1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
53 #include "gdb_string.h"
57 #include "cp-support.h"
59 #include "gdb_assert.h"
62 #include "macroscope.h"
66 /* Prototypes for local functions */
68 static void rbreak_command (char *, int);
70 static void types_info (char *, int);
72 static void functions_info (char *, int);
74 static void variables_info (char *, int);
76 static void sources_info (char *, int);
78 static void output_source_filename (const char *, int *);
80 static int find_line_common (struct linetable *, int, int *, int);
82 static struct symbol *lookup_symbol_aux (const char *name,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language,
86 int *is_a_field_of_this);
89 struct symbol *lookup_symbol_aux_local (const char *name,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
95 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const domain_enum domain);
100 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
103 const domain_enum domain);
105 static void print_msymbol_info (struct minimal_symbol *);
107 void _initialize_symtab (void);
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
130 static const char *multiple_symbols_mode = multiple_symbols_all;
132 /* Read-only accessor to AUTO_SELECT_MODE. */
135 multiple_symbols_select_mode (void)
137 return multiple_symbols_mode;
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
144 const struct block *block_found;
146 /* See whether FILENAME matches SEARCH_NAME using the rule that we
147 advertise to the user. (The manual's description of linespecs
148 describes what we advertise). SEARCH_LEN is the length of
149 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
150 Returns true if they match, false otherwise. */
153 compare_filenames_for_search (const char *filename, const char *search_name,
156 int len = strlen (filename);
159 if (len < search_len)
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175 /* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
187 iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
193 struct symtab *first,
194 struct symtab *after_last)
196 struct symtab *s = NULL;
197 struct cleanup *cleanup;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
202 for (s = first; s != NULL && s != after_last; s = s->next)
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
207 if (callback (s, data))
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
213 if (callback (s, data))
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
226 if (full_path != NULL)
228 const char *fp = symtab_to_fullname (s);
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
232 if (callback (s, data))
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 if (callback (s, data))
244 if (real_path != NULL)
246 char *fullname = symtab_to_fullname (s);
248 if (fullname != NULL)
250 char *rp = gdb_realpath (fullname);
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
255 if (callback (s, data))
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
261 if (callback (s, data))
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
300 ALL_OBJFILES (objfile)
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
305 do_cleanups (cleanups);
310 /* Same search rules as above apply here, but now we look thru the
313 ALL_OBJFILES (objfile)
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
323 do_cleanups (cleanups);
328 do_cleanups (cleanups);
331 /* The callback function used by lookup_symtab. */
334 lookup_symtab_callback (struct symtab *symtab, void *data)
336 struct symtab **result_ptr = data;
338 *result_ptr = symtab;
342 /* A wrapper for iterate_over_symtabs that returns the first matching
346 lookup_symtab (const char *name)
348 struct symtab *result = NULL;
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
363 int mangled_name_len;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
381 int len = (newname == NULL ? 0 : strlen (newname));
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
389 is_full_physname_constructor = is_constructor_name (physname);
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
397 if (is_destructor || is_full_physname_constructor)
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
406 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
408 else if (physname[0] == 't' || physname[0] == 'Q')
410 /* The physname for template and qualified methods already includes
412 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
418 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
420 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
421 + strlen (buf) + len + strlen (physname) + 1);
423 mangled_name = (char *) xmalloc (mangled_name_len);
425 mangled_name[0] = '\0';
427 strcpy (mangled_name, field_name);
429 strcat (mangled_name, buf);
430 /* If the class doesn't have a name, i.e. newname NULL, then we just
431 mangle it using 0 for the length of the class. Thus it gets mangled
432 as something starting with `::' rather than `classname::'. */
434 strcat (mangled_name, newname);
436 strcat (mangled_name, physname);
437 return (mangled_name);
440 /* Initialize the cplus_specific structure. 'cplus_specific' should
441 only be allocated for use with cplus symbols. */
444 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
445 struct objfile *objfile)
447 /* A language_specific structure should not have been previously
449 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
450 gdb_assert (objfile != NULL);
452 gsymbol->language_specific.cplus_specific =
453 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
457 correctly allocated. For C++ symbols a cplus_specific struct is
458 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
459 OBJFILE can be NULL. */
462 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 struct objfile *objfile)
466 if (gsymbol->language == language_cplus)
468 if (gsymbol->language_specific.cplus_specific == NULL)
469 symbol_init_cplus_specific (gsymbol, objfile);
471 gsymbol->language_specific.cplus_specific->demangled_name = name;
474 gsymbol->language_specific.mangled_lang.demangled_name = name;
477 /* Return the demangled name of GSYMBOL. */
480 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 if (gsymbol->language == language_cplus)
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
490 return gsymbol->language_specific.mangled_lang.demangled_name;
494 /* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
498 symbol_set_language (struct general_symbol_info *gsymbol,
499 enum language language)
501 gsymbol->language = language;
502 if (gsymbol->language == language_d
503 || gsymbol->language == language_java
504 || gsymbol->language == language_objc
505 || gsymbol->language == language_fortran)
507 symbol_set_demangled_name (gsymbol, NULL, NULL);
509 else if (gsymbol->language == language_cplus)
510 gsymbol->language_specific.cplus_specific = NULL;
513 memset (&gsymbol->language_specific, 0,
514 sizeof (gsymbol->language_specific));
518 /* Functions to initialize a symbol's mangled name. */
520 /* Objects of this type are stored in the demangled name hash table. */
521 struct demangled_name_entry
527 /* Hash function for the demangled name hash. */
530 hash_demangled_name_entry (const void *data)
532 const struct demangled_name_entry *e = data;
534 return htab_hash_string (e->mangled);
537 /* Equality function for the demangled name hash. */
540 eq_demangled_name_entry (const void *a, const void *b)
542 const struct demangled_name_entry *da = a;
543 const struct demangled_name_entry *db = b;
545 return strcmp (da->mangled, db->mangled) == 0;
548 /* Create the hash table used for demangled names. Each hash entry is
549 a pair of strings; one for the mangled name and one for the demangled
550 name. The entry is hashed via just the mangled name. */
553 create_demangled_names_hash (struct objfile *objfile)
555 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
556 The hash table code will round this up to the next prime number.
557 Choosing a much larger table size wastes memory, and saves only about
558 1% in symbol reading. */
560 objfile->demangled_names_hash = htab_create_alloc
561 (256, hash_demangled_name_entry, eq_demangled_name_entry,
562 NULL, xcalloc, xfree);
565 /* Try to determine the demangled name for a symbol, based on the
566 language of that symbol. If the language is set to language_auto,
567 it will attempt to find any demangling algorithm that works and
568 then set the language appropriately. The returned name is allocated
569 by the demangler and should be xfree'd. */
572 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 char *demangled = NULL;
577 if (gsymbol->language == language_unknown)
578 gsymbol->language = language_auto;
580 if (gsymbol->language == language_objc
581 || gsymbol->language == language_auto)
584 objc_demangle (mangled, 0);
585 if (demangled != NULL)
587 gsymbol->language = language_objc;
591 if (gsymbol->language == language_cplus
592 || gsymbol->language == language_auto)
595 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
596 if (demangled != NULL)
598 gsymbol->language = language_cplus;
602 if (gsymbol->language == language_java)
605 cplus_demangle (mangled,
606 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
607 if (demangled != NULL)
609 gsymbol->language = language_java;
613 if (gsymbol->language == language_d
614 || gsymbol->language == language_auto)
616 demangled = d_demangle(mangled, 0);
617 if (demangled != NULL)
619 gsymbol->language = language_d;
623 /* We could support `gsymbol->language == language_fortran' here to provide
624 module namespaces also for inferiors with only minimal symbol table (ELF
625 symbols). Just the mangling standard is not standardized across compilers
626 and there is no DW_AT_producer available for inferiors with only the ELF
627 symbols to check the mangling kind. */
631 /* Set both the mangled and demangled (if any) names for GSYMBOL based
632 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
633 objfile's obstack; but if COPY_NAME is 0 and if NAME is
634 NUL-terminated, then this function assumes that NAME is already
635 correctly saved (either permanently or with a lifetime tied to the
636 objfile), and it will not be copied.
638 The hash table corresponding to OBJFILE is used, and the memory
639 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
640 so the pointer can be discarded after calling this function. */
642 /* We have to be careful when dealing with Java names: when we run
643 into a Java minimal symbol, we don't know it's a Java symbol, so it
644 gets demangled as a C++ name. This is unfortunate, but there's not
645 much we can do about it: but when demangling partial symbols and
646 regular symbols, we'd better not reuse the wrong demangled name.
647 (See PR gdb/1039.) We solve this by putting a distinctive prefix
648 on Java names when storing them in the hash table. */
650 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
651 don't mind the Java prefix so much: different languages have
652 different demangling requirements, so it's only natural that we
653 need to keep language data around in our demangling cache. But
654 it's not good that the minimal symbol has the wrong demangled name.
655 Unfortunately, I can't think of any easy solution to that
658 #define JAVA_PREFIX "##JAVA$$"
659 #define JAVA_PREFIX_LEN 8
662 symbol_set_names (struct general_symbol_info *gsymbol,
663 const char *linkage_name, int len, int copy_name,
664 struct objfile *objfile)
666 struct demangled_name_entry **slot;
667 /* A 0-terminated copy of the linkage name. */
668 const char *linkage_name_copy;
669 /* A copy of the linkage name that might have a special Java prefix
670 added to it, for use when looking names up in the hash table. */
671 const char *lookup_name;
672 /* The length of lookup_name. */
674 struct demangled_name_entry entry;
676 if (gsymbol->language == language_ada)
678 /* In Ada, we do the symbol lookups using the mangled name, so
679 we can save some space by not storing the demangled name.
681 As a side note, we have also observed some overlap between
682 the C++ mangling and Ada mangling, similarly to what has
683 been observed with Java. Because we don't store the demangled
684 name with the symbol, we don't need to use the same trick
687 gsymbol->name = linkage_name;
690 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
692 memcpy (name, linkage_name, len);
694 gsymbol->name = name;
696 symbol_set_demangled_name (gsymbol, NULL, NULL);
701 if (objfile->demangled_names_hash == NULL)
702 create_demangled_names_hash (objfile);
704 /* The stabs reader generally provides names that are not
705 NUL-terminated; most of the other readers don't do this, so we
706 can just use the given copy, unless we're in the Java case. */
707 if (gsymbol->language == language_java)
711 lookup_len = len + JAVA_PREFIX_LEN;
712 alloc_name = alloca (lookup_len + 1);
713 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
714 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
715 alloc_name[lookup_len] = '\0';
717 lookup_name = alloc_name;
718 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
720 else if (linkage_name[len] != '\0')
725 alloc_name = alloca (lookup_len + 1);
726 memcpy (alloc_name, linkage_name, len);
727 alloc_name[lookup_len] = '\0';
729 lookup_name = alloc_name;
730 linkage_name_copy = alloc_name;
735 lookup_name = linkage_name;
736 linkage_name_copy = linkage_name;
739 entry.mangled = (char *) lookup_name;
740 slot = ((struct demangled_name_entry **)
741 htab_find_slot (objfile->demangled_names_hash,
744 /* If this name is not in the hash table, add it. */
747 char *demangled_name = symbol_find_demangled_name (gsymbol,
749 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
751 /* Suppose we have demangled_name==NULL, copy_name==0, and
752 lookup_name==linkage_name. In this case, we already have the
753 mangled name saved, and we don't have a demangled name. So,
754 you might think we could save a little space by not recording
755 this in the hash table at all.
757 It turns out that it is actually important to still save such
758 an entry in the hash table, because storing this name gives
759 us better bcache hit rates for partial symbols. */
760 if (!copy_name && lookup_name == linkage_name)
762 *slot = obstack_alloc (&objfile->objfile_obstack,
763 offsetof (struct demangled_name_entry,
765 + demangled_len + 1);
766 (*slot)->mangled = (char *) lookup_name;
770 /* If we must copy the mangled name, put it directly after
771 the demangled name so we can have a single
773 *slot = obstack_alloc (&objfile->objfile_obstack,
774 offsetof (struct demangled_name_entry,
776 + lookup_len + demangled_len + 2);
777 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
778 strcpy ((*slot)->mangled, lookup_name);
781 if (demangled_name != NULL)
783 strcpy ((*slot)->demangled, demangled_name);
784 xfree (demangled_name);
787 (*slot)->demangled[0] = '\0';
790 gsymbol->name = (*slot)->mangled + lookup_len - len;
791 if ((*slot)->demangled[0] != '\0')
792 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
794 symbol_set_demangled_name (gsymbol, NULL, objfile);
797 /* Return the source code name of a symbol. In languages where
798 demangling is necessary, this is the demangled name. */
801 symbol_natural_name (const struct general_symbol_info *gsymbol)
803 switch (gsymbol->language)
809 case language_fortran:
810 if (symbol_get_demangled_name (gsymbol) != NULL)
811 return symbol_get_demangled_name (gsymbol);
814 if (symbol_get_demangled_name (gsymbol) != NULL)
815 return symbol_get_demangled_name (gsymbol);
817 return ada_decode_symbol (gsymbol);
822 return gsymbol->name;
825 /* Return the demangled name for a symbol based on the language for
826 that symbol. If no demangled name exists, return NULL. */
829 symbol_demangled_name (const struct general_symbol_info *gsymbol)
831 switch (gsymbol->language)
837 case language_fortran:
838 if (symbol_get_demangled_name (gsymbol) != NULL)
839 return symbol_get_demangled_name (gsymbol);
842 if (symbol_get_demangled_name (gsymbol) != NULL)
843 return symbol_get_demangled_name (gsymbol);
845 return ada_decode_symbol (gsymbol);
853 /* Return the search name of a symbol---generally the demangled or
854 linkage name of the symbol, depending on how it will be searched for.
855 If there is no distinct demangled name, then returns the same value
856 (same pointer) as SYMBOL_LINKAGE_NAME. */
859 symbol_search_name (const struct general_symbol_info *gsymbol)
861 if (gsymbol->language == language_ada)
862 return gsymbol->name;
864 return symbol_natural_name (gsymbol);
867 /* Initialize the structure fields to zero values. */
870 init_sal (struct symtab_and_line *sal)
878 sal->explicit_pc = 0;
879 sal->explicit_line = 0;
883 /* Return 1 if the two sections are the same, or if they could
884 plausibly be copies of each other, one in an original object
885 file and another in a separated debug file. */
888 matching_obj_sections (struct obj_section *obj_first,
889 struct obj_section *obj_second)
891 asection *first = obj_first? obj_first->the_bfd_section : NULL;
892 asection *second = obj_second? obj_second->the_bfd_section : NULL;
895 /* If they're the same section, then they match. */
899 /* If either is NULL, give up. */
900 if (first == NULL || second == NULL)
903 /* This doesn't apply to absolute symbols. */
904 if (first->owner == NULL || second->owner == NULL)
907 /* If they're in the same object file, they must be different sections. */
908 if (first->owner == second->owner)
911 /* Check whether the two sections are potentially corresponding. They must
912 have the same size, address, and name. We can't compare section indexes,
913 which would be more reliable, because some sections may have been
915 if (bfd_get_section_size (first) != bfd_get_section_size (second))
918 /* In-memory addresses may start at a different offset, relativize them. */
919 if (bfd_get_section_vma (first->owner, first)
920 - bfd_get_start_address (first->owner)
921 != bfd_get_section_vma (second->owner, second)
922 - bfd_get_start_address (second->owner))
925 if (bfd_get_section_name (first->owner, first) == NULL
926 || bfd_get_section_name (second->owner, second) == NULL
927 || strcmp (bfd_get_section_name (first->owner, first),
928 bfd_get_section_name (second->owner, second)) != 0)
931 /* Otherwise check that they are in corresponding objfiles. */
934 if (obj->obfd == first->owner)
936 gdb_assert (obj != NULL);
938 if (obj->separate_debug_objfile != NULL
939 && obj->separate_debug_objfile->obfd == second->owner)
941 if (obj->separate_debug_objfile_backlink != NULL
942 && obj->separate_debug_objfile_backlink->obfd == second->owner)
949 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
951 struct objfile *objfile;
952 struct minimal_symbol *msymbol;
954 /* If we know that this is not a text address, return failure. This is
955 necessary because we loop based on texthigh and textlow, which do
956 not include the data ranges. */
957 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
959 && (MSYMBOL_TYPE (msymbol) == mst_data
960 || MSYMBOL_TYPE (msymbol) == mst_bss
961 || MSYMBOL_TYPE (msymbol) == mst_abs
962 || MSYMBOL_TYPE (msymbol) == mst_file_data
963 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
966 ALL_OBJFILES (objfile)
968 struct symtab *result = NULL;
971 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
980 /* Debug symbols usually don't have section information. We need to dig that
981 out of the minimal symbols and stash that in the debug symbol. */
984 fixup_section (struct general_symbol_info *ginfo,
985 CORE_ADDR addr, struct objfile *objfile)
987 struct minimal_symbol *msym;
989 /* First, check whether a minimal symbol with the same name exists
990 and points to the same address. The address check is required
991 e.g. on PowerPC64, where the minimal symbol for a function will
992 point to the function descriptor, while the debug symbol will
993 point to the actual function code. */
994 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
997 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
998 ginfo->section = SYMBOL_SECTION (msym);
1002 /* Static, function-local variables do appear in the linker
1003 (minimal) symbols, but are frequently given names that won't
1004 be found via lookup_minimal_symbol(). E.g., it has been
1005 observed in frv-uclinux (ELF) executables that a static,
1006 function-local variable named "foo" might appear in the
1007 linker symbols as "foo.6" or "foo.3". Thus, there is no
1008 point in attempting to extend the lookup-by-name mechanism to
1009 handle this case due to the fact that there can be multiple
1012 So, instead, search the section table when lookup by name has
1013 failed. The ``addr'' and ``endaddr'' fields may have already
1014 been relocated. If so, the relocation offset (i.e. the
1015 ANOFFSET value) needs to be subtracted from these values when
1016 performing the comparison. We unconditionally subtract it,
1017 because, when no relocation has been performed, the ANOFFSET
1018 value will simply be zero.
1020 The address of the symbol whose section we're fixing up HAS
1021 NOT BEEN adjusted (relocated) yet. It can't have been since
1022 the section isn't yet known and knowing the section is
1023 necessary in order to add the correct relocation value. In
1024 other words, we wouldn't even be in this function (attempting
1025 to compute the section) if it were already known.
1027 Note that it is possible to search the minimal symbols
1028 (subtracting the relocation value if necessary) to find the
1029 matching minimal symbol, but this is overkill and much less
1030 efficient. It is not necessary to find the matching minimal
1031 symbol, only its section.
1033 Note that this technique (of doing a section table search)
1034 can fail when unrelocated section addresses overlap. For
1035 this reason, we still attempt a lookup by name prior to doing
1036 a search of the section table. */
1038 struct obj_section *s;
1040 ALL_OBJFILE_OSECTIONS (objfile, s)
1042 int idx = s->the_bfd_section->index;
1043 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1045 if (obj_section_addr (s) - offset <= addr
1046 && addr < obj_section_endaddr (s) - offset)
1048 ginfo->obj_section = s;
1049 ginfo->section = idx;
1057 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1064 if (SYMBOL_OBJ_SECTION (sym))
1067 /* We either have an OBJFILE, or we can get at it from the sym's
1068 symtab. Anything else is a bug. */
1069 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1071 if (objfile == NULL)
1072 objfile = SYMBOL_SYMTAB (sym)->objfile;
1074 /* We should have an objfile by now. */
1075 gdb_assert (objfile);
1077 switch (SYMBOL_CLASS (sym))
1081 addr = SYMBOL_VALUE_ADDRESS (sym);
1084 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1088 /* Nothing else will be listed in the minsyms -- no use looking
1093 fixup_section (&sym->ginfo, addr, objfile);
1098 /* Compute the demangled form of NAME as used by the various symbol
1099 lookup functions. The result is stored in *RESULT_NAME. Returns a
1100 cleanup which can be used to clean up the result.
1102 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1103 Normally, Ada symbol lookups are performed using the encoded name
1104 rather than the demangled name, and so it might seem to make sense
1105 for this function to return an encoded version of NAME.
1106 Unfortunately, we cannot do this, because this function is used in
1107 circumstances where it is not appropriate to try to encode NAME.
1108 For instance, when displaying the frame info, we demangle the name
1109 of each parameter, and then perform a symbol lookup inside our
1110 function using that demangled name. In Ada, certain functions
1111 have internally-generated parameters whose name contain uppercase
1112 characters. Encoding those name would result in those uppercase
1113 characters to become lowercase, and thus cause the symbol lookup
1117 demangle_for_lookup (const char *name, enum language lang,
1118 const char **result_name)
1120 char *demangled_name = NULL;
1121 const char *modified_name = NULL;
1122 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1124 modified_name = name;
1126 /* If we are using C++, D, or Java, demangle the name before doing a
1127 lookup, so we can always binary search. */
1128 if (lang == language_cplus)
1130 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1133 modified_name = demangled_name;
1134 make_cleanup (xfree, demangled_name);
1138 /* If we were given a non-mangled name, canonicalize it
1139 according to the language (so far only for C++). */
1140 demangled_name = cp_canonicalize_string (name);
1143 modified_name = demangled_name;
1144 make_cleanup (xfree, demangled_name);
1148 else if (lang == language_java)
1150 demangled_name = cplus_demangle (name,
1151 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1154 modified_name = demangled_name;
1155 make_cleanup (xfree, demangled_name);
1158 else if (lang == language_d)
1160 demangled_name = d_demangle (name, 0);
1163 modified_name = demangled_name;
1164 make_cleanup (xfree, demangled_name);
1168 *result_name = modified_name;
1172 /* Find the definition for a specified symbol name NAME
1173 in domain DOMAIN, visible from lexical block BLOCK.
1174 Returns the struct symbol pointer, or zero if no symbol is found.
1175 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1176 NAME is a field of the current implied argument `this'. If so set
1177 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1178 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1179 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1181 /* This function (or rather its subordinates) have a bunch of loops and
1182 it would seem to be attractive to put in some QUIT's (though I'm not really
1183 sure whether it can run long enough to be really important). But there
1184 are a few calls for which it would appear to be bad news to quit
1185 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1186 that there is C++ code below which can error(), but that probably
1187 doesn't affect these calls since they are looking for a known
1188 variable and thus can probably assume it will never hit the C++
1192 lookup_symbol_in_language (const char *name, const struct block *block,
1193 const domain_enum domain, enum language lang,
1194 int *is_a_field_of_this)
1196 const char *modified_name;
1197 struct symbol *returnval;
1198 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1200 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1201 is_a_field_of_this);
1202 do_cleanups (cleanup);
1207 /* Behave like lookup_symbol_in_language, but performed with the
1208 current language. */
1211 lookup_symbol (const char *name, const struct block *block,
1212 domain_enum domain, int *is_a_field_of_this)
1214 return lookup_symbol_in_language (name, block, domain,
1215 current_language->la_language,
1216 is_a_field_of_this);
1219 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1220 found, or NULL if not found. */
1223 lookup_language_this (const struct language_defn *lang,
1224 const struct block *block)
1226 if (lang->la_name_of_this == NULL || block == NULL)
1233 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1236 block_found = block;
1239 if (BLOCK_FUNCTION (block))
1241 block = BLOCK_SUPERBLOCK (block);
1247 /* Behave like lookup_symbol except that NAME is the natural name
1248 (e.g., demangled name) of the symbol that we're looking for. */
1250 static struct symbol *
1251 lookup_symbol_aux (const char *name, const struct block *block,
1252 const domain_enum domain, enum language language,
1253 int *is_a_field_of_this)
1256 const struct language_defn *langdef;
1258 /* Make sure we do something sensible with is_a_field_of_this, since
1259 the callers that set this parameter to some non-null value will
1260 certainly use it later and expect it to be either 0 or 1.
1261 If we don't set it, the contents of is_a_field_of_this are
1263 if (is_a_field_of_this != NULL)
1264 *is_a_field_of_this = 0;
1266 /* Search specified block and its superiors. Don't search
1267 STATIC_BLOCK or GLOBAL_BLOCK. */
1269 sym = lookup_symbol_aux_local (name, block, domain, language);
1273 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1274 check to see if NAME is a field of `this'. */
1276 langdef = language_def (language);
1278 if (is_a_field_of_this != NULL)
1280 struct symbol *sym = lookup_language_this (langdef, block);
1284 struct type *t = sym->type;
1286 /* I'm not really sure that type of this can ever
1287 be typedefed; just be safe. */
1289 if (TYPE_CODE (t) == TYPE_CODE_PTR
1290 || TYPE_CODE (t) == TYPE_CODE_REF)
1291 t = TYPE_TARGET_TYPE (t);
1293 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1294 && TYPE_CODE (t) != TYPE_CODE_UNION)
1295 error (_("Internal error: `%s' is not an aggregate"),
1296 langdef->la_name_of_this);
1298 if (check_field (t, name))
1300 *is_a_field_of_this = 1;
1306 /* Now do whatever is appropriate for LANGUAGE to look
1307 up static and global variables. */
1309 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1313 /* Now search all static file-level symbols. Not strictly correct,
1314 but more useful than an error. */
1316 return lookup_static_symbol_aux (name, domain);
1319 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1320 first, then check the psymtabs. If a psymtab indicates the existence of the
1321 desired name as a file-level static, then do psymtab-to-symtab conversion on
1322 the fly and return the found symbol. */
1325 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1327 struct objfile *objfile;
1330 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1334 ALL_OBJFILES (objfile)
1336 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1344 /* Check to see if the symbol is defined in BLOCK or its superiors.
1345 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1347 static struct symbol *
1348 lookup_symbol_aux_local (const char *name, const struct block *block,
1349 const domain_enum domain,
1350 enum language language)
1353 const struct block *static_block = block_static_block (block);
1354 const char *scope = block_scope (block);
1356 /* Check if either no block is specified or it's a global block. */
1358 if (static_block == NULL)
1361 while (block != static_block)
1363 sym = lookup_symbol_aux_block (name, block, domain);
1367 if (language == language_cplus || language == language_fortran)
1369 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1375 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1377 block = BLOCK_SUPERBLOCK (block);
1380 /* We've reached the edge of the function without finding a result. */
1385 /* Look up OBJFILE to BLOCK. */
1388 lookup_objfile_from_block (const struct block *block)
1390 struct objfile *obj;
1396 block = block_global_block (block);
1397 /* Go through SYMTABS. */
1398 ALL_SYMTABS (obj, s)
1399 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1401 if (obj->separate_debug_objfile_backlink)
1402 obj = obj->separate_debug_objfile_backlink;
1410 /* Look up a symbol in a block; if found, fixup the symbol, and set
1411 block_found appropriately. */
1414 lookup_symbol_aux_block (const char *name, const struct block *block,
1415 const domain_enum domain)
1419 sym = lookup_block_symbol (block, name, domain);
1422 block_found = block;
1423 return fixup_symbol_section (sym, NULL);
1429 /* Check all global symbols in OBJFILE in symtabs and
1433 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1435 const domain_enum domain)
1437 const struct objfile *objfile;
1439 struct blockvector *bv;
1440 const struct block *block;
1443 for (objfile = main_objfile;
1445 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1447 /* Go through symtabs. */
1448 ALL_OBJFILE_SYMTABS (objfile, s)
1450 bv = BLOCKVECTOR (s);
1451 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1452 sym = lookup_block_symbol (block, name, domain);
1455 block_found = block;
1456 return fixup_symbol_section (sym, (struct objfile *)objfile);
1460 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1469 /* Check to see if the symbol is defined in one of the symtabs.
1470 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1471 depending on whether or not we want to search global symbols or
1474 static struct symbol *
1475 lookup_symbol_aux_symtabs (int block_index, const char *name,
1476 const domain_enum domain)
1479 struct objfile *objfile;
1480 struct blockvector *bv;
1481 const struct block *block;
1484 ALL_OBJFILES (objfile)
1487 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1491 ALL_OBJFILE_SYMTABS (objfile, s)
1494 bv = BLOCKVECTOR (s);
1495 block = BLOCKVECTOR_BLOCK (bv, block_index);
1496 sym = lookup_block_symbol (block, name, domain);
1499 block_found = block;
1500 return fixup_symbol_section (sym, objfile);
1508 /* A helper function for lookup_symbol_aux that interfaces with the
1509 "quick" symbol table functions. */
1511 static struct symbol *
1512 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1513 const char *name, const domain_enum domain)
1515 struct symtab *symtab;
1516 struct blockvector *bv;
1517 const struct block *block;
1522 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1526 bv = BLOCKVECTOR (symtab);
1527 block = BLOCKVECTOR_BLOCK (bv, kind);
1528 sym = lookup_block_symbol (block, name, domain);
1531 /* This shouldn't be necessary, but as a last resort try
1532 looking in the statics even though the psymtab claimed
1533 the symbol was global, or vice-versa. It's possible
1534 that the psymtab gets it wrong in some cases. */
1536 /* FIXME: carlton/2002-09-30: Should we really do that?
1537 If that happens, isn't it likely to be a GDB error, in
1538 which case we should fix the GDB error rather than
1539 silently dealing with it here? So I'd vote for
1540 removing the check for the symbol in the other
1542 block = BLOCKVECTOR_BLOCK (bv,
1543 kind == GLOBAL_BLOCK ?
1544 STATIC_BLOCK : GLOBAL_BLOCK);
1545 sym = lookup_block_symbol (block, name, domain);
1548 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1549 %s may be an inlined function, or may be a template function\n\
1550 (if a template, try specifying an instantiation: %s<type>)."),
1551 kind == GLOBAL_BLOCK ? "global" : "static",
1552 name, symtab->filename, name, name);
1554 return fixup_symbol_section (sym, objfile);
1557 /* A default version of lookup_symbol_nonlocal for use by languages
1558 that can't think of anything better to do. This implements the C
1562 basic_lookup_symbol_nonlocal (const char *name,
1563 const struct block *block,
1564 const domain_enum domain)
1568 /* NOTE: carlton/2003-05-19: The comments below were written when
1569 this (or what turned into this) was part of lookup_symbol_aux;
1570 I'm much less worried about these questions now, since these
1571 decisions have turned out well, but I leave these comments here
1574 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1575 not it would be appropriate to search the current global block
1576 here as well. (That's what this code used to do before the
1577 is_a_field_of_this check was moved up.) On the one hand, it's
1578 redundant with the lookup_symbol_aux_symtabs search that happens
1579 next. On the other hand, if decode_line_1 is passed an argument
1580 like filename:var, then the user presumably wants 'var' to be
1581 searched for in filename. On the third hand, there shouldn't be
1582 multiple global variables all of which are named 'var', and it's
1583 not like decode_line_1 has ever restricted its search to only
1584 global variables in a single filename. All in all, only
1585 searching the static block here seems best: it's correct and it's
1588 /* NOTE: carlton/2002-12-05: There's also a possible performance
1589 issue here: if you usually search for global symbols in the
1590 current file, then it would be slightly better to search the
1591 current global block before searching all the symtabs. But there
1592 are other factors that have a much greater effect on performance
1593 than that one, so I don't think we should worry about that for
1596 sym = lookup_symbol_static (name, block, domain);
1600 return lookup_symbol_global (name, block, domain);
1603 /* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block. */
1607 lookup_symbol_static (const char *name,
1608 const struct block *block,
1609 const domain_enum domain)
1611 const struct block *static_block = block_static_block (block);
1613 if (static_block != NULL)
1614 return lookup_symbol_aux_block (name, static_block, domain);
1619 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1623 lookup_symbol_global (const char *name,
1624 const struct block *block,
1625 const domain_enum domain)
1627 struct symbol *sym = NULL;
1628 struct objfile *objfile = NULL;
1630 /* Call library-specific lookup procedure. */
1631 objfile = lookup_objfile_from_block (block);
1632 if (objfile != NULL)
1633 sym = solib_global_lookup (objfile, name, domain);
1637 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1641 ALL_OBJFILES (objfile)
1643 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1652 symbol_matches_domain (enum language symbol_language,
1653 domain_enum symbol_domain,
1656 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1657 A Java class declaration also defines a typedef for the class.
1658 Similarly, any Ada type declaration implicitly defines a typedef. */
1659 if (symbol_language == language_cplus
1660 || symbol_language == language_d
1661 || symbol_language == language_java
1662 || symbol_language == language_ada)
1664 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1665 && symbol_domain == STRUCT_DOMAIN)
1668 /* For all other languages, strict match is required. */
1669 return (symbol_domain == domain);
1672 /* Look up a type named NAME in the struct_domain. The type returned
1673 must not be opaque -- i.e., must have at least one field
1677 lookup_transparent_type (const char *name)
1679 return current_language->la_lookup_transparent_type (name);
1682 /* A helper for basic_lookup_transparent_type that interfaces with the
1683 "quick" symbol table functions. */
1685 static struct type *
1686 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1689 struct symtab *symtab;
1690 struct blockvector *bv;
1691 struct block *block;
1696 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1700 bv = BLOCKVECTOR (symtab);
1701 block = BLOCKVECTOR_BLOCK (bv, kind);
1702 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1705 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1707 /* This shouldn't be necessary, but as a last resort
1708 * try looking in the 'other kind' even though the psymtab
1709 * claimed the symbol was one thing. It's possible that
1710 * the psymtab gets it wrong in some cases.
1712 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1713 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1715 /* FIXME; error is wrong in one case. */
1717 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1718 %s may be an inlined function, or may be a template function\n\
1719 (if a template, try specifying an instantiation: %s<type>)."),
1720 name, symtab->filename, name, name);
1722 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1723 return SYMBOL_TYPE (sym);
1728 /* The standard implementation of lookup_transparent_type. This code
1729 was modeled on lookup_symbol -- the parts not relevant to looking
1730 up types were just left out. In particular it's assumed here that
1731 types are available in struct_domain and only at file-static or
1735 basic_lookup_transparent_type (const char *name)
1738 struct symtab *s = NULL;
1739 struct blockvector *bv;
1740 struct objfile *objfile;
1741 struct block *block;
1744 /* Now search all the global symbols. Do the symtab's first, then
1745 check the psymtab's. If a psymtab indicates the existence
1746 of the desired name as a global, then do psymtab-to-symtab
1747 conversion on the fly and return the found symbol. */
1749 ALL_OBJFILES (objfile)
1752 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1754 name, STRUCT_DOMAIN);
1756 ALL_OBJFILE_SYMTABS (objfile, s)
1759 bv = BLOCKVECTOR (s);
1760 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1761 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1762 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1764 return SYMBOL_TYPE (sym);
1769 ALL_OBJFILES (objfile)
1771 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1776 /* Now search the static file-level symbols.
1777 Not strictly correct, but more useful than an error.
1778 Do the symtab's first, then
1779 check the psymtab's. If a psymtab indicates the existence
1780 of the desired name as a file-level static, then do psymtab-to-symtab
1781 conversion on the fly and return the found symbol. */
1783 ALL_OBJFILES (objfile)
1786 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1787 name, STRUCT_DOMAIN);
1789 ALL_OBJFILE_SYMTABS (objfile, s)
1791 bv = BLOCKVECTOR (s);
1792 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1793 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1794 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1796 return SYMBOL_TYPE (sym);
1801 ALL_OBJFILES (objfile)
1803 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1808 return (struct type *) 0;
1811 /* Find the name of the file containing main(). */
1812 /* FIXME: What about languages without main() or specially linked
1813 executables that have no main() ? */
1816 find_main_filename (void)
1818 struct objfile *objfile;
1819 char *name = main_name ();
1821 ALL_OBJFILES (objfile)
1827 result = objfile->sf->qf->find_symbol_file (objfile, name);
1834 /* Search BLOCK for symbol NAME in DOMAIN.
1836 Note that if NAME is the demangled form of a C++ symbol, we will fail
1837 to find a match during the binary search of the non-encoded names, but
1838 for now we don't worry about the slight inefficiency of looking for
1839 a match we'll never find, since it will go pretty quick. Once the
1840 binary search terminates, we drop through and do a straight linear
1841 search on the symbols. Each symbol which is marked as being a ObjC/C++
1842 symbol (language_cplus or language_objc set) has both the encoded and
1843 non-encoded names tested for a match. */
1846 lookup_block_symbol (const struct block *block, const char *name,
1847 const domain_enum domain)
1849 struct dict_iterator iter;
1852 if (!BLOCK_FUNCTION (block))
1854 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1856 sym = dict_iter_name_next (name, &iter))
1858 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1859 SYMBOL_DOMAIN (sym), domain))
1866 /* Note that parameter symbols do not always show up last in the
1867 list; this loop makes sure to take anything else other than
1868 parameter symbols first; it only uses parameter symbols as a
1869 last resort. Note that this only takes up extra computation
1872 struct symbol *sym_found = NULL;
1874 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1876 sym = dict_iter_name_next (name, &iter))
1878 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1879 SYMBOL_DOMAIN (sym), domain))
1882 if (!SYMBOL_IS_ARGUMENT (sym))
1888 return (sym_found); /* Will be NULL if not found. */
1892 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1895 For each symbol that matches, CALLBACK is called. The symbol and
1896 DATA are passed to the callback.
1898 If CALLBACK returns zero, the iteration ends. Otherwise, the
1899 search continues. This function iterates upward through blocks.
1900 When the outermost block has been finished, the function
1904 iterate_over_symbols (const struct block *block, const char *name,
1905 const domain_enum domain,
1906 symbol_found_callback_ftype *callback,
1911 struct dict_iterator iter;
1914 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1916 sym = dict_iter_name_next (name, &iter))
1918 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1919 SYMBOL_DOMAIN (sym), domain))
1921 if (!callback (sym, data))
1926 block = BLOCK_SUPERBLOCK (block);
1930 /* Find the symtab associated with PC and SECTION. Look through the
1931 psymtabs and read in another symtab if necessary. */
1934 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1937 struct blockvector *bv;
1938 struct symtab *s = NULL;
1939 struct symtab *best_s = NULL;
1940 struct objfile *objfile;
1941 struct program_space *pspace;
1942 CORE_ADDR distance = 0;
1943 struct minimal_symbol *msymbol;
1945 pspace = current_program_space;
1947 /* If we know that this is not a text address, return failure. This is
1948 necessary because we loop based on the block's high and low code
1949 addresses, which do not include the data ranges, and because
1950 we call find_pc_sect_psymtab which has a similar restriction based
1951 on the partial_symtab's texthigh and textlow. */
1952 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1954 && (MSYMBOL_TYPE (msymbol) == mst_data
1955 || MSYMBOL_TYPE (msymbol) == mst_bss
1956 || MSYMBOL_TYPE (msymbol) == mst_abs
1957 || MSYMBOL_TYPE (msymbol) == mst_file_data
1958 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1961 /* Search all symtabs for the one whose file contains our address, and which
1962 is the smallest of all the ones containing the address. This is designed
1963 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1964 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1965 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1967 This happens for native ecoff format, where code from included files
1968 gets its own symtab. The symtab for the included file should have
1969 been read in already via the dependency mechanism.
1970 It might be swifter to create several symtabs with the same name
1971 like xcoff does (I'm not sure).
1973 It also happens for objfiles that have their functions reordered.
1974 For these, the symtab we are looking for is not necessarily read in. */
1976 ALL_PRIMARY_SYMTABS (objfile, s)
1978 bv = BLOCKVECTOR (s);
1979 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1981 if (BLOCK_START (b) <= pc
1982 && BLOCK_END (b) > pc
1984 || BLOCK_END (b) - BLOCK_START (b) < distance))
1986 /* For an objfile that has its functions reordered,
1987 find_pc_psymtab will find the proper partial symbol table
1988 and we simply return its corresponding symtab. */
1989 /* In order to better support objfiles that contain both
1990 stabs and coff debugging info, we continue on if a psymtab
1992 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1994 struct symtab *result;
1997 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2006 struct dict_iterator iter;
2007 struct symbol *sym = NULL;
2009 ALL_BLOCK_SYMBOLS (b, iter, sym)
2011 fixup_symbol_section (sym, objfile);
2012 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2016 continue; /* No symbol in this symtab matches
2019 distance = BLOCK_END (b) - BLOCK_START (b);
2027 ALL_OBJFILES (objfile)
2029 struct symtab *result;
2033 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2044 /* Find the symtab associated with PC. Look through the psymtabs and read
2045 in another symtab if necessary. Backward compatibility, no section. */
2048 find_pc_symtab (CORE_ADDR pc)
2050 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2054 /* Find the source file and line number for a given PC value and SECTION.
2055 Return a structure containing a symtab pointer, a line number,
2056 and a pc range for the entire source line.
2057 The value's .pc field is NOT the specified pc.
2058 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2059 use the line that ends there. Otherwise, in that case, the line
2060 that begins there is used. */
2062 /* The big complication here is that a line may start in one file, and end just
2063 before the start of another file. This usually occurs when you #include
2064 code in the middle of a subroutine. To properly find the end of a line's PC
2065 range, we must search all symtabs associated with this compilation unit, and
2066 find the one whose first PC is closer than that of the next line in this
2069 /* If it's worth the effort, we could be using a binary search. */
2071 struct symtab_and_line
2072 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2075 struct linetable *l;
2078 struct linetable_entry *item;
2079 struct symtab_and_line val;
2080 struct blockvector *bv;
2081 struct minimal_symbol *msymbol;
2082 struct minimal_symbol *mfunsym;
2083 struct objfile *objfile;
2085 /* Info on best line seen so far, and where it starts, and its file. */
2087 struct linetable_entry *best = NULL;
2088 CORE_ADDR best_end = 0;
2089 struct symtab *best_symtab = 0;
2091 /* Store here the first line number
2092 of a file which contains the line at the smallest pc after PC.
2093 If we don't find a line whose range contains PC,
2094 we will use a line one less than this,
2095 with a range from the start of that file to the first line's pc. */
2096 struct linetable_entry *alt = NULL;
2097 struct symtab *alt_symtab = 0;
2099 /* Info on best line seen in this file. */
2101 struct linetable_entry *prev;
2103 /* If this pc is not from the current frame,
2104 it is the address of the end of a call instruction.
2105 Quite likely that is the start of the following statement.
2106 But what we want is the statement containing the instruction.
2107 Fudge the pc to make sure we get that. */
2109 init_sal (&val); /* initialize to zeroes */
2111 val.pspace = current_program_space;
2113 /* It's tempting to assume that, if we can't find debugging info for
2114 any function enclosing PC, that we shouldn't search for line
2115 number info, either. However, GAS can emit line number info for
2116 assembly files --- very helpful when debugging hand-written
2117 assembly code. In such a case, we'd have no debug info for the
2118 function, but we would have line info. */
2123 /* elz: added this because this function returned the wrong
2124 information if the pc belongs to a stub (import/export)
2125 to call a shlib function. This stub would be anywhere between
2126 two functions in the target, and the line info was erroneously
2127 taken to be the one of the line before the pc. */
2129 /* RT: Further explanation:
2131 * We have stubs (trampolines) inserted between procedures.
2133 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2134 * exists in the main image.
2136 * In the minimal symbol table, we have a bunch of symbols
2137 * sorted by start address. The stubs are marked as "trampoline",
2138 * the others appear as text. E.g.:
2140 * Minimal symbol table for main image
2141 * main: code for main (text symbol)
2142 * shr1: stub (trampoline symbol)
2143 * foo: code for foo (text symbol)
2145 * Minimal symbol table for "shr1" image:
2147 * shr1: code for shr1 (text symbol)
2150 * So the code below is trying to detect if we are in the stub
2151 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2152 * and if found, do the symbolization from the real-code address
2153 * rather than the stub address.
2155 * Assumptions being made about the minimal symbol table:
2156 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2157 * if we're really in the trampoline.s If we're beyond it (say
2158 * we're in "foo" in the above example), it'll have a closer
2159 * symbol (the "foo" text symbol for example) and will not
2160 * return the trampoline.
2161 * 2. lookup_minimal_symbol_text() will find a real text symbol
2162 * corresponding to the trampoline, and whose address will
2163 * be different than the trampoline address. I put in a sanity
2164 * check for the address being the same, to avoid an
2165 * infinite recursion.
2167 msymbol = lookup_minimal_symbol_by_pc (pc);
2168 if (msymbol != NULL)
2169 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2171 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2173 if (mfunsym == NULL)
2174 /* I eliminated this warning since it is coming out
2175 * in the following situation:
2176 * gdb shmain // test program with shared libraries
2177 * (gdb) break shr1 // function in shared lib
2178 * Warning: In stub for ...
2179 * In the above situation, the shared lib is not loaded yet,
2180 * so of course we can't find the real func/line info,
2181 * but the "break" still works, and the warning is annoying.
2182 * So I commented out the warning. RT */
2183 /* warning ("In stub for %s; unable to find real function/line info",
2184 SYMBOL_LINKAGE_NAME (msymbol)); */
2187 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2188 == SYMBOL_VALUE_ADDRESS (msymbol))
2189 /* Avoid infinite recursion */
2190 /* See above comment about why warning is commented out. */
2191 /* warning ("In stub for %s; unable to find real function/line info",
2192 SYMBOL_LINKAGE_NAME (msymbol)); */
2196 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2200 s = find_pc_sect_symtab (pc, section);
2203 /* If no symbol information, return previous pc. */
2210 bv = BLOCKVECTOR (s);
2211 objfile = s->objfile;
2213 /* Look at all the symtabs that share this blockvector.
2214 They all have the same apriori range, that we found was right;
2215 but they have different line tables. */
2217 ALL_OBJFILE_SYMTABS (objfile, s)
2219 if (BLOCKVECTOR (s) != bv)
2222 /* Find the best line in this symtab. */
2229 /* I think len can be zero if the symtab lacks line numbers
2230 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2231 I'm not sure which, and maybe it depends on the symbol
2237 item = l->item; /* Get first line info. */
2239 /* Is this file's first line closer than the first lines of other files?
2240 If so, record this file, and its first line, as best alternate. */
2241 if (item->pc > pc && (!alt || item->pc < alt->pc))
2247 for (i = 0; i < len; i++, item++)
2249 /* Leave prev pointing to the linetable entry for the last line
2250 that started at or before PC. */
2257 /* At this point, prev points at the line whose start addr is <= pc, and
2258 item points at the next line. If we ran off the end of the linetable
2259 (pc >= start of the last line), then prev == item. If pc < start of
2260 the first line, prev will not be set. */
2262 /* Is this file's best line closer than the best in the other files?
2263 If so, record this file, and its best line, as best so far. Don't
2264 save prev if it represents the end of a function (i.e. line number
2265 0) instead of a real line. */
2267 if (prev && prev->line && (!best || prev->pc > best->pc))
2272 /* Discard BEST_END if it's before the PC of the current BEST. */
2273 if (best_end <= best->pc)
2277 /* If another line (denoted by ITEM) is in the linetable and its
2278 PC is after BEST's PC, but before the current BEST_END, then
2279 use ITEM's PC as the new best_end. */
2280 if (best && i < len && item->pc > best->pc
2281 && (best_end == 0 || best_end > item->pc))
2282 best_end = item->pc;
2287 /* If we didn't find any line number info, just return zeros.
2288 We used to return alt->line - 1 here, but that could be
2289 anywhere; if we don't have line number info for this PC,
2290 don't make some up. */
2293 else if (best->line == 0)
2295 /* If our best fit is in a range of PC's for which no line
2296 number info is available (line number is zero) then we didn't
2297 find any valid line information. */
2302 val.symtab = best_symtab;
2303 val.line = best->line;
2305 if (best_end && (!alt || best_end < alt->pc))
2310 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2312 val.section = section;
2316 /* Backward compatibility (no section). */
2318 struct symtab_and_line
2319 find_pc_line (CORE_ADDR pc, int notcurrent)
2321 struct obj_section *section;
2323 section = find_pc_overlay (pc);
2324 if (pc_in_unmapped_range (pc, section))
2325 pc = overlay_mapped_address (pc, section);
2326 return find_pc_sect_line (pc, section, notcurrent);
2329 /* Find line number LINE in any symtab whose name is the same as
2332 If found, return the symtab that contains the linetable in which it was
2333 found, set *INDEX to the index in the linetable of the best entry
2334 found, and set *EXACT_MATCH nonzero if the value returned is an
2337 If not found, return NULL. */
2340 find_line_symtab (struct symtab *symtab, int line,
2341 int *index, int *exact_match)
2343 int exact = 0; /* Initialized here to avoid a compiler warning. */
2345 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2349 struct linetable *best_linetable;
2350 struct symtab *best_symtab;
2352 /* First try looking it up in the given symtab. */
2353 best_linetable = LINETABLE (symtab);
2354 best_symtab = symtab;
2355 best_index = find_line_common (best_linetable, line, &exact, 0);
2356 if (best_index < 0 || !exact)
2358 /* Didn't find an exact match. So we better keep looking for
2359 another symtab with the same name. In the case of xcoff,
2360 multiple csects for one source file (produced by IBM's FORTRAN
2361 compiler) produce multiple symtabs (this is unavoidable
2362 assuming csects can be at arbitrary places in memory and that
2363 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2365 /* BEST is the smallest linenumber > LINE so far seen,
2366 or 0 if none has been seen so far.
2367 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2370 struct objfile *objfile;
2373 if (best_index >= 0)
2374 best = best_linetable->item[best_index].line;
2378 ALL_OBJFILES (objfile)
2381 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2385 /* Get symbol full file name if possible. */
2386 symtab_to_fullname (symtab);
2388 ALL_SYMTABS (objfile, s)
2390 struct linetable *l;
2393 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2395 if (symtab->fullname != NULL
2396 && symtab_to_fullname (s) != NULL
2397 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2400 ind = find_line_common (l, line, &exact, 0);
2410 if (best == 0 || l->item[ind].line < best)
2412 best = l->item[ind].line;
2425 *index = best_index;
2427 *exact_match = exact;
2432 /* Given SYMTAB, returns all the PCs function in the symtab that
2433 exactly match LINE. Returns NULL if there are no exact matches,
2434 but updates BEST_ITEM in this case. */
2437 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2438 struct linetable_entry **best_item)
2441 struct symbol *previous_function = NULL;
2442 VEC (CORE_ADDR) *result = NULL;
2444 /* First, collect all the PCs that are at this line. */
2450 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2456 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2458 if (*best_item == NULL || item->line < (*best_item)->line)
2464 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2472 /* Set the PC value for a given source file and line number and return true.
2473 Returns zero for invalid line number (and sets the PC to 0).
2474 The source file is specified with a struct symtab. */
2477 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2479 struct linetable *l;
2486 symtab = find_line_symtab (symtab, line, &ind, NULL);
2489 l = LINETABLE (symtab);
2490 *pc = l->item[ind].pc;
2497 /* Find the range of pc values in a line.
2498 Store the starting pc of the line into *STARTPTR
2499 and the ending pc (start of next line) into *ENDPTR.
2500 Returns 1 to indicate success.
2501 Returns 0 if could not find the specified line. */
2504 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2507 CORE_ADDR startaddr;
2508 struct symtab_and_line found_sal;
2511 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2514 /* This whole function is based on address. For example, if line 10 has
2515 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2516 "info line *0x123" should say the line goes from 0x100 to 0x200
2517 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2518 This also insures that we never give a range like "starts at 0x134
2519 and ends at 0x12c". */
2521 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2522 if (found_sal.line != sal.line)
2524 /* The specified line (sal) has zero bytes. */
2525 *startptr = found_sal.pc;
2526 *endptr = found_sal.pc;
2530 *startptr = found_sal.pc;
2531 *endptr = found_sal.end;
2536 /* Given a line table and a line number, return the index into the line
2537 table for the pc of the nearest line whose number is >= the specified one.
2538 Return -1 if none is found. The value is >= 0 if it is an index.
2539 START is the index at which to start searching the line table.
2541 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2544 find_line_common (struct linetable *l, int lineno,
2545 int *exact_match, int start)
2550 /* BEST is the smallest linenumber > LINENO so far seen,
2551 or 0 if none has been seen so far.
2552 BEST_INDEX identifies the item for it. */
2554 int best_index = -1;
2565 for (i = start; i < len; i++)
2567 struct linetable_entry *item = &(l->item[i]);
2569 if (item->line == lineno)
2571 /* Return the first (lowest address) entry which matches. */
2576 if (item->line > lineno && (best == 0 || item->line < best))
2583 /* If we got here, we didn't get an exact match. */
2588 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2590 struct symtab_and_line sal;
2592 sal = find_pc_line (pc, 0);
2595 return sal.symtab != 0;
2598 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2599 address for that function that has an entry in SYMTAB's line info
2600 table. If such an entry cannot be found, return FUNC_ADDR
2604 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2606 CORE_ADDR func_start, func_end;
2607 struct linetable *l;
2610 /* Give up if this symbol has no lineinfo table. */
2611 l = LINETABLE (symtab);
2615 /* Get the range for the function's PC values, or give up if we
2616 cannot, for some reason. */
2617 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2620 /* Linetable entries are ordered by PC values, see the commentary in
2621 symtab.h where `struct linetable' is defined. Thus, the first
2622 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2623 address we are looking for. */
2624 for (i = 0; i < l->nitems; i++)
2626 struct linetable_entry *item = &(l->item[i]);
2628 /* Don't use line numbers of zero, they mark special entries in
2629 the table. See the commentary on symtab.h before the
2630 definition of struct linetable. */
2631 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2638 /* Given a function symbol SYM, find the symtab and line for the start
2640 If the argument FUNFIRSTLINE is nonzero, we want the first line
2641 of real code inside the function. */
2643 struct symtab_and_line
2644 find_function_start_sal (struct symbol *sym, int funfirstline)
2646 struct symtab_and_line sal;
2648 fixup_symbol_section (sym, NULL);
2649 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2650 SYMBOL_OBJ_SECTION (sym), 0);
2652 /* We always should have a line for the function start address.
2653 If we don't, something is odd. Create a plain SAL refering
2654 just the PC and hope that skip_prologue_sal (if requested)
2655 can find a line number for after the prologue. */
2656 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2659 sal.pspace = current_program_space;
2660 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2661 sal.section = SYMBOL_OBJ_SECTION (sym);
2665 skip_prologue_sal (&sal);
2670 /* Adjust SAL to the first instruction past the function prologue.
2671 If the PC was explicitly specified, the SAL is not changed.
2672 If the line number was explicitly specified, at most the SAL's PC
2673 is updated. If SAL is already past the prologue, then do nothing. */
2676 skip_prologue_sal (struct symtab_and_line *sal)
2679 struct symtab_and_line start_sal;
2680 struct cleanup *old_chain;
2681 CORE_ADDR pc, saved_pc;
2682 struct obj_section *section;
2684 struct objfile *objfile;
2685 struct gdbarch *gdbarch;
2686 struct block *b, *function_block;
2687 int force_skip, skip;
2689 /* Do not change the SAL is PC was specified explicitly. */
2690 if (sal->explicit_pc)
2693 old_chain = save_current_space_and_thread ();
2694 switch_to_program_space_and_thread (sal->pspace);
2696 sym = find_pc_sect_function (sal->pc, sal->section);
2699 fixup_symbol_section (sym, NULL);
2701 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2702 section = SYMBOL_OBJ_SECTION (sym);
2703 name = SYMBOL_LINKAGE_NAME (sym);
2704 objfile = SYMBOL_SYMTAB (sym)->objfile;
2708 struct minimal_symbol *msymbol
2709 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2711 if (msymbol == NULL)
2713 do_cleanups (old_chain);
2717 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2718 section = SYMBOL_OBJ_SECTION (msymbol);
2719 name = SYMBOL_LINKAGE_NAME (msymbol);
2720 objfile = msymbol_objfile (msymbol);
2723 gdbarch = get_objfile_arch (objfile);
2725 /* Process the prologue in two passes. In the first pass try to skip the
2726 prologue (SKIP is true) and verify there is a real need for it (indicated
2727 by FORCE_SKIP). If no such reason was found run a second pass where the
2728 prologue is not skipped (SKIP is false). */
2733 /* Be conservative - allow direct PC (without skipping prologue) only if we
2734 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2735 have to be set by the caller so we use SYM instead. */
2736 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2744 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2745 so that gdbarch_skip_prologue has something unique to work on. */
2746 if (section_is_overlay (section) && !section_is_mapped (section))
2747 pc = overlay_unmapped_address (pc, section);
2749 /* Skip "first line" of function (which is actually its prologue). */
2750 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2752 pc = gdbarch_skip_prologue (gdbarch, pc);
2754 /* For overlays, map pc back into its mapped VMA range. */
2755 pc = overlay_mapped_address (pc, section);
2757 /* Calculate line number. */
2758 start_sal = find_pc_sect_line (pc, section, 0);
2760 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2761 line is still part of the same function. */
2762 if (skip && start_sal.pc != pc
2763 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2764 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2765 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2766 == lookup_minimal_symbol_by_pc_section (pc, section))))
2768 /* First pc of next line */
2770 /* Recalculate the line number (might not be N+1). */
2771 start_sal = find_pc_sect_line (pc, section, 0);
2774 /* On targets with executable formats that don't have a concept of
2775 constructors (ELF with .init has, PE doesn't), gcc emits a call
2776 to `__main' in `main' between the prologue and before user
2778 if (gdbarch_skip_main_prologue_p (gdbarch)
2779 && name && strcmp (name, "main") == 0)
2781 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2782 /* Recalculate the line number (might not be N+1). */
2783 start_sal = find_pc_sect_line (pc, section, 0);
2787 while (!force_skip && skip--);
2789 /* If we still don't have a valid source line, try to find the first
2790 PC in the lineinfo table that belongs to the same function. This
2791 happens with COFF debug info, which does not seem to have an
2792 entry in lineinfo table for the code after the prologue which has
2793 no direct relation to source. For example, this was found to be
2794 the case with the DJGPP target using "gcc -gcoff" when the
2795 compiler inserted code after the prologue to make sure the stack
2797 if (!force_skip && sym && start_sal.symtab == NULL)
2799 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2800 /* Recalculate the line number. */
2801 start_sal = find_pc_sect_line (pc, section, 0);
2804 do_cleanups (old_chain);
2806 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2807 forward SAL to the end of the prologue. */
2812 sal->section = section;
2814 /* Unless the explicit_line flag was set, update the SAL line
2815 and symtab to correspond to the modified PC location. */
2816 if (sal->explicit_line)
2819 sal->symtab = start_sal.symtab;
2820 sal->line = start_sal.line;
2821 sal->end = start_sal.end;
2823 /* Check if we are now inside an inlined function. If we can,
2824 use the call site of the function instead. */
2825 b = block_for_pc_sect (sal->pc, sal->section);
2826 function_block = NULL;
2829 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2831 else if (BLOCK_FUNCTION (b) != NULL)
2833 b = BLOCK_SUPERBLOCK (b);
2835 if (function_block != NULL
2836 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2838 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2839 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2843 /* If P is of the form "operator[ \t]+..." where `...' is
2844 some legitimate operator text, return a pointer to the
2845 beginning of the substring of the operator text.
2846 Otherwise, return "". */
2849 operator_chars (char *p, char **end)
2852 if (strncmp (p, "operator", 8))
2856 /* Don't get faked out by `operator' being part of a longer
2858 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2861 /* Allow some whitespace between `operator' and the operator symbol. */
2862 while (*p == ' ' || *p == '\t')
2865 /* Recognize 'operator TYPENAME'. */
2867 if (isalpha (*p) || *p == '_' || *p == '$')
2871 while (isalnum (*q) || *q == '_' || *q == '$')
2880 case '\\': /* regexp quoting */
2883 if (p[2] == '=') /* 'operator\*=' */
2885 else /* 'operator\*' */
2889 else if (p[1] == '[')
2892 error (_("mismatched quoting on brackets, "
2893 "try 'operator\\[\\]'"));
2894 else if (p[2] == '\\' && p[3] == ']')
2896 *end = p + 4; /* 'operator\[\]' */
2900 error (_("nothing is allowed between '[' and ']'"));
2904 /* Gratuitous qoute: skip it and move on. */
2926 if (p[0] == '-' && p[1] == '>')
2928 /* Struct pointer member operator 'operator->'. */
2931 *end = p + 3; /* 'operator->*' */
2934 else if (p[2] == '\\')
2936 *end = p + 4; /* Hopefully 'operator->\*' */
2941 *end = p + 2; /* 'operator->' */
2945 if (p[1] == '=' || p[1] == p[0])
2956 error (_("`operator ()' must be specified "
2957 "without whitespace in `()'"));
2962 error (_("`operator ?:' must be specified "
2963 "without whitespace in `?:'"));
2968 error (_("`operator []' must be specified "
2969 "without whitespace in `[]'"));
2973 error (_("`operator %s' not supported"), p);
2982 /* If FILE is not already in the table of files, return zero;
2983 otherwise return non-zero. Optionally add FILE to the table if ADD
2984 is non-zero. If *FIRST is non-zero, forget the old table
2988 filename_seen (const char *file, int add, int *first)
2990 /* Table of files seen so far. */
2991 static const char **tab = NULL;
2992 /* Allocated size of tab in elements.
2993 Start with one 256-byte block (when using GNU malloc.c).
2994 24 is the malloc overhead when range checking is in effect. */
2995 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2996 /* Current size of tab in elements. */
2997 static int tab_cur_size;
3003 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3007 /* Is FILE in tab? */
3008 for (p = tab; p < tab + tab_cur_size; p++)
3009 if (filename_cmp (*p, file) == 0)
3012 /* No; maybe add it to tab. */
3015 if (tab_cur_size == tab_alloc_size)
3017 tab_alloc_size *= 2;
3018 tab = (const char **) xrealloc ((char *) tab,
3019 tab_alloc_size * sizeof (*tab));
3021 tab[tab_cur_size++] = file;
3027 /* Slave routine for sources_info. Force line breaks at ,'s.
3028 NAME is the name to print and *FIRST is nonzero if this is the first
3029 name printed. Set *FIRST to zero. */
3032 output_source_filename (const char *name, int *first)
3034 /* Since a single source file can result in several partial symbol
3035 tables, we need to avoid printing it more than once. Note: if
3036 some of the psymtabs are read in and some are not, it gets
3037 printed both under "Source files for which symbols have been
3038 read" and "Source files for which symbols will be read in on
3039 demand". I consider this a reasonable way to deal with the
3040 situation. I'm not sure whether this can also happen for
3041 symtabs; it doesn't hurt to check. */
3043 /* Was NAME already seen? */
3044 if (filename_seen (name, 1, first))
3046 /* Yes; don't print it again. */
3049 /* No; print it and reset *FIRST. */
3056 printf_filtered (", ");
3060 fputs_filtered (name, gdb_stdout);
3063 /* A callback for map_partial_symbol_filenames. */
3066 output_partial_symbol_filename (const char *filename, const char *fullname,
3069 output_source_filename (fullname ? fullname : filename, data);
3073 sources_info (char *ignore, int from_tty)
3076 struct objfile *objfile;
3079 if (!have_full_symbols () && !have_partial_symbols ())
3081 error (_("No symbol table is loaded. Use the \"file\" command."));
3084 printf_filtered ("Source files for which symbols have been read in:\n\n");
3087 ALL_SYMTABS (objfile, s)
3089 const char *fullname = symtab_to_fullname (s);
3091 output_source_filename (fullname ? fullname : s->filename, &first);
3093 printf_filtered ("\n\n");
3095 printf_filtered ("Source files for which symbols "
3096 "will be read in on demand:\n\n");
3099 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3100 1 /*need_fullname*/);
3101 printf_filtered ("\n");
3105 file_matches (const char *file, char *files[], int nfiles)
3109 if (file != NULL && nfiles != 0)
3111 for (i = 0; i < nfiles; i++)
3113 if (filename_cmp (files[i], lbasename (file)) == 0)
3117 else if (nfiles == 0)
3122 /* Free any memory associated with a search. */
3125 free_search_symbols (struct symbol_search *symbols)
3127 struct symbol_search *p;
3128 struct symbol_search *next;
3130 for (p = symbols; p != NULL; p = next)
3138 do_free_search_symbols_cleanup (void *symbols)
3140 free_search_symbols (symbols);
3144 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3146 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3149 /* Helper function for sort_search_symbols and qsort. Can only
3150 sort symbols, not minimal symbols. */
3153 compare_search_syms (const void *sa, const void *sb)
3155 struct symbol_search **sym_a = (struct symbol_search **) sa;
3156 struct symbol_search **sym_b = (struct symbol_search **) sb;
3158 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3159 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3162 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3163 prevtail where it is, but update its next pointer to point to
3164 the first of the sorted symbols. */
3166 static struct symbol_search *
3167 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3169 struct symbol_search **symbols, *symp, *old_next;
3172 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3174 symp = prevtail->next;
3175 for (i = 0; i < nfound; i++)
3180 /* Generally NULL. */
3183 qsort (symbols, nfound, sizeof (struct symbol_search *),
3184 compare_search_syms);
3187 for (i = 0; i < nfound; i++)
3189 symp->next = symbols[i];
3192 symp->next = old_next;
3198 /* An object of this type is passed as the user_data to the
3199 expand_symtabs_matching method. */
3200 struct search_symbols_data
3205 /* It is true if PREG contains valid data, false otherwise. */
3206 unsigned preg_p : 1;
3210 /* A callback for expand_symtabs_matching. */
3213 search_symbols_file_matches (const char *filename, void *user_data)
3215 struct search_symbols_data *data = user_data;
3217 return file_matches (filename, data->files, data->nfiles);
3220 /* A callback for expand_symtabs_matching. */
3223 search_symbols_name_matches (const char *symname, void *user_data)
3225 struct search_symbols_data *data = user_data;
3227 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3230 /* Search the symbol table for matches to the regular expression REGEXP,
3231 returning the results in *MATCHES.
3233 Only symbols of KIND are searched:
3234 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3235 and constants (enums)
3236 FUNCTIONS_DOMAIN - search all functions
3237 TYPES_DOMAIN - search all type names
3238 ALL_DOMAIN - an internal error for this function
3240 free_search_symbols should be called when *MATCHES is no longer needed.
3242 The results are sorted locally; each symtab's global and static blocks are
3243 separately alphabetized. */
3246 search_symbols (char *regexp, enum search_domain kind,
3247 int nfiles, char *files[],
3248 struct symbol_search **matches)
3251 struct blockvector *bv;
3254 struct dict_iterator iter;
3256 struct objfile *objfile;
3257 struct minimal_symbol *msymbol;
3260 static const enum minimal_symbol_type types[]
3261 = {mst_data, mst_text, mst_abs};
3262 static const enum minimal_symbol_type types2[]
3263 = {mst_bss, mst_file_text, mst_abs};
3264 static const enum minimal_symbol_type types3[]
3265 = {mst_file_data, mst_solib_trampoline, mst_abs};
3266 static const enum minimal_symbol_type types4[]
3267 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3268 enum minimal_symbol_type ourtype;
3269 enum minimal_symbol_type ourtype2;
3270 enum minimal_symbol_type ourtype3;
3271 enum minimal_symbol_type ourtype4;
3272 struct symbol_search *sr;
3273 struct symbol_search *psr;
3274 struct symbol_search *tail;
3275 struct search_symbols_data datum;
3277 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3278 CLEANUP_CHAIN is freed only in the case of an error. */
3279 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3280 struct cleanup *retval_chain;
3282 gdb_assert (kind <= TYPES_DOMAIN);
3284 ourtype = types[kind];
3285 ourtype2 = types2[kind];
3286 ourtype3 = types3[kind];
3287 ourtype4 = types4[kind];
3289 sr = *matches = NULL;
3295 /* Make sure spacing is right for C++ operators.
3296 This is just a courtesy to make the matching less sensitive
3297 to how many spaces the user leaves between 'operator'
3298 and <TYPENAME> or <OPERATOR>. */
3300 char *opname = operator_chars (regexp, &opend);
3305 int fix = -1; /* -1 means ok; otherwise number of
3308 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3310 /* There should 1 space between 'operator' and 'TYPENAME'. */
3311 if (opname[-1] != ' ' || opname[-2] == ' ')
3316 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3317 if (opname[-1] == ' ')
3320 /* If wrong number of spaces, fix it. */
3323 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3325 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3330 errcode = regcomp (&datum.preg, regexp,
3331 REG_NOSUB | (case_sensitivity == case_sensitive_off
3335 char *err = get_regcomp_error (errcode, &datum.preg);
3337 make_cleanup (xfree, err);
3338 error (_("Invalid regexp (%s): %s"), err, regexp);
3341 make_regfree_cleanup (&datum.preg);
3344 /* Search through the partial symtabs *first* for all symbols
3345 matching the regexp. That way we don't have to reproduce all of
3346 the machinery below. */
3348 datum.nfiles = nfiles;
3349 datum.files = files;
3350 ALL_OBJFILES (objfile)
3353 objfile->sf->qf->expand_symtabs_matching (objfile,
3354 search_symbols_file_matches,
3355 search_symbols_name_matches,
3360 retval_chain = old_chain;
3362 /* Here, we search through the minimal symbol tables for functions
3363 and variables that match, and force their symbols to be read.
3364 This is in particular necessary for demangled variable names,
3365 which are no longer put into the partial symbol tables.
3366 The symbol will then be found during the scan of symtabs below.
3368 For functions, find_pc_symtab should succeed if we have debug info
3369 for the function, for variables we have to call lookup_symbol
3370 to determine if the variable has debug info.
3371 If the lookup fails, set found_misc so that we will rescan to print
3372 any matching symbols without debug info. */
3374 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3376 ALL_MSYMBOLS (objfile, msymbol)
3380 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3381 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3382 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3383 MSYMBOL_TYPE (msymbol) == ourtype4)
3386 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3389 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3391 /* FIXME: carlton/2003-02-04: Given that the
3392 semantics of lookup_symbol keeps on changing
3393 slightly, it would be a nice idea if we had a
3394 function lookup_symbol_minsym that found the
3395 symbol associated to a given minimal symbol (if
3397 if (kind == FUNCTIONS_DOMAIN
3398 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3399 (struct block *) NULL,
3409 ALL_PRIMARY_SYMTABS (objfile, s)
3411 bv = BLOCKVECTOR (s);
3412 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3414 struct symbol_search *prevtail = tail;
3417 b = BLOCKVECTOR_BLOCK (bv, i);
3418 ALL_BLOCK_SYMBOLS (b, iter, sym)
3420 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3424 if (file_matches (real_symtab->filename, files, nfiles)
3426 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3428 && ((kind == VARIABLES_DOMAIN
3429 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3430 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3431 && SYMBOL_CLASS (sym) != LOC_BLOCK
3432 /* LOC_CONST can be used for more than just enums,
3433 e.g., c++ static const members.
3434 We only want to skip enums here. */
3435 && !(SYMBOL_CLASS (sym) == LOC_CONST
3436 && TYPE_CODE (SYMBOL_TYPE (sym))
3438 || (kind == FUNCTIONS_DOMAIN
3439 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3440 || (kind == TYPES_DOMAIN
3441 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3444 psr = (struct symbol_search *)
3445 xmalloc (sizeof (struct symbol_search));
3447 psr->symtab = real_symtab;
3449 psr->msymbol = NULL;
3461 if (prevtail == NULL)
3463 struct symbol_search dummy;
3466 tail = sort_search_symbols (&dummy, nfound);
3469 make_cleanup_free_search_symbols (sr);
3472 tail = sort_search_symbols (prevtail, nfound);
3477 /* If there are no eyes, avoid all contact. I mean, if there are
3478 no debug symbols, then print directly from the msymbol_vector. */
3480 if (found_misc || kind != FUNCTIONS_DOMAIN)
3482 ALL_MSYMBOLS (objfile, msymbol)
3486 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3487 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3488 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3489 MSYMBOL_TYPE (msymbol) == ourtype4)
3492 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3495 /* Functions: Look up by address. */
3496 if (kind != FUNCTIONS_DOMAIN ||
3497 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3499 /* Variables/Absolutes: Look up by name. */
3500 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3501 (struct block *) NULL, VAR_DOMAIN, 0)
3505 psr = (struct symbol_search *)
3506 xmalloc (sizeof (struct symbol_search));
3508 psr->msymbol = msymbol;
3515 make_cleanup_free_search_symbols (sr);
3527 discard_cleanups (retval_chain);
3528 do_cleanups (old_chain);
3532 /* Helper function for symtab_symbol_info, this function uses
3533 the data returned from search_symbols() to print information
3534 regarding the match to gdb_stdout. */
3537 print_symbol_info (enum search_domain kind,
3538 struct symtab *s, struct symbol *sym,
3539 int block, char *last)
3541 if (last == NULL || filename_cmp (last, s->filename) != 0)
3543 fputs_filtered ("\nFile ", gdb_stdout);
3544 fputs_filtered (s->filename, gdb_stdout);
3545 fputs_filtered (":\n", gdb_stdout);
3548 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3549 printf_filtered ("static ");
3551 /* Typedef that is not a C++ class. */
3552 if (kind == TYPES_DOMAIN
3553 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3554 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3555 /* variable, func, or typedef-that-is-c++-class. */
3556 else if (kind < TYPES_DOMAIN ||
3557 (kind == TYPES_DOMAIN &&
3558 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3560 type_print (SYMBOL_TYPE (sym),
3561 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3562 ? "" : SYMBOL_PRINT_NAME (sym)),
3565 printf_filtered (";\n");
3569 /* This help function for symtab_symbol_info() prints information
3570 for non-debugging symbols to gdb_stdout. */
3573 print_msymbol_info (struct minimal_symbol *msymbol)
3575 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3578 if (gdbarch_addr_bit (gdbarch) <= 32)
3579 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3580 & (CORE_ADDR) 0xffffffff,
3583 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3585 printf_filtered ("%s %s\n",
3586 tmp, SYMBOL_PRINT_NAME (msymbol));
3589 /* This is the guts of the commands "info functions", "info types", and
3590 "info variables". It calls search_symbols to find all matches and then
3591 print_[m]symbol_info to print out some useful information about the
3595 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3597 static const char * const classnames[] =
3598 {"variable", "function", "type"};
3599 struct symbol_search *symbols;
3600 struct symbol_search *p;
3601 struct cleanup *old_chain;
3602 char *last_filename = NULL;
3605 gdb_assert (kind <= TYPES_DOMAIN);
3607 /* Must make sure that if we're interrupted, symbols gets freed. */
3608 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3609 old_chain = make_cleanup_free_search_symbols (symbols);
3611 printf_filtered (regexp
3612 ? "All %ss matching regular expression \"%s\":\n"
3613 : "All defined %ss:\n",
3614 classnames[kind], regexp);
3616 for (p = symbols; p != NULL; p = p->next)
3620 if (p->msymbol != NULL)
3624 printf_filtered ("\nNon-debugging symbols:\n");
3627 print_msymbol_info (p->msymbol);
3631 print_symbol_info (kind,
3636 last_filename = p->symtab->filename;
3640 do_cleanups (old_chain);
3644 variables_info (char *regexp, int from_tty)
3646 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3650 functions_info (char *regexp, int from_tty)
3652 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3657 types_info (char *regexp, int from_tty)
3659 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3662 /* Breakpoint all functions matching regular expression. */
3665 rbreak_command_wrapper (char *regexp, int from_tty)
3667 rbreak_command (regexp, from_tty);
3670 /* A cleanup function that calls end_rbreak_breakpoints. */
3673 do_end_rbreak_breakpoints (void *ignore)
3675 end_rbreak_breakpoints ();
3679 rbreak_command (char *regexp, int from_tty)
3681 struct symbol_search *ss;
3682 struct symbol_search *p;
3683 struct cleanup *old_chain;
3684 char *string = NULL;
3686 char **files = NULL, *file_name;
3691 char *colon = strchr (regexp, ':');
3693 if (colon && *(colon + 1) != ':')
3697 colon_index = colon - regexp;
3698 file_name = alloca (colon_index + 1);
3699 memcpy (file_name, regexp, colon_index);
3700 file_name[colon_index--] = 0;
3701 while (isspace (file_name[colon_index]))
3702 file_name[colon_index--] = 0;
3706 while (isspace (*regexp)) regexp++;
3710 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3711 old_chain = make_cleanup_free_search_symbols (ss);
3712 make_cleanup (free_current_contents, &string);
3714 start_rbreak_breakpoints ();
3715 make_cleanup (do_end_rbreak_breakpoints, NULL);
3716 for (p = ss; p != NULL; p = p->next)
3718 if (p->msymbol == NULL)
3720 int newlen = (strlen (p->symtab->filename)
3721 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3726 string = xrealloc (string, newlen);
3729 strcpy (string, p->symtab->filename);
3730 strcat (string, ":'");
3731 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3732 strcat (string, "'");
3733 break_command (string, from_tty);
3734 print_symbol_info (FUNCTIONS_DOMAIN,
3738 p->symtab->filename);
3742 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3746 string = xrealloc (string, newlen);
3749 strcpy (string, "'");
3750 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3751 strcat (string, "'");
3753 break_command (string, from_tty);
3754 printf_filtered ("<function, no debug info> %s;\n",
3755 SYMBOL_PRINT_NAME (p->msymbol));
3759 do_cleanups (old_chain);
3763 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3765 Either sym_text[sym_text_len] != '(' and then we search for any
3766 symbol starting with SYM_TEXT text.
3768 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3769 be terminated at that point. Partial symbol tables do not have parameters
3773 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3775 int (*ncmp) (const char *, const char *, size_t);
3777 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3779 if (ncmp (name, sym_text, sym_text_len) != 0)
3782 if (sym_text[sym_text_len] == '(')
3784 /* User searches for `name(someth...'. Require NAME to be terminated.
3785 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3786 present but accept even parameters presence. In this case this
3787 function is in fact strcmp_iw but whitespace skipping is not supported
3788 for tab completion. */
3790 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3797 /* Free any memory associated with a completion list. */
3800 free_completion_list (char ***list_ptr)
3803 char **list = *list_ptr;
3805 while (list[i] != NULL)
3813 /* Callback for make_cleanup. */
3816 do_free_completion_list (void *list)
3818 free_completion_list (list);
3821 /* Helper routine for make_symbol_completion_list. */
3823 static int return_val_size;
3824 static int return_val_index;
3825 static char **return_val;
3827 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3828 completion_list_add_name \
3829 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3831 /* Test to see if the symbol specified by SYMNAME (which is already
3832 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3833 characters. If so, add it to the current completion list. */
3836 completion_list_add_name (const char *symname,
3837 const char *sym_text, int sym_text_len,
3838 const char *text, const char *word)
3842 /* Clip symbols that cannot match. */
3843 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3846 /* We have a match for a completion, so add SYMNAME to the current list
3847 of matches. Note that the name is moved to freshly malloc'd space. */
3852 if (word == sym_text)
3854 new = xmalloc (strlen (symname) + 5);
3855 strcpy (new, symname);
3857 else if (word > sym_text)
3859 /* Return some portion of symname. */
3860 new = xmalloc (strlen (symname) + 5);
3861 strcpy (new, symname + (word - sym_text));
3865 /* Return some of SYM_TEXT plus symname. */
3866 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3867 strncpy (new, word, sym_text - word);
3868 new[sym_text - word] = '\0';
3869 strcat (new, symname);
3872 if (return_val_index + 3 > return_val_size)
3874 newsize = (return_val_size *= 2) * sizeof (char *);
3875 return_val = (char **) xrealloc ((char *) return_val, newsize);
3877 return_val[return_val_index++] = new;
3878 return_val[return_val_index] = NULL;
3882 /* ObjC: In case we are completing on a selector, look as the msymbol
3883 again and feed all the selectors into the mill. */
3886 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3887 const char *sym_text, int sym_text_len,
3888 const char *text, const char *word)
3890 static char *tmp = NULL;
3891 static unsigned int tmplen = 0;
3893 const char *method, *category, *selector;
3896 method = SYMBOL_NATURAL_NAME (msymbol);
3898 /* Is it a method? */
3899 if ((method[0] != '-') && (method[0] != '+'))
3902 if (sym_text[0] == '[')
3903 /* Complete on shortened method method. */
3904 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3906 while ((strlen (method) + 1) >= tmplen)
3912 tmp = xrealloc (tmp, tmplen);
3914 selector = strchr (method, ' ');
3915 if (selector != NULL)
3918 category = strchr (method, '(');
3920 if ((category != NULL) && (selector != NULL))
3922 memcpy (tmp, method, (category - method));
3923 tmp[category - method] = ' ';
3924 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3925 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3926 if (sym_text[0] == '[')
3927 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3930 if (selector != NULL)
3932 /* Complete on selector only. */
3933 strcpy (tmp, selector);
3934 tmp2 = strchr (tmp, ']');
3938 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3942 /* Break the non-quoted text based on the characters which are in
3943 symbols. FIXME: This should probably be language-specific. */
3946 language_search_unquoted_string (char *text, char *p)
3948 for (; p > text; --p)
3950 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3954 if ((current_language->la_language == language_objc))
3956 if (p[-1] == ':') /* Might be part of a method name. */
3958 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3959 p -= 2; /* Beginning of a method name. */
3960 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3961 { /* Might be part of a method name. */
3964 /* Seeing a ' ' or a '(' is not conclusive evidence
3965 that we are in the middle of a method name. However,
3966 finding "-[" or "+[" should be pretty un-ambiguous.
3967 Unfortunately we have to find it now to decide. */
3970 if (isalnum (t[-1]) || t[-1] == '_' ||
3971 t[-1] == ' ' || t[-1] == ':' ||
3972 t[-1] == '(' || t[-1] == ')')
3977 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3978 p = t - 2; /* Method name detected. */
3979 /* Else we leave with p unchanged. */
3989 completion_list_add_fields (struct symbol *sym, char *sym_text,
3990 int sym_text_len, char *text, char *word)
3992 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3994 struct type *t = SYMBOL_TYPE (sym);
3995 enum type_code c = TYPE_CODE (t);
3998 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3999 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4000 if (TYPE_FIELD_NAME (t, j))
4001 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4002 sym_text, sym_text_len, text, word);
4006 /* Type of the user_data argument passed to add_macro_name or
4007 expand_partial_symbol_name. The contents are simply whatever is
4008 needed by completion_list_add_name. */
4009 struct add_name_data
4017 /* A callback used with macro_for_each and macro_for_each_in_scope.
4018 This adds a macro's name to the current completion list. */
4021 add_macro_name (const char *name, const struct macro_definition *ignore,
4022 struct macro_source_file *ignore2, int ignore3,
4025 struct add_name_data *datum = (struct add_name_data *) user_data;
4027 completion_list_add_name ((char *) name,
4028 datum->sym_text, datum->sym_text_len,
4029 datum->text, datum->word);
4032 /* A callback for expand_partial_symbol_names. */
4035 expand_partial_symbol_name (const char *name, void *user_data)
4037 struct add_name_data *datum = (struct add_name_data *) user_data;
4039 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4043 default_make_symbol_completion_list_break_on (char *text, char *word,
4044 const char *break_on)
4046 /* Problem: All of the symbols have to be copied because readline
4047 frees them. I'm not going to worry about this; hopefully there
4048 won't be that many. */
4052 struct minimal_symbol *msymbol;
4053 struct objfile *objfile;
4055 const struct block *surrounding_static_block, *surrounding_global_block;
4056 struct dict_iterator iter;
4057 /* The symbol we are completing on. Points in same buffer as text. */
4059 /* Length of sym_text. */
4061 struct add_name_data datum;
4062 struct cleanup *back_to;
4064 /* Now look for the symbol we are supposed to complete on. */
4068 char *quote_pos = NULL;
4070 /* First see if this is a quoted string. */
4072 for (p = text; *p != '\0'; ++p)
4074 if (quote_found != '\0')
4076 if (*p == quote_found)
4077 /* Found close quote. */
4079 else if (*p == '\\' && p[1] == quote_found)
4080 /* A backslash followed by the quote character
4081 doesn't end the string. */
4084 else if (*p == '\'' || *p == '"')
4090 if (quote_found == '\'')
4091 /* A string within single quotes can be a symbol, so complete on it. */
4092 sym_text = quote_pos + 1;
4093 else if (quote_found == '"')
4094 /* A double-quoted string is never a symbol, nor does it make sense
4095 to complete it any other way. */
4097 return_val = (char **) xmalloc (sizeof (char *));
4098 return_val[0] = NULL;
4103 /* It is not a quoted string. Break it based on the characters
4104 which are in symbols. */
4107 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4108 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4117 sym_text_len = strlen (sym_text);
4119 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4121 if (current_language->la_language == language_cplus
4122 || current_language->la_language == language_java
4123 || current_language->la_language == language_fortran)
4125 /* These languages may have parameters entered by user but they are never
4126 present in the partial symbol tables. */
4128 const char *cs = memchr (sym_text, '(', sym_text_len);
4131 sym_text_len = cs - sym_text;
4133 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4135 return_val_size = 100;
4136 return_val_index = 0;
4137 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4138 return_val[0] = NULL;
4139 back_to = make_cleanup (do_free_completion_list, &return_val);
4141 datum.sym_text = sym_text;
4142 datum.sym_text_len = sym_text_len;
4146 /* Look through the partial symtabs for all symbols which begin
4147 by matching SYM_TEXT. Expand all CUs that you find to the list.
4148 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4149 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4151 /* At this point scan through the misc symbol vectors and add each
4152 symbol you find to the list. Eventually we want to ignore
4153 anything that isn't a text symbol (everything else will be
4154 handled by the psymtab code above). */
4156 ALL_MSYMBOLS (objfile, msymbol)
4159 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4161 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4164 /* Search upwards from currently selected frame (so that we can
4165 complete on local vars). Also catch fields of types defined in
4166 this places which match our text string. Only complete on types
4167 visible from current context. */
4169 b = get_selected_block (0);
4170 surrounding_static_block = block_static_block (b);
4171 surrounding_global_block = block_global_block (b);
4172 if (surrounding_static_block != NULL)
4173 while (b != surrounding_static_block)
4177 ALL_BLOCK_SYMBOLS (b, iter, sym)
4179 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4181 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4185 /* Stop when we encounter an enclosing function. Do not stop for
4186 non-inlined functions - the locals of the enclosing function
4187 are in scope for a nested function. */
4188 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4190 b = BLOCK_SUPERBLOCK (b);
4193 /* Add fields from the file's types; symbols will be added below. */
4195 if (surrounding_static_block != NULL)
4196 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4197 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4199 if (surrounding_global_block != NULL)
4200 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4201 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4203 /* Go through the symtabs and check the externs and statics for
4204 symbols which match. */
4206 ALL_PRIMARY_SYMTABS (objfile, s)
4209 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4210 ALL_BLOCK_SYMBOLS (b, iter, sym)
4212 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4216 ALL_PRIMARY_SYMTABS (objfile, s)
4219 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4220 ALL_BLOCK_SYMBOLS (b, iter, sym)
4222 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4226 if (current_language->la_macro_expansion == macro_expansion_c)
4228 struct macro_scope *scope;
4230 /* Add any macros visible in the default scope. Note that this
4231 may yield the occasional wrong result, because an expression
4232 might be evaluated in a scope other than the default. For
4233 example, if the user types "break file:line if <TAB>", the
4234 resulting expression will be evaluated at "file:line" -- but
4235 at there does not seem to be a way to detect this at
4237 scope = default_macro_scope ();
4240 macro_for_each_in_scope (scope->file, scope->line,
4241 add_macro_name, &datum);
4245 /* User-defined macros are always visible. */
4246 macro_for_each (macro_user_macros, add_macro_name, &datum);
4249 discard_cleanups (back_to);
4250 return (return_val);
4254 default_make_symbol_completion_list (char *text, char *word)
4256 return default_make_symbol_completion_list_break_on (text, word, "");
4259 /* Return a NULL terminated array of all symbols (regardless of class)
4260 which begin by matching TEXT. If the answer is no symbols, then
4261 the return value is an array which contains only a NULL pointer. */
4264 make_symbol_completion_list (char *text, char *word)
4266 return current_language->la_make_symbol_completion_list (text, word);
4269 /* Like make_symbol_completion_list, but suitable for use as a
4270 completion function. */
4273 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4274 char *text, char *word)
4276 return make_symbol_completion_list (text, word);
4279 /* Like make_symbol_completion_list, but returns a list of symbols
4280 defined in a source file FILE. */
4283 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4288 struct dict_iterator iter;
4289 /* The symbol we are completing on. Points in same buffer as text. */
4291 /* Length of sym_text. */
4294 /* Now look for the symbol we are supposed to complete on.
4295 FIXME: This should be language-specific. */
4299 char *quote_pos = NULL;
4301 /* First see if this is a quoted string. */
4303 for (p = text; *p != '\0'; ++p)
4305 if (quote_found != '\0')
4307 if (*p == quote_found)
4308 /* Found close quote. */
4310 else if (*p == '\\' && p[1] == quote_found)
4311 /* A backslash followed by the quote character
4312 doesn't end the string. */
4315 else if (*p == '\'' || *p == '"')
4321 if (quote_found == '\'')
4322 /* A string within single quotes can be a symbol, so complete on it. */
4323 sym_text = quote_pos + 1;
4324 else if (quote_found == '"')
4325 /* A double-quoted string is never a symbol, nor does it make sense
4326 to complete it any other way. */
4328 return_val = (char **) xmalloc (sizeof (char *));
4329 return_val[0] = NULL;
4334 /* Not a quoted string. */
4335 sym_text = language_search_unquoted_string (text, p);
4339 sym_text_len = strlen (sym_text);
4341 return_val_size = 10;
4342 return_val_index = 0;
4343 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4344 return_val[0] = NULL;
4346 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4348 s = lookup_symtab (srcfile);
4351 /* Maybe they typed the file with leading directories, while the
4352 symbol tables record only its basename. */
4353 const char *tail = lbasename (srcfile);
4356 s = lookup_symtab (tail);
4359 /* If we have no symtab for that file, return an empty list. */
4361 return (return_val);
4363 /* Go through this symtab and check the externs and statics for
4364 symbols which match. */
4366 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4367 ALL_BLOCK_SYMBOLS (b, iter, sym)
4369 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4372 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4373 ALL_BLOCK_SYMBOLS (b, iter, sym)
4375 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4378 return (return_val);
4381 /* A helper function for make_source_files_completion_list. It adds
4382 another file name to a list of possible completions, growing the
4383 list as necessary. */
4386 add_filename_to_list (const char *fname, char *text, char *word,
4387 char ***list, int *list_used, int *list_alloced)
4390 size_t fnlen = strlen (fname);
4392 if (*list_used + 1 >= *list_alloced)
4395 *list = (char **) xrealloc ((char *) *list,
4396 *list_alloced * sizeof (char *));
4401 /* Return exactly fname. */
4402 new = xmalloc (fnlen + 5);
4403 strcpy (new, fname);
4405 else if (word > text)
4407 /* Return some portion of fname. */
4408 new = xmalloc (fnlen + 5);
4409 strcpy (new, fname + (word - text));
4413 /* Return some of TEXT plus fname. */
4414 new = xmalloc (fnlen + (text - word) + 5);
4415 strncpy (new, word, text - word);
4416 new[text - word] = '\0';
4417 strcat (new, fname);
4419 (*list)[*list_used] = new;
4420 (*list)[++*list_used] = NULL;
4424 not_interesting_fname (const char *fname)
4426 static const char *illegal_aliens[] = {
4427 "_globals_", /* inserted by coff_symtab_read */
4432 for (i = 0; illegal_aliens[i]; i++)
4434 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4440 /* An object of this type is passed as the user_data argument to
4441 map_partial_symbol_filenames. */
4442 struct add_partial_filename_data
4453 /* A callback for map_partial_symbol_filenames. */
4456 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4459 struct add_partial_filename_data *data = user_data;
4461 if (not_interesting_fname (filename))
4463 if (!filename_seen (filename, 1, data->first)
4464 && filename_ncmp (filename, data->text, data->text_len) == 0)
4466 /* This file matches for a completion; add it to the
4467 current list of matches. */
4468 add_filename_to_list (filename, data->text, data->word,
4469 data->list, data->list_used, data->list_alloced);
4473 const char *base_name = lbasename (filename);
4475 if (base_name != filename
4476 && !filename_seen (base_name, 1, data->first)
4477 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4478 add_filename_to_list (base_name, data->text, data->word,
4479 data->list, data->list_used, data->list_alloced);
4483 /* Return a NULL terminated array of all source files whose names
4484 begin with matching TEXT. The file names are looked up in the
4485 symbol tables of this program. If the answer is no matchess, then
4486 the return value is an array which contains only a NULL pointer. */
4489 make_source_files_completion_list (char *text, char *word)
4492 struct objfile *objfile;
4494 int list_alloced = 1;
4496 size_t text_len = strlen (text);
4497 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4498 const char *base_name;
4499 struct add_partial_filename_data datum;
4500 struct cleanup *back_to;
4504 if (!have_full_symbols () && !have_partial_symbols ())
4507 back_to = make_cleanup (do_free_completion_list, &list);
4509 ALL_SYMTABS (objfile, s)
4511 if (not_interesting_fname (s->filename))
4513 if (!filename_seen (s->filename, 1, &first)
4514 && filename_ncmp (s->filename, text, text_len) == 0)
4516 /* This file matches for a completion; add it to the current
4518 add_filename_to_list (s->filename, text, word,
4519 &list, &list_used, &list_alloced);
4523 /* NOTE: We allow the user to type a base name when the
4524 debug info records leading directories, but not the other
4525 way around. This is what subroutines of breakpoint
4526 command do when they parse file names. */
4527 base_name = lbasename (s->filename);
4528 if (base_name != s->filename
4529 && !filename_seen (base_name, 1, &first)
4530 && filename_ncmp (base_name, text, text_len) == 0)
4531 add_filename_to_list (base_name, text, word,
4532 &list, &list_used, &list_alloced);
4536 datum.first = &first;
4539 datum.text_len = text_len;
4541 datum.list_used = &list_used;
4542 datum.list_alloced = &list_alloced;
4543 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4544 0 /*need_fullname*/);
4545 discard_cleanups (back_to);
4550 /* Determine if PC is in the prologue of a function. The prologue is the area
4551 between the first instruction of a function, and the first executable line.
4552 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4554 If non-zero, func_start is where we think the prologue starts, possibly
4555 by previous examination of symbol table information. */
4558 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4560 struct symtab_and_line sal;
4561 CORE_ADDR func_addr, func_end;
4563 /* We have several sources of information we can consult to figure
4565 - Compilers usually emit line number info that marks the prologue
4566 as its own "source line". So the ending address of that "line"
4567 is the end of the prologue. If available, this is the most
4569 - The minimal symbols and partial symbols, which can usually tell
4570 us the starting and ending addresses of a function.
4571 - If we know the function's start address, we can call the
4572 architecture-defined gdbarch_skip_prologue function to analyze the
4573 instruction stream and guess where the prologue ends.
4574 - Our `func_start' argument; if non-zero, this is the caller's
4575 best guess as to the function's entry point. At the time of
4576 this writing, handle_inferior_event doesn't get this right, so
4577 it should be our last resort. */
4579 /* Consult the partial symbol table, to find which function
4581 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4583 CORE_ADDR prologue_end;
4585 /* We don't even have minsym information, so fall back to using
4586 func_start, if given. */
4588 return 1; /* We *might* be in a prologue. */
4590 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4592 return func_start <= pc && pc < prologue_end;
4595 /* If we have line number information for the function, that's
4596 usually pretty reliable. */
4597 sal = find_pc_line (func_addr, 0);
4599 /* Now sal describes the source line at the function's entry point,
4600 which (by convention) is the prologue. The end of that "line",
4601 sal.end, is the end of the prologue.
4603 Note that, for functions whose source code is all on a single
4604 line, the line number information doesn't always end up this way.
4605 So we must verify that our purported end-of-prologue address is
4606 *within* the function, not at its start or end. */
4608 || sal.end <= func_addr
4609 || func_end <= sal.end)
4611 /* We don't have any good line number info, so use the minsym
4612 information, together with the architecture-specific prologue
4614 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4616 return func_addr <= pc && pc < prologue_end;
4619 /* We have line number info, and it looks good. */
4620 return func_addr <= pc && pc < sal.end;
4623 /* Given PC at the function's start address, attempt to find the
4624 prologue end using SAL information. Return zero if the skip fails.
4626 A non-optimized prologue traditionally has one SAL for the function
4627 and a second for the function body. A single line function has
4628 them both pointing at the same line.
4630 An optimized prologue is similar but the prologue may contain
4631 instructions (SALs) from the instruction body. Need to skip those
4632 while not getting into the function body.
4634 The functions end point and an increasing SAL line are used as
4635 indicators of the prologue's endpoint.
4637 This code is based on the function refine_prologue_limit
4641 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4643 struct symtab_and_line prologue_sal;
4648 /* Get an initial range for the function. */
4649 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4650 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4652 prologue_sal = find_pc_line (start_pc, 0);
4653 if (prologue_sal.line != 0)
4655 /* For languages other than assembly, treat two consecutive line
4656 entries at the same address as a zero-instruction prologue.
4657 The GNU assembler emits separate line notes for each instruction
4658 in a multi-instruction macro, but compilers generally will not
4660 if (prologue_sal.symtab->language != language_asm)
4662 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4665 /* Skip any earlier lines, and any end-of-sequence marker
4666 from a previous function. */
4667 while (linetable->item[idx].pc != prologue_sal.pc
4668 || linetable->item[idx].line == 0)
4671 if (idx+1 < linetable->nitems
4672 && linetable->item[idx+1].line != 0
4673 && linetable->item[idx+1].pc == start_pc)
4677 /* If there is only one sal that covers the entire function,
4678 then it is probably a single line function, like
4680 if (prologue_sal.end >= end_pc)
4683 while (prologue_sal.end < end_pc)
4685 struct symtab_and_line sal;
4687 sal = find_pc_line (prologue_sal.end, 0);
4690 /* Assume that a consecutive SAL for the same (or larger)
4691 line mark the prologue -> body transition. */
4692 if (sal.line >= prologue_sal.line)
4695 /* The line number is smaller. Check that it's from the
4696 same function, not something inlined. If it's inlined,
4697 then there is no point comparing the line numbers. */
4698 bl = block_for_pc (prologue_sal.end);
4701 if (block_inlined_p (bl))
4703 if (BLOCK_FUNCTION (bl))
4708 bl = BLOCK_SUPERBLOCK (bl);
4713 /* The case in which compiler's optimizer/scheduler has
4714 moved instructions into the prologue. We look ahead in
4715 the function looking for address ranges whose
4716 corresponding line number is less the first one that we
4717 found for the function. This is more conservative then
4718 refine_prologue_limit which scans a large number of SALs
4719 looking for any in the prologue. */
4724 if (prologue_sal.end < end_pc)
4725 /* Return the end of this line, or zero if we could not find a
4727 return prologue_sal.end;
4729 /* Don't return END_PC, which is past the end of the function. */
4730 return prologue_sal.pc;
4733 struct symtabs_and_lines
4734 decode_line_spec (char *string, int flags)
4736 struct symtabs_and_lines sals;
4737 struct symtab_and_line cursal;
4740 error (_("Empty line specification."));
4742 /* We use whatever is set as the current source line. We do not try
4743 and get a default or it will recursively call us! */
4744 cursal = get_current_source_symtab_and_line ();
4746 sals = decode_line_1 (&string, flags,
4747 cursal.symtab, cursal.line);
4750 error (_("Junk at end of line specification: %s"), string);
4755 static char *name_of_main;
4756 enum language language_of_main = language_unknown;
4759 set_main_name (const char *name)
4761 if (name_of_main != NULL)
4763 xfree (name_of_main);
4764 name_of_main = NULL;
4765 language_of_main = language_unknown;
4769 name_of_main = xstrdup (name);
4770 language_of_main = language_unknown;
4774 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4778 find_main_name (void)
4780 const char *new_main_name;
4782 /* Try to see if the main procedure is in Ada. */
4783 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4784 be to add a new method in the language vector, and call this
4785 method for each language until one of them returns a non-empty
4786 name. This would allow us to remove this hard-coded call to
4787 an Ada function. It is not clear that this is a better approach
4788 at this point, because all methods need to be written in a way
4789 such that false positives never be returned. For instance, it is
4790 important that a method does not return a wrong name for the main
4791 procedure if the main procedure is actually written in a different
4792 language. It is easy to guaranty this with Ada, since we use a
4793 special symbol generated only when the main in Ada to find the name
4794 of the main procedure. It is difficult however to see how this can
4795 be guarantied for languages such as C, for instance. This suggests
4796 that order of call for these methods becomes important, which means
4797 a more complicated approach. */
4798 new_main_name = ada_main_name ();
4799 if (new_main_name != NULL)
4801 set_main_name (new_main_name);
4805 new_main_name = pascal_main_name ();
4806 if (new_main_name != NULL)
4808 set_main_name (new_main_name);
4812 /* The languages above didn't identify the name of the main procedure.
4813 Fallback to "main". */
4814 set_main_name ("main");
4820 if (name_of_main == NULL)
4823 return name_of_main;
4826 /* Handle ``executable_changed'' events for the symtab module. */
4829 symtab_observer_executable_changed (void)
4831 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4832 set_main_name (NULL);
4835 /* Return 1 if the supplied producer string matches the ARM RealView
4836 compiler (armcc). */
4839 producer_is_realview (const char *producer)
4841 static const char *const arm_idents[] = {
4842 "ARM C Compiler, ADS",
4843 "Thumb C Compiler, ADS",
4844 "ARM C++ Compiler, ADS",
4845 "Thumb C++ Compiler, ADS",
4846 "ARM/Thumb C/C++ Compiler, RVCT",
4847 "ARM C/C++ Compiler, RVCT"
4851 if (producer == NULL)
4854 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4855 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4862 _initialize_symtab (void)
4864 add_info ("variables", variables_info, _("\
4865 All global and static variable names, or those matching REGEXP."));
4867 add_com ("whereis", class_info, variables_info, _("\
4868 All global and static variable names, or those matching REGEXP."));
4870 add_info ("functions", functions_info,
4871 _("All function names, or those matching REGEXP."));
4873 /* FIXME: This command has at least the following problems:
4874 1. It prints builtin types (in a very strange and confusing fashion).
4875 2. It doesn't print right, e.g. with
4876 typedef struct foo *FOO
4877 type_print prints "FOO" when we want to make it (in this situation)
4878 print "struct foo *".
4879 I also think "ptype" or "whatis" is more likely to be useful (but if
4880 there is much disagreement "info types" can be fixed). */
4881 add_info ("types", types_info,
4882 _("All type names, or those matching REGEXP."));
4884 add_info ("sources", sources_info,
4885 _("Source files in the program."));
4887 add_com ("rbreak", class_breakpoint, rbreak_command,
4888 _("Set a breakpoint for all functions matching REGEXP."));
4892 add_com ("lf", class_info, sources_info,
4893 _("Source files in the program"));
4894 add_com ("lg", class_info, variables_info, _("\
4895 All global and static variable names, or those matching REGEXP."));
4898 add_setshow_enum_cmd ("multiple-symbols", no_class,
4899 multiple_symbols_modes, &multiple_symbols_mode,
4901 Set the debugger behavior when more than one symbol are possible matches\n\
4902 in an expression."), _("\
4903 Show how the debugger handles ambiguities in expressions."), _("\
4904 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4905 NULL, NULL, &setlist, &showlist);
4907 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4908 &basenames_may_differ, _("\
4909 Set whether a source file may have multiple base names."), _("\
4910 Show whether a source file may have multiple base names."), _("\
4911 (A \"base name\" is the name of a file with the directory part removed.\n\
4912 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4913 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4914 before comparing them. Canonicalization is an expensive operation,\n\
4915 but it allows the same file be known by more than one base name.\n\
4916 If not set (the default), all source files are assumed to have just\n\
4917 one base name, and gdb will do file name comparisons more efficiently."),
4919 &setlist, &showlist);
4921 observer_attach_executable_changed (symtab_observer_executable_changed);