1 /* Disassemble support for GDB.
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "gdb_string.h"
30 /* Disassemble functions.
31 FIXME: We should get rid of all the duplicate code in gdb that does
32 the same thing: disassemble_command() and the gdbtk variation. */
34 /* This Structure is used to store line number information.
35 We need a different sort of line table from the normal one cuz we can't
36 depend upon implicit line-end pc's for lines to do the
37 reordering in this function. */
46 /* Like target_read_memory, but slightly different parameters. */
48 dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
49 struct disassemble_info *info)
51 return target_read_memory (memaddr, myaddr, len);
54 /* Like memory_error with slightly different parameters. */
56 dis_asm_memory_error (int status, bfd_vma memaddr,
57 struct disassemble_info *info)
59 memory_error (status, memaddr);
62 /* Like print_address with slightly different parameters. */
64 dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
66 struct gdbarch *gdbarch = info->application_data;
68 print_address (gdbarch, addr, info->stream);
72 compare_lines (const void *mle1p, const void *mle2p)
74 struct dis_line_entry *mle1, *mle2;
77 mle1 = (struct dis_line_entry *) mle1p;
78 mle2 = (struct dis_line_entry *) mle2p;
80 val = mle1->line - mle2->line;
85 return mle1->start_pc - mle2->start_pc;
89 dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
90 struct disassemble_info * di,
91 CORE_ADDR low, CORE_ADDR high,
92 int how_many, int flags, struct ui_stream *stb)
94 int num_displayed = 0;
97 /* parts of the symbolic representation of the address */
101 struct cleanup *ui_out_chain;
103 for (pc = low; pc < high;)
105 char *filename = NULL;
111 if (num_displayed >= how_many)
116 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
117 ui_out_text (uiout, pc_prefix (pc));
118 ui_out_field_core_addr (uiout, "address", gdbarch, pc);
120 if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
123 /* We don't care now about line, filename and
124 unmapped. But we might in the future. */
125 ui_out_text (uiout, " <");
126 if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
127 ui_out_field_string (uiout, "func-name", name);
128 ui_out_text (uiout, "+");
129 ui_out_field_int (uiout, "offset", offset);
130 ui_out_text (uiout, ">:\t");
133 ui_out_text (uiout, ":\t");
135 if (filename != NULL)
140 ui_file_rewind (stb->stream);
141 if (flags & DISASSEMBLY_RAW_INSN)
143 CORE_ADDR old_pc = pc;
147 pc += gdbarch_print_insn (gdbarch, pc, di);
148 for (;old_pc < pc; old_pc++)
150 status = (*di->read_memory_func) (old_pc, &data, 1, di);
152 (*di->memory_error_func) (status, old_pc, di);
153 ui_out_message (uiout, 0, " %02x", (unsigned)data);
155 ui_out_text (uiout, "\t");
158 pc += gdbarch_print_insn (gdbarch, pc, di);
159 ui_out_field_stream (uiout, "inst", stb);
160 ui_file_rewind (stb->stream);
161 do_cleanups (ui_out_chain);
162 ui_out_text (uiout, "\n");
164 return num_displayed;
167 /* The idea here is to present a source-O-centric view of a
168 function to the user. This means that things are presented
169 in source order, with (possibly) out of order assembly
170 immediately following. */
173 do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
174 struct disassemble_info *di, int nlines,
175 struct linetable_entry *le,
176 CORE_ADDR low, CORE_ADDR high,
177 struct symtab *symtab,
178 int how_many, int flags, struct ui_stream *stb)
181 struct dis_line_entry *mle;
182 struct symtab_and_line sal;
184 int out_of_order = 0;
186 int num_displayed = 0;
187 struct cleanup *ui_out_chain;
188 struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
189 struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
191 mle = (struct dis_line_entry *) alloca (nlines
192 * sizeof (struct dis_line_entry));
194 /* Copy linetable entries for this function into our data
195 structure, creating end_pc's and setting out_of_order as
198 /* First, skip all the preceding functions. */
200 for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
202 /* Now, copy all entries before the end of this function. */
204 for (; i < nlines - 1 && le[i].pc < high; i++)
206 if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
207 continue; /* Ignore duplicates. */
209 /* Skip any end-of-function markers. */
213 mle[newlines].line = le[i].line;
214 if (le[i].line > le[i + 1].line)
216 mle[newlines].start_pc = le[i].pc;
217 mle[newlines].end_pc = le[i + 1].pc;
221 /* If we're on the last line, and it's part of the function,
222 then we need to get the end pc in a special way. */
224 if (i == nlines - 1 && le[i].pc < high)
226 mle[newlines].line = le[i].line;
227 mle[newlines].start_pc = le[i].pc;
228 sal = find_pc_line (le[i].pc, 0);
229 mle[newlines].end_pc = sal.end;
233 /* Now, sort mle by line #s (and, then by addresses within
237 qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
239 /* Now, for each line entry, emit the specified lines (unless
240 they have been emitted before), followed by the assembly code
243 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
245 for (i = 0; i < newlines; i++)
247 /* Print out everything from next_line to the current line. */
248 if (mle[i].line >= next_line)
252 /* Just one line to print. */
253 if (next_line == mle[i].line)
256 = make_cleanup_ui_out_tuple_begin_end (uiout,
258 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
262 /* Several source lines w/o asm instructions associated. */
263 for (; next_line < mle[i].line; next_line++)
265 struct cleanup *ui_out_list_chain_line;
266 struct cleanup *ui_out_tuple_chain_line;
268 ui_out_tuple_chain_line
269 = make_cleanup_ui_out_tuple_begin_end (uiout,
271 print_source_lines (symtab, next_line, next_line + 1,
273 ui_out_list_chain_line
274 = make_cleanup_ui_out_list_begin_end (uiout,
276 do_cleanups (ui_out_list_chain_line);
277 do_cleanups (ui_out_tuple_chain_line);
279 /* Print the last line and leave list open for
280 asm instructions to be added. */
282 = make_cleanup_ui_out_tuple_begin_end (uiout,
284 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
290 = make_cleanup_ui_out_tuple_begin_end (uiout,
292 print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
295 next_line = mle[i].line + 1;
297 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
300 num_displayed += dump_insns (gdbarch, uiout, di,
301 mle[i].start_pc, mle[i].end_pc,
302 how_many, flags, stb);
304 /* When we've reached the end of the mle array, or we've seen the last
305 assembly range for this source line, close out the list/tuple. */
306 if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
308 do_cleanups (ui_out_list_chain);
309 do_cleanups (ui_out_tuple_chain);
310 ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
311 ui_out_list_chain = make_cleanup (null_cleanup, 0);
312 ui_out_text (uiout, "\n");
314 if (how_many >= 0 && num_displayed >= how_many)
317 do_cleanups (ui_out_chain);
322 do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
323 struct disassemble_info * di,
324 CORE_ADDR low, CORE_ADDR high,
325 int how_many, int flags, struct ui_stream *stb)
327 int num_displayed = 0;
328 struct cleanup *ui_out_chain;
330 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
332 num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
335 do_cleanups (ui_out_chain);
338 /* Initialize the disassemble info struct ready for the specified
341 static int ATTRIBUTE_PRINTF (2, 3)
342 fprintf_disasm (void *stream, const char *format, ...)
346 va_start (args, format);
347 vfprintf_filtered (stream, format, args);
349 /* Something non -ve. */
353 static struct disassemble_info
354 gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
356 struct disassemble_info di;
358 init_disassemble_info (&di, file, fprintf_disasm);
359 di.flavour = bfd_target_unknown_flavour;
360 di.memory_error_func = dis_asm_memory_error;
361 di.print_address_func = dis_asm_print_address;
362 /* NOTE: cagney/2003-04-28: The original code, from the old Insight
363 disassembler had a local optomization here. By default it would
364 access the executable file, instead of the target memory (there
365 was a growing list of exceptions though). Unfortunately, the
366 heuristic was flawed. Commands like "disassemble &variable"
367 didn't work as they relied on the access going to the target.
368 Further, it has been supperseeded by trust-read-only-sections
369 (although that should be superseeded by target_trust..._p()). */
370 di.read_memory_func = dis_asm_read_memory;
371 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
372 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
373 di.endian = gdbarch_byte_order (gdbarch);
374 di.endian_code = gdbarch_byte_order_for_code (gdbarch);
375 di.application_data = gdbarch;
376 disassemble_init_for_target (&di);
381 gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
382 char *file_string, int flags, int how_many,
383 CORE_ADDR low, CORE_ADDR high)
385 struct ui_stream *stb = ui_out_stream_new (uiout);
386 struct cleanup *cleanups = make_cleanup_ui_out_stream_delete (stb);
387 struct disassemble_info di = gdb_disassemble_info (gdbarch, stb->stream);
388 /* To collect the instruction outputted from opcodes. */
389 struct symtab *symtab = NULL;
390 struct linetable_entry *le = NULL;
393 /* Assume symtab is valid for whole PC range. */
394 symtab = find_pc_symtab (low);
396 if (symtab != NULL && symtab->linetable != NULL)
398 /* Convert the linetable to a bunch of my_line_entry's. */
399 le = symtab->linetable->item;
400 nlines = symtab->linetable->nitems;
403 if (!(flags & DISASSEMBLY_SOURCE) || nlines <= 0
404 || symtab == NULL || symtab->linetable == NULL)
405 do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
407 else if (flags & DISASSEMBLY_SOURCE)
408 do_mixed_source_and_assembly (gdbarch, uiout, &di, nlines, le, low,
409 high, symtab, how_many, flags, stb);
411 do_cleanups (cleanups);
412 gdb_flush (gdb_stdout);
415 /* Print the instruction at address MEMADDR in debugged memory,
416 on STREAM. Returns the length of the instruction, in bytes,
417 and, if requested, the number of branch delay slot instructions. */
420 gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
421 struct ui_file *stream, int *branch_delay_insns)
423 struct disassemble_info di;
426 di = gdb_disassemble_info (gdbarch, stream);
427 length = gdbarch_print_insn (gdbarch, memaddr, &di);
428 if (branch_delay_insns)
430 if (di.insn_info_valid)
431 *branch_delay_insns = di.branch_delay_insns;
433 *branch_delay_insns = 0;
439 do_ui_file_delete (void *arg)
441 ui_file_delete (arg);
444 /* Return the length in bytes of the instruction at address MEMADDR in
448 gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
450 static struct ui_file *null_stream = NULL;
452 /* Dummy file descriptor for the disassembler. */
455 null_stream = ui_file_new ();
456 make_final_cleanup (do_ui_file_delete, null_stream);
459 return gdb_print_insn (gdbarch, addr, null_stream, NULL);
462 /* fprintf-function for gdb_buffered_insn_length. This function is a
463 nop, we don't want to print anything, we just want to compute the
464 length of the insn. */
466 static int ATTRIBUTE_PRINTF (2, 3)
467 gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
472 /* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
475 gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
476 struct disassemble_info *di,
477 const gdb_byte *insn, int max_len,
480 init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
482 /* init_disassemble_info installs buffer_read_memory, etc.
483 so we don't need to do that here.
484 The cast is necessary until disassemble_info is const-ified. */
485 di->buffer = (gdb_byte *) insn;
486 di->buffer_length = max_len;
487 di->buffer_vma = addr;
489 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
490 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
491 di->endian = gdbarch_byte_order (gdbarch);
492 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
494 disassemble_init_for_target (di);
497 /* Return the length in bytes of INSN. MAX_LEN is the size of the
498 buffer containing INSN. */
501 gdb_buffered_insn_length (struct gdbarch *gdbarch,
502 const gdb_byte *insn, int max_len, CORE_ADDR addr)
504 struct disassemble_info di;
506 gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
508 return gdbarch_print_insn (gdbarch, addr, &di);