756 const char *kind = is_debug_types ? "TU" : "CU";
11757 struct dwo_file *dwo_file;
11758 struct dwo_unit *dwo_unit;
11759 struct virtual_v2_dwo_sections sections;
11760 void **dwo_file_slot;
11763 gdb_assert (dwp_file->version == 2);
11765 if (dwarf_read_debug)
11767 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11769 pulongest (unit_index), hex_string (signature),
11773 /* Fetch the section offsets of this DWO unit. */
11775 memset (§ions, 0, sizeof (sections));
11777 for (i = 0; i < dwp_htab->nr_columns; ++i)
11779 uint32_t offset = read_4_bytes (dbfd,
11780 dwp_htab->section_pool.v2.offsets
11781 + (((unit_index - 1) * dwp_htab->nr_columns
11783 * sizeof (uint32_t)));
11784 uint32_t size = read_4_bytes (dbfd,
11785 dwp_htab->section_pool.v2.sizes
11786 + (((unit_index - 1) * dwp_htab->nr_columns
11788 * sizeof (uint32_t)));
11790 switch (dwp_htab->section_pool.v2.section_ids[i])
11793 case DW_SECT_TYPES:
11794 sections.info_or_types_offset = offset;
11795 sections.info_or_types_size = size;
11797 case DW_SECT_ABBREV:
11798 sections.abbrev_offset = offset;
11799 sections.abbrev_size = size;
11802 sections.line_offset = offset;
11803 sections.line_size = size;
11806 sections.loc_offset = offset;
11807 sections.loc_size = size;
11809 case DW_SECT_STR_OFFSETS:
11810 sections.str_offsets_offset = offset;
11811 sections.str_offsets_size = size;
11813 case DW_SECT_MACINFO:
11814 sections.macinfo_offset = offset;
11815 sections.macinfo_size = size;
11817 case DW_SECT_MACRO:
11818 sections.macro_offset = offset;
11819 sections.macro_size = size;
11824 /* It's easier for the rest of the code if we fake a struct dwo_file and
11825 have dwo_unit "live" in that. At least for now.
11827 The DWP file can be made up of a random collection of CUs and TUs.
11828 However, for each CU + set of TUs that came from the same original DWO
11829 file, we can combine them back into a virtual DWO file to save space
11830 (fewer struct dwo_file objects to allocate). Remember that for really
11831 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11833 std::string virtual_dwo_name =
11834 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11835 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11836 (long) (sections.line_size ? sections.line_offset : 0),
11837 (long) (sections.loc_size ? sections.loc_offset : 0),
11838 (long) (sections.str_offsets_size
11839 ? sections.str_offsets_offset : 0));
11840 /* Can we use an existing virtual DWO file? */
11841 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11842 virtual_dwo_name.c_str (),
11844 /* Create one if necessary. */
11845 if (*dwo_file_slot == NULL)
11847 if (dwarf_read_debug)
11849 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11850 virtual_dwo_name.c_str ());
11852 dwo_file = new struct dwo_file;
11853 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11855 dwo_file->comp_dir = comp_dir;
11856 dwo_file->sections.abbrev =
11857 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11858 sections.abbrev_offset, sections.abbrev_size);
11859 dwo_file->sections.line =
11860 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11861 sections.line_offset, sections.line_size);
11862 dwo_file->sections.loc =
11863 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11864 sections.loc_offset, sections.loc_size);
11865 dwo_file->sections.macinfo =
11866 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11867 sections.macinfo_offset, sections.macinfo_size);
11868 dwo_file->sections.macro =
11869 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11870 sections.macro_offset, sections.macro_size);
11871 dwo_file->sections.str_offsets =
11872 create_dwp_v2_section (dwarf2_per_objfile,
11873 &dwp_file->sections.str_offsets,
11874 sections.str_offsets_offset,
11875 sections.str_offsets_size);
11876 /* The "str" section is global to the entire DWP file. */
11877 dwo_file->sections.str = dwp_file->sections.str;
11878 /* The info or types section is assigned below to dwo_unit,
11879 there's no need to record it in dwo_file.
11880 Also, we can't simply record type sections in dwo_file because
11881 we record a pointer into the vector in dwo_unit. As we collect more
11882 types we'll grow the vector and eventually have to reallocate space
11883 for it, invalidating all copies of pointers into the previous
11885 *dwo_file_slot = dwo_file;
11889 if (dwarf_read_debug)
11891 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11892 virtual_dwo_name.c_str ());
11894 dwo_file = (struct dwo_file *) *dwo_file_slot;
11897 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = signature;
11900 dwo_unit->section =
11901 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11902 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11904 ? &dwp_file->sections.types
11905 : &dwp_file->sections.info,
11906 sections.info_or_types_offset,
11907 sections.info_or_types_size);
11908 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11913 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11914 Returns NULL if the signature isn't found. */
11916 static struct dwo_unit *
11917 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11918 struct dwp_file *dwp_file, const char *comp_dir,
11919 ULONGEST signature, int is_debug_types)
11921 const struct dwp_hash_table *dwp_htab =
11922 is_debug_types ? dwp_file->tus : dwp_file->cus;
11923 bfd *dbfd = dwp_file->dbfd.get ();
11924 uint32_t mask = dwp_htab->nr_slots - 1;
11925 uint32_t hash = signature & mask;
11926 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11929 struct dwo_unit find_dwo_cu;
11931 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11932 find_dwo_cu.signature = signature;
11933 slot = htab_find_slot (is_debug_types
11934 ? dwp_file->loaded_tus.get ()
11935 : dwp_file->loaded_cus.get (),
11936 &find_dwo_cu, INSERT);
11939 return (struct dwo_unit *) *slot;
11941 /* Use a for loop so that we don't loop forever on bad debug info. */
11942 for (i = 0; i < dwp_htab->nr_slots; ++i)
11944 ULONGEST signature_in_table;
11946 signature_in_table =
11947 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11948 if (signature_in_table == signature)
11950 uint32_t unit_index =
11951 read_4_bytes (dbfd,
11952 dwp_htab->unit_table + hash * sizeof (uint32_t));
11954 if (dwp_file->version == 1)
11956 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11957 dwp_file, unit_index,
11958 comp_dir, signature,
11963 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11964 dwp_file, unit_index,
11965 comp_dir, signature,
11968 return (struct dwo_unit *) *slot;
11970 if (signature_in_table == 0)
11972 hash = (hash + hash2) & mask;
11975 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11976 " [in module %s]"),
11980 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11981 Open the file specified by FILE_NAME and hand it off to BFD for
11982 preliminary analysis. Return a newly initialized bfd *, which
11983 includes a canonicalized copy of FILE_NAME.
11984 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11985 SEARCH_CWD is true if the current directory is to be searched.
11986 It will be searched before debug-file-directory.
11987 If successful, the file is added to the bfd include table of the
11988 objfile's bfd (see gdb_bfd_record_inclusion).
11989 If unable to find/open the file, return NULL.
11990 NOTE: This function is derived from symfile_bfd_open. */
11992 static gdb_bfd_ref_ptr
11993 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
11994 const char *file_name, int is_dwp, int search_cwd)
11997 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11998 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11999 to debug_file_directory. */
12000 const char *search_path;
12001 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12003 gdb::unique_xmalloc_ptr<char> search_path_holder;
12006 if (*debug_file_directory != '\0')
12008 search_path_holder.reset (concat (".", dirname_separator_string,
12009 debug_file_directory,
12011 search_path = search_path_holder.get ();
12017 search_path = debug_file_directory;
12019 openp_flags flags = OPF_RETURN_REALPATH;
12021 flags |= OPF_SEARCH_IN_PATH;
12023 gdb::unique_xmalloc_ptr<char> absolute_name;
12024 desc = openp (search_path, flags, file_name,
12025 O_RDONLY | O_BINARY, &absolute_name);
12029 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12031 if (sym_bfd == NULL)
12033 bfd_set_cacheable (sym_bfd.get (), 1);
12035 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12038 /* Success. Record the bfd as having been included by the objfile's bfd.
12039 This is important because things like demangled_names_hash lives in the
12040 objfile's per_bfd space and may have references to things like symbol
12041 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12042 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12047 /* Try to open DWO file FILE_NAME.
12048 COMP_DIR is the DW_AT_comp_dir attribute.
12049 The result is the bfd handle of the file.
12050 If there is a problem finding or opening the file, return NULL.
12051 Upon success, the canonicalized path of the file is stored in the bfd,
12052 same as symfile_bfd_open. */
12054 static gdb_bfd_ref_ptr
12055 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12056 const char *file_name, const char *comp_dir)
12058 if (IS_ABSOLUTE_PATH (file_name))
12059 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12060 0 /*is_dwp*/, 0 /*search_cwd*/);
12062 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12064 if (comp_dir != NULL)
12066 gdb::unique_xmalloc_ptr<char> path_to_try
12067 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12069 /* NOTE: If comp_dir is a relative path, this will also try the
12070 search path, which seems useful. */
12071 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12072 path_to_try.get (),
12074 1 /*search_cwd*/));
12079 /* That didn't work, try debug-file-directory, which, despite its name,
12080 is a list of paths. */
12082 if (*debug_file_directory == '\0')
12085 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12086 0 /*is_dwp*/, 1 /*search_cwd*/);
12089 /* This function is mapped across the sections and remembers the offset and
12090 size of each of the DWO debugging sections we are interested in. */
12093 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12095 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12096 const struct dwop_section_names *names = &dwop_section_names;
12098 if (section_is_p (sectp->name, &names->abbrev_dwo))
12100 dwo_sections->abbrev.s.section = sectp;
12101 dwo_sections->abbrev.size = bfd_section_size (sectp);
12103 else if (section_is_p (sectp->name, &names->info_dwo))
12105 dwo_sections->info.s.section = sectp;
12106 dwo_sections->info.size = bfd_section_size (sectp);
12108 else if (section_is_p (sectp->name, &names->line_dwo))
12110 dwo_sections->line.s.section = sectp;
12111 dwo_sections->line.size = bfd_section_size (sectp);
12113 else if (section_is_p (sectp->name, &names->loc_dwo))
12115 dwo_sections->loc.s.section = sectp;
12116 dwo_sections->loc.size = bfd_section_size (sectp);
12118 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12120 dwo_sections->macinfo.s.section = sectp;
12121 dwo_sections->macinfo.size = bfd_section_size (sectp);
12123 else if (section_is_p (sectp->name, &names->macro_dwo))
12125 dwo_sections->macro.s.section = sectp;
12126 dwo_sections->macro.size = bfd_section_size (sectp);
12128 else if (section_is_p (sectp->name, &names->str_dwo))
12130 dwo_sections->str.s.section = sectp;
12131 dwo_sections->str.size = bfd_section_size (sectp);
12133 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12135 dwo_sections->str_offsets.s.section = sectp;
12136 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12138 else if (section_is_p (sectp->name, &names->types_dwo))
12140 struct dwarf2_section_info type_section;
12142 memset (&type_section, 0, sizeof (type_section));
12143 type_section.s.section = sectp;
12144 type_section.size = bfd_section_size (sectp);
12145 dwo_sections->types.push_back (type_section);
12149 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12150 by PER_CU. This is for the non-DWP case.
12151 The result is NULL if DWO_NAME can't be found. */
12153 static struct dwo_file *
12154 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12155 const char *dwo_name, const char *comp_dir)
12157 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12159 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12162 if (dwarf_read_debug)
12163 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12167 dwo_file_up dwo_file (new struct dwo_file);
12168 dwo_file->dwo_name = dwo_name;
12169 dwo_file->comp_dir = comp_dir;
12170 dwo_file->dbfd = std::move (dbfd);
12172 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12173 &dwo_file->sections);
12175 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12176 dwo_file->sections.info, dwo_file->cus);
12178 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12179 dwo_file->sections.types, dwo_file->tus);
12181 if (dwarf_read_debug)
12182 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12184 return dwo_file.release ();
12187 /* This function is mapped across the sections and remembers the offset and
12188 size of each of the DWP debugging sections common to version 1 and 2 that
12189 we are interested in. */
12192 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12193 void *dwp_file_ptr)
12195 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12196 const struct dwop_section_names *names = &dwop_section_names;
12197 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12199 /* Record the ELF section number for later lookup: this is what the
12200 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12201 gdb_assert (elf_section_nr < dwp_file->num_sections);
12202 dwp_file->elf_sections[elf_section_nr] = sectp;
12204 /* Look for specific sections that we need. */
12205 if (section_is_p (sectp->name, &names->str_dwo))
12207 dwp_file->sections.str.s.section = sectp;
12208 dwp_file->sections.str.size = bfd_section_size (sectp);
12210 else if (section_is_p (sectp->name, &names->cu_index))
12212 dwp_file->sections.cu_index.s.section = sectp;
12213 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12215 else if (section_is_p (sectp->name, &names->tu_index))
12217 dwp_file->sections.tu_index.s.section = sectp;
12218 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12222 /* This function is mapped across the sections and remembers the offset and
12223 size of each of the DWP version 2 debugging sections that we are interested
12224 in. This is split into a separate function because we don't know if we
12225 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12228 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12230 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12231 const struct dwop_section_names *names = &dwop_section_names;
12232 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12234 /* Record the ELF section number for later lookup: this is what the
12235 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12236 gdb_assert (elf_section_nr < dwp_file->num_sections);
12237 dwp_file->elf_sections[elf_section_nr] = sectp;
12239 /* Look for specific sections that we need. */
12240 if (section_is_p (sectp->name, &names->abbrev_dwo))
12242 dwp_file->sections.abbrev.s.section = sectp;
12243 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12245 else if (section_is_p (sectp->name, &names->info_dwo))
12247 dwp_file->sections.info.s.section = sectp;
12248 dwp_file->sections.info.size = bfd_section_size (sectp);
12250 else if (section_is_p (sectp->name, &names->line_dwo))
12252 dwp_file->sections.line.s.section = sectp;
12253 dwp_file->sections.line.size = bfd_section_size (sectp);
12255 else if (section_is_p (sectp->name, &names->loc_dwo))
12257 dwp_file->sections.loc.s.section = sectp;
12258 dwp_file->sections.loc.size = bfd_section_size (sectp);
12260 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12262 dwp_file->sections.macinfo.s.section = sectp;
12263 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12265 else if (section_is_p (sectp->name, &names->macro_dwo))
12267 dwp_file->sections.macro.s.section = sectp;
12268 dwp_file->sections.macro.size = bfd_section_size (sectp);
12270 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12272 dwp_file->sections.str_offsets.s.section = sectp;
12273 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12275 else if (section_is_p (sectp->name, &names->types_dwo))
12277 dwp_file->sections.types.s.section = sectp;
12278 dwp_file->sections.types.size = bfd_section_size (sectp);
12282 /* Hash function for dwp_file loaded CUs/TUs. */
12285 hash_dwp_loaded_cutus (const void *item)
12287 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12289 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12290 return dwo_unit->signature;
12293 /* Equality function for dwp_file loaded CUs/TUs. */
12296 eq_dwp_loaded_cutus (const void *a, const void *b)
12298 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12299 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12301 return dua->signature == dub->signature;
12304 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12307 allocate_dwp_loaded_cutus_table ()
12309 return htab_up (htab_create_alloc (3,
12310 hash_dwp_loaded_cutus,
12311 eq_dwp_loaded_cutus,
12312 NULL, xcalloc, xfree));
12315 /* Try to open DWP file FILE_NAME.
12316 The result is the bfd handle of the file.
12317 If there is a problem finding or opening the file, return NULL.
12318 Upon success, the canonicalized path of the file is stored in the bfd,
12319 same as symfile_bfd_open. */
12321 static gdb_bfd_ref_ptr
12322 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12323 const char *file_name)
12325 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12327 1 /*search_cwd*/));
12331 /* Work around upstream bug 15652.
12332 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12333 [Whether that's a "bug" is debatable, but it is getting in our way.]
12334 We have no real idea where the dwp file is, because gdb's realpath-ing
12335 of the executable's path may have discarded the needed info.
12336 [IWBN if the dwp file name was recorded in the executable, akin to
12337 .gnu_debuglink, but that doesn't exist yet.]
12338 Strip the directory from FILE_NAME and search again. */
12339 if (*debug_file_directory != '\0')
12341 /* Don't implicitly search the current directory here.
12342 If the user wants to search "." to handle this case,
12343 it must be added to debug-file-directory. */
12344 return try_open_dwop_file (dwarf2_per_objfile,
12345 lbasename (file_name), 1 /*is_dwp*/,
12352 /* Initialize the use of the DWP file for the current objfile.
12353 By convention the name of the DWP file is ${objfile}.dwp.
12354 The result is NULL if it can't be found. */
12356 static std::unique_ptr<struct dwp_file>
12357 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12359 struct objfile *objfile = dwarf2_per_objfile->objfile;
12361 /* Try to find first .dwp for the binary file before any symbolic links
12364 /* If the objfile is a debug file, find the name of the real binary
12365 file and get the name of dwp file from there. */
12366 std::string dwp_name;
12367 if (objfile->separate_debug_objfile_backlink != NULL)
12369 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12370 const char *backlink_basename = lbasename (backlink->original_name);
12372 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12375 dwp_name = objfile->original_name;
12377 dwp_name += ".dwp";
12379 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12381 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12383 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12384 dwp_name = objfile_name (objfile);
12385 dwp_name += ".dwp";
12386 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12391 if (dwarf_read_debug)
12392 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12393 return std::unique_ptr<dwp_file> ();
12396 const char *name = bfd_get_filename (dbfd.get ());
12397 std::unique_ptr<struct dwp_file> dwp_file
12398 (new struct dwp_file (name, std::move (dbfd)));
12400 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12401 dwp_file->elf_sections =
12402 OBSTACK_CALLOC (&objfile->objfile_obstack,
12403 dwp_file->num_sections, asection *);
12405 bfd_map_over_sections (dwp_file->dbfd.get (),
12406 dwarf2_locate_common_dwp_sections,
12409 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12412 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12415 /* The DWP file version is stored in the hash table. Oh well. */
12416 if (dwp_file->cus && dwp_file->tus
12417 && dwp_file->cus->version != dwp_file->tus->version)
12419 /* Technically speaking, we should try to limp along, but this is
12420 pretty bizarre. We use pulongest here because that's the established
12421 portability solution (e.g, we cannot use %u for uint32_t). */
12422 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12423 " TU version %s [in DWP file %s]"),
12424 pulongest (dwp_file->cus->version),
12425 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12429 dwp_file->version = dwp_file->cus->version;
12430 else if (dwp_file->tus)
12431 dwp_file->version = dwp_file->tus->version;
12433 dwp_file->version = 2;
12435 if (dwp_file->version == 2)
12436 bfd_map_over_sections (dwp_file->dbfd.get (),
12437 dwarf2_locate_v2_dwp_sections,
12440 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12441 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12443 if (dwarf_read_debug)
12445 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12446 fprintf_unfiltered (gdb_stdlog,
12447 " %s CUs, %s TUs\n",
12448 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12449 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12455 /* Wrapper around open_and_init_dwp_file, only open it once. */
12457 static struct dwp_file *
12458 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12460 if (! dwarf2_per_objfile->dwp_checked)
12462 dwarf2_per_objfile->dwp_file
12463 = open_and_init_dwp_file (dwarf2_per_objfile);
12464 dwarf2_per_objfile->dwp_checked = 1;
12466 return dwarf2_per_objfile->dwp_file.get ();
12469 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12470 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12471 or in the DWP file for the objfile, referenced by THIS_UNIT.
12472 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12473 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12475 This is called, for example, when wanting to read a variable with a
12476 complex location. Therefore we don't want to do file i/o for every call.
12477 Therefore we don't want to look for a DWO file on every call.
12478 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12479 then we check if we've already seen DWO_NAME, and only THEN do we check
12482 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12483 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12485 static struct dwo_unit *
12486 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12487 const char *dwo_name, const char *comp_dir,
12488 ULONGEST signature, int is_debug_types)
12490 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12491 struct objfile *objfile = dwarf2_per_objfile->objfile;
12492 const char *kind = is_debug_types ? "TU" : "CU";
12493 void **dwo_file_slot;
12494 struct dwo_file *dwo_file;
12495 struct dwp_file *dwp_file;
12497 /* First see if there's a DWP file.
12498 If we have a DWP file but didn't find the DWO inside it, don't
12499 look for the original DWO file. It makes gdb behave differently
12500 depending on whether one is debugging in the build tree. */
12502 dwp_file = get_dwp_file (dwarf2_per_objfile);
12503 if (dwp_file != NULL)
12505 const struct dwp_hash_table *dwp_htab =
12506 is_debug_types ? dwp_file->tus : dwp_file->cus;
12508 if (dwp_htab != NULL)
12510 struct dwo_unit *dwo_cutu =
12511 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12512 signature, is_debug_types);
12514 if (dwo_cutu != NULL)
12516 if (dwarf_read_debug)
12518 fprintf_unfiltered (gdb_stdlog,
12519 "Virtual DWO %s %s found: @%s\n",
12520 kind, hex_string (signature),
12521 host_address_to_string (dwo_cutu));
12529 /* No DWP file, look for the DWO file. */
12531 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12532 dwo_name, comp_dir);
12533 if (*dwo_file_slot == NULL)
12535 /* Read in the file and build a table of the CUs/TUs it contains. */
12536 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12538 /* NOTE: This will be NULL if unable to open the file. */
12539 dwo_file = (struct dwo_file *) *dwo_file_slot;
12541 if (dwo_file != NULL)
12543 struct dwo_unit *dwo_cutu = NULL;
12545 if (is_debug_types && dwo_file->tus)
12547 struct dwo_unit find_dwo_cutu;
12549 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12550 find_dwo_cutu.signature = signature;
12552 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12555 else if (!is_debug_types && dwo_file->cus)
12557 struct dwo_unit find_dwo_cutu;
12559 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12560 find_dwo_cutu.signature = signature;
12561 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12565 if (dwo_cutu != NULL)
12567 if (dwarf_read_debug)
12569 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12570 kind, dwo_name, hex_string (signature),
12571 host_address_to_string (dwo_cutu));
12578 /* We didn't find it. This could mean a dwo_id mismatch, or
12579 someone deleted the DWO/DWP file, or the search path isn't set up
12580 correctly to find the file. */
12582 if (dwarf_read_debug)
12584 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12585 kind, dwo_name, hex_string (signature));
12588 /* This is a warning and not a complaint because it can be caused by
12589 pilot error (e.g., user accidentally deleting the DWO). */
12591 /* Print the name of the DWP file if we looked there, helps the user
12592 better diagnose the problem. */
12593 std::string dwp_text;
12595 if (dwp_file != NULL)
12596 dwp_text = string_printf (" [in DWP file %s]",
12597 lbasename (dwp_file->name));
12599 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12600 " [in module %s]"),
12601 kind, dwo_name, hex_string (signature),
12603 this_unit->is_debug_types ? "TU" : "CU",
12604 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12609 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12610 See lookup_dwo_cutu_unit for details. */
12612 static struct dwo_unit *
12613 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12614 const char *dwo_name, const char *comp_dir,
12615 ULONGEST signature)
12617 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12620 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12621 See lookup_dwo_cutu_unit for details. */
12623 static struct dwo_unit *
12624 lookup_dwo_type_unit (struct signatured_type *this_tu,
12625 const char *dwo_name, const char *comp_dir)
12627 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12630 /* Traversal function for queue_and_load_all_dwo_tus. */
12633 queue_and_load_dwo_tu (void **slot, void *info)
12635 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12636 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12637 ULONGEST signature = dwo_unit->signature;
12638 struct signatured_type *sig_type =
12639 lookup_dwo_signatured_type (per_cu->cu, signature);
12641 if (sig_type != NULL)
12643 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12645 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12646 a real dependency of PER_CU on SIG_TYPE. That is detected later
12647 while processing PER_CU. */
12648 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12649 load_full_type_unit (sig_cu);
12650 per_cu->imported_symtabs_push (sig_cu);
12656 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12657 The DWO may have the only definition of the type, though it may not be
12658 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12659 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12662 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12664 struct dwo_unit *dwo_unit;
12665 struct dwo_file *dwo_file;
12667 gdb_assert (!per_cu->is_debug_types);
12668 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12669 gdb_assert (per_cu->cu != NULL);
12671 dwo_unit = per_cu->cu->dwo_unit;
12672 gdb_assert (dwo_unit != NULL);
12674 dwo_file = dwo_unit->dwo_file;
12675 if (dwo_file->tus != NULL)
12676 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12680 /* Read in various DIEs. */
12682 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12683 Inherit only the children of the DW_AT_abstract_origin DIE not being
12684 already referenced by DW_AT_abstract_origin from the children of the
12688 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12690 struct die_info *child_die;
12691 sect_offset *offsetp;
12692 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12693 struct die_info *origin_die;
12694 /* Iterator of the ORIGIN_DIE children. */
12695 struct die_info *origin_child_die;
12696 struct attribute *attr;
12697 struct dwarf2_cu *origin_cu;
12698 struct pending **origin_previous_list_in_scope;
12700 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12704 /* Note that following die references may follow to a die in a
12708 origin_die = follow_die_ref (die, attr, &origin_cu);
12710 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12712 origin_previous_list_in_scope = origin_cu->list_in_scope;
12713 origin_cu->list_in_scope = cu->list_in_scope;
12715 if (die->tag != origin_die->tag
12716 && !(die->tag == DW_TAG_inlined_subroutine
12717 && origin_die->tag == DW_TAG_subprogram))
12718 complaint (_("DIE %s and its abstract origin %s have different tags"),
12719 sect_offset_str (die->sect_off),
12720 sect_offset_str (origin_die->sect_off));
12722 std::vector<sect_offset> offsets;
12724 for (child_die = die->child;
12725 child_die && child_die->tag;
12726 child_die = sibling_die (child_die))
12728 struct die_info *child_origin_die;
12729 struct dwarf2_cu *child_origin_cu;
12731 /* We are trying to process concrete instance entries:
12732 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12733 it's not relevant to our analysis here. i.e. detecting DIEs that are
12734 present in the abstract instance but not referenced in the concrete
12736 if (child_die->tag == DW_TAG_call_site
12737 || child_die->tag == DW_TAG_GNU_call_site)
12740 /* For each CHILD_DIE, find the corresponding child of
12741 ORIGIN_DIE. If there is more than one layer of
12742 DW_AT_abstract_origin, follow them all; there shouldn't be,
12743 but GCC versions at least through 4.4 generate this (GCC PR
12745 child_origin_die = child_die;
12746 child_origin_cu = cu;
12749 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12753 child_origin_die = follow_die_ref (child_origin_die, attr,
12757 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12758 counterpart may exist. */
12759 if (child_origin_die != child_die)
12761 if (child_die->tag != child_origin_die->tag
12762 && !(child_die->tag == DW_TAG_inlined_subroutine
12763 && child_origin_die->tag == DW_TAG_subprogram))
12764 complaint (_("Child DIE %s and its abstract origin %s have "
12766 sect_offset_str (child_die->sect_off),
12767 sect_offset_str (child_origin_die->sect_off));
12768 if (child_origin_die->parent != origin_die)
12769 complaint (_("Child DIE %s and its abstract origin %s have "
12770 "different parents"),
12771 sect_offset_str (child_die->sect_off),
12772 sect_offset_str (child_origin_die->sect_off));
12774 offsets.push_back (child_origin_die->sect_off);
12777 std::sort (offsets.begin (), offsets.end ());
12778 sect_offset *offsets_end = offsets.data () + offsets.size ();
12779 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12780 if (offsetp[-1] == *offsetp)
12781 complaint (_("Multiple children of DIE %s refer "
12782 "to DIE %s as their abstract origin"),
12783 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12785 offsetp = offsets.data ();
12786 origin_child_die = origin_die->child;
12787 while (origin_child_die && origin_child_die->tag)
12789 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12790 while (offsetp < offsets_end
12791 && *offsetp < origin_child_die->sect_off)
12793 if (offsetp >= offsets_end
12794 || *offsetp > origin_child_die->sect_off)
12796 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12797 Check whether we're already processing ORIGIN_CHILD_DIE.
12798 This can happen with mutually referenced abstract_origins.
12800 if (!origin_child_die->in_process)
12801 process_die (origin_child_die, origin_cu);
12803 origin_child_die = sibling_die (origin_child_die);
12805 origin_cu->list_in_scope = origin_previous_list_in_scope;
12807 if (cu != origin_cu)
12808 compute_delayed_physnames (origin_cu);
12812 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12816 struct context_stack *newobj;
12819 struct die_info *child_die;
12820 struct attribute *attr, *call_line, *call_file;
12822 CORE_ADDR baseaddr;
12823 struct block *block;
12824 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12825 std::vector<struct symbol *> template_args;
12826 struct template_symbol *templ_func = NULL;
12830 /* If we do not have call site information, we can't show the
12831 caller of this inlined function. That's too confusing, so
12832 only use the scope for local variables. */
12833 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12834 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12835 if (call_line == NULL || call_file == NULL)
12837 read_lexical_block_scope (die, cu);
12842 baseaddr = objfile->text_section_offset ();
12844 name = dwarf2_name (die, cu);
12846 /* Ignore functions with missing or empty names. These are actually
12847 illegal according to the DWARF standard. */
12850 complaint (_("missing name for subprogram DIE at %s"),
12851 sect_offset_str (die->sect_off));
12855 /* Ignore functions with missing or invalid low and high pc attributes. */
12856 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12857 <= PC_BOUNDS_INVALID)
12859 attr = dwarf2_attr (die, DW_AT_external, cu);
12860 if (!attr || !DW_UNSND (attr))
12861 complaint (_("cannot get low and high bounds "
12862 "for subprogram DIE at %s"),
12863 sect_offset_str (die->sect_off));
12867 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12868 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12870 /* If we have any template arguments, then we must allocate a
12871 different sort of symbol. */
12872 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12874 if (child_die->tag == DW_TAG_template_type_param
12875 || child_die->tag == DW_TAG_template_value_param)
12877 templ_func = allocate_template_symbol (objfile);
12878 templ_func->subclass = SYMBOL_TEMPLATE;
12883 newobj = cu->get_builder ()->push_context (0, lowpc);
12884 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12885 (struct symbol *) templ_func);
12887 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12888 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12891 /* If there is a location expression for DW_AT_frame_base, record
12893 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12894 if (attr != nullptr)
12895 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12897 /* If there is a location for the static link, record it. */
12898 newobj->static_link = NULL;
12899 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12900 if (attr != nullptr)
12902 newobj->static_link
12903 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12904 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12905 cu->per_cu->addr_type ());
12908 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12910 if (die->child != NULL)
12912 child_die = die->child;
12913 while (child_die && child_die->tag)
12915 if (child_die->tag == DW_TAG_template_type_param
12916 || child_die->tag == DW_TAG_template_value_param)
12918 struct symbol *arg = new_symbol (child_die, NULL, cu);
12921 template_args.push_back (arg);
12924 process_die (child_die, cu);
12925 child_die = sibling_die (child_die);
12929 inherit_abstract_dies (die, cu);
12931 /* If we have a DW_AT_specification, we might need to import using
12932 directives from the context of the specification DIE. See the
12933 comment in determine_prefix. */
12934 if (cu->language == language_cplus
12935 && dwarf2_attr (die, DW_AT_specification, cu))
12937 struct dwarf2_cu *spec_cu = cu;
12938 struct die_info *spec_die = die_specification (die, &spec_cu);
12942 child_die = spec_die->child;
12943 while (child_die && child_die->tag)
12945 if (child_die->tag == DW_TAG_imported_module)
12946 process_die (child_die, spec_cu);
12947 child_die = sibling_die (child_die);
12950 /* In some cases, GCC generates specification DIEs that
12951 themselves contain DW_AT_specification attributes. */
12952 spec_die = die_specification (spec_die, &spec_cu);
12956 struct context_stack cstk = cu->get_builder ()->pop_context ();
12957 /* Make a block for the local symbols within. */
12958 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12959 cstk.static_link, lowpc, highpc);
12961 /* For C++, set the block's scope. */
12962 if ((cu->language == language_cplus
12963 || cu->language == language_fortran
12964 || cu->language == language_d
12965 || cu->language == language_rust)
12966 && cu->processing_has_namespace_info)
12967 block_set_scope (block, determine_prefix (die, cu),
12968 &objfile->objfile_obstack);
12970 /* If we have address ranges, record them. */
12971 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12973 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12975 /* Attach template arguments to function. */
12976 if (!template_args.empty ())
12978 gdb_assert (templ_func != NULL);
12980 templ_func->n_template_arguments = template_args.size ();
12981 templ_func->template_arguments
12982 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12983 templ_func->n_template_arguments);
12984 memcpy (templ_func->template_arguments,
12985 template_args.data (),
12986 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12988 /* Make sure that the symtab is set on the new symbols. Even
12989 though they don't appear in this symtab directly, other parts
12990 of gdb assume that symbols do, and this is reasonably
12992 for (symbol *sym : template_args)
12993 symbol_set_symtab (sym, symbol_symtab (templ_func));
12996 /* In C++, we can have functions nested inside functions (e.g., when
12997 a function declares a class that has methods). This means that
12998 when we finish processing a function scope, we may need to go
12999 back to building a containing block's symbol lists. */
13000 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13001 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13003 /* If we've finished processing a top-level function, subsequent
13004 symbols go in the file symbol list. */
13005 if (cu->get_builder ()->outermost_context_p ())
13006 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13009 /* Process all the DIES contained within a lexical block scope. Start
13010 a new scope, process the dies, and then close the scope. */
13013 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13015 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13016 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13017 CORE_ADDR lowpc, highpc;
13018 struct die_info *child_die;
13019 CORE_ADDR baseaddr;
13021 baseaddr = objfile->text_section_offset ();
13023 /* Ignore blocks with missing or invalid low and high pc attributes. */
13024 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13025 as multiple lexical blocks? Handling children in a sane way would
13026 be nasty. Might be easier to properly extend generic blocks to
13027 describe ranges. */
13028 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13030 case PC_BOUNDS_NOT_PRESENT:
13031 /* DW_TAG_lexical_block has no attributes, process its children as if
13032 there was no wrapping by that DW_TAG_lexical_block.
13033 GCC does no longer produces such DWARF since GCC r224161. */
13034 for (child_die = die->child;
13035 child_die != NULL && child_die->tag;
13036 child_die = sibling_die (child_die))
13037 process_die (child_die, cu);
13039 case PC_BOUNDS_INVALID:
13042 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13043 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13045 cu->get_builder ()->push_context (0, lowpc);
13046 if (die->child != NULL)
13048 child_die = die->child;
13049 while (child_die && child_die->tag)
13051 process_die (child_die, cu);
13052 child_die = sibling_die (child_die);
13055 inherit_abstract_dies (die, cu);
13056 struct context_stack cstk = cu->get_builder ()->pop_context ();
13058 if (*cu->get_builder ()->get_local_symbols () != NULL
13059 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13061 struct block *block
13062 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13063 cstk.start_addr, highpc);
13065 /* Note that recording ranges after traversing children, as we
13066 do here, means that recording a parent's ranges entails
13067 walking across all its children's ranges as they appear in
13068 the address map, which is quadratic behavior.
13070 It would be nicer to record the parent's ranges before
13071 traversing its children, simply overriding whatever you find
13072 there. But since we don't even decide whether to create a
13073 block until after we've traversed its children, that's hard
13075 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13077 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13078 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13081 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13084 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13086 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13088 CORE_ADDR pc, baseaddr;
13089 struct attribute *attr;
13090 struct call_site *call_site, call_site_local;
13093 struct die_info *child_die;
13095 baseaddr = objfile->text_section_offset ();
13097 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13100 /* This was a pre-DWARF-5 GNU extension alias
13101 for DW_AT_call_return_pc. */
13102 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13106 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13107 "DIE %s [in module %s]"),
13108 sect_offset_str (die->sect_off), objfile_name (objfile));
13111 pc = attr->value_as_address () + baseaddr;
13112 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13114 if (cu->call_site_htab == NULL)
13115 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13116 NULL, &objfile->objfile_obstack,
13117 hashtab_obstack_allocate, NULL);
13118 call_site_local.pc = pc;
13119 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13122 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13123 "DIE %s [in module %s]"),
13124 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13125 objfile_name (objfile));
13129 /* Count parameters at the caller. */
13132 for (child_die = die->child; child_die && child_die->tag;
13133 child_die = sibling_die (child_die))
13135 if (child_die->tag != DW_TAG_call_site_parameter
13136 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13138 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13139 "DW_TAG_call_site child DIE %s [in module %s]"),
13140 child_die->tag, sect_offset_str (child_die->sect_off),
13141 objfile_name (objfile));
13149 = ((struct call_site *)
13150 obstack_alloc (&objfile->objfile_obstack,
13151 sizeof (*call_site)
13152 + (sizeof (*call_site->parameter) * (nparams - 1))));
13154 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13155 call_site->pc = pc;
13157 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13158 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13160 struct die_info *func_die;
13162 /* Skip also over DW_TAG_inlined_subroutine. */
13163 for (func_die = die->parent;
13164 func_die && func_die->tag != DW_TAG_subprogram
13165 && func_die->tag != DW_TAG_subroutine_type;
13166 func_die = func_die->parent);
13168 /* DW_AT_call_all_calls is a superset
13169 of DW_AT_call_all_tail_calls. */
13171 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13172 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13173 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13174 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13176 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13177 not complete. But keep CALL_SITE for look ups via call_site_htab,
13178 both the initial caller containing the real return address PC and
13179 the final callee containing the current PC of a chain of tail
13180 calls do not need to have the tail call list complete. But any
13181 function candidate for a virtual tail call frame searched via
13182 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13183 determined unambiguously. */
13187 struct type *func_type = NULL;
13190 func_type = get_die_type (func_die, cu);
13191 if (func_type != NULL)
13193 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13195 /* Enlist this call site to the function. */
13196 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13197 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13200 complaint (_("Cannot find function owning DW_TAG_call_site "
13201 "DIE %s [in module %s]"),
13202 sect_offset_str (die->sect_off), objfile_name (objfile));
13206 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13208 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13210 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13213 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13216 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13217 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13218 /* Keep NULL DWARF_BLOCK. */;
13219 else if (attr->form_is_block ())
13221 struct dwarf2_locexpr_baton *dlbaton;
13223 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13224 dlbaton->data = DW_BLOCK (attr)->data;
13225 dlbaton->size = DW_BLOCK (attr)->size;
13226 dlbaton->per_cu = cu->per_cu;
13228 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13230 else if (attr->form_is_ref ())
13232 struct dwarf2_cu *target_cu = cu;
13233 struct die_info *target_die;
13235 target_die = follow_die_ref (die, attr, &target_cu);
13236 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13237 if (die_is_declaration (target_die, target_cu))
13239 const char *target_physname;
13241 /* Prefer the mangled name; otherwise compute the demangled one. */
13242 target_physname = dw2_linkage_name (target_die, target_cu);
13243 if (target_physname == NULL)
13244 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13245 if (target_physname == NULL)
13246 complaint (_("DW_AT_call_target target DIE has invalid "
13247 "physname, for referencing DIE %s [in module %s]"),
13248 sect_offset_str (die->sect_off), objfile_name (objfile));
13250 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13256 /* DW_AT_entry_pc should be preferred. */
13257 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13258 <= PC_BOUNDS_INVALID)
13259 complaint (_("DW_AT_call_target target DIE has invalid "
13260 "low pc, for referencing DIE %s [in module %s]"),
13261 sect_offset_str (die->sect_off), objfile_name (objfile));
13264 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13265 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13270 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13271 "block nor reference, for DIE %s [in module %s]"),
13272 sect_offset_str (die->sect_off), objfile_name (objfile));
13274 call_site->per_cu = cu->per_cu;
13276 for (child_die = die->child;
13277 child_die && child_die->tag;
13278 child_die = sibling_die (child_die))
13280 struct call_site_parameter *parameter;
13281 struct attribute *loc, *origin;
13283 if (child_die->tag != DW_TAG_call_site_parameter
13284 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13286 /* Already printed the complaint above. */
13290 gdb_assert (call_site->parameter_count < nparams);
13291 parameter = &call_site->parameter[call_site->parameter_count];
13293 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13294 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13295 register is contained in DW_AT_call_value. */
13297 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13298 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13299 if (origin == NULL)
13301 /* This was a pre-DWARF-5 GNU extension alias
13302 for DW_AT_call_parameter. */
13303 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13305 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13307 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13309 sect_offset sect_off
13310 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13311 if (!cu->header.offset_in_cu_p (sect_off))
13313 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13314 binding can be done only inside one CU. Such referenced DIE
13315 therefore cannot be even moved to DW_TAG_partial_unit. */
13316 complaint (_("DW_AT_call_parameter offset is not in CU for "
13317 "DW_TAG_call_site child DIE %s [in module %s]"),
13318 sect_offset_str (child_die->sect_off),
13319 objfile_name (objfile));
13322 parameter->u.param_cu_off
13323 = (cu_offset) (sect_off - cu->header.sect_off);
13325 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13327 complaint (_("No DW_FORM_block* DW_AT_location for "
13328 "DW_TAG_call_site child DIE %s [in module %s]"),
13329 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13334 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13335 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13336 if (parameter->u.dwarf_reg != -1)
13337 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13338 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13339 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13340 ¶meter->u.fb_offset))
13341 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13344 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13345 "for DW_FORM_block* DW_AT_location is supported for "
13346 "DW_TAG_call_site child DIE %s "
13348 sect_offset_str (child_die->sect_off),
13349 objfile_name (objfile));
13354 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13356 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13357 if (attr == NULL || !attr->form_is_block ())
13359 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13360 "DW_TAG_call_site child DIE %s [in module %s]"),
13361 sect_offset_str (child_die->sect_off),
13362 objfile_name (objfile));
13365 parameter->value = DW_BLOCK (attr)->data;
13366 parameter->value_size = DW_BLOCK (attr)->size;
13368 /* Parameters are not pre-cleared by memset above. */
13369 parameter->data_value = NULL;
13370 parameter->data_value_size = 0;
13371 call_site->parameter_count++;
13373 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13375 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13376 if (attr != nullptr)
13378 if (!attr->form_is_block ())
13379 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13380 "DW_TAG_call_site child DIE %s [in module %s]"),
13381 sect_offset_str (child_die->sect_off),
13382 objfile_name (objfile));
13385 parameter->data_value = DW_BLOCK (attr)->data;
13386 parameter->data_value_size = DW_BLOCK (attr)->size;
13392 /* Helper function for read_variable. If DIE represents a virtual
13393 table, then return the type of the concrete object that is
13394 associated with the virtual table. Otherwise, return NULL. */
13396 static struct type *
13397 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13399 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13403 /* Find the type DIE. */
13404 struct die_info *type_die = NULL;
13405 struct dwarf2_cu *type_cu = cu;
13407 if (attr->form_is_ref ())
13408 type_die = follow_die_ref (die, attr, &type_cu);
13409 if (type_die == NULL)
13412 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13414 return die_containing_type (type_die, type_cu);
13417 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13420 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13422 struct rust_vtable_symbol *storage = NULL;
13424 if (cu->language == language_rust)
13426 struct type *containing_type = rust_containing_type (die, cu);
13428 if (containing_type != NULL)
13430 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13432 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13433 initialize_objfile_symbol (storage);
13434 storage->concrete_type = containing_type;
13435 storage->subclass = SYMBOL_RUST_VTABLE;
13439 struct symbol *res = new_symbol (die, NULL, cu, storage);
13440 struct attribute *abstract_origin
13441 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13442 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13443 if (res == NULL && loc && abstract_origin)
13445 /* We have a variable without a name, but with a location and an abstract
13446 origin. This may be a concrete instance of an abstract variable
13447 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13449 struct dwarf2_cu *origin_cu = cu;
13450 struct die_info *origin_die
13451 = follow_die_ref (die, abstract_origin, &origin_cu);
13452 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13453 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13457 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13458 reading .debug_rnglists.
13459 Callback's type should be:
13460 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13461 Return true if the attributes are present and valid, otherwise,
13464 template <typename Callback>
13466 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13467 Callback &&callback)
13469 struct dwarf2_per_objfile *dwarf2_per_objfile
13470 = cu->per_cu->dwarf2_per_objfile;
13471 struct objfile *objfile = dwarf2_per_objfile->objfile;
13472 bfd *obfd = objfile->obfd;
13473 /* Base address selection entry. */
13476 const gdb_byte *buffer;
13477 CORE_ADDR baseaddr;
13478 bool overflow = false;
13480 found_base = cu->base_known;
13481 base = cu->base_address;
13483 dwarf2_per_objfile->rnglists.read (objfile);
13484 if (offset >= dwarf2_per_objfile->rnglists.size)
13486 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13490 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13492 baseaddr = objfile->text_section_offset ();
13496 /* Initialize it due to a false compiler warning. */
13497 CORE_ADDR range_beginning = 0, range_end = 0;
13498 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13499 + dwarf2_per_objfile->rnglists.size);
13500 unsigned int bytes_read;
13502 if (buffer == buf_end)
13507 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13510 case DW_RLE_end_of_list:
13512 case DW_RLE_base_address:
13513 if (buffer + cu->header.addr_size > buf_end)
13518 base = cu->header.read_address (obfd, buffer, &bytes_read);
13520 buffer += bytes_read;
13522 case DW_RLE_start_length:
13523 if (buffer + cu->header.addr_size > buf_end)
13528 range_beginning = cu->header.read_address (obfd, buffer,
13530 buffer += bytes_read;
13531 range_end = (range_beginning
13532 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13533 buffer += bytes_read;
13534 if (buffer > buf_end)
13540 case DW_RLE_offset_pair:
13541 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13542 buffer += bytes_read;
13543 if (buffer > buf_end)
13548 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13549 buffer += bytes_read;
13550 if (buffer > buf_end)
13556 case DW_RLE_start_end:
13557 if (buffer + 2 * cu->header.addr_size > buf_end)
13562 range_beginning = cu->header.read_address (obfd, buffer,
13564 buffer += bytes_read;
13565 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13566 buffer += bytes_read;
13569 complaint (_("Invalid .debug_rnglists data (no base address)"));
13572 if (rlet == DW_RLE_end_of_list || overflow)
13574 if (rlet == DW_RLE_base_address)
13579 /* We have no valid base address for the ranges
13581 complaint (_("Invalid .debug_rnglists data (no base address)"));
13585 if (range_beginning > range_end)
13587 /* Inverted range entries are invalid. */
13588 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13592 /* Empty range entries have no effect. */
13593 if (range_beginning == range_end)
13596 range_beginning += base;
13599 /* A not-uncommon case of bad debug info.
13600 Don't pollute the addrmap with bad data. */
13601 if (range_beginning + baseaddr == 0
13602 && !dwarf2_per_objfile->has_section_at_zero)
13604 complaint (_(".debug_rnglists entry has start address of zero"
13605 " [in module %s]"), objfile_name (objfile));
13609 callback (range_beginning, range_end);
13614 complaint (_("Offset %d is not terminated "
13615 "for DW_AT_ranges attribute"),
13623 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13624 Callback's type should be:
13625 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13626 Return 1 if the attributes are present and valid, otherwise, return 0. */
13628 template <typename Callback>
13630 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13631 Callback &&callback)
13633 struct dwarf2_per_objfile *dwarf2_per_objfile
13634 = cu->per_cu->dwarf2_per_objfile;
13635 struct objfile *objfile = dwarf2_per_objfile->objfile;
13636 struct comp_unit_head *cu_header = &cu->header;
13637 bfd *obfd = objfile->obfd;
13638 unsigned int addr_size = cu_header->addr_size;
13639 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13640 /* Base address selection entry. */
13643 unsigned int dummy;
13644 const gdb_byte *buffer;
13645 CORE_ADDR baseaddr;
13647 if (cu_header->version >= 5)
13648 return dwarf2_rnglists_process (offset, cu, callback);
13650 found_base = cu->base_known;
13651 base = cu->base_address;
13653 dwarf2_per_objfile->ranges.read (objfile);
13654 if (offset >= dwarf2_per_objfile->ranges.size)
13656 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13660 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13662 baseaddr = objfile->text_section_offset ();
13666 CORE_ADDR range_beginning, range_end;
13668 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13669 buffer += addr_size;
13670 range_end = cu->header.read_address (obfd, buffer, &dummy);
13671 buffer += addr_size;
13672 offset += 2 * addr_size;
13674 /* An end of list marker is a pair of zero addresses. */
13675 if (range_beginning == 0 && range_end == 0)
13676 /* Found the end of list entry. */
13679 /* Each base address selection entry is a pair of 2 values.
13680 The first is the largest possible address, the second is
13681 the base address. Check for a base address here. */
13682 if ((range_beginning & mask) == mask)
13684 /* If we found the largest possible address, then we already
13685 have the base address in range_end. */
13693 /* We have no valid base address for the ranges
13695 complaint (_("Invalid .debug_ranges data (no base address)"));
13699 if (range_beginning > range_end)
13701 /* Inverted range entries are invalid. */
13702 complaint (_("Invalid .debug_ranges data (inverted range)"));
13706 /* Empty range entries have no effect. */
13707 if (range_beginning == range_end)
13710 range_beginning += base;
13713 /* A not-uncommon case of bad debug info.
13714 Don't pollute the addrmap with bad data. */
13715 if (range_beginning + baseaddr == 0
13716 && !dwarf2_per_objfile->has_section_at_zero)
13718 complaint (_(".debug_ranges entry has start address of zero"
13719 " [in module %s]"), objfile_name (objfile));
13723 callback (range_beginning, range_end);
13729 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13730 Return 1 if the attributes are present and valid, otherwise, return 0.
13731 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13734 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13735 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13736 dwarf2_psymtab *ranges_pst)
13738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13740 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13743 CORE_ADDR high = 0;
13746 retval = dwarf2_ranges_process (offset, cu,
13747 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13749 if (ranges_pst != NULL)
13754 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13755 range_beginning + baseaddr)
13757 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13758 range_end + baseaddr)
13760 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13761 lowpc, highpc - 1, ranges_pst);
13764 /* FIXME: This is recording everything as a low-high
13765 segment of consecutive addresses. We should have a
13766 data structure for discontiguous block ranges
13770 low = range_beginning;
13776 if (range_beginning < low)
13777 low = range_beginning;
13778 if (range_end > high)
13786 /* If the first entry is an end-of-list marker, the range
13787 describes an empty scope, i.e. no instructions. */
13793 *high_return = high;
13797 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13798 definition for the return value. *LOWPC and *HIGHPC are set iff
13799 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13801 static enum pc_bounds_kind
13802 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13803 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13804 dwarf2_psymtab *pst)
13806 struct dwarf2_per_objfile *dwarf2_per_objfile
13807 = cu->per_cu->dwarf2_per_objfile;
13808 struct attribute *attr;
13809 struct attribute *attr_high;
13811 CORE_ADDR high = 0;
13812 enum pc_bounds_kind ret;
13814 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13817 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13818 if (attr != nullptr)
13820 low = attr->value_as_address ();
13821 high = attr_high->value_as_address ();
13822 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13826 /* Found high w/o low attribute. */
13827 return PC_BOUNDS_INVALID;
13829 /* Found consecutive range of addresses. */
13830 ret = PC_BOUNDS_HIGH_LOW;
13834 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13837 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13838 We take advantage of the fact that DW_AT_ranges does not appear
13839 in DW_TAG_compile_unit of DWO files. */
13840 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13841 unsigned int ranges_offset = (DW_UNSND (attr)
13842 + (need_ranges_base
13846 /* Value of the DW_AT_ranges attribute is the offset in the
13847 .debug_ranges section. */
13848 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13849 return PC_BOUNDS_INVALID;
13850 /* Found discontinuous range of addresses. */
13851 ret = PC_BOUNDS_RANGES;
13854 return PC_BOUNDS_NOT_PRESENT;
13857 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13859 return PC_BOUNDS_INVALID;
13861 /* When using the GNU linker, .gnu.linkonce. sections are used to
13862 eliminate duplicate copies of functions and vtables and such.
13863 The linker will arbitrarily choose one and discard the others.
13864 The AT_*_pc values for such functions refer to local labels in
13865 these sections. If the section from that file was discarded, the
13866 labels are not in the output, so the relocs get a value of 0.
13867 If this is a discarded function, mark the pc bounds as invalid,
13868 so that GDB will ignore it. */
13869 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13870 return PC_BOUNDS_INVALID;
13878 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13879 its low and high PC addresses. Do nothing if these addresses could not
13880 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13881 and HIGHPC to the high address if greater than HIGHPC. */
13884 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13885 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13886 struct dwarf2_cu *cu)
13888 CORE_ADDR low, high;
13889 struct die_info *child = die->child;
13891 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13893 *lowpc = std::min (*lowpc, low);
13894 *highpc = std::max (*highpc, high);
13897 /* If the language does not allow nested subprograms (either inside
13898 subprograms or lexical blocks), we're done. */
13899 if (cu->language != language_ada)
13902 /* Check all the children of the given DIE. If it contains nested
13903 subprograms, then check their pc bounds. Likewise, we need to
13904 check lexical blocks as well, as they may also contain subprogram
13906 while (child && child->tag)
13908 if (child->tag == DW_TAG_subprogram
13909 || child->tag == DW_TAG_lexical_block)
13910 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13911 child = sibling_die (child);
13915 /* Get the low and high pc's represented by the scope DIE, and store
13916 them in *LOWPC and *HIGHPC. If the correct values can't be
13917 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13920 get_scope_pc_bounds (struct die_info *die,
13921 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13922 struct dwarf2_cu *cu)
13924 CORE_ADDR best_low = (CORE_ADDR) -1;
13925 CORE_ADDR best_high = (CORE_ADDR) 0;
13926 CORE_ADDR current_low, current_high;
13928 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
13929 >= PC_BOUNDS_RANGES)
13931 best_low = current_low;
13932 best_high = current_high;
13936 struct die_info *child = die->child;
13938 while (child && child->tag)
13940 switch (child->tag) {
13941 case DW_TAG_subprogram:
13942 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13944 case DW_TAG_namespace:
13945 case DW_TAG_module:
13946 /* FIXME: carlton/2004-01-16: Should we do this for
13947 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13948 that current GCC's always emit the DIEs corresponding
13949 to definitions of methods of classes as children of a
13950 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13951 the DIEs giving the declarations, which could be
13952 anywhere). But I don't see any reason why the
13953 standards says that they have to be there. */
13954 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
13956 if (current_low != ((CORE_ADDR) -1))
13958 best_low = std::min (best_low, current_low);
13959 best_high = std::max (best_high, current_high);
13967 child = sibling_die (child);
13972 *highpc = best_high;
13975 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13979 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13980 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13984 struct attribute *attr;
13985 struct attribute *attr_high;
13987 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13990 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13991 if (attr != nullptr)
13993 CORE_ADDR low = attr->value_as_address ();
13994 CORE_ADDR high = attr_high->value_as_address ();
13996 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13999 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14000 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14001 cu->get_builder ()->record_block_range (block, low, high - 1);
14005 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14006 if (attr != nullptr)
14008 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14009 We take advantage of the fact that DW_AT_ranges does not appear
14010 in DW_TAG_compile_unit of DWO files. */
14011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14013 /* The value of the DW_AT_ranges attribute is the offset of the
14014 address range list in the .debug_ranges section. */
14015 unsigned long offset = (DW_UNSND (attr)
14016 + (need_ranges_base ? cu->ranges_base : 0));
14018 std::vector<blockrange> blockvec;
14019 dwarf2_ranges_process (offset, cu,
14020 [&] (CORE_ADDR start, CORE_ADDR end)
14024 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14025 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14026 cu->get_builder ()->record_block_range (block, start, end - 1);
14027 blockvec.emplace_back (start, end);
14030 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14034 /* Check whether the producer field indicates either of GCC < 4.6, or the
14035 Intel C/C++ compiler, and cache the result in CU. */
14038 check_producer (struct dwarf2_cu *cu)
14042 if (cu->producer == NULL)
14044 /* For unknown compilers expect their behavior is DWARF version
14047 GCC started to support .debug_types sections by -gdwarf-4 since
14048 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14049 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14050 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14051 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14053 else if (producer_is_gcc (cu->producer, &major, &minor))
14055 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14056 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14058 else if (producer_is_icc (cu->producer, &major, &minor))
14060 cu->producer_is_icc = true;
14061 cu->producer_is_icc_lt_14 = major < 14;
14063 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14064 cu->producer_is_codewarrior = true;
14067 /* For other non-GCC compilers, expect their behavior is DWARF version
14071 cu->checked_producer = true;
14074 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14075 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14076 during 4.6.0 experimental. */
14079 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14081 if (!cu->checked_producer)
14082 check_producer (cu);
14084 return cu->producer_is_gxx_lt_4_6;
14088 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14089 with incorrect is_stmt attributes. */
14092 producer_is_codewarrior (struct dwarf2_cu *cu)
14094 if (!cu->checked_producer)
14095 check_producer (cu);
14097 return cu->producer_is_codewarrior;
14100 /* Return the default accessibility type if it is not overridden by
14101 DW_AT_accessibility. */
14103 static enum dwarf_access_attribute
14104 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14106 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14108 /* The default DWARF 2 accessibility for members is public, the default
14109 accessibility for inheritance is private. */
14111 if (die->tag != DW_TAG_inheritance)
14112 return DW_ACCESS_public;
14114 return DW_ACCESS_private;
14118 /* DWARF 3+ defines the default accessibility a different way. The same
14119 rules apply now for DW_TAG_inheritance as for the members and it only
14120 depends on the container kind. */
14122 if (die->parent->tag == DW_TAG_class_type)
14123 return DW_ACCESS_private;
14125 return DW_ACCESS_public;
14129 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14130 offset. If the attribute was not found return 0, otherwise return
14131 1. If it was found but could not properly be handled, set *OFFSET
14135 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14138 struct attribute *attr;
14140 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14145 /* Note that we do not check for a section offset first here.
14146 This is because DW_AT_data_member_location is new in DWARF 4,
14147 so if we see it, we can assume that a constant form is really
14148 a constant and not a section offset. */
14149 if (attr->form_is_constant ())
14150 *offset = dwarf2_get_attr_constant_value (attr, 0);
14151 else if (attr->form_is_section_offset ())
14152 dwarf2_complex_location_expr_complaint ();
14153 else if (attr->form_is_block ())
14154 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14156 dwarf2_complex_location_expr_complaint ();
14164 /* Add an aggregate field to the field list. */
14167 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14168 struct dwarf2_cu *cu)
14170 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14171 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14172 struct nextfield *new_field;
14173 struct attribute *attr;
14175 const char *fieldname = "";
14177 if (die->tag == DW_TAG_inheritance)
14179 fip->baseclasses.emplace_back ();
14180 new_field = &fip->baseclasses.back ();
14184 fip->fields.emplace_back ();
14185 new_field = &fip->fields.back ();
14190 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14191 if (attr != nullptr)
14192 new_field->accessibility = DW_UNSND (attr);
14194 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14195 if (new_field->accessibility != DW_ACCESS_public)
14196 fip->non_public_fields = 1;
14198 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14199 if (attr != nullptr)
14200 new_field->virtuality = DW_UNSND (attr);
14202 new_field->virtuality = DW_VIRTUALITY_none;
14204 fp = &new_field->field;
14206 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14210 /* Data member other than a C++ static data member. */
14212 /* Get type of field. */
14213 fp->type = die_type (die, cu);
14215 SET_FIELD_BITPOS (*fp, 0);
14217 /* Get bit size of field (zero if none). */
14218 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14219 if (attr != nullptr)
14221 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14225 FIELD_BITSIZE (*fp) = 0;
14228 /* Get bit offset of field. */
14229 if (handle_data_member_location (die, cu, &offset))
14230 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14231 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14232 if (attr != nullptr)
14234 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14236 /* For big endian bits, the DW_AT_bit_offset gives the
14237 additional bit offset from the MSB of the containing
14238 anonymous object to the MSB of the field. We don't
14239 have to do anything special since we don't need to
14240 know the size of the anonymous object. */
14241 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14245 /* For little endian bits, compute the bit offset to the
14246 MSB of the anonymous object, subtract off the number of
14247 bits from the MSB of the field to the MSB of the
14248 object, and then subtract off the number of bits of
14249 the field itself. The result is the bit offset of
14250 the LSB of the field. */
14251 int anonymous_size;
14252 int bit_offset = DW_UNSND (attr);
14254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14255 if (attr != nullptr)
14257 /* The size of the anonymous object containing
14258 the bit field is explicit, so use the
14259 indicated size (in bytes). */
14260 anonymous_size = DW_UNSND (attr);
14264 /* The size of the anonymous object containing
14265 the bit field must be inferred from the type
14266 attribute of the data member containing the
14268 anonymous_size = TYPE_LENGTH (fp->type);
14270 SET_FIELD_BITPOS (*fp,
14271 (FIELD_BITPOS (*fp)
14272 + anonymous_size * bits_per_byte
14273 - bit_offset - FIELD_BITSIZE (*fp)));
14276 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14278 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14279 + dwarf2_get_attr_constant_value (attr, 0)));
14281 /* Get name of field. */
14282 fieldname = dwarf2_name (die, cu);
14283 if (fieldname == NULL)
14286 /* The name is already allocated along with this objfile, so we don't
14287 need to duplicate it for the type. */
14288 fp->name = fieldname;
14290 /* Change accessibility for artificial fields (e.g. virtual table
14291 pointer or virtual base class pointer) to private. */
14292 if (dwarf2_attr (die, DW_AT_artificial, cu))
14294 FIELD_ARTIFICIAL (*fp) = 1;
14295 new_field->accessibility = DW_ACCESS_private;
14296 fip->non_public_fields = 1;
14299 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14301 /* C++ static member. */
14303 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14304 is a declaration, but all versions of G++ as of this writing
14305 (so through at least 3.2.1) incorrectly generate
14306 DW_TAG_variable tags. */
14308 const char *physname;
14310 /* Get name of field. */
14311 fieldname = dwarf2_name (die, cu);
14312 if (fieldname == NULL)
14315 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14317 /* Only create a symbol if this is an external value.
14318 new_symbol checks this and puts the value in the global symbol
14319 table, which we want. If it is not external, new_symbol
14320 will try to put the value in cu->list_in_scope which is wrong. */
14321 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14323 /* A static const member, not much different than an enum as far as
14324 we're concerned, except that we can support more types. */
14325 new_symbol (die, NULL, cu);
14328 /* Get physical name. */
14329 physname = dwarf2_physname (fieldname, die, cu);
14331 /* The name is already allocated along with this objfile, so we don't
14332 need to duplicate it for the type. */
14333 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14334 FIELD_TYPE (*fp) = die_type (die, cu);
14335 FIELD_NAME (*fp) = fieldname;
14337 else if (die->tag == DW_TAG_inheritance)
14341 /* C++ base class field. */
14342 if (handle_data_member_location (die, cu, &offset))
14343 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14344 FIELD_BITSIZE (*fp) = 0;
14345 FIELD_TYPE (*fp) = die_type (die, cu);
14346 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14348 else if (die->tag == DW_TAG_variant_part)
14350 /* process_structure_scope will treat this DIE as a union. */
14351 process_structure_scope (die, cu);
14353 /* The variant part is relative to the start of the enclosing
14355 SET_FIELD_BITPOS (*fp, 0);
14356 fp->type = get_die_type (die, cu);
14357 fp->artificial = 1;
14358 fp->name = "<<variant>>";
14360 /* Normally a DW_TAG_variant_part won't have a size, but our
14361 representation requires one, so set it to the maximum of the
14362 child sizes, being sure to account for the offset at which
14363 each child is seen. */
14364 if (TYPE_LENGTH (fp->type) == 0)
14367 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14369 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14370 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14374 TYPE_LENGTH (fp->type) = max;
14378 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14381 /* Can the type given by DIE define another type? */
14384 type_can_define_types (const struct die_info *die)
14388 case DW_TAG_typedef:
14389 case DW_TAG_class_type:
14390 case DW_TAG_structure_type:
14391 case DW_TAG_union_type:
14392 case DW_TAG_enumeration_type:
14400 /* Add a type definition defined in the scope of the FIP's class. */
14403 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14404 struct dwarf2_cu *cu)
14406 struct decl_field fp;
14407 memset (&fp, 0, sizeof (fp));
14409 gdb_assert (type_can_define_types (die));
14411 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14412 fp.name = dwarf2_name (die, cu);
14413 fp.type = read_type_die (die, cu);
14415 /* Save accessibility. */
14416 enum dwarf_access_attribute accessibility;
14417 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14419 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14421 accessibility = dwarf2_default_access_attribute (die, cu);
14422 switch (accessibility)
14424 case DW_ACCESS_public:
14425 /* The assumed value if neither private nor protected. */
14427 case DW_ACCESS_private:
14430 case DW_ACCESS_protected:
14431 fp.is_protected = 1;
14434 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14437 if (die->tag == DW_TAG_typedef)
14438 fip->typedef_field_list.push_back (fp);
14440 fip->nested_types_list.push_back (fp);
14443 /* Create the vector of fields, and attach it to the type. */
14446 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14447 struct dwarf2_cu *cu)
14449 int nfields = fip->nfields;
14451 /* Record the field count, allocate space for the array of fields,
14452 and create blank accessibility bitfields if necessary. */
14453 TYPE_NFIELDS (type) = nfields;
14454 TYPE_FIELDS (type) = (struct field *)
14455 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14457 if (fip->non_public_fields && cu->language != language_ada)
14459 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14461 TYPE_FIELD_PRIVATE_BITS (type) =
14462 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14463 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14465 TYPE_FIELD_PROTECTED_BITS (type) =
14466 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14467 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14469 TYPE_FIELD_IGNORE_BITS (type) =
14470 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14471 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14474 /* If the type has baseclasses, allocate and clear a bit vector for
14475 TYPE_FIELD_VIRTUAL_BITS. */
14476 if (!fip->baseclasses.empty () && cu->language != language_ada)
14478 int num_bytes = B_BYTES (fip->baseclasses.size ());
14479 unsigned char *pointer;
14481 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14482 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14483 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14484 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14485 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14488 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14490 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14492 for (int index = 0; index < nfields; ++index)
14494 struct nextfield &field = fip->fields[index];
14496 if (field.variant.is_discriminant)
14497 di->discriminant_index = index;
14498 else if (field.variant.default_branch)
14499 di->default_index = index;
14501 di->discriminants[index] = field.variant.discriminant_value;
14505 /* Copy the saved-up fields into the field vector. */
14506 for (int i = 0; i < nfields; ++i)
14508 struct nextfield &field
14509 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14510 : fip->fields[i - fip->baseclasses.size ()]);
14512 TYPE_FIELD (type, i) = field.field;
14513 switch (field.accessibility)
14515 case DW_ACCESS_private:
14516 if (cu->language != language_ada)
14517 SET_TYPE_FIELD_PRIVATE (type, i);
14520 case DW_ACCESS_protected:
14521 if (cu->language != language_ada)
14522 SET_TYPE_FIELD_PROTECTED (type, i);
14525 case DW_ACCESS_public:
14529 /* Unknown accessibility. Complain and treat it as public. */
14531 complaint (_("unsupported accessibility %d"),
14532 field.accessibility);
14536 if (i < fip->baseclasses.size ())
14538 switch (field.virtuality)
14540 case DW_VIRTUALITY_virtual:
14541 case DW_VIRTUALITY_pure_virtual:
14542 if (cu->language == language_ada)
14543 error (_("unexpected virtuality in component of Ada type"));
14544 SET_TYPE_FIELD_VIRTUAL (type, i);
14551 /* Return true if this member function is a constructor, false
14555 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14557 const char *fieldname;
14558 const char *type_name;
14561 if (die->parent == NULL)
14564 if (die->parent->tag != DW_TAG_structure_type
14565 && die->parent->tag != DW_TAG_union_type
14566 && die->parent->tag != DW_TAG_class_type)
14569 fieldname = dwarf2_name (die, cu);
14570 type_name = dwarf2_name (die->parent, cu);
14571 if (fieldname == NULL || type_name == NULL)
14574 len = strlen (fieldname);
14575 return (strncmp (fieldname, type_name, len) == 0
14576 && (type_name[len] == '\0' || type_name[len] == '<'));
14579 /* Check if the given VALUE is a recognized enum
14580 dwarf_defaulted_attribute constant according to DWARF5 spec,
14584 is_valid_DW_AT_defaulted (ULONGEST value)
14588 case DW_DEFAULTED_no:
14589 case DW_DEFAULTED_in_class:
14590 case DW_DEFAULTED_out_of_class:
14594 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14598 /* Add a member function to the proper fieldlist. */
14601 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14602 struct type *type, struct dwarf2_cu *cu)
14604 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14605 struct attribute *attr;
14607 struct fnfieldlist *flp = nullptr;
14608 struct fn_field *fnp;
14609 const char *fieldname;
14610 struct type *this_type;
14611 enum dwarf_access_attribute accessibility;
14613 if (cu->language == language_ada)
14614 error (_("unexpected member function in Ada type"));
14616 /* Get name of member function. */
14617 fieldname = dwarf2_name (die, cu);
14618 if (fieldname == NULL)
14621 /* Look up member function name in fieldlist. */
14622 for (i = 0; i < fip->fnfieldlists.size (); i++)
14624 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14626 flp = &fip->fnfieldlists[i];
14631 /* Create a new fnfieldlist if necessary. */
14632 if (flp == nullptr)
14634 fip->fnfieldlists.emplace_back ();
14635 flp = &fip->fnfieldlists.back ();
14636 flp->name = fieldname;
14637 i = fip->fnfieldlists.size () - 1;
14640 /* Create a new member function field and add it to the vector of
14642 flp->fnfields.emplace_back ();
14643 fnp = &flp->fnfields.back ();
14645 /* Delay processing of the physname until later. */
14646 if (cu->language == language_cplus)
14647 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14651 const char *physname = dwarf2_physname (fieldname, die, cu);
14652 fnp->physname = physname ? physname : "";
14655 fnp->type = alloc_type (objfile);
14656 this_type = read_type_die (die, cu);
14657 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14659 int nparams = TYPE_NFIELDS (this_type);
14661 /* TYPE is the domain of this method, and THIS_TYPE is the type
14662 of the method itself (TYPE_CODE_METHOD). */
14663 smash_to_method_type (fnp->type, type,
14664 TYPE_TARGET_TYPE (this_type),
14665 TYPE_FIELDS (this_type),
14666 TYPE_NFIELDS (this_type),
14667 TYPE_VARARGS (this_type));
14669 /* Handle static member functions.
14670 Dwarf2 has no clean way to discern C++ static and non-static
14671 member functions. G++ helps GDB by marking the first
14672 parameter for non-static member functions (which is the this
14673 pointer) as artificial. We obtain this information from
14674 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14675 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14676 fnp->voffset = VOFFSET_STATIC;
14679 complaint (_("member function type missing for '%s'"),
14680 dwarf2_full_name (fieldname, die, cu));
14682 /* Get fcontext from DW_AT_containing_type if present. */
14683 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14684 fnp->fcontext = die_containing_type (die, cu);
14686 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14687 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14689 /* Get accessibility. */
14690 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14691 if (attr != nullptr)
14692 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14694 accessibility = dwarf2_default_access_attribute (die, cu);
14695 switch (accessibility)
14697 case DW_ACCESS_private:
14698 fnp->is_private = 1;
14700 case DW_ACCESS_protected:
14701 fnp->is_protected = 1;
14705 /* Check for artificial methods. */
14706 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14707 if (attr && DW_UNSND (attr) != 0)
14708 fnp->is_artificial = 1;
14710 /* Check for defaulted methods. */
14711 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14712 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14713 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14715 /* Check for deleted methods. */
14716 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14717 if (attr != nullptr && DW_UNSND (attr) != 0)
14718 fnp->is_deleted = 1;
14720 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14722 /* Get index in virtual function table if it is a virtual member
14723 function. For older versions of GCC, this is an offset in the
14724 appropriate virtual table, as specified by DW_AT_containing_type.
14725 For everyone else, it is an expression to be evaluated relative
14726 to the object address. */
14728 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14729 if (attr != nullptr)
14731 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14733 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14735 /* Old-style GCC. */
14736 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14738 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14739 || (DW_BLOCK (attr)->size > 1
14740 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14741 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14743 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14744 if ((fnp->voffset % cu->header.addr_size) != 0)
14745 dwarf2_complex_location_expr_complaint ();
14747 fnp->voffset /= cu->header.addr_size;
14751 dwarf2_complex_location_expr_complaint ();
14753 if (!fnp->fcontext)
14755 /* If there is no `this' field and no DW_AT_containing_type,
14756 we cannot actually find a base class context for the
14758 if (TYPE_NFIELDS (this_type) == 0
14759 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14761 complaint (_("cannot determine context for virtual member "
14762 "function \"%s\" (offset %s)"),
14763 fieldname, sect_offset_str (die->sect_off));
14768 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14772 else if (attr->form_is_section_offset ())
14774 dwarf2_complex_location_expr_complaint ();
14778 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14784 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14785 if (attr && DW_UNSND (attr))
14787 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14788 complaint (_("Member function \"%s\" (offset %s) is virtual "
14789 "but the vtable offset is not specified"),
14790 fieldname, sect_offset_str (die->sect_off));
14791 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14792 TYPE_CPLUS_DYNAMIC (type) = 1;
14797 /* Create the vector of member function fields, and attach it to the type. */
14800 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14801 struct dwarf2_cu *cu)
14803 if (cu->language == language_ada)
14804 error (_("unexpected member functions in Ada type"));
14806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14807 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14809 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14811 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14813 struct fnfieldlist &nf = fip->fnfieldlists[i];
14814 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14816 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14817 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14818 fn_flp->fn_fields = (struct fn_field *)
14819 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14821 for (int k = 0; k < nf.fnfields.size (); ++k)
14822 fn_flp->fn_fields[k] = nf.fnfields[k];
14825 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14828 /* Returns non-zero if NAME is the name of a vtable member in CU's
14829 language, zero otherwise. */
14831 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14833 static const char vptr[] = "_vptr";
14835 /* Look for the C++ form of the vtable. */
14836 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14842 /* GCC outputs unnamed structures that are really pointers to member
14843 functions, with the ABI-specified layout. If TYPE describes
14844 such a structure, smash it into a member function type.
14846 GCC shouldn't do this; it should just output pointer to member DIEs.
14847 This is GCC PR debug/28767. */
14850 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14852 struct type *pfn_type, *self_type, *new_type;
14854 /* Check for a structure with no name and two children. */
14855 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14858 /* Check for __pfn and __delta members. */
14859 if (TYPE_FIELD_NAME (type, 0) == NULL
14860 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14861 || TYPE_FIELD_NAME (type, 1) == NULL
14862 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14865 /* Find the type of the method. */
14866 pfn_type = TYPE_FIELD_TYPE (type, 0);
14867 if (pfn_type == NULL
14868 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14869 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14872 /* Look for the "this" argument. */
14873 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14874 if (TYPE_NFIELDS (pfn_type) == 0
14875 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14876 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14879 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14880 new_type = alloc_type (objfile);
14881 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14882 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14883 TYPE_VARARGS (pfn_type));
14884 smash_to_methodptr_type (type, new_type);
14887 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14888 appropriate error checking and issuing complaints if there is a
14892 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14894 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14896 if (attr == nullptr)
14899 if (!attr->form_is_constant ())
14901 complaint (_("DW_AT_alignment must have constant form"
14902 " - DIE at %s [in module %s]"),
14903 sect_offset_str (die->sect_off),
14904 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14909 if (attr->form == DW_FORM_sdata)
14911 LONGEST val = DW_SND (attr);
14914 complaint (_("DW_AT_alignment value must not be negative"
14915 " - DIE at %s [in module %s]"),
14916 sect_offset_str (die->sect_off),
14917 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14923 align = DW_UNSND (attr);
14927 complaint (_("DW_AT_alignment value must not be zero"
14928 " - DIE at %s [in module %s]"),
14929 sect_offset_str (die->sect_off),
14930 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14933 if ((align & (align - 1)) != 0)
14935 complaint (_("DW_AT_alignment value must be a power of 2"
14936 " - DIE at %s [in module %s]"),
14937 sect_offset_str (die->sect_off),
14938 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14945 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14946 the alignment for TYPE. */
14949 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14952 if (!set_type_align (type, get_alignment (cu, die)))
14953 complaint (_("DW_AT_alignment value too large"
14954 " - DIE at %s [in module %s]"),
14955 sect_offset_str (die->sect_off),
14956 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14959 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14960 constant for a type, according to DWARF5 spec, Table 5.5. */
14963 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14968 case DW_CC_pass_by_reference:
14969 case DW_CC_pass_by_value:
14973 complaint (_("unrecognized DW_AT_calling_convention value "
14974 "(%s) for a type"), pulongest (value));
14979 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14980 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
14981 also according to GNU-specific values (see include/dwarf2.h). */
14984 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
14989 case DW_CC_program:
14993 case DW_CC_GNU_renesas_sh:
14994 case DW_CC_GNU_borland_fastcall_i386:
14995 case DW_CC_GDB_IBM_OpenCL:
14999 complaint (_("unrecognized DW_AT_calling_convention value "
15000 "(%s) for a subroutine"), pulongest (value));
15005 /* Called when we find the DIE that starts a structure or union scope
15006 (definition) to create a type for the structure or union. Fill in
15007 the type's name and general properties; the members will not be
15008 processed until process_structure_scope. A symbol table entry for
15009 the type will also not be done until process_structure_scope (assuming
15010 the type has a name).
15012 NOTE: we need to call these functions regardless of whether or not the
15013 DIE has a DW_AT_name attribute, since it might be an anonymous
15014 structure or union. This gets the type entered into our set of
15015 user defined types. */
15017 static struct type *
15018 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15020 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15022 struct attribute *attr;
15025 /* If the definition of this type lives in .debug_types, read that type.
15026 Don't follow DW_AT_specification though, that will take us back up
15027 the chain and we want to go down. */
15028 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15029 if (attr != nullptr)
15031 type = get_DW_AT_signature_type (die, attr, cu);
15033 /* The type's CU may not be the same as CU.
15034 Ensure TYPE is recorded with CU in die_type_hash. */
15035 return set_die_type (die, type, cu);
15038 type = alloc_type (objfile);
15039 INIT_CPLUS_SPECIFIC (type);
15041 name = dwarf2_name (die, cu);
15044 if (cu->language == language_cplus
15045 || cu->language == language_d
15046 || cu->language == language_rust)
15048 const char *full_name = dwarf2_full_name (name, die, cu);
15050 /* dwarf2_full_name might have already finished building the DIE's
15051 type. If so, there is no need to continue. */
15052 if (get_die_type (die, cu) != NULL)
15053 return get_die_type (die, cu);
15055 TYPE_NAME (type) = full_name;
15059 /* The name is already allocated along with this objfile, so
15060 we don't need to duplicate it for the type. */
15061 TYPE_NAME (type) = name;
15065 if (die->tag == DW_TAG_structure_type)
15067 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15069 else if (die->tag == DW_TAG_union_type)
15071 TYPE_CODE (type) = TYPE_CODE_UNION;
15073 else if (die->tag == DW_TAG_variant_part)
15075 TYPE_CODE (type) = TYPE_CODE_UNION;
15076 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15080 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15083 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15084 TYPE_DECLARED_CLASS (type) = 1;
15086 /* Store the calling convention in the type if it's available in
15087 the die. Otherwise the calling convention remains set to
15088 the default value DW_CC_normal. */
15089 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15090 if (attr != nullptr
15091 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15093 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15094 TYPE_CPLUS_CALLING_CONVENTION (type)
15095 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15099 if (attr != nullptr)
15101 if (attr->form_is_constant ())
15102 TYPE_LENGTH (type) = DW_UNSND (attr);
15105 /* For the moment, dynamic type sizes are not supported
15106 by GDB's struct type. The actual size is determined
15107 on-demand when resolving the type of a given object,
15108 so set the type's length to zero for now. Otherwise,
15109 we record an expression as the length, and that expression
15110 could lead to a very large value, which could eventually
15111 lead to us trying to allocate that much memory when creating
15112 a value of that type. */
15113 TYPE_LENGTH (type) = 0;
15118 TYPE_LENGTH (type) = 0;
15121 maybe_set_alignment (cu, die, type);
15123 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15125 /* ICC<14 does not output the required DW_AT_declaration on
15126 incomplete types, but gives them a size of zero. */
15127 TYPE_STUB (type) = 1;
15130 TYPE_STUB_SUPPORTED (type) = 1;
15132 if (die_is_declaration (die, cu))
15133 TYPE_STUB (type) = 1;
15134 else if (attr == NULL && die->child == NULL
15135 && producer_is_realview (cu->producer))
15136 /* RealView does not output the required DW_AT_declaration
15137 on incomplete types. */
15138 TYPE_STUB (type) = 1;
15140 /* We need to add the type field to the die immediately so we don't
15141 infinitely recurse when dealing with pointers to the structure
15142 type within the structure itself. */
15143 set_die_type (die, type, cu);
15145 /* set_die_type should be already done. */
15146 set_descriptive_type (type, die, cu);
15151 /* A helper for process_structure_scope that handles a single member
15155 handle_struct_member_die (struct die_info *child_die, struct type *type,
15156 struct field_info *fi,
15157 std::vector<struct symbol *> *template_args,
15158 struct dwarf2_cu *cu)
15160 if (child_die->tag == DW_TAG_member
15161 || child_die->tag == DW_TAG_variable
15162 || child_die->tag == DW_TAG_variant_part)
15164 /* NOTE: carlton/2002-11-05: A C++ static data member
15165 should be a DW_TAG_member that is a declaration, but
15166 all versions of G++ as of this writing (so through at
15167 least 3.2.1) incorrectly generate DW_TAG_variable
15168 tags for them instead. */
15169 dwarf2_add_field (fi, child_die, cu);
15171 else if (child_die->tag == DW_TAG_subprogram)
15173 /* Rust doesn't have member functions in the C++ sense.
15174 However, it does emit ordinary functions as children
15175 of a struct DIE. */
15176 if (cu->language == language_rust)
15177 read_func_scope (child_die, cu);
15180 /* C++ member function. */
15181 dwarf2_add_member_fn (fi, child_die, type, cu);
15184 else if (child_die->tag == DW_TAG_inheritance)
15186 /* C++ base class field. */
15187 dwarf2_add_field (fi, child_die, cu);
15189 else if (type_can_define_types (child_die))
15190 dwarf2_add_type_defn (fi, child_die, cu);
15191 else if (child_die->tag == DW_TAG_template_type_param
15192 || child_die->tag == DW_TAG_template_value_param)
15194 struct symbol *arg = new_symbol (child_die, NULL, cu);
15197 template_args->push_back (arg);
15199 else if (child_die->tag == DW_TAG_variant)
15201 /* In a variant we want to get the discriminant and also add a
15202 field for our sole member child. */
15203 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15205 for (die_info *variant_child = child_die->child;
15206 variant_child != NULL;
15207 variant_child = sibling_die (variant_child))
15209 if (variant_child->tag == DW_TAG_member)
15211 handle_struct_member_die (variant_child, type, fi,
15212 template_args, cu);
15213 /* Only handle the one. */
15218 /* We don't handle this but we might as well report it if we see
15220 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15221 complaint (_("DW_AT_discr_list is not supported yet"
15222 " - DIE at %s [in module %s]"),
15223 sect_offset_str (child_die->sect_off),
15224 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15226 /* The first field was just added, so we can stash the
15227 discriminant there. */
15228 gdb_assert (!fi->fields.empty ());
15230 fi->fields.back ().variant.default_branch = true;
15232 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15236 /* Finish creating a structure or union type, including filling in
15237 its members and creating a symbol for it. */
15240 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15243 struct die_info *child_die;
15246 type = get_die_type (die, cu);
15248 type = read_structure_type (die, cu);
15250 /* When reading a DW_TAG_variant_part, we need to notice when we
15251 read the discriminant member, so we can record it later in the
15252 discriminant_info. */
15253 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15254 sect_offset discr_offset {};
15255 bool has_template_parameters = false;
15257 if (is_variant_part)
15259 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15262 /* Maybe it's a univariant form, an extension we support.
15263 In this case arrange not to check the offset. */
15264 is_variant_part = false;
15266 else if (discr->form_is_ref ())
15268 struct dwarf2_cu *target_cu = cu;
15269 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15271 discr_offset = target_die->sect_off;
15275 complaint (_("DW_AT_discr does not have DIE reference form"
15276 " - DIE at %s [in module %s]"),
15277 sect_offset_str (die->sect_off),
15278 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15279 is_variant_part = false;
15283 if (die->child != NULL && ! die_is_declaration (die, cu))
15285 struct field_info fi;
15286 std::vector<struct symbol *> template_args;
15288 child_die = die->child;
15290 while (child_die && child_die->tag)
15292 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15294 if (is_variant_part && discr_offset == child_die->sect_off)
15295 fi.fields.back ().variant.is_discriminant = true;
15297 child_die = sibling_die (child_die);
15300 /* Attach template arguments to type. */
15301 if (!template_args.empty ())
15303 has_template_parameters = true;
15304 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15305 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15306 TYPE_TEMPLATE_ARGUMENTS (type)
15307 = XOBNEWVEC (&objfile->objfile_obstack,
15309 TYPE_N_TEMPLATE_ARGUMENTS (type));
15310 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15311 template_args.data (),
15312 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15313 * sizeof (struct symbol *)));
15316 /* Attach fields and member functions to the type. */
15318 dwarf2_attach_fields_to_type (&fi, type, cu);
15319 if (!fi.fnfieldlists.empty ())
15321 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15323 /* Get the type which refers to the base class (possibly this
15324 class itself) which contains the vtable pointer for the current
15325 class from the DW_AT_containing_type attribute. This use of
15326 DW_AT_containing_type is a GNU extension. */
15328 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15330 struct type *t = die_containing_type (die, cu);
15332 set_type_vptr_basetype (type, t);
15337 /* Our own class provides vtbl ptr. */
15338 for (i = TYPE_NFIELDS (t) - 1;
15339 i >= TYPE_N_BASECLASSES (t);
15342 const char *fieldname = TYPE_FIELD_NAME (t, i);
15344 if (is_vtable_name (fieldname, cu))
15346 set_type_vptr_fieldno (type, i);
15351 /* Complain if virtual function table field not found. */
15352 if (i < TYPE_N_BASECLASSES (t))
15353 complaint (_("virtual function table pointer "
15354 "not found when defining class '%s'"),
15355 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15359 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15362 else if (cu->producer
15363 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15365 /* The IBM XLC compiler does not provide direct indication
15366 of the containing type, but the vtable pointer is
15367 always named __vfp. */
15371 for (i = TYPE_NFIELDS (type) - 1;
15372 i >= TYPE_N_BASECLASSES (type);
15375 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15377 set_type_vptr_fieldno (type, i);
15378 set_type_vptr_basetype (type, type);
15385 /* Copy fi.typedef_field_list linked list elements content into the
15386 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15387 if (!fi.typedef_field_list.empty ())
15389 int count = fi.typedef_field_list.size ();
15391 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15392 TYPE_TYPEDEF_FIELD_ARRAY (type)
15393 = ((struct decl_field *)
15395 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15396 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15398 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15399 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15402 /* Copy fi.nested_types_list linked list elements content into the
15403 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15404 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15406 int count = fi.nested_types_list.size ();
15408 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15409 TYPE_NESTED_TYPES_ARRAY (type)
15410 = ((struct decl_field *)
15411 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15412 TYPE_NESTED_TYPES_COUNT (type) = count;
15414 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15415 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15419 quirk_gcc_member_function_pointer (type, objfile);
15420 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15421 cu->rust_unions.push_back (type);
15423 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15424 snapshots) has been known to create a die giving a declaration
15425 for a class that has, as a child, a die giving a definition for a
15426 nested class. So we have to process our children even if the
15427 current die is a declaration. Normally, of course, a declaration
15428 won't have any children at all. */
15430 child_die = die->child;
15432 while (child_die != NULL && child_die->tag)
15434 if (child_die->tag == DW_TAG_member
15435 || child_die->tag == DW_TAG_variable
15436 || child_die->tag == DW_TAG_inheritance
15437 || child_die->tag == DW_TAG_template_value_param
15438 || child_die->tag == DW_TAG_template_type_param)
15443 process_die (child_die, cu);
15445 child_die = sibling_die (child_die);
15448 /* Do not consider external references. According to the DWARF standard,
15449 these DIEs are identified by the fact that they have no byte_size
15450 attribute, and a declaration attribute. */
15451 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15452 || !die_is_declaration (die, cu))
15454 struct symbol *sym = new_symbol (die, type, cu);
15456 if (has_template_parameters)
15458 struct symtab *symtab;
15459 if (sym != nullptr)
15460 symtab = symbol_symtab (sym);
15461 else if (cu->line_header != nullptr)
15463 /* Any related symtab will do. */
15465 = cu->line_header->file_names ()[0].symtab;
15470 complaint (_("could not find suitable "
15471 "symtab for template parameter"
15472 " - DIE at %s [in module %s]"),
15473 sect_offset_str (die->sect_off),
15474 objfile_name (objfile));
15477 if (symtab != nullptr)
15479 /* Make sure that the symtab is set on the new symbols.
15480 Even though they don't appear in this symtab directly,
15481 other parts of gdb assume that symbols do, and this is
15482 reasonably true. */
15483 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15484 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15490 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15491 update TYPE using some information only available in DIE's children. */
15494 update_enumeration_type_from_children (struct die_info *die,
15496 struct dwarf2_cu *cu)
15498 struct die_info *child_die;
15499 int unsigned_enum = 1;
15502 auto_obstack obstack;
15504 for (child_die = die->child;
15505 child_die != NULL && child_die->tag;
15506 child_die = sibling_die (child_die))
15508 struct attribute *attr;
15510 const gdb_byte *bytes;
15511 struct dwarf2_locexpr_baton *baton;
15514 if (child_die->tag != DW_TAG_enumerator)
15517 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15521 name = dwarf2_name (child_die, cu);
15523 name = "<anonymous enumerator>";
15525 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15526 &value, &bytes, &baton);
15534 if (count_one_bits_ll (value) >= 2)
15538 /* If we already know that the enum type is neither unsigned, nor
15539 a flag type, no need to look at the rest of the enumerates. */
15540 if (!unsigned_enum && !flag_enum)
15545 TYPE_UNSIGNED (type) = 1;
15547 TYPE_FLAG_ENUM (type) = 1;
15550 /* Given a DW_AT_enumeration_type die, set its type. We do not
15551 complete the type's fields yet, or create any symbols. */
15553 static struct type *
15554 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15556 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15558 struct attribute *attr;
15561 /* If the definition of this type lives in .debug_types, read that type.
15562 Don't follow DW_AT_specification though, that will take us back up
15563 the chain and we want to go down. */
15564 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15565 if (attr != nullptr)
15567 type = get_DW_AT_signature_type (die, attr, cu);
15569 /* The type's CU may not be the same as CU.
15570 Ensure TYPE is recorded with CU in die_type_hash. */
15571 return set_die_type (die, type, cu);
15574 type = alloc_type (objfile);
15576 TYPE_CODE (type) = TYPE_CODE_ENUM;
15577 name = dwarf2_full_name (NULL, die, cu);
15579 TYPE_NAME (type) = name;
15581 attr = dwarf2_attr (die, DW_AT_type, cu);
15584 struct type *underlying_type = die_type (die, cu);
15586 TYPE_TARGET_TYPE (type) = underlying_type;
15589 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15590 if (attr != nullptr)
15592 TYPE_LENGTH (type) = DW_UNSND (attr);
15596 TYPE_LENGTH (type) = 0;
15599 maybe_set_alignment (cu, die, type);
15601 /* The enumeration DIE can be incomplete. In Ada, any type can be
15602 declared as private in the package spec, and then defined only
15603 inside the package body. Such types are known as Taft Amendment
15604 Types. When another package uses such a type, an incomplete DIE
15605 may be generated by the compiler. */
15606 if (die_is_declaration (die, cu))
15607 TYPE_STUB (type) = 1;
15609 /* Finish the creation of this type by using the enum's children.
15610 We must call this even when the underlying type has been provided
15611 so that we can determine if we're looking at a "flag" enum. */
15612 update_enumeration_type_from_children (die, type, cu);
15614 /* If this type has an underlying type that is not a stub, then we
15615 may use its attributes. We always use the "unsigned" attribute
15616 in this situation, because ordinarily we guess whether the type
15617 is unsigned -- but the guess can be wrong and the underlying type
15618 can tell us the reality. However, we defer to a local size
15619 attribute if one exists, because this lets the compiler override
15620 the underlying type if needed. */
15621 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15623 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15624 if (TYPE_LENGTH (type) == 0)
15625 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15626 if (TYPE_RAW_ALIGN (type) == 0
15627 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
15628 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
15631 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15633 return set_die_type (die, type, cu);
15636 /* Given a pointer to a die which begins an enumeration, process all
15637 the dies that define the members of the enumeration, and create the
15638 symbol for the enumeration type.
15640 NOTE: We reverse the order of the element list. */
15643 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15645 struct type *this_type;
15647 this_type = get_die_type (die, cu);
15648 if (this_type == NULL)
15649 this_type = read_enumeration_type (die, cu);
15651 if (die->child != NULL)
15653 struct die_info *child_die;
15654 struct symbol *sym;
15655 std::vector<struct field> fields;
15658 child_die = die->child;
15659 while (child_die && child_die->tag)
15661 if (child_die->tag != DW_TAG_enumerator)
15663 process_die (child_die, cu);
15667 name = dwarf2_name (child_die, cu);
15670 sym = new_symbol (child_die, this_type, cu);
15672 fields.emplace_back ();
15673 struct field &field = fields.back ();
15675 FIELD_NAME (field) = sym->linkage_name ();
15676 FIELD_TYPE (field) = NULL;
15677 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15678 FIELD_BITSIZE (field) = 0;
15682 child_die = sibling_die (child_die);
15685 if (!fields.empty ())
15687 TYPE_NFIELDS (this_type) = fields.size ();
15688 TYPE_FIELDS (this_type) = (struct field *)
15689 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15690 memcpy (TYPE_FIELDS (this_type), fields.data (),
15691 sizeof (struct field) * fields.size ());
15695 /* If we are reading an enum from a .debug_types unit, and the enum
15696 is a declaration, and the enum is not the signatured type in the
15697 unit, then we do not want to add a symbol for it. Adding a
15698 symbol would in some cases obscure the true definition of the
15699 enum, giving users an incomplete type when the definition is
15700 actually available. Note that we do not want to do this for all
15701 enums which are just declarations, because C++0x allows forward
15702 enum declarations. */
15703 if (cu->per_cu->is_debug_types
15704 && die_is_declaration (die, cu))
15706 struct signatured_type *sig_type;
15708 sig_type = (struct signatured_type *) cu->per_cu;
15709 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15710 if (sig_type->type_offset_in_section != die->sect_off)
15714 new_symbol (die, this_type, cu);
15717 /* Extract all information from a DW_TAG_array_type DIE and put it in
15718 the DIE's type field. For now, this only handles one dimensional
15721 static struct type *
15722 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15725 struct die_info *child_die;
15727 struct type *element_type, *range_type, *index_type;
15728 struct attribute *attr;
15730 struct dynamic_prop *byte_stride_prop = NULL;
15731 unsigned int bit_stride = 0;
15733 element_type = die_type (die, cu);
15735 /* The die_type call above may have already set the type for this DIE. */
15736 type = get_die_type (die, cu);
15740 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15744 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15747 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15748 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15752 complaint (_("unable to read array DW_AT_byte_stride "
15753 " - DIE at %s [in module %s]"),
15754 sect_offset_str (die->sect_off),
15755 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15756 /* Ignore this attribute. We will likely not be able to print
15757 arrays of this type correctly, but there is little we can do
15758 to help if we cannot read the attribute's value. */
15759 byte_stride_prop = NULL;
15763 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15765 bit_stride = DW_UNSND (attr);
15767 /* Irix 6.2 native cc creates array types without children for
15768 arrays with unspecified length. */
15769 if (die->child == NULL)
15771 index_type = objfile_type (objfile)->builtin_int;
15772 range_type = create_static_range_type (NULL, index_type, 0, -1);
15773 type = create_array_type_with_stride (NULL, element_type, range_type,
15774 byte_stride_prop, bit_stride);
15775 return set_die_type (die, type, cu);
15778 std::vector<struct type *> range_types;
15779 child_die = die->child;
15780 while (child_die && child_die->tag)
15782 if (child_die->tag == DW_TAG_subrange_type)
15784 struct type *child_type = read_type_die (child_die, cu);
15786 if (child_type != NULL)
15788 /* The range type was succesfully read. Save it for the
15789 array type creation. */
15790 range_types.push_back (child_type);
15793 child_die = sibling_die (child_die);
15796 /* Dwarf2 dimensions are output from left to right, create the
15797 necessary array types in backwards order. */
15799 type = element_type;
15801 if (read_array_order (die, cu) == DW_ORD_col_major)
15805 while (i < range_types.size ())
15806 type = create_array_type_with_stride (NULL, type, range_types[i++],
15807 byte_stride_prop, bit_stride);
15811 size_t ndim = range_types.size ();
15813 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15814 byte_stride_prop, bit_stride);
15817 /* Understand Dwarf2 support for vector types (like they occur on
15818 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15819 array type. This is not part of the Dwarf2/3 standard yet, but a
15820 custom vendor extension. The main difference between a regular
15821 array and the vector variant is that vectors are passed by value
15823 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15824 if (attr != nullptr)
15825 make_vector_type (type);
15827 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15828 implementation may choose to implement triple vectors using this
15830 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15831 if (attr != nullptr)
15833 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15834 TYPE_LENGTH (type) = DW_UNSND (attr);
15836 complaint (_("DW_AT_byte_size for array type smaller "
15837 "than the total size of elements"));
15840 name = dwarf2_name (die, cu);
15842 TYPE_NAME (type) = name;
15844 maybe_set_alignment (cu, die, type);
15846 /* Install the type in the die. */
15847 set_die_type (die, type, cu);
15849 /* set_die_type should be already done. */
15850 set_descriptive_type (type, die, cu);
15855 static enum dwarf_array_dim_ordering
15856 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15858 struct attribute *attr;
15860 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15862 if (attr != nullptr)
15863 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15865 /* GNU F77 is a special case, as at 08/2004 array type info is the
15866 opposite order to the dwarf2 specification, but data is still
15867 laid out as per normal fortran.
15869 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15870 version checking. */
15872 if (cu->language == language_fortran
15873 && cu->producer && strstr (cu->producer, "GNU F77"))
15875 return DW_ORD_row_major;
15878 switch (cu->language_defn->la_array_ordering)
15880 case array_column_major:
15881 return DW_ORD_col_major;
15882 case array_row_major:
15884 return DW_ORD_row_major;
15888 /* Extract all information from a DW_TAG_set_type DIE and put it in
15889 the DIE's type field. */
15891 static struct type *
15892 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15894 struct type *domain_type, *set_type;
15895 struct attribute *attr;
15897 domain_type = die_type (die, cu);
15899 /* The die_type call above may have already set the type for this DIE. */
15900 set_type = get_die_type (die, cu);
15904 set_type = create_set_type (NULL, domain_type);
15906 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15907 if (attr != nullptr)
15908 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15910 maybe_set_alignment (cu, die, set_type);
15912 return set_die_type (die, set_type, cu);
15915 /* A helper for read_common_block that creates a locexpr baton.
15916 SYM is the symbol which we are marking as computed.
15917 COMMON_DIE is the DIE for the common block.
15918 COMMON_LOC is the location expression attribute for the common
15920 MEMBER_LOC is the location expression attribute for the particular
15921 member of the common block that we are processing.
15922 CU is the CU from which the above come. */
15925 mark_common_block_symbol_computed (struct symbol *sym,
15926 struct die_info *common_die,
15927 struct attribute *common_loc,
15928 struct attribute *member_loc,
15929 struct dwarf2_cu *cu)
15931 struct dwarf2_per_objfile *dwarf2_per_objfile
15932 = cu->per_cu->dwarf2_per_objfile;
15933 struct objfile *objfile = dwarf2_per_objfile->objfile;
15934 struct dwarf2_locexpr_baton *baton;
15936 unsigned int cu_off;
15937 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15938 LONGEST offset = 0;
15940 gdb_assert (common_loc && member_loc);
15941 gdb_assert (common_loc->form_is_block ());
15942 gdb_assert (member_loc->form_is_block ()
15943 || member_loc->form_is_constant ());
15945 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15946 baton->per_cu = cu->per_cu;
15947 gdb_assert (baton->per_cu);
15949 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15951 if (member_loc->form_is_constant ())
15953 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15954 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15957 baton->size += DW_BLOCK (member_loc)->size;
15959 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15962 *ptr++ = DW_OP_call4;
15963 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15964 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15967 if (member_loc->form_is_constant ())
15969 *ptr++ = DW_OP_addr;
15970 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15971 ptr += cu->header.addr_size;
15975 /* We have to copy the data here, because DW_OP_call4 will only
15976 use a DW_AT_location attribute. */
15977 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15978 ptr += DW_BLOCK (member_loc)->size;
15981 *ptr++ = DW_OP_plus;
15982 gdb_assert (ptr - baton->data == baton->size);
15984 SYMBOL_LOCATION_BATON (sym) = baton;
15985 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
15988 /* Create appropriate locally-scoped variables for all the
15989 DW_TAG_common_block entries. Also create a struct common_block
15990 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
15991 is used to separate the common blocks name namespace from regular
15995 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
15997 struct attribute *attr;
15999 attr = dwarf2_attr (die, DW_AT_location, cu);
16000 if (attr != nullptr)
16002 /* Support the .debug_loc offsets. */
16003 if (attr->form_is_block ())
16007 else if (attr->form_is_section_offset ())
16009 dwarf2_complex_location_expr_complaint ();
16014 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16015 "common block member");
16020 if (die->child != NULL)
16022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16023 struct die_info *child_die;
16024 size_t n_entries = 0, size;
16025 struct common_block *common_block;
16026 struct symbol *sym;
16028 for (child_die = die->child;
16029 child_die && child_die->tag;
16030 child_die = sibling_die (child_die))
16033 size = (sizeof (struct common_block)
16034 + (n_entries - 1) * sizeof (struct symbol *));
16036 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16038 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16039 common_block->n_entries = 0;
16041 for (child_die = die->child;
16042 child_die && child_die->tag;
16043 child_die = sibling_die (child_die))
16045 /* Create the symbol in the DW_TAG_common_block block in the current
16047 sym = new_symbol (child_die, NULL, cu);
16050 struct attribute *member_loc;
16052 common_block->contents[common_block->n_entries++] = sym;
16054 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16058 /* GDB has handled this for a long time, but it is
16059 not specified by DWARF. It seems to have been
16060 emitted by gfortran at least as recently as:
16061 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16062 complaint (_("Variable in common block has "
16063 "DW_AT_data_member_location "
16064 "- DIE at %s [in module %s]"),
16065 sect_offset_str (child_die->sect_off),
16066 objfile_name (objfile));
16068 if (member_loc->form_is_section_offset ())
16069 dwarf2_complex_location_expr_complaint ();
16070 else if (member_loc->form_is_constant ()
16071 || member_loc->form_is_block ())
16073 if (attr != nullptr)
16074 mark_common_block_symbol_computed (sym, die, attr,
16078 dwarf2_complex_location_expr_complaint ();
16083 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16084 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16088 /* Create a type for a C++ namespace. */
16090 static struct type *
16091 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16093 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16094 const char *previous_prefix, *name;
16098 /* For extensions, reuse the type of the original namespace. */
16099 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16101 struct die_info *ext_die;
16102 struct dwarf2_cu *ext_cu = cu;
16104 ext_die = dwarf2_extension (die, &ext_cu);
16105 type = read_type_die (ext_die, ext_cu);
16107 /* EXT_CU may not be the same as CU.
16108 Ensure TYPE is recorded with CU in die_type_hash. */
16109 return set_die_type (die, type, cu);
16112 name = namespace_name (die, &is_anonymous, cu);
16114 /* Now build the name of the current namespace. */
16116 previous_prefix = determine_prefix (die, cu);
16117 if (previous_prefix[0] != '\0')
16118 name = typename_concat (&objfile->objfile_obstack,
16119 previous_prefix, name, 0, cu);
16121 /* Create the type. */
16122 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16124 return set_die_type (die, type, cu);
16127 /* Read a namespace scope. */
16130 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16135 /* Add a symbol associated to this if we haven't seen the namespace
16136 before. Also, add a using directive if it's an anonymous
16139 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16143 type = read_type_die (die, cu);
16144 new_symbol (die, type, cu);
16146 namespace_name (die, &is_anonymous, cu);
16149 const char *previous_prefix = determine_prefix (die, cu);
16151 std::vector<const char *> excludes;
16152 add_using_directive (using_directives (cu),
16153 previous_prefix, TYPE_NAME (type), NULL,
16154 NULL, excludes, 0, &objfile->objfile_obstack);
16158 if (die->child != NULL)
16160 struct die_info *child_die = die->child;
16162 while (child_die && child_die->tag)
16164 process_die (child_die, cu);
16165 child_die = sibling_die (child_die);
16170 /* Read a Fortran module as type. This DIE can be only a declaration used for
16171 imported module. Still we need that type as local Fortran "use ... only"
16172 declaration imports depend on the created type in determine_prefix. */
16174 static struct type *
16175 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16177 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16178 const char *module_name;
16181 module_name = dwarf2_name (die, cu);
16182 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16184 return set_die_type (die, type, cu);
16187 /* Read a Fortran module. */
16190 read_module (struct die_info *die, struct dwarf2_cu *cu)
16192 struct die_info *child_die = die->child;
16195 type = read_type_die (die, cu);
16196 new_symbol (die, type, cu);
16198 while (child_die && child_die->tag)
16200 process_die (child_die, cu);
16201 child_die = sibling_die (child_die);
16205 /* Return the name of the namespace represented by DIE. Set
16206 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16209 static const char *
16210 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16212 struct die_info *current_die;
16213 const char *name = NULL;
16215 /* Loop through the extensions until we find a name. */
16217 for (current_die = die;
16218 current_die != NULL;
16219 current_die = dwarf2_extension (die, &cu))
16221 /* We don't use dwarf2_name here so that we can detect the absence
16222 of a name -> anonymous namespace. */
16223 name = dwarf2_string_attr (die, DW_AT_name, cu);
16229 /* Is it an anonymous namespace? */
16231 *is_anonymous = (name == NULL);
16233 name = CP_ANONYMOUS_NAMESPACE_STR;
16238 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16239 the user defined type vector. */
16241 static struct type *
16242 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16244 struct gdbarch *gdbarch
16245 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16246 struct comp_unit_head *cu_header = &cu->header;
16248 struct attribute *attr_byte_size;
16249 struct attribute *attr_address_class;
16250 int byte_size, addr_class;
16251 struct type *target_type;
16253 target_type = die_type (die, cu);
16255 /* The die_type call above may have already set the type for this DIE. */
16256 type = get_die_type (die, cu);
16260 type = lookup_pointer_type (target_type);
16262 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16263 if (attr_byte_size)
16264 byte_size = DW_UNSND (attr_byte_size);
16266 byte_size = cu_header->addr_size;
16268 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16269 if (attr_address_class)
16270 addr_class = DW_UNSND (attr_address_class);
16272 addr_class = DW_ADDR_none;
16274 ULONGEST alignment = get_alignment (cu, die);
16276 /* If the pointer size, alignment, or address class is different
16277 than the default, create a type variant marked as such and set
16278 the length accordingly. */
16279 if (TYPE_LENGTH (type) != byte_size
16280 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16281 && alignment != TYPE_RAW_ALIGN (type))
16282 || addr_class != DW_ADDR_none)
16284 if (gdbarch_address_class_type_flags_p (gdbarch))
16288 type_flags = gdbarch_address_class_type_flags
16289 (gdbarch, byte_size, addr_class);
16290 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16292 type = make_type_with_address_space (type, type_flags);
16294 else if (TYPE_LENGTH (type) != byte_size)
16296 complaint (_("invalid pointer size %d"), byte_size);
16298 else if (TYPE_RAW_ALIGN (type) != alignment)
16300 complaint (_("Invalid DW_AT_alignment"
16301 " - DIE at %s [in module %s]"),
16302 sect_offset_str (die->sect_off),
16303 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16307 /* Should we also complain about unhandled address classes? */
16311 TYPE_LENGTH (type) = byte_size;
16312 set_type_align (type, alignment);
16313 return set_die_type (die, type, cu);
16316 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16317 the user defined type vector. */
16319 static struct type *
16320 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16323 struct type *to_type;
16324 struct type *domain;
16326 to_type = die_type (die, cu);
16327 domain = die_containing_type (die, cu);
16329 /* The calls above may have already set the type for this DIE. */
16330 type = get_die_type (die, cu);
16334 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16335 type = lookup_methodptr_type (to_type);
16336 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16338 struct type *new_type
16339 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16341 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16342 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16343 TYPE_VARARGS (to_type));
16344 type = lookup_methodptr_type (new_type);
16347 type = lookup_memberptr_type (to_type, domain);
16349 return set_die_type (die, type, cu);
16352 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16353 the user defined type vector. */
16355 static struct type *
16356 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16357 enum type_code refcode)
16359 struct comp_unit_head *cu_header = &cu->header;
16360 struct type *type, *target_type;
16361 struct attribute *attr;
16363 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16365 target_type = die_type (die, cu);
16367 /* The die_type call above may have already set the type for this DIE. */
16368 type = get_die_type (die, cu);
16372 type = lookup_reference_type (target_type, refcode);
16373 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16374 if (attr != nullptr)
16376 TYPE_LENGTH (type) = DW_UNSND (attr);
16380 TYPE_LENGTH (type) = cu_header->addr_size;
16382 maybe_set_alignment (cu, die, type);
16383 return set_die_type (die, type, cu);
16386 /* Add the given cv-qualifiers to the element type of the array. GCC
16387 outputs DWARF type qualifiers that apply to an array, not the
16388 element type. But GDB relies on the array element type to carry
16389 the cv-qualifiers. This mimics section 6.7.3 of the C99
16392 static struct type *
16393 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16394 struct type *base_type, int cnst, int voltl)
16396 struct type *el_type, *inner_array;
16398 base_type = copy_type (base_type);
16399 inner_array = base_type;
16401 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16403 TYPE_TARGET_TYPE (inner_array) =
16404 copy_type (TYPE_TARGET_TYPE (inner_array));
16405 inner_array = TYPE_TARGET_TYPE (inner_array);
16408 el_type = TYPE_TARGET_TYPE (inner_array);
16409 cnst |= TYPE_CONST (el_type);
16410 voltl |= TYPE_VOLATILE (el_type);
16411 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16413 return set_die_type (die, base_type, cu);
16416 static struct type *
16417 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16419 struct type *base_type, *cv_type;
16421 base_type = die_type (die, cu);
16423 /* The die_type call above may have already set the type for this DIE. */
16424 cv_type = get_die_type (die, cu);
16428 /* In case the const qualifier is applied to an array type, the element type
16429 is so qualified, not the array type (section 6.7.3 of C99). */
16430 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16431 return add_array_cv_type (die, cu, base_type, 1, 0);
16433 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16434 return set_die_type (die, cv_type, cu);
16437 static struct type *
16438 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16440 struct type *base_type, *cv_type;
16442 base_type = die_type (die, cu);
16444 /* The die_type call above may have already set the type for this DIE. */
16445 cv_type = get_die_type (die, cu);
16449 /* In case the volatile qualifier is applied to an array type, the
16450 element type is so qualified, not the array type (section 6.7.3
16452 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16453 return add_array_cv_type (die, cu, base_type, 0, 1);
16455 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16456 return set_die_type (die, cv_type, cu);
16459 /* Handle DW_TAG_restrict_type. */
16461 static struct type *
16462 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16464 struct type *base_type, *cv_type;
16466 base_type = die_type (die, cu);
16468 /* The die_type call above may have already set the type for this DIE. */
16469 cv_type = get_die_type (die, cu);
16473 cv_type = make_restrict_type (base_type);
16474 return set_die_type (die, cv_type, cu);
16477 /* Handle DW_TAG_atomic_type. */
16479 static struct type *
16480 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16482 struct type *base_type, *cv_type;
16484 base_type = die_type (die, cu);
16486 /* The die_type call above may have already set the type for this DIE. */
16487 cv_type = get_die_type (die, cu);
16491 cv_type = make_atomic_type (base_type);
16492 return set_die_type (die, cv_type, cu);
16495 /* Extract all information from a DW_TAG_string_type DIE and add to
16496 the user defined type vector. It isn't really a user defined type,
16497 but it behaves like one, with other DIE's using an AT_user_def_type
16498 attribute to reference it. */
16500 static struct type *
16501 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16503 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16504 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16505 struct type *type, *range_type, *index_type, *char_type;
16506 struct attribute *attr;
16507 struct dynamic_prop prop;
16508 bool length_is_constant = true;
16511 /* There are a couple of places where bit sizes might be made use of
16512 when parsing a DW_TAG_string_type, however, no producer that we know
16513 of make use of these. Handling bit sizes that are a multiple of the
16514 byte size is easy enough, but what about other bit sizes? Lets deal
16515 with that problem when we have to. Warn about these attributes being
16516 unsupported, then parse the type and ignore them like we always
16518 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16519 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16521 static bool warning_printed = false;
16522 if (!warning_printed)
16524 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16525 "currently supported on DW_TAG_string_type."));
16526 warning_printed = true;
16530 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16531 if (attr != nullptr && !attr->form_is_constant ())
16533 /* The string length describes the location at which the length of
16534 the string can be found. The size of the length field can be
16535 specified with one of the attributes below. */
16536 struct type *prop_type;
16537 struct attribute *len
16538 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16539 if (len == nullptr)
16540 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16541 if (len != nullptr && len->form_is_constant ())
16543 /* Pass 0 as the default as we know this attribute is constant
16544 and the default value will not be returned. */
16545 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16546 prop_type = cu->per_cu->int_type (sz, true);
16550 /* If the size is not specified then we assume it is the size of
16551 an address on this target. */
16552 prop_type = cu->per_cu->addr_sized_int_type (true);
16555 /* Convert the attribute into a dynamic property. */
16556 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16559 length_is_constant = false;
16561 else if (attr != nullptr)
16563 /* This DW_AT_string_length just contains the length with no
16564 indirection. There's no need to create a dynamic property in this
16565 case. Pass 0 for the default value as we know it will not be
16566 returned in this case. */
16567 length = dwarf2_get_attr_constant_value (attr, 0);
16569 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16571 /* We don't currently support non-constant byte sizes for strings. */
16572 length = dwarf2_get_attr_constant_value (attr, 1);
16576 /* Use 1 as a fallback length if we have nothing else. */
16580 index_type = objfile_type (objfile)->builtin_int;
16581 if (length_is_constant)
16582 range_type = create_static_range_type (NULL, index_type, 1, length);
16585 struct dynamic_prop low_bound;
16587 low_bound.kind = PROP_CONST;
16588 low_bound.data.const_val = 1;
16589 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16591 char_type = language_string_char_type (cu->language_defn, gdbarch);
16592 type = create_string_type (NULL, char_type, range_type);
16594 return set_die_type (die, type, cu);
16597 /* Assuming that DIE corresponds to a function, returns nonzero
16598 if the function is prototyped. */
16601 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16603 struct attribute *attr;
16605 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16606 if (attr && (DW_UNSND (attr) != 0))
16609 /* The DWARF standard implies that the DW_AT_prototyped attribute
16610 is only meaningful for C, but the concept also extends to other
16611 languages that allow unprototyped functions (Eg: Objective C).
16612 For all other languages, assume that functions are always
16614 if (cu->language != language_c
16615 && cu->language != language_objc
16616 && cu->language != language_opencl)
16619 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16620 prototyped and unprototyped functions; default to prototyped,
16621 since that is more common in modern code (and RealView warns
16622 about unprototyped functions). */
16623 if (producer_is_realview (cu->producer))
16629 /* Handle DIES due to C code like:
16633 int (*funcp)(int a, long l);
16637 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16639 static struct type *
16640 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16642 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16643 struct type *type; /* Type that this function returns. */
16644 struct type *ftype; /* Function that returns above type. */
16645 struct attribute *attr;
16647 type = die_type (die, cu);
16649 /* The die_type call above may have already set the type for this DIE. */
16650 ftype = get_die_type (die, cu);
16654 ftype = lookup_function_type (type);
16656 if (prototyped_function_p (die, cu))
16657 TYPE_PROTOTYPED (ftype) = 1;
16659 /* Store the calling convention in the type if it's available in
16660 the subroutine die. Otherwise set the calling convention to
16661 the default value DW_CC_normal. */
16662 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16663 if (attr != nullptr
16664 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16665 TYPE_CALLING_CONVENTION (ftype)
16666 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16667 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16668 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16670 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16672 /* Record whether the function returns normally to its caller or not
16673 if the DWARF producer set that information. */
16674 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16675 if (attr && (DW_UNSND (attr) != 0))
16676 TYPE_NO_RETURN (ftype) = 1;
16678 /* We need to add the subroutine type to the die immediately so
16679 we don't infinitely recurse when dealing with parameters
16680 declared as the same subroutine type. */
16681 set_die_type (die, ftype, cu);
16683 if (die->child != NULL)
16685 struct type *void_type = objfile_type (objfile)->builtin_void;
16686 struct die_info *child_die;
16687 int nparams, iparams;
16689 /* Count the number of parameters.
16690 FIXME: GDB currently ignores vararg functions, but knows about
16691 vararg member functions. */
16693 child_die = die->child;
16694 while (child_die && child_die->tag)
16696 if (child_die->tag == DW_TAG_formal_parameter)
16698 else if (child_die->tag == DW_TAG_unspecified_parameters)
16699 TYPE_VARARGS (ftype) = 1;
16700 child_die = sibling_die (child_die);
16703 /* Allocate storage for parameters and fill them in. */
16704 TYPE_NFIELDS (ftype) = nparams;
16705 TYPE_FIELDS (ftype) = (struct field *)
16706 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16708 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16709 even if we error out during the parameters reading below. */
16710 for (iparams = 0; iparams < nparams; iparams++)
16711 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16714 child_die = die->child;
16715 while (child_die && child_die->tag)
16717 if (child_die->tag == DW_TAG_formal_parameter)
16719 struct type *arg_type;
16721 /* DWARF version 2 has no clean way to discern C++
16722 static and non-static member functions. G++ helps
16723 GDB by marking the first parameter for non-static
16724 member functions (which is the this pointer) as
16725 artificial. We pass this information to
16726 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16728 DWARF version 3 added DW_AT_object_pointer, which GCC
16729 4.5 does not yet generate. */
16730 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16731 if (attr != nullptr)
16732 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16734 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16735 arg_type = die_type (child_die, cu);
16737 /* RealView does not mark THIS as const, which the testsuite
16738 expects. GCC marks THIS as const in method definitions,
16739 but not in the class specifications (GCC PR 43053). */
16740 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16741 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16744 struct dwarf2_cu *arg_cu = cu;
16745 const char *name = dwarf2_name (child_die, cu);
16747 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16748 if (attr != nullptr)
16750 /* If the compiler emits this, use it. */
16751 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16754 else if (name && strcmp (name, "this") == 0)
16755 /* Function definitions will have the argument names. */
16757 else if (name == NULL && iparams == 0)
16758 /* Declarations may not have the names, so like
16759 elsewhere in GDB, assume an artificial first
16760 argument is "this". */
16764 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16768 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16771 child_die = sibling_die (child_die);
16778 static struct type *
16779 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16781 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16782 const char *name = NULL;
16783 struct type *this_type, *target_type;
16785 name = dwarf2_full_name (NULL, die, cu);
16786 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16787 TYPE_TARGET_STUB (this_type) = 1;
16788 set_die_type (die, this_type, cu);
16789 target_type = die_type (die, cu);
16790 if (target_type != this_type)
16791 TYPE_TARGET_TYPE (this_type) = target_type;
16794 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16795 spec and cause infinite loops in GDB. */
16796 complaint (_("Self-referential DW_TAG_typedef "
16797 "- DIE at %s [in module %s]"),
16798 sect_offset_str (die->sect_off), objfile_name (objfile));
16799 TYPE_TARGET_TYPE (this_type) = NULL;
16804 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16805 (which may be different from NAME) to the architecture back-end to allow
16806 it to guess the correct format if necessary. */
16808 static struct type *
16809 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16810 const char *name_hint, enum bfd_endian byte_order)
16812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16813 const struct floatformat **format;
16816 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16818 type = init_float_type (objfile, bits, name, format, byte_order);
16820 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16825 /* Allocate an integer type of size BITS and name NAME. */
16827 static struct type *
16828 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16829 int bits, int unsigned_p, const char *name)
16833 /* Versions of Intel's C Compiler generate an integer type called "void"
16834 instead of using DW_TAG_unspecified_type. This has been seen on
16835 at least versions 14, 17, and 18. */
16836 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16837 && strcmp (name, "void") == 0)
16838 type = objfile_type (objfile)->builtin_void;
16840 type = init_integer_type (objfile, bits, unsigned_p, name);
16845 /* Initialise and return a floating point type of size BITS suitable for
16846 use as a component of a complex number. The NAME_HINT is passed through
16847 when initialising the floating point type and is the name of the complex
16850 As DWARF doesn't currently provide an explicit name for the components
16851 of a complex number, but it can be helpful to have these components
16852 named, we try to select a suitable name based on the size of the
16854 static struct type *
16855 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16856 struct objfile *objfile,
16857 int bits, const char *name_hint,
16858 enum bfd_endian byte_order)
16860 gdbarch *gdbarch = get_objfile_arch (objfile);
16861 struct type *tt = nullptr;
16863 /* Try to find a suitable floating point builtin type of size BITS.
16864 We're going to use the name of this type as the name for the complex
16865 target type that we are about to create. */
16866 switch (cu->language)
16868 case language_fortran:
16872 tt = builtin_f_type (gdbarch)->builtin_real;
16875 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16877 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16879 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16887 tt = builtin_type (gdbarch)->builtin_float;
16890 tt = builtin_type (gdbarch)->builtin_double;
16892 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16894 tt = builtin_type (gdbarch)->builtin_long_double;
16900 /* If the type we found doesn't match the size we were looking for, then
16901 pretend we didn't find a type at all, the complex target type we
16902 create will then be nameless. */
16903 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16906 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16907 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16910 /* Find a representation of a given base type and install
16911 it in the TYPE field of the die. */
16913 static struct type *
16914 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16918 struct attribute *attr;
16919 int encoding = 0, bits = 0;
16923 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16924 if (attr != nullptr)
16925 encoding = DW_UNSND (attr);
16926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16927 if (attr != nullptr)
16928 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16929 name = dwarf2_name (die, cu);
16931 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16933 arch = get_objfile_arch (objfile);
16934 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16936 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16939 int endianity = DW_UNSND (attr);
16944 byte_order = BFD_ENDIAN_BIG;
16946 case DW_END_little:
16947 byte_order = BFD_ENDIAN_LITTLE;
16950 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16957 case DW_ATE_address:
16958 /* Turn DW_ATE_address into a void * pointer. */
16959 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16960 type = init_pointer_type (objfile, bits, name, type);
16962 case DW_ATE_boolean:
16963 type = init_boolean_type (objfile, bits, 1, name);
16965 case DW_ATE_complex_float:
16966 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16968 type = init_complex_type (objfile, name, type);
16970 case DW_ATE_decimal_float:
16971 type = init_decfloat_type (objfile, bits, name);
16974 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
16976 case DW_ATE_signed:
16977 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
16979 case DW_ATE_unsigned:
16980 if (cu->language == language_fortran
16982 && startswith (name, "character("))
16983 type = init_character_type (objfile, bits, 1, name);
16985 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
16987 case DW_ATE_signed_char:
16988 if (cu->language == language_ada || cu->language == language_m2
16989 || cu->language == language_pascal
16990 || cu->language == language_fortran)
16991 type = init_character_type (objfile, bits, 0, name);
16993 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
16995 case DW_ATE_unsigned_char:
16996 if (cu->language == language_ada || cu->language == language_m2
16997 || cu->language == language_pascal
16998 || cu->language == language_fortran
16999 || cu->language == language_rust)
17000 type = init_character_type (objfile, bits, 1, name);
17002 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17007 type = builtin_type (arch)->builtin_char16;
17008 else if (bits == 32)
17009 type = builtin_type (arch)->builtin_char32;
17012 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17014 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17016 return set_die_type (die, type, cu);
17021 complaint (_("unsupported DW_AT_encoding: '%s'"),
17022 dwarf_type_encoding_name (encoding));
17023 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17027 if (name && strcmp (name, "char") == 0)
17028 TYPE_NOSIGN (type) = 1;
17030 maybe_set_alignment (cu, die, type);
17032 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17034 return set_die_type (die, type, cu);
17037 /* Parse dwarf attribute if it's a block, reference or constant and put the
17038 resulting value of the attribute into struct bound_prop.
17039 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17042 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17043 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17044 struct type *default_type)
17046 struct dwarf2_property_baton *baton;
17047 struct obstack *obstack
17048 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17050 gdb_assert (default_type != NULL);
17052 if (attr == NULL || prop == NULL)
17055 if (attr->form_is_block ())
17057 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17058 baton->property_type = default_type;
17059 baton->locexpr.per_cu = cu->per_cu;
17060 baton->locexpr.size = DW_BLOCK (attr)->size;
17061 baton->locexpr.data = DW_BLOCK (attr)->data;
17062 switch (attr->name)
17064 case DW_AT_string_length:
17065 baton->locexpr.is_reference = true;
17068 baton->locexpr.is_reference = false;
17071 prop->data.baton = baton;
17072 prop->kind = PROP_LOCEXPR;
17073 gdb_assert (prop->data.baton != NULL);
17075 else if (attr->form_is_ref ())
17077 struct dwarf2_cu *target_cu = cu;
17078 struct die_info *target_die;
17079 struct attribute *target_attr;
17081 target_die = follow_die_ref (die, attr, &target_cu);
17082 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17083 if (target_attr == NULL)
17084 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17086 if (target_attr == NULL)
17089 switch (target_attr->name)
17091 case DW_AT_location:
17092 if (target_attr->form_is_section_offset ())
17094 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17095 baton->property_type = die_type (target_die, target_cu);
17096 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17097 prop->data.baton = baton;
17098 prop->kind = PROP_LOCLIST;
17099 gdb_assert (prop->data.baton != NULL);
17101 else if (target_attr->form_is_block ())
17103 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17104 baton->property_type = die_type (target_die, target_cu);
17105 baton->locexpr.per_cu = cu->per_cu;
17106 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17107 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17108 baton->locexpr.is_reference = true;
17109 prop->data.baton = baton;
17110 prop->kind = PROP_LOCEXPR;
17111 gdb_assert (prop->data.baton != NULL);
17115 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17116 "dynamic property");
17120 case DW_AT_data_member_location:
17124 if (!handle_data_member_location (target_die, target_cu,
17128 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17129 baton->property_type = read_type_die (target_die->parent,
17131 baton->offset_info.offset = offset;
17132 baton->offset_info.type = die_type (target_die, target_cu);
17133 prop->data.baton = baton;
17134 prop->kind = PROP_ADDR_OFFSET;
17139 else if (attr->form_is_constant ())
17141 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17142 prop->kind = PROP_CONST;
17146 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17147 dwarf2_name (die, cu));
17157 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17159 struct objfile *objfile = dwarf2_per_objfile->objfile;
17160 struct type *int_type;
17162 /* Helper macro to examine the various builtin types. */
17163 #define TRY_TYPE(F) \
17164 int_type = (unsigned_p \
17165 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17166 : objfile_type (objfile)->builtin_ ## F); \
17167 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17174 TRY_TYPE (long_long);
17178 gdb_assert_not_reached ("unable to find suitable integer type");
17184 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17186 int addr_size = this->addr_size ();
17187 return int_type (addr_size, unsigned_p);
17190 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17191 present (which is valid) then compute the default type based on the
17192 compilation units address size. */
17194 static struct type *
17195 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17197 struct type *index_type = die_type (die, cu);
17199 /* Dwarf-2 specifications explicitly allows to create subrange types
17200 without specifying a base type.
17201 In that case, the base type must be set to the type of
17202 the lower bound, upper bound or count, in that order, if any of these
17203 three attributes references an object that has a type.
17204 If no base type is found, the Dwarf-2 specifications say that
17205 a signed integer type of size equal to the size of an address should
17207 For the following C code: `extern char gdb_int [];'
17208 GCC produces an empty range DIE.
17209 FIXME: muller/2010-05-28: Possible references to object for low bound,
17210 high bound or count are not yet handled by this code. */
17211 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17212 index_type = cu->per_cu->addr_sized_int_type (false);
17217 /* Read the given DW_AT_subrange DIE. */
17219 static struct type *
17220 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17222 struct type *base_type, *orig_base_type;
17223 struct type *range_type;
17224 struct attribute *attr;
17225 struct dynamic_prop low, high;
17226 int low_default_is_valid;
17227 int high_bound_is_count = 0;
17229 ULONGEST negative_mask;
17231 orig_base_type = read_subrange_index_type (die, cu);
17233 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17234 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17235 creating the range type, but we use the result of check_typedef
17236 when examining properties of the type. */
17237 base_type = check_typedef (orig_base_type);
17239 /* The die_type call above may have already set the type for this DIE. */
17240 range_type = get_die_type (die, cu);
17244 low.kind = PROP_CONST;
17245 high.kind = PROP_CONST;
17246 high.data.const_val = 0;
17248 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17249 omitting DW_AT_lower_bound. */
17250 switch (cu->language)
17253 case language_cplus:
17254 low.data.const_val = 0;
17255 low_default_is_valid = 1;
17257 case language_fortran:
17258 low.data.const_val = 1;
17259 low_default_is_valid = 1;
17262 case language_objc:
17263 case language_rust:
17264 low.data.const_val = 0;
17265 low_default_is_valid = (cu->header.version >= 4);
17269 case language_pascal:
17270 low.data.const_val = 1;
17271 low_default_is_valid = (cu->header.version >= 4);
17274 low.data.const_val = 0;
17275 low_default_is_valid = 0;
17279 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17280 if (attr != nullptr)
17281 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17282 else if (!low_default_is_valid)
17283 complaint (_("Missing DW_AT_lower_bound "
17284 "- DIE at %s [in module %s]"),
17285 sect_offset_str (die->sect_off),
17286 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17288 struct attribute *attr_ub, *attr_count;
17289 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17290 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17292 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17293 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17295 /* If bounds are constant do the final calculation here. */
17296 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17297 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17299 high_bound_is_count = 1;
17303 if (attr_ub != NULL)
17304 complaint (_("Unresolved DW_AT_upper_bound "
17305 "- DIE at %s [in module %s]"),
17306 sect_offset_str (die->sect_off),
17307 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17308 if (attr_count != NULL)
17309 complaint (_("Unresolved DW_AT_count "
17310 "- DIE at %s [in module %s]"),
17311 sect_offset_str (die->sect_off),
17312 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17317 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17318 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17319 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17321 /* Normally, the DWARF producers are expected to use a signed
17322 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17323 But this is unfortunately not always the case, as witnessed
17324 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17325 is used instead. To work around that ambiguity, we treat
17326 the bounds as signed, and thus sign-extend their values, when
17327 the base type is signed. */
17329 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17330 if (low.kind == PROP_CONST
17331 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17332 low.data.const_val |= negative_mask;
17333 if (high.kind == PROP_CONST
17334 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17335 high.data.const_val |= negative_mask;
17337 /* Check for bit and byte strides. */
17338 struct dynamic_prop byte_stride_prop;
17339 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17340 if (attr_byte_stride != nullptr)
17342 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17343 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17347 struct dynamic_prop bit_stride_prop;
17348 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17349 if (attr_bit_stride != nullptr)
17351 /* It only makes sense to have either a bit or byte stride. */
17352 if (attr_byte_stride != nullptr)
17354 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17355 "- DIE at %s [in module %s]"),
17356 sect_offset_str (die->sect_off),
17357 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17358 attr_bit_stride = nullptr;
17362 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17363 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17368 if (attr_byte_stride != nullptr
17369 || attr_bit_stride != nullptr)
17371 bool byte_stride_p = (attr_byte_stride != nullptr);
17372 struct dynamic_prop *stride
17373 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17376 = create_range_type_with_stride (NULL, orig_base_type, &low,
17377 &high, bias, stride, byte_stride_p);
17380 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17382 if (high_bound_is_count)
17383 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17385 /* Ada expects an empty array on no boundary attributes. */
17386 if (attr == NULL && cu->language != language_ada)
17387 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17389 name = dwarf2_name (die, cu);
17391 TYPE_NAME (range_type) = name;
17393 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17394 if (attr != nullptr)
17395 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17397 maybe_set_alignment (cu, die, range_type);
17399 set_die_type (die, range_type, cu);
17401 /* set_die_type should be already done. */
17402 set_descriptive_type (range_type, die, cu);
17407 static struct type *
17408 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17412 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17414 TYPE_NAME (type) = dwarf2_name (die, cu);
17416 /* In Ada, an unspecified type is typically used when the description
17417 of the type is deferred to a different unit. When encountering
17418 such a type, we treat it as a stub, and try to resolve it later on,
17420 if (cu->language == language_ada)
17421 TYPE_STUB (type) = 1;
17423 return set_die_type (die, type, cu);
17426 /* Read a single die and all its descendents. Set the die's sibling
17427 field to NULL; set other fields in the die correctly, and set all
17428 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17429 location of the info_ptr after reading all of those dies. PARENT
17430 is the parent of the die in question. */
17432 static struct die_info *
17433 read_die_and_children (const struct die_reader_specs *reader,
17434 const gdb_byte *info_ptr,
17435 const gdb_byte **new_info_ptr,
17436 struct die_info *parent)
17438 struct die_info *die;
17439 const gdb_byte *cur_ptr;
17441 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17444 *new_info_ptr = cur_ptr;
17447 store_in_ref_table (die, reader->cu);
17449 if (die->has_children)
17450 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17454 *new_info_ptr = cur_ptr;
17457 die->sibling = NULL;
17458 die->parent = parent;
17462 /* Read a die, all of its descendents, and all of its siblings; set
17463 all of the fields of all of the dies correctly. Arguments are as
17464 in read_die_and_children. */
17466 static struct die_info *
17467 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17468 const gdb_byte *info_ptr,
17469 const gdb_byte **new_info_ptr,
17470 struct die_info *parent)
17472 struct die_info *first_die, *last_sibling;
17473 const gdb_byte *cur_ptr;
17475 cur_ptr = info_ptr;
17476 first_die = last_sibling = NULL;
17480 struct die_info *die
17481 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17485 *new_info_ptr = cur_ptr;
17492 last_sibling->sibling = die;
17494 last_sibling = die;
17498 /* Read a die, all of its descendents, and all of its siblings; set
17499 all of the fields of all of the dies correctly. Arguments are as
17500 in read_die_and_children.
17501 This the main entry point for reading a DIE and all its children. */
17503 static struct die_info *
17504 read_die_and_siblings (const struct die_reader_specs *reader,
17505 const gdb_byte *info_ptr,
17506 const gdb_byte **new_info_ptr,
17507 struct die_info *parent)
17509 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17510 new_info_ptr, parent);
17512 if (dwarf_die_debug)
17514 fprintf_unfiltered (gdb_stdlog,
17515 "Read die from %s@0x%x of %s:\n",
17516 reader->die_section->get_name (),
17517 (unsigned) (info_ptr - reader->die_section->buffer),
17518 bfd_get_filename (reader->abfd));
17519 dump_die (die, dwarf_die_debug);
17525 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17527 The caller is responsible for filling in the extra attributes
17528 and updating (*DIEP)->num_attrs.
17529 Set DIEP to point to a newly allocated die with its information,
17530 except for its child, sibling, and parent fields. */
17532 static const gdb_byte *
17533 read_full_die_1 (const struct die_reader_specs *reader,
17534 struct die_info **diep, const gdb_byte *info_ptr,
17535 int num_extra_attrs)
17537 unsigned int abbrev_number, bytes_read, i;
17538 struct abbrev_info *abbrev;
17539 struct die_info *die;
17540 struct dwarf2_cu *cu = reader->cu;
17541 bfd *abfd = reader->abfd;
17543 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17544 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17545 info_ptr += bytes_read;
17546 if (!abbrev_number)
17552 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17554 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17556 bfd_get_filename (abfd));
17558 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17559 die->sect_off = sect_off;
17560 die->tag = abbrev->tag;
17561 die->abbrev = abbrev_number;
17562 die->has_children = abbrev->has_children;
17564 /* Make the result usable.
17565 The caller needs to update num_attrs after adding the extra
17567 die->num_attrs = abbrev->num_attrs;
17569 std::vector<int> indexes_that_need_reprocess;
17570 for (i = 0; i < abbrev->num_attrs; ++i)
17572 bool need_reprocess;
17574 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17575 info_ptr, &need_reprocess);
17576 if (need_reprocess)
17577 indexes_that_need_reprocess.push_back (i);
17580 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
17581 if (attr != nullptr)
17582 cu->str_offsets_base = DW_UNSND (attr);
17584 auto maybe_addr_base = lookup_addr_base(die);
17585 if (maybe_addr_base.has_value ())
17586 cu->addr_base = *maybe_addr_base;
17587 for (int index : indexes_that_need_reprocess)
17588 read_attribute_reprocess (reader, &die->attrs[index]);
17593 /* Read a die and all its attributes.
17594 Set DIEP to point to a newly allocated die with its information,
17595 except for its child, sibling, and parent fields. */
17597 static const gdb_byte *
17598 read_full_die (const struct die_reader_specs *reader,
17599 struct die_info **diep, const gdb_byte *info_ptr)
17601 const gdb_byte *result;
17603 result = read_full_die_1 (reader, diep, info_ptr, 0);
17605 if (dwarf_die_debug)
17607 fprintf_unfiltered (gdb_stdlog,
17608 "Read die from %s@0x%x of %s:\n",
17609 reader->die_section->get_name (),
17610 (unsigned) (info_ptr - reader->die_section->buffer),
17611 bfd_get_filename (reader->abfd));
17612 dump_die (*diep, dwarf_die_debug);
17619 /* Returns nonzero if TAG represents a type that we might generate a partial
17623 is_type_tag_for_partial (int tag)
17628 /* Some types that would be reasonable to generate partial symbols for,
17629 that we don't at present. */
17630 case DW_TAG_array_type:
17631 case DW_TAG_file_type:
17632 case DW_TAG_ptr_to_member_type:
17633 case DW_TAG_set_type:
17634 case DW_TAG_string_type:
17635 case DW_TAG_subroutine_type:
17637 case DW_TAG_base_type:
17638 case DW_TAG_class_type:
17639 case DW_TAG_interface_type:
17640 case DW_TAG_enumeration_type:
17641 case DW_TAG_structure_type:
17642 case DW_TAG_subrange_type:
17643 case DW_TAG_typedef:
17644 case DW_TAG_union_type:
17651 /* Load all DIEs that are interesting for partial symbols into memory. */
17653 static struct partial_die_info *
17654 load_partial_dies (const struct die_reader_specs *reader,
17655 const gdb_byte *info_ptr, int building_psymtab)
17657 struct dwarf2_cu *cu = reader->cu;
17658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17659 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17660 unsigned int bytes_read;
17661 unsigned int load_all = 0;
17662 int nesting_level = 1;
17667 gdb_assert (cu->per_cu != NULL);
17668 if (cu->per_cu->load_all_dies)
17672 = htab_create_alloc_ex (cu->header.length / 12,
17676 &cu->comp_unit_obstack,
17677 hashtab_obstack_allocate,
17678 dummy_obstack_deallocate);
17682 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17684 /* A NULL abbrev means the end of a series of children. */
17685 if (abbrev == NULL)
17687 if (--nesting_level == 0)
17690 info_ptr += bytes_read;
17691 last_die = parent_die;
17692 parent_die = parent_die->die_parent;
17696 /* Check for template arguments. We never save these; if
17697 they're seen, we just mark the parent, and go on our way. */
17698 if (parent_die != NULL
17699 && cu->language == language_cplus
17700 && (abbrev->tag == DW_TAG_template_type_param
17701 || abbrev->tag == DW_TAG_template_value_param))
17703 parent_die->has_template_arguments = 1;
17707 /* We don't need a partial DIE for the template argument. */
17708 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17713 /* We only recurse into c++ subprograms looking for template arguments.
17714 Skip their other children. */
17716 && cu->language == language_cplus
17717 && parent_die != NULL
17718 && parent_die->tag == DW_TAG_subprogram)
17720 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17724 /* Check whether this DIE is interesting enough to save. Normally
17725 we would not be interested in members here, but there may be
17726 later variables referencing them via DW_AT_specification (for
17727 static members). */
17729 && !is_type_tag_for_partial (abbrev->tag)
17730 && abbrev->tag != DW_TAG_constant
17731 && abbrev->tag != DW_TAG_enumerator
17732 && abbrev->tag != DW_TAG_subprogram
17733 && abbrev->tag != DW_TAG_inlined_subroutine
17734 && abbrev->tag != DW_TAG_lexical_block
17735 && abbrev->tag != DW_TAG_variable
17736 && abbrev->tag != DW_TAG_namespace
17737 && abbrev->tag != DW_TAG_module
17738 && abbrev->tag != DW_TAG_member
17739 && abbrev->tag != DW_TAG_imported_unit
17740 && abbrev->tag != DW_TAG_imported_declaration)
17742 /* Otherwise we skip to the next sibling, if any. */
17743 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17747 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17750 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17752 /* This two-pass algorithm for processing partial symbols has a
17753 high cost in cache pressure. Thus, handle some simple cases
17754 here which cover the majority of C partial symbols. DIEs
17755 which neither have specification tags in them, nor could have
17756 specification tags elsewhere pointing at them, can simply be
17757 processed and discarded.
17759 This segment is also optional; scan_partial_symbols and
17760 add_partial_symbol will handle these DIEs if we chain
17761 them in normally. When compilers which do not emit large
17762 quantities of duplicate debug information are more common,
17763 this code can probably be removed. */
17765 /* Any complete simple types at the top level (pretty much all
17766 of them, for a language without namespaces), can be processed
17768 if (parent_die == NULL
17769 && pdi.has_specification == 0
17770 && pdi.is_declaration == 0
17771 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17772 || pdi.tag == DW_TAG_base_type
17773 || pdi.tag == DW_TAG_subrange_type))
17775 if (building_psymtab && pdi.name != NULL)
17776 add_psymbol_to_list (pdi.name, false,
17777 VAR_DOMAIN, LOC_TYPEDEF, -1,
17778 psymbol_placement::STATIC,
17779 0, cu->language, objfile);
17780 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17784 /* The exception for DW_TAG_typedef with has_children above is
17785 a workaround of GCC PR debug/47510. In the case of this complaint
17786 type_name_or_error will error on such types later.
17788 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17789 it could not find the child DIEs referenced later, this is checked
17790 above. In correct DWARF DW_TAG_typedef should have no children. */
17792 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17793 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17794 "- DIE at %s [in module %s]"),
17795 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17797 /* If we're at the second level, and we're an enumerator, and
17798 our parent has no specification (meaning possibly lives in a
17799 namespace elsewhere), then we can add the partial symbol now
17800 instead of queueing it. */
17801 if (pdi.tag == DW_TAG_enumerator
17802 && parent_die != NULL
17803 && parent_die->die_parent == NULL
17804 && parent_die->tag == DW_TAG_enumeration_type
17805 && parent_die->has_specification == 0)
17807 if (pdi.name == NULL)
17808 complaint (_("malformed enumerator DIE ignored"));
17809 else if (building_psymtab)
17810 add_psymbol_to_list (pdi.name, false,
17811 VAR_DOMAIN, LOC_CONST, -1,
17812 cu->language == language_cplus
17813 ? psymbol_placement::GLOBAL
17814 : psymbol_placement::STATIC,
17815 0, cu->language, objfile);
17817 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17821 struct partial_die_info *part_die
17822 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17824 /* We'll save this DIE so link it in. */
17825 part_die->die_parent = parent_die;
17826 part_die->die_sibling = NULL;
17827 part_die->die_child = NULL;
17829 if (last_die && last_die == parent_die)
17830 last_die->die_child = part_die;
17832 last_die->die_sibling = part_die;
17834 last_die = part_die;
17836 if (first_die == NULL)
17837 first_die = part_die;
17839 /* Maybe add the DIE to the hash table. Not all DIEs that we
17840 find interesting need to be in the hash table, because we
17841 also have the parent/sibling/child chains; only those that we
17842 might refer to by offset later during partial symbol reading.
17844 For now this means things that might have be the target of a
17845 DW_AT_specification, DW_AT_abstract_origin, or
17846 DW_AT_extension. DW_AT_extension will refer only to
17847 namespaces; DW_AT_abstract_origin refers to functions (and
17848 many things under the function DIE, but we do not recurse
17849 into function DIEs during partial symbol reading) and
17850 possibly variables as well; DW_AT_specification refers to
17851 declarations. Declarations ought to have the DW_AT_declaration
17852 flag. It happens that GCC forgets to put it in sometimes, but
17853 only for functions, not for types.
17855 Adding more things than necessary to the hash table is harmless
17856 except for the performance cost. Adding too few will result in
17857 wasted time in find_partial_die, when we reread the compilation
17858 unit with load_all_dies set. */
17861 || abbrev->tag == DW_TAG_constant
17862 || abbrev->tag == DW_TAG_subprogram
17863 || abbrev->tag == DW_TAG_variable
17864 || abbrev->tag == DW_TAG_namespace
17865 || part_die->is_declaration)
17869 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17870 to_underlying (part_die->sect_off),
17875 /* For some DIEs we want to follow their children (if any). For C
17876 we have no reason to follow the children of structures; for other
17877 languages we have to, so that we can get at method physnames
17878 to infer fully qualified class names, for DW_AT_specification,
17879 and for C++ template arguments. For C++, we also look one level
17880 inside functions to find template arguments (if the name of the
17881 function does not already contain the template arguments).
17883 For Ada and Fortran, we need to scan the children of subprograms
17884 and lexical blocks as well because these languages allow the
17885 definition of nested entities that could be interesting for the
17886 debugger, such as nested subprograms for instance. */
17887 if (last_die->has_children
17889 || last_die->tag == DW_TAG_namespace
17890 || last_die->tag == DW_TAG_module
17891 || last_die->tag == DW_TAG_enumeration_type
17892 || (cu->language == language_cplus
17893 && last_die->tag == DW_TAG_subprogram
17894 && (last_die->name == NULL
17895 || strchr (last_die->name, '<') == NULL))
17896 || (cu->language != language_c
17897 && (last_die->tag == DW_TAG_class_type
17898 || last_die->tag == DW_TAG_interface_type
17899 || last_die->tag == DW_TAG_structure_type
17900 || last_die->tag == DW_TAG_union_type))
17901 || ((cu->language == language_ada
17902 || cu->language == language_fortran)
17903 && (last_die->tag == DW_TAG_subprogram
17904 || last_die->tag == DW_TAG_lexical_block))))
17907 parent_die = last_die;
17911 /* Otherwise we skip to the next sibling, if any. */
17912 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17914 /* Back to the top, do it again. */
17918 partial_die_info::partial_die_info (sect_offset sect_off_,
17919 struct abbrev_info *abbrev)
17920 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17924 /* Read a minimal amount of information into the minimal die structure.
17925 INFO_PTR should point just after the initial uleb128 of a DIE. */
17928 partial_die_info::read (const struct die_reader_specs *reader,
17929 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17931 struct dwarf2_cu *cu = reader->cu;
17932 struct dwarf2_per_objfile *dwarf2_per_objfile
17933 = cu->per_cu->dwarf2_per_objfile;
17935 int has_low_pc_attr = 0;
17936 int has_high_pc_attr = 0;
17937 int high_pc_relative = 0;
17939 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
17940 for (i = 0; i < abbrev.num_attrs; ++i)
17942 bool need_reprocess;
17943 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
17944 info_ptr, &need_reprocess);
17945 /* String and address offsets that need to do the reprocessing have
17946 already been read at this point, so there is no need to wait until
17947 the loop terminates to do the reprocessing. */
17948 if (need_reprocess)
17949 read_attribute_reprocess (reader, &attr_vec[i]);
17950 attribute &attr = attr_vec[i];
17951 /* Store the data if it is of an attribute we want to keep in a
17952 partial symbol table. */
17958 case DW_TAG_compile_unit:
17959 case DW_TAG_partial_unit:
17960 case DW_TAG_type_unit:
17961 /* Compilation units have a DW_AT_name that is a filename, not
17962 a source language identifier. */
17963 case DW_TAG_enumeration_type:
17964 case DW_TAG_enumerator:
17965 /* These tags always have simple identifiers already; no need
17966 to canonicalize them. */
17967 name = DW_STRING (&attr);
17971 struct objfile *objfile = dwarf2_per_objfile->objfile;
17974 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17975 &objfile->per_bfd->storage_obstack);
17980 case DW_AT_linkage_name:
17981 case DW_AT_MIPS_linkage_name:
17982 /* Note that both forms of linkage name might appear. We
17983 assume they will be the same, and we only store the last
17985 linkage_name = DW_STRING (&attr);
17988 has_low_pc_attr = 1;
17989 lowpc = attr.value_as_address ();
17991 case DW_AT_high_pc:
17992 has_high_pc_attr = 1;
17993 highpc = attr.value_as_address ();
17994 if (cu->header.version >= 4 && attr.form_is_constant ())
17995 high_pc_relative = 1;
17997 case DW_AT_location:
17998 /* Support the .debug_loc offsets. */
17999 if (attr.form_is_block ())
18001 d.locdesc = DW_BLOCK (&attr);
18003 else if (attr.form_is_section_offset ())
18005 dwarf2_complex_location_expr_complaint ();
18009 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18010 "partial symbol information");
18013 case DW_AT_external:
18014 is_external = DW_UNSND (&attr);
18016 case DW_AT_declaration:
18017 is_declaration = DW_UNSND (&attr);
18022 case DW_AT_abstract_origin:
18023 case DW_AT_specification:
18024 case DW_AT_extension:
18025 has_specification = 1;
18026 spec_offset = dwarf2_get_ref_die_offset (&attr);
18027 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18028 || cu->per_cu->is_dwz);
18030 case DW_AT_sibling:
18031 /* Ignore absolute siblings, they might point outside of
18032 the current compile unit. */
18033 if (attr.form == DW_FORM_ref_addr)
18034 complaint (_("ignoring absolute DW_AT_sibling"));
18037 const gdb_byte *buffer = reader->buffer;
18038 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18039 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18041 if (sibling_ptr < info_ptr)
18042 complaint (_("DW_AT_sibling points backwards"));
18043 else if (sibling_ptr > reader->buffer_end)
18044 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18046 sibling = sibling_ptr;
18049 case DW_AT_byte_size:
18052 case DW_AT_const_value:
18053 has_const_value = 1;
18055 case DW_AT_calling_convention:
18056 /* DWARF doesn't provide a way to identify a program's source-level
18057 entry point. DW_AT_calling_convention attributes are only meant
18058 to describe functions' calling conventions.
18060 However, because it's a necessary piece of information in
18061 Fortran, and before DWARF 4 DW_CC_program was the only
18062 piece of debugging information whose definition refers to
18063 a 'main program' at all, several compilers marked Fortran
18064 main programs with DW_CC_program --- even when those
18065 functions use the standard calling conventions.
18067 Although DWARF now specifies a way to provide this
18068 information, we support this practice for backward
18070 if (DW_UNSND (&attr) == DW_CC_program
18071 && cu->language == language_fortran)
18072 main_subprogram = 1;
18075 if (DW_UNSND (&attr) == DW_INL_inlined
18076 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18077 may_be_inlined = 1;
18081 if (tag == DW_TAG_imported_unit)
18083 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18084 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18085 || cu->per_cu->is_dwz);
18089 case DW_AT_main_subprogram:
18090 main_subprogram = DW_UNSND (&attr);
18095 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18096 but that requires a full DIE, so instead we just
18098 int need_ranges_base = tag != DW_TAG_compile_unit;
18099 unsigned int ranges_offset = (DW_UNSND (&attr)
18100 + (need_ranges_base
18104 /* Value of the DW_AT_ranges attribute is the offset in the
18105 .debug_ranges section. */
18106 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18117 /* For Ada, if both the name and the linkage name appear, we prefer
18118 the latter. This lets "catch exception" work better, regardless
18119 of the order in which the name and linkage name were emitted.
18120 Really, though, this is just a workaround for the fact that gdb
18121 doesn't store both the name and the linkage name. */
18122 if (cu->language == language_ada && linkage_name != nullptr)
18123 name = linkage_name;
18125 if (high_pc_relative)
18128 if (has_low_pc_attr && has_high_pc_attr)
18130 /* When using the GNU linker, .gnu.linkonce. sections are used to
18131 eliminate duplicate copies of functions and vtables and such.
18132 The linker will arbitrarily choose one and discard the others.
18133 The AT_*_pc values for such functions refer to local labels in
18134 these sections. If the section from that file was discarded, the
18135 labels are not in the output, so the relocs get a value of 0.
18136 If this is a discarded function, mark the pc bounds as invalid,
18137 so that GDB will ignore it. */
18138 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18140 struct objfile *objfile = dwarf2_per_objfile->objfile;
18141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18143 complaint (_("DW_AT_low_pc %s is zero "
18144 "for DIE at %s [in module %s]"),
18145 paddress (gdbarch, lowpc),
18146 sect_offset_str (sect_off),
18147 objfile_name (objfile));
18149 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18150 else if (lowpc >= highpc)
18152 struct objfile *objfile = dwarf2_per_objfile->objfile;
18153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18155 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18156 "for DIE at %s [in module %s]"),
18157 paddress (gdbarch, lowpc),
18158 paddress (gdbarch, highpc),
18159 sect_offset_str (sect_off),
18160 objfile_name (objfile));
18169 /* Find a cached partial DIE at OFFSET in CU. */
18171 struct partial_die_info *
18172 dwarf2_cu::find_partial_die (sect_offset sect_off)
18174 struct partial_die_info *lookup_die = NULL;
18175 struct partial_die_info part_die (sect_off);
18177 lookup_die = ((struct partial_die_info *)
18178 htab_find_with_hash (partial_dies, &part_die,
18179 to_underlying (sect_off)));
18184 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18185 except in the case of .debug_types DIEs which do not reference
18186 outside their CU (they do however referencing other types via
18187 DW_FORM_ref_sig8). */
18189 static const struct cu_partial_die_info
18190 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18192 struct dwarf2_per_objfile *dwarf2_per_objfile
18193 = cu->per_cu->dwarf2_per_objfile;
18194 struct objfile *objfile = dwarf2_per_objfile->objfile;
18195 struct dwarf2_per_cu_data *per_cu = NULL;
18196 struct partial_die_info *pd = NULL;
18198 if (offset_in_dwz == cu->per_cu->is_dwz
18199 && cu->header.offset_in_cu_p (sect_off))
18201 pd = cu->find_partial_die (sect_off);
18204 /* We missed recording what we needed.
18205 Load all dies and try again. */
18206 per_cu = cu->per_cu;
18210 /* TUs don't reference other CUs/TUs (except via type signatures). */
18211 if (cu->per_cu->is_debug_types)
18213 error (_("Dwarf Error: Type Unit at offset %s contains"
18214 " external reference to offset %s [in module %s].\n"),
18215 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18216 bfd_get_filename (objfile->obfd));
18218 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18219 dwarf2_per_objfile);
18221 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18222 load_partial_comp_unit (per_cu);
18224 per_cu->cu->last_used = 0;
18225 pd = per_cu->cu->find_partial_die (sect_off);
18228 /* If we didn't find it, and not all dies have been loaded,
18229 load them all and try again. */
18231 if (pd == NULL && per_cu->load_all_dies == 0)
18233 per_cu->load_all_dies = 1;
18235 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18236 THIS_CU->cu may already be in use. So we can't just free it and
18237 replace its DIEs with the ones we read in. Instead, we leave those
18238 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18239 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18241 load_partial_comp_unit (per_cu);
18243 pd = per_cu->cu->find_partial_die (sect_off);
18247 internal_error (__FILE__, __LINE__,
18248 _("could not find partial DIE %s "
18249 "in cache [from module %s]\n"),
18250 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18251 return { per_cu->cu, pd };
18254 /* See if we can figure out if the class lives in a namespace. We do
18255 this by looking for a member function; its demangled name will
18256 contain namespace info, if there is any. */
18259 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18260 struct dwarf2_cu *cu)
18262 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18263 what template types look like, because the demangler
18264 frequently doesn't give the same name as the debug info. We
18265 could fix this by only using the demangled name to get the
18266 prefix (but see comment in read_structure_type). */
18268 struct partial_die_info *real_pdi;
18269 struct partial_die_info *child_pdi;
18271 /* If this DIE (this DIE's specification, if any) has a parent, then
18272 we should not do this. We'll prepend the parent's fully qualified
18273 name when we create the partial symbol. */
18275 real_pdi = struct_pdi;
18276 while (real_pdi->has_specification)
18278 auto res = find_partial_die (real_pdi->spec_offset,
18279 real_pdi->spec_is_dwz, cu);
18280 real_pdi = res.pdi;
18284 if (real_pdi->die_parent != NULL)
18287 for (child_pdi = struct_pdi->die_child;
18289 child_pdi = child_pdi->die_sibling)
18291 if (child_pdi->tag == DW_TAG_subprogram
18292 && child_pdi->linkage_name != NULL)
18294 gdb::unique_xmalloc_ptr<char> actual_class_name
18295 (language_class_name_from_physname (cu->language_defn,
18296 child_pdi->linkage_name));
18297 if (actual_class_name != NULL)
18299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18301 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18302 actual_class_name.get ());
18310 partial_die_info::fixup (struct dwarf2_cu *cu)
18312 /* Once we've fixed up a die, there's no point in doing so again.
18313 This also avoids a memory leak if we were to call
18314 guess_partial_die_structure_name multiple times. */
18318 /* If we found a reference attribute and the DIE has no name, try
18319 to find a name in the referred to DIE. */
18321 if (name == NULL && has_specification)
18323 struct partial_die_info *spec_die;
18325 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18326 spec_die = res.pdi;
18329 spec_die->fixup (cu);
18331 if (spec_die->name)
18333 name = spec_die->name;
18335 /* Copy DW_AT_external attribute if it is set. */
18336 if (spec_die->is_external)
18337 is_external = spec_die->is_external;
18341 /* Set default names for some unnamed DIEs. */
18343 if (name == NULL && tag == DW_TAG_namespace)
18344 name = CP_ANONYMOUS_NAMESPACE_STR;
18346 /* If there is no parent die to provide a namespace, and there are
18347 children, see if we can determine the namespace from their linkage
18349 if (cu->language == language_cplus
18350 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18351 && die_parent == NULL
18353 && (tag == DW_TAG_class_type
18354 || tag == DW_TAG_structure_type
18355 || tag == DW_TAG_union_type))
18356 guess_partial_die_structure_name (this, cu);
18358 /* GCC might emit a nameless struct or union that has a linkage
18359 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18361 && (tag == DW_TAG_class_type
18362 || tag == DW_TAG_interface_type
18363 || tag == DW_TAG_structure_type
18364 || tag == DW_TAG_union_type)
18365 && linkage_name != NULL)
18367 gdb::unique_xmalloc_ptr<char> demangled
18368 (gdb_demangle (linkage_name, DMGL_TYPES));
18369 if (demangled != nullptr)
18373 /* Strip any leading namespaces/classes, keep only the base name.
18374 DW_AT_name for named DIEs does not contain the prefixes. */
18375 base = strrchr (demangled.get (), ':');
18376 if (base && base > demangled.get () && base[-1] == ':')
18379 base = demangled.get ();
18381 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18382 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18389 /* Process the attributes that had to be skipped in the first round. These
18390 attributes are the ones that need str_offsets_base or addr_base attributes.
18391 They could not have been processed in the first round, because at the time
18392 the values of str_offsets_base or addr_base may not have been known. */
18393 void read_attribute_reprocess (const struct die_reader_specs *reader,
18394 struct attribute *attr)
18396 struct dwarf2_cu *cu = reader->cu;
18397 switch (attr->form)
18399 case DW_FORM_addrx:
18400 case DW_FORM_GNU_addr_index:
18401 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18404 case DW_FORM_strx1:
18405 case DW_FORM_strx2:
18406 case DW_FORM_strx3:
18407 case DW_FORM_strx4:
18408 case DW_FORM_GNU_str_index:
18410 unsigned int str_index = DW_UNSND (attr);
18411 if (reader->dwo_file != NULL)
18413 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18414 DW_STRING_IS_CANONICAL (attr) = 0;
18418 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18419 DW_STRING_IS_CANONICAL (attr) = 0;
18424 gdb_assert_not_reached (_("Unexpected DWARF form."));
18428 /* Read an attribute value described by an attribute form. */
18430 static const gdb_byte *
18431 read_attribute_value (const struct die_reader_specs *reader,
18432 struct attribute *attr, unsigned form,
18433 LONGEST implicit_const, const gdb_byte *info_ptr,
18434 bool *need_reprocess)
18436 struct dwarf2_cu *cu = reader->cu;
18437 struct dwarf2_per_objfile *dwarf2_per_objfile
18438 = cu->per_cu->dwarf2_per_objfile;
18439 struct objfile *objfile = dwarf2_per_objfile->objfile;
18440 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18441 bfd *abfd = reader->abfd;
18442 struct comp_unit_head *cu_header = &cu->header;
18443 unsigned int bytes_read;
18444 struct dwarf_block *blk;
18445 *need_reprocess = false;
18447 attr->form = (enum dwarf_form) form;
18450 case DW_FORM_ref_addr:
18451 if (cu->header.version == 2)
18452 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18455 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18457 info_ptr += bytes_read;
18459 case DW_FORM_GNU_ref_alt:
18460 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18461 info_ptr += bytes_read;
18464 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18465 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18466 info_ptr += bytes_read;
18468 case DW_FORM_block2:
18469 blk = dwarf_alloc_block (cu);
18470 blk->size = read_2_bytes (abfd, info_ptr);
18472 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18473 info_ptr += blk->size;
18474 DW_BLOCK (attr) = blk;
18476 case DW_FORM_block4:
18477 blk = dwarf_alloc_block (cu);
18478 blk->size = read_4_bytes (abfd, info_ptr);
18480 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18481 info_ptr += blk->size;
18482 DW_BLOCK (attr) = blk;
18484 case DW_FORM_data2:
18485 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18488 case DW_FORM_data4:
18489 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18492 case DW_FORM_data8:
18493 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18496 case DW_FORM_data16:
18497 blk = dwarf_alloc_block (cu);
18499 blk->data = read_n_bytes (abfd, info_ptr, 16);
18501 DW_BLOCK (attr) = blk;
18503 case DW_FORM_sec_offset:
18504 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18505 info_ptr += bytes_read;
18507 case DW_FORM_string:
18508 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18509 DW_STRING_IS_CANONICAL (attr) = 0;
18510 info_ptr += bytes_read;
18513 if (!cu->per_cu->is_dwz)
18515 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18516 abfd, info_ptr, cu_header,
18518 DW_STRING_IS_CANONICAL (attr) = 0;
18519 info_ptr += bytes_read;
18523 case DW_FORM_line_strp:
18524 if (!cu->per_cu->is_dwz)
18526 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18528 cu_header, &bytes_read);
18529 DW_STRING_IS_CANONICAL (attr) = 0;
18530 info_ptr += bytes_read;
18534 case DW_FORM_GNU_strp_alt:
18536 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18537 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18540 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18542 DW_STRING_IS_CANONICAL (attr) = 0;
18543 info_ptr += bytes_read;
18546 case DW_FORM_exprloc:
18547 case DW_FORM_block:
18548 blk = dwarf_alloc_block (cu);
18549 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18550 info_ptr += bytes_read;
18551 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18552 info_ptr += blk->size;
18553 DW_BLOCK (attr) = blk;
18555 case DW_FORM_block1:
18556 blk = dwarf_alloc_block (cu);
18557 blk->size = read_1_byte (abfd, info_ptr);
18559 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18560 info_ptr += blk->size;
18561 DW_BLOCK (attr) = blk;
18563 case DW_FORM_data1:
18564 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18568 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18571 case DW_FORM_flag_present:
18572 DW_UNSND (attr) = 1;
18574 case DW_FORM_sdata:
18575 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18576 info_ptr += bytes_read;
18578 case DW_FORM_udata:
18579 case DW_FORM_rnglistx:
18580 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18581 info_ptr += bytes_read;
18584 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18585 + read_1_byte (abfd, info_ptr));
18589 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18590 + read_2_bytes (abfd, info_ptr));
18594 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18595 + read_4_bytes (abfd, info_ptr));
18599 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18600 + read_8_bytes (abfd, info_ptr));
18603 case DW_FORM_ref_sig8:
18604 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18607 case DW_FORM_ref_udata:
18608 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18609 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18610 info_ptr += bytes_read;
18612 case DW_FORM_indirect:
18613 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18614 info_ptr += bytes_read;
18615 if (form == DW_FORM_implicit_const)
18617 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18618 info_ptr += bytes_read;
18620 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18621 info_ptr, need_reprocess);
18623 case DW_FORM_implicit_const:
18624 DW_SND (attr) = implicit_const;
18626 case DW_FORM_addrx:
18627 case DW_FORM_GNU_addr_index:
18628 *need_reprocess = true;
18629 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18630 info_ptr += bytes_read;
18633 case DW_FORM_strx1:
18634 case DW_FORM_strx2:
18635 case DW_FORM_strx3:
18636 case DW_FORM_strx4:
18637 case DW_FORM_GNU_str_index:
18639 ULONGEST str_index;
18640 if (form == DW_FORM_strx1)
18642 str_index = read_1_byte (abfd, info_ptr);
18645 else if (form == DW_FORM_strx2)
18647 str_index = read_2_bytes (abfd, info_ptr);
18650 else if (form == DW_FORM_strx3)
18652 str_index = read_3_bytes (abfd, info_ptr);
18655 else if (form == DW_FORM_strx4)
18657 str_index = read_4_bytes (abfd, info_ptr);
18662 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18663 info_ptr += bytes_read;
18665 *need_reprocess = true;
18666 DW_UNSND (attr) = str_index;
18670 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18671 dwarf_form_name (form),
18672 bfd_get_filename (abfd));
18676 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18677 attr->form = DW_FORM_GNU_ref_alt;
18679 /* We have seen instances where the compiler tried to emit a byte
18680 size attribute of -1 which ended up being encoded as an unsigned
18681 0xffffffff. Although 0xffffffff is technically a valid size value,
18682 an object of this size seems pretty unlikely so we can relatively
18683 safely treat these cases as if the size attribute was invalid and
18684 treat them as zero by default. */
18685 if (attr->name == DW_AT_byte_size
18686 && form == DW_FORM_data4
18687 && DW_UNSND (attr) >= 0xffffffff)
18690 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18691 hex_string (DW_UNSND (attr)));
18692 DW_UNSND (attr) = 0;
18698 /* Read an attribute described by an abbreviated attribute. */
18700 static const gdb_byte *
18701 read_attribute (const struct die_reader_specs *reader,
18702 struct attribute *attr, struct attr_abbrev *abbrev,
18703 const gdb_byte *info_ptr, bool *need_reprocess)
18705 attr->name = abbrev->name;
18706 return read_attribute_value (reader, attr, abbrev->form,
18707 abbrev->implicit_const, info_ptr,
18711 /* Cover function for read_initial_length.
18712 Returns the length of the object at BUF, and stores the size of the
18713 initial length in *BYTES_READ and stores the size that offsets will be in
18715 If the initial length size is not equivalent to that specified in
18716 CU_HEADER then issue a complaint.
18717 This is useful when reading non-comp-unit headers. */
18720 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18721 const struct comp_unit_head *cu_header,
18722 unsigned int *bytes_read,
18723 unsigned int *offset_size)
18725 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18727 gdb_assert (cu_header->initial_length_size == 4
18728 || cu_header->initial_length_size == 8
18729 || cu_header->initial_length_size == 12);
18731 if (cu_header->initial_length_size != *bytes_read)
18732 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
18734 *offset_size = (*bytes_read == 4) ? 4 : 8;
18738 /* Return pointer to string at section SECT offset STR_OFFSET with error
18739 reporting strings FORM_NAME and SECT_NAME. */
18741 static const char *
18742 read_indirect_string_at_offset_from (struct objfile *objfile,
18743 bfd *abfd, LONGEST str_offset,
18744 struct dwarf2_section_info *sect,
18745 const char *form_name,
18746 const char *sect_name)
18748 sect->read (objfile);
18749 if (sect->buffer == NULL)
18750 error (_("%s used without %s section [in module %s]"),
18751 form_name, sect_name, bfd_get_filename (abfd));
18752 if (str_offset >= sect->size)
18753 error (_("%s pointing outside of %s section [in module %s]"),
18754 form_name, sect_name, bfd_get_filename (abfd));
18755 gdb_assert (HOST_CHAR_BIT == 8);
18756 if (sect->buffer[str_offset] == '\0')
18758 return (const char *) (sect->buffer + str_offset);
18761 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18763 static const char *
18764 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18765 bfd *abfd, LONGEST str_offset)
18767 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18769 &dwarf2_per_objfile->str,
18770 "DW_FORM_strp", ".debug_str");
18773 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18775 static const char *
18776 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18777 bfd *abfd, LONGEST str_offset)
18779 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18781 &dwarf2_per_objfile->line_str,
18782 "DW_FORM_line_strp",
18783 ".debug_line_str");
18786 /* Read a string at offset STR_OFFSET in the .debug_str section from
18787 the .dwz file DWZ. Throw an error if the offset is too large. If
18788 the string consists of a single NUL byte, return NULL; otherwise
18789 return a pointer to the string. */
18791 static const char *
18792 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
18793 LONGEST str_offset)
18795 dwz->str.read (objfile);
18797 if (dwz->str.buffer == NULL)
18798 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18799 "section [in module %s]"),
18800 bfd_get_filename (dwz->dwz_bfd.get ()));
18801 if (str_offset >= dwz->str.size)
18802 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18803 ".debug_str section [in module %s]"),
18804 bfd_get_filename (dwz->dwz_bfd.get ()));
18805 gdb_assert (HOST_CHAR_BIT == 8);
18806 if (dwz->str.buffer[str_offset] == '\0')
18808 return (const char *) (dwz->str.buffer + str_offset);
18811 /* Return pointer to string at .debug_str offset as read from BUF.
18812 BUF is assumed to be in a compilation unit described by CU_HEADER.
18813 Return *BYTES_READ_PTR count of bytes read from BUF. */
18815 static const char *
18816 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18817 const gdb_byte *buf,
18818 const struct comp_unit_head *cu_header,
18819 unsigned int *bytes_read_ptr)
18821 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18823 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
18826 /* Return pointer to string at .debug_line_str offset as read from BUF.
18827 BUF is assumed to be in a compilation unit described by CU_HEADER.
18828 Return *BYTES_READ_PTR count of bytes read from BUF. */
18830 static const char *
18831 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
18832 bfd *abfd, const gdb_byte *buf,
18833 const struct comp_unit_head *cu_header,
18834 unsigned int *bytes_read_ptr)
18836 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18838 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
18842 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18843 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18844 ADDR_SIZE is the size of addresses from the CU header. */
18847 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18848 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18851 struct objfile *objfile = dwarf2_per_objfile->objfile;
18852 bfd *abfd = objfile->obfd;
18853 const gdb_byte *info_ptr;
18854 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18856 dwarf2_per_objfile->addr.read (objfile);
18857 if (dwarf2_per_objfile->addr.buffer == NULL)
18858 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18859 objfile_name (objfile));
18860 if (addr_base_or_zero + addr_index * addr_size
18861 >= dwarf2_per_objfile->addr.size)
18862 error (_("DW_FORM_addr_index pointing outside of "
18863 ".debug_addr section [in module %s]"),
18864 objfile_name (objfile));
18865 info_ptr = (dwarf2_per_objfile->addr.buffer
18866 + addr_base_or_zero + addr_index * addr_size);
18867 if (addr_size == 4)
18868 return bfd_get_32 (abfd, info_ptr);
18870 return bfd_get_64 (abfd, info_ptr);
18873 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18876 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18878 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18879 cu->addr_base, cu->header.addr_size);
18882 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18885 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18886 unsigned int *bytes_read)
18888 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18889 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18891 return read_addr_index (cu, addr_index);
18897 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18899 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18900 struct dwarf2_cu *cu = per_cu->cu;
18901 gdb::optional<ULONGEST> addr_base;
18904 /* We need addr_base and addr_size.
18905 If we don't have PER_CU->cu, we have to get it.
18906 Nasty, but the alternative is storing the needed info in PER_CU,
18907 which at this point doesn't seem justified: it's not clear how frequently
18908 it would get used and it would increase the size of every PER_CU.
18909 Entry points like dwarf2_per_cu_addr_size do a similar thing
18910 so we're not in uncharted territory here.
18911 Alas we need to be a bit more complicated as addr_base is contained
18914 We don't need to read the entire CU(/TU).
18915 We just need the header and top level die.
18917 IWBN to use the aging mechanism to let us lazily later discard the CU.
18918 For now we skip this optimization. */
18922 addr_base = cu->addr_base;
18923 addr_size = cu->header.addr_size;
18927 cutu_reader reader (per_cu, NULL, 0, false);
18928 addr_base = reader.cu->addr_base;
18929 addr_size = reader.cu->header.addr_size;
18932 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
18936 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
18937 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
18940 static const char *
18941 read_str_index (struct dwarf2_cu *cu,
18942 struct dwarf2_section_info *str_section,
18943 struct dwarf2_section_info *str_offsets_section,
18944 ULONGEST str_offsets_base, ULONGEST str_index)
18946 struct dwarf2_per_objfile *dwarf2_per_objfile
18947 = cu->per_cu->dwarf2_per_objfile;
18948 struct objfile *objfile = dwarf2_per_objfile->objfile;
18949 const char *objf_name = objfile_name (objfile);
18950 bfd *abfd = objfile->obfd;
18951 const gdb_byte *info_ptr;
18952 ULONGEST str_offset;
18953 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
18955 str_section->read (objfile);
18956 str_offsets_section->read (objfile);
18957 if (str_section->buffer == NULL)
18958 error (_("%s used without %s section"
18959 " in CU at offset %s [in module %s]"),
18960 form_name, str_section->get_name (),
18961 sect_offset_str (cu->header.sect_off), objf_name);
18962 if (str_offsets_section->buffer == NULL)
18963 error (_("%s used without %s section"
18964 " in CU at offset %s [in module %s]"),
18965 form_name, str_section->get_name (),
18966 sect_offset_str (cu->header.sect_off), objf_name);
18967 info_ptr = (str_offsets_section->buffer
18969 + str_index * cu->header.offset_size);
18970 if (cu->header.offset_size == 4)
18971 str_offset = bfd_get_32 (abfd, info_ptr);
18973 str_offset = bfd_get_64 (abfd, info_ptr);
18974 if (str_offset >= str_section->size)
18975 error (_("Offset from %s pointing outside of"
18976 " .debug_str.dwo section in CU at offset %s [in module %s]"),
18977 form_name, sect_offset_str (cu->header.sect_off), objf_name);
18978 return (const char *) (str_section->buffer + str_offset);
18981 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
18983 static const char *
18984 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18986 ULONGEST str_offsets_base = reader->cu->header.version >= 5
18987 ? reader->cu->header.addr_size : 0;
18988 return read_str_index (reader->cu,
18989 &reader->dwo_file->sections.str,
18990 &reader->dwo_file->sections.str_offsets,
18991 str_offsets_base, str_index);
18994 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
18996 static const char *
18997 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
18999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19000 const char *objf_name = objfile_name (objfile);
19001 static const char form_name[] = "DW_FORM_GNU_str_index";
19002 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19004 if (!cu->str_offsets_base.has_value ())
19005 error (_("%s used in Fission stub without %s"
19006 " in CU at offset 0x%lx [in module %s]"),
19007 form_name, str_offsets_attr_name,
19008 (long) cu->header.offset_size, objf_name);
19010 return read_str_index (cu,
19011 &cu->per_cu->dwarf2_per_objfile->str,
19012 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19013 *cu->str_offsets_base, str_index);
19016 /* Return the length of an LEB128 number in BUF. */
19019 leb128_size (const gdb_byte *buf)
19021 const gdb_byte *begin = buf;
19027 if ((byte & 128) == 0)
19028 return buf - begin;
19033 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19042 cu->language = language_c;
19045 case DW_LANG_C_plus_plus:
19046 case DW_LANG_C_plus_plus_11:
19047 case DW_LANG_C_plus_plus_14:
19048 cu->language = language_cplus;
19051 cu->language = language_d;
19053 case DW_LANG_Fortran77:
19054 case DW_LANG_Fortran90:
19055 case DW_LANG_Fortran95:
19056 case DW_LANG_Fortran03:
19057 case DW_LANG_Fortran08:
19058 cu->language = language_fortran;
19061 cu->language = language_go;
19063 case DW_LANG_Mips_Assembler:
19064 cu->language = language_asm;
19066 case DW_LANG_Ada83:
19067 case DW_LANG_Ada95:
19068 cu->language = language_ada;
19070 case DW_LANG_Modula2:
19071 cu->language = language_m2;
19073 case DW_LANG_Pascal83:
19074 cu->language = language_pascal;
19077 cu->language = language_objc;
19080 case DW_LANG_Rust_old:
19081 cu->language = language_rust;
19083 case DW_LANG_Cobol74:
19084 case DW_LANG_Cobol85:
19086 cu->language = language_minimal;
19089 cu->language_defn = language_def (cu->language);
19092 /* Return the named attribute or NULL if not there. */
19094 static struct attribute *
19095 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19100 struct attribute *spec = NULL;
19102 for (i = 0; i < die->num_attrs; ++i)
19104 if (die->attrs[i].name == name)
19105 return &die->attrs[i];
19106 if (die->attrs[i].name == DW_AT_specification
19107 || die->attrs[i].name == DW_AT_abstract_origin)
19108 spec = &die->attrs[i];
19114 die = follow_die_ref (die, spec, &cu);
19120 /* Return the named attribute or NULL if not there,
19121 but do not follow DW_AT_specification, etc.
19122 This is for use in contexts where we're reading .debug_types dies.
19123 Following DW_AT_specification, DW_AT_abstract_origin will take us
19124 back up the chain, and we want to go down. */
19126 static struct attribute *
19127 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19131 for (i = 0; i < die->num_attrs; ++i)
19132 if (die->attrs[i].name == name)
19133 return &die->attrs[i];
19138 /* Return the string associated with a string-typed attribute, or NULL if it
19139 is either not found or is of an incorrect type. */
19141 static const char *
19142 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19144 struct attribute *attr;
19145 const char *str = NULL;
19147 attr = dwarf2_attr (die, name, cu);
19151 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19152 || attr->form == DW_FORM_string
19153 || attr->form == DW_FORM_strx
19154 || attr->form == DW_FORM_strx1
19155 || attr->form == DW_FORM_strx2
19156 || attr->form == DW_FORM_strx3
19157 || attr->form == DW_FORM_strx4
19158 || attr->form == DW_FORM_GNU_str_index
19159 || attr->form == DW_FORM_GNU_strp_alt)
19160 str = DW_STRING (attr);
19162 complaint (_("string type expected for attribute %s for "
19163 "DIE at %s in module %s"),
19164 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19165 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19171 /* Return the dwo name or NULL if not present. If present, it is in either
19172 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19173 static const char *
19174 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19176 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19177 if (dwo_name == nullptr)
19178 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19182 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19183 and holds a non-zero value. This function should only be used for
19184 DW_FORM_flag or DW_FORM_flag_present attributes. */
19187 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19189 struct attribute *attr = dwarf2_attr (die, name, cu);
19191 return (attr && DW_UNSND (attr));
19195 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19197 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19198 which value is non-zero. However, we have to be careful with
19199 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19200 (via dwarf2_flag_true_p) follows this attribute. So we may
19201 end up accidently finding a declaration attribute that belongs
19202 to a different DIE referenced by the specification attribute,
19203 even though the given DIE does not have a declaration attribute. */
19204 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19205 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19208 /* Return the die giving the specification for DIE, if there is
19209 one. *SPEC_CU is the CU containing DIE on input, and the CU
19210 containing the return value on output. If there is no
19211 specification, but there is an abstract origin, that is
19214 static struct die_info *
19215 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19217 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19220 if (spec_attr == NULL)
19221 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19223 if (spec_attr == NULL)
19226 return follow_die_ref (die, spec_attr, spec_cu);
19229 /* Stub for free_line_header to match void * callback types. */
19232 free_line_header_voidp (void *arg)
19234 struct line_header *lh = (struct line_header *) arg;
19239 /* A convenience function to find the proper .debug_line section for a CU. */
19241 static struct dwarf2_section_info *
19242 get_debug_line_section (struct dwarf2_cu *cu)
19244 struct dwarf2_section_info *section;
19245 struct dwarf2_per_objfile *dwarf2_per_objfile
19246 = cu->per_cu->dwarf2_per_objfile;
19248 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19250 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19251 section = &cu->dwo_unit->dwo_file->sections.line;
19252 else if (cu->per_cu->is_dwz)
19254 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19256 section = &dwz->line;
19259 section = &dwarf2_per_objfile->line;
19264 /* Read directory or file name entry format, starting with byte of
19265 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19266 entries count and the entries themselves in the described entry
19270 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19271 bfd *abfd, const gdb_byte **bufp,
19272 struct line_header *lh,
19273 const struct comp_unit_head *cu_header,
19274 void (*callback) (struct line_header *lh,
19277 unsigned int mod_time,
19278 unsigned int length))
19280 gdb_byte format_count, formati;
19281 ULONGEST data_count, datai;
19282 const gdb_byte *buf = *bufp;
19283 const gdb_byte *format_header_data;
19284 unsigned int bytes_read;
19286 format_count = read_1_byte (abfd, buf);
19288 format_header_data = buf;
19289 for (formati = 0; formati < format_count; formati++)
19291 read_unsigned_leb128 (abfd, buf, &bytes_read);
19293 read_unsigned_leb128 (abfd, buf, &bytes_read);
19297 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19299 for (datai = 0; datai < data_count; datai++)
19301 const gdb_byte *format = format_header_data;
19302 struct file_entry fe;
19304 for (formati = 0; formati < format_count; formati++)
19306 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19307 format += bytes_read;
19309 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19310 format += bytes_read;
19312 gdb::optional<const char *> string;
19313 gdb::optional<unsigned int> uint;
19317 case DW_FORM_string:
19318 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19322 case DW_FORM_line_strp:
19323 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19330 case DW_FORM_data1:
19331 uint.emplace (read_1_byte (abfd, buf));
19335 case DW_FORM_data2:
19336 uint.emplace (read_2_bytes (abfd, buf));
19340 case DW_FORM_data4:
19341 uint.emplace (read_4_bytes (abfd, buf));
19345 case DW_FORM_data8:
19346 uint.emplace (read_8_bytes (abfd, buf));
19350 case DW_FORM_data16:
19351 /* This is used for MD5, but file_entry does not record MD5s. */
19355 case DW_FORM_udata:
19356 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19360 case DW_FORM_block:
19361 /* It is valid only for DW_LNCT_timestamp which is ignored by
19366 switch (content_type)
19369 if (string.has_value ())
19372 case DW_LNCT_directory_index:
19373 if (uint.has_value ())
19374 fe.d_index = (dir_index) *uint;
19376 case DW_LNCT_timestamp:
19377 if (uint.has_value ())
19378 fe.mod_time = *uint;
19381 if (uint.has_value ())
19387 complaint (_("Unknown format content type %s"),
19388 pulongest (content_type));
19392 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19398 /* Read the statement program header starting at OFFSET in
19399 .debug_line, or .debug_line.dwo. Return a pointer
19400 to a struct line_header, allocated using xmalloc.
19401 Returns NULL if there is a problem reading the header, e.g., if it
19402 has a version we don't understand.
19404 NOTE: the strings in the include directory and file name tables of
19405 the returned object point into the dwarf line section buffer,
19406 and must not be freed. */
19408 static line_header_up
19409 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19411 const gdb_byte *line_ptr;
19412 unsigned int bytes_read, offset_size;
19414 const char *cur_dir, *cur_file;
19415 struct dwarf2_section_info *section;
19417 struct dwarf2_per_objfile *dwarf2_per_objfile
19418 = cu->per_cu->dwarf2_per_objfile;
19420 section = get_debug_line_section (cu);
19421 section->read (dwarf2_per_objfile->objfile);
19422 if (section->buffer == NULL)
19424 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19425 complaint (_("missing .debug_line.dwo section"));
19427 complaint (_("missing .debug_line section"));
19431 /* We can't do this until we know the section is non-empty.
19432 Only then do we know we have such a section. */
19433 abfd = section->get_bfd_owner ();
19435 /* Make sure that at least there's room for the total_length field.
19436 That could be 12 bytes long, but we're just going to fudge that. */
19437 if (to_underlying (sect_off) + 4 >= section->size)
19439 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19443 line_header_up lh (new line_header ());
19445 lh->sect_off = sect_off;
19446 lh->offset_in_dwz = cu->per_cu->is_dwz;
19448 line_ptr = section->buffer + to_underlying (sect_off);
19450 /* Read in the header. */
19452 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
19453 &bytes_read, &offset_size);
19454 line_ptr += bytes_read;
19456 const gdb_byte *start_here = line_ptr;
19458 if (line_ptr + lh->total_length > (section->buffer + section->size))
19460 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19463 lh->statement_program_end = start_here + lh->total_length;
19464 lh->version = read_2_bytes (abfd, line_ptr);
19466 if (lh->version > 5)
19468 /* This is a version we don't understand. The format could have
19469 changed in ways we don't handle properly so just punt. */
19470 complaint (_("unsupported version in .debug_line section"));
19473 if (lh->version >= 5)
19475 gdb_byte segment_selector_size;
19477 /* Skip address size. */
19478 read_1_byte (abfd, line_ptr);
19481 segment_selector_size = read_1_byte (abfd, line_ptr);
19483 if (segment_selector_size != 0)
19485 complaint (_("unsupported segment selector size %u "
19486 "in .debug_line section"),
19487 segment_selector_size);
19491 lh->header_length = read_offset (abfd, line_ptr, offset_size);
19492 line_ptr += offset_size;
19493 lh->statement_program_start = line_ptr + lh->header_length;
19494 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
19496 if (lh->version >= 4)
19498 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
19502 lh->maximum_ops_per_instruction = 1;
19504 if (lh->maximum_ops_per_instruction == 0)
19506 lh->maximum_ops_per_instruction = 1;
19507 complaint (_("invalid maximum_ops_per_instruction "
19508 "in `.debug_line' section"));
19511 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
19513 lh->line_base = read_1_signed_byte (abfd, line_ptr);
19515 lh->line_range = read_1_byte (abfd, line_ptr);
19517 lh->opcode_base = read_1_byte (abfd, line_ptr);
19519 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19521 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19522 for (i = 1; i < lh->opcode_base; ++i)
19524 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19528 if (lh->version >= 5)
19530 /* Read directory table. */
19531 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19533 [] (struct line_header *header, const char *name,
19534 dir_index d_index, unsigned int mod_time,
19535 unsigned int length)
19537 header->add_include_dir (name);
19540 /* Read file name table. */
19541 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19543 [] (struct line_header *header, const char *name,
19544 dir_index d_index, unsigned int mod_time,
19545 unsigned int length)
19547 header->add_file_name (name, d_index, mod_time, length);
19552 /* Read directory table. */
19553 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19555 line_ptr += bytes_read;
19556 lh->add_include_dir (cur_dir);
19558 line_ptr += bytes_read;
19560 /* Read file name table. */
19561 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19563 unsigned int mod_time, length;
19566 line_ptr += bytes_read;
19567 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19568 line_ptr += bytes_read;
19569 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19570 line_ptr += bytes_read;
19571 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19572 line_ptr += bytes_read;
19574 lh->add_file_name (cur_file, d_index, mod_time, length);
19576 line_ptr += bytes_read;
19579 if (line_ptr > (section->buffer + section->size))
19580 complaint (_("line number info header doesn't "
19581 "fit in `.debug_line' section"));
19586 /* Subroutine of dwarf_decode_lines to simplify it.
19587 Return the file name of the psymtab for the given file_entry.
19588 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19589 If space for the result is malloc'd, *NAME_HOLDER will be set.
19590 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19592 static const char *
19593 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19594 const dwarf2_psymtab *pst,
19595 const char *comp_dir,
19596 gdb::unique_xmalloc_ptr<char> *name_holder)
19598 const char *include_name = fe.name;
19599 const char *include_name_to_compare = include_name;
19600 const char *pst_filename;
19603 const char *dir_name = fe.include_dir (lh);
19605 gdb::unique_xmalloc_ptr<char> hold_compare;
19606 if (!IS_ABSOLUTE_PATH (include_name)
19607 && (dir_name != NULL || comp_dir != NULL))
19609 /* Avoid creating a duplicate psymtab for PST.
19610 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19611 Before we do the comparison, however, we need to account
19612 for DIR_NAME and COMP_DIR.
19613 First prepend dir_name (if non-NULL). If we still don't
19614 have an absolute path prepend comp_dir (if non-NULL).
19615 However, the directory we record in the include-file's
19616 psymtab does not contain COMP_DIR (to match the
19617 corresponding symtab(s)).
19622 bash$ gcc -g ./hello.c
19623 include_name = "hello.c"
19625 DW_AT_comp_dir = comp_dir = "/tmp"
19626 DW_AT_name = "./hello.c"
19630 if (dir_name != NULL)
19632 name_holder->reset (concat (dir_name, SLASH_STRING,
19633 include_name, (char *) NULL));
19634 include_name = name_holder->get ();
19635 include_name_to_compare = include_name;
19637 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19639 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19640 include_name, (char *) NULL));
19641 include_name_to_compare = hold_compare.get ();
19645 pst_filename = pst->filename;
19646 gdb::unique_xmalloc_ptr<char> copied_name;
19647 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19649 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19650 pst_filename, (char *) NULL));
19651 pst_filename = copied_name.get ();
19654 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19658 return include_name;
19661 /* State machine to track the state of the line number program. */
19663 class lnp_state_machine
19666 /* Initialize a machine state for the start of a line number
19668 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19669 bool record_lines_p);
19671 file_entry *current_file ()
19673 /* lh->file_names is 0-based, but the file name numbers in the
19674 statement program are 1-based. */
19675 return m_line_header->file_name_at (m_file);
19678 /* Record the line in the state machine. END_SEQUENCE is true if
19679 we're processing the end of a sequence. */
19680 void record_line (bool end_sequence);
19682 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19683 nop-out rest of the lines in this sequence. */
19684 void check_line_address (struct dwarf2_cu *cu,
19685 const gdb_byte *line_ptr,
19686 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19688 void handle_set_discriminator (unsigned int discriminator)
19690 m_discriminator = discriminator;
19691 m_line_has_non_zero_discriminator |= discriminator != 0;
19694 /* Handle DW_LNE_set_address. */
19695 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19698 address += baseaddr;
19699 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19702 /* Handle DW_LNS_advance_pc. */
19703 void handle_advance_pc (CORE_ADDR adjust);
19705 /* Handle a special opcode. */
19706 void handle_special_opcode (unsigned char op_code);
19708 /* Handle DW_LNS_advance_line. */
19709 void handle_advance_line (int line_delta)
19711 advance_line (line_delta);
19714 /* Handle DW_LNS_set_file. */
19715 void handle_set_file (file_name_index file);
19717 /* Handle DW_LNS_negate_stmt. */
19718 void handle_negate_stmt ()
19720 m_is_stmt = !m_is_stmt;
19723 /* Handle DW_LNS_const_add_pc. */
19724 void handle_const_add_pc ();
19726 /* Handle DW_LNS_fixed_advance_pc. */
19727 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19729 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19733 /* Handle DW_LNS_copy. */
19734 void handle_copy ()
19736 record_line (false);
19737 m_discriminator = 0;
19740 /* Handle DW_LNE_end_sequence. */
19741 void handle_end_sequence ()
19743 m_currently_recording_lines = true;
19747 /* Advance the line by LINE_DELTA. */
19748 void advance_line (int line_delta)
19750 m_line += line_delta;
19752 if (line_delta != 0)
19753 m_line_has_non_zero_discriminator = m_discriminator != 0;
19756 struct dwarf2_cu *m_cu;
19758 gdbarch *m_gdbarch;
19760 /* True if we're recording lines.
19761 Otherwise we're building partial symtabs and are just interested in
19762 finding include files mentioned by the line number program. */
19763 bool m_record_lines_p;
19765 /* The line number header. */
19766 line_header *m_line_header;
19768 /* These are part of the standard DWARF line number state machine,
19769 and initialized according to the DWARF spec. */
19771 unsigned char m_op_index = 0;
19772 /* The line table index of the current file. */
19773 file_name_index m_file = 1;
19774 unsigned int m_line = 1;
19776 /* These are initialized in the constructor. */
19778 CORE_ADDR m_address;
19780 unsigned int m_discriminator;
19782 /* Additional bits of state we need to track. */
19784 /* The last file that we called dwarf2_start_subfile for.
19785 This is only used for TLLs. */
19786 unsigned int m_last_file = 0;
19787 /* The last file a line number was recorded for. */
19788 struct subfile *m_last_subfile = NULL;
19790 /* When true, record the lines we decode. */
19791 bool m_currently_recording_lines = false;
19793 /* The last line number that was recorded, used to coalesce
19794 consecutive entries for the same line. This can happen, for
19795 example, when discriminators are present. PR 17276. */
19796 unsigned int m_last_line = 0;
19797 bool m_line_has_non_zero_discriminator = false;
19801 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19803 CORE_ADDR addr_adj = (((m_op_index + adjust)
19804 / m_line_header->maximum_ops_per_instruction)
19805 * m_line_header->minimum_instruction_length);
19806 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19807 m_op_index = ((m_op_index + adjust)
19808 % m_line_header->maximum_ops_per_instruction);
19812 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19814 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19815 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19816 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19817 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19818 / m_line_header->maximum_ops_per_instruction)
19819 * m_line_header->minimum_instruction_length);
19820 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19821 m_op_index = ((m_op_index + adj_opcode_d)
19822 % m_line_header->maximum_ops_per_instruction);
19824 int line_delta = m_line_header->line_base + adj_opcode_r;
19825 advance_line (line_delta);
19826 record_line (false);
19827 m_discriminator = 0;
19831 lnp_state_machine::handle_set_file (file_name_index file)
19835 const file_entry *fe = current_file ();
19837 dwarf2_debug_line_missing_file_complaint ();
19838 else if (m_record_lines_p)
19840 const char *dir = fe->include_dir (m_line_header);
19842 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19843 m_line_has_non_zero_discriminator = m_discriminator != 0;
19844 dwarf2_start_subfile (m_cu, fe->name, dir);
19849 lnp_state_machine::handle_const_add_pc ()
19852 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19855 = (((m_op_index + adjust)
19856 / m_line_header->maximum_ops_per_instruction)
19857 * m_line_header->minimum_instruction_length);
19859 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19860 m_op_index = ((m_op_index + adjust)
19861 % m_line_header->maximum_ops_per_instruction);
19864 /* Return non-zero if we should add LINE to the line number table.
19865 LINE is the line to add, LAST_LINE is the last line that was added,
19866 LAST_SUBFILE is the subfile for LAST_LINE.
19867 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19868 had a non-zero discriminator.
19870 We have to be careful in the presence of discriminators.
19871 E.g., for this line:
19873 for (i = 0; i < 100000; i++);
19875 clang can emit four line number entries for that one line,
19876 each with a different discriminator.
19877 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19879 However, we want gdb to coalesce all four entries into one.
19880 Otherwise the user could stepi into the middle of the line and
19881 gdb would get confused about whether the pc really was in the
19882 middle of the line.
19884 Things are further complicated by the fact that two consecutive
19885 line number entries for the same line is a heuristic used by gcc
19886 to denote the end of the prologue. So we can't just discard duplicate
19887 entries, we have to be selective about it. The heuristic we use is
19888 that we only collapse consecutive entries for the same line if at least
19889 one of those entries has a non-zero discriminator. PR 17276.
19891 Note: Addresses in the line number state machine can never go backwards
19892 within one sequence, thus this coalescing is ok. */
19895 dwarf_record_line_p (struct dwarf2_cu *cu,
19896 unsigned int line, unsigned int last_line,
19897 int line_has_non_zero_discriminator,
19898 struct subfile *last_subfile)
19900 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19902 if (line != last_line)
19904 /* Same line for the same file that we've seen already.
19905 As a last check, for pr 17276, only record the line if the line
19906 has never had a non-zero discriminator. */
19907 if (!line_has_non_zero_discriminator)
19912 /* Use the CU's builder to record line number LINE beginning at
19913 address ADDRESS in the line table of subfile SUBFILE. */
19916 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19917 unsigned int line, CORE_ADDR address,
19918 struct dwarf2_cu *cu)
19920 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19922 if (dwarf_line_debug)
19924 fprintf_unfiltered (gdb_stdlog,
19925 "Recording line %u, file %s, address %s\n",
19926 line, lbasename (subfile->name),
19927 paddress (gdbarch, address));
19931 cu->get_builder ()->record_line (subfile, line, addr);
19934 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19935 Mark the end of a set of line number records.
19936 The arguments are the same as for dwarf_record_line_1.
19937 If SUBFILE is NULL the request is ignored. */
19940 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19941 CORE_ADDR address, struct dwarf2_cu *cu)
19943 if (subfile == NULL)
19946 if (dwarf_line_debug)
19948 fprintf_unfiltered (gdb_stdlog,
19949 "Finishing current line, file %s, address %s\n",
19950 lbasename (subfile->name),
19951 paddress (gdbarch, address));
19954 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
19958 lnp_state_machine::record_line (bool end_sequence)
19960 if (dwarf_line_debug)
19962 fprintf_unfiltered (gdb_stdlog,
19963 "Processing actual line %u: file %u,"
19964 " address %s, is_stmt %u, discrim %u%s\n",
19966 paddress (m_gdbarch, m_address),
19967 m_is_stmt, m_discriminator,
19968 (end_sequence ? "\t(end sequence)" : ""));
19971 file_entry *fe = current_file ();
19974 dwarf2_debug_line_missing_file_complaint ();
19975 /* For now we ignore lines not starting on an instruction boundary.
19976 But not when processing end_sequence for compatibility with the
19977 previous version of the code. */
19978 else if (m_op_index == 0 || end_sequence)
19980 fe->included_p = 1;
19981 if (m_record_lines_p
19982 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
19984 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
19987 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
19988 m_currently_recording_lines ? m_cu : nullptr);
19993 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
19994 m_line_has_non_zero_discriminator,
19997 buildsym_compunit *builder = m_cu->get_builder ();
19998 dwarf_record_line_1 (m_gdbarch,
19999 builder->get_current_subfile (),
20001 m_currently_recording_lines ? m_cu : nullptr);
20003 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20004 m_last_line = m_line;
20010 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20011 line_header *lh, bool record_lines_p)
20015 m_record_lines_p = record_lines_p;
20016 m_line_header = lh;
20018 m_currently_recording_lines = true;
20020 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20021 was a line entry for it so that the backend has a chance to adjust it
20022 and also record it in case it needs it. This is currently used by MIPS
20023 code, cf. `mips_adjust_dwarf2_line'. */
20024 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20025 m_is_stmt = lh->default_is_stmt;
20026 m_discriminator = 0;
20030 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20031 const gdb_byte *line_ptr,
20032 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20034 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20035 the pc range of the CU. However, we restrict the test to only ADDRESS
20036 values of zero to preserve GDB's previous behaviour which is to handle
20037 the specific case of a function being GC'd by the linker. */
20039 if (address == 0 && address < unrelocated_lowpc)
20041 /* This line table is for a function which has been
20042 GCd by the linker. Ignore it. PR gdb/12528 */
20044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20045 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20047 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20048 line_offset, objfile_name (objfile));
20049 m_currently_recording_lines = false;
20050 /* Note: m_currently_recording_lines is left as false until we see
20051 DW_LNE_end_sequence. */
20055 /* Subroutine of dwarf_decode_lines to simplify it.
20056 Process the line number information in LH.
20057 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20058 program in order to set included_p for every referenced header. */
20061 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20062 const int decode_for_pst_p, CORE_ADDR lowpc)
20064 const gdb_byte *line_ptr, *extended_end;
20065 const gdb_byte *line_end;
20066 unsigned int bytes_read, extended_len;
20067 unsigned char op_code, extended_op;
20068 CORE_ADDR baseaddr;
20069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20070 bfd *abfd = objfile->obfd;
20071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20072 /* True if we're recording line info (as opposed to building partial
20073 symtabs and just interested in finding include files mentioned by
20074 the line number program). */
20075 bool record_lines_p = !decode_for_pst_p;
20077 baseaddr = objfile->text_section_offset ();
20079 line_ptr = lh->statement_program_start;
20080 line_end = lh->statement_program_end;
20082 /* Read the statement sequences until there's nothing left. */
20083 while (line_ptr < line_end)
20085 /* The DWARF line number program state machine. Reset the state
20086 machine at the start of each sequence. */
20087 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20088 bool end_sequence = false;
20090 if (record_lines_p)
20092 /* Start a subfile for the current file of the state
20094 const file_entry *fe = state_machine.current_file ();
20097 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20100 /* Decode the table. */
20101 while (line_ptr < line_end && !end_sequence)
20103 op_code = read_1_byte (abfd, line_ptr);
20106 if (op_code >= lh->opcode_base)
20108 /* Special opcode. */
20109 state_machine.handle_special_opcode (op_code);
20111 else switch (op_code)
20113 case DW_LNS_extended_op:
20114 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20116 line_ptr += bytes_read;
20117 extended_end = line_ptr + extended_len;
20118 extended_op = read_1_byte (abfd, line_ptr);
20120 switch (extended_op)
20122 case DW_LNE_end_sequence:
20123 state_machine.handle_end_sequence ();
20124 end_sequence = true;
20126 case DW_LNE_set_address:
20129 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20130 line_ptr += bytes_read;
20132 state_machine.check_line_address (cu, line_ptr,
20133 lowpc - baseaddr, address);
20134 state_machine.handle_set_address (baseaddr, address);
20137 case DW_LNE_define_file:
20139 const char *cur_file;
20140 unsigned int mod_time, length;
20143 cur_file = read_direct_string (abfd, line_ptr,
20145 line_ptr += bytes_read;
20146 dindex = (dir_index)
20147 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20148 line_ptr += bytes_read;
20150 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20151 line_ptr += bytes_read;
20153 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20154 line_ptr += bytes_read;
20155 lh->add_file_name (cur_file, dindex, mod_time, length);
20158 case DW_LNE_set_discriminator:
20160 /* The discriminator is not interesting to the
20161 debugger; just ignore it. We still need to
20162 check its value though:
20163 if there are consecutive entries for the same
20164 (non-prologue) line we want to coalesce them.
20167 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20168 line_ptr += bytes_read;
20170 state_machine.handle_set_discriminator (discr);
20174 complaint (_("mangled .debug_line section"));
20177 /* Make sure that we parsed the extended op correctly. If e.g.
20178 we expected a different address size than the producer used,
20179 we may have read the wrong number of bytes. */
20180 if (line_ptr != extended_end)
20182 complaint (_("mangled .debug_line section"));
20187 state_machine.handle_copy ();
20189 case DW_LNS_advance_pc:
20192 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20193 line_ptr += bytes_read;
20195 state_machine.handle_advance_pc (adjust);
20198 case DW_LNS_advance_line:
20201 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20202 line_ptr += bytes_read;
20204 state_machine.handle_advance_line (line_delta);
20207 case DW_LNS_set_file:
20209 file_name_index file
20210 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20212 line_ptr += bytes_read;
20214 state_machine.handle_set_file (file);
20217 case DW_LNS_set_column:
20218 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20219 line_ptr += bytes_read;
20221 case DW_LNS_negate_stmt:
20222 state_machine.handle_negate_stmt ();
20224 case DW_LNS_set_basic_block:
20226 /* Add to the address register of the state machine the
20227 address increment value corresponding to special opcode
20228 255. I.e., this value is scaled by the minimum
20229 instruction length since special opcode 255 would have
20230 scaled the increment. */
20231 case DW_LNS_const_add_pc:
20232 state_machine.handle_const_add_pc ();
20234 case DW_LNS_fixed_advance_pc:
20236 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20239 state_machine.handle_fixed_advance_pc (addr_adj);
20244 /* Unknown standard opcode, ignore it. */
20247 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20249 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20250 line_ptr += bytes_read;
20257 dwarf2_debug_line_missing_end_sequence_complaint ();
20259 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20260 in which case we still finish recording the last line). */
20261 state_machine.record_line (true);
20265 /* Decode the Line Number Program (LNP) for the given line_header
20266 structure and CU. The actual information extracted and the type
20267 of structures created from the LNP depends on the value of PST.
20269 1. If PST is NULL, then this procedure uses the data from the program
20270 to create all necessary symbol tables, and their linetables.
20272 2. If PST is not NULL, this procedure reads the program to determine
20273 the list of files included by the unit represented by PST, and
20274 builds all the associated partial symbol tables.
20276 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20277 It is used for relative paths in the line table.
20278 NOTE: When processing partial symtabs (pst != NULL),
20279 comp_dir == pst->dirname.
20281 NOTE: It is important that psymtabs have the same file name (via strcmp)
20282 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20283 symtab we don't use it in the name of the psymtabs we create.
20284 E.g. expand_line_sal requires this when finding psymtabs to expand.
20285 A good testcase for this is mb-inline.exp.
20287 LOWPC is the lowest address in CU (or 0 if not known).
20289 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20290 for its PC<->lines mapping information. Otherwise only the filename
20291 table is read in. */
20294 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20295 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20296 CORE_ADDR lowpc, int decode_mapping)
20298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20299 const int decode_for_pst_p = (pst != NULL);
20301 if (decode_mapping)
20302 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20304 if (decode_for_pst_p)
20306 /* Now that we're done scanning the Line Header Program, we can
20307 create the psymtab of each included file. */
20308 for (auto &file_entry : lh->file_names ())
20309 if (file_entry.included_p == 1)
20311 gdb::unique_xmalloc_ptr<char> name_holder;
20312 const char *include_name =
20313 psymtab_include_file_name (lh, file_entry, pst,
20314 comp_dir, &name_holder);
20315 if (include_name != NULL)
20316 dwarf2_create_include_psymtab (include_name, pst, objfile);
20321 /* Make sure a symtab is created for every file, even files
20322 which contain only variables (i.e. no code with associated
20324 buildsym_compunit *builder = cu->get_builder ();
20325 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20327 for (auto &fe : lh->file_names ())
20329 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20330 if (builder->get_current_subfile ()->symtab == NULL)
20332 builder->get_current_subfile ()->symtab
20333 = allocate_symtab (cust,
20334 builder->get_current_subfile ()->name);
20336 fe.symtab = builder->get_current_subfile ()->symtab;
20341 /* Start a subfile for DWARF. FILENAME is the name of the file and
20342 DIRNAME the name of the source directory which contains FILENAME
20343 or NULL if not known.
20344 This routine tries to keep line numbers from identical absolute and
20345 relative file names in a common subfile.
20347 Using the `list' example from the GDB testsuite, which resides in
20348 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20349 of /srcdir/list0.c yields the following debugging information for list0.c:
20351 DW_AT_name: /srcdir/list0.c
20352 DW_AT_comp_dir: /compdir
20353 files.files[0].name: list0.h
20354 files.files[0].dir: /srcdir
20355 files.files[1].name: list0.c
20356 files.files[1].dir: /srcdir
20358 The line number information for list0.c has to end up in a single
20359 subfile, so that `break /srcdir/list0.c:1' works as expected.
20360 start_subfile will ensure that this happens provided that we pass the
20361 concatenation of files.files[1].dir and files.files[1].name as the
20365 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20366 const char *dirname)
20368 gdb::unique_xmalloc_ptr<char> copy;
20370 /* In order not to lose the line information directory,
20371 we concatenate it to the filename when it makes sense.
20372 Note that the Dwarf3 standard says (speaking of filenames in line
20373 information): ``The directory index is ignored for file names
20374 that represent full path names''. Thus ignoring dirname in the
20375 `else' branch below isn't an issue. */
20377 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20379 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20380 filename = copy.get ();
20383 cu->get_builder ()->start_subfile (filename);
20386 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20387 buildsym_compunit constructor. */
20389 struct compunit_symtab *
20390 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20393 gdb_assert (m_builder == nullptr);
20395 m_builder.reset (new struct buildsym_compunit
20396 (per_cu->dwarf2_per_objfile->objfile,
20397 name, comp_dir, language, low_pc));
20399 list_in_scope = get_builder ()->get_file_symbols ();
20401 get_builder ()->record_debugformat ("DWARF 2");
20402 get_builder ()->record_producer (producer);
20404 processing_has_namespace_info = false;
20406 return get_builder ()->get_compunit_symtab ();
20410 var_decode_location (struct attribute *attr, struct symbol *sym,
20411 struct dwarf2_cu *cu)
20413 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20414 struct comp_unit_head *cu_header = &cu->header;
20416 /* NOTE drow/2003-01-30: There used to be a comment and some special
20417 code here to turn a symbol with DW_AT_external and a
20418 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20419 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20420 with some versions of binutils) where shared libraries could have
20421 relocations against symbols in their debug information - the
20422 minimal symbol would have the right address, but the debug info
20423 would not. It's no longer necessary, because we will explicitly
20424 apply relocations when we read in the debug information now. */
20426 /* A DW_AT_location attribute with no contents indicates that a
20427 variable has been optimized away. */
20428 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20430 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20434 /* Handle one degenerate form of location expression specially, to
20435 preserve GDB's previous behavior when section offsets are
20436 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20437 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20439 if (attr->form_is_block ()
20440 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20441 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20442 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20443 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20444 && (DW_BLOCK (attr)->size
20445 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20447 unsigned int dummy;
20449 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20450 SET_SYMBOL_VALUE_ADDRESS
20451 (sym, cu->header.read_address (objfile->obfd,
20452 DW_BLOCK (attr)->data + 1,
20455 SET_SYMBOL_VALUE_ADDRESS
20456 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20458 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20459 fixup_symbol_section (sym, objfile);
20460 SET_SYMBOL_VALUE_ADDRESS
20462 SYMBOL_VALUE_ADDRESS (sym)
20463 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20467 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20468 expression evaluator, and use LOC_COMPUTED only when necessary
20469 (i.e. when the value of a register or memory location is
20470 referenced, or a thread-local block, etc.). Then again, it might
20471 not be worthwhile. I'm assuming that it isn't unless performance
20472 or memory numbers show me otherwise. */
20474 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20476 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20477 cu->has_loclist = true;
20480 /* Given a pointer to a DWARF information entry, figure out if we need
20481 to make a symbol table entry for it, and if so, create a new entry
20482 and return a pointer to it.
20483 If TYPE is NULL, determine symbol type from the die, otherwise
20484 used the passed type.
20485 If SPACE is not NULL, use it to hold the new symbol. If it is
20486 NULL, allocate a new symbol on the objfile's obstack. */
20488 static struct symbol *
20489 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20490 struct symbol *space)
20492 struct dwarf2_per_objfile *dwarf2_per_objfile
20493 = cu->per_cu->dwarf2_per_objfile;
20494 struct objfile *objfile = dwarf2_per_objfile->objfile;
20495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20496 struct symbol *sym = NULL;
20498 struct attribute *attr = NULL;
20499 struct attribute *attr2 = NULL;
20500 CORE_ADDR baseaddr;
20501 struct pending **list_to_add = NULL;
20503 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20505 baseaddr = objfile->text_section_offset ();
20507 name = dwarf2_name (die, cu);
20510 const char *linkagename;
20511 int suppress_add = 0;
20516 sym = allocate_symbol (objfile);
20517 OBJSTAT (objfile, n_syms++);
20519 /* Cache this symbol's name and the name's demangled form (if any). */
20520 sym->set_language (cu->language, &objfile->objfile_obstack);
20521 linkagename = dwarf2_physname (name, die, cu);
20522 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20524 /* Fortran does not have mangling standard and the mangling does differ
20525 between gfortran, iFort etc. */
20526 if (cu->language == language_fortran
20527 && symbol_get_demangled_name (sym) == NULL)
20528 symbol_set_demangled_name (sym,
20529 dwarf2_full_name (name, die, cu),
20532 /* Default assumptions.
20533 Use the passed type or decode it from the die. */
20534 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20535 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20537 SYMBOL_TYPE (sym) = type;
20539 SYMBOL_TYPE (sym) = die_type (die, cu);
20540 attr = dwarf2_attr (die,
20541 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20543 if (attr != nullptr)
20545 SYMBOL_LINE (sym) = DW_UNSND (attr);
20548 attr = dwarf2_attr (die,
20549 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20551 if (attr != nullptr)
20553 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20554 struct file_entry *fe;
20556 if (cu->line_header != NULL)
20557 fe = cu->line_header->file_name_at (file_index);
20562 complaint (_("file index out of range"));
20564 symbol_set_symtab (sym, fe->symtab);
20570 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20571 if (attr != nullptr)
20575 addr = attr->value_as_address ();
20576 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20577 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20579 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20580 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20581 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20582 add_symbol_to_list (sym, cu->list_in_scope);
20584 case DW_TAG_subprogram:
20585 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20587 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20588 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20589 if ((attr2 && (DW_UNSND (attr2) != 0))
20590 || cu->language == language_ada
20591 || cu->language == language_fortran)
20593 /* Subprograms marked external are stored as a global symbol.
20594 Ada and Fortran subprograms, whether marked external or
20595 not, are always stored as a global symbol, because we want
20596 to be able to access them globally. For instance, we want
20597 to be able to break on a nested subprogram without having
20598 to specify the context. */
20599 list_to_add = cu->get_builder ()->get_global_symbols ();
20603 list_to_add = cu->list_in_scope;
20606 case DW_TAG_inlined_subroutine:
20607 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20609 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20610 SYMBOL_INLINED (sym) = 1;
20611 list_to_add = cu->list_in_scope;
20613 case DW_TAG_template_value_param:
20615 /* Fall through. */
20616 case DW_TAG_constant:
20617 case DW_TAG_variable:
20618 case DW_TAG_member:
20619 /* Compilation with minimal debug info may result in
20620 variables with missing type entries. Change the
20621 misleading `void' type to something sensible. */
20622 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20623 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20625 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20626 /* In the case of DW_TAG_member, we should only be called for
20627 static const members. */
20628 if (die->tag == DW_TAG_member)
20630 /* dwarf2_add_field uses die_is_declaration,
20631 so we do the same. */
20632 gdb_assert (die_is_declaration (die, cu));
20635 if (attr != nullptr)
20637 dwarf2_const_value (attr, sym, cu);
20638 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20641 if (attr2 && (DW_UNSND (attr2) != 0))
20642 list_to_add = cu->get_builder ()->get_global_symbols ();
20644 list_to_add = cu->list_in_scope;
20648 attr = dwarf2_attr (die, DW_AT_location, cu);
20649 if (attr != nullptr)
20651 var_decode_location (attr, sym, cu);
20652 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20654 /* Fortran explicitly imports any global symbols to the local
20655 scope by DW_TAG_common_block. */
20656 if (cu->language == language_fortran && die->parent
20657 && die->parent->tag == DW_TAG_common_block)
20660 if (SYMBOL_CLASS (sym) == LOC_STATIC
20661 && SYMBOL_VALUE_ADDRESS (sym) == 0
20662 && !dwarf2_per_objfile->has_section_at_zero)
20664 /* When a static variable is eliminated by the linker,
20665 the corresponding debug information is not stripped
20666 out, but the variable address is set to null;
20667 do not add such variables into symbol table. */
20669 else if (attr2 && (DW_UNSND (attr2) != 0))
20671 if (SYMBOL_CLASS (sym) == LOC_STATIC
20672 && (objfile->flags & OBJF_MAINLINE) == 0
20673 && dwarf2_per_objfile->can_copy)
20675 /* A global static variable might be subject to
20676 copy relocation. We first check for a local
20677 minsym, though, because maybe the symbol was
20678 marked hidden, in which case this would not
20680 bound_minimal_symbol found
20681 = (lookup_minimal_symbol_linkage
20682 (sym->linkage_name (), objfile));
20683 if (found.minsym != nullptr)
20684 sym->maybe_copied = 1;
20687 /* A variable with DW_AT_external is never static,
20688 but it may be block-scoped. */
20690 = ((cu->list_in_scope
20691 == cu->get_builder ()->get_file_symbols ())
20692 ? cu->get_builder ()->get_global_symbols ()
20693 : cu->list_in_scope);
20696 list_to_add = cu->list_in_scope;
20700 /* We do not know the address of this symbol.
20701 If it is an external symbol and we have type information
20702 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20703 The address of the variable will then be determined from
20704 the minimal symbol table whenever the variable is
20706 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20708 /* Fortran explicitly imports any global symbols to the local
20709 scope by DW_TAG_common_block. */
20710 if (cu->language == language_fortran && die->parent
20711 && die->parent->tag == DW_TAG_common_block)
20713 /* SYMBOL_CLASS doesn't matter here because
20714 read_common_block is going to reset it. */
20716 list_to_add = cu->list_in_scope;
20718 else if (attr2 && (DW_UNSND (attr2) != 0)
20719 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20721 /* A variable with DW_AT_external is never static, but it
20722 may be block-scoped. */
20724 = ((cu->list_in_scope
20725 == cu->get_builder ()->get_file_symbols ())
20726 ? cu->get_builder ()->get_global_symbols ()
20727 : cu->list_in_scope);
20729 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20731 else if (!die_is_declaration (die, cu))
20733 /* Use the default LOC_OPTIMIZED_OUT class. */
20734 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20736 list_to_add = cu->list_in_scope;
20740 case DW_TAG_formal_parameter:
20742 /* If we are inside a function, mark this as an argument. If
20743 not, we might be looking at an argument to an inlined function
20744 when we do not have enough information to show inlined frames;
20745 pretend it's a local variable in that case so that the user can
20747 struct context_stack *curr
20748 = cu->get_builder ()->get_current_context_stack ();
20749 if (curr != nullptr && curr->name != nullptr)
20750 SYMBOL_IS_ARGUMENT (sym) = 1;
20751 attr = dwarf2_attr (die, DW_AT_location, cu);
20752 if (attr != nullptr)
20754 var_decode_location (attr, sym, cu);
20756 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20757 if (attr != nullptr)
20759 dwarf2_const_value (attr, sym, cu);
20762 list_to_add = cu->list_in_scope;
20765 case DW_TAG_unspecified_parameters:
20766 /* From varargs functions; gdb doesn't seem to have any
20767 interest in this information, so just ignore it for now.
20770 case DW_TAG_template_type_param:
20772 /* Fall through. */
20773 case DW_TAG_class_type:
20774 case DW_TAG_interface_type:
20775 case DW_TAG_structure_type:
20776 case DW_TAG_union_type:
20777 case DW_TAG_set_type:
20778 case DW_TAG_enumeration_type:
20779 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20780 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20783 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20784 really ever be static objects: otherwise, if you try
20785 to, say, break of a class's method and you're in a file
20786 which doesn't mention that class, it won't work unless
20787 the check for all static symbols in lookup_symbol_aux
20788 saves you. See the OtherFileClass tests in
20789 gdb.c++/namespace.exp. */
20793 buildsym_compunit *builder = cu->get_builder ();
20795 = (cu->list_in_scope == builder->get_file_symbols ()
20796 && cu->language == language_cplus
20797 ? builder->get_global_symbols ()
20798 : cu->list_in_scope);
20800 /* The semantics of C++ state that "struct foo {
20801 ... }" also defines a typedef for "foo". */
20802 if (cu->language == language_cplus
20803 || cu->language == language_ada
20804 || cu->language == language_d
20805 || cu->language == language_rust)
20807 /* The symbol's name is already allocated along
20808 with this objfile, so we don't need to
20809 duplicate it for the type. */
20810 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20811 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20816 case DW_TAG_typedef:
20817 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20819 list_to_add = cu->list_in_scope;
20821 case DW_TAG_base_type:
20822 case DW_TAG_subrange_type:
20823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20825 list_to_add = cu->list_in_scope;
20827 case DW_TAG_enumerator:
20828 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20829 if (attr != nullptr)
20831 dwarf2_const_value (attr, sym, cu);
20834 /* NOTE: carlton/2003-11-10: See comment above in the
20835 DW_TAG_class_type, etc. block. */
20838 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20839 && cu->language == language_cplus
20840 ? cu->get_builder ()->get_global_symbols ()
20841 : cu->list_in_scope);
20844 case DW_TAG_imported_declaration:
20845 case DW_TAG_namespace:
20846 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20847 list_to_add = cu->get_builder ()->get_global_symbols ();
20849 case DW_TAG_module:
20850 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20851 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20852 list_to_add = cu->get_builder ()->get_global_symbols ();
20854 case DW_TAG_common_block:
20855 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20856 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20857 add_symbol_to_list (sym, cu->list_in_scope);
20860 /* Not a tag we recognize. Hopefully we aren't processing
20861 trash data, but since we must specifically ignore things
20862 we don't recognize, there is nothing else we should do at
20864 complaint (_("unsupported tag: '%s'"),
20865 dwarf_tag_name (die->tag));
20871 sym->hash_next = objfile->template_symbols;
20872 objfile->template_symbols = sym;
20873 list_to_add = NULL;
20876 if (list_to_add != NULL)
20877 add_symbol_to_list (sym, list_to_add);
20879 /* For the benefit of old versions of GCC, check for anonymous
20880 namespaces based on the demangled name. */
20881 if (!cu->processing_has_namespace_info
20882 && cu->language == language_cplus)
20883 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20888 /* Given an attr with a DW_FORM_dataN value in host byte order,
20889 zero-extend it as appropriate for the symbol's type. The DWARF
20890 standard (v4) is not entirely clear about the meaning of using
20891 DW_FORM_dataN for a constant with a signed type, where the type is
20892 wider than the data. The conclusion of a discussion on the DWARF
20893 list was that this is unspecified. We choose to always zero-extend
20894 because that is the interpretation long in use by GCC. */
20897 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20898 struct dwarf2_cu *cu, LONGEST *value, int bits)
20900 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20901 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20902 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20903 LONGEST l = DW_UNSND (attr);
20905 if (bits < sizeof (*value) * 8)
20907 l &= ((LONGEST) 1 << bits) - 1;
20910 else if (bits == sizeof (*value) * 8)
20914 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20915 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20922 /* Read a constant value from an attribute. Either set *VALUE, or if
20923 the value does not fit in *VALUE, set *BYTES - either already
20924 allocated on the objfile obstack, or newly allocated on OBSTACK,
20925 or, set *BATON, if we translated the constant to a location
20929 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20930 const char *name, struct obstack *obstack,
20931 struct dwarf2_cu *cu,
20932 LONGEST *value, const gdb_byte **bytes,
20933 struct dwarf2_locexpr_baton **baton)
20935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20936 struct comp_unit_head *cu_header = &cu->header;
20937 struct dwarf_block *blk;
20938 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20939 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20945 switch (attr->form)
20948 case DW_FORM_addrx:
20949 case DW_FORM_GNU_addr_index:
20953 if (TYPE_LENGTH (type) != cu_header->addr_size)
20954 dwarf2_const_value_length_mismatch_complaint (name,
20955 cu_header->addr_size,
20956 TYPE_LENGTH (type));
20957 /* Symbols of this form are reasonably rare, so we just
20958 piggyback on the existing location code rather than writing
20959 a new implementation of symbol_computed_ops. */
20960 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20961 (*baton)->per_cu = cu->per_cu;
20962 gdb_assert ((*baton)->per_cu);
20964 (*baton)->size = 2 + cu_header->addr_size;
20965 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20966 (*baton)->data = data;
20968 data[0] = DW_OP_addr;
20969 store_unsigned_integer (&data[1], cu_header->addr_size,
20970 byte_order, DW_ADDR (attr));
20971 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20974 case DW_FORM_string:
20977 case DW_FORM_GNU_str_index:
20978 case DW_FORM_GNU_strp_alt:
20979 /* DW_STRING is already allocated on the objfile obstack, point
20981 *bytes = (const gdb_byte *) DW_STRING (attr);
20983 case DW_FORM_block1:
20984 case DW_FORM_block2:
20985 case DW_FORM_block4:
20986 case DW_FORM_block:
20987 case DW_FORM_exprloc:
20988 case DW_FORM_data16:
20989 blk = DW_BLOCK (attr);
20990 if (TYPE_LENGTH (type) != blk->size)
20991 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20992 TYPE_LENGTH (type));
20993 *bytes = blk->data;
20996 /* The DW_AT_const_value attributes are supposed to carry the
20997 symbol's value "represented as it would be on the target
20998 architecture." By the time we get here, it's already been
20999 converted to host endianness, so we just need to sign- or
21000 zero-extend it as appropriate. */
21001 case DW_FORM_data1:
21002 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21004 case DW_FORM_data2:
21005 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21007 case DW_FORM_data4:
21008 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21010 case DW_FORM_data8:
21011 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21014 case DW_FORM_sdata:
21015 case DW_FORM_implicit_const:
21016 *value = DW_SND (attr);
21019 case DW_FORM_udata:
21020 *value = DW_UNSND (attr);
21024 complaint (_("unsupported const value attribute form: '%s'"),
21025 dwarf_form_name (attr->form));
21032 /* Copy constant value from an attribute to a symbol. */
21035 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21036 struct dwarf2_cu *cu)
21038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21040 const gdb_byte *bytes;
21041 struct dwarf2_locexpr_baton *baton;
21043 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21044 sym->print_name (),
21045 &objfile->objfile_obstack, cu,
21046 &value, &bytes, &baton);
21050 SYMBOL_LOCATION_BATON (sym) = baton;
21051 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21053 else if (bytes != NULL)
21055 SYMBOL_VALUE_BYTES (sym) = bytes;
21056 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21060 SYMBOL_VALUE (sym) = value;
21061 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21065 /* Return the type of the die in question using its DW_AT_type attribute. */
21067 static struct type *
21068 die_type (struct die_info *die, struct dwarf2_cu *cu)
21070 struct attribute *type_attr;
21072 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21076 /* A missing DW_AT_type represents a void type. */
21077 return objfile_type (objfile)->builtin_void;
21080 return lookup_die_type (die, type_attr, cu);
21083 /* True iff CU's producer generates GNAT Ada auxiliary information
21084 that allows to find parallel types through that information instead
21085 of having to do expensive parallel lookups by type name. */
21088 need_gnat_info (struct dwarf2_cu *cu)
21090 /* Assume that the Ada compiler was GNAT, which always produces
21091 the auxiliary information. */
21092 return (cu->language == language_ada);
21095 /* Return the auxiliary type of the die in question using its
21096 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21097 attribute is not present. */
21099 static struct type *
21100 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21102 struct attribute *type_attr;
21104 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21108 return lookup_die_type (die, type_attr, cu);
21111 /* If DIE has a descriptive_type attribute, then set the TYPE's
21112 descriptive type accordingly. */
21115 set_descriptive_type (struct type *type, struct die_info *die,
21116 struct dwarf2_cu *cu)
21118 struct type *descriptive_type = die_descriptive_type (die, cu);
21120 if (descriptive_type)
21122 ALLOCATE_GNAT_AUX_TYPE (type);
21123 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21127 /* Return the containing type of the die in question using its
21128 DW_AT_containing_type attribute. */
21130 static struct type *
21131 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21133 struct attribute *type_attr;
21134 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21136 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21138 error (_("Dwarf Error: Problem turning containing type into gdb type "
21139 "[in module %s]"), objfile_name (objfile));
21141 return lookup_die_type (die, type_attr, cu);
21144 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21146 static struct type *
21147 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21149 struct dwarf2_per_objfile *dwarf2_per_objfile
21150 = cu->per_cu->dwarf2_per_objfile;
21151 struct objfile *objfile = dwarf2_per_objfile->objfile;
21154 std::string message
21155 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21156 objfile_name (objfile),
21157 sect_offset_str (cu->header.sect_off),
21158 sect_offset_str (die->sect_off));
21159 saved = obstack_strdup (&objfile->objfile_obstack, message);
21161 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21164 /* Look up the type of DIE in CU using its type attribute ATTR.
21165 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21166 DW_AT_containing_type.
21167 If there is no type substitute an error marker. */
21169 static struct type *
21170 lookup_die_type (struct die_info *die, const struct attribute *attr,
21171 struct dwarf2_cu *cu)
21173 struct dwarf2_per_objfile *dwarf2_per_objfile
21174 = cu->per_cu->dwarf2_per_objfile;
21175 struct objfile *objfile = dwarf2_per_objfile->objfile;
21176 struct type *this_type;
21178 gdb_assert (attr->name == DW_AT_type
21179 || attr->name == DW_AT_GNAT_descriptive_type
21180 || attr->name == DW_AT_containing_type);
21182 /* First see if we have it cached. */
21184 if (attr->form == DW_FORM_GNU_ref_alt)
21186 struct dwarf2_per_cu_data *per_cu;
21187 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21189 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21190 dwarf2_per_objfile);
21191 this_type = get_die_type_at_offset (sect_off, per_cu);
21193 else if (attr->form_is_ref ())
21195 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21197 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21199 else if (attr->form == DW_FORM_ref_sig8)
21201 ULONGEST signature = DW_SIGNATURE (attr);
21203 return get_signatured_type (die, signature, cu);
21207 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21208 " at %s [in module %s]"),
21209 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21210 objfile_name (objfile));
21211 return build_error_marker_type (cu, die);
21214 /* If not cached we need to read it in. */
21216 if (this_type == NULL)
21218 struct die_info *type_die = NULL;
21219 struct dwarf2_cu *type_cu = cu;
21221 if (attr->form_is_ref ())
21222 type_die = follow_die_ref (die, attr, &type_cu);
21223 if (type_die == NULL)
21224 return build_error_marker_type (cu, die);
21225 /* If we find the type now, it's probably because the type came
21226 from an inter-CU reference and the type's CU got expanded before
21228 this_type = read_type_die (type_die, type_cu);
21231 /* If we still don't have a type use an error marker. */
21233 if (this_type == NULL)
21234 return build_error_marker_type (cu, die);
21239 /* Return the type in DIE, CU.
21240 Returns NULL for invalid types.
21242 This first does a lookup in die_type_hash,
21243 and only reads the die in if necessary.
21245 NOTE: This can be called when reading in partial or full symbols. */
21247 static struct type *
21248 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21250 struct type *this_type;
21252 this_type = get_die_type (die, cu);
21256 return read_type_die_1 (die, cu);
21259 /* Read the type in DIE, CU.
21260 Returns NULL for invalid types. */
21262 static struct type *
21263 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21265 struct type *this_type = NULL;
21269 case DW_TAG_class_type:
21270 case DW_TAG_interface_type:
21271 case DW_TAG_structure_type:
21272 case DW_TAG_union_type:
21273 this_type = read_structure_type (die, cu);
21275 case DW_TAG_enumeration_type:
21276 this_type = read_enumeration_type (die, cu);
21278 case DW_TAG_subprogram:
21279 case DW_TAG_subroutine_type:
21280 case DW_TAG_inlined_subroutine:
21281 this_type = read_subroutine_type (die, cu);
21283 case DW_TAG_array_type:
21284 this_type = read_array_type (die, cu);
21286 case DW_TAG_set_type:
21287 this_type = read_set_type (die, cu);
21289 case DW_TAG_pointer_type:
21290 this_type = read_tag_pointer_type (die, cu);
21292 case DW_TAG_ptr_to_member_type:
21293 this_type = read_tag_ptr_to_member_type (die, cu);
21295 case DW_TAG_reference_type:
21296 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21298 case DW_TAG_rvalue_reference_type:
21299 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21301 case DW_TAG_const_type:
21302 this_type = read_tag_const_type (die, cu);
21304 case DW_TAG_volatile_type:
21305 this_type = read_tag_volatile_type (die, cu);
21307 case DW_TAG_restrict_type:
21308 this_type = read_tag_restrict_type (die, cu);
21310 case DW_TAG_string_type:
21311 this_type = read_tag_string_type (die, cu);
21313 case DW_TAG_typedef:
21314 this_type = read_typedef (die, cu);
21316 case DW_TAG_subrange_type:
21317 this_type = read_subrange_type (die, cu);
21319 case DW_TAG_base_type:
21320 this_type = read_base_type (die, cu);
21322 case DW_TAG_unspecified_type:
21323 this_type = read_unspecified_type (die, cu);
21325 case DW_TAG_namespace:
21326 this_type = read_namespace_type (die, cu);
21328 case DW_TAG_module:
21329 this_type = read_module_type (die, cu);
21331 case DW_TAG_atomic_type:
21332 this_type = read_tag_atomic_type (die, cu);
21335 complaint (_("unexpected tag in read_type_die: '%s'"),
21336 dwarf_tag_name (die->tag));
21343 /* See if we can figure out if the class lives in a namespace. We do
21344 this by looking for a member function; its demangled name will
21345 contain namespace info, if there is any.
21346 Return the computed name or NULL.
21347 Space for the result is allocated on the objfile's obstack.
21348 This is the full-die version of guess_partial_die_structure_name.
21349 In this case we know DIE has no useful parent. */
21351 static const char *
21352 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21354 struct die_info *spec_die;
21355 struct dwarf2_cu *spec_cu;
21356 struct die_info *child;
21357 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21360 spec_die = die_specification (die, &spec_cu);
21361 if (spec_die != NULL)
21367 for (child = die->child;
21369 child = child->sibling)
21371 if (child->tag == DW_TAG_subprogram)
21373 const char *linkage_name = dw2_linkage_name (child, cu);
21375 if (linkage_name != NULL)
21377 gdb::unique_xmalloc_ptr<char> actual_name
21378 (language_class_name_from_physname (cu->language_defn,
21380 const char *name = NULL;
21382 if (actual_name != NULL)
21384 const char *die_name = dwarf2_name (die, cu);
21386 if (die_name != NULL
21387 && strcmp (die_name, actual_name.get ()) != 0)
21389 /* Strip off the class name from the full name.
21390 We want the prefix. */
21391 int die_name_len = strlen (die_name);
21392 int actual_name_len = strlen (actual_name.get ());
21393 const char *ptr = actual_name.get ();
21395 /* Test for '::' as a sanity check. */
21396 if (actual_name_len > die_name_len + 2
21397 && ptr[actual_name_len - die_name_len - 1] == ':')
21398 name = obstack_strndup (
21399 &objfile->per_bfd->storage_obstack,
21400 ptr, actual_name_len - die_name_len - 2);
21411 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21412 prefix part in such case. See
21413 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21415 static const char *
21416 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21418 struct attribute *attr;
21421 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21422 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21425 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21428 attr = dw2_linkage_name_attr (die, cu);
21429 if (attr == NULL || DW_STRING (attr) == NULL)
21432 /* dwarf2_name had to be already called. */
21433 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21435 /* Strip the base name, keep any leading namespaces/classes. */
21436 base = strrchr (DW_STRING (attr), ':');
21437 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21441 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21443 &base[-1] - DW_STRING (attr));
21446 /* Return the name of the namespace/class that DIE is defined within,
21447 or "" if we can't tell. The caller should not xfree the result.
21449 For example, if we're within the method foo() in the following
21459 then determine_prefix on foo's die will return "N::C". */
21461 static const char *
21462 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21464 struct dwarf2_per_objfile *dwarf2_per_objfile
21465 = cu->per_cu->dwarf2_per_objfile;
21466 struct die_info *parent, *spec_die;
21467 struct dwarf2_cu *spec_cu;
21468 struct type *parent_type;
21469 const char *retval;
21471 if (cu->language != language_cplus
21472 && cu->language != language_fortran && cu->language != language_d
21473 && cu->language != language_rust)
21476 retval = anonymous_struct_prefix (die, cu);
21480 /* We have to be careful in the presence of DW_AT_specification.
21481 For example, with GCC 3.4, given the code
21485 // Definition of N::foo.
21489 then we'll have a tree of DIEs like this:
21491 1: DW_TAG_compile_unit
21492 2: DW_TAG_namespace // N
21493 3: DW_TAG_subprogram // declaration of N::foo
21494 4: DW_TAG_subprogram // definition of N::foo
21495 DW_AT_specification // refers to die #3
21497 Thus, when processing die #4, we have to pretend that we're in
21498 the context of its DW_AT_specification, namely the contex of die
21501 spec_die = die_specification (die, &spec_cu);
21502 if (spec_die == NULL)
21503 parent = die->parent;
21506 parent = spec_die->parent;
21510 if (parent == NULL)
21512 else if (parent->building_fullname)
21515 const char *parent_name;
21517 /* It has been seen on RealView 2.2 built binaries,
21518 DW_TAG_template_type_param types actually _defined_ as
21519 children of the parent class:
21522 template class <class Enum> Class{};
21523 Class<enum E> class_e;
21525 1: DW_TAG_class_type (Class)
21526 2: DW_TAG_enumeration_type (E)
21527 3: DW_TAG_enumerator (enum1:0)
21528 3: DW_TAG_enumerator (enum2:1)
21530 2: DW_TAG_template_type_param
21531 DW_AT_type DW_FORM_ref_udata (E)
21533 Besides being broken debug info, it can put GDB into an
21534 infinite loop. Consider:
21536 When we're building the full name for Class<E>, we'll start
21537 at Class, and go look over its template type parameters,
21538 finding E. We'll then try to build the full name of E, and
21539 reach here. We're now trying to build the full name of E,
21540 and look over the parent DIE for containing scope. In the
21541 broken case, if we followed the parent DIE of E, we'd again
21542 find Class, and once again go look at its template type
21543 arguments, etc., etc. Simply don't consider such parent die
21544 as source-level parent of this die (it can't be, the language
21545 doesn't allow it), and break the loop here. */
21546 name = dwarf2_name (die, cu);
21547 parent_name = dwarf2_name (parent, cu);
21548 complaint (_("template param type '%s' defined within parent '%s'"),
21549 name ? name : "<unknown>",
21550 parent_name ? parent_name : "<unknown>");
21554 switch (parent->tag)
21556 case DW_TAG_namespace:
21557 parent_type = read_type_die (parent, cu);
21558 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21559 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21560 Work around this problem here. */
21561 if (cu->language == language_cplus
21562 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21564 /* We give a name to even anonymous namespaces. */
21565 return TYPE_NAME (parent_type);
21566 case DW_TAG_class_type:
21567 case DW_TAG_interface_type:
21568 case DW_TAG_structure_type:
21569 case DW_TAG_union_type:
21570 case DW_TAG_module:
21571 parent_type = read_type_die (parent, cu);
21572 if (TYPE_NAME (parent_type) != NULL)
21573 return TYPE_NAME (parent_type);
21575 /* An anonymous structure is only allowed non-static data
21576 members; no typedefs, no member functions, et cetera.
21577 So it does not need a prefix. */
21579 case DW_TAG_compile_unit:
21580 case DW_TAG_partial_unit:
21581 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21582 if (cu->language == language_cplus
21583 && !dwarf2_per_objfile->types.empty ()
21584 && die->child != NULL
21585 && (die->tag == DW_TAG_class_type
21586 || die->tag == DW_TAG_structure_type
21587 || die->tag == DW_TAG_union_type))
21589 const char *name = guess_full_die_structure_name (die, cu);
21594 case DW_TAG_subprogram:
21595 /* Nested subroutines in Fortran get a prefix with the name
21596 of the parent's subroutine. */
21597 if (cu->language == language_fortran)
21599 if ((die->tag == DW_TAG_subprogram)
21600 && (dwarf2_name (parent, cu) != NULL))
21601 return dwarf2_name (parent, cu);
21603 return determine_prefix (parent, cu);
21604 case DW_TAG_enumeration_type:
21605 parent_type = read_type_die (parent, cu);
21606 if (TYPE_DECLARED_CLASS (parent_type))
21608 if (TYPE_NAME (parent_type) != NULL)
21609 return TYPE_NAME (parent_type);
21612 /* Fall through. */
21614 return determine_prefix (parent, cu);
21618 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21619 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21620 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21621 an obconcat, otherwise allocate storage for the result. The CU argument is
21622 used to determine the language and hence, the appropriate separator. */
21624 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21627 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21628 int physname, struct dwarf2_cu *cu)
21630 const char *lead = "";
21633 if (suffix == NULL || suffix[0] == '\0'
21634 || prefix == NULL || prefix[0] == '\0')
21636 else if (cu->language == language_d)
21638 /* For D, the 'main' function could be defined in any module, but it
21639 should never be prefixed. */
21640 if (strcmp (suffix, "D main") == 0)
21648 else if (cu->language == language_fortran && physname)
21650 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21651 DW_AT_MIPS_linkage_name is preferred and used instead. */
21659 if (prefix == NULL)
21661 if (suffix == NULL)
21668 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21670 strcpy (retval, lead);
21671 strcat (retval, prefix);
21672 strcat (retval, sep);
21673 strcat (retval, suffix);
21678 /* We have an obstack. */
21679 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21683 /* Return sibling of die, NULL if no sibling. */
21685 static struct die_info *
21686 sibling_die (struct die_info *die)
21688 return die->sibling;
21691 /* Get name of a die, return NULL if not found. */
21693 static const char *
21694 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21695 struct obstack *obstack)
21697 if (name && cu->language == language_cplus)
21699 std::string canon_name = cp_canonicalize_string (name);
21701 if (!canon_name.empty ())
21703 if (canon_name != name)
21704 name = obstack_strdup (obstack, canon_name);
21711 /* Get name of a die, return NULL if not found.
21712 Anonymous namespaces are converted to their magic string. */
21714 static const char *
21715 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21717 struct attribute *attr;
21718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21720 attr = dwarf2_attr (die, DW_AT_name, cu);
21721 if ((!attr || !DW_STRING (attr))
21722 && die->tag != DW_TAG_namespace
21723 && die->tag != DW_TAG_class_type
21724 && die->tag != DW_TAG_interface_type
21725 && die->tag != DW_TAG_structure_type
21726 && die->tag != DW_TAG_union_type)
21731 case DW_TAG_compile_unit:
21732 case DW_TAG_partial_unit:
21733 /* Compilation units have a DW_AT_name that is a filename, not
21734 a source language identifier. */
21735 case DW_TAG_enumeration_type:
21736 case DW_TAG_enumerator:
21737 /* These tags always have simple identifiers already; no need
21738 to canonicalize them. */
21739 return DW_STRING (attr);
21741 case DW_TAG_namespace:
21742 if (attr != NULL && DW_STRING (attr) != NULL)
21743 return DW_STRING (attr);
21744 return CP_ANONYMOUS_NAMESPACE_STR;
21746 case DW_TAG_class_type:
21747 case DW_TAG_interface_type:
21748 case DW_TAG_structure_type:
21749 case DW_TAG_union_type:
21750 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21751 structures or unions. These were of the form "._%d" in GCC 4.1,
21752 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21753 and GCC 4.4. We work around this problem by ignoring these. */
21754 if (attr && DW_STRING (attr)
21755 && (startswith (DW_STRING (attr), "._")
21756 || startswith (DW_STRING (attr), "<anonymous")))
21759 /* GCC might emit a nameless typedef that has a linkage name. See
21760 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21761 if (!attr || DW_STRING (attr) == NULL)
21763 attr = dw2_linkage_name_attr (die, cu);
21764 if (attr == NULL || DW_STRING (attr) == NULL)
21767 /* Avoid demangling DW_STRING (attr) the second time on a second
21768 call for the same DIE. */
21769 if (!DW_STRING_IS_CANONICAL (attr))
21771 gdb::unique_xmalloc_ptr<char> demangled
21772 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21773 if (demangled == nullptr)
21778 /* FIXME: we already did this for the partial symbol... */
21780 = obstack_strdup (&objfile->per_bfd->storage_obstack,
21782 DW_STRING_IS_CANONICAL (attr) = 1;
21784 /* Strip any leading namespaces/classes, keep only the base name.
21785 DW_AT_name for named DIEs does not contain the prefixes. */
21786 base = strrchr (DW_STRING (attr), ':');
21787 if (base && base > DW_STRING (attr) && base[-1] == ':')
21790 return DW_STRING (attr);
21799 if (!DW_STRING_IS_CANONICAL (attr))
21802 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21803 &objfile->per_bfd->storage_obstack);
21804 DW_STRING_IS_CANONICAL (attr) = 1;
21806 return DW_STRING (attr);
21809 /* Return the die that this die in an extension of, or NULL if there
21810 is none. *EXT_CU is the CU containing DIE on input, and the CU
21811 containing the return value on output. */
21813 static struct die_info *
21814 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21816 struct attribute *attr;
21818 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21822 return follow_die_ref (die, attr, ext_cu);
21825 /* A convenience function that returns an "unknown" DWARF name,
21826 including the value of V. STR is the name of the entity being
21827 printed, e.g., "TAG". */
21829 static const char *
21830 dwarf_unknown (const char *str, unsigned v)
21832 char *cell = get_print_cell ();
21833 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
21837 /* Convert a DIE tag into its string name. */
21839 static const char *
21840 dwarf_tag_name (unsigned tag)
21842 const char *name = get_DW_TAG_name (tag);
21845 return dwarf_unknown ("TAG", tag);
21850 /* Convert a DWARF attribute code into its string name. */
21852 static const char *
21853 dwarf_attr_name (unsigned attr)
21857 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21858 if (attr == DW_AT_MIPS_fde)
21859 return "DW_AT_MIPS_fde";
21861 if (attr == DW_AT_HP_block_index)
21862 return "DW_AT_HP_block_index";
21865 name = get_DW_AT_name (attr);
21868 return dwarf_unknown ("AT", attr);
21873 /* Convert a DWARF value form code into its string name. */
21875 static const char *
21876 dwarf_form_name (unsigned form)
21878 const char *name = get_DW_FORM_name (form);
21881 return dwarf_unknown ("FORM", form);
21886 static const char *
21887 dwarf_bool_name (unsigned mybool)
21895 /* Convert a DWARF type code into its string name. */
21897 static const char *
21898 dwarf_type_encoding_name (unsigned enc)
21900 const char *name = get_DW_ATE_name (enc);
21903 return dwarf_unknown ("ATE", enc);
21909 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21913 print_spaces (indent, f);
21914 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21915 dwarf_tag_name (die->tag), die->abbrev,
21916 sect_offset_str (die->sect_off));
21918 if (die->parent != NULL)
21920 print_spaces (indent, f);
21921 fprintf_unfiltered (f, " parent at offset: %s\n",
21922 sect_offset_str (die->parent->sect_off));
21925 print_spaces (indent, f);
21926 fprintf_unfiltered (f, " has children: %s\n",
21927 dwarf_bool_name (die->child != NULL));
21929 print_spaces (indent, f);
21930 fprintf_unfiltered (f, " attributes:\n");
21932 for (i = 0; i < die->num_attrs; ++i)
21934 print_spaces (indent, f);
21935 fprintf_unfiltered (f, " %s (%s) ",
21936 dwarf_attr_name (die->attrs[i].name),
21937 dwarf_form_name (die->attrs[i].form));
21939 switch (die->attrs[i].form)
21942 case DW_FORM_addrx:
21943 case DW_FORM_GNU_addr_index:
21944 fprintf_unfiltered (f, "address: ");
21945 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21947 case DW_FORM_block2:
21948 case DW_FORM_block4:
21949 case DW_FORM_block:
21950 case DW_FORM_block1:
21951 fprintf_unfiltered (f, "block: size %s",
21952 pulongest (DW_BLOCK (&die->attrs[i])->size));
21954 case DW_FORM_exprloc:
21955 fprintf_unfiltered (f, "expression: size %s",
21956 pulongest (DW_BLOCK (&die->attrs[i])->size));
21958 case DW_FORM_data16:
21959 fprintf_unfiltered (f, "constant of 16 bytes");
21961 case DW_FORM_ref_addr:
21962 fprintf_unfiltered (f, "ref address: ");
21963 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21965 case DW_FORM_GNU_ref_alt:
21966 fprintf_unfiltered (f, "alt ref address: ");
21967 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21973 case DW_FORM_ref_udata:
21974 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21975 (long) (DW_UNSND (&die->attrs[i])));
21977 case DW_FORM_data1:
21978 case DW_FORM_data2:
21979 case DW_FORM_data4:
21980 case DW_FORM_data8:
21981 case DW_FORM_udata:
21982 case DW_FORM_sdata:
21983 fprintf_unfiltered (f, "constant: %s",
21984 pulongest (DW_UNSND (&die->attrs[i])));
21986 case DW_FORM_sec_offset:
21987 fprintf_unfiltered (f, "section offset: %s",
21988 pulongest (DW_UNSND (&die->attrs[i])));
21990 case DW_FORM_ref_sig8:
21991 fprintf_unfiltered (f, "signature: %s",
21992 hex_string (DW_SIGNATURE (&die->attrs[i])));
21994 case DW_FORM_string:
21996 case DW_FORM_line_strp:
21998 case DW_FORM_GNU_str_index:
21999 case DW_FORM_GNU_strp_alt:
22000 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22001 DW_STRING (&die->attrs[i])
22002 ? DW_STRING (&die->attrs[i]) : "",
22003 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22006 if (DW_UNSND (&die->attrs[i]))
22007 fprintf_unfiltered (f, "flag: TRUE");
22009 fprintf_unfiltered (f, "flag: FALSE");
22011 case DW_FORM_flag_present:
22012 fprintf_unfiltered (f, "flag: TRUE");
22014 case DW_FORM_indirect:
22015 /* The reader will have reduced the indirect form to
22016 the "base form" so this form should not occur. */
22017 fprintf_unfiltered (f,
22018 "unexpected attribute form: DW_FORM_indirect");
22020 case DW_FORM_implicit_const:
22021 fprintf_unfiltered (f, "constant: %s",
22022 plongest (DW_SND (&die->attrs[i])));
22025 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22026 die->attrs[i].form);
22029 fprintf_unfiltered (f, "\n");
22034 dump_die_for_error (struct die_info *die)
22036 dump_die_shallow (gdb_stderr, 0, die);
22040 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22042 int indent = level * 4;
22044 gdb_assert (die != NULL);
22046 if (level >= max_level)
22049 dump_die_shallow (f, indent, die);
22051 if (die->child != NULL)
22053 print_spaces (indent, f);
22054 fprintf_unfiltered (f, " Children:");
22055 if (level + 1 < max_level)
22057 fprintf_unfiltered (f, "\n");
22058 dump_die_1 (f, level + 1, max_level, die->child);
22062 fprintf_unfiltered (f,
22063 " [not printed, max nesting level reached]\n");
22067 if (die->sibling != NULL && level > 0)
22069 dump_die_1 (f, level, max_level, die->sibling);
22073 /* This is called from the pdie macro in gdbinit.in.
22074 It's not static so gcc will keep a copy callable from gdb. */
22077 dump_die (struct die_info *die, int max_level)
22079 dump_die_1 (gdb_stdlog, 0, max_level, die);
22083 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22087 slot = htab_find_slot_with_hash (cu->die_hash, die,
22088 to_underlying (die->sect_off),
22094 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22098 dwarf2_get_ref_die_offset (const struct attribute *attr)
22100 if (attr->form_is_ref ())
22101 return (sect_offset) DW_UNSND (attr);
22103 complaint (_("unsupported die ref attribute form: '%s'"),
22104 dwarf_form_name (attr->form));
22108 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22109 * the value held by the attribute is not constant. */
22112 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22114 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22115 return DW_SND (attr);
22116 else if (attr->form == DW_FORM_udata
22117 || attr->form == DW_FORM_data1
22118 || attr->form == DW_FORM_data2
22119 || attr->form == DW_FORM_data4
22120 || attr->form == DW_FORM_data8)
22121 return DW_UNSND (attr);
22124 /* For DW_FORM_data16 see attribute::form_is_constant. */
22125 complaint (_("Attribute value is not a constant (%s)"),
22126 dwarf_form_name (attr->form));
22127 return default_value;
22131 /* Follow reference or signature attribute ATTR of SRC_DIE.
22132 On entry *REF_CU is the CU of SRC_DIE.
22133 On exit *REF_CU is the CU of the result. */
22135 static struct die_info *
22136 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22137 struct dwarf2_cu **ref_cu)
22139 struct die_info *die;
22141 if (attr->form_is_ref ())
22142 die = follow_die_ref (src_die, attr, ref_cu);
22143 else if (attr->form == DW_FORM_ref_sig8)
22144 die = follow_die_sig (src_die, attr, ref_cu);
22147 dump_die_for_error (src_die);
22148 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22149 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22155 /* Follow reference OFFSET.
22156 On entry *REF_CU is the CU of the source die referencing OFFSET.
22157 On exit *REF_CU is the CU of the result.
22158 Returns NULL if OFFSET is invalid. */
22160 static struct die_info *
22161 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22162 struct dwarf2_cu **ref_cu)
22164 struct die_info temp_die;
22165 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22166 struct dwarf2_per_objfile *dwarf2_per_objfile
22167 = cu->per_cu->dwarf2_per_objfile;
22169 gdb_assert (cu->per_cu != NULL);
22173 if (cu->per_cu->is_debug_types)
22175 /* .debug_types CUs cannot reference anything outside their CU.
22176 If they need to, they have to reference a signatured type via
22177 DW_FORM_ref_sig8. */
22178 if (!cu->header.offset_in_cu_p (sect_off))
22181 else if (offset_in_dwz != cu->per_cu->is_dwz
22182 || !cu->header.offset_in_cu_p (sect_off))
22184 struct dwarf2_per_cu_data *per_cu;
22186 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22187 dwarf2_per_objfile);
22189 /* If necessary, add it to the queue and load its DIEs. */
22190 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22191 load_full_comp_unit (per_cu, false, cu->language);
22193 target_cu = per_cu->cu;
22195 else if (cu->dies == NULL)
22197 /* We're loading full DIEs during partial symbol reading. */
22198 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22199 load_full_comp_unit (cu->per_cu, false, language_minimal);
22202 *ref_cu = target_cu;
22203 temp_die.sect_off = sect_off;
22205 if (target_cu != cu)
22206 target_cu->ancestor = cu;
22208 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22210 to_underlying (sect_off));
22213 /* Follow reference attribute ATTR of SRC_DIE.
22214 On entry *REF_CU is the CU of SRC_DIE.
22215 On exit *REF_CU is the CU of the result. */
22217 static struct die_info *
22218 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22219 struct dwarf2_cu **ref_cu)
22221 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22222 struct dwarf2_cu *cu = *ref_cu;
22223 struct die_info *die;
22225 die = follow_die_offset (sect_off,
22226 (attr->form == DW_FORM_GNU_ref_alt
22227 || cu->per_cu->is_dwz),
22230 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22231 "at %s [in module %s]"),
22232 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22233 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22240 struct dwarf2_locexpr_baton
22241 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22242 dwarf2_per_cu_data *per_cu,
22243 CORE_ADDR (*get_frame_pc) (void *baton),
22244 void *baton, bool resolve_abstract_p)
22246 struct dwarf2_cu *cu;
22247 struct die_info *die;
22248 struct attribute *attr;
22249 struct dwarf2_locexpr_baton retval;
22250 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22251 struct objfile *objfile = dwarf2_per_objfile->objfile;
22253 if (per_cu->cu == NULL)
22254 load_cu (per_cu, false);
22258 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22259 Instead just throw an error, not much else we can do. */
22260 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22261 sect_offset_str (sect_off), objfile_name (objfile));
22264 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22266 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22267 sect_offset_str (sect_off), objfile_name (objfile));
22269 attr = dwarf2_attr (die, DW_AT_location, cu);
22270 if (!attr && resolve_abstract_p
22271 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22272 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22274 CORE_ADDR pc = (*get_frame_pc) (baton);
22275 CORE_ADDR baseaddr = objfile->text_section_offset ();
22276 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22278 for (const auto &cand_off
22279 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22281 struct dwarf2_cu *cand_cu = cu;
22282 struct die_info *cand
22283 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22286 || cand->parent->tag != DW_TAG_subprogram)
22289 CORE_ADDR pc_low, pc_high;
22290 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22291 if (pc_low == ((CORE_ADDR) -1))
22293 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22294 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22295 if (!(pc_low <= pc && pc < pc_high))
22299 attr = dwarf2_attr (die, DW_AT_location, cu);
22306 /* DWARF: "If there is no such attribute, then there is no effect.".
22307 DATA is ignored if SIZE is 0. */
22309 retval.data = NULL;
22312 else if (attr->form_is_section_offset ())
22314 struct dwarf2_loclist_baton loclist_baton;
22315 CORE_ADDR pc = (*get_frame_pc) (baton);
22318 fill_in_loclist_baton (cu, &loclist_baton, attr);
22320 retval.data = dwarf2_find_location_expression (&loclist_baton,
22322 retval.size = size;
22326 if (!attr->form_is_block ())
22327 error (_("Dwarf Error: DIE at %s referenced in module %s "
22328 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22329 sect_offset_str (sect_off), objfile_name (objfile));
22331 retval.data = DW_BLOCK (attr)->data;
22332 retval.size = DW_BLOCK (attr)->size;
22334 retval.per_cu = cu->per_cu;
22336 age_cached_comp_units (dwarf2_per_objfile);
22343 struct dwarf2_locexpr_baton
22344 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22345 dwarf2_per_cu_data *per_cu,
22346 CORE_ADDR (*get_frame_pc) (void *baton),
22349 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22351 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22354 /* Write a constant of a given type as target-ordered bytes into
22357 static const gdb_byte *
22358 write_constant_as_bytes (struct obstack *obstack,
22359 enum bfd_endian byte_order,
22366 *len = TYPE_LENGTH (type);
22367 result = (gdb_byte *) obstack_alloc (obstack, *len);
22368 store_unsigned_integer (result, *len, byte_order, value);
22376 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22377 dwarf2_per_cu_data *per_cu,
22381 struct dwarf2_cu *cu;
22382 struct die_info *die;
22383 struct attribute *attr;
22384 const gdb_byte *result = NULL;
22387 enum bfd_endian byte_order;
22388 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22390 if (per_cu->cu == NULL)
22391 load_cu (per_cu, false);
22395 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22396 Instead just throw an error, not much else we can do. */
22397 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22398 sect_offset_str (sect_off), objfile_name (objfile));
22401 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22403 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22404 sect_offset_str (sect_off), objfile_name (objfile));
22406 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22410 byte_order = (bfd_big_endian (objfile->obfd)
22411 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22413 switch (attr->form)
22416 case DW_FORM_addrx:
22417 case DW_FORM_GNU_addr_index:
22421 *len = cu->header.addr_size;
22422 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22423 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22427 case DW_FORM_string:
22430 case DW_FORM_GNU_str_index:
22431 case DW_FORM_GNU_strp_alt:
22432 /* DW_STRING is already allocated on the objfile obstack, point
22434 result = (const gdb_byte *) DW_STRING (attr);
22435 *len = strlen (DW_STRING (attr));
22437 case DW_FORM_block1:
22438 case DW_FORM_block2:
22439 case DW_FORM_block4:
22440 case DW_FORM_block:
22441 case DW_FORM_exprloc:
22442 case DW_FORM_data16:
22443 result = DW_BLOCK (attr)->data;
22444 *len = DW_BLOCK (attr)->size;
22447 /* The DW_AT_const_value attributes are supposed to carry the
22448 symbol's value "represented as it would be on the target
22449 architecture." By the time we get here, it's already been
22450 converted to host endianness, so we just need to sign- or
22451 zero-extend it as appropriate. */
22452 case DW_FORM_data1:
22453 type = die_type (die, cu);
22454 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22455 if (result == NULL)
22456 result = write_constant_as_bytes (obstack, byte_order,
22459 case DW_FORM_data2:
22460 type = die_type (die, cu);
22461 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22462 if (result == NULL)
22463 result = write_constant_as_bytes (obstack, byte_order,
22466 case DW_FORM_data4:
22467 type = die_type (die, cu);
22468 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22469 if (result == NULL)
22470 result = write_constant_as_bytes (obstack, byte_order,
22473 case DW_FORM_data8:
22474 type = die_type (die, cu);
22475 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22476 if (result == NULL)
22477 result = write_constant_as_bytes (obstack, byte_order,
22481 case DW_FORM_sdata:
22482 case DW_FORM_implicit_const:
22483 type = die_type (die, cu);
22484 result = write_constant_as_bytes (obstack, byte_order,
22485 type, DW_SND (attr), len);
22488 case DW_FORM_udata:
22489 type = die_type (die, cu);
22490 result = write_constant_as_bytes (obstack, byte_order,
22491 type, DW_UNSND (attr), len);
22495 complaint (_("unsupported const value attribute form: '%s'"),
22496 dwarf_form_name (attr->form));
22506 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22507 dwarf2_per_cu_data *per_cu)
22509 struct dwarf2_cu *cu;
22510 struct die_info *die;
22512 if (per_cu->cu == NULL)
22513 load_cu (per_cu, false);
22518 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22522 return die_type (die, cu);
22528 dwarf2_get_die_type (cu_offset die_offset,
22529 struct dwarf2_per_cu_data *per_cu)
22531 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22532 return get_die_type_at_offset (die_offset_sect, per_cu);
22535 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22536 On entry *REF_CU is the CU of SRC_DIE.
22537 On exit *REF_CU is the CU of the result.
22538 Returns NULL if the referenced DIE isn't found. */
22540 static struct die_info *
22541 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22542 struct dwarf2_cu **ref_cu)
22544 struct die_info temp_die;
22545 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22546 struct die_info *die;
22548 /* While it might be nice to assert sig_type->type == NULL here,
22549 we can get here for DW_AT_imported_declaration where we need
22550 the DIE not the type. */
22552 /* If necessary, add it to the queue and load its DIEs. */
22554 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22555 read_signatured_type (sig_type);
22557 sig_cu = sig_type->per_cu.cu;
22558 gdb_assert (sig_cu != NULL);
22559 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22560 temp_die.sect_off = sig_type->type_offset_in_section;
22561 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22562 to_underlying (temp_die.sect_off));
22565 struct dwarf2_per_objfile *dwarf2_per_objfile
22566 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22568 /* For .gdb_index version 7 keep track of included TUs.
22569 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22570 if (dwarf2_per_objfile->index_table != NULL
22571 && dwarf2_per_objfile->index_table->version <= 7)
22573 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22578 sig_cu->ancestor = cu;
22586 /* Follow signatured type referenced by ATTR in SRC_DIE.
22587 On entry *REF_CU is the CU of SRC_DIE.
22588 On exit *REF_CU is the CU of the result.
22589 The result is the DIE of the type.
22590 If the referenced type cannot be found an error is thrown. */
22592 static struct die_info *
22593 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22594 struct dwarf2_cu **ref_cu)
22596 ULONGEST signature = DW_SIGNATURE (attr);
22597 struct signatured_type *sig_type;
22598 struct die_info *die;
22600 gdb_assert (attr->form == DW_FORM_ref_sig8);
22602 sig_type = lookup_signatured_type (*ref_cu, signature);
22603 /* sig_type will be NULL if the signatured type is missing from
22605 if (sig_type == NULL)
22607 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22608 " from DIE at %s [in module %s]"),
22609 hex_string (signature), sect_offset_str (src_die->sect_off),
22610 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22613 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22616 dump_die_for_error (src_die);
22617 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22618 " from DIE at %s [in module %s]"),
22619 hex_string (signature), sect_offset_str (src_die->sect_off),
22620 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22626 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22627 reading in and processing the type unit if necessary. */
22629 static struct type *
22630 get_signatured_type (struct die_info *die, ULONGEST signature,
22631 struct dwarf2_cu *cu)
22633 struct dwarf2_per_objfile *dwarf2_per_objfile
22634 = cu->per_cu->dwarf2_per_objfile;
22635 struct signatured_type *sig_type;
22636 struct dwarf2_cu *type_cu;
22637 struct die_info *type_die;
22640 sig_type = lookup_signatured_type (cu, signature);
22641 /* sig_type will be NULL if the signatured type is missing from
22643 if (sig_type == NULL)
22645 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22646 " from DIE at %s [in module %s]"),
22647 hex_string (signature), sect_offset_str (die->sect_off),
22648 objfile_name (dwarf2_per_objfile->objfile));
22649 return build_error_marker_type (cu, die);
22652 /* If we already know the type we're done. */
22653 if (sig_type->type != NULL)
22654 return sig_type->type;
22657 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22658 if (type_die != NULL)
22660 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22661 is created. This is important, for example, because for c++ classes
22662 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22663 type = read_type_die (type_die, type_cu);
22666 complaint (_("Dwarf Error: Cannot build signatured type %s"
22667 " referenced from DIE at %s [in module %s]"),
22668 hex_string (signature), sect_offset_str (die->sect_off),
22669 objfile_name (dwarf2_per_objfile->objfile));
22670 type = build_error_marker_type (cu, die);
22675 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22676 " from DIE at %s [in module %s]"),
22677 hex_string (signature), sect_offset_str (die->sect_off),
22678 objfile_name (dwarf2_per_objfile->objfile));
22679 type = build_error_marker_type (cu, die);
22681 sig_type->type = type;
22686 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22687 reading in and processing the type unit if necessary. */
22689 static struct type *
22690 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22691 struct dwarf2_cu *cu) /* ARI: editCase function */
22693 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22694 if (attr->form_is_ref ())
22696 struct dwarf2_cu *type_cu = cu;
22697 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22699 return read_type_die (type_die, type_cu);
22701 else if (attr->form == DW_FORM_ref_sig8)
22703 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22707 struct dwarf2_per_objfile *dwarf2_per_objfile
22708 = cu->per_cu->dwarf2_per_objfile;
22710 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22711 " at %s [in module %s]"),
22712 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22713 objfile_name (dwarf2_per_objfile->objfile));
22714 return build_error_marker_type (cu, die);
22718 /* Load the DIEs associated with type unit PER_CU into memory. */
22721 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22723 struct signatured_type *sig_type;
22725 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22726 gdb_assert (! per_cu->type_unit_group_p ());
22728 /* We have the per_cu, but we need the signatured_type.
22729 Fortunately this is an easy translation. */
22730 gdb_assert (per_cu->is_debug_types);
22731 sig_type = (struct signatured_type *) per_cu;
22733 gdb_assert (per_cu->cu == NULL);
22735 read_signatured_type (sig_type);
22737 gdb_assert (per_cu->cu != NULL);
22740 /* Read in a signatured type and build its CU and DIEs.
22741 If the type is a stub for the real type in a DWO file,
22742 read in the real type from the DWO file as well. */
22745 read_signatured_type (struct signatured_type *sig_type)
22747 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22749 gdb_assert (per_cu->is_debug_types);
22750 gdb_assert (per_cu->cu == NULL);
22752 cutu_reader reader (per_cu, NULL, 0, false);
22754 if (!reader.dummy_p)
22756 struct dwarf2_cu *cu = reader.cu;
22757 const gdb_byte *info_ptr = reader.info_ptr;
22759 gdb_assert (cu->die_hash == NULL);
22761 htab_create_alloc_ex (cu->header.length / 12,
22765 &cu->comp_unit_obstack,
22766 hashtab_obstack_allocate,
22767 dummy_obstack_deallocate);
22769 if (reader.comp_unit_die->has_children)
22770 reader.comp_unit_die->child
22771 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22772 reader.comp_unit_die);
22773 cu->dies = reader.comp_unit_die;
22774 /* comp_unit_die is not stored in die_hash, no need. */
22776 /* We try not to read any attributes in this function, because
22777 not all CUs needed for references have been loaded yet, and
22778 symbol table processing isn't initialized. But we have to
22779 set the CU language, or we won't be able to build types
22780 correctly. Similarly, if we do not read the producer, we can
22781 not apply producer-specific interpretation. */
22782 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22787 sig_type->per_cu.tu_read = 1;
22790 /* Decode simple location descriptions.
22791 Given a pointer to a dwarf block that defines a location, compute
22792 the location and return the value.
22794 NOTE drow/2003-11-18: This function is called in two situations
22795 now: for the address of static or global variables (partial symbols
22796 only) and for offsets into structures which are expected to be
22797 (more or less) constant. The partial symbol case should go away,
22798 and only the constant case should remain. That will let this
22799 function complain more accurately. A few special modes are allowed
22800 without complaint for global variables (for instance, global
22801 register values and thread-local values).
22803 A location description containing no operations indicates that the
22804 object is optimized out. The return value is 0 for that case.
22805 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22806 callers will only want a very basic result and this can become a
22809 Note that stack[0] is unused except as a default error return. */
22812 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22816 size_t size = blk->size;
22817 const gdb_byte *data = blk->data;
22818 CORE_ADDR stack[64];
22820 unsigned int bytes_read, unsnd;
22826 stack[++stacki] = 0;
22865 stack[++stacki] = op - DW_OP_lit0;
22900 stack[++stacki] = op - DW_OP_reg0;
22902 dwarf2_complex_location_expr_complaint ();
22906 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22908 stack[++stacki] = unsnd;
22910 dwarf2_complex_location_expr_complaint ();
22914 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22919 case DW_OP_const1u:
22920 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22924 case DW_OP_const1s:
22925 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22929 case DW_OP_const2u:
22930 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22934 case DW_OP_const2s:
22935 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22939 case DW_OP_const4u:
22940 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22944 case DW_OP_const4s:
22945 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22949 case DW_OP_const8u:
22950 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22955 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22961 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22966 stack[stacki + 1] = stack[stacki];
22971 stack[stacki - 1] += stack[stacki];
22975 case DW_OP_plus_uconst:
22976 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22982 stack[stacki - 1] -= stack[stacki];
22987 /* If we're not the last op, then we definitely can't encode
22988 this using GDB's address_class enum. This is valid for partial
22989 global symbols, although the variable's address will be bogus
22992 dwarf2_complex_location_expr_complaint ();
22995 case DW_OP_GNU_push_tls_address:
22996 case DW_OP_form_tls_address:
22997 /* The top of the stack has the offset from the beginning
22998 of the thread control block at which the variable is located. */
22999 /* Nothing should follow this operator, so the top of stack would
23001 /* This is valid for partial global symbols, but the variable's
23002 address will be bogus in the psymtab. Make it always at least
23003 non-zero to not look as a variable garbage collected by linker
23004 which have DW_OP_addr 0. */
23006 dwarf2_complex_location_expr_complaint ();
23010 case DW_OP_GNU_uninit:
23014 case DW_OP_GNU_addr_index:
23015 case DW_OP_GNU_const_index:
23016 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23023 const char *name = get_DW_OP_name (op);
23026 complaint (_("unsupported stack op: '%s'"),
23029 complaint (_("unsupported stack op: '%02x'"),
23033 return (stack[stacki]);
23036 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23037 outside of the allocated space. Also enforce minimum>0. */
23038 if (stacki >= ARRAY_SIZE (stack) - 1)
23040 complaint (_("location description stack overflow"));
23046 complaint (_("location description stack underflow"));
23050 return (stack[stacki]);
23053 /* memory allocation interface */
23055 static struct dwarf_block *
23056 dwarf_alloc_block (struct dwarf2_cu *cu)
23058 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23061 static struct die_info *
23062 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23064 struct die_info *die;
23065 size_t size = sizeof (struct die_info);
23068 size += (num_attrs - 1) * sizeof (struct attribute);
23070 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23071 memset (die, 0, sizeof (struct die_info));
23076 /* Macro support. */
23078 static struct macro_source_file *
23079 macro_start_file (struct dwarf2_cu *cu,
23080 int file, int line,
23081 struct macro_source_file *current_file,
23082 struct line_header *lh)
23084 /* File name relative to the compilation directory of this source file. */
23085 gdb::unique_xmalloc_ptr<char> file_name = lh->file_file_name (file);
23087 if (! current_file)
23089 /* Note: We don't create a macro table for this compilation unit
23090 at all until we actually get a filename. */
23091 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23093 /* If we have no current file, then this must be the start_file
23094 directive for the compilation unit's main source file. */
23095 current_file = macro_set_main (macro_table, file_name.get ());
23096 macro_define_special (macro_table);
23099 current_file = macro_include (current_file, line, file_name.get ());
23101 return current_file;
23104 static const char *
23105 consume_improper_spaces (const char *p, const char *body)
23109 complaint (_("macro definition contains spaces "
23110 "in formal argument list:\n`%s'"),
23122 parse_macro_definition (struct macro_source_file *file, int line,
23127 /* The body string takes one of two forms. For object-like macro
23128 definitions, it should be:
23130 <macro name> " " <definition>
23132 For function-like macro definitions, it should be:
23134 <macro name> "() " <definition>
23136 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23138 Spaces may appear only where explicitly indicated, and in the
23141 The Dwarf 2 spec says that an object-like macro's name is always
23142 followed by a space, but versions of GCC around March 2002 omit
23143 the space when the macro's definition is the empty string.
23145 The Dwarf 2 spec says that there should be no spaces between the
23146 formal arguments in a function-like macro's formal argument list,
23147 but versions of GCC around March 2002 include spaces after the
23151 /* Find the extent of the macro name. The macro name is terminated
23152 by either a space or null character (for an object-like macro) or
23153 an opening paren (for a function-like macro). */
23154 for (p = body; *p; p++)
23155 if (*p == ' ' || *p == '(')
23158 if (*p == ' ' || *p == '\0')
23160 /* It's an object-like macro. */
23161 int name_len = p - body;
23162 std::string name (body, name_len);
23163 const char *replacement;
23166 replacement = body + name_len + 1;
23169 dwarf2_macro_malformed_definition_complaint (body);
23170 replacement = body + name_len;
23173 macro_define_object (file, line, name.c_str (), replacement);
23175 else if (*p == '(')
23177 /* It's a function-like macro. */
23178 std::string name (body, p - body);
23181 char **argv = XNEWVEC (char *, argv_size);
23185 p = consume_improper_spaces (p, body);
23187 /* Parse the formal argument list. */
23188 while (*p && *p != ')')
23190 /* Find the extent of the current argument name. */
23191 const char *arg_start = p;
23193 while (*p && *p != ',' && *p != ')' && *p != ' ')
23196 if (! *p || p == arg_start)
23197 dwarf2_macro_malformed_definition_complaint (body);
23200 /* Make sure argv has room for the new argument. */
23201 if (argc >= argv_size)
23204 argv = XRESIZEVEC (char *, argv, argv_size);
23207 argv[argc++] = savestring (arg_start, p - arg_start);
23210 p = consume_improper_spaces (p, body);
23212 /* Consume the comma, if present. */
23217 p = consume_improper_spaces (p, body);
23226 /* Perfectly formed definition, no complaints. */
23227 macro_define_function (file, line, name.c_str (),
23228 argc, (const char **) argv,
23230 else if (*p == '\0')
23232 /* Complain, but do define it. */
23233 dwarf2_macro_malformed_definition_complaint (body);
23234 macro_define_function (file, line, name.c_str (),
23235 argc, (const char **) argv,
23239 /* Just complain. */
23240 dwarf2_macro_malformed_definition_complaint (body);
23243 /* Just complain. */
23244 dwarf2_macro_malformed_definition_complaint (body);
23249 for (i = 0; i < argc; i++)
23255 dwarf2_macro_malformed_definition_complaint (body);
23258 /* Skip some bytes from BYTES according to the form given in FORM.
23259 Returns the new pointer. */
23261 static const gdb_byte *
23262 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23263 enum dwarf_form form,
23264 unsigned int offset_size,
23265 struct dwarf2_section_info *section)
23267 unsigned int bytes_read;
23271 case DW_FORM_data1:
23276 case DW_FORM_data2:
23280 case DW_FORM_data4:
23284 case DW_FORM_data8:
23288 case DW_FORM_data16:
23292 case DW_FORM_string:
23293 read_direct_string (abfd, bytes, &bytes_read);
23294 bytes += bytes_read;
23297 case DW_FORM_sec_offset:
23299 case DW_FORM_GNU_strp_alt:
23300 bytes += offset_size;
23303 case DW_FORM_block:
23304 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23305 bytes += bytes_read;
23308 case DW_FORM_block1:
23309 bytes += 1 + read_1_byte (abfd, bytes);
23311 case DW_FORM_block2:
23312 bytes += 2 + read_2_bytes (abfd, bytes);
23314 case DW_FORM_block4:
23315 bytes += 4 + read_4_bytes (abfd, bytes);
23318 case DW_FORM_addrx:
23319 case DW_FORM_sdata:
23321 case DW_FORM_udata:
23322 case DW_FORM_GNU_addr_index:
23323 case DW_FORM_GNU_str_index:
23324 bytes = gdb_skip_leb128 (bytes, buffer_end);
23327 dwarf2_section_buffer_overflow_complaint (section);
23332 case DW_FORM_implicit_const:
23337 complaint (_("invalid form 0x%x in `%s'"),
23338 form, section->get_name ());
23346 /* A helper for dwarf_decode_macros that handles skipping an unknown
23347 opcode. Returns an updated pointer to the macro data buffer; or,
23348 on error, issues a complaint and returns NULL. */
23350 static const gdb_byte *
23351 skip_unknown_opcode (unsigned int opcode,
23352 const gdb_byte **opcode_definitions,
23353 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23355 unsigned int offset_size,
23356 struct dwarf2_section_info *section)
23358 unsigned int bytes_read, i;
23360 const gdb_byte *defn;
23362 if (opcode_definitions[opcode] == NULL)
23364 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23369 defn = opcode_definitions[opcode];
23370 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23371 defn += bytes_read;
23373 for (i = 0; i < arg; ++i)
23375 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23376 (enum dwarf_form) defn[i], offset_size,
23378 if (mac_ptr == NULL)
23380 /* skip_form_bytes already issued the complaint. */
23388 /* A helper function which parses the header of a macro section.
23389 If the macro section is the extended (for now called "GNU") type,
23390 then this updates *OFFSET_SIZE. Returns a pointer to just after
23391 the header, or issues a complaint and returns NULL on error. */
23393 static const gdb_byte *
23394 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
23396 const gdb_byte *mac_ptr,
23397 unsigned int *offset_size,
23398 int section_is_gnu)
23400 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
23402 if (section_is_gnu)
23404 unsigned int version, flags;
23406 version = read_2_bytes (abfd, mac_ptr);
23407 if (version != 4 && version != 5)
23409 complaint (_("unrecognized version `%d' in .debug_macro section"),
23415 flags = read_1_byte (abfd, mac_ptr);
23417 *offset_size = (flags & 1) ? 8 : 4;
23419 if ((flags & 2) != 0)
23420 /* We don't need the line table offset. */
23421 mac_ptr += *offset_size;
23423 /* Vendor opcode descriptions. */
23424 if ((flags & 4) != 0)
23426 unsigned int i, count;
23428 count = read_1_byte (abfd, mac_ptr);
23430 for (i = 0; i < count; ++i)
23432 unsigned int opcode, bytes_read;
23435 opcode = read_1_byte (abfd, mac_ptr);
23437 opcode_definitions[opcode] = mac_ptr;
23438 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23439 mac_ptr += bytes_read;
23448 /* A helper for dwarf_decode_macros that handles the GNU extensions,
23449 including DW_MACRO_import. */
23452 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
23454 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23455 struct macro_source_file *current_file,
23456 struct line_header *lh,
23457 struct dwarf2_section_info *section,
23458 int section_is_gnu, int section_is_dwz,
23459 unsigned int offset_size,
23460 htab_t include_hash)
23462 struct dwarf2_per_objfile *dwarf2_per_objfile
23463 = cu->per_cu->dwarf2_per_objfile;
23464 struct objfile *objfile = dwarf2_per_objfile->objfile;
23465 enum dwarf_macro_record_type macinfo_type;
23466 int at_commandline;
23467 const gdb_byte *opcode_definitions[256];
23469 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23470 &offset_size, section_is_gnu);
23471 if (mac_ptr == NULL)
23473 /* We already issued a complaint. */
23477 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
23478 GDB is still reading the definitions from command line. First
23479 DW_MACINFO_start_file will need to be ignored as it was already executed
23480 to create CURRENT_FILE for the main source holding also the command line
23481 definitions. On first met DW_MACINFO_start_file this flag is reset to
23482 normally execute all the remaining DW_MACINFO_start_file macinfos. */
23484 at_commandline = 1;
23488 /* Do we at least have room for a macinfo type byte? */
23489 if (mac_ptr >= mac_end)
23491 dwarf2_section_buffer_overflow_complaint (section);
23495 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23498 /* Note that we rely on the fact that the corresponding GNU and
23499 DWARF constants are the same. */
23501 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23502 switch (macinfo_type)
23504 /* A zero macinfo type indicates the end of the macro
23509 case DW_MACRO_define:
23510 case DW_MACRO_undef:
23511 case DW_MACRO_define_strp:
23512 case DW_MACRO_undef_strp:
23513 case DW_MACRO_define_sup:
23514 case DW_MACRO_undef_sup:
23516 unsigned int bytes_read;
23521 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23522 mac_ptr += bytes_read;
23524 if (macinfo_type == DW_MACRO_define
23525 || macinfo_type == DW_MACRO_undef)
23527 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23528 mac_ptr += bytes_read;
23532 LONGEST str_offset;
23534 str_offset = read_offset (abfd, mac_ptr, offset_size);
23535 mac_ptr += offset_size;
23537 if (macinfo_type == DW_MACRO_define_sup
23538 || macinfo_type == DW_MACRO_undef_sup
23541 struct dwz_file *dwz
23542 = dwarf2_get_dwz_file (dwarf2_per_objfile);
23544 body = read_indirect_string_from_dwz (objfile,
23548 body = read_indirect_string_at_offset (dwarf2_per_objfile,
23552 is_define = (macinfo_type == DW_MACRO_define
23553 || macinfo_type == DW_MACRO_define_strp
23554 || macinfo_type == DW_MACRO_define_sup);
23555 if (! current_file)
23557 /* DWARF violation as no main source is present. */
23558 complaint (_("debug info with no main source gives macro %s "
23560 is_define ? _("definition") : _("undefinition"),
23564 if ((line == 0 && !at_commandline)
23565 || (line != 0 && at_commandline))
23566 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
23567 at_commandline ? _("command-line") : _("in-file"),
23568 is_define ? _("definition") : _("undefinition"),
23569 line == 0 ? _("zero") : _("non-zero"), line, body);
23573 /* Fedora's rpm-build's "debugedit" binary
23574 corrupted .debug_macro sections.
23577 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
23578 complaint (_("debug info gives %s invalid macro %s "
23579 "without body (corrupted?) at line %d "
23581 at_commandline ? _("command-line") : _("in-file"),
23582 is_define ? _("definition") : _("undefinition"),
23583 line, current_file->filename);
23585 else if (is_define)
23586 parse_macro_definition (current_file, line, body);
23589 gdb_assert (macinfo_type == DW_MACRO_undef
23590 || macinfo_type == DW_MACRO_undef_strp
23591 || macinfo_type == DW_MACRO_undef_sup);
23592 macro_undef (current_file, line, body);
23597 case DW_MACRO_start_file:
23599 unsigned int bytes_read;
23602 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23603 mac_ptr += bytes_read;
23604 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23605 mac_ptr += bytes_read;
23607 if ((line == 0 && !at_commandline)
23608 || (line != 0 && at_commandline))
23609 complaint (_("debug info gives source %d included "
23610 "from %s at %s line %d"),
23611 file, at_commandline ? _("command-line") : _("file"),
23612 line == 0 ? _("zero") : _("non-zero"), line);
23614 if (at_commandline)
23616 /* This DW_MACRO_start_file was executed in the
23618 at_commandline = 0;
23621 current_file = macro_start_file (cu, file, line, current_file,
23626 case DW_MACRO_end_file:
23627 if (! current_file)
23628 complaint (_("macro debug info has an unmatched "
23629 "`close_file' directive"));
23632 current_file = current_file->included_by;
23633 if (! current_file)
23635 enum dwarf_macro_record_type next_type;
23637 /* GCC circa March 2002 doesn't produce the zero
23638 type byte marking the end of the compilation
23639 unit. Complain if it's not there, but exit no
23642 /* Do we at least have room for a macinfo type byte? */
23643 if (mac_ptr >= mac_end)
23645 dwarf2_section_buffer_overflow_complaint (section);
23649 /* We don't increment mac_ptr here, so this is just
23652 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23654 if (next_type != 0)
23655 complaint (_("no terminating 0-type entry for "
23656 "macros in `.debug_macinfo' section"));
23663 case DW_MACRO_import:
23664 case DW_MACRO_import_sup:
23668 bfd *include_bfd = abfd;
23669 struct dwarf2_section_info *include_section = section;
23670 const gdb_byte *include_mac_end = mac_end;
23671 int is_dwz = section_is_dwz;
23672 const gdb_byte *new_mac_ptr;
23674 offset = read_offset (abfd, mac_ptr, offset_size);
23675 mac_ptr += offset_size;
23677 if (macinfo_type == DW_MACRO_import_sup)
23679 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
23681 dwz->macro.read (objfile);
23683 include_section = &dwz->macro;
23684 include_bfd = include_section->get_bfd_owner ();
23685 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23689 new_mac_ptr = include_section->buffer + offset;
23690 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23694 /* This has actually happened; see
23695 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23696 complaint (_("recursive DW_MACRO_import in "
23697 ".debug_macro section"));
23701 *slot = (void *) new_mac_ptr;
23703 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
23704 include_mac_end, current_file, lh,
23705 section, section_is_gnu, is_dwz,
23706 offset_size, include_hash);
23708 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23713 case DW_MACINFO_vendor_ext:
23714 if (!section_is_gnu)
23716 unsigned int bytes_read;
23718 /* This reads the constant, but since we don't recognize
23719 any vendor extensions, we ignore it. */
23720 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23721 mac_ptr += bytes_read;
23722 read_direct_string (abfd, mac_ptr, &bytes_read);
23723 mac_ptr += bytes_read;
23725 /* We don't recognize any vendor extensions. */
23731 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23732 mac_ptr, mac_end, abfd, offset_size,
23734 if (mac_ptr == NULL)
23739 } while (macinfo_type != 0);
23743 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23744 int section_is_gnu)
23746 struct dwarf2_per_objfile *dwarf2_per_objfile
23747 = cu->per_cu->dwarf2_per_objfile;
23748 struct objfile *objfile = dwarf2_per_objfile->objfile;
23749 struct line_header *lh = cu->line_header;
23751 const gdb_byte *mac_ptr, *mac_end;
23752 struct macro_source_file *current_file = 0;
23753 enum dwarf_macro_record_type macinfo_type;
23754 unsigned int offset_size = cu->header.offset_size;
23755 const gdb_byte *opcode_definitions[256];
23757 struct dwarf2_section_info *section;
23758 const char *section_name;
23760 if (cu->dwo_unit != NULL)
23762 if (section_is_gnu)
23764 section = &cu->dwo_unit->dwo_file->sections.macro;
23765 section_name = ".debug_macro.dwo";
23769 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23770 section_name = ".debug_macinfo.dwo";
23775 if (section_is_gnu)
23777 section = &dwarf2_per_objfile->macro;
23778 section_name = ".debug_macro";
23782 section = &dwarf2_per_objfile->macinfo;
23783 section_name = ".debug_macinfo";
23787 section->read (objfile);
23788 if (section->buffer == NULL)
23790 complaint (_("missing %s section"), section_name);
23793 abfd = section->get_bfd_owner ();
23795 /* First pass: Find the name of the base filename.
23796 This filename is needed in order to process all macros whose definition
23797 (or undefinition) comes from the command line. These macros are defined
23798 before the first DW_MACINFO_start_file entry, and yet still need to be
23799 associated to the base file.
23801 To determine the base file name, we scan the macro definitions until we
23802 reach the first DW_MACINFO_start_file entry. We then initialize
23803 CURRENT_FILE accordingly so that any macro definition found before the
23804 first DW_MACINFO_start_file can still be associated to the base file. */
23806 mac_ptr = section->buffer + offset;
23807 mac_end = section->buffer + section->size;
23809 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23810 &offset_size, section_is_gnu);
23811 if (mac_ptr == NULL)
23813 /* We already issued a complaint. */
23819 /* Do we at least have room for a macinfo type byte? */
23820 if (mac_ptr >= mac_end)
23822 /* Complaint is printed during the second pass as GDB will probably
23823 stop the first pass earlier upon finding
23824 DW_MACINFO_start_file. */
23828 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23831 /* Note that we rely on the fact that the corresponding GNU and
23832 DWARF constants are the same. */
23834 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23835 switch (macinfo_type)
23837 /* A zero macinfo type indicates the end of the macro
23842 case DW_MACRO_define:
23843 case DW_MACRO_undef:
23844 /* Only skip the data by MAC_PTR. */
23846 unsigned int bytes_read;
23848 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23849 mac_ptr += bytes_read;
23850 read_direct_string (abfd, mac_ptr, &bytes_read);
23851 mac_ptr += bytes_read;
23855 case DW_MACRO_start_file:
23857 unsigned int bytes_read;
23860 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23861 mac_ptr += bytes_read;
23862 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23863 mac_ptr += bytes_read;
23865 current_file = macro_start_file (cu, file, line, current_file, lh);
23869 case DW_MACRO_end_file:
23870 /* No data to skip by MAC_PTR. */
23873 case DW_MACRO_define_strp:
23874 case DW_MACRO_undef_strp:
23875 case DW_MACRO_define_sup:
23876 case DW_MACRO_undef_sup:
23878 unsigned int bytes_read;
23880 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23881 mac_ptr += bytes_read;
23882 mac_ptr += offset_size;
23886 case DW_MACRO_import:
23887 case DW_MACRO_import_sup:
23888 /* Note that, according to the spec, a transparent include
23889 chain cannot call DW_MACRO_start_file. So, we can just
23890 skip this opcode. */
23891 mac_ptr += offset_size;
23894 case DW_MACINFO_vendor_ext:
23895 /* Only skip the data by MAC_PTR. */
23896 if (!section_is_gnu)
23898 unsigned int bytes_read;
23900 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23901 mac_ptr += bytes_read;
23902 read_direct_string (abfd, mac_ptr, &bytes_read);
23903 mac_ptr += bytes_read;
23908 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23909 mac_ptr, mac_end, abfd, offset_size,
23911 if (mac_ptr == NULL)
23916 } while (macinfo_type != 0 && current_file == NULL);
23918 /* Second pass: Process all entries.
23920 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23921 command-line macro definitions/undefinitions. This flag is unset when we
23922 reach the first DW_MACINFO_start_file entry. */
23924 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23926 NULL, xcalloc, xfree));
23927 mac_ptr = section->buffer + offset;
23928 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23929 *slot = (void *) mac_ptr;
23930 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
23931 current_file, lh, section,
23932 section_is_gnu, 0, offset_size,
23933 include_hash.get ());
23936 /* Return the .debug_loc section to use for CU.
23937 For DWO files use .debug_loc.dwo. */
23939 static struct dwarf2_section_info *
23940 cu_debug_loc_section (struct dwarf2_cu *cu)
23942 struct dwarf2_per_objfile *dwarf2_per_objfile
23943 = cu->per_cu->dwarf2_per_objfile;
23947 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23949 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
23951 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23952 : &dwarf2_per_objfile->loc);
23955 /* A helper function that fills in a dwarf2_loclist_baton. */
23958 fill_in_loclist_baton (struct dwarf2_cu *cu,
23959 struct dwarf2_loclist_baton *baton,
23960 const struct attribute *attr)
23962 struct dwarf2_per_objfile *dwarf2_per_objfile
23963 = cu->per_cu->dwarf2_per_objfile;
23964 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23966 section->read (dwarf2_per_objfile->objfile);
23968 baton->per_cu = cu->per_cu;
23969 gdb_assert (baton->per_cu);
23970 /* We don't know how long the location list is, but make sure we
23971 don't run off the edge of the section. */
23972 baton->size = section->size - DW_UNSND (attr);
23973 baton->data = section->buffer + DW_UNSND (attr);
23974 baton->base_address = cu->base_address;
23975 baton->from_dwo = cu->dwo_unit != NULL;
23979 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23980 struct dwarf2_cu *cu, int is_block)
23982 struct dwarf2_per_objfile *dwarf2_per_objfile
23983 = cu->per_cu->dwarf2_per_objfile;
23984 struct objfile *objfile = dwarf2_per_objfile->objfile;
23985 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23987 if (attr->form_is_section_offset ()
23988 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23989 the section. If so, fall through to the complaint in the
23991 && DW_UNSND (attr) < section->get_size (objfile))
23993 struct dwarf2_loclist_baton *baton;
23995 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23997 fill_in_loclist_baton (cu, baton, attr);
23999 if (cu->base_known == 0)
24000 complaint (_("Location list used without "
24001 "specifying the CU base address."));
24003 SYMBOL_ACLASS_INDEX (sym) = (is_block
24004 ? dwarf2_loclist_block_index
24005 : dwarf2_loclist_index);
24006 SYMBOL_LOCATION_BATON (sym) = baton;
24010 struct dwarf2_locexpr_baton *baton;
24012 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24013 baton->per_cu = cu->per_cu;
24014 gdb_assert (baton->per_cu);
24016 if (attr->form_is_block ())
24018 /* Note that we're just copying the block's data pointer
24019 here, not the actual data. We're still pointing into the
24020 info_buffer for SYM's objfile; right now we never release
24021 that buffer, but when we do clean up properly this may
24023 baton->size = DW_BLOCK (attr)->size;
24024 baton->data = DW_BLOCK (attr)->data;
24028 dwarf2_invalid_attrib_class_complaint ("location description",
24029 sym->natural_name ());
24033 SYMBOL_ACLASS_INDEX (sym) = (is_block
24034 ? dwarf2_locexpr_block_index
24035 : dwarf2_locexpr_index);
24036 SYMBOL_LOCATION_BATON (sym) = baton;
24043 dwarf2_per_cu_data::objfile () const
24045 struct objfile *objfile = dwarf2_per_objfile->objfile;
24047 /* Return the master objfile, so that we can report and look up the
24048 correct file containing this variable. */
24049 if (objfile->separate_debug_objfile_backlink)
24050 objfile = objfile->separate_debug_objfile_backlink;
24055 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24056 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24057 CU_HEADERP first. */
24059 static const struct comp_unit_head *
24060 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24061 const struct dwarf2_per_cu_data *per_cu)
24063 const gdb_byte *info_ptr;
24066 return &per_cu->cu->header;
24068 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24070 memset (cu_headerp, 0, sizeof (*cu_headerp));
24071 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24072 rcuh_kind::COMPILE);
24080 dwarf2_per_cu_data::addr_size () const
24082 struct comp_unit_head cu_header_local;
24083 const struct comp_unit_head *cu_headerp;
24085 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24087 return cu_headerp->addr_size;
24093 dwarf2_per_cu_data::offset_size () const
24095 struct comp_unit_head cu_header_local;
24096 const struct comp_unit_head *cu_headerp;
24098 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24100 return cu_headerp->offset_size;
24106 dwarf2_per_cu_data::ref_addr_size () const
24108 struct comp_unit_head cu_header_local;
24109 const struct comp_unit_head *cu_headerp;
24111 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24113 if (cu_headerp->version == 2)
24114 return cu_headerp->addr_size;
24116 return cu_headerp->offset_size;
24122 dwarf2_per_cu_data::text_offset () const
24124 struct objfile *objfile = dwarf2_per_objfile->objfile;
24126 return objfile->text_section_offset ();
24132 dwarf2_per_cu_data::addr_type () const
24134 struct objfile *objfile = dwarf2_per_objfile->objfile;
24135 struct type *void_type = objfile_type (objfile)->builtin_void;
24136 struct type *addr_type = lookup_pointer_type (void_type);
24137 int addr_size = this->addr_size ();
24139 if (TYPE_LENGTH (addr_type) == addr_size)
24142 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
24146 /* A helper function for dwarf2_find_containing_comp_unit that returns
24147 the index of the result, and that searches a vector. It will
24148 return a result even if the offset in question does not actually
24149 occur in any CU. This is separate so that it can be unit
24153 dwarf2_find_containing_comp_unit
24154 (sect_offset sect_off,
24155 unsigned int offset_in_dwz,
24156 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24161 high = all_comp_units.size () - 1;
24164 struct dwarf2_per_cu_data *mid_cu;
24165 int mid = low + (high - low) / 2;
24167 mid_cu = all_comp_units[mid];
24168 if (mid_cu->is_dwz > offset_in_dwz
24169 || (mid_cu->is_dwz == offset_in_dwz
24170 && mid_cu->sect_off + mid_cu->length > sect_off))
24175 gdb_assert (low == high);
24179 /* Locate the .debug_info compilation unit from CU's objfile which contains
24180 the DIE at OFFSET. Raises an error on failure. */
24182 static struct dwarf2_per_cu_data *
24183 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24184 unsigned int offset_in_dwz,
24185 struct dwarf2_per_objfile *dwarf2_per_objfile)
24188 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
24189 dwarf2_per_objfile->all_comp_units);
24190 struct dwarf2_per_cu_data *this_cu
24191 = dwarf2_per_objfile->all_comp_units[low];
24193 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24195 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24196 error (_("Dwarf Error: could not find partial DIE containing "
24197 "offset %s [in module %s]"),
24198 sect_offset_str (sect_off),
24199 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24201 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24203 return dwarf2_per_objfile->all_comp_units[low-1];
24207 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24208 && sect_off >= this_cu->sect_off + this_cu->length)
24209 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24210 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24217 namespace selftests {
24218 namespace find_containing_comp_unit {
24223 struct dwarf2_per_cu_data one {};
24224 struct dwarf2_per_cu_data two {};
24225 struct dwarf2_per_cu_data three {};
24226 struct dwarf2_per_cu_data four {};
24229 two.sect_off = sect_offset (one.length);
24234 four.sect_off = sect_offset (three.length);
24238 std::vector<dwarf2_per_cu_data *> units;
24239 units.push_back (&one);
24240 units.push_back (&two);
24241 units.push_back (&three);
24242 units.push_back (&four);
24246 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24247 SELF_CHECK (units[result] == &one);
24248 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24249 SELF_CHECK (units[result] == &one);
24250 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24251 SELF_CHECK (units[result] == &two);
24253 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24254 SELF_CHECK (units[result] == &three);
24255 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24256 SELF_CHECK (units[result] == &three);
24257 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24258 SELF_CHECK (units[result] == &four);
24264 #endif /* GDB_SELF_TEST */
24266 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24268 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24269 : per_cu (per_cu_),
24271 has_loclist (false),
24272 checked_producer (false),
24273 producer_is_gxx_lt_4_6 (false),
24274 producer_is_gcc_lt_4_3 (false),
24275 producer_is_icc (false),
24276 producer_is_icc_lt_14 (false),
24277 producer_is_codewarrior (false),
24278 processing_has_namespace_info (false)
24283 /* Destroy a dwarf2_cu. */
24285 dwarf2_cu::~dwarf2_cu ()
24290 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24293 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24294 enum language pretend_language)
24296 struct attribute *attr;
24298 /* Set the language we're debugging. */
24299 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24300 if (attr != nullptr)
24301 set_cu_language (DW_UNSND (attr), cu);
24304 cu->language = pretend_language;
24305 cu->language_defn = language_def (cu->language);
24308 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24311 /* Increase the age counter on each cached compilation unit, and free
24312 any that are too old. */
24315 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24317 struct dwarf2_per_cu_data *per_cu, **last_chain;
24319 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24320 per_cu = dwarf2_per_objfile->read_in_chain;
24321 while (per_cu != NULL)
24323 per_cu->cu->last_used ++;
24324 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24325 dwarf2_mark (per_cu->cu);
24326 per_cu = per_cu->cu->read_in_chain;
24329 per_cu = dwarf2_per_objfile->read_in_chain;
24330 last_chain = &dwarf2_per_objfile->read_in_chain;
24331 while (per_cu != NULL)
24333 struct dwarf2_per_cu_data *next_cu;
24335 next_cu = per_cu->cu->read_in_chain;
24337 if (!per_cu->cu->mark)
24340 *last_chain = next_cu;
24343 last_chain = &per_cu->cu->read_in_chain;
24349 /* Remove a single compilation unit from the cache. */
24352 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24354 struct dwarf2_per_cu_data *per_cu, **last_chain;
24355 struct dwarf2_per_objfile *dwarf2_per_objfile
24356 = target_per_cu->dwarf2_per_objfile;
24358 per_cu = dwarf2_per_objfile->read_in_chain;
24359 last_chain = &dwarf2_per_objfile->read_in_chain;
24360 while (per_cu != NULL)
24362 struct dwarf2_per_cu_data *next_cu;
24364 next_cu = per_cu->cu->read_in_chain;
24366 if (per_cu == target_per_cu)
24370 *last_chain = next_cu;
24374 last_chain = &per_cu->cu->read_in_chain;
24380 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24381 We store these in a hash table separate from the DIEs, and preserve them
24382 when the DIEs are flushed out of cache.
24384 The CU "per_cu" pointer is needed because offset alone is not enough to
24385 uniquely identify the type. A file may have multiple .debug_types sections,
24386 or the type may come from a DWO file. Furthermore, while it's more logical
24387 to use per_cu->section+offset, with Fission the section with the data is in
24388 the DWO file but we don't know that section at the point we need it.
24389 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24390 because we can enter the lookup routine, get_die_type_at_offset, from
24391 outside this file, and thus won't necessarily have PER_CU->cu.
24392 Fortunately, PER_CU is stable for the life of the objfile. */
24394 struct dwarf2_per_cu_offset_and_type
24396 const struct dwarf2_per_cu_data *per_cu;
24397 sect_offset sect_off;
24401 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24404 per_cu_offset_and_type_hash (const void *item)
24406 const struct dwarf2_per_cu_offset_and_type *ofs
24407 = (const struct dwarf2_per_cu_offset_and_type *) item;
24409 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24412 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24415 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24417 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24418 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24419 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24420 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24422 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24423 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24426 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24427 table if necessary. For convenience, return TYPE.
24429 The DIEs reading must have careful ordering to:
24430 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24431 reading current DIE.
24432 * Not trying to dereference contents of still incompletely read in types
24433 while reading in other DIEs.
24434 * Enable referencing still incompletely read in types just by a pointer to
24435 the type without accessing its fields.
24437 Therefore caller should follow these rules:
24438 * Try to fetch any prerequisite types we may need to build this DIE type
24439 before building the type and calling set_die_type.
24440 * After building type call set_die_type for current DIE as soon as
24441 possible before fetching more types to complete the current type.
24442 * Make the type as complete as possible before fetching more types. */
24444 static struct type *
24445 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24447 struct dwarf2_per_objfile *dwarf2_per_objfile
24448 = cu->per_cu->dwarf2_per_objfile;
24449 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24450 struct objfile *objfile = dwarf2_per_objfile->objfile;
24451 struct attribute *attr;
24452 struct dynamic_prop prop;
24454 /* For Ada types, make sure that the gnat-specific data is always
24455 initialized (if not already set). There are a few types where
24456 we should not be doing so, because the type-specific area is
24457 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24458 where the type-specific area is used to store the floatformat).
24459 But this is not a problem, because the gnat-specific information
24460 is actually not needed for these types. */
24461 if (need_gnat_info (cu)
24462 && TYPE_CODE (type) != TYPE_CODE_FUNC
24463 && TYPE_CODE (type) != TYPE_CODE_FLT
24464 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
24465 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
24466 && TYPE_CODE (type) != TYPE_CODE_METHOD
24467 && !HAVE_GNAT_AUX_INFO (type))
24468 INIT_GNAT_SPECIFIC (type);
24470 /* Read DW_AT_allocated and set in type. */
24471 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24472 if (attr != NULL && attr->form_is_block ())
24474 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24475 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24476 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
24478 else if (attr != NULL)
24480 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
24481 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24482 sect_offset_str (die->sect_off));
24485 /* Read DW_AT_associated and set in type. */
24486 attr = dwarf2_attr (die, DW_AT_associated, cu);
24487 if (attr != NULL && attr->form_is_block ())
24489 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24490 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24491 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
24493 else if (attr != NULL)
24495 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
24496 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24497 sect_offset_str (die->sect_off));
24500 /* Read DW_AT_data_location and set in type. */
24501 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24502 if (attr_to_dynamic_prop (attr, die, cu, &prop,
24503 cu->per_cu->addr_type ()))
24504 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
24506 if (dwarf2_per_objfile->die_type_hash == NULL)
24507 dwarf2_per_objfile->die_type_hash
24508 = htab_up (htab_create_alloc (127,
24509 per_cu_offset_and_type_hash,
24510 per_cu_offset_and_type_eq,
24511 NULL, xcalloc, xfree));
24513 ofs.per_cu = cu->per_cu;
24514 ofs.sect_off = die->sect_off;
24516 slot = (struct dwarf2_per_cu_offset_and_type **)
24517 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
24519 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24520 sect_offset_str (die->sect_off));
24521 *slot = XOBNEW (&objfile->objfile_obstack,
24522 struct dwarf2_per_cu_offset_and_type);
24527 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24528 or return NULL if the die does not have a saved type. */
24530 static struct type *
24531 get_die_type_at_offset (sect_offset sect_off,
24532 struct dwarf2_per_cu_data *per_cu)
24534 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24535 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
24537 if (dwarf2_per_objfile->die_type_hash == NULL)
24540 ofs.per_cu = per_cu;
24541 ofs.sect_off = sect_off;
24542 slot = ((struct dwarf2_per_cu_offset_and_type *)
24543 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
24550 /* Look up the type for DIE in CU in die_type_hash,
24551 or return NULL if DIE does not have a saved type. */
24553 static struct type *
24554 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24556 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24559 /* Add a dependence relationship from CU to REF_PER_CU. */
24562 dwarf2_add_dependence (struct dwarf2_cu *cu,
24563 struct dwarf2_per_cu_data *ref_per_cu)
24567 if (cu->dependencies == NULL)
24569 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24570 NULL, &cu->comp_unit_obstack,
24571 hashtab_obstack_allocate,
24572 dummy_obstack_deallocate);
24574 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24576 *slot = ref_per_cu;
24579 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24580 Set the mark field in every compilation unit in the
24581 cache that we must keep because we are keeping CU. */
24584 dwarf2_mark_helper (void **slot, void *data)
24586 struct dwarf2_per_cu_data *per_cu;
24588 per_cu = (struct dwarf2_per_cu_data *) *slot;
24590 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24591 reading of the chain. As such dependencies remain valid it is not much
24592 useful to track and undo them during QUIT cleanups. */
24593 if (per_cu->cu == NULL)
24596 if (per_cu->cu->mark)
24598 per_cu->cu->mark = true;
24600 if (per_cu->cu->dependencies != NULL)
24601 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24606 /* Set the mark field in CU and in every other compilation unit in the
24607 cache that we must keep because we are keeping CU. */
24610 dwarf2_mark (struct dwarf2_cu *cu)
24615 if (cu->dependencies != NULL)
24616 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24620 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24624 per_cu->cu->mark = false;
24625 per_cu = per_cu->cu->read_in_chain;
24629 /* Trivial hash function for partial_die_info: the hash value of a DIE
24630 is its offset in .debug_info for this objfile. */
24633 partial_die_hash (const void *item)
24635 const struct partial_die_info *part_die
24636 = (const struct partial_die_info *) item;
24638 return to_underlying (part_die->sect_off);
24641 /* Trivial comparison function for partial_die_info structures: two DIEs
24642 are equal if they have the same offset. */
24645 partial_die_eq (const void *item_lhs, const void *item_rhs)
24647 const struct partial_die_info *part_die_lhs
24648 = (const struct partial_die_info *) item_lhs;
24649 const struct partial_die_info *part_die_rhs
24650 = (const struct partial_die_info *) item_rhs;
24652 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24655 struct cmd_list_element *set_dwarf_cmdlist;
24656 struct cmd_list_element *show_dwarf_cmdlist;
24659 set_dwarf_cmd (const char *args, int from_tty)
24661 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24666 show_dwarf_cmd (const char *args, int from_tty)
24668 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24672 show_check_physname (struct ui_file *file, int from_tty,
24673 struct cmd_list_element *c, const char *value)
24675 fprintf_filtered (file,
24676 _("Whether to check \"physname\" is %s.\n"),
24680 void _initialize_dwarf2_read ();
24682 _initialize_dwarf2_read ()
24684 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24685 Set DWARF specific variables.\n\
24686 Configure DWARF variables such as the cache size."),
24687 &set_dwarf_cmdlist, "maintenance set dwarf ",
24688 0/*allow-unknown*/, &maintenance_set_cmdlist);
24690 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24691 Show DWARF specific variables.\n\
24692 Show DWARF variables such as the cache size."),
24693 &show_dwarf_cmdlist, "maintenance show dwarf ",
24694 0/*allow-unknown*/, &maintenance_show_cmdlist);
24696 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24697 &dwarf_max_cache_age, _("\
24698 Set the upper bound on the age of cached DWARF compilation units."), _("\
24699 Show the upper bound on the age of cached DWARF compilation units."), _("\
24700 A higher limit means that cached compilation units will be stored\n\
24701 in memory longer, and more total memory will be used. Zero disables\n\
24702 caching, which can slow down startup."),
24704 show_dwarf_max_cache_age,
24705 &set_dwarf_cmdlist,
24706 &show_dwarf_cmdlist);
24708 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24709 Set debugging of the DWARF reader."), _("\
24710 Show debugging of the DWARF reader."), _("\
24711 When enabled (non-zero), debugging messages are printed during DWARF\n\
24712 reading and symtab expansion. A value of 1 (one) provides basic\n\
24713 information. A value greater than 1 provides more verbose information."),
24716 &setdebuglist, &showdebuglist);
24718 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24719 Set debugging of the DWARF DIE reader."), _("\
24720 Show debugging of the DWARF DIE reader."), _("\
24721 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24722 The value is the maximum depth to print."),
24725 &setdebuglist, &showdebuglist);
24727 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24728 Set debugging of the dwarf line reader."), _("\
24729 Show debugging of the dwarf line reader."), _("\
24730 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24731 A value of 1 (one) provides basic information.\n\
24732 A value greater than 1 provides more verbose information."),
24735 &setdebuglist, &showdebuglist);
24737 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24738 Set cross-checking of \"physname\" code against demangler."), _("\
24739 Show cross-checking of \"physname\" code against demangler."), _("\
24740 When enabled, GDB's internal \"physname\" code is checked against\n\
24742 NULL, show_check_physname,
24743 &setdebuglist, &showdebuglist);
24745 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24746 no_class, &use_deprecated_index_sections, _("\
24747 Set whether to use deprecated gdb_index sections."), _("\
24748 Show whether to use deprecated gdb_index sections."), _("\
24749 When enabled, deprecated .gdb_index sections are used anyway.\n\
24750 Normally they are ignored either because of a missing feature or\n\
24751 performance issue.\n\
24752 Warning: This option must be enabled before gdb reads the file."),
24755 &setlist, &showlist);
24757 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24758 &dwarf2_locexpr_funcs);
24759 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24760 &dwarf2_loclist_funcs);
24762 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24763 &dwarf2_block_frame_base_locexpr_funcs);
24764 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24765 &dwarf2_block_frame_base_loclist_funcs);
24768 selftests::register_test ("dw2_expand_symtabs_matching",
24769 selftests::dw2_expand_symtabs_matching::run_test);
24770 selftests::register_test ("dwarf2_find_containing_comp_unit",
24771 selftests::find_containing_comp_unit::run_test);