1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "arch-utils.h"
37 #include "breakpoint.h"
39 #include "complaints.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
54 #include "parser-defs.h"
60 #include <sys/types.h>
62 #include "gdb_string.h"
70 int (*deprecated_ui_load_progress_hook) (const char *section,
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
80 static void clear_symtab_users_cleanup (void *ignore);
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
85 /* External variables and functions referenced. */
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
89 /* Functions this file defines. */
91 static void load_command (char *, int);
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95 static void add_symbol_file_command (char *, int);
97 bfd *symfile_bfd_open (char *);
99 int get_section_index (struct objfile *, char *);
101 static const struct sym_fns *find_sym_fns (bfd *);
103 static void decrement_reading_symtab (void *);
105 static void overlay_invalidate_all (void);
107 void list_overlays_command (char *, int);
109 void map_overlay_command (char *, int);
111 void unmap_overlay_command (char *, int);
113 static void overlay_auto_command (char *, int);
115 static void overlay_manual_command (char *, int);
117 static void overlay_off_command (char *, int);
119 static void overlay_load_command (char *, int);
121 static void overlay_command (char *, int);
123 static void simple_free_overlay_table (void);
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
128 static int simple_read_overlay_table (void);
130 static int simple_overlay_update_1 (struct obj_section *);
132 static void add_filename_language (char *ext, enum language lang);
134 static void info_ext_lang_command (char *args, int from_tty);
136 static void init_filename_language_table (void);
138 static void symfile_find_segment_sections (struct objfile *objfile);
140 void _initialize_symfile (void);
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157 int symbol_reloading = 0;
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
178 int auto_solib_add = 1;
181 /* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
187 obsavestring (const char *ptr, int size, struct obstack *obstackp)
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
194 const char *p1 = ptr;
196 const char *end = ptr + size;
205 /* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
211 obconcat (struct obstack *obstackp, ...)
215 va_start (ap, obstackp);
218 const char *s = va_arg (ap, const char *);
223 obstack_grow_str (obstackp, s);
226 obstack_1grow (obstackp, 0);
228 return obstack_finish (obstackp);
231 /* True if we are reading a symbol table. */
233 int currently_reading_symtab = 0;
236 decrement_reading_symtab (void *dummy)
238 currently_reading_symtab--;
241 /* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
244 increment_reading_symtab (void)
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
250 /* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
260 find_lowest_section (bfd *abfd, asection *sect, void *obj)
262 asection **lowest = (asection **) obj;
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
276 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
278 struct section_addr_info *
279 alloc_section_addr_info (size_t num_sections)
281 struct section_addr_info *sap;
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
293 /* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
296 extern struct section_addr_info *
297 build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
300 struct section_addr_info *sap;
301 const struct target_section *stp;
304 sap = alloc_section_addr_info (end - start);
306 for (stp = start, oidx = 0; stp != end; stp++)
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
323 /* Create a section_addr_info from section offsets in ABFD. */
325 static struct section_addr_info *
326 build_section_addr_info_from_bfd (bfd *abfd)
328 struct section_addr_info *sap;
330 struct bfd_section *sec;
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
344 /* Create a section_addr_info from section offsets in OBJFILE. */
346 struct section_addr_info *
347 build_section_addr_info_from_objfile (const struct objfile *objfile)
349 struct section_addr_info *sap;
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
358 int sectindex = sap->other[i].sectindex;
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
365 /* Free all memory allocated by build_section_addr_info_from_section_table. */
368 free_section_addr_info (struct section_addr_info *sap)
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
379 /* Initialize OBJFILE's sect_index_* members. */
381 init_objfile_sect_indices (struct objfile *objfile)
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
388 objfile->sect_index_text = sect->index;
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
392 objfile->sect_index_data = sect->index;
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
396 objfile->sect_index_bss = sect->index;
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
400 objfile->sect_index_rodata = sect->index;
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
408 symfile_find_segment_sections (objfile);
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
419 for (i = 0; i < objfile->num_sections; i++)
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
426 if (i == objfile->num_sections)
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
439 /* The arguments to place_section. */
441 struct place_section_arg
443 struct section_offsets *offsets;
447 /* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
451 place_section (bfd *abfd, asection *sect, void *obj)
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
476 int indx = cur_sec->index;
478 /* We don't need to compare against ourself. */
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
502 /* Otherwise, we appear to be OK. So far. */
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
518 struct section_addr_info *addrs)
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
527 struct other_sections *osp;
529 osp = &addrs->other[i];
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
536 section_offsets->offsets[osp->sectindex] = osp->addr;
540 /* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
547 addr_section_name (const char *s)
549 if (strcmp (s, ".dynbss") == 0)
551 if (strcmp (s, ".sdynbss") == 0)
557 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
561 addrs_section_compar (const void *ap, const void *bp)
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
571 /* SECTINDEX is undefined iff ADDR is zero. */
572 a_idx = a->addr == 0 ? 0 : a->sectindex;
573 b_idx = b->addr == 0 ? 0 : b->sectindex;
574 return a_idx - b_idx;
577 /* Provide sorted array of pointers to sections of ADDRS. The array is
578 terminated by NULL. Caller is responsible to call xfree for it. */
580 static struct other_sections **
581 addrs_section_sort (struct section_addr_info *addrs)
583 struct other_sections **array;
586 /* `+ 1' for the NULL terminator. */
587 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
588 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
589 array[i] = &addrs->other[i];
592 qsort (array, i, sizeof (*array), addrs_section_compar);
597 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
598 also SECTINDEXes specific to ABFD there. This function can be used to
599 rebase ADDRS to start referencing different BFD than before. */
602 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
604 asection *lower_sect;
605 CORE_ADDR lower_offset;
607 struct cleanup *my_cleanup;
608 struct section_addr_info *abfd_addrs;
609 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
610 struct other_sections **addrs_to_abfd_addrs;
612 /* Find lowest loadable section to be used as starting point for
613 continguous sections. */
615 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
616 if (lower_sect == NULL)
618 warning (_("no loadable sections found in added symbol-file %s"),
619 bfd_get_filename (abfd));
623 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
625 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
626 in ABFD. Section names are not unique - there can be multiple sections of
627 the same name. Also the sections of the same name do not have to be
628 adjacent to each other. Some sections may be present only in one of the
629 files. Even sections present in both files do not have to be in the same
632 Use stable sort by name for the sections in both files. Then linearly
633 scan both lists matching as most of the entries as possible. */
635 addrs_sorted = addrs_section_sort (addrs);
636 my_cleanup = make_cleanup (xfree, addrs_sorted);
638 abfd_addrs = build_section_addr_info_from_bfd (abfd);
639 make_cleanup_free_section_addr_info (abfd_addrs);
640 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
641 make_cleanup (xfree, abfd_addrs_sorted);
643 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
644 ABFD_ADDRS_SORTED. */
646 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
647 * addrs->num_sections);
648 make_cleanup (xfree, addrs_to_abfd_addrs);
650 while (*addrs_sorted)
652 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
654 while (*abfd_addrs_sorted
655 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
659 if (*abfd_addrs_sorted
660 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
665 /* Make the found item directly addressable from ADDRS. */
666 index_in_addrs = *addrs_sorted - addrs->other;
667 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
668 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
670 /* Never use the same ABFD entry twice. */
677 /* Calculate offsets for the loadable sections.
678 FIXME! Sections must be in order of increasing loadable section
679 so that contiguous sections can use the lower-offset!!!
681 Adjust offsets if the segments are not contiguous.
682 If the section is contiguous, its offset should be set to
683 the offset of the highest loadable section lower than it
684 (the loadable section directly below it in memory).
685 this_offset = lower_offset = lower_addr - lower_orig_addr */
687 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
689 struct other_sections *sect = addrs_to_abfd_addrs[i];
693 /* This is the index used by BFD. */
694 addrs->other[i].sectindex = sect->sectindex;
696 if (addrs->other[i].addr != 0)
698 addrs->other[i].addr -= sect->addr;
699 lower_offset = addrs->other[i].addr;
702 addrs->other[i].addr = lower_offset;
706 /* addr_section_name transformation is not used for SECT_NAME. */
707 const char *sect_name = addrs->other[i].name;
709 /* This section does not exist in ABFD, which is normally
710 unexpected and we want to issue a warning.
712 However, the ELF prelinker does create a few sections which are
713 marked in the main executable as loadable (they are loaded in
714 memory from the DYNAMIC segment) and yet are not present in
715 separate debug info files. This is fine, and should not cause
716 a warning. Shared libraries contain just the section
717 ".gnu.liblist" but it is not marked as loadable there. There is
718 no other way to identify them than by their name as the sections
719 created by prelink have no special flags.
721 For the sections `.bss' and `.sbss' see addr_section_name. */
723 if (!(strcmp (sect_name, ".gnu.liblist") == 0
724 || strcmp (sect_name, ".gnu.conflict") == 0
725 || (strcmp (sect_name, ".bss") == 0
727 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
728 && addrs_to_abfd_addrs[i - 1] != NULL)
729 || (strcmp (sect_name, ".sbss") == 0
731 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
732 && addrs_to_abfd_addrs[i - 1] != NULL)))
733 warning (_("section %s not found in %s"), sect_name,
734 bfd_get_filename (abfd));
736 addrs->other[i].addr = 0;
738 /* SECTINDEX is invalid if ADDR is zero. */
742 do_cleanups (my_cleanup);
745 /* Parse the user's idea of an offset for dynamic linking, into our idea
746 of how to represent it for fast symbol reading. This is the default
747 version of the sym_fns.sym_offsets function for symbol readers that
748 don't need to do anything special. It allocates a section_offsets table
749 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
752 default_symfile_offsets (struct objfile *objfile,
753 struct section_addr_info *addrs)
755 objfile->num_sections = bfd_count_sections (objfile->obfd);
756 objfile->section_offsets = (struct section_offsets *)
757 obstack_alloc (&objfile->objfile_obstack,
758 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
759 relative_addr_info_to_section_offsets (objfile->section_offsets,
760 objfile->num_sections, addrs);
762 /* For relocatable files, all loadable sections will start at zero.
763 The zero is meaningless, so try to pick arbitrary addresses such
764 that no loadable sections overlap. This algorithm is quadratic,
765 but the number of sections in a single object file is generally
767 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
769 struct place_section_arg arg;
770 bfd *abfd = objfile->obfd;
773 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
774 /* We do not expect this to happen; just skip this step if the
775 relocatable file has a section with an assigned VMA. */
776 if (bfd_section_vma (abfd, cur_sec) != 0)
781 CORE_ADDR *offsets = objfile->section_offsets->offsets;
783 /* Pick non-overlapping offsets for sections the user did not
785 arg.offsets = objfile->section_offsets;
787 bfd_map_over_sections (objfile->obfd, place_section, &arg);
789 /* Correctly filling in the section offsets is not quite
790 enough. Relocatable files have two properties that
791 (most) shared objects do not:
793 - Their debug information will contain relocations. Some
794 shared libraries do also, but many do not, so this can not
797 - If there are multiple code sections they will be loaded
798 at different relative addresses in memory than they are
799 in the objfile, since all sections in the file will start
802 Because GDB has very limited ability to map from an
803 address in debug info to the correct code section,
804 it relies on adding SECT_OFF_TEXT to things which might be
805 code. If we clear all the section offsets, and set the
806 section VMAs instead, then symfile_relocate_debug_section
807 will return meaningful debug information pointing at the
810 GDB has too many different data structures for section
811 addresses - a bfd, objfile, and so_list all have section
812 tables, as does exec_ops. Some of these could probably
815 for (cur_sec = abfd->sections; cur_sec != NULL;
816 cur_sec = cur_sec->next)
818 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
821 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
822 exec_set_section_address (bfd_get_filename (abfd),
824 offsets[cur_sec->index]);
825 offsets[cur_sec->index] = 0;
830 /* Remember the bfd indexes for the .text, .data, .bss and
832 init_objfile_sect_indices (objfile);
836 /* Divide the file into segments, which are individual relocatable units.
837 This is the default version of the sym_fns.sym_segments function for
838 symbol readers that do not have an explicit representation of segments.
839 It assumes that object files do not have segments, and fully linked
840 files have a single segment. */
842 struct symfile_segment_data *
843 default_symfile_segments (bfd *abfd)
847 struct symfile_segment_data *data;
850 /* Relocatable files contain enough information to position each
851 loadable section independently; they should not be relocated
853 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
856 /* Make sure there is at least one loadable section in the file. */
857 for (sect = abfd->sections; sect != NULL; sect = sect->next)
859 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
867 low = bfd_get_section_vma (abfd, sect);
868 high = low + bfd_get_section_size (sect);
870 data = XZALLOC (struct symfile_segment_data);
871 data->num_segments = 1;
872 data->segment_bases = XCALLOC (1, CORE_ADDR);
873 data->segment_sizes = XCALLOC (1, CORE_ADDR);
875 num_sections = bfd_count_sections (abfd);
876 data->segment_info = XCALLOC (num_sections, int);
878 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
882 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
885 vma = bfd_get_section_vma (abfd, sect);
888 if (vma + bfd_get_section_size (sect) > high)
889 high = vma + bfd_get_section_size (sect);
891 data->segment_info[i] = 1;
894 data->segment_bases[0] = low;
895 data->segment_sizes[0] = high - low;
900 /* Process a symbol file, as either the main file or as a dynamically
903 OBJFILE is where the symbols are to be read from.
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914 If ADDRS is non-zero, OFFSETS must be zero.
916 OFFSETS is a table of section offsets already in the right
917 format-specific representation. NUM_OFFSETS is the number of
918 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
919 assume this is the proper table the call to sym_offsets described
920 above would produce. Instead of calling sym_offsets, we just dump
921 it right into objfile->section_offsets. (When we're re-reading
922 symbols from an objfile, we don't have the original load address
923 list any more; all we have is the section offset table.) If
924 OFFSETS is non-zero, ADDRS must be zero.
926 ADD_FLAGS encodes verbosity level, whether this is main symbol or
927 an extra symbol file such as dynamically loaded code, and wether
928 breakpoint reset should be deferred. */
931 syms_from_objfile (struct objfile *objfile,
932 struct section_addr_info *addrs,
933 struct section_offsets *offsets,
937 struct section_addr_info *local_addr = NULL;
938 struct cleanup *old_chain;
939 const int mainline = add_flags & SYMFILE_MAINLINE;
941 gdb_assert (! (addrs && offsets));
943 init_entry_point_info (objfile);
944 objfile->sf = find_sym_fns (objfile->obfd);
946 if (objfile->sf == NULL)
947 return; /* No symbols. */
949 /* Make sure that partially constructed symbol tables will be cleaned up
950 if an error occurs during symbol reading. */
951 old_chain = make_cleanup_free_objfile (objfile);
953 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
954 list. We now establish the convention that an addr of zero means
955 no load address was specified. */
956 if (! addrs && ! offsets)
959 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
960 make_cleanup (xfree, local_addr);
964 /* Now either addrs or offsets is non-zero. */
968 /* We will modify the main symbol table, make sure that all its users
969 will be cleaned up if an error occurs during symbol reading. */
970 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
972 /* Since no error yet, throw away the old symbol table. */
974 if (symfile_objfile != NULL)
976 free_objfile (symfile_objfile);
977 gdb_assert (symfile_objfile == NULL);
980 /* Currently we keep symbols from the add-symbol-file command.
981 If the user wants to get rid of them, they should do "symbol-file"
982 without arguments first. Not sure this is the best behavior
985 (*objfile->sf->sym_new_init) (objfile);
988 /* Convert addr into an offset rather than an absolute address.
989 We find the lowest address of a loaded segment in the objfile,
990 and assume that <addr> is where that got loaded.
992 We no longer warn if the lowest section is not a text segment (as
993 happens for the PA64 port. */
994 if (addrs && addrs->other[0].name)
995 addr_info_make_relative (addrs, objfile->obfd);
997 /* Initialize symbol reading routines for this objfile, allow complaints to
998 appear for this new file, and record how verbose to be, then do the
999 initial symbol reading for this file. */
1001 (*objfile->sf->sym_init) (objfile);
1002 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1005 (*objfile->sf->sym_offsets) (objfile, addrs);
1008 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1010 /* Just copy in the offset table directly as given to us. */
1011 objfile->num_sections = num_offsets;
1012 objfile->section_offsets
1013 = ((struct section_offsets *)
1014 obstack_alloc (&objfile->objfile_obstack, size));
1015 memcpy (objfile->section_offsets, offsets, size);
1017 init_objfile_sect_indices (objfile);
1020 (*objfile->sf->sym_read) (objfile, add_flags);
1022 if ((add_flags & SYMFILE_NO_READ) == 0)
1023 require_partial_symbols (objfile, 0);
1025 /* Discard cleanups as symbol reading was successful. */
1027 discard_cleanups (old_chain);
1031 /* Perform required actions after either reading in the initial
1032 symbols for a new objfile, or mapping in the symbols from a reusable
1033 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1036 new_symfile_objfile (struct objfile *objfile, int add_flags)
1038 /* If this is the main symbol file we have to clean up all users of the
1039 old main symbol file. Otherwise it is sufficient to fixup all the
1040 breakpoints that may have been redefined by this symbol file. */
1041 if (add_flags & SYMFILE_MAINLINE)
1043 /* OK, make it the "real" symbol file. */
1044 symfile_objfile = objfile;
1046 clear_symtab_users (add_flags);
1048 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1050 breakpoint_re_set ();
1053 /* We're done reading the symbol file; finish off complaints. */
1054 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1057 /* Process a symbol file, as either the main file or as a dynamically
1060 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1061 This BFD will be closed on error, and is always consumed by this function.
1063 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1064 extra, such as dynamically loaded code, and what to do with breakpoins.
1066 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1067 syms_from_objfile, above.
1068 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1070 Upon success, returns a pointer to the objfile that was added.
1071 Upon failure, jumps back to command level (never returns). */
1073 static struct objfile *
1074 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1076 struct section_addr_info *addrs,
1077 struct section_offsets *offsets,
1081 struct objfile *objfile;
1082 struct cleanup *my_cleanups;
1083 const char *name = bfd_get_filename (abfd);
1084 const int from_tty = add_flags & SYMFILE_VERBOSE;
1085 const int should_print = ((from_tty || info_verbose)
1086 && (readnow_symbol_files
1087 || (add_flags & SYMFILE_NO_READ) == 0));
1089 if (readnow_symbol_files)
1091 flags |= OBJF_READNOW;
1092 add_flags &= ~SYMFILE_NO_READ;
1095 my_cleanups = make_cleanup_bfd_close (abfd);
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
1100 if ((have_full_symbols () || have_partial_symbols ())
1101 && (add_flags & SYMFILE_MAINLINE)
1103 && !query (_("Load new symbol table from \"%s\"? "), name))
1104 error (_("Not confirmed."));
1106 objfile = allocate_objfile (abfd, flags);
1107 discard_cleanups (my_cleanups);
1109 /* We either created a new mapped symbol table, mapped an existing
1110 symbol table file which has not had initial symbol reading
1111 performed, or need to read an unmapped symbol table. */
1114 if (deprecated_pre_add_symbol_hook)
1115 deprecated_pre_add_symbol_hook (name);
1118 printf_unfiltered (_("Reading symbols from %s..."), name);
1120 gdb_flush (gdb_stdout);
1123 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1131 if ((flags & OBJF_READNOW))
1135 printf_unfiltered (_("expanding to full symbols..."));
1137 gdb_flush (gdb_stdout);
1141 objfile->sf->qf->expand_all_symtabs (objfile);
1144 if (should_print && !objfile_has_symbols (objfile))
1147 printf_unfiltered (_("(no debugging symbols found)..."));
1153 if (deprecated_post_add_symbol_hook)
1154 deprecated_post_add_symbol_hook ();
1156 printf_unfiltered (_("done.\n"));
1159 /* We print some messages regardless of whether 'from_tty ||
1160 info_verbose' is true, so make sure they go out at the right
1162 gdb_flush (gdb_stdout);
1164 do_cleanups (my_cleanups);
1166 if (objfile->sf == NULL)
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1172 new_symfile_objfile (objfile, add_flags);
1174 observer_notify_new_objfile (objfile);
1176 bfd_cache_close_all ();
1180 /* Add BFD as a separate debug file for OBJFILE. */
1183 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1185 struct objfile *new_objfile;
1186 struct section_addr_info *sap;
1187 struct cleanup *my_cleanup;
1189 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1190 because sections of BFD may not match sections of OBJFILE and because
1191 vma may have been modified by tools such as prelink. */
1192 sap = build_section_addr_info_from_objfile (objfile);
1193 my_cleanup = make_cleanup_free_section_addr_info (sap);
1195 new_objfile = symbol_file_add_with_addrs_or_offsets
1196 (bfd, symfile_flags,
1198 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 | OBJF_USERLOADED));
1201 do_cleanups (my_cleanup);
1203 add_separate_debug_objfile (new_objfile, objfile);
1206 /* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
1209 See symbol_file_add_with_addrs_or_offsets's comments for
1212 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1213 struct section_addr_info *addrs,
1216 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1221 /* Process a symbol file, as either the main file or as a dynamically
1222 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1225 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1228 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1233 /* Call symbol_file_add() with default values and update whatever is
1234 affected by the loading of a new main().
1235 Used when the file is supplied in the gdb command line
1236 and by some targets with special loading requirements.
1237 The auxiliary function, symbol_file_add_main_1(), has the flags
1238 argument for the switches that can only be specified in the symbol_file
1242 symbol_file_add_main (char *args, int from_tty)
1244 symbol_file_add_main_1 (args, from_tty, 0);
1248 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1250 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1251 symbol_file_add (args, add_flags, NULL, flags);
1253 /* Getting new symbols may change our opinion about
1254 what is frameless. */
1255 reinit_frame_cache ();
1257 set_initial_language ();
1261 symbol_file_clear (int from_tty)
1263 if ((have_full_symbols () || have_partial_symbols ())
1266 ? !query (_("Discard symbol table from `%s'? "),
1267 symfile_objfile->name)
1268 : !query (_("Discard symbol table? "))))
1269 error (_("Not confirmed."));
1271 /* solib descriptors may have handles to objfiles. Wipe them before their
1272 objfiles get stale by free_all_objfiles. */
1273 no_shared_libraries (NULL, from_tty);
1275 free_all_objfiles ();
1277 gdb_assert (symfile_objfile == NULL);
1279 printf_unfiltered (_("No symbol file now.\n"));
1283 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1286 bfd_size_type debuglink_size;
1287 unsigned long crc32;
1291 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1296 debuglink_size = bfd_section_size (objfile->obfd, sect);
1298 contents = xmalloc (debuglink_size);
1299 bfd_get_section_contents (objfile->obfd, sect, contents,
1300 (file_ptr)0, (bfd_size_type)debuglink_size);
1302 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1303 crc_offset = strlen (contents) + 1;
1304 crc_offset = (crc_offset + 3) & ~3;
1306 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1313 separate_debug_file_exists (const char *name, unsigned long crc,
1314 struct objfile *parent_objfile)
1316 unsigned long file_crc = 0;
1318 gdb_byte buffer[8*1024];
1320 struct stat parent_stat, abfd_stat;
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1326 the separate debug infos with the same basename can exist. */
1328 if (filename_cmp (name, parent_objfile->name) == 0)
1331 abfd = bfd_open_maybe_remote (name);
1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1348 && abfd_stat.st_dev == parent_stat.st_dev
1349 && abfd_stat.st_ino == parent_stat.st_ino
1350 && abfd_stat.st_ino != 0)
1356 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1357 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1361 if (crc != file_crc)
1363 warning (_("the debug information found in \"%s\""
1364 " does not match \"%s\" (CRC mismatch).\n"),
1365 name, parent_objfile->name);
1372 char *debug_file_directory = NULL;
1374 show_debug_file_directory (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c, const char *value)
1377 fprintf_filtered (file,
1378 _("The directory where separate debug "
1379 "symbols are searched for is \"%s\".\n"),
1383 #if ! defined (DEBUG_SUBDIRECTORY)
1384 #define DEBUG_SUBDIRECTORY ".debug"
1388 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1390 char *basename, *debugdir;
1392 char *debugfile = NULL;
1393 char *canon_name = NULL;
1394 unsigned long crc32;
1397 basename = get_debug_link_info (objfile, &crc32);
1399 if (basename == NULL)
1400 /* There's no separate debug info, hence there's no way we could
1401 load it => no warning. */
1402 goto cleanup_return_debugfile;
1404 dir = xstrdup (objfile->name);
1406 /* Strip off the final filename part, leaving the directory name,
1407 followed by a slash. The directory can be relative or absolute. */
1408 for (i = strlen(dir) - 1; i >= 0; i--)
1410 if (IS_DIR_SEPARATOR (dir[i]))
1413 /* If I is -1 then no directory is present there and DIR will be "". */
1416 /* Set I to max (strlen (canon_name), strlen (dir)). */
1417 canon_name = lrealpath (dir);
1419 if (canon_name && strlen (canon_name) > i)
1420 i = strlen (canon_name);
1422 debugfile = xmalloc (strlen (debug_file_directory) + 1
1424 + strlen (DEBUG_SUBDIRECTORY)
1429 /* First try in the same directory as the original file. */
1430 strcpy (debugfile, dir);
1431 strcat (debugfile, basename);
1433 if (separate_debug_file_exists (debugfile, crc32, objfile))
1434 goto cleanup_return_debugfile;
1436 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1437 strcpy (debugfile, dir);
1438 strcat (debugfile, DEBUG_SUBDIRECTORY);
1439 strcat (debugfile, "/");
1440 strcat (debugfile, basename);
1442 if (separate_debug_file_exists (debugfile, crc32, objfile))
1443 goto cleanup_return_debugfile;
1445 /* Then try in the global debugfile directories.
1447 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1448 cause "/..." lookups. */
1450 debugdir = debug_file_directory;
1455 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1459 if (debugdir_end == NULL)
1460 debugdir_end = &debugdir[strlen (debugdir)];
1462 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1463 debugfile[debugdir_end - debugdir] = 0;
1464 strcat (debugfile, "/");
1465 strcat (debugfile, dir);
1466 strcat (debugfile, basename);
1468 if (separate_debug_file_exists (debugfile, crc32, objfile))
1469 goto cleanup_return_debugfile;
1471 /* If the file is in the sysroot, try using its base path in the
1472 global debugfile directory. */
1474 && filename_ncmp (canon_name, gdb_sysroot,
1475 strlen (gdb_sysroot)) == 0
1476 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1479 debugfile[debugdir_end - debugdir] = 0;
1480 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1481 strcat (debugfile, "/");
1482 strcat (debugfile, basename);
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 goto cleanup_return_debugfile;
1488 debugdir = debugdir_end;
1490 while (*debugdir != 0);
1495 cleanup_return_debugfile:
1503 /* This is the symbol-file command. Read the file, analyze its
1504 symbols, and add a struct symtab to a symtab list. The syntax of
1505 the command is rather bizarre:
1507 1. The function buildargv implements various quoting conventions
1508 which are undocumented and have little or nothing in common with
1509 the way things are quoted (or not quoted) elsewhere in GDB.
1511 2. Options are used, which are not generally used in GDB (perhaps
1512 "set mapped on", "set readnow on" would be better)
1514 3. The order of options matters, which is contrary to GNU
1515 conventions (because it is confusing and inconvenient). */
1518 symbol_file_command (char *args, int from_tty)
1524 symbol_file_clear (from_tty);
1528 char **argv = gdb_buildargv (args);
1529 int flags = OBJF_USERLOADED;
1530 struct cleanup *cleanups;
1533 cleanups = make_cleanup_freeargv (argv);
1534 while (*argv != NULL)
1536 if (strcmp (*argv, "-readnow") == 0)
1537 flags |= OBJF_READNOW;
1538 else if (**argv == '-')
1539 error (_("unknown option `%s'"), *argv);
1542 symbol_file_add_main_1 (*argv, from_tty, flags);
1550 error (_("no symbol file name was specified"));
1552 do_cleanups (cleanups);
1556 /* Set the initial language.
1558 FIXME: A better solution would be to record the language in the
1559 psymtab when reading partial symbols, and then use it (if known) to
1560 set the language. This would be a win for formats that encode the
1561 language in an easily discoverable place, such as DWARF. For
1562 stabs, we can jump through hoops looking for specially named
1563 symbols or try to intuit the language from the specific type of
1564 stabs we find, but we can't do that until later when we read in
1568 set_initial_language (void)
1570 enum language lang = language_unknown;
1572 if (language_of_main != language_unknown)
1573 lang = language_of_main;
1576 const char *filename;
1578 filename = find_main_filename ();
1579 if (filename != NULL)
1580 lang = deduce_language_from_filename (filename);
1583 if (lang == language_unknown)
1585 /* Make C the default language */
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
1593 /* If NAME is a remote name open the file using remote protocol, otherwise
1594 open it normally. */
1597 bfd_open_maybe_remote (const char *name)
1599 if (remote_filename_p (name))
1600 return remote_bfd_open (name, gnutarget);
1602 return bfd_openr (name, gnutarget);
1606 /* Open the file specified by NAME and hand it off to BFD for
1607 preliminary analysis. Return a newly initialized bfd *, which
1608 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1609 absolute). In case of trouble, error() is called. */
1612 symfile_bfd_open (char *name)
1616 char *absolute_name;
1618 if (remote_filename_p (name))
1620 name = xstrdup (name);
1621 sym_bfd = remote_bfd_open (name, gnutarget);
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't open to read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1631 bfd_close (sym_bfd);
1632 make_cleanup (xfree, name);
1633 error (_("`%s': can't read symbols: %s."), name,
1634 bfd_errmsg (bfd_get_error ()));
1640 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1642 /* Look down path for it, allocate 2nd new malloc'd copy. */
1643 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1644 O_RDONLY | O_BINARY, &absolute_name);
1645 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1648 char *exename = alloca (strlen (name) + 5);
1650 strcat (strcpy (exename, name), ".exe");
1651 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1652 O_RDONLY | O_BINARY, &absolute_name);
1657 make_cleanup (xfree, name);
1658 perror_with_name (name);
1661 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1662 bfd. It'll be freed in free_objfile(). */
1664 name = absolute_name;
1666 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1670 make_cleanup (xfree, name);
1671 error (_("`%s': can't open to read symbols: %s."), name,
1672 bfd_errmsg (bfd_get_error ()));
1674 bfd_set_cacheable (sym_bfd, 1);
1676 if (!bfd_check_format (sym_bfd, bfd_object))
1678 /* FIXME: should be checking for errors from bfd_close (for one
1679 thing, on error it does not free all the storage associated
1681 bfd_close (sym_bfd); /* This also closes desc. */
1682 make_cleanup (xfree, name);
1683 error (_("`%s': can't read symbols: %s."), name,
1684 bfd_errmsg (bfd_get_error ()));
1687 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1688 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1693 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1694 the section was not found. */
1697 get_section_index (struct objfile *objfile, char *section_name)
1699 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1707 /* Link SF into the global symtab_fns list. Called on startup by the
1708 _initialize routine in each object file format reader, to register
1709 information about each format the reader is prepared to handle. */
1712 add_symtab_fns (const struct sym_fns *sf)
1714 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1717 /* Initialize OBJFILE to read symbols from its associated BFD. It
1718 either returns or calls error(). The result is an initialized
1719 struct sym_fns in the objfile structure, that contains cached
1720 information about the symbol file. */
1722 static const struct sym_fns *
1723 find_sym_fns (bfd *abfd)
1725 const struct sym_fns *sf;
1726 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1729 if (our_flavour == bfd_target_srec_flavour
1730 || our_flavour == bfd_target_ihex_flavour
1731 || our_flavour == bfd_target_tekhex_flavour)
1732 return NULL; /* No symbols. */
1734 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1735 if (our_flavour == sf->sym_flavour)
1738 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1739 bfd_get_target (abfd));
1743 /* This function runs the load command of our current target. */
1746 load_command (char *arg, int from_tty)
1750 /* The user might be reloading because the binary has changed. Take
1751 this opportunity to check. */
1752 reopen_exec_file ();
1760 parg = arg = get_exec_file (1);
1762 /* Count how many \ " ' tab space there are in the name. */
1763 while ((parg = strpbrk (parg, "\\\"'\t ")))
1771 /* We need to quote this string so buildargv can pull it apart. */
1772 char *temp = xmalloc (strlen (arg) + count + 1 );
1776 make_cleanup (xfree, temp);
1779 while ((parg = strpbrk (parg, "\\\"'\t ")))
1781 strncpy (ptemp, prev, parg - prev);
1782 ptemp += parg - prev;
1786 strcpy (ptemp, prev);
1792 target_load (arg, from_tty);
1794 /* After re-loading the executable, we don't really know which
1795 overlays are mapped any more. */
1796 overlay_cache_invalid = 1;
1799 /* This version of "load" should be usable for any target. Currently
1800 it is just used for remote targets, not inftarg.c or core files,
1801 on the theory that only in that case is it useful.
1803 Avoiding xmodem and the like seems like a win (a) because we don't have
1804 to worry about finding it, and (b) On VMS, fork() is very slow and so
1805 we don't want to run a subprocess. On the other hand, I'm not sure how
1806 performance compares. */
1808 static int validate_download = 0;
1810 /* Callback service function for generic_load (bfd_map_over_sections). */
1813 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1815 bfd_size_type *sum = data;
1817 *sum += bfd_get_section_size (asec);
1820 /* Opaque data for load_section_callback. */
1821 struct load_section_data {
1822 unsigned long load_offset;
1823 struct load_progress_data *progress_data;
1824 VEC(memory_write_request_s) *requests;
1827 /* Opaque data for load_progress. */
1828 struct load_progress_data {
1829 /* Cumulative data. */
1830 unsigned long write_count;
1831 unsigned long data_count;
1832 bfd_size_type total_size;
1835 /* Opaque data for load_progress for a single section. */
1836 struct load_progress_section_data {
1837 struct load_progress_data *cumulative;
1839 /* Per-section data. */
1840 const char *section_name;
1841 ULONGEST section_sent;
1842 ULONGEST section_size;
1847 /* Target write callback routine for progress reporting. */
1850 load_progress (ULONGEST bytes, void *untyped_arg)
1852 struct load_progress_section_data *args = untyped_arg;
1853 struct load_progress_data *totals;
1856 /* Writing padding data. No easy way to get at the cumulative
1857 stats, so just ignore this. */
1860 totals = args->cumulative;
1862 if (bytes == 0 && args->section_sent == 0)
1864 /* The write is just starting. Let the user know we've started
1866 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1867 args->section_name, hex_string (args->section_size),
1868 paddress (target_gdbarch, args->lma));
1872 if (validate_download)
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb_byte *check = xmalloc (bytes);
1882 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1884 if (target_read_memory (args->lma, check, bytes) != 0)
1885 error (_("Download verify read failed at %s"),
1886 paddress (target_gdbarch, args->lma));
1887 if (memcmp (args->buffer, check, bytes) != 0)
1888 error (_("Download verify compare failed at %s"),
1889 paddress (target_gdbarch, args->lma));
1890 do_cleanups (verify_cleanups);
1892 totals->data_count += bytes;
1894 args->buffer += bytes;
1895 totals->write_count += 1;
1896 args->section_sent += bytes;
1898 || (deprecated_ui_load_progress_hook != NULL
1899 && deprecated_ui_load_progress_hook (args->section_name,
1900 args->section_sent)))
1901 error (_("Canceled the download"));
1903 if (deprecated_show_load_progress != NULL)
1904 deprecated_show_load_progress (args->section_name,
1908 totals->total_size);
1911 /* Callback service function for generic_load (bfd_map_over_sections). */
1914 load_section_callback (bfd *abfd, asection *asec, void *data)
1916 struct memory_write_request *new_request;
1917 struct load_section_data *args = data;
1918 struct load_progress_section_data *section_data;
1919 bfd_size_type size = bfd_get_section_size (asec);
1921 const char *sect_name = bfd_get_section_name (abfd, asec);
1923 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1929 new_request = VEC_safe_push (memory_write_request_s,
1930 args->requests, NULL);
1931 memset (new_request, 0, sizeof (struct memory_write_request));
1932 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1933 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 new_request->end = new_request->begin + size; /* FIXME Should size
1936 new_request->data = xmalloc (size);
1937 new_request->baton = section_data;
1939 buffer = new_request->data;
1941 section_data->cumulative = args->progress_data;
1942 section_data->section_name = sect_name;
1943 section_data->section_size = size;
1944 section_data->lma = new_request->begin;
1945 section_data->buffer = buffer;
1947 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1950 /* Clean up an entire memory request vector, including load
1951 data and progress records. */
1954 clear_memory_write_data (void *arg)
1956 VEC(memory_write_request_s) **vec_p = arg;
1957 VEC(memory_write_request_s) *vec = *vec_p;
1959 struct memory_write_request *mr;
1961 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1966 VEC_free (memory_write_request_s, vec);
1970 generic_load (char *args, int from_tty)
1973 struct timeval start_time, end_time;
1975 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1976 struct load_section_data cbdata;
1977 struct load_progress_data total_progress;
1982 memset (&cbdata, 0, sizeof (cbdata));
1983 memset (&total_progress, 0, sizeof (total_progress));
1984 cbdata.progress_data = &total_progress;
1986 make_cleanup (clear_memory_write_data, &cbdata.requests);
1989 error_no_arg (_("file to load"));
1991 argv = gdb_buildargv (args);
1992 make_cleanup_freeargv (argv);
1994 filename = tilde_expand (argv[0]);
1995 make_cleanup (xfree, filename);
1997 if (argv[1] != NULL)
2001 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2003 /* If the last word was not a valid number then
2004 treat it as a file name with spaces in. */
2005 if (argv[1] == endptr)
2006 error (_("Invalid download offset:%s."), argv[1]);
2008 if (argv[2] != NULL)
2009 error (_("Too many parameters."));
2012 /* Open the file for loading. */
2013 loadfile_bfd = bfd_openr (filename, gnutarget);
2014 if (loadfile_bfd == NULL)
2016 perror_with_name (filename);
2020 /* FIXME: should be checking for errors from bfd_close (for one thing,
2021 on error it does not free all the storage associated with the
2023 make_cleanup_bfd_close (loadfile_bfd);
2025 if (!bfd_check_format (loadfile_bfd, bfd_object))
2027 error (_("\"%s\" is not an object file: %s"), filename,
2028 bfd_errmsg (bfd_get_error ()));
2031 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2032 (void *) &total_progress.total_size);
2034 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2036 gettimeofday (&start_time, NULL);
2038 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2039 load_progress) != 0)
2040 error (_("Load failed"));
2042 gettimeofday (&end_time, NULL);
2044 entry = bfd_get_start_address (loadfile_bfd);
2045 ui_out_text (uiout, "Start address ");
2046 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2047 ui_out_text (uiout, ", load size ");
2048 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2049 ui_out_text (uiout, "\n");
2050 /* We were doing this in remote-mips.c, I suspect it is right
2051 for other targets too. */
2052 regcache_write_pc (get_current_regcache (), entry);
2054 /* Reset breakpoints, now that we have changed the load image. For
2055 instance, breakpoints may have been set (or reset, by
2056 post_create_inferior) while connected to the target but before we
2057 loaded the program. In that case, the prologue analyzer could
2058 have read instructions from the target to find the right
2059 breakpoint locations. Loading has changed the contents of that
2062 breakpoint_re_set ();
2064 /* FIXME: are we supposed to call symbol_file_add or not? According
2065 to a comment from remote-mips.c (where a call to symbol_file_add
2066 was commented out), making the call confuses GDB if more than one
2067 file is loaded in. Some targets do (e.g., remote-vx.c) but
2068 others don't (or didn't - perhaps they have all been deleted). */
2070 print_transfer_performance (gdb_stdout, total_progress.data_count,
2071 total_progress.write_count,
2072 &start_time, &end_time);
2074 do_cleanups (old_cleanups);
2077 /* Report how fast the transfer went. */
2079 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2080 replaced by print_transfer_performance (with a very different
2081 function signature). */
2084 report_transfer_performance (unsigned long data_count, time_t start_time,
2087 struct timeval start, end;
2089 start.tv_sec = start_time;
2091 end.tv_sec = end_time;
2094 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2098 print_transfer_performance (struct ui_file *stream,
2099 unsigned long data_count,
2100 unsigned long write_count,
2101 const struct timeval *start_time,
2102 const struct timeval *end_time)
2104 ULONGEST time_count;
2106 /* Compute the elapsed time in milliseconds, as a tradeoff between
2107 accuracy and overflow. */
2108 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2109 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2111 ui_out_text (uiout, "Transfer rate: ");
2114 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2116 if (ui_out_is_mi_like_p (uiout))
2118 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2119 ui_out_text (uiout, " bits/sec");
2121 else if (rate < 1024)
2123 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2124 ui_out_text (uiout, " bytes/sec");
2128 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2129 ui_out_text (uiout, " KB/sec");
2134 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2135 ui_out_text (uiout, " bits in <1 sec");
2137 if (write_count > 0)
2139 ui_out_text (uiout, ", ");
2140 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2141 ui_out_text (uiout, " bytes/write");
2143 ui_out_text (uiout, ".\n");
2146 /* This function allows the addition of incrementally linked object files.
2147 It does not modify any state in the target, only in the debugger. */
2148 /* Note: ezannoni 2000-04-13 This function/command used to have a
2149 special case syntax for the rombug target (Rombug is the boot
2150 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2151 rombug case, the user doesn't need to supply a text address,
2152 instead a call to target_link() (in target.c) would supply the
2153 value to use. We are now discontinuing this type of ad hoc syntax. */
2156 add_symbol_file_command (char *args, int from_tty)
2158 struct gdbarch *gdbarch = get_current_arch ();
2159 char *filename = NULL;
2160 int flags = OBJF_USERLOADED;
2162 int section_index = 0;
2166 int expecting_sec_name = 0;
2167 int expecting_sec_addr = 0;
2176 struct section_addr_info *section_addrs;
2177 struct sect_opt *sect_opts = NULL;
2178 size_t num_sect_opts = 0;
2179 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2182 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2183 * sizeof (struct sect_opt));
2188 error (_("add-symbol-file takes a file name and an address"));
2190 argv = gdb_buildargv (args);
2191 make_cleanup_freeargv (argv);
2193 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2195 /* Process the argument. */
2198 /* The first argument is the file name. */
2199 filename = tilde_expand (arg);
2200 make_cleanup (xfree, filename);
2205 /* The second argument is always the text address at which
2206 to load the program. */
2207 sect_opts[section_index].name = ".text";
2208 sect_opts[section_index].value = arg;
2209 if (++section_index >= num_sect_opts)
2212 sect_opts = ((struct sect_opt *)
2213 xrealloc (sect_opts,
2215 * sizeof (struct sect_opt)));
2220 /* It's an option (starting with '-') or it's an argument
2225 if (strcmp (arg, "-readnow") == 0)
2226 flags |= OBJF_READNOW;
2227 else if (strcmp (arg, "-s") == 0)
2229 expecting_sec_name = 1;
2230 expecting_sec_addr = 1;
2235 if (expecting_sec_name)
2237 sect_opts[section_index].name = arg;
2238 expecting_sec_name = 0;
2241 if (expecting_sec_addr)
2243 sect_opts[section_index].value = arg;
2244 expecting_sec_addr = 0;
2245 if (++section_index >= num_sect_opts)
2248 sect_opts = ((struct sect_opt *)
2249 xrealloc (sect_opts,
2251 * sizeof (struct sect_opt)));
2255 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2256 " [-mapped] [-readnow] [-s <secname> <addr>]*"));
2261 /* This command takes at least two arguments. The first one is a
2262 filename, and the second is the address where this file has been
2263 loaded. Abort now if this address hasn't been provided by the
2265 if (section_index < 1)
2266 error (_("The address where %s has been loaded is missing"), filename);
2268 /* Print the prompt for the query below. And save the arguments into
2269 a sect_addr_info structure to be passed around to other
2270 functions. We have to split this up into separate print
2271 statements because hex_string returns a local static
2274 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2275 section_addrs = alloc_section_addr_info (section_index);
2276 make_cleanup (xfree, section_addrs);
2277 for (i = 0; i < section_index; i++)
2280 char *val = sect_opts[i].value;
2281 char *sec = sect_opts[i].name;
2283 addr = parse_and_eval_address (val);
2285 /* Here we store the section offsets in the order they were
2286 entered on the command line. */
2287 section_addrs->other[sec_num].name = sec;
2288 section_addrs->other[sec_num].addr = addr;
2289 printf_unfiltered ("\t%s_addr = %s\n", sec,
2290 paddress (gdbarch, addr));
2293 /* The object's sections are initialized when a
2294 call is made to build_objfile_section_table (objfile).
2295 This happens in reread_symbols.
2296 At this point, we don't know what file type this is,
2297 so we can't determine what section names are valid. */
2300 if (from_tty && (!query ("%s", "")))
2301 error (_("Not confirmed."));
2303 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2304 section_addrs, flags);
2306 /* Getting new symbols may change our opinion about what is
2308 reinit_frame_cache ();
2309 do_cleanups (my_cleanups);
2313 /* Re-read symbols if a symbol-file has changed. */
2315 reread_symbols (void)
2317 struct objfile *objfile;
2320 struct stat new_statbuf;
2323 /* With the addition of shared libraries, this should be modified,
2324 the load time should be saved in the partial symbol tables, since
2325 different tables may come from different source files. FIXME.
2326 This routine should then walk down each partial symbol table
2327 and see if the symbol table that it originates from has been changed. */
2329 for (objfile = object_files; objfile; objfile = objfile->next)
2331 /* solib-sunos.c creates one objfile with obfd. */
2332 if (objfile->obfd == NULL)
2335 /* Separate debug objfiles are handled in the main objfile. */
2336 if (objfile->separate_debug_objfile_backlink)
2339 /* If this object is from an archive (what you usually create with
2340 `ar', often called a `static library' on most systems, though
2341 a `shared library' on AIX is also an archive), then you should
2342 stat on the archive name, not member name. */
2343 if (objfile->obfd->my_archive)
2344 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2346 res = stat (objfile->name, &new_statbuf);
2349 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2350 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2354 new_modtime = new_statbuf.st_mtime;
2355 if (new_modtime != objfile->mtime)
2357 struct cleanup *old_cleanups;
2358 struct section_offsets *offsets;
2360 char *obfd_filename;
2362 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2365 /* There are various functions like symbol_file_add,
2366 symfile_bfd_open, syms_from_objfile, etc., which might
2367 appear to do what we want. But they have various other
2368 effects which we *don't* want. So we just do stuff
2369 ourselves. We don't worry about mapped files (for one thing,
2370 any mapped file will be out of date). */
2372 /* If we get an error, blow away this objfile (not sure if
2373 that is the correct response for things like shared
2375 old_cleanups = make_cleanup_free_objfile (objfile);
2376 /* We need to do this whenever any symbols go away. */
2377 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2379 if (exec_bfd != NULL
2380 && filename_cmp (bfd_get_filename (objfile->obfd),
2381 bfd_get_filename (exec_bfd)) == 0)
2383 /* Reload EXEC_BFD without asking anything. */
2385 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2388 /* Clean up any state BFD has sitting around. We don't need
2389 to close the descriptor but BFD lacks a way of closing the
2390 BFD without closing the descriptor. */
2391 obfd_filename = bfd_get_filename (objfile->obfd);
2392 if (!bfd_close (objfile->obfd))
2393 error (_("Can't close BFD for %s: %s"), objfile->name,
2394 bfd_errmsg (bfd_get_error ()));
2395 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2396 if (objfile->obfd == NULL)
2397 error (_("Can't open %s to read symbols."), objfile->name);
2399 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2400 /* bfd_openr sets cacheable to true, which is what we want. */
2401 if (!bfd_check_format (objfile->obfd, bfd_object))
2402 error (_("Can't read symbols from %s: %s."), objfile->name,
2403 bfd_errmsg (bfd_get_error ()));
2405 /* Save the offsets, we will nuke them with the rest of the
2407 num_offsets = objfile->num_sections;
2408 offsets = ((struct section_offsets *)
2409 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2410 memcpy (offsets, objfile->section_offsets,
2411 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2413 /* Remove any references to this objfile in the global
2415 preserve_values (objfile);
2417 /* Nuke all the state that we will re-read. Much of the following
2418 code which sets things to NULL really is necessary to tell
2419 other parts of GDB that there is nothing currently there.
2421 Try to keep the freeing order compatible with free_objfile. */
2423 if (objfile->sf != NULL)
2425 (*objfile->sf->sym_finish) (objfile);
2428 clear_objfile_data (objfile);
2430 /* Free the separate debug objfiles. It will be
2431 automatically recreated by sym_read. */
2432 free_objfile_separate_debug (objfile);
2434 /* FIXME: Do we have to free a whole linked list, or is this
2436 if (objfile->global_psymbols.list)
2437 xfree (objfile->global_psymbols.list);
2438 memset (&objfile->global_psymbols, 0,
2439 sizeof (objfile->global_psymbols));
2440 if (objfile->static_psymbols.list)
2441 xfree (objfile->static_psymbols.list);
2442 memset (&objfile->static_psymbols, 0,
2443 sizeof (objfile->static_psymbols));
2445 /* Free the obstacks for non-reusable objfiles. */
2446 psymbol_bcache_free (objfile->psymbol_cache);
2447 objfile->psymbol_cache = psymbol_bcache_init ();
2448 bcache_xfree (objfile->macro_cache);
2449 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2450 bcache_xfree (objfile->filename_cache);
2451 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2452 if (objfile->demangled_names_hash != NULL)
2454 htab_delete (objfile->demangled_names_hash);
2455 objfile->demangled_names_hash = NULL;
2457 obstack_free (&objfile->objfile_obstack, 0);
2458 objfile->sections = NULL;
2459 objfile->symtabs = NULL;
2460 objfile->psymtabs = NULL;
2461 objfile->psymtabs_addrmap = NULL;
2462 objfile->free_psymtabs = NULL;
2463 objfile->cp_namespace_symtab = NULL;
2464 objfile->template_symbols = NULL;
2465 objfile->msymbols = NULL;
2466 objfile->deprecated_sym_private = NULL;
2467 objfile->minimal_symbol_count = 0;
2468 memset (&objfile->msymbol_hash, 0,
2469 sizeof (objfile->msymbol_hash));
2470 memset (&objfile->msymbol_demangled_hash, 0,
2471 sizeof (objfile->msymbol_demangled_hash));
2473 objfile->psymbol_cache = psymbol_bcache_init ();
2474 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2475 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2476 /* obstack_init also initializes the obstack so it is
2477 empty. We could use obstack_specify_allocation but
2478 gdb_obstack.h specifies the alloc/dealloc
2480 obstack_init (&objfile->objfile_obstack);
2481 if (build_objfile_section_table (objfile))
2483 error (_("Can't find the file sections in `%s': %s"),
2484 objfile->name, bfd_errmsg (bfd_get_error ()));
2486 terminate_minimal_symbol_table (objfile);
2488 /* We use the same section offsets as from last time. I'm not
2489 sure whether that is always correct for shared libraries. */
2490 objfile->section_offsets = (struct section_offsets *)
2491 obstack_alloc (&objfile->objfile_obstack,
2492 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2493 memcpy (objfile->section_offsets, offsets,
2494 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2495 objfile->num_sections = num_offsets;
2497 /* What the hell is sym_new_init for, anyway? The concept of
2498 distinguishing between the main file and additional files
2499 in this way seems rather dubious. */
2500 if (objfile == symfile_objfile)
2502 (*objfile->sf->sym_new_init) (objfile);
2505 (*objfile->sf->sym_init) (objfile);
2506 clear_complaints (&symfile_complaints, 1, 1);
2507 /* Do not set flags as this is safe and we don't want to be
2509 (*objfile->sf->sym_read) (objfile, 0);
2510 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2512 objfile->flags &= ~OBJF_PSYMTABS_READ;
2513 require_partial_symbols (objfile, 0);
2516 if (!objfile_has_symbols (objfile))
2519 printf_unfiltered (_("(no debugging symbols found)\n"));
2523 /* We're done reading the symbol file; finish off complaints. */
2524 clear_complaints (&symfile_complaints, 0, 1);
2526 /* Getting new symbols may change our opinion about what is
2529 reinit_frame_cache ();
2531 /* Discard cleanups as symbol reading was successful. */
2532 discard_cleanups (old_cleanups);
2534 /* If the mtime has changed between the time we set new_modtime
2535 and now, we *want* this to be out of date, so don't call stat
2537 objfile->mtime = new_modtime;
2539 init_entry_point_info (objfile);
2545 /* Notify objfiles that we've modified objfile sections. */
2546 objfiles_changed ();
2548 clear_symtab_users (0);
2549 /* At least one objfile has changed, so we can consider that
2550 the executable we're debugging has changed too. */
2551 observer_notify_executable_changed ();
2564 static filename_language *filename_language_table;
2565 static int fl_table_size, fl_table_next;
2568 add_filename_language (char *ext, enum language lang)
2570 if (fl_table_next >= fl_table_size)
2572 fl_table_size += 10;
2573 filename_language_table =
2574 xrealloc (filename_language_table,
2575 fl_table_size * sizeof (*filename_language_table));
2578 filename_language_table[fl_table_next].ext = xstrdup (ext);
2579 filename_language_table[fl_table_next].lang = lang;
2583 static char *ext_args;
2585 show_ext_args (struct ui_file *file, int from_tty,
2586 struct cmd_list_element *c, const char *value)
2588 fprintf_filtered (file,
2589 _("Mapping between filename extension "
2590 "and source language is \"%s\".\n"),
2595 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2598 char *cp = ext_args;
2601 /* First arg is filename extension, starting with '.' */
2603 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2605 /* Find end of first arg. */
2606 while (*cp && !isspace (*cp))
2610 error (_("'%s': two arguments required -- "
2611 "filename extension and language"),
2614 /* Null-terminate first arg. */
2617 /* Find beginning of second arg, which should be a source language. */
2618 while (*cp && isspace (*cp))
2622 error (_("'%s': two arguments required -- "
2623 "filename extension and language"),
2626 /* Lookup the language from among those we know. */
2627 lang = language_enum (cp);
2629 /* Now lookup the filename extension: do we already know it? */
2630 for (i = 0; i < fl_table_next; i++)
2631 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2634 if (i >= fl_table_next)
2636 /* New file extension. */
2637 add_filename_language (ext_args, lang);
2641 /* Redefining a previously known filename extension. */
2644 /* query ("Really make files of type %s '%s'?", */
2645 /* ext_args, language_str (lang)); */
2647 xfree (filename_language_table[i].ext);
2648 filename_language_table[i].ext = xstrdup (ext_args);
2649 filename_language_table[i].lang = lang;
2654 info_ext_lang_command (char *args, int from_tty)
2658 printf_filtered (_("Filename extensions and the languages they represent:"));
2659 printf_filtered ("\n\n");
2660 for (i = 0; i < fl_table_next; i++)
2661 printf_filtered ("\t%s\t- %s\n",
2662 filename_language_table[i].ext,
2663 language_str (filename_language_table[i].lang));
2667 init_filename_language_table (void)
2669 if (fl_table_size == 0) /* Protect against repetition. */
2673 filename_language_table =
2674 xmalloc (fl_table_size * sizeof (*filename_language_table));
2675 add_filename_language (".c", language_c);
2676 add_filename_language (".d", language_d);
2677 add_filename_language (".C", language_cplus);
2678 add_filename_language (".cc", language_cplus);
2679 add_filename_language (".cp", language_cplus);
2680 add_filename_language (".cpp", language_cplus);
2681 add_filename_language (".cxx", language_cplus);
2682 add_filename_language (".c++", language_cplus);
2683 add_filename_language (".java", language_java);
2684 add_filename_language (".class", language_java);
2685 add_filename_language (".m", language_objc);
2686 add_filename_language (".f", language_fortran);
2687 add_filename_language (".F", language_fortran);
2688 add_filename_language (".for", language_fortran);
2689 add_filename_language (".FOR", language_fortran);
2690 add_filename_language (".ftn", language_fortran);
2691 add_filename_language (".FTN", language_fortran);
2692 add_filename_language (".fpp", language_fortran);
2693 add_filename_language (".FPP", language_fortran);
2694 add_filename_language (".f90", language_fortran);
2695 add_filename_language (".F90", language_fortran);
2696 add_filename_language (".f95", language_fortran);
2697 add_filename_language (".F95", language_fortran);
2698 add_filename_language (".f03", language_fortran);
2699 add_filename_language (".F03", language_fortran);
2700 add_filename_language (".f08", language_fortran);
2701 add_filename_language (".F08", language_fortran);
2702 add_filename_language (".s", language_asm);
2703 add_filename_language (".sx", language_asm);
2704 add_filename_language (".S", language_asm);
2705 add_filename_language (".pas", language_pascal);
2706 add_filename_language (".p", language_pascal);
2707 add_filename_language (".pp", language_pascal);
2708 add_filename_language (".adb", language_ada);
2709 add_filename_language (".ads", language_ada);
2710 add_filename_language (".a", language_ada);
2711 add_filename_language (".ada", language_ada);
2712 add_filename_language (".dg", language_ada);
2717 deduce_language_from_filename (const char *filename)
2722 if (filename != NULL)
2723 if ((cp = strrchr (filename, '.')) != NULL)
2724 for (i = 0; i < fl_table_next; i++)
2725 if (strcmp (cp, filename_language_table[i].ext) == 0)
2726 return filename_language_table[i].lang;
2728 return language_unknown;
2733 Allocate and partly initialize a new symbol table. Return a pointer
2734 to it. error() if no space.
2736 Caller must set these fields:
2745 allocate_symtab (const char *filename, struct objfile *objfile)
2747 struct symtab *symtab;
2749 symtab = (struct symtab *)
2750 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2751 memset (symtab, 0, sizeof (*symtab));
2752 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2753 objfile->filename_cache);
2754 symtab->fullname = NULL;
2755 symtab->language = deduce_language_from_filename (filename);
2756 symtab->debugformat = "unknown";
2758 /* Hook it to the objfile it comes from. */
2760 symtab->objfile = objfile;
2761 symtab->next = objfile->symtabs;
2762 objfile->symtabs = symtab;
2768 /* Reset all data structures in gdb which may contain references to symbol
2769 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2772 clear_symtab_users (int add_flags)
2774 /* Someday, we should do better than this, by only blowing away
2775 the things that really need to be blown. */
2777 /* Clear the "current" symtab first, because it is no longer valid.
2778 breakpoint_re_set may try to access the current symtab. */
2779 clear_current_source_symtab_and_line ();
2782 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2783 breakpoint_re_set ();
2784 set_default_breakpoint (0, NULL, 0, 0, 0);
2785 clear_pc_function_cache ();
2786 observer_notify_new_objfile (NULL);
2788 /* Clear globals which might have pointed into a removed objfile.
2789 FIXME: It's not clear which of these are supposed to persist
2790 between expressions and which ought to be reset each time. */
2791 expression_context_block = NULL;
2792 innermost_block = NULL;
2794 /* Varobj may refer to old symbols, perform a cleanup. */
2795 varobj_invalidate ();
2800 clear_symtab_users_cleanup (void *ignore)
2802 clear_symtab_users (0);
2806 The following code implements an abstraction for debugging overlay sections.
2808 The target model is as follows:
2809 1) The gnu linker will permit multiple sections to be mapped into the
2810 same VMA, each with its own unique LMA (or load address).
2811 2) It is assumed that some runtime mechanism exists for mapping the
2812 sections, one by one, from the load address into the VMA address.
2813 3) This code provides a mechanism for gdb to keep track of which
2814 sections should be considered to be mapped from the VMA to the LMA.
2815 This information is used for symbol lookup, and memory read/write.
2816 For instance, if a section has been mapped then its contents
2817 should be read from the VMA, otherwise from the LMA.
2819 Two levels of debugger support for overlays are available. One is
2820 "manual", in which the debugger relies on the user to tell it which
2821 overlays are currently mapped. This level of support is
2822 implemented entirely in the core debugger, and the information about
2823 whether a section is mapped is kept in the objfile->obj_section table.
2825 The second level of support is "automatic", and is only available if
2826 the target-specific code provides functionality to read the target's
2827 overlay mapping table, and translate its contents for the debugger
2828 (by updating the mapped state information in the obj_section tables).
2830 The interface is as follows:
2832 overlay map <name> -- tell gdb to consider this section mapped
2833 overlay unmap <name> -- tell gdb to consider this section unmapped
2834 overlay list -- list the sections that GDB thinks are mapped
2835 overlay read-target -- get the target's state of what's mapped
2836 overlay off/manual/auto -- set overlay debugging state
2837 Functional interface:
2838 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2839 section, return that section.
2840 find_pc_overlay(pc): find any overlay section that contains
2841 the pc, either in its VMA or its LMA
2842 section_is_mapped(sect): true if overlay is marked as mapped
2843 section_is_overlay(sect): true if section's VMA != LMA
2844 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2845 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2846 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2847 overlay_mapped_address(...): map an address from section's LMA to VMA
2848 overlay_unmapped_address(...): map an address from section's VMA to LMA
2849 symbol_overlayed_address(...): Return a "current" address for symbol:
2850 either in VMA or LMA depending on whether
2851 the symbol's section is currently mapped. */
2853 /* Overlay debugging state: */
2855 enum overlay_debugging_state overlay_debugging = ovly_off;
2856 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2858 /* Function: section_is_overlay (SECTION)
2859 Returns true if SECTION has VMA not equal to LMA, ie.
2860 SECTION is loaded at an address different from where it will "run". */
2863 section_is_overlay (struct obj_section *section)
2865 if (overlay_debugging && section)
2867 bfd *abfd = section->objfile->obfd;
2868 asection *bfd_section = section->the_bfd_section;
2870 if (bfd_section_lma (abfd, bfd_section) != 0
2871 && bfd_section_lma (abfd, bfd_section)
2872 != bfd_section_vma (abfd, bfd_section))
2879 /* Function: overlay_invalidate_all (void)
2880 Invalidate the mapped state of all overlay sections (mark it as stale). */
2883 overlay_invalidate_all (void)
2885 struct objfile *objfile;
2886 struct obj_section *sect;
2888 ALL_OBJSECTIONS (objfile, sect)
2889 if (section_is_overlay (sect))
2890 sect->ovly_mapped = -1;
2893 /* Function: section_is_mapped (SECTION)
2894 Returns true if section is an overlay, and is currently mapped.
2896 Access to the ovly_mapped flag is restricted to this function, so
2897 that we can do automatic update. If the global flag
2898 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2899 overlay_invalidate_all. If the mapped state of the particular
2900 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2903 section_is_mapped (struct obj_section *osect)
2905 struct gdbarch *gdbarch;
2907 if (osect == 0 || !section_is_overlay (osect))
2910 switch (overlay_debugging)
2914 return 0; /* overlay debugging off */
2915 case ovly_auto: /* overlay debugging automatic */
2916 /* Unles there is a gdbarch_overlay_update function,
2917 there's really nothing useful to do here (can't really go auto). */
2918 gdbarch = get_objfile_arch (osect->objfile);
2919 if (gdbarch_overlay_update_p (gdbarch))
2921 if (overlay_cache_invalid)
2923 overlay_invalidate_all ();
2924 overlay_cache_invalid = 0;
2926 if (osect->ovly_mapped == -1)
2927 gdbarch_overlay_update (gdbarch, osect);
2929 /* fall thru to manual case */
2930 case ovly_on: /* overlay debugging manual */
2931 return osect->ovly_mapped == 1;
2935 /* Function: pc_in_unmapped_range
2936 If PC falls into the lma range of SECTION, return true, else false. */
2939 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2941 if (section_is_overlay (section))
2943 bfd *abfd = section->objfile->obfd;
2944 asection *bfd_section = section->the_bfd_section;
2946 /* We assume the LMA is relocated by the same offset as the VMA. */
2947 bfd_vma size = bfd_get_section_size (bfd_section);
2948 CORE_ADDR offset = obj_section_offset (section);
2950 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2951 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2958 /* Function: pc_in_mapped_range
2959 If PC falls into the vma range of SECTION, return true, else false. */
2962 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2964 if (section_is_overlay (section))
2966 if (obj_section_addr (section) <= pc
2967 && pc < obj_section_endaddr (section))
2975 /* Return true if the mapped ranges of sections A and B overlap, false
2978 sections_overlap (struct obj_section *a, struct obj_section *b)
2980 CORE_ADDR a_start = obj_section_addr (a);
2981 CORE_ADDR a_end = obj_section_endaddr (a);
2982 CORE_ADDR b_start = obj_section_addr (b);
2983 CORE_ADDR b_end = obj_section_endaddr (b);
2985 return (a_start < b_end && b_start < a_end);
2988 /* Function: overlay_unmapped_address (PC, SECTION)
2989 Returns the address corresponding to PC in the unmapped (load) range.
2990 May be the same as PC. */
2993 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2995 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2997 bfd *abfd = section->objfile->obfd;
2998 asection *bfd_section = section->the_bfd_section;
3000 return pc + bfd_section_lma (abfd, bfd_section)
3001 - bfd_section_vma (abfd, bfd_section);
3007 /* Function: overlay_mapped_address (PC, SECTION)
3008 Returns the address corresponding to PC in the mapped (runtime) range.
3009 May be the same as PC. */
3012 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3014 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3016 bfd *abfd = section->objfile->obfd;
3017 asection *bfd_section = section->the_bfd_section;
3019 return pc + bfd_section_vma (abfd, bfd_section)
3020 - bfd_section_lma (abfd, bfd_section);
3027 /* Function: symbol_overlayed_address
3028 Return one of two addresses (relative to the VMA or to the LMA),
3029 depending on whether the section is mapped or not. */
3032 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3034 if (overlay_debugging)
3036 /* If the symbol has no section, just return its regular address. */
3039 /* If the symbol's section is not an overlay, just return its
3041 if (!section_is_overlay (section))
3043 /* If the symbol's section is mapped, just return its address. */
3044 if (section_is_mapped (section))
3047 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3048 * then return its LOADED address rather than its vma address!!
3050 return overlay_unmapped_address (address, section);
3055 /* Function: find_pc_overlay (PC)
3056 Return the best-match overlay section for PC:
3057 If PC matches a mapped overlay section's VMA, return that section.
3058 Else if PC matches an unmapped section's VMA, return that section.
3059 Else if PC matches an unmapped section's LMA, return that section. */
3061 struct obj_section *
3062 find_pc_overlay (CORE_ADDR pc)
3064 struct objfile *objfile;
3065 struct obj_section *osect, *best_match = NULL;
3067 if (overlay_debugging)
3068 ALL_OBJSECTIONS (objfile, osect)
3069 if (section_is_overlay (osect))
3071 if (pc_in_mapped_range (pc, osect))
3073 if (section_is_mapped (osect))
3078 else if (pc_in_unmapped_range (pc, osect))
3084 /* Function: find_pc_mapped_section (PC)
3085 If PC falls into the VMA address range of an overlay section that is
3086 currently marked as MAPPED, return that section. Else return NULL. */
3088 struct obj_section *
3089 find_pc_mapped_section (CORE_ADDR pc)
3091 struct objfile *objfile;
3092 struct obj_section *osect;
3094 if (overlay_debugging)
3095 ALL_OBJSECTIONS (objfile, osect)
3096 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3102 /* Function: list_overlays_command
3103 Print a list of mapped sections and their PC ranges. */
3106 list_overlays_command (char *args, int from_tty)
3109 struct objfile *objfile;
3110 struct obj_section *osect;
3112 if (overlay_debugging)
3113 ALL_OBJSECTIONS (objfile, osect)
3114 if (section_is_mapped (osect))
3116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3121 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3122 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3123 size = bfd_get_section_size (osect->the_bfd_section);
3124 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3126 printf_filtered ("Section %s, loaded at ", name);
3127 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3128 puts_filtered (" - ");
3129 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3130 printf_filtered (", mapped at ");
3131 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3132 puts_filtered (" - ");
3133 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3134 puts_filtered ("\n");
3139 printf_filtered (_("No sections are mapped.\n"));
3142 /* Function: map_overlay_command
3143 Mark the named section as mapped (ie. residing at its VMA address). */
3146 map_overlay_command (char *args, int from_tty)
3148 struct objfile *objfile, *objfile2;
3149 struct obj_section *sec, *sec2;
3151 if (!overlay_debugging)
3152 error (_("Overlay debugging not enabled. Use "
3153 "either the 'overlay auto' or\n"
3154 "the 'overlay manual' command."));
3156 if (args == 0 || *args == 0)
3157 error (_("Argument required: name of an overlay section"));
3159 /* First, find a section matching the user supplied argument. */
3160 ALL_OBJSECTIONS (objfile, sec)
3161 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3163 /* Now, check to see if the section is an overlay. */
3164 if (!section_is_overlay (sec))
3165 continue; /* not an overlay section */
3167 /* Mark the overlay as "mapped". */
3168 sec->ovly_mapped = 1;
3170 /* Next, make a pass and unmap any sections that are
3171 overlapped by this new section: */
3172 ALL_OBJSECTIONS (objfile2, sec2)
3173 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3176 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3177 bfd_section_name (objfile->obfd,
3178 sec2->the_bfd_section));
3179 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3183 error (_("No overlay section called %s"), args);
3186 /* Function: unmap_overlay_command
3187 Mark the overlay section as unmapped
3188 (ie. resident in its LMA address range, rather than the VMA range). */
3191 unmap_overlay_command (char *args, int from_tty)
3193 struct objfile *objfile;
3194 struct obj_section *sec;
3196 if (!overlay_debugging)
3197 error (_("Overlay debugging not enabled. "
3198 "Use either the 'overlay auto' or\n"
3199 "the 'overlay manual' command."));
3201 if (args == 0 || *args == 0)
3202 error (_("Argument required: name of an overlay section"));
3204 /* First, find a section matching the user supplied argument. */
3205 ALL_OBJSECTIONS (objfile, sec)
3206 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3208 if (!sec->ovly_mapped)
3209 error (_("Section %s is not mapped"), args);
3210 sec->ovly_mapped = 0;
3213 error (_("No overlay section called %s"), args);
3216 /* Function: overlay_auto_command
3217 A utility command to turn on overlay debugging.
3218 Possibly this should be done via a set/show command. */
3221 overlay_auto_command (char *args, int from_tty)
3223 overlay_debugging = ovly_auto;
3224 enable_overlay_breakpoints ();
3226 printf_unfiltered (_("Automatic overlay debugging enabled."));
3229 /* Function: overlay_manual_command
3230 A utility command to turn on overlay debugging.
3231 Possibly this should be done via a set/show command. */
3234 overlay_manual_command (char *args, int from_tty)
3236 overlay_debugging = ovly_on;
3237 disable_overlay_breakpoints ();
3239 printf_unfiltered (_("Overlay debugging enabled."));
3242 /* Function: overlay_off_command
3243 A utility command to turn on overlay debugging.
3244 Possibly this should be done via a set/show command. */
3247 overlay_off_command (char *args, int from_tty)
3249 overlay_debugging = ovly_off;
3250 disable_overlay_breakpoints ();
3252 printf_unfiltered (_("Overlay debugging disabled."));
3256 overlay_load_command (char *args, int from_tty)
3258 struct gdbarch *gdbarch = get_current_arch ();
3260 if (gdbarch_overlay_update_p (gdbarch))
3261 gdbarch_overlay_update (gdbarch, NULL);
3263 error (_("This target does not know how to read its overlay state."));
3266 /* Function: overlay_command
3267 A place-holder for a mis-typed command. */
3269 /* Command list chain containing all defined "overlay" subcommands. */
3270 struct cmd_list_element *overlaylist;
3273 overlay_command (char *args, int from_tty)
3276 ("\"overlay\" must be followed by the name of an overlay command.\n");
3277 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3281 /* Target Overlays for the "Simplest" overlay manager:
3283 This is GDB's default target overlay layer. It works with the
3284 minimal overlay manager supplied as an example by Cygnus. The
3285 entry point is via a function pointer "gdbarch_overlay_update",
3286 so targets that use a different runtime overlay manager can
3287 substitute their own overlay_update function and take over the
3290 The overlay_update function pokes around in the target's data structures
3291 to see what overlays are mapped, and updates GDB's overlay mapping with
3294 In this simple implementation, the target data structures are as follows:
3295 unsigned _novlys; /# number of overlay sections #/
3296 unsigned _ovly_table[_novlys][4] = {
3297 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3298 {..., ..., ..., ...},
3300 unsigned _novly_regions; /# number of overlay regions #/
3301 unsigned _ovly_region_table[_novly_regions][3] = {
3302 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3305 These functions will attempt to update GDB's mappedness state in the
3306 symbol section table, based on the target's mappedness state.
3308 To do this, we keep a cached copy of the target's _ovly_table, and
3309 attempt to detect when the cached copy is invalidated. The main
3310 entry point is "simple_overlay_update(SECT), which looks up SECT in
3311 the cached table and re-reads only the entry for that section from
3312 the target (whenever possible). */
3314 /* Cached, dynamically allocated copies of the target data structures: */
3315 static unsigned (*cache_ovly_table)[4] = 0;
3316 static unsigned cache_novlys = 0;
3317 static CORE_ADDR cache_ovly_table_base = 0;
3320 VMA, SIZE, LMA, MAPPED
3323 /* Throw away the cached copy of _ovly_table. */
3325 simple_free_overlay_table (void)
3327 if (cache_ovly_table)
3328 xfree (cache_ovly_table);
3330 cache_ovly_table = NULL;
3331 cache_ovly_table_base = 0;
3334 /* Read an array of ints of size SIZE from the target into a local buffer.
3335 Convert to host order. int LEN is number of ints. */
3337 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3338 int len, int size, enum bfd_endian byte_order)
3340 /* FIXME (alloca): Not safe if array is very large. */
3341 gdb_byte *buf = alloca (len * size);
3344 read_memory (memaddr, buf, len * size);
3345 for (i = 0; i < len; i++)
3346 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3349 /* Find and grab a copy of the target _ovly_table
3350 (and _novlys, which is needed for the table's size). */
3352 simple_read_overlay_table (void)
3354 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3355 struct gdbarch *gdbarch;
3357 enum bfd_endian byte_order;
3359 simple_free_overlay_table ();
3360 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3363 error (_("Error reading inferior's overlay table: "
3364 "couldn't find `_novlys' variable\n"
3365 "in inferior. Use `overlay manual' mode."));
3369 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3370 if (! ovly_table_msym)
3372 error (_("Error reading inferior's overlay table: couldn't find "
3373 "`_ovly_table' array\n"
3374 "in inferior. Use `overlay manual' mode."));
3378 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3379 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3380 byte_order = gdbarch_byte_order (gdbarch);
3382 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3385 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3386 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3387 read_target_long_array (cache_ovly_table_base,
3388 (unsigned int *) cache_ovly_table,
3389 cache_novlys * 4, word_size, byte_order);
3391 return 1; /* SUCCESS */
3394 /* Function: simple_overlay_update_1
3395 A helper function for simple_overlay_update. Assuming a cached copy
3396 of _ovly_table exists, look through it to find an entry whose vma,
3397 lma and size match those of OSECT. Re-read the entry and make sure
3398 it still matches OSECT (else the table may no longer be valid).
3399 Set OSECT's mapped state to match the entry. Return: 1 for
3400 success, 0 for failure. */
3403 simple_overlay_update_1 (struct obj_section *osect)
3406 bfd *obfd = osect->objfile->obfd;
3407 asection *bsect = osect->the_bfd_section;
3408 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3409 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3412 size = bfd_get_section_size (osect->the_bfd_section);
3413 for (i = 0; i < cache_novlys; i++)
3414 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3415 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3416 /* && cache_ovly_table[i][SIZE] == size */ )
3418 read_target_long_array (cache_ovly_table_base + i * word_size,
3419 (unsigned int *) cache_ovly_table[i],
3420 4, word_size, byte_order);
3421 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3422 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3423 /* && cache_ovly_table[i][SIZE] == size */ )
3425 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3428 else /* Warning! Warning! Target's ovly table has changed! */
3434 /* Function: simple_overlay_update
3435 If OSECT is NULL, then update all sections' mapped state
3436 (after re-reading the entire target _ovly_table).
3437 If OSECT is non-NULL, then try to find a matching entry in the
3438 cached ovly_table and update only OSECT's mapped state.
3439 If a cached entry can't be found or the cache isn't valid, then
3440 re-read the entire cache, and go ahead and update all sections. */
3443 simple_overlay_update (struct obj_section *osect)
3445 struct objfile *objfile;
3447 /* Were we given an osect to look up? NULL means do all of them. */
3449 /* Have we got a cached copy of the target's overlay table? */
3450 if (cache_ovly_table != NULL)
3452 /* Does its cached location match what's currently in the
3454 struct minimal_symbol *minsym
3455 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3458 error (_("Error reading inferior's overlay table: couldn't "
3459 "find `_ovly_table' array\n"
3460 "in inferior. Use `overlay manual' mode."));
3462 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3463 /* Then go ahead and try to look up this single section in
3465 if (simple_overlay_update_1 (osect))
3466 /* Found it! We're done. */
3470 /* Cached table no good: need to read the entire table anew.
3471 Or else we want all the sections, in which case it's actually
3472 more efficient to read the whole table in one block anyway. */
3474 if (! simple_read_overlay_table ())
3477 /* Now may as well update all sections, even if only one was requested. */
3478 ALL_OBJSECTIONS (objfile, osect)
3479 if (section_is_overlay (osect))
3482 bfd *obfd = osect->objfile->obfd;
3483 asection *bsect = osect->the_bfd_section;
3485 size = bfd_get_section_size (bsect);
3486 for (i = 0; i < cache_novlys; i++)
3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3489 /* && cache_ovly_table[i][SIZE] == size */ )
3490 { /* obj_section matches i'th entry in ovly_table. */
3491 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3492 break; /* finished with inner for loop: break out. */
3497 /* Set the output sections and output offsets for section SECTP in
3498 ABFD. The relocation code in BFD will read these offsets, so we
3499 need to be sure they're initialized. We map each section to itself,
3500 with no offset; this means that SECTP->vma will be honored. */
3503 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3505 sectp->output_section = sectp;
3506 sectp->output_offset = 0;
3509 /* Default implementation for sym_relocate. */
3513 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3516 bfd *abfd = objfile->obfd;
3518 /* We're only interested in sections with relocation
3520 if ((sectp->flags & SEC_RELOC) == 0)
3523 /* We will handle section offsets properly elsewhere, so relocate as if
3524 all sections begin at 0. */
3525 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3527 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3530 /* Relocate the contents of a debug section SECTP in ABFD. The
3531 contents are stored in BUF if it is non-NULL, or returned in a
3532 malloc'd buffer otherwise.
3534 For some platforms and debug info formats, shared libraries contain
3535 relocations against the debug sections (particularly for DWARF-2;
3536 one affected platform is PowerPC GNU/Linux, although it depends on
3537 the version of the linker in use). Also, ELF object files naturally
3538 have unresolved relocations for their debug sections. We need to apply
3539 the relocations in order to get the locations of symbols correct.
3540 Another example that may require relocation processing, is the
3541 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3545 symfile_relocate_debug_section (struct objfile *objfile,
3546 asection *sectp, bfd_byte *buf)
3548 gdb_assert (objfile->sf->sym_relocate);
3550 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3553 struct symfile_segment_data *
3554 get_symfile_segment_data (bfd *abfd)
3556 const struct sym_fns *sf = find_sym_fns (abfd);
3561 return sf->sym_segments (abfd);
3565 free_symfile_segment_data (struct symfile_segment_data *data)
3567 xfree (data->segment_bases);
3568 xfree (data->segment_sizes);
3569 xfree (data->segment_info);
3575 - DATA, containing segment addresses from the object file ABFD, and
3576 the mapping from ABFD's sections onto the segments that own them,
3578 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3579 segment addresses reported by the target,
3580 store the appropriate offsets for each section in OFFSETS.
3582 If there are fewer entries in SEGMENT_BASES than there are segments
3583 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3585 If there are more entries, then ignore the extra. The target may
3586 not be able to distinguish between an empty data segment and a
3587 missing data segment; a missing text segment is less plausible. */
3589 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3590 struct section_offsets *offsets,
3591 int num_segment_bases,
3592 const CORE_ADDR *segment_bases)
3597 /* It doesn't make sense to call this function unless you have some
3598 segment base addresses. */
3599 gdb_assert (num_segment_bases > 0);
3601 /* If we do not have segment mappings for the object file, we
3602 can not relocate it by segments. */
3603 gdb_assert (data != NULL);
3604 gdb_assert (data->num_segments > 0);
3606 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3608 int which = data->segment_info[i];
3610 gdb_assert (0 <= which && which <= data->num_segments);
3612 /* Don't bother computing offsets for sections that aren't
3613 loaded as part of any segment. */
3617 /* Use the last SEGMENT_BASES entry as the address of any extra
3618 segments mentioned in DATA->segment_info. */
3619 if (which > num_segment_bases)
3620 which = num_segment_bases;
3622 offsets->offsets[i] = (segment_bases[which - 1]
3623 - data->segment_bases[which - 1]);
3630 symfile_find_segment_sections (struct objfile *objfile)
3632 bfd *abfd = objfile->obfd;
3635 struct symfile_segment_data *data;
3637 data = get_symfile_segment_data (objfile->obfd);
3641 if (data->num_segments != 1 && data->num_segments != 2)
3643 free_symfile_segment_data (data);
3647 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3649 int which = data->segment_info[i];
3653 if (objfile->sect_index_text == -1)
3654 objfile->sect_index_text = sect->index;
3656 if (objfile->sect_index_rodata == -1)
3657 objfile->sect_index_rodata = sect->index;
3659 else if (which == 2)
3661 if (objfile->sect_index_data == -1)
3662 objfile->sect_index_data = sect->index;
3664 if (objfile->sect_index_bss == -1)
3665 objfile->sect_index_bss = sect->index;
3669 free_symfile_segment_data (data);
3673 _initialize_symfile (void)
3675 struct cmd_list_element *c;
3677 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3678 Load symbol table from executable file FILE.\n\
3679 The `file' command can also load symbol tables, as well as setting the file\n\
3680 to execute."), &cmdlist);
3681 set_cmd_completer (c, filename_completer);
3683 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3684 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3685 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3686 ...]\nADDR is the starting address of the file's text.\n\
3687 The optional arguments are section-name section-address pairs and\n\
3688 should be specified if the data and bss segments are not contiguous\n\
3689 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3691 set_cmd_completer (c, filename_completer);
3693 c = add_cmd ("load", class_files, load_command, _("\
3694 Dynamically load FILE into the running program, and record its symbols\n\
3695 for access from GDB.\n\
3696 A load OFFSET may also be given."), &cmdlist);
3697 set_cmd_completer (c, filename_completer);
3699 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3700 &symbol_reloading, _("\
3701 Set dynamic symbol table reloading multiple times in one run."), _("\
3702 Show dynamic symbol table reloading multiple times in one run."), NULL,
3704 show_symbol_reloading,
3705 &setlist, &showlist);
3707 add_prefix_cmd ("overlay", class_support, overlay_command,
3708 _("Commands for debugging overlays."), &overlaylist,
3709 "overlay ", 0, &cmdlist);
3711 add_com_alias ("ovly", "overlay", class_alias, 1);
3712 add_com_alias ("ov", "overlay", class_alias, 1);
3714 add_cmd ("map-overlay", class_support, map_overlay_command,
3715 _("Assert that an overlay section is mapped."), &overlaylist);
3717 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3718 _("Assert that an overlay section is unmapped."), &overlaylist);
3720 add_cmd ("list-overlays", class_support, list_overlays_command,
3721 _("List mappings of overlay sections."), &overlaylist);
3723 add_cmd ("manual", class_support, overlay_manual_command,
3724 _("Enable overlay debugging."), &overlaylist);
3725 add_cmd ("off", class_support, overlay_off_command,
3726 _("Disable overlay debugging."), &overlaylist);
3727 add_cmd ("auto", class_support, overlay_auto_command,
3728 _("Enable automatic overlay debugging."), &overlaylist);
3729 add_cmd ("load-target", class_support, overlay_load_command,
3730 _("Read the overlay mapping state from the target."), &overlaylist);
3732 /* Filename extension to source language lookup table: */
3733 init_filename_language_table ();
3734 add_setshow_string_noescape_cmd ("extension-language", class_files,
3736 Set mapping between filename extension and source language."), _("\
3737 Show mapping between filename extension and source language."), _("\
3738 Usage: set extension-language .foo bar"),
3739 set_ext_lang_command,
3741 &setlist, &showlist);
3743 add_info ("extensions", info_ext_lang_command,
3744 _("All filename extensions associated with a source language."));
3746 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3747 &debug_file_directory, _("\
3748 Set the directories where separate debug symbols are searched for."), _("\
3749 Show the directories where separate debug symbols are searched for."), _("\
3750 Separate debug symbols are first searched for in the same\n\
3751 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3752 and lastly at the path of the directory of the binary with\n\
3753 each global debug-file-directory component prepended."),
3755 show_debug_file_directory,
3756 &setlist, &showlist);