1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
35 #include "gdb_string.h"
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
41 extern int overload_debug;
42 /* Local functions. */
44 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
46 static CORE_ADDR find_function_addr (value_ptr, struct type **);
47 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
50 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
52 static value_ptr search_struct_field (char *, value_ptr, int,
55 static value_ptr search_struct_method (char *, value_ptr *,
57 int, int *, struct type *);
59 static int check_field_in (struct type *, const char *);
61 static CORE_ADDR allocate_space_in_inferior (int);
63 static value_ptr cast_into_complex (struct type *, value_ptr);
65 static struct fn_field *find_method_list (value_ptr * argp, char *method,
66 int offset, int *static_memfuncp,
67 struct type *type, int *num_fns,
68 struct type **basetype,
71 void _initialize_valops (void);
73 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
75 /* Flag for whether we want to abandon failed expression evals by default. */
78 static int auto_abandon = 0;
81 int overload_resolution = 0;
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
88 int unwind_on_signal_p = 0;
92 /* Find the address of function name NAME in the inferior. */
95 find_function_in_inferior (char *name)
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 error ("\"%s\" exists in this program but is not a function.",
106 return value_of_variable (sym, NULL);
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
131 /* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
135 value_allocate_space_in_inferior (int len)
138 register value_ptr val = find_function_in_inferior ("malloc");
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
147 error ("No memory available to program: call to malloc failed");
153 allocate_space_in_inferior (int len)
155 return value_as_long (value_allocate_space_in_inferior (len));
158 /* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161 /* In C++, casts may change pointer or object representations. */
164 value_cast (struct type *type, register value_ptr arg2)
166 register enum type_code code1;
167 register enum type_code code2;
171 int convert_to_boolean = 0;
173 if (VALUE_TYPE (arg2) == type)
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
179 type2 = check_typedef (VALUE_TYPE (arg2));
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
248 VALUE_TYPE (v) = type;
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
281 break; /* fall out and go to normal handling */
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ?
286 (LONGEST) (longest ? 1 : 0) : longest);
288 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
289 code2 == TYPE_CODE_ENUM ||
290 code2 == TYPE_CODE_RANGE))
292 int ptr_bit = HOST_CHAR_BIT * TYPE_LENGTH (type);
293 LONGEST longest = value_as_long (arg2);
294 if (ptr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
296 if (longest >= ((LONGEST) 1 << ptr_bit)
297 || longest <= -((LONGEST) 1 << ptr_bit))
298 warning ("value truncated");
300 return value_from_longest (type, longest);
302 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
304 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
306 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
307 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
308 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
309 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
310 && !value_logical_not (arg2))
314 /* Look in the type of the source to see if it contains the
315 type of the target as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type. */
317 if (TYPE_NAME (t1) != NULL)
319 v = search_struct_field (type_name_no_tag (t1),
320 value_ind (arg2), 0, t2, 1);
324 VALUE_TYPE (v) = type;
329 /* Look in the type of the target to see if it contains the
330 type of the source as a superclass. If so, we'll need to
331 offset the pointer rather than just change its type.
332 FIXME: This fails silently with virtual inheritance. */
333 if (TYPE_NAME (t2) != NULL)
335 v = search_struct_field (type_name_no_tag (t2),
336 value_zero (t1, not_lval), 0, t1, 1);
339 value_ptr v2 = value_ind (arg2);
340 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
343 /* JYG: adjust the new pointer value and
345 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
346 VALUE_EMBEDDED_OFFSET (v2) = 0;
348 v2 = value_addr (v2);
349 VALUE_TYPE (v2) = type;
354 /* No superclass found, just fall through to change ptr type. */
356 VALUE_TYPE (arg2) = type;
357 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
358 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
361 else if (chill_varying_type (type))
363 struct type *range1, *range2, *eltype1, *eltype2;
366 LONGEST low_bound, high_bound;
367 char *valaddr, *valaddr_data;
368 /* For lint warning about eltype2 possibly uninitialized: */
370 if (code2 == TYPE_CODE_BITSTRING)
371 error ("not implemented: converting bitstring to varying type");
372 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
373 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
374 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
375 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
376 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
377 error ("Invalid conversion to varying type");
378 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
379 range2 = TYPE_FIELD_TYPE (type2, 0);
380 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
383 count1 = high_bound - low_bound + 1;
384 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
385 count1 = -1, count2 = 0; /* To force error before */
387 count2 = high_bound - low_bound + 1;
389 error ("target varying type is too small");
390 val = allocate_value (type);
391 valaddr = VALUE_CONTENTS_RAW (val);
392 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
393 /* Set val's __var_length field to count2. */
394 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
396 /* Set the __var_data field to count2 elements copied from arg2. */
397 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
398 count2 * TYPE_LENGTH (eltype2));
399 /* Zero the rest of the __var_data field of val. */
400 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
401 (count1 - count2) * TYPE_LENGTH (eltype2));
404 else if (VALUE_LVAL (arg2) == lval_memory)
406 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
407 VALUE_BFD_SECTION (arg2));
409 else if (code1 == TYPE_CODE_VOID)
411 return value_zero (builtin_type_void, not_lval);
415 error ("Invalid cast.");
420 /* Create a value of type TYPE that is zero, and return it. */
423 value_zero (struct type *type, enum lval_type lv)
425 register value_ptr val = allocate_value (type);
427 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
428 VALUE_LVAL (val) = lv;
433 /* Return a value with type TYPE located at ADDR.
435 Call value_at only if the data needs to be fetched immediately;
436 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
437 value_at_lazy instead. value_at_lazy simply records the address of
438 the data and sets the lazy-evaluation-required flag. The lazy flag
439 is tested in the VALUE_CONTENTS macro, which is used if and when
440 the contents are actually required.
442 Note: value_at does *NOT* handle embedded offsets; perform such
443 adjustments before or after calling it. */
446 value_at (struct type *type, CORE_ADDR addr, asection *sect)
448 register value_ptr val;
450 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
451 error ("Attempt to dereference a generic pointer.");
453 val = allocate_value (type);
455 if (GDB_TARGET_IS_D10V
456 && TYPE_CODE (type) == TYPE_CODE_PTR
457 && TYPE_TARGET_TYPE (type)
458 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
460 /* pointer to function */
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_IADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
467 else if (GDB_TARGET_IS_D10V
468 && TYPE_CODE (type) == TYPE_CODE_PTR)
470 /* pointer to data */
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_DADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
492 register value_ptr val;
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
497 val = allocate_value (type);
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
520 value_fetch_lazy (register value_ptr val)
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
525 struct type *type = VALUE_TYPE (val);
526 if (GDB_TARGET_IS_D10V
527 && TYPE_CODE (type) == TYPE_CODE_PTR
528 && TYPE_TARGET_TYPE (type)
529 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
531 /* pointer to function */
534 snum = read_memory_unsigned_integer (addr, 2);
535 num = D10V_MAKE_IADDR (snum);
536 store_address (VALUE_CONTENTS_RAW (val), 4, num);
538 else if (GDB_TARGET_IS_D10V
539 && TYPE_CODE (type) == TYPE_CODE_PTR)
541 /* pointer to data */
544 snum = read_memory_unsigned_integer (addr, 2);
545 num = D10V_MAKE_DADDR (snum);
546 store_address (VALUE_CONTENTS_RAW (val), 4, num);
549 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
551 VALUE_LAZY (val) = 0;
556 /* Store the contents of FROMVAL into the location of TOVAL.
557 Return a new value with the location of TOVAL and contents of FROMVAL. */
560 value_assign (register value_ptr toval, register value_ptr fromval)
562 register struct type *type;
563 register value_ptr val;
564 char raw_buffer[MAX_REGISTER_RAW_SIZE];
567 if (!toval->modifiable)
568 error ("Left operand of assignment is not a modifiable lvalue.");
572 type = VALUE_TYPE (toval);
573 if (VALUE_LVAL (toval) != lval_internalvar)
574 fromval = value_cast (type, fromval);
576 COERCE_ARRAY (fromval);
577 CHECK_TYPEDEF (type);
579 /* If TOVAL is a special machine register requiring conversion
580 of program values to a special raw format,
581 convert FROMVAL's contents now, with result in `raw_buffer',
582 and set USE_BUFFER to the number of bytes to write. */
584 if (VALUE_REGNO (toval) >= 0)
586 int regno = VALUE_REGNO (toval);
587 if (REGISTER_CONVERTIBLE (regno))
589 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
590 REGISTER_CONVERT_TO_RAW (fromtype, regno,
591 VALUE_CONTENTS (fromval), raw_buffer);
592 use_buffer = REGISTER_RAW_SIZE (regno);
596 switch (VALUE_LVAL (toval))
598 case lval_internalvar:
599 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
600 val = value_copy (VALUE_INTERNALVAR (toval)->value);
601 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
602 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
603 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
606 case lval_internalvar_component:
607 set_internalvar_component (VALUE_INTERNALVAR (toval),
608 VALUE_OFFSET (toval),
609 VALUE_BITPOS (toval),
610 VALUE_BITSIZE (toval),
617 CORE_ADDR changed_addr;
620 if (VALUE_BITSIZE (toval))
622 char buffer[sizeof (LONGEST)];
623 /* We assume that the argument to read_memory is in units of
624 host chars. FIXME: Is that correct? */
625 changed_len = (VALUE_BITPOS (toval)
626 + VALUE_BITSIZE (toval)
630 if (changed_len > (int) sizeof (LONGEST))
631 error ("Can't handle bitfields which don't fit in a %d bit word.",
632 sizeof (LONGEST) * HOST_CHAR_BIT);
634 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
635 buffer, changed_len);
636 modify_field (buffer, value_as_long (fromval),
637 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 dest_buffer = buffer;
643 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
644 changed_len = use_buffer;
645 dest_buffer = raw_buffer;
649 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
650 changed_len = TYPE_LENGTH (type);
651 dest_buffer = VALUE_CONTENTS (fromval);
654 write_memory (changed_addr, dest_buffer, changed_len);
655 if (memory_changed_hook)
656 memory_changed_hook (changed_addr, changed_len);
661 if (VALUE_BITSIZE (toval))
663 char buffer[sizeof (LONGEST)];
665 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
667 if (len > (int) sizeof (LONGEST))
668 error ("Can't handle bitfields in registers larger than %d bits.",
669 sizeof (LONGEST) * HOST_CHAR_BIT);
671 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
672 > len * HOST_CHAR_BIT)
673 /* Getting this right would involve being very careful about
675 error ("Can't assign to bitfields that cross register "
678 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
680 modify_field (buffer, value_as_long (fromval),
681 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
682 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
686 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
687 raw_buffer, use_buffer);
690 /* Do any conversion necessary when storing this type to more
691 than one register. */
692 #ifdef REGISTER_CONVERT_FROM_TYPE
693 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
695 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
696 raw_buffer, TYPE_LENGTH (type));
698 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
699 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
702 /* Assigning to the stack pointer, frame pointer, and other
703 (architecture and calling convention specific) registers may
704 cause the frame cache to be out of date. We just do this
705 on all assignments to registers for simplicity; I doubt the slowdown
707 reinit_frame_cache ();
710 case lval_reg_frame_relative:
712 /* value is stored in a series of registers in the frame
713 specified by the structure. Copy that value out, modify
714 it, and copy it back in. */
715 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
716 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
717 int byte_offset = VALUE_OFFSET (toval) % reg_size;
718 int reg_offset = VALUE_OFFSET (toval) / reg_size;
721 /* Make the buffer large enough in all cases. */
722 char *buffer = (char *) alloca (amount_to_copy
724 + MAX_REGISTER_RAW_SIZE);
727 struct frame_info *frame;
729 /* Figure out which frame this is in currently. */
730 for (frame = get_current_frame ();
731 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
732 frame = get_prev_frame (frame))
736 error ("Value being assigned to is no longer active.");
738 amount_to_copy += (reg_size - amount_to_copy % reg_size);
741 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
743 amount_copied < amount_to_copy;
744 amount_copied += reg_size, regno++)
746 get_saved_register (buffer + amount_copied,
747 (int *) NULL, (CORE_ADDR *) NULL,
748 frame, regno, (enum lval_type *) NULL);
751 /* Modify what needs to be modified. */
752 if (VALUE_BITSIZE (toval))
753 modify_field (buffer + byte_offset,
754 value_as_long (fromval),
755 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
757 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
759 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
763 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
765 amount_copied < amount_to_copy;
766 amount_copied += reg_size, regno++)
772 /* Just find out where to put it. */
773 get_saved_register ((char *) NULL,
774 &optim, &addr, frame, regno, &lval);
777 error ("Attempt to assign to a value that was optimized out.");
778 if (lval == lval_memory)
779 write_memory (addr, buffer + amount_copied, reg_size);
780 else if (lval == lval_register)
781 write_register_bytes (addr, buffer + amount_copied, reg_size);
783 error ("Attempt to assign to an unmodifiable value.");
786 if (register_changed_hook)
787 register_changed_hook (-1);
793 error ("Left operand of assignment is not an lvalue.");
796 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
797 If the field is signed, and is negative, then sign extend. */
798 if ((VALUE_BITSIZE (toval) > 0)
799 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
801 LONGEST fieldval = value_as_long (fromval);
802 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
805 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
806 fieldval |= ~valmask;
808 fromval = value_from_longest (type, fieldval);
811 val = value_copy (toval);
812 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
814 VALUE_TYPE (val) = type;
815 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
816 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
817 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
822 /* Extend a value VAL to COUNT repetitions of its type. */
825 value_repeat (value_ptr arg1, int count)
827 register value_ptr val;
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error ("Only values in memory can be extended with '@'.");
832 error ("Invalid number %d of repetitions.", count);
834 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
836 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
837 VALUE_CONTENTS_ALL_RAW (val),
838 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
839 VALUE_LVAL (val) = lval_memory;
840 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
846 value_of_variable (struct symbol *var, struct block *b)
849 struct frame_info *frame = NULL;
852 frame = NULL; /* Use selected frame. */
853 else if (symbol_read_needs_frame (var))
855 frame = block_innermost_frame (b);
858 if (BLOCK_FUNCTION (b)
859 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
860 error ("No frame is currently executing in block %s.",
861 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
863 error ("No frame is currently executing in specified block");
867 val = read_var_value (var, frame);
869 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
874 /* Given a value which is an array, return a value which is a pointer to its
875 first element, regardless of whether or not the array has a nonzero lower
878 FIXME: A previous comment here indicated that this routine should be
879 substracting the array's lower bound. It's not clear to me that this
880 is correct. Given an array subscripting operation, it would certainly
881 work to do the adjustment here, essentially computing:
883 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
885 However I believe a more appropriate and logical place to account for
886 the lower bound is to do so in value_subscript, essentially computing:
888 (&array[0] + ((index - lowerbound) * sizeof array[0]))
890 As further evidence consider what would happen with operations other
891 than array subscripting, where the caller would get back a value that
892 had an address somewhere before the actual first element of the array,
893 and the information about the lower bound would be lost because of
894 the coercion to pointer type.
898 value_coerce_array (value_ptr arg1)
900 register struct type *type = check_typedef (VALUE_TYPE (arg1));
902 if (VALUE_LVAL (arg1) != lval_memory)
903 error ("Attempt to take address of value not located in memory.");
905 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
906 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
909 /* Given a value which is a function, return a value which is a pointer
913 value_coerce_function (value_ptr arg1)
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
926 /* Return a pointer value for the object for which ARG1 is the contents. */
929 value_addr (value_ptr arg1)
933 struct type *type = check_typedef (VALUE_TYPE (arg1));
934 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 /* Copy the value, but change the type from (T&) to (T*).
937 We keep the same location information, which is efficient,
938 and allows &(&X) to get the location containing the reference. */
939 arg2 = value_copy (arg1);
940 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
943 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
944 return value_coerce_function (arg1);
946 if (VALUE_LVAL (arg1) != lval_memory)
947 error ("Attempt to take address of value not located in memory.");
949 /* Get target memory address */
950 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
951 (VALUE_ADDRESS (arg1)
952 + VALUE_OFFSET (arg1)
953 + VALUE_EMBEDDED_OFFSET (arg1)));
955 /* This may be a pointer to a base subobject; so remember the
956 full derived object's type ... */
957 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
958 /* ... and also the relative position of the subobject in the full object */
959 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
960 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
964 /* Given a value of a pointer type, apply the C unary * operator to it. */
967 value_ind (value_ptr arg1)
969 struct type *base_type;
974 base_type = check_typedef (VALUE_TYPE (arg1));
976 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
977 error ("not implemented: member types in value_ind");
979 /* Allow * on an integer so we can cast it to whatever we want.
980 This returns an int, which seems like the most C-like thing
981 to do. "long long" variables are rare enough that
982 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
983 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
984 return value_at (builtin_type_int,
985 (CORE_ADDR) value_as_long (arg1),
986 VALUE_BFD_SECTION (arg1));
987 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
989 struct type *enc_type;
990 /* We may be pointing to something embedded in a larger object */
991 /* Get the real type of the enclosing object */
992 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
993 enc_type = TYPE_TARGET_TYPE (enc_type);
994 /* Retrieve the enclosing object pointed to */
995 arg2 = value_at_lazy (enc_type,
996 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
997 VALUE_BFD_SECTION (arg1));
999 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1000 /* Add embedding info */
1001 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1002 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1004 /* We may be pointing to an object of some derived type */
1005 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1009 error ("Attempt to take contents of a non-pointer value.");
1010 return 0; /* For lint -- never reached */
1013 /* Pushing small parts of stack frames. */
1015 /* Push one word (the size of object that a register holds). */
1018 push_word (CORE_ADDR sp, ULONGEST word)
1020 register int len = REGISTER_SIZE;
1021 char buffer[MAX_REGISTER_RAW_SIZE];
1023 store_unsigned_integer (buffer, len, word);
1024 if (INNER_THAN (1, 2))
1026 /* stack grows downward */
1028 write_memory (sp, buffer, len);
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1040 /* Push LEN bytes with data at BUFFER. */
1043 push_bytes (CORE_ADDR sp, char *buffer, int len)
1045 if (INNER_THAN (1, 2))
1047 /* stack grows downward */
1049 write_memory (sp, buffer, len);
1053 /* stack grows upward */
1054 write_memory (sp, buffer, len);
1061 #ifndef PARM_BOUNDARY
1062 #define PARM_BOUNDARY (0)
1065 /* Push onto the stack the specified value VALUE. Pad it correctly for
1066 it to be an argument to a function. */
1069 value_push (register CORE_ADDR sp, value_ptr arg)
1071 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1072 register int container_len = len;
1073 register int offset;
1075 /* How big is the container we're going to put this value in? */
1077 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1078 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1080 /* Are we going to put it at the high or low end of the container? */
1081 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1082 offset = container_len - len;
1086 if (INNER_THAN (1, 2))
1088 /* stack grows downward */
1089 sp -= container_len;
1090 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1094 /* stack grows upward */
1095 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1096 sp += container_len;
1102 #ifndef PUSH_ARGUMENTS
1103 #define PUSH_ARGUMENTS default_push_arguments
1107 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1108 int struct_return, CORE_ADDR struct_addr)
1110 /* ASSERT ( !struct_return); */
1112 for (i = nargs - 1; i >= 0; i--)
1113 sp = value_push (sp, args[i]);
1118 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1119 when we don't have any type for the argument at hand. This occurs
1120 when we have no debug info, or when passing varargs.
1122 This is an annoying default: the rule the compiler follows is to do
1123 the standard promotions whenever there is no prototype in scope,
1124 and almost all targets want this behavior. But there are some old
1125 architectures which want this odd behavior. If you want to go
1126 through them all and fix them, please do. Modern gdbarch-style
1127 targets may find it convenient to use standard_coerce_float_to_double. */
1129 default_coerce_float_to_double (struct type *formal, struct type *actual)
1131 return formal == NULL;
1135 /* Always coerce floats to doubles when there is no prototype in scope.
1136 If your architecture follows the standard type promotion rules for
1137 calling unprototyped functions, your gdbarch init function can pass
1138 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1140 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1146 /* Perform the standard coercions that are specified
1147 for arguments to be passed to C functions.
1149 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1150 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1153 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1155 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1156 register struct type *type
1157 = param_type ? check_typedef (param_type) : arg_type;
1159 switch (TYPE_CODE (type))
1162 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1164 arg = value_addr (arg);
1165 VALUE_TYPE (arg) = param_type;
1170 case TYPE_CODE_CHAR:
1171 case TYPE_CODE_BOOL:
1172 case TYPE_CODE_ENUM:
1173 /* If we don't have a prototype, coerce to integer type if necessary. */
1176 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1177 type = builtin_type_int;
1179 /* Currently all target ABIs require at least the width of an integer
1180 type for an argument. We may have to conditionalize the following
1181 type coercion for future targets. */
1182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1183 type = builtin_type_int;
1186 /* FIXME: We should always convert floats to doubles in the
1187 non-prototyped case. As many debugging formats include
1188 no information about prototyping, we have to live with
1189 COERCE_FLOAT_TO_DOUBLE for now. */
1190 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1193 type = builtin_type_double;
1194 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1195 type = builtin_type_long_double;
1198 case TYPE_CODE_FUNC:
1199 type = lookup_pointer_type (type);
1201 case TYPE_CODE_ARRAY:
1202 if (current_language->c_style_arrays)
1203 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1205 case TYPE_CODE_UNDEF:
1207 case TYPE_CODE_STRUCT:
1208 case TYPE_CODE_UNION:
1209 case TYPE_CODE_VOID:
1211 case TYPE_CODE_RANGE:
1212 case TYPE_CODE_STRING:
1213 case TYPE_CODE_BITSTRING:
1214 case TYPE_CODE_ERROR:
1215 case TYPE_CODE_MEMBER:
1216 case TYPE_CODE_METHOD:
1217 case TYPE_CODE_COMPLEX:
1222 return value_cast (type, arg);
1225 /* Determine a function's address and its return type from its value.
1226 Calls error() if the function is not valid for calling. */
1229 find_function_addr (value_ptr function, struct type **retval_type)
1231 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1232 register enum type_code code = TYPE_CODE (ftype);
1233 struct type *value_type;
1236 /* If it's a member function, just look at the function
1239 /* Determine address to call. */
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1242 funaddr = VALUE_ADDRESS (function);
1243 value_type = TYPE_TARGET_TYPE (ftype);
1245 else if (code == TYPE_CODE_PTR)
1247 funaddr = value_as_pointer (function);
1248 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1249 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1250 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1252 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1253 /* FIXME: This is a workaround for the unusual function
1254 pointer representation on the RS/6000, see comment
1255 in config/rs6000/tm-rs6000.h */
1256 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1258 value_type = TYPE_TARGET_TYPE (ftype);
1261 value_type = builtin_type_int;
1263 else if (code == TYPE_CODE_INT)
1265 /* Handle the case of functions lacking debugging info.
1266 Their values are characters since their addresses are char */
1267 if (TYPE_LENGTH (ftype) == 1)
1268 funaddr = value_as_pointer (value_addr (function));
1270 /* Handle integer used as address of a function. */
1271 funaddr = (CORE_ADDR) value_as_long (function);
1273 value_type = builtin_type_int;
1276 error ("Invalid data type for function to be called.");
1278 *retval_type = value_type;
1282 /* All this stuff with a dummy frame may seem unnecessarily complicated
1283 (why not just save registers in GDB?). The purpose of pushing a dummy
1284 frame which looks just like a real frame is so that if you call a
1285 function and then hit a breakpoint (get a signal, etc), "backtrace"
1286 will look right. Whether the backtrace needs to actually show the
1287 stack at the time the inferior function was called is debatable, but
1288 it certainly needs to not display garbage. So if you are contemplating
1289 making dummy frames be different from normal frames, consider that. */
1291 /* Perform a function call in the inferior.
1292 ARGS is a vector of values of arguments (NARGS of them).
1293 FUNCTION is a value, the function to be called.
1294 Returns a value representing what the function returned.
1295 May fail to return, if a breakpoint or signal is hit
1296 during the execution of the function.
1298 ARGS is modified to contain coerced values. */
1300 static value_ptr hand_function_call (value_ptr function, int nargs,
1303 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1305 register CORE_ADDR sp;
1309 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1310 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1311 and remove any extra bytes which might exist because ULONGEST is
1312 bigger than REGISTER_SIZE.
1314 NOTE: This is pretty wierd, as the call dummy is actually a
1315 sequence of instructions. But CISC machines will have
1316 to pack the instructions into REGISTER_SIZE units (and
1317 so will RISC machines for which INSTRUCTION_SIZE is not
1320 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1321 target byte order. */
1323 static ULONGEST *dummy;
1327 struct type *value_type;
1328 unsigned char struct_return;
1329 CORE_ADDR struct_addr = 0;
1330 struct inferior_status *inf_status;
1331 struct cleanup *old_chain;
1333 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1335 struct type *param_type = NULL;
1336 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1338 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1339 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1340 dummy1 = alloca (sizeof_dummy1);
1341 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1343 if (!target_has_execution)
1346 inf_status = save_inferior_status (1);
1347 old_chain = make_cleanup_restore_inferior_status (inf_status);
1349 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1350 (and POP_FRAME for restoring them). (At least on most machines)
1351 they are saved on the stack in the inferior. */
1354 old_sp = sp = read_sp ();
1356 if (INNER_THAN (1, 2))
1358 /* Stack grows down */
1359 sp -= sizeof_dummy1;
1364 /* Stack grows up */
1366 sp += sizeof_dummy1;
1369 funaddr = find_function_addr (function, &value_type);
1370 CHECK_TYPEDEF (value_type);
1373 struct block *b = block_for_pc (funaddr);
1374 /* If compiled without -g, assume GCC 2. */
1375 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1378 /* Are we returning a value using a structure return or a normal
1381 struct_return = using_struct_return (function, funaddr, value_type,
1384 /* Create a call sequence customized for this function
1385 and the number of arguments for it. */
1386 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1387 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1389 (ULONGEST) dummy[i]);
1391 #ifdef GDB_TARGET_IS_HPPA
1392 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1393 value_type, using_gcc);
1395 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1396 value_type, using_gcc);
1400 if (CALL_DUMMY_LOCATION == ON_STACK)
1402 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1405 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1407 /* Convex Unix prohibits executing in the stack segment. */
1408 /* Hope there is empty room at the top of the text segment. */
1409 extern CORE_ADDR text_end;
1410 static int checked = 0;
1412 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1413 if (read_memory_integer (start_sp, 1) != 0)
1414 error ("text segment full -- no place to put call");
1417 real_pc = text_end - sizeof_dummy1;
1418 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1421 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1423 extern CORE_ADDR text_end;
1427 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1429 error ("Cannot write text segment -- call_function failed");
1432 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1438 sp = old_sp; /* It really is used, for some ifdef's... */
1441 if (nargs < TYPE_NFIELDS (ftype))
1442 error ("too few arguments in function call");
1444 for (i = nargs - 1; i >= 0; i--)
1446 /* If we're off the end of the known arguments, do the standard
1447 promotions. FIXME: if we had a prototype, this should only
1448 be allowed if ... were present. */
1449 if (i >= TYPE_NFIELDS (ftype))
1450 args[i] = value_arg_coerce (args[i], NULL, 0);
1454 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1455 param_type = TYPE_FIELD_TYPE (ftype, i);
1457 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1460 /*elz: this code is to handle the case in which the function to be called
1461 has a pointer to function as parameter and the corresponding actual argument
1462 is the address of a function and not a pointer to function variable.
1463 In aCC compiled code, the calls through pointers to functions (in the body
1464 of the function called by hand) are made via $$dyncall_external which
1465 requires some registers setting, this is taken care of if we call
1466 via a function pointer variable, but not via a function address.
1467 In cc this is not a problem. */
1471 /* if this parameter is a pointer to function */
1472 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1473 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1474 /* elz: FIXME here should go the test about the compiler used
1475 to compile the target. We want to issue the error
1476 message only if the compiler used was HP's aCC.
1477 If we used HP's cc, then there is no problem and no need
1478 to return at this point */
1479 if (using_gcc == 0) /* && compiler == aCC */
1480 /* go see if the actual parameter is a variable of type
1481 pointer to function or just a function */
1482 if (args[i]->lval == not_lval)
1485 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1487 You cannot use function <%s> as argument. \n\
1488 You must use a pointer to function type variable. Command ignored.", arg_name);
1492 if (REG_STRUCT_HAS_ADDR_P ())
1494 /* This is a machine like the sparc, where we may need to pass a
1495 pointer to the structure, not the structure itself. */
1496 for (i = nargs - 1; i >= 0; i--)
1498 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1499 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1500 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1501 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1502 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1503 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1504 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1505 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1506 && TYPE_LENGTH (arg_type) > 8)
1508 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1511 int len; /* = TYPE_LENGTH (arg_type); */
1513 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1514 len = TYPE_LENGTH (arg_type);
1516 if (STACK_ALIGN_P ())
1517 /* MVS 11/22/96: I think at least some of this
1518 stack_align code is really broken. Better to let
1519 PUSH_ARGUMENTS adjust the stack in a target-defined
1521 aligned_len = STACK_ALIGN (len);
1524 if (INNER_THAN (1, 2))
1526 /* stack grows downward */
1531 /* The stack grows up, so the address of the thing
1532 we push is the stack pointer before we push it. */
1535 /* Push the structure. */
1536 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1537 if (INNER_THAN (1, 2))
1539 /* The stack grows down, so the address of the thing
1540 we push is the stack pointer after we push it. */
1545 /* stack grows upward */
1548 /* The value we're going to pass is the address of the
1549 thing we just pushed. */
1550 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1552 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1559 /* Reserve space for the return structure to be written on the
1560 stack, if necessary */
1564 int len = TYPE_LENGTH (value_type);
1565 if (STACK_ALIGN_P ())
1566 /* MVS 11/22/96: I think at least some of this stack_align
1567 code is really broken. Better to let PUSH_ARGUMENTS adjust
1568 the stack in a target-defined manner. */
1569 len = STACK_ALIGN (len);
1570 if (INNER_THAN (1, 2))
1572 /* stack grows downward */
1578 /* stack grows upward */
1584 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1585 on other architectures. This is because all the alignment is
1586 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1587 in hppa_push_arguments */
1588 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1590 /* MVS 11/22/96: I think at least some of this stack_align code
1591 is really broken. Better to let PUSH_ARGUMENTS adjust the
1592 stack in a target-defined manner. */
1593 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1595 /* If stack grows down, we must leave a hole at the top. */
1598 for (i = nargs - 1; i >= 0; i--)
1599 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1600 if (CALL_DUMMY_STACK_ADJUST_P)
1601 len += CALL_DUMMY_STACK_ADJUST;
1602 sp -= STACK_ALIGN (len) - len;
1606 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1608 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1609 /* There are a number of targets now which actually don't write any
1610 CALL_DUMMY instructions into the target, but instead just save the
1611 machine state, push the arguments, and jump directly to the callee
1612 function. Since this doesn't actually involve executing a JSR/BSR
1613 instruction, the return address must be set up by hand, either by
1614 pushing onto the stack or copying into a return-address register
1615 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1616 but that's overloading its functionality a bit, so I'm making it
1617 explicit to do it here. */
1618 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1619 #endif /* PUSH_RETURN_ADDRESS */
1621 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1623 /* If stack grows up, we must leave a hole at the bottom, note
1624 that sp already has been advanced for the arguments! */
1625 if (CALL_DUMMY_STACK_ADJUST_P)
1626 sp += CALL_DUMMY_STACK_ADJUST;
1627 sp = STACK_ALIGN (sp);
1630 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1632 /* MVS 11/22/96: I think at least some of this stack_align code is
1633 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1634 a target-defined manner. */
1635 if (CALL_DUMMY_STACK_ADJUST_P)
1636 if (INNER_THAN (1, 2))
1638 /* stack grows downward */
1639 sp -= CALL_DUMMY_STACK_ADJUST;
1642 /* Store the address at which the structure is supposed to be
1643 written. Note that this (and the code which reserved the space
1644 above) assumes that gcc was used to compile this function. Since
1645 it doesn't cost us anything but space and if the function is pcc
1646 it will ignore this value, we will make that assumption.
1648 Also note that on some machines (like the sparc) pcc uses a
1649 convention like gcc's. */
1652 STORE_STRUCT_RETURN (struct_addr, sp);
1654 /* Write the stack pointer. This is here because the statements above
1655 might fool with it. On SPARC, this write also stores the register
1656 window into the right place in the new stack frame, which otherwise
1657 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1660 if (SAVE_DUMMY_FRAME_TOS_P ())
1661 SAVE_DUMMY_FRAME_TOS (sp);
1664 char retbuf[REGISTER_BYTES];
1666 struct symbol *symbol;
1669 symbol = find_pc_function (funaddr);
1672 name = SYMBOL_SOURCE_NAME (symbol);
1676 /* Try the minimal symbols. */
1677 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1681 name = SYMBOL_SOURCE_NAME (msymbol);
1687 sprintf (format, "at %s", local_hex_format ());
1689 /* FIXME-32x64: assumes funaddr fits in a long. */
1690 sprintf (name, format, (unsigned long) funaddr);
1693 /* Execute the stack dummy routine, calling FUNCTION.
1694 When it is done, discard the empty frame
1695 after storing the contents of all regs into retbuf. */
1696 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1700 /* We stopped inside the FUNCTION because of a random signal.
1701 Further execution of the FUNCTION is not allowed. */
1703 if (unwind_on_signal_p)
1705 /* The user wants the context restored. */
1707 /* We must get back to the frame we were before the dummy call. */
1710 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1711 a C++ name with arguments and stuff. */
1713 The program being debugged was signaled while in a function called from GDB.\n\
1714 GDB has restored the context to what it was before the call.\n\
1715 To change this behavior use \"set unwindonsignal off\"\n\
1716 Evaluation of the expression containing the function (%s) will be abandoned.",
1721 /* The user wants to stay in the frame where we stopped (default).*/
1723 /* If we did the cleanups, we would print a spurious error
1724 message (Unable to restore previously selected frame),
1725 would write the registers from the inf_status (which is
1726 wrong), and would do other wrong things. */
1727 discard_cleanups (old_chain);
1728 discard_inferior_status (inf_status);
1730 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1731 a C++ name with arguments and stuff. */
1733 The program being debugged was signaled while in a function called from GDB.\n\
1734 GDB remains in the frame where the signal was received.\n\
1735 To change this behavior use \"set unwindonsignal on\"\n\
1736 Evaluation of the expression containing the function (%s) will be abandoned.",
1743 /* We hit a breakpoint inside the FUNCTION. */
1745 /* If we did the cleanups, we would print a spurious error
1746 message (Unable to restore previously selected frame),
1747 would write the registers from the inf_status (which is
1748 wrong), and would do other wrong things. */
1749 discard_cleanups (old_chain);
1750 discard_inferior_status (inf_status);
1752 /* The following error message used to say "The expression
1753 which contained the function call has been discarded." It
1754 is a hard concept to explain in a few words. Ideally, GDB
1755 would be able to resume evaluation of the expression when
1756 the function finally is done executing. Perhaps someday
1757 this will be implemented (it would not be easy). */
1759 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1760 a C++ name with arguments and stuff. */
1762 The program being debugged stopped while in a function called from GDB.\n\
1763 When the function (%s) is done executing, GDB will silently\n\
1764 stop (instead of continuing to evaluate the expression containing\n\
1765 the function call).", name);
1768 /* If we get here the called FUNCTION run to completion. */
1769 do_cleanups (old_chain);
1771 /* Figure out the value returned by the function. */
1772 /* elz: I defined this new macro for the hppa architecture only.
1773 this gives us a way to get the value returned by the function from the stack,
1774 at the same address we told the function to put it.
1775 We cannot assume on the pa that r28 still contains the address of the returned
1776 structure. Usually this will be overwritten by the callee.
1777 I don't know about other architectures, so I defined this macro
1780 #ifdef VALUE_RETURNED_FROM_STACK
1782 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1785 return value_being_returned (value_type, retbuf, struct_return);
1790 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1794 return hand_function_call (function, nargs, args);
1798 error ("Cannot invoke functions on this machine.");
1804 /* Create a value for an array by allocating space in the inferior, copying
1805 the data into that space, and then setting up an array value.
1807 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1808 populated from the values passed in ELEMVEC.
1810 The element type of the array is inherited from the type of the
1811 first element, and all elements must have the same size (though we
1812 don't currently enforce any restriction on their types). */
1815 value_array (int lowbound, int highbound, value_ptr *elemvec)
1819 unsigned int typelength;
1821 struct type *rangetype;
1822 struct type *arraytype;
1825 /* Validate that the bounds are reasonable and that each of the elements
1826 have the same size. */
1828 nelem = highbound - lowbound + 1;
1831 error ("bad array bounds (%d, %d)", lowbound, highbound);
1833 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1834 for (idx = 1; idx < nelem; idx++)
1836 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1838 error ("array elements must all be the same size");
1842 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1843 lowbound, highbound);
1844 arraytype = create_array_type ((struct type *) NULL,
1845 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1847 if (!current_language->c_style_arrays)
1849 val = allocate_value (arraytype);
1850 for (idx = 0; idx < nelem; idx++)
1852 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1853 VALUE_CONTENTS_ALL (elemvec[idx]),
1856 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1860 /* Allocate space to store the array in the inferior, and then initialize
1861 it by copying in each element. FIXME: Is it worth it to create a
1862 local buffer in which to collect each value and then write all the
1863 bytes in one operation? */
1865 addr = allocate_space_in_inferior (nelem * typelength);
1866 for (idx = 0; idx < nelem; idx++)
1868 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1872 /* Create the array type and set up an array value to be evaluated lazily. */
1874 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1878 /* Create a value for a string constant by allocating space in the inferior,
1879 copying the data into that space, and returning the address with type
1880 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1882 Note that string types are like array of char types with a lower bound of
1883 zero and an upper bound of LEN - 1. Also note that the string may contain
1884 embedded null bytes. */
1887 value_string (char *ptr, int len)
1890 int lowbound = current_language->string_lower_bound;
1891 struct type *rangetype = create_range_type ((struct type *) NULL,
1893 lowbound, len + lowbound - 1);
1894 struct type *stringtype
1895 = create_string_type ((struct type *) NULL, rangetype);
1898 if (current_language->c_style_arrays == 0)
1900 val = allocate_value (stringtype);
1901 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1906 /* Allocate space to store the string in the inferior, and then
1907 copy LEN bytes from PTR in gdb to that address in the inferior. */
1909 addr = allocate_space_in_inferior (len);
1910 write_memory (addr, ptr, len);
1912 val = value_at_lazy (stringtype, addr, NULL);
1917 value_bitstring (char *ptr, int len)
1920 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1922 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1923 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1924 val = allocate_value (type);
1925 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1929 /* See if we can pass arguments in T2 to a function which takes arguments
1930 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1931 arguments need coercion of some sort, then the coerced values are written
1932 into T2. Return value is 0 if the arguments could be matched, or the
1933 position at which they differ if not.
1935 STATICP is nonzero if the T1 argument list came from a
1936 static member function.
1938 For non-static member functions, we ignore the first argument,
1939 which is the type of the instance variable. This is because we want
1940 to handle calls with objects from derived classes. This is not
1941 entirely correct: we should actually check to make sure that a
1942 requested operation is type secure, shouldn't we? FIXME. */
1945 typecmp (staticp, t1, t2)
1954 if (staticp && t1 == 0)
1958 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1960 if (t1[!staticp] == 0)
1962 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1964 struct type *tt1, *tt2;
1967 tt1 = check_typedef (t1[i]);
1968 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1969 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1970 /* We should be doing hairy argument matching, as below. */
1971 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1973 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1974 t2[i] = value_coerce_array (t2[i]);
1976 t2[i] = value_addr (t2[i]);
1980 /* djb - 20000715 - Until the new type structure is in the
1981 place, and we can attempt things like implicit conversions,
1982 we need to do this so you can take something like a map<const
1983 char *>, and properly access map["hello"], because the
1984 argument to [] will be a reference to a pointer to a char,
1985 and the argument will be a pointer to a char. */
1986 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1987 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1989 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1991 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1992 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1993 TYPE_CODE(tt2) == TYPE_CODE_REF)
1995 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1997 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1999 /* Array to pointer is a `trivial conversion' according to the ARM. */
2001 /* We should be doing much hairier argument matching (see section 13.2
2002 of the ARM), but as a quick kludge, just check for the same type
2004 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2009 return t2[i] ? i + 1 : 0;
2012 /* Helper function used by value_struct_elt to recurse through baseclasses.
2013 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2014 and search in it assuming it has (class) type TYPE.
2015 If found, return value, else return NULL.
2017 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2018 look for a baseclass named NAME. */
2021 search_struct_field (char *name, register value_ptr arg1, int offset,
2022 register struct type *type, int looking_for_baseclass)
2025 int nbases = TYPE_N_BASECLASSES (type);
2027 CHECK_TYPEDEF (type);
2029 if (!looking_for_baseclass)
2030 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2032 char *t_field_name = TYPE_FIELD_NAME (type, i);
2034 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2037 if (TYPE_FIELD_STATIC (type, i))
2038 v = value_static_field (type, i);
2040 v = value_primitive_field (arg1, offset, i, type);
2042 error ("there is no field named %s", name);
2047 && (t_field_name[0] == '\0'
2048 || (TYPE_CODE (type) == TYPE_CODE_UNION
2049 && (strcmp_iw (t_field_name, "else") == 0))))
2051 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2052 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2053 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2055 /* Look for a match through the fields of an anonymous union,
2056 or anonymous struct. C++ provides anonymous unions.
2058 In the GNU Chill implementation of variant record types,
2059 each <alternative field> has an (anonymous) union type,
2060 each member of the union represents a <variant alternative>.
2061 Each <variant alternative> is represented as a struct,
2062 with a member for each <variant field>. */
2065 int new_offset = offset;
2067 /* This is pretty gross. In G++, the offset in an anonymous
2068 union is relative to the beginning of the enclosing struct.
2069 In the GNU Chill implementation of variant records,
2070 the bitpos is zero in an anonymous union field, so we
2071 have to add the offset of the union here. */
2072 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2073 || (TYPE_NFIELDS (field_type) > 0
2074 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2075 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2077 v = search_struct_field (name, arg1, new_offset, field_type,
2078 looking_for_baseclass);
2085 for (i = 0; i < nbases; i++)
2088 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2089 /* If we are looking for baseclasses, this is what we get when we
2090 hit them. But it could happen that the base part's member name
2091 is not yet filled in. */
2092 int found_baseclass = (looking_for_baseclass
2093 && TYPE_BASECLASS_NAME (type, i) != NULL
2094 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2096 if (BASETYPE_VIA_VIRTUAL (type, i))
2099 value_ptr v2 = allocate_value (basetype);
2101 boffset = baseclass_offset (type, i,
2102 VALUE_CONTENTS (arg1) + offset,
2103 VALUE_ADDRESS (arg1)
2104 + VALUE_OFFSET (arg1) + offset);
2106 error ("virtual baseclass botch");
2108 /* The virtual base class pointer might have been clobbered by the
2109 user program. Make sure that it still points to a valid memory
2113 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2115 CORE_ADDR base_addr;
2117 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2118 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2119 TYPE_LENGTH (basetype)) != 0)
2120 error ("virtual baseclass botch");
2121 VALUE_LVAL (v2) = lval_memory;
2122 VALUE_ADDRESS (v2) = base_addr;
2126 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2127 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2128 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2129 if (VALUE_LAZY (arg1))
2130 VALUE_LAZY (v2) = 1;
2132 memcpy (VALUE_CONTENTS_RAW (v2),
2133 VALUE_CONTENTS_RAW (arg1) + boffset,
2134 TYPE_LENGTH (basetype));
2137 if (found_baseclass)
2139 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2140 looking_for_baseclass);
2142 else if (found_baseclass)
2143 v = value_primitive_field (arg1, offset, i, type);
2145 v = search_struct_field (name, arg1,
2146 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2147 basetype, looking_for_baseclass);
2155 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2156 * in an object pointed to by VALADDR (on the host), assumed to be of
2157 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2158 * looking (in case VALADDR is the contents of an enclosing object).
2160 * This routine recurses on the primary base of the derived class because
2161 * the virtual base entries of the primary base appear before the other
2162 * virtual base entries.
2164 * If the virtual base is not found, a negative integer is returned.
2165 * The magnitude of the negative integer is the number of entries in
2166 * the virtual table to skip over (entries corresponding to various
2167 * ancestral classes in the chain of primary bases).
2169 * Important: This assumes the HP / Taligent C++ runtime
2170 * conventions. Use baseclass_offset() instead to deal with g++
2174 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2175 int offset, int *boffset_p, int *skip_p)
2177 int boffset; /* offset of virtual base */
2178 int index; /* displacement to use in virtual table */
2182 CORE_ADDR vtbl; /* the virtual table pointer */
2183 struct type *pbc; /* the primary base class */
2185 /* Look for the virtual base recursively in the primary base, first.
2186 * This is because the derived class object and its primary base
2187 * subobject share the primary virtual table. */
2190 pbc = TYPE_PRIMARY_BASE (type);
2193 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2196 *boffset_p = boffset;
2205 /* Find the index of the virtual base according to HP/Taligent
2206 runtime spec. (Depth-first, left-to-right.) */
2207 index = virtual_base_index_skip_primaries (basetype, type);
2211 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2216 /* pai: FIXME -- 32x64 possible problem */
2217 /* First word (4 bytes) in object layout is the vtable pointer */
2218 vtbl = *(CORE_ADDR *) (valaddr + offset);
2220 /* Before the constructor is invoked, things are usually zero'd out. */
2222 error ("Couldn't find virtual table -- object may not be constructed yet.");
2225 /* Find virtual base's offset -- jump over entries for primary base
2226 * ancestors, then use the index computed above. But also adjust by
2227 * HP_ACC_VBASE_START for the vtable slots before the start of the
2228 * virtual base entries. Offset is negative -- virtual base entries
2229 * appear _before_ the address point of the virtual table. */
2231 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2234 /* epstein : FIXME -- added param for overlay section. May not be correct */
2235 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2236 boffset = value_as_long (vp);
2238 *boffset_p = boffset;
2243 /* Helper function used by value_struct_elt to recurse through baseclasses.
2244 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2245 and search in it assuming it has (class) type TYPE.
2246 If found, return value, else if name matched and args not return (value)-1,
2247 else return NULL. */
2250 search_struct_method (char *name, register value_ptr *arg1p,
2251 register value_ptr *args, int offset,
2252 int *static_memfuncp, register struct type *type)
2256 int name_matched = 0;
2257 char dem_opname[64];
2259 CHECK_TYPEDEF (type);
2260 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2262 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2263 /* FIXME! May need to check for ARM demangling here */
2264 if (strncmp (t_field_name, "__", 2) == 0 ||
2265 strncmp (t_field_name, "op", 2) == 0 ||
2266 strncmp (t_field_name, "type", 4) == 0)
2268 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2269 t_field_name = dem_opname;
2270 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2271 t_field_name = dem_opname;
2273 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2275 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2276 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2279 if (j > 0 && args == 0)
2280 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2283 if (TYPE_FN_FIELD_STUB (f, j))
2284 check_stub_method (type, i, j);
2285 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2286 TYPE_FN_FIELD_ARGS (f, j), args))
2288 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2289 return value_virtual_fn_field (arg1p, f, j, type, offset);
2290 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2291 *static_memfuncp = 1;
2292 v = value_fn_field (arg1p, f, j, type, offset);
2301 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2305 if (BASETYPE_VIA_VIRTUAL (type, i))
2307 if (TYPE_HAS_VTABLE (type))
2309 /* HP aCC compiled type, search for virtual base offset
2310 according to HP/Taligent runtime spec. */
2312 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2313 VALUE_CONTENTS_ALL (*arg1p),
2314 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2315 &base_offset, &skip);
2317 error ("Virtual base class offset not found in vtable");
2321 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2324 /* The virtual base class pointer might have been clobbered by the
2325 user program. Make sure that it still points to a valid memory
2328 if (offset < 0 || offset >= TYPE_LENGTH (type))
2330 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2331 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2332 + VALUE_OFFSET (*arg1p) + offset,
2334 TYPE_LENGTH (baseclass)) != 0)
2335 error ("virtual baseclass botch");
2338 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2341 baseclass_offset (type, i, base_valaddr,
2342 VALUE_ADDRESS (*arg1p)
2343 + VALUE_OFFSET (*arg1p) + offset);
2344 if (base_offset == -1)
2345 error ("virtual baseclass botch");
2350 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2352 v = search_struct_method (name, arg1p, args, base_offset + offset,
2353 static_memfuncp, TYPE_BASECLASS (type, i));
2354 if (v == (value_ptr) - 1)
2360 /* FIXME-bothner: Why is this commented out? Why is it here? */
2361 /* *arg1p = arg1_tmp; */
2366 return (value_ptr) - 1;
2371 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2372 extract the component named NAME from the ultimate target structure/union
2373 and return it as a value with its appropriate type.
2374 ERR is used in the error message if *ARGP's type is wrong.
2376 C++: ARGS is a list of argument types to aid in the selection of
2377 an appropriate method. Also, handle derived types.
2379 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2380 where the truthvalue of whether the function that was resolved was
2381 a static member function or not is stored.
2383 ERR is an error message to be printed in case the field is not found. */
2386 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2387 char *name, int *static_memfuncp, char *err)
2389 register struct type *t;
2392 COERCE_ARRAY (*argp);
2394 t = check_typedef (VALUE_TYPE (*argp));
2396 /* Follow pointers until we get to a non-pointer. */
2398 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2400 *argp = value_ind (*argp);
2401 /* Don't coerce fn pointer to fn and then back again! */
2402 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2403 COERCE_ARRAY (*argp);
2404 t = check_typedef (VALUE_TYPE (*argp));
2407 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2408 error ("not implemented: member type in value_struct_elt");
2410 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2411 && TYPE_CODE (t) != TYPE_CODE_UNION)
2412 error ("Attempt to extract a component of a value that is not a %s.", err);
2414 /* Assume it's not, unless we see that it is. */
2415 if (static_memfuncp)
2416 *static_memfuncp = 0;
2420 /* if there are no arguments ...do this... */
2422 /* Try as a field first, because if we succeed, there
2423 is less work to be done. */
2424 v = search_struct_field (name, *argp, 0, t, 0);
2428 /* C++: If it was not found as a data field, then try to
2429 return it as a pointer to a method. */
2431 if (destructor_name_p (name, t))
2432 error ("Cannot get value of destructor");
2434 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2436 if (v == (value_ptr) - 1)
2437 error ("Cannot take address of a method");
2440 if (TYPE_NFN_FIELDS (t))
2441 error ("There is no member or method named %s.", name);
2443 error ("There is no member named %s.", name);
2448 if (destructor_name_p (name, t))
2452 /* Destructors are a special case. */
2453 int m_index, f_index;
2456 if (get_destructor_fn_field (t, &m_index, &f_index))
2458 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2462 error ("could not find destructor function named %s.", name);
2468 error ("destructor should not have any argument");
2472 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2474 if (v == (value_ptr) - 1)
2476 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2480 /* See if user tried to invoke data as function. If so,
2481 hand it back. If it's not callable (i.e., a pointer to function),
2482 gdb should give an error. */
2483 v = search_struct_field (name, *argp, 0, t, 0);
2487 error ("Structure has no component named %s.", name);
2491 /* Search through the methods of an object (and its bases)
2492 * to find a specified method. Return the pointer to the
2493 * fn_field list of overloaded instances.
2494 * Helper function for value_find_oload_list.
2495 * ARGP is a pointer to a pointer to a value (the object)
2496 * METHOD is a string containing the method name
2497 * OFFSET is the offset within the value
2498 * STATIC_MEMFUNCP is set if the method is static
2499 * TYPE is the assumed type of the object
2500 * NUM_FNS is the number of overloaded instances
2501 * BASETYPE is set to the actual type of the subobject where the method is found
2502 * BOFFSET is the offset of the base subobject where the method is found */
2504 static struct fn_field *
2505 find_method_list (value_ptr *argp, char *method, int offset,
2506 int *static_memfuncp, struct type *type, int *num_fns,
2507 struct type **basetype, int *boffset)
2511 CHECK_TYPEDEF (type);
2515 /* First check in object itself */
2516 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2518 /* pai: FIXME What about operators and type conversions? */
2519 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2520 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2522 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2525 return TYPE_FN_FIELDLIST1 (type, i);
2529 /* Not found in object, check in base subobjects */
2530 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2533 if (BASETYPE_VIA_VIRTUAL (type, i))
2535 if (TYPE_HAS_VTABLE (type))
2537 /* HP aCC compiled type, search for virtual base offset
2538 * according to HP/Taligent runtime spec. */
2540 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2541 VALUE_CONTENTS_ALL (*argp),
2542 offset + VALUE_EMBEDDED_OFFSET (*argp),
2543 &base_offset, &skip);
2545 error ("Virtual base class offset not found in vtable");
2549 /* probably g++ runtime model */
2550 base_offset = VALUE_OFFSET (*argp) + offset;
2552 baseclass_offset (type, i,
2553 VALUE_CONTENTS (*argp) + base_offset,
2554 VALUE_ADDRESS (*argp) + base_offset);
2555 if (base_offset == -1)
2556 error ("virtual baseclass botch");
2560 /* non-virtual base, simply use bit position from debug info */
2562 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2564 f = find_method_list (argp, method, base_offset + offset,
2565 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2572 /* Return the list of overloaded methods of a specified name.
2573 * ARGP is a pointer to a pointer to a value (the object)
2574 * METHOD is the method name
2575 * OFFSET is the offset within the value contents
2576 * STATIC_MEMFUNCP is set if the method is static
2577 * NUM_FNS is the number of overloaded instances
2578 * BASETYPE is set to the type of the base subobject that defines the method
2579 * BOFFSET is the offset of the base subobject which defines the method */
2582 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2583 int *static_memfuncp, int *num_fns,
2584 struct type **basetype, int *boffset)
2588 t = check_typedef (VALUE_TYPE (*argp));
2590 /* code snarfed from value_struct_elt */
2591 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2593 *argp = value_ind (*argp);
2594 /* Don't coerce fn pointer to fn and then back again! */
2595 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2596 COERCE_ARRAY (*argp);
2597 t = check_typedef (VALUE_TYPE (*argp));
2600 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2601 error ("Not implemented: member type in value_find_oload_lis");
2603 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2604 && TYPE_CODE (t) != TYPE_CODE_UNION)
2605 error ("Attempt to extract a component of a value that is not a struct or union");
2607 /* Assume it's not static, unless we see that it is. */
2608 if (static_memfuncp)
2609 *static_memfuncp = 0;
2611 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2615 /* Given an array of argument types (ARGTYPES) (which includes an
2616 entry for "this" in the case of C++ methods), the number of
2617 arguments NARGS, the NAME of a function whether it's a method or
2618 not (METHOD), and the degree of laxness (LAX) in conforming to
2619 overload resolution rules in ANSI C++, find the best function that
2620 matches on the argument types according to the overload resolution
2623 In the case of class methods, the parameter OBJ is an object value
2624 in which to search for overloaded methods.
2626 In the case of non-method functions, the parameter FSYM is a symbol
2627 corresponding to one of the overloaded functions.
2629 Return value is an integer: 0 -> good match, 10 -> debugger applied
2630 non-standard coercions, 100 -> incompatible.
2632 If a method is being searched for, VALP will hold the value.
2633 If a non-method is being searched for, SYMP will hold the symbol for it.
2635 If a method is being searched for, and it is a static method,
2636 then STATICP will point to a non-zero value.
2638 Note: This function does *not* check the value of
2639 overload_resolution. Caller must check it to see whether overload
2640 resolution is permitted.
2644 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2645 int lax, value_ptr obj, struct symbol *fsym,
2646 value_ptr *valp, struct symbol **symp, int *staticp)
2649 struct type **parm_types;
2650 int champ_nparms = 0;
2652 short oload_champ = -1; /* Index of best overloaded function */
2653 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2654 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2655 short oload_ambig_champ = -1; /* 2nd contender for best match */
2656 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2657 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2659 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2660 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2662 value_ptr temp = obj;
2663 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2664 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2665 int num_fns = 0; /* Number of overloaded instances being considered */
2666 struct type *basetype = NULL;
2671 char *obj_type_name = NULL;
2672 char *func_name = NULL;
2674 /* Get the list of overloaded methods or functions */
2679 struct type *domain;
2680 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2681 /* Hack: evaluate_subexp_standard often passes in a pointer
2682 value rather than the object itself, so try again */
2683 if ((!obj_type_name || !*obj_type_name) &&
2684 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2685 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2687 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2690 &basetype, &boffset);
2691 if (!fns_ptr || !num_fns)
2692 error ("Couldn't find method %s%s%s",
2694 (obj_type_name && *obj_type_name) ? "::" : "",
2696 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2697 len = TYPE_NFN_FIELDS (domain);
2698 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2699 give us the info we need directly in the types. We have to
2700 use the method stub conversion to get it. Be aware that this
2701 is by no means perfect, and if you use STABS, please move to
2702 DWARF-2, or something like it, because trying to improve
2703 overloading using STABS is really a waste of time. */
2704 for (i = 0; i < len; i++)
2707 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2708 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2710 for (j = 0; j < len2; j++)
2712 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2713 check_stub_method (domain, i, j);
2720 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2722 /* If the name is NULL this must be a C-style function.
2723 Just return the same symbol. */
2730 oload_syms = make_symbol_overload_list (fsym);
2731 while (oload_syms[++i])
2734 error ("Couldn't find function %s", func_name);
2737 oload_champ_bv = NULL;
2739 /* Consider each candidate in turn */
2740 for (ix = 0; ix < num_fns; ix++)
2744 /* For static member functions, we won't have a this pointer, but nothing
2745 else seems to handle them right now, so we just pretend ourselves */
2748 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2750 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2756 /* If it's not a method, this is the proper place */
2757 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2760 /* Prepare array of parameter types */
2761 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2762 for (jj = 0; jj < nparms; jj++)
2763 parm_types[jj] = (method
2764 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2765 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2767 /* Compare parameter types to supplied argument types */
2768 bv = rank_function (parm_types, nparms, arg_types, nargs);
2770 if (!oload_champ_bv)
2772 oload_champ_bv = bv;
2774 champ_nparms = nparms;
2777 /* See whether current candidate is better or worse than previous best */
2778 switch (compare_badness (bv, oload_champ_bv))
2781 oload_ambiguous = 1; /* top two contenders are equally good */
2782 oload_ambig_champ = ix;
2785 oload_ambiguous = 2; /* incomparable top contenders */
2786 oload_ambig_champ = ix;
2789 oload_champ_bv = bv; /* new champion, record details */
2790 oload_ambiguous = 0;
2792 oload_ambig_champ = -1;
2793 champ_nparms = nparms;
2803 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2805 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2806 for (jj = 0; jj < nargs; jj++)
2807 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2808 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2810 } /* end loop over all candidates */
2811 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2812 if they have the exact same goodness. This is because there is no
2813 way to differentiate based on return type, which we need to in
2814 cases like overloads of .begin() <It's both const and non-const> */
2816 if (oload_ambiguous)
2819 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2821 (obj_type_name && *obj_type_name) ? "::" : "",
2824 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2829 /* Check how bad the best match is */
2830 for (ix = 1; ix <= nargs; ix++)
2832 if (oload_champ_bv->rank[ix] >= 100)
2833 oload_incompatible = 1; /* truly mismatched types */
2835 else if (oload_champ_bv->rank[ix] >= 10)
2836 oload_non_standard = 1; /* non-standard type conversions needed */
2838 if (oload_incompatible)
2841 error ("Cannot resolve method %s%s%s to any overloaded instance",
2843 (obj_type_name && *obj_type_name) ? "::" : "",
2846 error ("Cannot resolve function %s to any overloaded instance",
2849 else if (oload_non_standard)
2852 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2854 (obj_type_name && *obj_type_name) ? "::" : "",
2857 warning ("Using non-standard conversion to match function %s to supplied arguments",
2863 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2864 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2866 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2870 *symp = oload_syms[oload_champ];
2874 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2877 /* C++: return 1 is NAME is a legitimate name for the destructor
2878 of type TYPE. If TYPE does not have a destructor, or
2879 if NAME is inappropriate for TYPE, an error is signaled. */
2881 destructor_name_p (const char *name, const struct type *type)
2883 /* destructors are a special case. */
2887 char *dname = type_name_no_tag (type);
2888 char *cp = strchr (dname, '<');
2891 /* Do not compare the template part for template classes. */
2893 len = strlen (dname);
2896 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2897 error ("name of destructor must equal name of class");
2904 /* Helper function for check_field: Given TYPE, a structure/union,
2905 return 1 if the component named NAME from the ultimate
2906 target structure/union is defined, otherwise, return 0. */
2909 check_field_in (register struct type *type, const char *name)
2913 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2915 char *t_field_name = TYPE_FIELD_NAME (type, i);
2916 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2920 /* C++: If it was not found as a data field, then try to
2921 return it as a pointer to a method. */
2923 /* Destructors are a special case. */
2924 if (destructor_name_p (name, type))
2926 int m_index, f_index;
2928 return get_destructor_fn_field (type, &m_index, &f_index);
2931 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2933 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2937 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2938 if (check_field_in (TYPE_BASECLASS (type, i), name))
2945 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2946 return 1 if the component named NAME from the ultimate
2947 target structure/union is defined, otherwise, return 0. */
2950 check_field (register value_ptr arg1, const char *name)
2952 register struct type *t;
2954 COERCE_ARRAY (arg1);
2956 t = VALUE_TYPE (arg1);
2958 /* Follow pointers until we get to a non-pointer. */
2963 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2965 t = TYPE_TARGET_TYPE (t);
2968 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2969 error ("not implemented: member type in check_field");
2971 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2972 && TYPE_CODE (t) != TYPE_CODE_UNION)
2973 error ("Internal error: `this' is not an aggregate");
2975 return check_field_in (t, name);
2978 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2979 return the address of this member as a "pointer to member"
2980 type. If INTYPE is non-null, then it will be the type
2981 of the member we are looking for. This will help us resolve
2982 "pointers to member functions". This function is used
2983 to resolve user expressions of the form "DOMAIN::NAME". */
2986 value_struct_elt_for_reference (struct type *domain, int offset,
2987 struct type *curtype, char *name,
2988 struct type *intype)
2990 register struct type *t = curtype;
2994 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2995 && TYPE_CODE (t) != TYPE_CODE_UNION)
2996 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2998 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3000 char *t_field_name = TYPE_FIELD_NAME (t, i);
3002 if (t_field_name && STREQ (t_field_name, name))
3004 if (TYPE_FIELD_STATIC (t, i))
3006 v = value_static_field (t, i);
3008 error ("Internal error: could not find static variable %s",
3012 if (TYPE_FIELD_PACKED (t, i))
3013 error ("pointers to bitfield members not allowed");
3015 return value_from_longest
3016 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3018 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3022 /* C++: If it was not found as a data field, then try to
3023 return it as a pointer to a method. */
3025 /* Destructors are a special case. */
3026 if (destructor_name_p (name, t))
3028 error ("member pointers to destructors not implemented yet");
3031 /* Perform all necessary dereferencing. */
3032 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3033 intype = TYPE_TARGET_TYPE (intype);
3035 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3037 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3038 char dem_opname[64];
3040 if (strncmp (t_field_name, "__", 2) == 0 ||
3041 strncmp (t_field_name, "op", 2) == 0 ||
3042 strncmp (t_field_name, "type", 4) == 0)
3044 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3045 t_field_name = dem_opname;
3046 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3047 t_field_name = dem_opname;
3049 if (t_field_name && STREQ (t_field_name, name))
3051 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3052 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3054 if (intype == 0 && j > 1)
3055 error ("non-unique member `%s' requires type instantiation", name);
3059 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3062 error ("no member function matches that type instantiation");
3067 if (TYPE_FN_FIELD_STUB (f, j))
3068 check_stub_method (t, i, j);
3069 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3071 return value_from_longest
3072 (lookup_reference_type
3073 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3075 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3079 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3080 0, VAR_NAMESPACE, 0, NULL);
3087 v = read_var_value (s, 0);
3089 VALUE_TYPE (v) = lookup_reference_type
3090 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3098 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3103 if (BASETYPE_VIA_VIRTUAL (t, i))
3106 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3107 v = value_struct_elt_for_reference (domain,
3108 offset + base_offset,
3109 TYPE_BASECLASS (t, i),
3119 /* Find the real run-time type of a value using RTTI.
3120 * V is a pointer to the value.
3121 * A pointer to the struct type entry of the run-time type
3123 * FULL is a flag that is set only if the value V includes
3124 * the entire contents of an object of the RTTI type.
3125 * TOP is the offset to the top of the enclosing object of
3126 * the real run-time type. This offset may be for the embedded
3127 * object, or for the enclosing object of V.
3128 * USING_ENC is the flag that distinguishes the two cases.
3129 * If it is 1, then the offset is for the enclosing object,
3130 * otherwise for the embedded object.
3135 value_rtti_type (value_ptr v, int *full, int *top, int *using_enc)
3137 struct type *known_type;
3138 struct type *rtti_type;
3141 int using_enclosing = 0;
3142 long top_offset = 0;
3143 char rtti_type_name[256];
3152 /* Get declared type */
3153 known_type = VALUE_TYPE (v);
3154 CHECK_TYPEDEF (known_type);
3155 /* RTTI works only or class objects */
3156 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3158 if (TYPE_HAS_VTABLE(known_type))
3160 /* If neither the declared type nor the enclosing type of the
3161 * value structure has a HP ANSI C++ style virtual table,
3162 * we can't do anything. */
3163 if (!TYPE_HAS_VTABLE (known_type))
3165 known_type = VALUE_ENCLOSING_TYPE (v);
3166 CHECK_TYPEDEF (known_type);
3167 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3168 !TYPE_HAS_VTABLE (known_type))
3169 return NULL; /* No RTTI, or not HP-compiled types */
3170 CHECK_TYPEDEF (known_type);
3171 using_enclosing = 1;
3174 if (using_enclosing && using_enc)
3177 /* First get the virtual table address */
3178 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3180 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3182 return NULL; /* return silently -- maybe called on gdb-generated value */
3184 /* Fetch the top offset of the object */
3185 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3186 vp = value_at (builtin_type_int,
3187 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3188 VALUE_BFD_SECTION (v));
3189 top_offset = value_as_long (vp);
3193 /* Fetch the typeinfo pointer */
3194 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3195 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3196 /* Indirect through the typeinfo pointer and retrieve the pointer
3197 * to the string name */
3198 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3200 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3201 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3202 /* FIXME possible 32x64 problem */
3204 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3206 read_memory_string (coreptr, rtti_type_name, 256);
3208 if (strlen (rtti_type_name) == 0)
3209 error ("Retrieved null type name from typeinfo");
3211 /* search for type */
3212 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3215 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3216 CHECK_TYPEDEF (rtti_type);
3218 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3220 /* Check whether we have the entire object */
3221 if (full /* Non-null pointer passed */
3223 /* Either we checked on the whole object in hand and found the
3224 top offset to be zero */
3225 (((top_offset == 0) &&
3227 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3229 /* Or we checked on the embedded object and top offset was the
3230 same as the embedded offset */
3231 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3233 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3239 Right now this is G++ RTTI. Plan on this changing in the
3240 future as i get around to setting the vtables properly for G++
3241 compiled stuff. Also, i'll be using the type info functions,
3242 which are always right. Deal with it until then.
3246 struct minimal_symbol *minsym;
3248 char *demangled_name;
3250 /* If the type has no vptr fieldno, try to get it filled in */
3251 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3252 fill_in_vptr_fieldno(known_type);
3254 /* If we still can't find one, give up */
3255 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3258 /* Make sure our basetype and known type match, otherwise, cast
3259 so we can get at the vtable properly.
3261 btype = TYPE_VPTR_BASETYPE (known_type);
3262 CHECK_TYPEDEF (btype);
3263 if (btype != known_type )
3265 v = value_cast (btype, v);
3270 We can't use value_ind here, because it would want to use RTTI, and
3271 we'd waste a bunch of time figuring out we already know the type.
3272 Besides, we don't care about the type, just the actual pointer
3274 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3278 If we are enclosed by something that isn't us, adjust the
3279 address properly and set using_enclosing.
3281 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3284 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3285 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3286 vtbl=value_as_pointer(tempval);
3291 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3295 /* Try to find a symbol that is the vtable */
3296 minsym=lookup_minimal_symbol_by_pc(vtbl);
3297 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3300 /* If we just skip the prefix, we get screwed by namespaces */
3301 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3302 *(strchr(demangled_name,' '))=0;
3304 /* Lookup the type for the name */
3305 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3307 if (rtti_type==NULL)
3310 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3313 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3314 if (top && ((*top) >0))
3316 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3334 *using_enc=using_enclosing;
3339 /* Given a pointer value V, find the real (RTTI) type
3340 of the object it points to.
3341 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3342 and refer to the values computed for the object pointed to. */
3345 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3349 target = value_ind (v);
3351 return value_rtti_type (target, full, top, using_enc);
3354 /* Given a value pointed to by ARGP, check its real run-time type, and
3355 if that is different from the enclosing type, create a new value
3356 using the real run-time type as the enclosing type (and of the same
3357 type as ARGP) and return it, with the embedded offset adjusted to
3358 be the correct offset to the enclosed object
3359 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3360 parameters, computed by value_rtti_type(). If these are available,
3361 they can be supplied and a second call to value_rtti_type() is avoided.
3362 (Pass RTYPE == NULL if they're not available */
3365 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3368 struct type *real_type;
3379 using_enc = xusing_enc;
3382 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3384 /* If no RTTI data, or if object is already complete, do nothing */
3385 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3388 /* If we have the full object, but for some reason the enclosing
3389 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3392 VALUE_ENCLOSING_TYPE (argp) = real_type;
3396 /* Check if object is in memory */
3397 if (VALUE_LVAL (argp) != lval_memory)
3399 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3404 /* All other cases -- retrieve the complete object */
3405 /* Go back by the computed top_offset from the beginning of the object,
3406 adjusting for the embedded offset of argp if that's what value_rtti_type
3407 used for its computation. */
3408 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3409 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3410 VALUE_BFD_SECTION (argp));
3411 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3412 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3419 /* C++: return the value of the class instance variable, if one exists.
3420 Flag COMPLAIN signals an error if the request is made in an
3421 inappropriate context. */
3424 value_of_this (int complain)
3426 struct symbol *func, *sym;
3429 static const char funny_this[] = "this";
3432 if (selected_frame == 0)
3435 error ("no frame selected");
3440 func = get_frame_function (selected_frame);
3444 error ("no `this' in nameless context");
3449 b = SYMBOL_BLOCK_VALUE (func);
3450 i = BLOCK_NSYMS (b);
3454 error ("no args, no `this'");
3459 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3460 symbol instead of the LOC_ARG one (if both exist). */
3461 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3465 error ("current stack frame not in method");
3470 this = read_var_value (sym, selected_frame);
3471 if (this == 0 && complain)
3472 error ("`this' argument at unknown address");
3476 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3477 long, starting at LOWBOUND. The result has the same lower bound as
3478 the original ARRAY. */
3481 value_slice (value_ptr array, int lowbound, int length)
3483 struct type *slice_range_type, *slice_type, *range_type;
3484 LONGEST lowerbound, upperbound, offset;
3486 struct type *array_type;
3487 array_type = check_typedef (VALUE_TYPE (array));
3488 COERCE_VARYING_ARRAY (array, array_type);
3489 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3490 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3491 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3492 error ("cannot take slice of non-array");
3493 range_type = TYPE_INDEX_TYPE (array_type);
3494 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3495 error ("slice from bad array or bitstring");
3496 if (lowbound < lowerbound || length < 0
3497 || lowbound + length - 1 > upperbound
3498 /* Chill allows zero-length strings but not arrays. */
3499 || (current_language->la_language == language_chill
3500 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3501 error ("slice out of range");
3502 /* FIXME-type-allocation: need a way to free this type when we are
3504 slice_range_type = create_range_type ((struct type *) NULL,
3505 TYPE_TARGET_TYPE (range_type),
3506 lowbound, lowbound + length - 1);
3507 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3510 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3511 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3512 slice = value_zero (slice_type, not_lval);
3513 for (i = 0; i < length; i++)
3515 int element = value_bit_index (array_type,
3516 VALUE_CONTENTS (array),
3519 error ("internal error accessing bitstring");
3520 else if (element > 0)
3522 int j = i % TARGET_CHAR_BIT;
3523 if (BITS_BIG_ENDIAN)
3524 j = TARGET_CHAR_BIT - 1 - j;
3525 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3528 /* We should set the address, bitssize, and bitspos, so the clice
3529 can be used on the LHS, but that may require extensions to
3530 value_assign. For now, just leave as a non_lval. FIXME. */
3534 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3536 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3537 slice_type = create_array_type ((struct type *) NULL, element_type,
3539 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3540 slice = allocate_value (slice_type);
3541 if (VALUE_LAZY (array))
3542 VALUE_LAZY (slice) = 1;
3544 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3545 TYPE_LENGTH (slice_type));
3546 if (VALUE_LVAL (array) == lval_internalvar)
3547 VALUE_LVAL (slice) = lval_internalvar_component;
3549 VALUE_LVAL (slice) = VALUE_LVAL (array);
3550 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3551 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3556 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3557 value as a fixed-length array. */
3560 varying_to_slice (value_ptr varray)
3562 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3563 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3564 VALUE_CONTENTS (varray)
3565 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3566 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3569 /* Create a value for a FORTRAN complex number. Currently most of
3570 the time values are coerced to COMPLEX*16 (i.e. a complex number
3571 composed of 2 doubles. This really should be a smarter routine
3572 that figures out precision inteligently as opposed to assuming
3573 doubles. FIXME: fmb */
3576 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3578 register value_ptr val;
3579 struct type *real_type = TYPE_TARGET_TYPE (type);
3581 val = allocate_value (type);
3582 arg1 = value_cast (real_type, arg1);
3583 arg2 = value_cast (real_type, arg2);
3585 memcpy (VALUE_CONTENTS_RAW (val),
3586 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3587 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3588 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3592 /* Cast a value into the appropriate complex data type. */
3595 cast_into_complex (struct type *type, register value_ptr val)
3597 struct type *real_type = TYPE_TARGET_TYPE (type);
3598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3600 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3601 value_ptr re_val = allocate_value (val_real_type);
3602 value_ptr im_val = allocate_value (val_real_type);
3604 memcpy (VALUE_CONTENTS_RAW (re_val),
3605 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3606 memcpy (VALUE_CONTENTS_RAW (im_val),
3607 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3608 TYPE_LENGTH (val_real_type));
3610 return value_literal_complex (re_val, im_val, type);
3612 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3613 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3614 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3616 error ("cannot cast non-number to complex");
3620 _initialize_valops (void)
3624 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3625 "Set automatic abandonment of expressions upon failure.",
3631 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3632 "Set overload resolution in evaluating C++ functions.",
3635 overload_resolution = 1;
3638 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3639 (char *) &unwind_on_signal_p,
3640 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3641 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3642 is received while in a function called from gdb (call dummy). If set, gdb\n\
3643 unwinds the stack and restore the context to what as it was before the call.\n\
3644 The default is to stop in the frame where the signal was received.", &setlist),