1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
36 #define OCTETS_PER_BYTE(ABFD, SEC) 1
38 #define XTENSA_NO_NOP_REMOVAL 0
44 #ifndef XTHAL_ABI_UNDEFINED
45 #define XTHAL_ABI_UNDEFINED -1
48 #ifndef XTHAL_ABI_WINDOWED
49 #define XTHAL_ABI_WINDOWED 0
52 #ifndef XTHAL_ABI_CALL0
53 #define XTHAL_ABI_CALL0 1
56 /* Local helper functions. */
58 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
59 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
60 static bfd_reloc_status_type bfd_elf_xtensa_reloc
61 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
62 static bfd_boolean do_fix_for_relocatable_link
63 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
64 static void do_fix_for_final_link
65 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
67 /* Local functions to handle Xtensa configurability. */
69 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
70 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
71 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
72 static xtensa_opcode get_const16_opcode (void);
73 static xtensa_opcode get_l32r_opcode (void);
74 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
75 static int get_relocation_opnd (xtensa_opcode, int);
76 static int get_relocation_slot (int);
77 static xtensa_opcode get_relocation_opcode
78 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
79 static bfd_boolean is_l32r_relocation
80 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
81 static bfd_boolean is_alt_relocation (int);
82 static bfd_boolean is_operand_relocation (int);
83 static bfd_size_type insn_decode_len
84 (bfd_byte *, bfd_size_type, bfd_size_type);
85 static int insn_num_slots
86 (bfd_byte *, bfd_size_type, bfd_size_type);
87 static xtensa_opcode insn_decode_opcode
88 (bfd_byte *, bfd_size_type, bfd_size_type, int);
89 static bfd_boolean check_branch_target_aligned
90 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
91 static bfd_boolean check_loop_aligned
92 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
93 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
94 static bfd_size_type get_asm_simplify_size
95 (bfd_byte *, bfd_size_type, bfd_size_type);
97 /* Functions for link-time code simplifications. */
99 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
100 (bfd_byte *, bfd_vma, bfd_vma, char **);
101 static bfd_reloc_status_type contract_asm_expansion
102 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
103 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
104 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
106 /* Access to internal relocations, section contents and symbols. */
108 static Elf_Internal_Rela *retrieve_internal_relocs
109 (bfd *, asection *, bfd_boolean);
110 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
111 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
112 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
113 static void pin_contents (asection *, bfd_byte *);
114 static void release_contents (asection *, bfd_byte *);
115 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
117 /* Miscellaneous utility functions. */
119 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
120 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
121 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
122 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
123 (bfd *, unsigned long);
124 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
125 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
126 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
127 static bfd_boolean xtensa_is_property_section (asection *);
128 static bfd_boolean xtensa_is_insntable_section (asection *);
129 static bfd_boolean xtensa_is_littable_section (asection *);
130 static bfd_boolean xtensa_is_proptable_section (asection *);
131 static int internal_reloc_compare (const void *, const void *);
132 static int internal_reloc_matches (const void *, const void *);
133 static asection *xtensa_get_property_section (asection *, const char *);
134 static flagword xtensa_get_property_predef_flags (asection *);
136 /* Other functions called directly by the linker. */
138 typedef void (*deps_callback_t)
139 (asection *, bfd_vma, asection *, bfd_vma, void *);
140 extern bfd_boolean xtensa_callback_required_dependence
141 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
144 /* Globally visible flag for choosing size optimization of NOP removal
145 instead of branch-target-aware minimization for NOP removal.
146 When nonzero, narrow all instructions and remove all NOPs possible
147 around longcall expansions. */
149 int elf32xtensa_size_opt;
152 /* The "new_section_hook" is used to set up a per-section
153 "xtensa_relax_info" data structure with additional information used
154 during relaxation. */
156 typedef struct xtensa_relax_info_struct xtensa_relax_info;
159 /* The GNU tools do not easily allow extending interfaces to pass around
160 the pointer to the Xtensa ISA information, so instead we add a global
161 variable here (in BFD) that can be used by any of the tools that need
164 xtensa_isa xtensa_default_isa;
167 /* When this is true, relocations may have been modified to refer to
168 symbols from other input files. The per-section list of "fix"
169 records needs to be checked when resolving relocations. */
171 static bfd_boolean relaxing_section = FALSE;
173 /* When this is true, during final links, literals that cannot be
174 coalesced and their relocations may be moved to other sections. */
176 int elf32xtensa_no_literal_movement = 1;
178 /* Place property records for a section into individual property section
179 with xt.prop. prefix. */
181 bfd_boolean elf32xtensa_separate_props = FALSE;
183 /* Xtensa ABI. It affects PLT entry code. */
185 int elf32xtensa_abi = XTHAL_ABI_UNDEFINED;
187 /* Rename one of the generic section flags to better document how it
189 /* Whether relocations have been processed. */
190 #define reloc_done sec_flg0
192 static reloc_howto_type elf_howto_table[] =
194 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
197 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_xtensa_reloc, "R_XTENSA_32",
199 TRUE, 0xffffffff, 0xffffffff, FALSE),
201 /* Replace a 32-bit value with a value from the runtime linker (only
202 used by linker-generated stub functions). The r_addend value is
203 special: 1 means to substitute a pointer to the runtime linker's
204 dynamic resolver function; 2 means to substitute the link map for
205 the shared object. */
206 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
207 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
209 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
210 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
211 FALSE, 0, 0xffffffff, FALSE),
212 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
213 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
214 FALSE, 0, 0xffffffff, FALSE),
215 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
216 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
217 FALSE, 0, 0xffffffff, FALSE),
218 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
219 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
220 FALSE, 0, 0xffffffff, FALSE),
224 /* Old relocations for backward compatibility. */
225 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
232 /* Assembly auto-expansion. */
233 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
235 /* Relax assembly auto-expansion. */
236 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
242 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
243 FALSE, 0, 0xffffffff, TRUE),
245 /* GNU extension to record C++ vtable hierarchy. */
246 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
247 NULL, "R_XTENSA_GNU_VTINHERIT",
249 /* GNU extension to record C++ vtable member usage. */
250 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
251 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
254 /* Relocations for supporting difference of symbols. */
255 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
256 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
257 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
258 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
259 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
260 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
262 /* General immediate operand relocations. */
263 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
294 /* "Alternate" relocations. The meaning of these is opcode-specific. */
295 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
296 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
297 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
299 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
301 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
303 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
305 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
307 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
309 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
311 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
313 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
315 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
317 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
319 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
320 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
321 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
322 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
326 /* TLS relocations. */
327 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
328 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
329 FALSE, 0, 0xffffffff, FALSE),
330 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
331 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
332 FALSE, 0, 0xffffffff, FALSE),
333 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
334 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
335 FALSE, 0, 0xffffffff, FALSE),
336 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
337 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
338 FALSE, 0, 0xffffffff, FALSE),
339 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
340 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
342 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
343 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
345 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
346 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
349 HOWTO (R_XTENSA_PDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
350 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", FALSE, 0, 0xff, FALSE),
351 HOWTO (R_XTENSA_PDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
352 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", FALSE, 0, 0xffff, FALSE),
353 HOWTO (R_XTENSA_PDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
354 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", FALSE, 0, 0xffffffff, FALSE),
356 HOWTO (R_XTENSA_NDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
357 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", FALSE, 0, 0xff, FALSE),
358 HOWTO (R_XTENSA_NDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
359 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", FALSE, 0, 0xffff, FALSE),
360 HOWTO (R_XTENSA_NDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
361 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", FALSE, 0, 0xffffffff, FALSE),
366 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
371 static reloc_howto_type *
372 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
373 bfd_reloc_code_real_type code)
378 TRACE ("BFD_RELOC_NONE");
379 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
382 TRACE ("BFD_RELOC_32");
383 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
385 case BFD_RELOC_32_PCREL:
386 TRACE ("BFD_RELOC_32_PCREL");
387 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
389 case BFD_RELOC_XTENSA_DIFF8:
390 TRACE ("BFD_RELOC_XTENSA_DIFF8");
391 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
393 case BFD_RELOC_XTENSA_DIFF16:
394 TRACE ("BFD_RELOC_XTENSA_DIFF16");
395 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
397 case BFD_RELOC_XTENSA_DIFF32:
398 TRACE ("BFD_RELOC_XTENSA_DIFF32");
399 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
401 case BFD_RELOC_XTENSA_PDIFF8:
402 TRACE ("BFD_RELOC_XTENSA_PDIFF8");
403 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ];
405 case BFD_RELOC_XTENSA_PDIFF16:
406 TRACE ("BFD_RELOC_XTENSA_PDIFF16");
407 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ];
409 case BFD_RELOC_XTENSA_PDIFF32:
410 TRACE ("BFD_RELOC_XTENSA_PDIFF32");
411 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ];
413 case BFD_RELOC_XTENSA_NDIFF8:
414 TRACE ("BFD_RELOC_XTENSA_NDIFF8");
415 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ];
417 case BFD_RELOC_XTENSA_NDIFF16:
418 TRACE ("BFD_RELOC_XTENSA_NDIFF16");
419 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ];
421 case BFD_RELOC_XTENSA_NDIFF32:
422 TRACE ("BFD_RELOC_XTENSA_NDIFF32");
423 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ];
425 case BFD_RELOC_XTENSA_RTLD:
426 TRACE ("BFD_RELOC_XTENSA_RTLD");
427 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
429 case BFD_RELOC_XTENSA_GLOB_DAT:
430 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
431 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
433 case BFD_RELOC_XTENSA_JMP_SLOT:
434 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
435 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
437 case BFD_RELOC_XTENSA_RELATIVE:
438 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
439 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
441 case BFD_RELOC_XTENSA_PLT:
442 TRACE ("BFD_RELOC_XTENSA_PLT");
443 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
445 case BFD_RELOC_XTENSA_OP0:
446 TRACE ("BFD_RELOC_XTENSA_OP0");
447 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
449 case BFD_RELOC_XTENSA_OP1:
450 TRACE ("BFD_RELOC_XTENSA_OP1");
451 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
453 case BFD_RELOC_XTENSA_OP2:
454 TRACE ("BFD_RELOC_XTENSA_OP2");
455 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
457 case BFD_RELOC_XTENSA_ASM_EXPAND:
458 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
459 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
461 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
462 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
463 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
465 case BFD_RELOC_VTABLE_INHERIT:
466 TRACE ("BFD_RELOC_VTABLE_INHERIT");
467 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
469 case BFD_RELOC_VTABLE_ENTRY:
470 TRACE ("BFD_RELOC_VTABLE_ENTRY");
471 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
473 case BFD_RELOC_XTENSA_TLSDESC_FN:
474 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
475 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
477 case BFD_RELOC_XTENSA_TLSDESC_ARG:
478 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
479 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
481 case BFD_RELOC_XTENSA_TLS_DTPOFF:
482 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
483 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
485 case BFD_RELOC_XTENSA_TLS_TPOFF:
486 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
487 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
489 case BFD_RELOC_XTENSA_TLS_FUNC:
490 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
491 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
493 case BFD_RELOC_XTENSA_TLS_ARG:
494 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
495 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
497 case BFD_RELOC_XTENSA_TLS_CALL:
498 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
499 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
502 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
503 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
505 unsigned n = (R_XTENSA_SLOT0_OP +
506 (code - BFD_RELOC_XTENSA_SLOT0_OP));
507 return &elf_howto_table[n];
510 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
511 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
513 unsigned n = (R_XTENSA_SLOT0_ALT +
514 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
515 return &elf_howto_table[n];
521 /* xgettext:c-format */
522 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
523 bfd_set_error (bfd_error_bad_value);
528 static reloc_howto_type *
529 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
534 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
535 if (elf_howto_table[i].name != NULL
536 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
537 return &elf_howto_table[i];
543 /* Given an ELF "rela" relocation, find the corresponding howto and record
544 it in the BFD internal arelent representation of the relocation. */
547 elf_xtensa_info_to_howto_rela (bfd *abfd,
549 Elf_Internal_Rela *dst)
551 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
553 if (r_type >= (unsigned int) R_XTENSA_max)
555 /* xgettext:c-format */
556 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
558 bfd_set_error (bfd_error_bad_value);
561 cache_ptr->howto = &elf_howto_table[r_type];
566 /* Functions for the Xtensa ELF linker. */
568 /* The name of the dynamic interpreter. This is put in the .interp
571 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
573 /* The size in bytes of an entry in the procedure linkage table.
574 (This does _not_ include the space for the literals associated with
577 #define PLT_ENTRY_SIZE 16
579 /* For _really_ large PLTs, we may need to alternate between literals
580 and code to keep the literals within the 256K range of the L32R
581 instructions in the code. It's unlikely that anyone would ever need
582 such a big PLT, but an arbitrary limit on the PLT size would be bad.
583 Thus, we split the PLT into chunks. Since there's very little
584 overhead (2 extra literals) for each chunk, the chunk size is kept
585 small so that the code for handling multiple chunks get used and
586 tested regularly. With 254 entries, there are 1K of literals for
587 each chunk, and that seems like a nice round number. */
589 #define PLT_ENTRIES_PER_CHUNK 254
591 /* PLT entries are actually used as stub functions for lazy symbol
592 resolution. Once the symbol is resolved, the stub function is never
593 invoked. Note: the 32-byte frame size used here cannot be changed
594 without a corresponding change in the runtime linker. */
596 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
599 0x6c, 0x10, 0x04, /* entry sp, 32 */
600 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
601 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
602 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
603 0x0a, 0x80, 0x00, /* jx a8 */
607 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
608 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
609 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
610 0x0a, 0x80, 0x00, /* jx a8 */
615 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
618 0x36, 0x41, 0x00, /* entry sp, 32 */
619 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
620 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
621 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
622 0xa0, 0x08, 0x00, /* jx a8 */
626 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
627 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
628 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
629 0xa0, 0x08, 0x00, /* jx a8 */
634 /* The size of the thread control block. */
637 struct elf_xtensa_link_hash_entry
639 struct elf_link_hash_entry elf;
641 bfd_signed_vma tlsfunc_refcount;
643 #define GOT_UNKNOWN 0
645 #define GOT_TLS_GD 2 /* global or local dynamic */
646 #define GOT_TLS_IE 4 /* initial or local exec */
647 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
648 unsigned char tls_type;
651 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
653 struct elf_xtensa_obj_tdata
655 struct elf_obj_tdata root;
657 /* tls_type for each local got entry. */
658 char *local_got_tls_type;
660 bfd_signed_vma *local_tlsfunc_refcounts;
663 #define elf_xtensa_tdata(abfd) \
664 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
666 #define elf_xtensa_local_got_tls_type(abfd) \
667 (elf_xtensa_tdata (abfd)->local_got_tls_type)
669 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
670 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
672 #define is_xtensa_elf(bfd) \
673 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
674 && elf_tdata (bfd) != NULL \
675 && elf_object_id (bfd) == XTENSA_ELF_DATA)
678 elf_xtensa_mkobject (bfd *abfd)
680 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
684 /* Xtensa ELF linker hash table. */
686 struct elf_xtensa_link_hash_table
688 struct elf_link_hash_table elf;
690 /* Short-cuts to get to dynamic linker sections. */
692 asection *spltlittbl;
694 /* Total count of PLT relocations seen during check_relocs.
695 The actual PLT code must be split into multiple sections and all
696 the sections have to be created before size_dynamic_sections,
697 where we figure out the exact number of PLT entries that will be
698 needed. It is OK if this count is an overestimate, e.g., some
699 relocations may be removed by GC. */
702 struct elf_xtensa_link_hash_entry *tlsbase;
705 /* Get the Xtensa ELF linker hash table from a link_info structure. */
707 #define elf_xtensa_hash_table(p) \
708 ((is_elf_hash_table ((p)->hash) \
709 && elf_hash_table_id (elf_hash_table (p)) == XTENSA_ELF_DATA) \
710 ? (struct elf_xtensa_link_hash_table *) (p)->hash : NULL)
712 /* Create an entry in an Xtensa ELF linker hash table. */
714 static struct bfd_hash_entry *
715 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
719 /* Allocate the structure if it has not already been allocated by a
723 entry = bfd_hash_allocate (table,
724 sizeof (struct elf_xtensa_link_hash_entry));
729 /* Call the allocation method of the superclass. */
730 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
733 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
734 eh->tlsfunc_refcount = 0;
735 eh->tls_type = GOT_UNKNOWN;
741 /* Create an Xtensa ELF linker hash table. */
743 static struct bfd_link_hash_table *
744 elf_xtensa_link_hash_table_create (bfd *abfd)
746 struct elf_link_hash_entry *tlsbase;
747 struct elf_xtensa_link_hash_table *ret;
748 size_t amt = sizeof (struct elf_xtensa_link_hash_table);
750 ret = bfd_zmalloc (amt);
754 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
755 elf_xtensa_link_hash_newfunc,
756 sizeof (struct elf_xtensa_link_hash_entry),
763 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
765 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
767 tlsbase->root.type = bfd_link_hash_new;
768 tlsbase->root.u.undef.abfd = NULL;
769 tlsbase->non_elf = 0;
770 ret->elf.dt_pltgot_required = TRUE;
771 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
772 ret->tlsbase->tls_type = GOT_UNKNOWN;
774 return &ret->elf.root;
777 /* Copy the extra info we tack onto an elf_link_hash_entry. */
780 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
781 struct elf_link_hash_entry *dir,
782 struct elf_link_hash_entry *ind)
784 struct elf_xtensa_link_hash_entry *edir, *eind;
786 edir = elf_xtensa_hash_entry (dir);
787 eind = elf_xtensa_hash_entry (ind);
789 if (ind->root.type == bfd_link_hash_indirect)
791 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
792 eind->tlsfunc_refcount = 0;
794 if (dir->got.refcount <= 0)
796 edir->tls_type = eind->tls_type;
797 eind->tls_type = GOT_UNKNOWN;
801 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
804 static inline bfd_boolean
805 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
806 struct bfd_link_info *info)
808 /* Check if we should do dynamic things to this symbol. The
809 "ignore_protected" argument need not be set, because Xtensa code
810 does not require special handling of STV_PROTECTED to make function
811 pointer comparisons work properly. The PLT addresses are never
812 used for function pointers. */
814 return _bfd_elf_dynamic_symbol_p (h, info, 0);
819 property_table_compare (const void *ap, const void *bp)
821 const property_table_entry *a = (const property_table_entry *) ap;
822 const property_table_entry *b = (const property_table_entry *) bp;
824 if (a->address == b->address)
826 if (a->size != b->size)
827 return (a->size - b->size);
829 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
830 return ((b->flags & XTENSA_PROP_ALIGN)
831 - (a->flags & XTENSA_PROP_ALIGN));
833 if ((a->flags & XTENSA_PROP_ALIGN)
834 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
835 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
836 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
837 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
839 if ((a->flags & XTENSA_PROP_UNREACHABLE)
840 != (b->flags & XTENSA_PROP_UNREACHABLE))
841 return ((b->flags & XTENSA_PROP_UNREACHABLE)
842 - (a->flags & XTENSA_PROP_UNREACHABLE));
844 return (a->flags - b->flags);
847 return (a->address - b->address);
852 property_table_matches (const void *ap, const void *bp)
854 const property_table_entry *a = (const property_table_entry *) ap;
855 const property_table_entry *b = (const property_table_entry *) bp;
857 /* Check if one entry overlaps with the other. */
858 if ((b->address >= a->address && b->address < (a->address + a->size))
859 || (a->address >= b->address && a->address < (b->address + b->size)))
862 return (a->address - b->address);
866 /* Get the literal table or property table entries for the given
867 section. Sets TABLE_P and returns the number of entries. On
868 error, returns a negative value. */
871 xtensa_read_table_entries (bfd *abfd,
873 property_table_entry **table_p,
874 const char *sec_name,
875 bfd_boolean output_addr)
877 asection *table_section;
878 bfd_size_type table_size = 0;
879 bfd_byte *table_data;
880 property_table_entry *blocks;
881 int blk, block_count;
882 bfd_size_type num_records;
883 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
884 bfd_vma section_addr, off;
885 flagword predef_flags;
886 bfd_size_type table_entry_size, section_limit;
889 || !(section->flags & SEC_ALLOC)
890 || (section->flags & SEC_DEBUGGING))
896 table_section = xtensa_get_property_section (section, sec_name);
898 table_size = table_section->size;
906 predef_flags = xtensa_get_property_predef_flags (table_section);
907 table_entry_size = 12;
909 table_entry_size -= 4;
911 num_records = table_size / table_entry_size;
912 table_data = retrieve_contents (abfd, table_section, TRUE);
913 blocks = (property_table_entry *)
914 bfd_malloc (num_records * sizeof (property_table_entry));
918 section_addr = section->output_section->vma + section->output_offset;
920 section_addr = section->vma;
922 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
923 if (internal_relocs && !table_section->reloc_done)
925 qsort (internal_relocs, table_section->reloc_count,
926 sizeof (Elf_Internal_Rela), internal_reloc_compare);
927 irel = internal_relocs;
932 section_limit = bfd_get_section_limit (abfd, section);
933 rel_end = internal_relocs + table_section->reloc_count;
935 for (off = 0; off < table_size; off += table_entry_size)
937 bfd_vma address = bfd_get_32 (abfd, table_data + off);
939 /* Skip any relocations before the current offset. This should help
940 avoid confusion caused by unexpected relocations for the preceding
943 (irel->r_offset < off
944 || (irel->r_offset == off
945 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
952 if (irel && irel->r_offset == off)
955 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
956 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
958 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
961 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
962 BFD_ASSERT (sym_off == 0);
963 address += (section_addr + sym_off + irel->r_addend);
967 if (address < section_addr
968 || address >= section_addr + section_limit)
972 blocks[block_count].address = address;
973 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
975 blocks[block_count].flags = predef_flags;
977 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
981 release_contents (table_section, table_data);
982 release_internal_relocs (table_section, internal_relocs);
986 /* Now sort them into address order for easy reference. */
987 qsort (blocks, block_count, sizeof (property_table_entry),
988 property_table_compare);
990 /* Check that the table contents are valid. Problems may occur,
991 for example, if an unrelocated object file is stripped. */
992 for (blk = 1; blk < block_count; blk++)
994 /* The only circumstance where two entries may legitimately
995 have the same address is when one of them is a zero-size
996 placeholder to mark a place where fill can be inserted.
997 The zero-size entry should come first. */
998 if (blocks[blk - 1].address == blocks[blk].address &&
999 blocks[blk - 1].size != 0)
1001 /* xgettext:c-format */
1002 _bfd_error_handler (_("%pB(%pA): invalid property table"),
1004 bfd_set_error (bfd_error_bad_value);
1016 static property_table_entry *
1017 elf_xtensa_find_property_entry (property_table_entry *property_table,
1018 int property_table_size,
1021 property_table_entry entry;
1022 property_table_entry *rv;
1024 if (property_table_size == 0)
1027 entry.address = addr;
1031 rv = bsearch (&entry, property_table, property_table_size,
1032 sizeof (property_table_entry), property_table_matches);
1038 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
1042 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
1049 /* Look through the relocs for a section during the first phase, and
1050 calculate needed space in the dynamic reloc sections. */
1053 elf_xtensa_check_relocs (bfd *abfd,
1054 struct bfd_link_info *info,
1056 const Elf_Internal_Rela *relocs)
1058 struct elf_xtensa_link_hash_table *htab;
1059 Elf_Internal_Shdr *symtab_hdr;
1060 struct elf_link_hash_entry **sym_hashes;
1061 const Elf_Internal_Rela *rel;
1062 const Elf_Internal_Rela *rel_end;
1064 if (bfd_link_relocatable (info))
1067 BFD_ASSERT (is_xtensa_elf (abfd));
1069 htab = elf_xtensa_hash_table (info);
1073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074 sym_hashes = elf_sym_hashes (abfd);
1076 rel_end = relocs + sec->reloc_count;
1077 for (rel = relocs; rel < rel_end; rel++)
1079 unsigned int r_type;
1081 struct elf_link_hash_entry *h = NULL;
1082 struct elf_xtensa_link_hash_entry *eh;
1083 int tls_type, old_tls_type;
1084 bfd_boolean is_got = FALSE;
1085 bfd_boolean is_plt = FALSE;
1086 bfd_boolean is_tlsfunc = FALSE;
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089 r_type = ELF32_R_TYPE (rel->r_info);
1091 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1093 /* xgettext:c-format */
1094 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1099 if (r_symndx >= symtab_hdr->sh_info)
1101 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1102 while (h->root.type == bfd_link_hash_indirect
1103 || h->root.type == bfd_link_hash_warning)
1104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1106 eh = elf_xtensa_hash_entry (h);
1110 case R_XTENSA_TLSDESC_FN:
1111 if (bfd_link_pic (info))
1113 tls_type = GOT_TLS_GD;
1118 tls_type = GOT_TLS_IE;
1121 case R_XTENSA_TLSDESC_ARG:
1122 if (bfd_link_pic (info))
1124 tls_type = GOT_TLS_GD;
1129 tls_type = GOT_TLS_IE;
1130 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1135 case R_XTENSA_TLS_DTPOFF:
1136 if (bfd_link_pic (info))
1137 tls_type = GOT_TLS_GD;
1139 tls_type = GOT_TLS_IE;
1142 case R_XTENSA_TLS_TPOFF:
1143 tls_type = GOT_TLS_IE;
1144 if (bfd_link_pic (info))
1145 info->flags |= DF_STATIC_TLS;
1146 if (bfd_link_pic (info) || h)
1151 tls_type = GOT_NORMAL;
1156 tls_type = GOT_NORMAL;
1160 case R_XTENSA_GNU_VTINHERIT:
1161 /* This relocation describes the C++ object vtable hierarchy.
1162 Reconstruct it for later use during GC. */
1163 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1167 case R_XTENSA_GNU_VTENTRY:
1168 /* This relocation describes which C++ vtable entries are actually
1169 used. Record for later use during GC. */
1170 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1175 /* Nothing to do for any other relocations. */
1183 if (h->plt.refcount <= 0)
1186 h->plt.refcount = 1;
1189 h->plt.refcount += 1;
1191 /* Keep track of the total PLT relocation count even if we
1192 don't yet know whether the dynamic sections will be
1194 htab->plt_reloc_count += 1;
1196 if (elf_hash_table (info)->dynamic_sections_created)
1198 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1204 if (h->got.refcount <= 0)
1205 h->got.refcount = 1;
1207 h->got.refcount += 1;
1211 eh->tlsfunc_refcount += 1;
1213 old_tls_type = eh->tls_type;
1217 /* Allocate storage the first time. */
1218 if (elf_local_got_refcounts (abfd) == NULL)
1220 bfd_size_type size = symtab_hdr->sh_info;
1223 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1226 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1228 mem = bfd_zalloc (abfd, size);
1231 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1233 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1236 elf_xtensa_local_tlsfunc_refcounts (abfd)
1237 = (bfd_signed_vma *) mem;
1240 /* This is a global offset table entry for a local symbol. */
1241 if (is_got || is_plt)
1242 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1245 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1247 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1250 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1251 tls_type |= old_tls_type;
1252 /* If a TLS symbol is accessed using IE at least once,
1253 there is no point to use a dynamic model for it. */
1254 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1255 && ((old_tls_type & GOT_TLS_GD) == 0
1256 || (tls_type & GOT_TLS_IE) == 0))
1258 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1259 tls_type = old_tls_type;
1260 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1261 tls_type |= old_tls_type;
1265 /* xgettext:c-format */
1266 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1268 h ? h->root.root.string : "<local>");
1273 if (old_tls_type != tls_type)
1276 eh->tls_type = tls_type;
1278 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1287 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1288 struct elf_link_hash_entry *h)
1290 if (bfd_link_pic (info))
1292 if (h->plt.refcount > 0)
1294 /* For shared objects, there's no need for PLT entries for local
1295 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1296 if (h->got.refcount < 0)
1297 h->got.refcount = 0;
1298 h->got.refcount += h->plt.refcount;
1299 h->plt.refcount = 0;
1304 /* Don't need any dynamic relocations at all. */
1305 h->plt.refcount = 0;
1306 h->got.refcount = 0;
1312 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1313 struct elf_link_hash_entry *h,
1314 bfd_boolean force_local)
1316 /* For a shared link, move the plt refcount to the got refcount to leave
1317 space for RELATIVE relocs. */
1318 elf_xtensa_make_sym_local (info, h);
1320 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1324 /* Return the section that should be marked against GC for a given
1328 elf_xtensa_gc_mark_hook (asection *sec,
1329 struct bfd_link_info *info,
1330 Elf_Internal_Rela *rel,
1331 struct elf_link_hash_entry *h,
1332 Elf_Internal_Sym *sym)
1334 /* Property sections are marked "KEEP" in the linker scripts, but they
1335 should not cause other sections to be marked. (This approach relies
1336 on elf_xtensa_discard_info to remove property table entries that
1337 describe discarded sections. Alternatively, it might be more
1338 efficient to avoid using "KEEP" in the linker scripts and instead use
1339 the gc_mark_extra_sections hook to mark only the property sections
1340 that describe marked sections. That alternative does not work well
1341 with the current property table sections, which do not correspond
1342 one-to-one with the sections they describe, but that should be fixed
1344 if (xtensa_is_property_section (sec))
1348 switch (ELF32_R_TYPE (rel->r_info))
1350 case R_XTENSA_GNU_VTINHERIT:
1351 case R_XTENSA_GNU_VTENTRY:
1355 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1359 /* Create all the dynamic sections. */
1362 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1364 struct elf_xtensa_link_hash_table *htab;
1365 flagword flags, noalloc_flags;
1367 htab = elf_xtensa_hash_table (info);
1371 /* First do all the standard stuff. */
1372 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1375 /* Create any extra PLT sections in case check_relocs has already
1376 been called on all the non-dynamic input files. */
1377 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1380 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1381 | SEC_LINKER_CREATED | SEC_READONLY);
1382 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1384 /* Mark the ".got.plt" section READONLY. */
1385 if (htab->elf.sgotplt == NULL
1386 || !bfd_set_section_flags (htab->elf.sgotplt, flags))
1389 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1390 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1392 if (htab->sgotloc == NULL
1393 || !bfd_set_section_alignment (htab->sgotloc, 2))
1396 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1397 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1399 if (htab->spltlittbl == NULL
1400 || !bfd_set_section_alignment (htab->spltlittbl, 2))
1408 add_extra_plt_sections (struct bfd_link_info *info, int count)
1410 bfd *dynobj = elf_hash_table (info)->dynobj;
1413 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1414 ".got.plt" sections. */
1415 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1421 /* Stop when we find a section has already been created. */
1422 if (elf_xtensa_get_plt_section (info, chunk))
1425 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1428 sname = (char *) bfd_malloc (10);
1429 sprintf (sname, ".plt.%u", chunk);
1430 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1432 || !bfd_set_section_alignment (s, 2))
1435 sname = (char *) bfd_malloc (14);
1436 sprintf (sname, ".got.plt.%u", chunk);
1437 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1439 || !bfd_set_section_alignment (s, 2))
1447 /* Adjust a symbol defined by a dynamic object and referenced by a
1448 regular object. The current definition is in some section of the
1449 dynamic object, but we're not including those sections. We have to
1450 change the definition to something the rest of the link can
1454 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1455 struct elf_link_hash_entry *h)
1457 /* If this is a weak symbol, and there is a real definition, the
1458 processor independent code will have arranged for us to see the
1459 real definition first, and we can just use the same value. */
1460 if (h->is_weakalias)
1462 struct elf_link_hash_entry *def = weakdef (h);
1463 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1464 h->root.u.def.section = def->root.u.def.section;
1465 h->root.u.def.value = def->root.u.def.value;
1469 /* This is a reference to a symbol defined by a dynamic object. The
1470 reference must go through the GOT, so there's no need for COPY relocs,
1478 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1480 struct bfd_link_info *info;
1481 struct elf_xtensa_link_hash_table *htab;
1482 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1484 if (h->root.type == bfd_link_hash_indirect)
1487 info = (struct bfd_link_info *) arg;
1488 htab = elf_xtensa_hash_table (info);
1492 /* If we saw any use of an IE model for this symbol, we can then optimize
1493 away GOT entries for any TLSDESC_FN relocs. */
1494 if ((eh->tls_type & GOT_TLS_IE) != 0)
1496 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1497 h->got.refcount -= eh->tlsfunc_refcount;
1500 if (! elf_xtensa_dynamic_symbol_p (h, info))
1501 elf_xtensa_make_sym_local (info, h);
1503 if (! elf_xtensa_dynamic_symbol_p (h, info)
1504 && h->root.type == bfd_link_hash_undefweak)
1507 if (h->plt.refcount > 0)
1508 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1510 if (h->got.refcount > 0)
1511 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1518 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1520 struct elf_xtensa_link_hash_table *htab;
1523 htab = elf_xtensa_hash_table (info);
1527 for (i = info->input_bfds; i; i = i->link.next)
1529 bfd_signed_vma *local_got_refcounts;
1530 bfd_size_type j, cnt;
1531 Elf_Internal_Shdr *symtab_hdr;
1533 local_got_refcounts = elf_local_got_refcounts (i);
1534 if (!local_got_refcounts)
1537 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1538 cnt = symtab_hdr->sh_info;
1540 for (j = 0; j < cnt; ++j)
1542 /* If we saw any use of an IE model for this symbol, we can
1543 then optimize away GOT entries for any TLSDESC_FN relocs. */
1544 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1546 bfd_signed_vma *tlsfunc_refcount
1547 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1548 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1549 local_got_refcounts[j] -= *tlsfunc_refcount;
1552 if (local_got_refcounts[j] > 0)
1553 htab->elf.srelgot->size += (local_got_refcounts[j]
1554 * sizeof (Elf32_External_Rela));
1560 /* Set the sizes of the dynamic sections. */
1563 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1564 struct bfd_link_info *info)
1566 struct elf_xtensa_link_hash_table *htab;
1568 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1569 bfd_boolean relplt, relgot;
1570 int plt_entries, plt_chunks, chunk;
1575 htab = elf_xtensa_hash_table (info);
1579 dynobj = elf_hash_table (info)->dynobj;
1582 srelgot = htab->elf.srelgot;
1583 srelplt = htab->elf.srelplt;
1585 if (elf_hash_table (info)->dynamic_sections_created)
1587 BFD_ASSERT (htab->elf.srelgot != NULL
1588 && htab->elf.srelplt != NULL
1589 && htab->elf.sgot != NULL
1590 && htab->spltlittbl != NULL
1591 && htab->sgotloc != NULL);
1593 /* Set the contents of the .interp section to the interpreter. */
1594 if (bfd_link_executable (info) && !info->nointerp)
1596 s = bfd_get_linker_section (dynobj, ".interp");
1599 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1600 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1603 /* Allocate room for one word in ".got". */
1604 htab->elf.sgot->size = 4;
1606 /* Allocate space in ".rela.got" for literals that reference global
1607 symbols and space in ".rela.plt" for literals that have PLT
1609 elf_link_hash_traverse (elf_hash_table (info),
1610 elf_xtensa_allocate_dynrelocs,
1613 /* If we are generating a shared object, we also need space in
1614 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1615 reference local symbols. */
1616 if (bfd_link_pic (info))
1617 elf_xtensa_allocate_local_got_size (info);
1619 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1620 each PLT entry, we need the PLT code plus a 4-byte literal.
1621 For each chunk of ".plt", we also need two more 4-byte
1622 literals, two corresponding entries in ".rela.got", and an
1623 8-byte entry in ".xt.lit.plt". */
1624 spltlittbl = htab->spltlittbl;
1625 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1627 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1629 /* Iterate over all the PLT chunks, including any extra sections
1630 created earlier because the initial count of PLT relocations
1631 was an overestimate. */
1633 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1638 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1639 BFD_ASSERT (sgotplt != NULL);
1641 if (chunk < plt_chunks - 1)
1642 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1643 else if (chunk == plt_chunks - 1)
1644 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1648 if (chunk_entries != 0)
1650 sgotplt->size = 4 * (chunk_entries + 2);
1651 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1652 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1653 spltlittbl->size += 8;
1662 /* Allocate space in ".got.loc" to match the total size of all the
1664 sgotloc = htab->sgotloc;
1665 sgotloc->size = spltlittbl->size;
1666 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1668 if (abfd->flags & DYNAMIC)
1670 for (s = abfd->sections; s != NULL; s = s->next)
1672 if (! discarded_section (s)
1673 && xtensa_is_littable_section (s)
1675 sgotloc->size += s->size;
1680 /* Allocate memory for dynamic sections. */
1683 for (s = dynobj->sections; s != NULL; s = s->next)
1687 if ((s->flags & SEC_LINKER_CREATED) == 0)
1690 /* It's OK to base decisions on the section name, because none
1691 of the dynobj section names depend upon the input files. */
1692 name = bfd_section_name (s);
1694 if (startswith (name, ".rela"))
1698 if (strcmp (name, ".rela.plt") == 0)
1700 else if (strcmp (name, ".rela.got") == 0)
1703 /* We use the reloc_count field as a counter if we need
1704 to copy relocs into the output file. */
1708 else if (! startswith (name, ".plt.")
1709 && ! startswith (name, ".got.plt.")
1710 && strcmp (name, ".got") != 0
1711 && strcmp (name, ".plt") != 0
1712 && strcmp (name, ".got.plt") != 0
1713 && strcmp (name, ".xt.lit.plt") != 0
1714 && strcmp (name, ".got.loc") != 0)
1716 /* It's not one of our sections, so don't allocate space. */
1722 /* If we don't need this section, strip it from the output
1723 file. We must create the ".plt*" and ".got.plt*"
1724 sections in create_dynamic_sections and/or check_relocs
1725 based on a conservative estimate of the PLT relocation
1726 count, because the sections must be created before the
1727 linker maps input sections to output sections. The
1728 linker does that before size_dynamic_sections, where we
1729 compute the exact size of the PLT, so there may be more
1730 of these sections than are actually needed. */
1731 s->flags |= SEC_EXCLUDE;
1733 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1735 /* Allocate memory for the section contents. */
1736 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1737 if (s->contents == NULL)
1742 if (elf_hash_table (info)->dynamic_sections_created)
1744 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1745 known until finish_dynamic_sections, but we need to get the relocs
1746 in place before they are sorted. */
1747 for (chunk = 0; chunk < plt_chunks; chunk++)
1749 Elf_Internal_Rela irela;
1753 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1756 loc = (srelgot->contents
1757 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1758 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1759 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1760 loc + sizeof (Elf32_External_Rela));
1761 srelgot->reloc_count += 2;
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in elf_xtensa_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1769 #define add_dynamic_entry(TAG, VAL) \
1770 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1772 if (!_bfd_elf_add_dynamic_tags (output_bfd, info,
1776 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1777 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1780 #undef add_dynamic_entry
1786 elf_xtensa_always_size_sections (bfd *output_bfd,
1787 struct bfd_link_info *info)
1789 struct elf_xtensa_link_hash_table *htab;
1792 htab = elf_xtensa_hash_table (info);
1796 tls_sec = htab->elf.tls_sec;
1798 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1800 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1801 struct bfd_link_hash_entry *bh = &tlsbase->root;
1802 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1804 tlsbase->type = STT_TLS;
1805 if (!(_bfd_generic_link_add_one_symbol
1806 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1807 tls_sec, 0, NULL, FALSE,
1808 bed->collect, &bh)))
1810 tlsbase->def_regular = 1;
1811 tlsbase->other = STV_HIDDEN;
1812 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1819 /* Return the base VMA address which should be subtracted from real addresses
1820 when resolving @dtpoff relocation.
1821 This is PT_TLS segment p_vaddr. */
1824 dtpoff_base (struct bfd_link_info *info)
1826 /* If tls_sec is NULL, we should have signalled an error already. */
1827 if (elf_hash_table (info)->tls_sec == NULL)
1829 return elf_hash_table (info)->tls_sec->vma;
1832 /* Return the relocation value for @tpoff relocation
1833 if STT_TLS virtual address is ADDRESS. */
1836 tpoff (struct bfd_link_info *info, bfd_vma address)
1838 struct elf_link_hash_table *htab = elf_hash_table (info);
1841 /* If tls_sec is NULL, we should have signalled an error already. */
1842 if (htab->tls_sec == NULL)
1844 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1845 return address - htab->tls_sec->vma + base;
1848 /* Perform the specified relocation. The instruction at (contents + address)
1849 is modified to set one operand to represent the value in "relocation". The
1850 operand position is determined by the relocation type recorded in the
1853 #define CALL_SEGMENT_BITS (30)
1854 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1856 static bfd_reloc_status_type
1857 elf_xtensa_do_reloc (reloc_howto_type *howto,
1859 asection *input_section,
1863 bfd_boolean is_weak_undef,
1864 char **error_message)
1867 xtensa_opcode opcode;
1868 xtensa_isa isa = xtensa_default_isa;
1869 static xtensa_insnbuf ibuff = NULL;
1870 static xtensa_insnbuf sbuff = NULL;
1871 bfd_vma self_address;
1872 bfd_size_type input_size;
1878 ibuff = xtensa_insnbuf_alloc (isa);
1879 sbuff = xtensa_insnbuf_alloc (isa);
1882 input_size = bfd_get_section_limit (abfd, input_section);
1884 /* Calculate the PC address for this instruction. */
1885 self_address = (input_section->output_section->vma
1886 + input_section->output_offset
1889 switch (howto->type)
1892 case R_XTENSA_DIFF8:
1893 case R_XTENSA_DIFF16:
1894 case R_XTENSA_DIFF32:
1895 case R_XTENSA_PDIFF8:
1896 case R_XTENSA_PDIFF16:
1897 case R_XTENSA_PDIFF32:
1898 case R_XTENSA_NDIFF8:
1899 case R_XTENSA_NDIFF16:
1900 case R_XTENSA_NDIFF32:
1901 case R_XTENSA_TLS_FUNC:
1902 case R_XTENSA_TLS_ARG:
1903 case R_XTENSA_TLS_CALL:
1904 return bfd_reloc_ok;
1906 case R_XTENSA_ASM_EXPAND:
1909 /* Check for windowed CALL across a 1GB boundary. */
1910 opcode = get_expanded_call_opcode (contents + address,
1911 input_size - address, 0);
1912 if (is_windowed_call_opcode (opcode))
1914 if ((self_address >> CALL_SEGMENT_BITS)
1915 != (relocation >> CALL_SEGMENT_BITS))
1917 *error_message = "windowed longcall crosses 1GB boundary; "
1919 return bfd_reloc_dangerous;
1923 return bfd_reloc_ok;
1925 case R_XTENSA_ASM_SIMPLIFY:
1927 /* Convert the L32R/CALLX to CALL. */
1928 bfd_reloc_status_type retval =
1929 elf_xtensa_do_asm_simplify (contents, address, input_size,
1931 if (retval != bfd_reloc_ok)
1932 return bfd_reloc_dangerous;
1934 /* The CALL needs to be relocated. Continue below for that part. */
1937 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1944 x = bfd_get_32 (abfd, contents + address);
1946 bfd_put_32 (abfd, x, contents + address);
1948 return bfd_reloc_ok;
1950 case R_XTENSA_32_PCREL:
1951 bfd_put_32 (abfd, relocation - self_address, contents + address);
1952 return bfd_reloc_ok;
1955 case R_XTENSA_TLSDESC_FN:
1956 case R_XTENSA_TLSDESC_ARG:
1957 case R_XTENSA_TLS_DTPOFF:
1958 case R_XTENSA_TLS_TPOFF:
1959 bfd_put_32 (abfd, relocation, contents + address);
1960 return bfd_reloc_ok;
1963 /* Only instruction slot-specific relocations handled below.... */
1964 slot = get_relocation_slot (howto->type);
1965 if (slot == XTENSA_UNDEFINED)
1967 *error_message = "unexpected relocation";
1968 return bfd_reloc_dangerous;
1971 /* Read the instruction into a buffer and decode the opcode. */
1972 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1973 input_size - address);
1974 fmt = xtensa_format_decode (isa, ibuff);
1975 if (fmt == XTENSA_UNDEFINED)
1977 *error_message = "cannot decode instruction format";
1978 return bfd_reloc_dangerous;
1981 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1983 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1984 if (opcode == XTENSA_UNDEFINED)
1986 *error_message = "cannot decode instruction opcode";
1987 return bfd_reloc_dangerous;
1990 /* Check for opcode-specific "alternate" relocations. */
1991 if (is_alt_relocation (howto->type))
1993 if (opcode == get_l32r_opcode ())
1995 /* Handle the special-case of non-PC-relative L32R instructions. */
1996 bfd *output_bfd = input_section->output_section->owner;
1997 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2000 *error_message = "relocation references missing .lit4 section";
2001 return bfd_reloc_dangerous;
2003 self_address = ((lit4_sec->vma & ~0xfff)
2004 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2005 newval = relocation;
2008 else if (opcode == get_const16_opcode ())
2010 /* ALT used for high 16 bits.
2011 Ignore 32-bit overflow. */
2012 newval = (relocation >> 16) & 0xffff;
2017 /* No other "alternate" relocations currently defined. */
2018 *error_message = "unexpected relocation";
2019 return bfd_reloc_dangerous;
2022 else /* Not an "alternate" relocation.... */
2024 if (opcode == get_const16_opcode ())
2026 newval = relocation & 0xffff;
2031 /* ...normal PC-relative relocation.... */
2033 /* Determine which operand is being relocated. */
2034 opnd = get_relocation_opnd (opcode, howto->type);
2035 if (opnd == XTENSA_UNDEFINED)
2037 *error_message = "unexpected relocation";
2038 return bfd_reloc_dangerous;
2041 if (!howto->pc_relative)
2043 *error_message = "expected PC-relative relocation";
2044 return bfd_reloc_dangerous;
2047 newval = relocation;
2051 /* Apply the relocation. */
2052 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2053 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2054 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2057 const char *opname = xtensa_opcode_name (isa, opcode);
2060 msg = "cannot encode";
2061 if (is_direct_call_opcode (opcode))
2063 if ((relocation & 0x3) != 0)
2064 msg = "misaligned call target";
2066 msg = "call target out of range";
2068 else if (opcode == get_l32r_opcode ())
2070 if ((relocation & 0x3) != 0)
2071 msg = "misaligned literal target";
2072 else if (is_alt_relocation (howto->type))
2073 msg = "literal target out of range (too many literals)";
2074 else if (self_address > relocation)
2075 msg = "literal target out of range (try using text-section-literals)";
2077 msg = "literal placed after use";
2080 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2081 return bfd_reloc_dangerous;
2084 /* Check for calls across 1GB boundaries. */
2085 if (is_direct_call_opcode (opcode)
2086 && is_windowed_call_opcode (opcode))
2088 if ((self_address >> CALL_SEGMENT_BITS)
2089 != (relocation >> CALL_SEGMENT_BITS))
2092 "windowed call crosses 1GB boundary; return may fail";
2093 return bfd_reloc_dangerous;
2097 /* Write the modified instruction back out of the buffer. */
2098 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2099 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2100 input_size - address);
2101 return bfd_reloc_ok;
2106 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2108 /* To reduce the size of the memory leak,
2109 we only use a single message buffer. */
2110 static bfd_size_type alloc_size = 0;
2111 static char *message = NULL;
2112 bfd_size_type orig_len, len = 0;
2113 bfd_boolean is_append;
2116 va_start (ap, arglen);
2118 is_append = (origmsg == message);
2120 orig_len = strlen (origmsg);
2121 len = orig_len + strlen (fmt) + arglen + 20;
2122 if (len > alloc_size)
2124 message = (char *) bfd_realloc_or_free (message, len);
2127 if (message != NULL)
2130 memcpy (message, origmsg, orig_len);
2131 vsprintf (message + orig_len, fmt, ap);
2138 /* This function is registered as the "special_function" in the
2139 Xtensa howto for handling simplify operations.
2140 bfd_perform_relocation / bfd_install_relocation use it to
2141 perform (install) the specified relocation. Since this replaces the code
2142 in bfd_perform_relocation, it is basically an Xtensa-specific,
2143 stripped-down version of bfd_perform_relocation. */
2145 static bfd_reloc_status_type
2146 bfd_elf_xtensa_reloc (bfd *abfd,
2147 arelent *reloc_entry,
2150 asection *input_section,
2152 char **error_message)
2155 bfd_reloc_status_type flag;
2156 bfd_size_type octets = (reloc_entry->address
2157 * OCTETS_PER_BYTE (abfd, input_section));
2158 bfd_vma output_base = 0;
2159 reloc_howto_type *howto = reloc_entry->howto;
2160 asection *reloc_target_output_section;
2161 bfd_boolean is_weak_undef;
2163 if (!xtensa_default_isa)
2164 xtensa_default_isa = xtensa_isa_init (0, 0);
2166 /* ELF relocs are against symbols. If we are producing relocatable
2167 output, and the reloc is against an external symbol, the resulting
2168 reloc will also be against the same symbol. In such a case, we
2169 don't want to change anything about the way the reloc is handled,
2170 since it will all be done at final link time. This test is similar
2171 to what bfd_elf_generic_reloc does except that it lets relocs with
2172 howto->partial_inplace go through even if the addend is non-zero.
2173 (The real problem is that partial_inplace is set for XTENSA_32
2174 relocs to begin with, but that's a long story and there's little we
2175 can do about it now....) */
2177 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2179 reloc_entry->address += input_section->output_offset;
2180 return bfd_reloc_ok;
2183 /* Is the address of the relocation really within the section? */
2184 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2185 return bfd_reloc_outofrange;
2187 /* Work out which section the relocation is targeted at and the
2188 initial relocation command value. */
2190 /* Get symbol value. (Common symbols are special.) */
2191 if (bfd_is_com_section (symbol->section))
2194 relocation = symbol->value;
2196 reloc_target_output_section = symbol->section->output_section;
2198 /* Convert input-section-relative symbol value to absolute. */
2199 if ((output_bfd && !howto->partial_inplace)
2200 || reloc_target_output_section == NULL)
2203 output_base = reloc_target_output_section->vma;
2205 relocation += output_base + symbol->section->output_offset;
2207 /* Add in supplied addend. */
2208 relocation += reloc_entry->addend;
2210 /* Here the variable relocation holds the final address of the
2211 symbol we are relocating against, plus any addend. */
2214 if (!howto->partial_inplace)
2216 /* This is a partial relocation, and we want to apply the relocation
2217 to the reloc entry rather than the raw data. Everything except
2218 relocations against section symbols has already been handled
2221 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2222 reloc_entry->addend = relocation;
2223 reloc_entry->address += input_section->output_offset;
2224 return bfd_reloc_ok;
2228 reloc_entry->address += input_section->output_offset;
2229 reloc_entry->addend = 0;
2233 is_weak_undef = (bfd_is_und_section (symbol->section)
2234 && (symbol->flags & BSF_WEAK) != 0);
2235 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2236 (bfd_byte *) data, (bfd_vma) octets,
2237 is_weak_undef, error_message);
2239 if (flag == bfd_reloc_dangerous)
2241 /* Add the symbol name to the error message. */
2242 if (! *error_message)
2243 *error_message = "";
2244 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2245 strlen (symbol->name) + 17,
2247 (unsigned long) reloc_entry->addend);
2253 int xtensa_abi_choice (void)
2255 if (elf32xtensa_abi == XTHAL_ABI_UNDEFINED)
2258 return elf32xtensa_abi;
2261 /* Set up an entry in the procedure linkage table. */
2264 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2266 unsigned reloc_index)
2268 asection *splt, *sgotplt;
2269 bfd_vma plt_base, got_base;
2270 bfd_vma code_offset, lit_offset, abi_offset;
2272 int abi = xtensa_abi_choice ();
2274 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2275 splt = elf_xtensa_get_plt_section (info, chunk);
2276 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2277 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2279 plt_base = splt->output_section->vma + splt->output_offset;
2280 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2282 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2283 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2285 /* Fill in the literal entry. This is the offset of the dynamic
2286 relocation entry. */
2287 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2288 sgotplt->contents + lit_offset);
2290 /* Fill in the entry in the procedure linkage table. */
2291 memcpy (splt->contents + code_offset,
2292 (bfd_big_endian (output_bfd)
2293 ? elf_xtensa_be_plt_entry[abi != XTHAL_ABI_WINDOWED]
2294 : elf_xtensa_le_plt_entry[abi != XTHAL_ABI_WINDOWED]),
2296 abi_offset = abi == XTHAL_ABI_WINDOWED ? 3 : 0;
2297 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2298 plt_base + code_offset + abi_offset),
2299 splt->contents + code_offset + abi_offset + 1);
2300 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2301 plt_base + code_offset + abi_offset + 3),
2302 splt->contents + code_offset + abi_offset + 4);
2303 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2304 plt_base + code_offset + abi_offset + 6),
2305 splt->contents + code_offset + abi_offset + 7);
2307 return plt_base + code_offset;
2311 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2314 replace_tls_insn (Elf_Internal_Rela *rel,
2316 asection *input_section,
2318 bfd_boolean is_ld_model,
2319 char **error_message)
2321 static xtensa_insnbuf ibuff = NULL;
2322 static xtensa_insnbuf sbuff = NULL;
2323 xtensa_isa isa = xtensa_default_isa;
2325 xtensa_opcode old_op, new_op;
2326 bfd_size_type input_size;
2328 unsigned dest_reg, src_reg;
2332 ibuff = xtensa_insnbuf_alloc (isa);
2333 sbuff = xtensa_insnbuf_alloc (isa);
2336 input_size = bfd_get_section_limit (abfd, input_section);
2338 /* Read the instruction into a buffer and decode the opcode. */
2339 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2340 input_size - rel->r_offset);
2341 fmt = xtensa_format_decode (isa, ibuff);
2342 if (fmt == XTENSA_UNDEFINED)
2344 *error_message = "cannot decode instruction format";
2348 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2349 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2351 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2352 if (old_op == XTENSA_UNDEFINED)
2354 *error_message = "cannot decode instruction opcode";
2358 r_type = ELF32_R_TYPE (rel->r_info);
2361 case R_XTENSA_TLS_FUNC:
2362 case R_XTENSA_TLS_ARG:
2363 if (old_op != get_l32r_opcode ()
2364 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2365 sbuff, &dest_reg) != 0)
2367 *error_message = "cannot extract L32R destination for TLS access";
2372 case R_XTENSA_TLS_CALL:
2373 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2374 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2375 sbuff, &src_reg) != 0)
2377 *error_message = "cannot extract CALLXn operands for TLS access";
2390 case R_XTENSA_TLS_FUNC:
2391 case R_XTENSA_TLS_ARG:
2392 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2393 versions of Xtensa). */
2394 new_op = xtensa_opcode_lookup (isa, "nop");
2395 if (new_op == XTENSA_UNDEFINED)
2397 new_op = xtensa_opcode_lookup (isa, "or");
2398 if (new_op == XTENSA_UNDEFINED
2399 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2400 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2402 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2404 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2407 *error_message = "cannot encode OR for TLS access";
2413 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2415 *error_message = "cannot encode NOP for TLS access";
2421 case R_XTENSA_TLS_CALL:
2422 /* Read THREADPTR into the CALLX's return value register. */
2423 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2424 if (new_op == XTENSA_UNDEFINED
2425 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2426 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2427 sbuff, dest_reg + 2) != 0)
2429 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2439 case R_XTENSA_TLS_FUNC:
2440 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, dest_reg) != 0)
2446 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2451 case R_XTENSA_TLS_ARG:
2452 /* Nothing to do. Keep the original L32R instruction. */
2455 case R_XTENSA_TLS_CALL:
2456 /* Add the CALLX's src register (holding the THREADPTR value)
2457 to the first argument register (holding the offset) and put
2458 the result in the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "add");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0
2464 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2465 sbuff, dest_reg + 2) != 0
2466 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2467 sbuff, src_reg) != 0)
2469 *error_message = "cannot encode ADD for TLS access";
2476 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2477 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2478 input_size - rel->r_offset);
2484 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2485 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2486 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2487 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2488 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2489 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2490 || (R_TYPE) == R_XTENSA_TLS_ARG \
2491 || (R_TYPE) == R_XTENSA_TLS_CALL)
2493 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2494 both relocatable and final links. */
2497 elf_xtensa_relocate_section (bfd *output_bfd,
2498 struct bfd_link_info *info,
2500 asection *input_section,
2502 Elf_Internal_Rela *relocs,
2503 Elf_Internal_Sym *local_syms,
2504 asection **local_sections)
2506 struct elf_xtensa_link_hash_table *htab;
2507 Elf_Internal_Shdr *symtab_hdr;
2508 Elf_Internal_Rela *rel;
2509 Elf_Internal_Rela *relend;
2510 struct elf_link_hash_entry **sym_hashes;
2511 property_table_entry *lit_table = 0;
2513 char *local_got_tls_types;
2514 char *error_message = NULL;
2515 bfd_size_type input_size;
2518 if (!xtensa_default_isa)
2519 xtensa_default_isa = xtensa_isa_init (0, 0);
2521 if (!is_xtensa_elf (input_bfd))
2523 bfd_set_error (bfd_error_wrong_format);
2527 htab = elf_xtensa_hash_table (info);
2531 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2532 sym_hashes = elf_sym_hashes (input_bfd);
2533 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2535 if (elf_hash_table (info)->dynamic_sections_created)
2537 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2538 &lit_table, XTENSA_LIT_SEC_NAME,
2544 input_size = bfd_get_section_limit (input_bfd, input_section);
2547 relend = relocs + input_section->reloc_count;
2548 for (; rel < relend; rel++)
2551 reloc_howto_type *howto;
2552 unsigned long r_symndx;
2553 struct elf_link_hash_entry *h;
2554 Elf_Internal_Sym *sym;
2559 bfd_reloc_status_type r;
2560 bfd_boolean is_weak_undef;
2561 bfd_boolean unresolved_reloc;
2563 bfd_boolean dynamic_symbol;
2565 r_type = ELF32_R_TYPE (rel->r_info);
2566 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2567 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2570 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2572 bfd_set_error (bfd_error_bad_value);
2575 howto = &elf_howto_table[r_type];
2577 r_symndx = ELF32_R_SYM (rel->r_info);
2582 is_weak_undef = FALSE;
2583 unresolved_reloc = FALSE;
2586 if (howto->partial_inplace && !bfd_link_relocatable (info))
2588 /* Because R_XTENSA_32 was made partial_inplace to fix some
2589 problems with DWARF info in partial links, there may be
2590 an addend stored in the contents. Take it out of there
2591 and move it back into the addend field of the reloc. */
2592 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2593 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2596 if (r_symndx < symtab_hdr->sh_info)
2598 sym = local_syms + r_symndx;
2599 sym_type = ELF32_ST_TYPE (sym->st_info);
2600 sec = local_sections[r_symndx];
2601 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2605 bfd_boolean ignored;
2607 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2608 r_symndx, symtab_hdr, sym_hashes,
2610 unresolved_reloc, warned, ignored);
2613 && !unresolved_reloc
2614 && h->root.type == bfd_link_hash_undefweak)
2615 is_weak_undef = TRUE;
2620 if (sec != NULL && discarded_section (sec))
2621 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2622 rel, 1, relend, howto, 0, contents);
2624 if (bfd_link_relocatable (info))
2627 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2629 /* This is a relocatable link.
2630 1) If the reloc is against a section symbol, adjust
2631 according to the output section.
2632 2) If there is a new target for this relocation,
2633 the new target will be in the same output section.
2634 We adjust the relocation by the output section
2637 if (relaxing_section)
2639 /* Check if this references a section in another input file. */
2640 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2645 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2646 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2648 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2650 error_message = NULL;
2651 /* Convert ASM_SIMPLIFY into the simpler relocation
2652 so that they never escape a relaxing link. */
2653 r = contract_asm_expansion (contents, input_size, rel,
2655 if (r != bfd_reloc_ok)
2656 (*info->callbacks->reloc_dangerous)
2657 (info, error_message,
2658 input_bfd, input_section, rel->r_offset);
2660 r_type = ELF32_R_TYPE (rel->r_info);
2663 /* This is a relocatable link, so we don't have to change
2664 anything unless the reloc is against a section symbol,
2665 in which case we have to adjust according to where the
2666 section symbol winds up in the output section. */
2667 if (r_symndx < symtab_hdr->sh_info)
2669 sym = local_syms + r_symndx;
2670 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2672 sec = local_sections[r_symndx];
2673 rel->r_addend += sec->output_offset + sym->st_value;
2677 /* If there is an addend with a partial_inplace howto,
2678 then move the addend to the contents. This is a hack
2679 to work around problems with DWARF in relocatable links
2680 with some previous version of BFD. Now we can't easily get
2681 rid of the hack without breaking backward compatibility.... */
2683 howto = &elf_howto_table[r_type];
2684 if (howto->partial_inplace && rel->r_addend)
2686 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2687 rel->r_addend, contents,
2688 rel->r_offset, FALSE,
2694 /* Put the correct bits in the target instruction, even
2695 though the relocation will still be present in the output
2696 file. This makes disassembly clearer, as well as
2697 allowing loadable kernel modules to work without needing
2698 relocations on anything other than calls and l32r's. */
2700 /* If it is not in the same section, there is nothing we can do. */
2701 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2702 sym_sec->output_section == input_section->output_section)
2704 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2705 dest_addr, contents,
2706 rel->r_offset, FALSE,
2710 if (r != bfd_reloc_ok)
2711 (*info->callbacks->reloc_dangerous)
2712 (info, error_message,
2713 input_bfd, input_section, rel->r_offset);
2715 /* Done with work for relocatable link; continue with next reloc. */
2719 /* This is a final link. */
2721 if (relaxing_section)
2723 /* Check if this references a section in another input file. */
2724 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2728 /* Sanity check the address. */
2729 if (rel->r_offset >= input_size
2730 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2733 /* xgettext:c-format */
2734 (_("%pB(%pA+%#" PRIx64 "): "
2735 "relocation offset out of range (size=%#" PRIx64 ")"),
2736 input_bfd, input_section, (uint64_t) rel->r_offset,
2737 (uint64_t) input_size);
2738 bfd_set_error (bfd_error_bad_value);
2743 name = h->root.root.string;
2746 name = (bfd_elf_string_from_elf_section
2747 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2748 if (name == NULL || *name == '\0')
2749 name = bfd_section_name (sec);
2752 if (r_symndx != STN_UNDEF
2753 && r_type != R_XTENSA_NONE
2755 || h->root.type == bfd_link_hash_defined
2756 || h->root.type == bfd_link_hash_defweak)
2757 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2760 ((sym_type == STT_TLS
2761 /* xgettext:c-format */
2762 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2763 /* xgettext:c-format */
2764 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2767 (uint64_t) rel->r_offset,
2772 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2774 tls_type = GOT_UNKNOWN;
2776 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2777 else if (local_got_tls_types)
2778 tls_type = local_got_tls_types [r_symndx];
2784 if (elf_hash_table (info)->dynamic_sections_created
2785 && (input_section->flags & SEC_ALLOC) != 0
2786 && (dynamic_symbol || bfd_link_pic (info)))
2788 Elf_Internal_Rela outrel;
2792 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2793 srel = htab->elf.srelplt;
2795 srel = htab->elf.srelgot;
2797 BFD_ASSERT (srel != NULL);
2800 _bfd_elf_section_offset (output_bfd, info,
2801 input_section, rel->r_offset);
2803 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2804 memset (&outrel, 0, sizeof outrel);
2807 outrel.r_offset += (input_section->output_section->vma
2808 + input_section->output_offset);
2810 /* Complain if the relocation is in a read-only section
2811 and not in a literal pool. */
2812 if ((input_section->flags & SEC_READONLY) != 0
2813 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2817 _("dynamic relocation in read-only section");
2818 (*info->callbacks->reloc_dangerous)
2819 (info, error_message,
2820 input_bfd, input_section, rel->r_offset);
2825 outrel.r_addend = rel->r_addend;
2828 if (r_type == R_XTENSA_32)
2831 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2834 else /* r_type == R_XTENSA_PLT */
2837 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2839 /* Create the PLT entry and set the initial
2840 contents of the literal entry to the address of
2843 elf_xtensa_create_plt_entry (info, output_bfd,
2846 unresolved_reloc = FALSE;
2848 else if (!is_weak_undef)
2850 /* Generate a RELATIVE relocation. */
2851 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2852 outrel.r_addend = 0;
2860 loc = (srel->contents
2861 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2862 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2863 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2866 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2868 /* This should only happen for non-PIC code, which is not
2869 supposed to be used on systems with dynamic linking.
2870 Just ignore these relocations. */
2875 case R_XTENSA_TLS_TPOFF:
2876 /* Switch to LE model for local symbols in an executable. */
2877 if (! bfd_link_pic (info) && ! dynamic_symbol)
2879 relocation = tpoff (info, relocation);
2884 case R_XTENSA_TLSDESC_FN:
2885 case R_XTENSA_TLSDESC_ARG:
2887 if (r_type == R_XTENSA_TLSDESC_FN)
2889 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2890 r_type = R_XTENSA_NONE;
2892 else if (r_type == R_XTENSA_TLSDESC_ARG)
2894 if (bfd_link_pic (info))
2896 if ((tls_type & GOT_TLS_IE) != 0)
2897 r_type = R_XTENSA_TLS_TPOFF;
2901 r_type = R_XTENSA_TLS_TPOFF;
2902 if (! dynamic_symbol)
2904 relocation = tpoff (info, relocation);
2910 if (r_type == R_XTENSA_NONE)
2911 /* Nothing to do here; skip to the next reloc. */
2914 if (! elf_hash_table (info)->dynamic_sections_created)
2917 _("TLS relocation invalid without dynamic sections");
2918 (*info->callbacks->reloc_dangerous)
2919 (info, error_message,
2920 input_bfd, input_section, rel->r_offset);
2924 Elf_Internal_Rela outrel;
2926 asection *srel = htab->elf.srelgot;
2929 outrel.r_offset = (input_section->output_section->vma
2930 + input_section->output_offset
2933 /* Complain if the relocation is in a read-only section
2934 and not in a literal pool. */
2935 if ((input_section->flags & SEC_READONLY) != 0
2936 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2940 _("dynamic relocation in read-only section");
2941 (*info->callbacks->reloc_dangerous)
2942 (info, error_message,
2943 input_bfd, input_section, rel->r_offset);
2946 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2948 outrel.r_addend = relocation - dtpoff_base (info);
2950 outrel.r_addend = 0;
2953 outrel.r_info = ELF32_R_INFO (indx, r_type);
2955 unresolved_reloc = FALSE;
2958 loc = (srel->contents
2959 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2961 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2967 case R_XTENSA_TLS_DTPOFF:
2968 if (! bfd_link_pic (info))
2969 /* Switch from LD model to LE model. */
2970 relocation = tpoff (info, relocation);
2972 relocation -= dtpoff_base (info);
2975 case R_XTENSA_TLS_FUNC:
2976 case R_XTENSA_TLS_ARG:
2977 case R_XTENSA_TLS_CALL:
2978 /* Check if optimizing to IE or LE model. */
2979 if ((tls_type & GOT_TLS_IE) != 0)
2981 bfd_boolean is_ld_model =
2982 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2983 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2984 is_ld_model, &error_message))
2985 (*info->callbacks->reloc_dangerous)
2986 (info, error_message,
2987 input_bfd, input_section, rel->r_offset);
2989 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2991 /* Skip subsequent relocations on the same instruction. */
2992 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2999 if (elf_hash_table (info)->dynamic_sections_created
3000 && dynamic_symbol && (is_operand_relocation (r_type)
3001 || r_type == R_XTENSA_32_PCREL))
3004 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3005 strlen (name) + 2, name);
3006 (*info->callbacks->reloc_dangerous)
3007 (info, error_message, input_bfd, input_section, rel->r_offset);
3013 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3014 because such sections are not SEC_ALLOC and thus ld.so will
3015 not process them. */
3016 if (unresolved_reloc
3017 && !((input_section->flags & SEC_DEBUGGING) != 0
3019 && _bfd_elf_section_offset (output_bfd, info, input_section,
3020 rel->r_offset) != (bfd_vma) -1)
3023 /* xgettext:c-format */
3024 (_("%pB(%pA+%#" PRIx64 "): "
3025 "unresolvable %s relocation against symbol `%s'"),
3028 (uint64_t) rel->r_offset,
3034 /* TLS optimizations may have changed r_type; update "howto". */
3035 howto = &elf_howto_table[r_type];
3037 /* There's no point in calling bfd_perform_relocation here.
3038 Just go directly to our "special function". */
3039 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3040 relocation + rel->r_addend,
3041 contents, rel->r_offset, is_weak_undef,
3044 if (r != bfd_reloc_ok && !warned)
3046 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3047 BFD_ASSERT (error_message != NULL);
3049 if (rel->r_addend == 0)
3050 error_message = vsprint_msg (error_message, ": %s",
3051 strlen (name) + 2, name);
3053 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3055 name, (int) rel->r_addend);
3057 (*info->callbacks->reloc_dangerous)
3058 (info, error_message, input_bfd, input_section, rel->r_offset);
3063 input_section->reloc_done = TRUE;
3069 /* Finish up dynamic symbol handling. There's not much to do here since
3070 the PLT and GOT entries are all set up by relocate_section. */
3073 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3074 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3075 struct elf_link_hash_entry *h,
3076 Elf_Internal_Sym *sym)
3078 if (h->needs_plt && !h->def_regular)
3080 /* Mark the symbol as undefined, rather than as defined in
3081 the .plt section. Leave the value alone. */
3082 sym->st_shndx = SHN_UNDEF;
3083 /* If the symbol is weak, we do need to clear the value.
3084 Otherwise, the PLT entry would provide a definition for
3085 the symbol even if the symbol wasn't defined anywhere,
3086 and so the symbol would never be NULL. */
3087 if (!h->ref_regular_nonweak)
3091 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3092 if (h == elf_hash_table (info)->hdynamic
3093 || h == elf_hash_table (info)->hgot)
3094 sym->st_shndx = SHN_ABS;
3100 /* Combine adjacent literal table entries in the output. Adjacent
3101 entries within each input section may have been removed during
3102 relaxation, but we repeat the process here, even though it's too late
3103 to shrink the output section, because it's important to minimize the
3104 number of literal table entries to reduce the start-up work for the
3105 runtime linker. Returns the number of remaining table entries or -1
3109 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3114 property_table_entry *table;
3115 bfd_size_type section_size, sgotloc_size;
3119 section_size = sxtlit->size;
3120 if (section_size == 0)
3123 BFD_ASSERT (section_size % 8 == 0);
3124 num = section_size / 8;
3126 sgotloc_size = sgotloc->size;
3127 if (sgotloc_size != section_size)
3130 (_("internal inconsistency in size of .got.loc section"));
3134 table = bfd_malloc (num * sizeof (property_table_entry));
3138 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3139 propagates to the output section, where it doesn't really apply and
3140 where it breaks the following call to bfd_malloc_and_get_section. */
3141 sxtlit->flags &= ~SEC_IN_MEMORY;
3143 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3150 /* There should never be any relocations left at this point, so this
3151 is quite a bit easier than what is done during relaxation. */
3153 /* Copy the raw contents into a property table array and sort it. */
3155 for (n = 0; n < num; n++)
3157 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3158 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3161 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3163 for (n = 0; n < num; n++)
3165 bfd_boolean remove_entry = FALSE;
3167 if (table[n].size == 0)
3168 remove_entry = TRUE;
3170 && (table[n-1].address + table[n-1].size == table[n].address))
3172 table[n-1].size += table[n].size;
3173 remove_entry = TRUE;
3178 for (m = n; m < num - 1; m++)
3180 table[m].address = table[m+1].address;
3181 table[m].size = table[m+1].size;
3189 /* Copy the data back to the raw contents. */
3191 for (n = 0; n < num; n++)
3193 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3194 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3198 /* Clear the removed bytes. */
3199 if ((bfd_size_type) (num * 8) < section_size)
3200 memset (&contents[num * 8], 0, section_size - num * 8);
3202 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3206 /* Copy the contents to ".got.loc". */
3207 memcpy (sgotloc->contents, contents, section_size);
3215 /* Finish up the dynamic sections. */
3218 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3219 struct bfd_link_info *info)
3221 struct elf_xtensa_link_hash_table *htab;
3223 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3224 Elf32_External_Dyn *dyncon, *dynconend;
3225 int num_xtlit_entries = 0;
3227 if (! elf_hash_table (info)->dynamic_sections_created)
3230 htab = elf_xtensa_hash_table (info);
3234 dynobj = elf_hash_table (info)->dynobj;
3235 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3236 BFD_ASSERT (sdyn != NULL);
3238 /* Set the first entry in the global offset table to the address of
3239 the dynamic section. */
3240 sgot = htab->elf.sgot;
3243 BFD_ASSERT (sgot->size == 4);
3245 bfd_put_32 (output_bfd, 0, sgot->contents);
3247 bfd_put_32 (output_bfd,
3248 sdyn->output_section->vma + sdyn->output_offset,
3252 srelplt = htab->elf.srelplt;
3253 srelgot = htab->elf.srelgot;
3254 if (srelplt && srelplt->size != 0)
3256 asection *sgotplt, *spltlittbl;
3257 int chunk, plt_chunks, plt_entries;
3258 Elf_Internal_Rela irela;
3260 unsigned rtld_reloc;
3262 spltlittbl = htab->spltlittbl;
3263 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3265 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3266 of them follow immediately after.... */
3267 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3269 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3270 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3271 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3274 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3276 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3278 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3280 for (chunk = 0; chunk < plt_chunks; chunk++)
3282 int chunk_entries = 0;
3284 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3285 BFD_ASSERT (sgotplt != NULL);
3287 /* Emit special RTLD relocations for the first two entries in
3288 each chunk of the .got.plt section. */
3290 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3291 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3292 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3293 irela.r_offset = (sgotplt->output_section->vma
3294 + sgotplt->output_offset);
3295 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3296 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3298 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3300 /* Next literal immediately follows the first. */
3301 loc += sizeof (Elf32_External_Rela);
3302 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3303 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3304 irela.r_offset = (sgotplt->output_section->vma
3305 + sgotplt->output_offset + 4);
3306 /* Tell rtld to set value to object's link map. */
3308 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3310 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3312 /* Fill in the literal table. */
3313 if (chunk < plt_chunks - 1)
3314 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3316 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3318 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3319 bfd_put_32 (output_bfd,
3320 sgotplt->output_section->vma + sgotplt->output_offset,
3321 spltlittbl->contents + (chunk * 8) + 0);
3322 bfd_put_32 (output_bfd,
3323 8 + (chunk_entries * 4),
3324 spltlittbl->contents + (chunk * 8) + 4);
3327 /* The .xt.lit.plt section has just been modified. This must
3328 happen before the code below which combines adjacent literal
3329 table entries, and the .xt.lit.plt contents have to be forced to
3331 if (! bfd_set_section_contents (output_bfd,
3332 spltlittbl->output_section,
3333 spltlittbl->contents,
3334 spltlittbl->output_offset,
3337 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3338 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3341 /* All the dynamic relocations have been emitted at this point.
3342 Make sure the relocation sections are the correct size. */
3343 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3344 * srelgot->reloc_count))
3345 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3346 * srelplt->reloc_count)))
3349 /* Combine adjacent literal table entries. */
3350 BFD_ASSERT (! bfd_link_relocatable (info));
3351 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3352 sgotloc = htab->sgotloc;
3353 BFD_ASSERT (sgotloc);
3357 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3358 if (num_xtlit_entries < 0)
3362 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3363 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3364 for (; dyncon < dynconend; dyncon++)
3366 Elf_Internal_Dyn dyn;
3368 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3375 case DT_XTENSA_GOT_LOC_SZ:
3376 dyn.d_un.d_val = num_xtlit_entries;
3379 case DT_XTENSA_GOT_LOC_OFF:
3380 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3381 + htab->sgotloc->output_offset);
3385 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3386 + htab->elf.sgot->output_offset);
3390 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3391 + htab->elf.srelplt->output_offset);
3395 dyn.d_un.d_val = htab->elf.srelplt->size;
3399 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3406 /* Functions for dealing with the e_flags field. */
3408 /* Merge backend specific data from an object file to the output
3409 object file when linking. */
3412 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3414 bfd *obfd = info->output_bfd;
3415 unsigned out_mach, in_mach;
3416 flagword out_flag, in_flag;
3418 /* Check if we have the same endianness. */
3419 if (!_bfd_generic_verify_endian_match (ibfd, info))
3422 /* Don't even pretend to support mixed-format linking. */
3423 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3424 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3427 out_flag = elf_elfheader (obfd)->e_flags;
3428 in_flag = elf_elfheader (ibfd)->e_flags;
3430 out_mach = out_flag & EF_XTENSA_MACH;
3431 in_mach = in_flag & EF_XTENSA_MACH;
3432 if (out_mach != in_mach)
3435 /* xgettext:c-format */
3436 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3437 ibfd, out_mach, in_mach);
3438 bfd_set_error (bfd_error_wrong_format);
3442 if (! elf_flags_init (obfd))
3444 elf_flags_init (obfd) = TRUE;
3445 elf_elfheader (obfd)->e_flags = in_flag;
3447 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3448 && bfd_get_arch_info (obfd)->the_default)
3449 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3450 bfd_get_mach (ibfd));
3455 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3456 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3458 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3459 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3466 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3468 BFD_ASSERT (!elf_flags_init (abfd)
3469 || elf_elfheader (abfd)->e_flags == flags);
3471 elf_elfheader (abfd)->e_flags |= flags;
3472 elf_flags_init (abfd) = TRUE;
3479 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3481 FILE *f = (FILE *) farg;
3482 flagword e_flags = elf_elfheader (abfd)->e_flags;
3484 fprintf (f, "\nXtensa header:\n");
3485 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3486 fprintf (f, "\nMachine = Base\n");
3488 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3490 fprintf (f, "Insn tables = %s\n",
3491 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3493 fprintf (f, "Literal tables = %s\n",
3494 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3496 return _bfd_elf_print_private_bfd_data (abfd, farg);
3500 /* Set the right machine number for an Xtensa ELF file. */
3503 elf_xtensa_object_p (bfd *abfd)
3506 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3511 mach = bfd_mach_xtensa;
3517 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3522 /* The final processing done just before writing out an Xtensa ELF object
3523 file. This gets the Xtensa architecture right based on the machine
3527 elf_xtensa_final_write_processing (bfd *abfd)
3530 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3532 switch (mach = bfd_get_mach (abfd))
3534 case bfd_mach_xtensa:
3535 val = E_XTENSA_MACH;
3541 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3542 elf_elfheader (abfd)->e_flags |= val;
3543 return _bfd_elf_final_write_processing (abfd);
3547 static enum elf_reloc_type_class
3548 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3549 const asection *rel_sec ATTRIBUTE_UNUSED,
3550 const Elf_Internal_Rela *rela)
3552 switch ((int) ELF32_R_TYPE (rela->r_info))
3554 case R_XTENSA_RELATIVE:
3555 return reloc_class_relative;
3556 case R_XTENSA_JMP_SLOT:
3557 return reloc_class_plt;
3559 return reloc_class_normal;
3565 elf_xtensa_discard_info_for_section (bfd *abfd,
3566 struct elf_reloc_cookie *cookie,
3567 struct bfd_link_info *info,
3571 bfd_vma offset, actual_offset;
3572 bfd_size_type removed_bytes = 0;
3573 bfd_size_type entry_size;
3575 if (sec->output_section
3576 && bfd_is_abs_section (sec->output_section))
3579 if (xtensa_is_proptable_section (sec))
3584 if (sec->size == 0 || sec->size % entry_size != 0)
3587 contents = retrieve_contents (abfd, sec, info->keep_memory);
3591 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3594 release_contents (sec, contents);
3598 /* Sort the relocations. They should already be in order when
3599 relaxation is enabled, but it might not be. */
3600 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3601 internal_reloc_compare);
3603 cookie->rel = cookie->rels;
3604 cookie->relend = cookie->rels + sec->reloc_count;
3606 for (offset = 0; offset < sec->size; offset += entry_size)
3608 actual_offset = offset - removed_bytes;
3610 /* The ...symbol_deleted_p function will skip over relocs but it
3611 won't adjust their offsets, so do that here. */
3612 while (cookie->rel < cookie->relend
3613 && cookie->rel->r_offset < offset)
3615 cookie->rel->r_offset -= removed_bytes;
3619 while (cookie->rel < cookie->relend
3620 && cookie->rel->r_offset == offset)
3622 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3624 /* Remove the table entry. (If the reloc type is NONE, then
3625 the entry has already been merged with another and deleted
3626 during relaxation.) */
3627 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3629 /* Shift the contents up. */
3630 if (offset + entry_size < sec->size)
3631 memmove (&contents[actual_offset],
3632 &contents[actual_offset + entry_size],
3633 sec->size - offset - entry_size);
3634 removed_bytes += entry_size;
3637 /* Remove this relocation. */
3638 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3641 /* Adjust the relocation offset for previous removals. This
3642 should not be done before calling ...symbol_deleted_p
3643 because it might mess up the offset comparisons there.
3644 Make sure the offset doesn't underflow in the case where
3645 the first entry is removed. */
3646 if (cookie->rel->r_offset >= removed_bytes)
3647 cookie->rel->r_offset -= removed_bytes;
3649 cookie->rel->r_offset = 0;
3655 if (removed_bytes != 0)
3657 /* Adjust any remaining relocs (shouldn't be any). */
3658 for (; cookie->rel < cookie->relend; cookie->rel++)
3660 if (cookie->rel->r_offset >= removed_bytes)
3661 cookie->rel->r_offset -= removed_bytes;
3663 cookie->rel->r_offset = 0;
3666 /* Clear the removed bytes. */
3667 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3669 pin_contents (sec, contents);
3670 pin_internal_relocs (sec, cookie->rels);
3673 if (sec->rawsize == 0)
3674 sec->rawsize = sec->size;
3675 sec->size -= removed_bytes;
3677 if (xtensa_is_littable_section (sec))
3679 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3681 sgotloc->size -= removed_bytes;
3686 release_contents (sec, contents);
3687 release_internal_relocs (sec, cookie->rels);
3690 return (removed_bytes != 0);
3695 elf_xtensa_discard_info (bfd *abfd,
3696 struct elf_reloc_cookie *cookie,
3697 struct bfd_link_info *info)
3700 bfd_boolean changed = FALSE;
3702 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3704 if (xtensa_is_property_section (sec))
3706 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3716 elf_xtensa_ignore_discarded_relocs (asection *sec)
3718 return xtensa_is_property_section (sec);
3723 elf_xtensa_action_discarded (asection *sec)
3725 if (strcmp (".xt_except_table", sec->name) == 0)
3728 if (strcmp (".xt_except_desc", sec->name) == 0)
3731 return _bfd_elf_default_action_discarded (sec);
3735 /* Support for core dump NOTE sections. */
3738 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3743 /* The size for Xtensa is variable, so don't try to recognize the format
3744 based on the size. Just assume this is GNU/Linux. */
3747 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3750 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3754 size = note->descsz - offset - 4;
3756 /* Make a ".reg/999" section. */
3757 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3758 size, note->descpos + offset);
3763 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3765 switch (note->descsz)
3770 case 128: /* GNU/Linux elf_prpsinfo */
3771 elf_tdata (abfd)->core->program
3772 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3773 elf_tdata (abfd)->core->command
3774 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3777 /* Note that for some reason, a spurious space is tacked
3778 onto the end of the args in some (at least one anyway)
3779 implementations, so strip it off if it exists. */
3782 char *command = elf_tdata (abfd)->core->command;
3783 int n = strlen (command);
3785 if (0 < n && command[n - 1] == ' ')
3786 command[n - 1] = '\0';
3793 /* Generic Xtensa configurability stuff. */
3795 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3796 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3797 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3798 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3799 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3800 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3801 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3802 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3805 init_call_opcodes (void)
3807 if (callx0_op == XTENSA_UNDEFINED)
3809 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3810 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3811 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3812 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3813 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3814 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3815 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3816 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3822 is_indirect_call_opcode (xtensa_opcode opcode)
3824 init_call_opcodes ();
3825 return (opcode == callx0_op
3826 || opcode == callx4_op
3827 || opcode == callx8_op
3828 || opcode == callx12_op);
3833 is_direct_call_opcode (xtensa_opcode opcode)
3835 init_call_opcodes ();
3836 return (opcode == call0_op
3837 || opcode == call4_op
3838 || opcode == call8_op
3839 || opcode == call12_op);
3844 is_windowed_call_opcode (xtensa_opcode opcode)
3846 init_call_opcodes ();
3847 return (opcode == call4_op
3848 || opcode == call8_op
3849 || opcode == call12_op
3850 || opcode == callx4_op
3851 || opcode == callx8_op
3852 || opcode == callx12_op);
3857 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3859 unsigned dst = (unsigned) -1;
3861 init_call_opcodes ();
3862 if (opcode == callx0_op)
3864 else if (opcode == callx4_op)
3866 else if (opcode == callx8_op)
3868 else if (opcode == callx12_op)
3871 if (dst == (unsigned) -1)
3879 static xtensa_opcode
3880 get_const16_opcode (void)
3882 static bfd_boolean done_lookup = FALSE;
3883 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3886 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3889 return const16_opcode;
3893 static xtensa_opcode
3894 get_l32r_opcode (void)
3896 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3897 static bfd_boolean done_lookup = FALSE;
3901 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3909 l32r_offset (bfd_vma addr, bfd_vma pc)
3913 offset = addr - ((pc+3) & -4);
3914 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3915 offset = (signed int) offset >> 2;
3916 BFD_ASSERT ((signed int) offset >> 16 == -1);
3921 static xtensa_opcode
3922 get_rsr_lend_opcode (void)
3924 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3925 static bfd_boolean done_lookup = FALSE;
3928 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3931 return rsr_lend_opcode;
3934 static xtensa_opcode
3935 get_wsr_lbeg_opcode (void)
3937 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3938 static bfd_boolean done_lookup = FALSE;
3941 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3944 return wsr_lbeg_opcode;
3949 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3951 xtensa_isa isa = xtensa_default_isa;
3952 int last_immed, last_opnd, opi;
3954 if (opcode == XTENSA_UNDEFINED)
3955 return XTENSA_UNDEFINED;
3957 /* Find the last visible PC-relative immediate operand for the opcode.
3958 If there are no PC-relative immediates, then choose the last visible
3959 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3960 last_immed = XTENSA_UNDEFINED;
3961 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3962 for (opi = last_opnd - 1; opi >= 0; opi--)
3964 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3966 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3971 if (last_immed == XTENSA_UNDEFINED
3972 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3976 return XTENSA_UNDEFINED;
3978 /* If the operand number was specified in an old-style relocation,
3979 check for consistency with the operand computed above. */
3980 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3982 int reloc_opnd = r_type - R_XTENSA_OP0;
3983 if (reloc_opnd != last_immed)
3984 return XTENSA_UNDEFINED;
3992 get_relocation_slot (int r_type)
4002 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4003 return r_type - R_XTENSA_SLOT0_OP;
4004 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4005 return r_type - R_XTENSA_SLOT0_ALT;
4009 return XTENSA_UNDEFINED;
4013 /* Get the opcode for a relocation. */
4015 static xtensa_opcode
4016 get_relocation_opcode (bfd *abfd,
4019 Elf_Internal_Rela *irel)
4021 static xtensa_insnbuf ibuff = NULL;
4022 static xtensa_insnbuf sbuff = NULL;
4023 xtensa_isa isa = xtensa_default_isa;
4027 if (contents == NULL)
4028 return XTENSA_UNDEFINED;
4030 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4031 return XTENSA_UNDEFINED;
4035 ibuff = xtensa_insnbuf_alloc (isa);
4036 sbuff = xtensa_insnbuf_alloc (isa);
4039 /* Decode the instruction. */
4040 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4041 sec->size - irel->r_offset);
4042 fmt = xtensa_format_decode (isa, ibuff);
4043 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4044 if (slot == XTENSA_UNDEFINED)
4045 return XTENSA_UNDEFINED;
4046 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4047 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4052 is_l32r_relocation (bfd *abfd,
4055 Elf_Internal_Rela *irel)
4057 xtensa_opcode opcode;
4058 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4060 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4061 return (opcode == get_l32r_opcode ());
4065 static bfd_size_type
4066 get_asm_simplify_size (bfd_byte *contents,
4067 bfd_size_type content_len,
4068 bfd_size_type offset)
4070 bfd_size_type insnlen, size = 0;
4072 /* Decode the size of the next two instructions. */
4073 insnlen = insn_decode_len (contents, content_len, offset);
4079 insnlen = insn_decode_len (contents, content_len, offset + size);
4089 is_alt_relocation (int r_type)
4091 return (r_type >= R_XTENSA_SLOT0_ALT
4092 && r_type <= R_XTENSA_SLOT14_ALT);
4097 is_operand_relocation (int r_type)
4107 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4109 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4118 #define MIN_INSN_LENGTH 2
4120 /* Return 0 if it fails to decode. */
4123 insn_decode_len (bfd_byte *contents,
4124 bfd_size_type content_len,
4125 bfd_size_type offset)
4128 xtensa_isa isa = xtensa_default_isa;
4130 static xtensa_insnbuf ibuff = NULL;
4132 if (offset + MIN_INSN_LENGTH > content_len)
4136 ibuff = xtensa_insnbuf_alloc (isa);
4137 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4138 content_len - offset);
4139 fmt = xtensa_format_decode (isa, ibuff);
4140 if (fmt == XTENSA_UNDEFINED)
4142 insn_len = xtensa_format_length (isa, fmt);
4143 if (insn_len == XTENSA_UNDEFINED)
4149 insn_num_slots (bfd_byte *contents,
4150 bfd_size_type content_len,
4151 bfd_size_type offset)
4153 xtensa_isa isa = xtensa_default_isa;
4155 static xtensa_insnbuf ibuff = NULL;
4157 if (offset + MIN_INSN_LENGTH > content_len)
4158 return XTENSA_UNDEFINED;
4161 ibuff = xtensa_insnbuf_alloc (isa);
4162 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4163 content_len - offset);
4164 fmt = xtensa_format_decode (isa, ibuff);
4165 if (fmt == XTENSA_UNDEFINED)
4166 return XTENSA_UNDEFINED;
4167 return xtensa_format_num_slots (isa, fmt);
4171 /* Decode the opcode for a single slot instruction.
4172 Return 0 if it fails to decode or the instruction is multi-slot. */
4175 insn_decode_opcode (bfd_byte *contents,
4176 bfd_size_type content_len,
4177 bfd_size_type offset,
4180 xtensa_isa isa = xtensa_default_isa;
4182 static xtensa_insnbuf insnbuf = NULL;
4183 static xtensa_insnbuf slotbuf = NULL;
4185 if (offset + MIN_INSN_LENGTH > content_len)
4186 return XTENSA_UNDEFINED;
4188 if (insnbuf == NULL)
4190 insnbuf = xtensa_insnbuf_alloc (isa);
4191 slotbuf = xtensa_insnbuf_alloc (isa);
4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4195 content_len - offset);
4196 fmt = xtensa_format_decode (isa, insnbuf);
4197 if (fmt == XTENSA_UNDEFINED)
4198 return XTENSA_UNDEFINED;
4200 if (slot >= xtensa_format_num_slots (isa, fmt))
4201 return XTENSA_UNDEFINED;
4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4208 /* The offset is the offset in the contents.
4209 The address is the address of that offset. */
4212 check_branch_target_aligned (bfd_byte *contents,
4213 bfd_size_type content_length,
4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4220 return check_branch_target_aligned_address (address, insn_len);
4225 check_loop_aligned (bfd_byte *contents,
4226 bfd_size_type content_length,
4230 bfd_size_type loop_len, insn_len;
4231 xtensa_opcode opcode;
4233 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4234 if (opcode == XTENSA_UNDEFINED
4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4241 loop_len = insn_decode_len (contents, content_length, offset);
4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4243 if (loop_len == 0 || insn_len == 0)
4249 /* If this is relaxed loop, analyze first instruction of the actual loop
4250 body. It must be at offset 27 from the loop instruction address. */
4252 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4253 && insn_decode_opcode (contents, content_length,
4254 offset + loop_len, 0) == get_rsr_lend_opcode()
4255 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4256 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4257 && insn_decode_opcode (contents, content_length,
4258 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4261 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4263 return check_branch_target_aligned_address (address + loop_len, insn_len);
4268 check_branch_target_aligned_address (bfd_vma addr, int len)
4271 return (addr % 8 == 0);
4272 return ((addr >> 2) == ((addr + len - 1) >> 2));
4276 /* Instruction widening and narrowing. */
4278 /* When FLIX is available we need to access certain instructions only
4279 when they are 16-bit or 24-bit instructions. This table caches
4280 information about such instructions by walking through all the
4281 opcodes and finding the smallest single-slot format into which each
4284 static xtensa_format *op_single_fmt_table = NULL;
4288 init_op_single_format_table (void)
4290 xtensa_isa isa = xtensa_default_isa;
4291 xtensa_insnbuf ibuf;
4292 xtensa_opcode opcode;
4296 if (op_single_fmt_table)
4299 ibuf = xtensa_insnbuf_alloc (isa);
4300 num_opcodes = xtensa_isa_num_opcodes (isa);
4302 op_single_fmt_table = (xtensa_format *)
4303 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4304 for (opcode = 0; opcode < num_opcodes; opcode++)
4306 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4307 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4309 if (xtensa_format_num_slots (isa, fmt) == 1
4310 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4312 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4313 int fmt_length = xtensa_format_length (isa, fmt);
4314 if (old_fmt == XTENSA_UNDEFINED
4315 || fmt_length < xtensa_format_length (isa, old_fmt))
4316 op_single_fmt_table[opcode] = fmt;
4320 xtensa_insnbuf_free (isa, ibuf);
4324 static xtensa_format
4325 get_single_format (xtensa_opcode opcode)
4327 init_op_single_format_table ();
4328 return op_single_fmt_table[opcode];
4332 /* For the set of narrowable instructions we do NOT include the
4333 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4334 involved during linker relaxation that may require these to
4335 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4336 requires special case code to ensure it only works when op1 == op2. */
4344 const struct string_pair narrowable[] =
4347 { "addi", "addi.n" },
4348 { "addmi", "addi.n" },
4349 { "l32i", "l32i.n" },
4350 { "movi", "movi.n" },
4352 { "retw", "retw.n" },
4353 { "s32i", "s32i.n" },
4354 { "or", "mov.n" } /* special case only when op1 == op2 */
4357 const struct string_pair widenable[] =
4360 { "addi", "addi.n" },
4361 { "addmi", "addi.n" },
4362 { "beqz", "beqz.n" },
4363 { "bnez", "bnez.n" },
4364 { "l32i", "l32i.n" },
4365 { "movi", "movi.n" },
4367 { "retw", "retw.n" },
4368 { "s32i", "s32i.n" },
4369 { "or", "mov.n" } /* special case only when op1 == op2 */
4373 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4374 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4375 return the instruction buffer holding the narrow instruction. Otherwise,
4376 return 0. The set of valid narrowing are specified by a string table
4377 but require some special case operand checks in some cases. */
4379 static xtensa_insnbuf
4380 can_narrow_instruction (xtensa_insnbuf slotbuf,
4382 xtensa_opcode opcode)
4384 xtensa_isa isa = xtensa_default_isa;
4385 xtensa_format o_fmt;
4388 static xtensa_insnbuf o_insnbuf = NULL;
4389 static xtensa_insnbuf o_slotbuf = NULL;
4391 if (o_insnbuf == NULL)
4393 o_insnbuf = xtensa_insnbuf_alloc (isa);
4394 o_slotbuf = xtensa_insnbuf_alloc (isa);
4397 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4399 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4401 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4403 uint32 value, newval;
4404 int i, operand_count, o_operand_count;
4405 xtensa_opcode o_opcode;
4407 /* Address does not matter in this case. We might need to
4408 fix it to handle branches/jumps. */
4409 bfd_vma self_address = 0;
4411 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4412 if (o_opcode == XTENSA_UNDEFINED)
4414 o_fmt = get_single_format (o_opcode);
4415 if (o_fmt == XTENSA_UNDEFINED)
4418 if (xtensa_format_length (isa, fmt) != 3
4419 || xtensa_format_length (isa, o_fmt) != 2)
4422 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4423 operand_count = xtensa_opcode_num_operands (isa, opcode);
4424 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4426 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4431 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4436 uint32 rawval0, rawval1, rawval2;
4438 if (o_operand_count + 1 != operand_count
4439 || xtensa_operand_get_field (isa, opcode, 0,
4440 fmt, 0, slotbuf, &rawval0) != 0
4441 || xtensa_operand_get_field (isa, opcode, 1,
4442 fmt, 0, slotbuf, &rawval1) != 0
4443 || xtensa_operand_get_field (isa, opcode, 2,
4444 fmt, 0, slotbuf, &rawval2) != 0
4445 || rawval1 != rawval2
4446 || rawval0 == rawval1 /* it is a nop */)
4450 for (i = 0; i < o_operand_count; ++i)
4452 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4454 || xtensa_operand_decode (isa, opcode, i, &value))
4457 /* PC-relative branches need adjustment, but
4458 the PC-rel operand will always have a relocation. */
4460 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4462 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4463 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4468 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4478 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4479 the action in-place directly into the contents and return TRUE. Otherwise,
4480 the return value is FALSE and the contents are not modified. */
4483 narrow_instruction (bfd_byte *contents,
4484 bfd_size_type content_length,
4485 bfd_size_type offset)
4487 xtensa_opcode opcode;
4488 bfd_size_type insn_len;
4489 xtensa_isa isa = xtensa_default_isa;
4491 xtensa_insnbuf o_insnbuf;
4493 static xtensa_insnbuf insnbuf = NULL;
4494 static xtensa_insnbuf slotbuf = NULL;
4496 if (insnbuf == NULL)
4498 insnbuf = xtensa_insnbuf_alloc (isa);
4499 slotbuf = xtensa_insnbuf_alloc (isa);
4502 BFD_ASSERT (offset < content_length);
4504 if (content_length < 2)
4507 /* We will hand-code a few of these for a little while.
4508 These have all been specified in the assembler aleady. */
4509 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4510 content_length - offset);
4511 fmt = xtensa_format_decode (isa, insnbuf);
4512 if (xtensa_format_num_slots (isa, fmt) != 1)
4515 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4518 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4519 if (opcode == XTENSA_UNDEFINED)
4521 insn_len = xtensa_format_length (isa, fmt);
4522 if (insn_len > content_length)
4525 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4528 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4529 content_length - offset);
4537 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4538 "density" instruction to a standard 3-byte instruction. If it is valid,
4539 return the instruction buffer holding the wide instruction. Otherwise,
4540 return 0. The set of valid widenings are specified by a string table
4541 but require some special case operand checks in some cases. */
4543 static xtensa_insnbuf
4544 can_widen_instruction (xtensa_insnbuf slotbuf,
4546 xtensa_opcode opcode)
4548 xtensa_isa isa = xtensa_default_isa;
4549 xtensa_format o_fmt;
4552 static xtensa_insnbuf o_insnbuf = NULL;
4553 static xtensa_insnbuf o_slotbuf = NULL;
4555 if (o_insnbuf == NULL)
4557 o_insnbuf = xtensa_insnbuf_alloc (isa);
4558 o_slotbuf = xtensa_insnbuf_alloc (isa);
4561 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4563 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4564 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4565 || strcmp ("bnez", widenable[opi].wide) == 0);
4567 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4569 uint32 value, newval;
4570 int i, operand_count, o_operand_count, check_operand_count;
4571 xtensa_opcode o_opcode;
4573 /* Address does not matter in this case. We might need to fix it
4574 to handle branches/jumps. */
4575 bfd_vma self_address = 0;
4577 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4578 if (o_opcode == XTENSA_UNDEFINED)
4580 o_fmt = get_single_format (o_opcode);
4581 if (o_fmt == XTENSA_UNDEFINED)
4584 if (xtensa_format_length (isa, fmt) != 2
4585 || xtensa_format_length (isa, o_fmt) != 3)
4588 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4589 operand_count = xtensa_opcode_num_operands (isa, opcode);
4590 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4591 check_operand_count = o_operand_count;
4593 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4598 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4603 uint32 rawval0, rawval1;
4605 if (o_operand_count != operand_count + 1
4606 || xtensa_operand_get_field (isa, opcode, 0,
4607 fmt, 0, slotbuf, &rawval0) != 0
4608 || xtensa_operand_get_field (isa, opcode, 1,
4609 fmt, 0, slotbuf, &rawval1) != 0
4610 || rawval0 == rawval1 /* it is a nop */)
4614 check_operand_count--;
4616 for (i = 0; i < check_operand_count; i++)
4619 if (is_or && i == o_operand_count - 1)
4621 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4623 || xtensa_operand_decode (isa, opcode, new_i, &value))
4626 /* PC-relative branches need adjustment, but
4627 the PC-rel operand will always have a relocation. */
4629 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4631 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4632 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4637 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4647 /* Attempt to widen an instruction. If the widening is valid, perform
4648 the action in-place directly into the contents and return TRUE. Otherwise,
4649 the return value is FALSE and the contents are not modified. */
4652 widen_instruction (bfd_byte *contents,
4653 bfd_size_type content_length,
4654 bfd_size_type offset)
4656 xtensa_opcode opcode;
4657 bfd_size_type insn_len;
4658 xtensa_isa isa = xtensa_default_isa;
4660 xtensa_insnbuf o_insnbuf;
4662 static xtensa_insnbuf insnbuf = NULL;
4663 static xtensa_insnbuf slotbuf = NULL;
4665 if (insnbuf == NULL)
4667 insnbuf = xtensa_insnbuf_alloc (isa);
4668 slotbuf = xtensa_insnbuf_alloc (isa);
4671 BFD_ASSERT (offset < content_length);
4673 if (content_length < 2)
4676 /* We will hand-code a few of these for a little while.
4677 These have all been specified in the assembler aleady. */
4678 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4679 content_length - offset);
4680 fmt = xtensa_format_decode (isa, insnbuf);
4681 if (xtensa_format_num_slots (isa, fmt) != 1)
4684 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4687 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4688 if (opcode == XTENSA_UNDEFINED)
4690 insn_len = xtensa_format_length (isa, fmt);
4691 if (insn_len > content_length)
4694 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4697 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4698 content_length - offset);
4705 /* Code for transforming CALLs at link-time. */
4707 static bfd_reloc_status_type
4708 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4710 bfd_vma content_length,
4711 char **error_message)
4713 static xtensa_insnbuf insnbuf = NULL;
4714 static xtensa_insnbuf slotbuf = NULL;
4715 xtensa_format core_format = XTENSA_UNDEFINED;
4716 xtensa_opcode opcode;
4717 xtensa_opcode direct_call_opcode;
4718 xtensa_isa isa = xtensa_default_isa;
4719 bfd_byte *chbuf = contents + address;
4722 if (insnbuf == NULL)
4724 insnbuf = xtensa_insnbuf_alloc (isa);
4725 slotbuf = xtensa_insnbuf_alloc (isa);
4728 if (content_length < address)
4730 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4731 return bfd_reloc_other;
4734 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4735 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4736 if (direct_call_opcode == XTENSA_UNDEFINED)
4738 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4739 return bfd_reloc_other;
4742 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4743 core_format = xtensa_format_lookup (isa, "x24");
4744 opcode = xtensa_opcode_lookup (isa, "or");
4745 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4746 for (opn = 0; opn < 3; opn++)
4749 xtensa_operand_encode (isa, opcode, opn, ®no);
4750 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4753 xtensa_format_encode (isa, core_format, insnbuf);
4754 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4755 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4757 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4758 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4759 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4761 xtensa_format_encode (isa, core_format, insnbuf);
4762 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4763 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4764 content_length - address - 3);
4766 return bfd_reloc_ok;
4770 static bfd_reloc_status_type
4771 contract_asm_expansion (bfd_byte *contents,
4772 bfd_vma content_length,
4773 Elf_Internal_Rela *irel,
4774 char **error_message)
4776 bfd_reloc_status_type retval =
4777 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4780 if (retval != bfd_reloc_ok)
4781 return bfd_reloc_dangerous;
4783 /* Update the irel->r_offset field so that the right immediate and
4784 the right instruction are modified during the relocation. */
4785 irel->r_offset += 3;
4786 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4787 return bfd_reloc_ok;
4791 static xtensa_opcode
4792 swap_callx_for_call_opcode (xtensa_opcode opcode)
4794 init_call_opcodes ();
4796 if (opcode == callx0_op) return call0_op;
4797 if (opcode == callx4_op) return call4_op;
4798 if (opcode == callx8_op) return call8_op;
4799 if (opcode == callx12_op) return call12_op;
4801 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4802 return XTENSA_UNDEFINED;
4806 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4807 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4808 If not, return XTENSA_UNDEFINED. */
4810 #define L32R_TARGET_REG_OPERAND 0
4811 #define CONST16_TARGET_REG_OPERAND 0
4812 #define CALLN_SOURCE_OPERAND 0
4814 static xtensa_opcode
4815 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4817 static xtensa_insnbuf insnbuf = NULL;
4818 static xtensa_insnbuf slotbuf = NULL;
4820 xtensa_opcode opcode;
4821 xtensa_isa isa = xtensa_default_isa;
4822 uint32 regno, const16_regno, call_regno;
4825 if (insnbuf == NULL)
4827 insnbuf = xtensa_insnbuf_alloc (isa);
4828 slotbuf = xtensa_insnbuf_alloc (isa);
4831 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4832 fmt = xtensa_format_decode (isa, insnbuf);
4833 if (fmt == XTENSA_UNDEFINED
4834 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4835 return XTENSA_UNDEFINED;
4837 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4838 if (opcode == XTENSA_UNDEFINED)
4839 return XTENSA_UNDEFINED;
4841 if (opcode == get_l32r_opcode ())
4844 *p_uses_l32r = TRUE;
4845 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4846 fmt, 0, slotbuf, ®no)
4847 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4849 return XTENSA_UNDEFINED;
4851 else if (opcode == get_const16_opcode ())
4854 *p_uses_l32r = FALSE;
4855 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 fmt, 0, slotbuf, ®no)
4857 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 return XTENSA_UNDEFINED;
4861 /* Check that the next instruction is also CONST16. */
4862 offset += xtensa_format_length (isa, fmt);
4863 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4864 fmt = xtensa_format_decode (isa, insnbuf);
4865 if (fmt == XTENSA_UNDEFINED
4866 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4867 return XTENSA_UNDEFINED;
4868 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4869 if (opcode != get_const16_opcode ())
4870 return XTENSA_UNDEFINED;
4872 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4873 fmt, 0, slotbuf, &const16_regno)
4874 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4876 || const16_regno != regno)
4877 return XTENSA_UNDEFINED;
4880 return XTENSA_UNDEFINED;
4882 /* Next instruction should be an CALLXn with operand 0 == regno. */
4883 offset += xtensa_format_length (isa, fmt);
4884 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4885 fmt = xtensa_format_decode (isa, insnbuf);
4886 if (fmt == XTENSA_UNDEFINED
4887 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4888 return XTENSA_UNDEFINED;
4889 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4890 if (opcode == XTENSA_UNDEFINED
4891 || !is_indirect_call_opcode (opcode))
4892 return XTENSA_UNDEFINED;
4894 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4895 fmt, 0, slotbuf, &call_regno)
4896 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4898 return XTENSA_UNDEFINED;
4900 if (call_regno != regno)
4901 return XTENSA_UNDEFINED;
4907 /* Data structures used during relaxation. */
4909 /* r_reloc: relocation values. */
4911 /* Through the relaxation process, we need to keep track of the values
4912 that will result from evaluating relocations. The standard ELF
4913 relocation structure is not sufficient for this purpose because we're
4914 operating on multiple input files at once, so we need to know which
4915 input file a relocation refers to. The r_reloc structure thus
4916 records both the input file (bfd) and ELF relocation.
4918 For efficiency, an r_reloc also contains a "target_offset" field to
4919 cache the target-section-relative offset value that is represented by
4922 The r_reloc also contains a virtual offset that allows multiple
4923 inserted literals to be placed at the same "address" with
4924 different offsets. */
4926 typedef struct r_reloc_struct r_reloc;
4928 struct r_reloc_struct
4931 Elf_Internal_Rela rela;
4932 bfd_vma target_offset;
4933 bfd_vma virtual_offset;
4937 /* The r_reloc structure is included by value in literal_value, but not
4938 every literal_value has an associated relocation -- some are simple
4939 constants. In such cases, we set all the fields in the r_reloc
4940 struct to zero. The r_reloc_is_const function should be used to
4941 detect this case. */
4944 r_reloc_is_const (const r_reloc *r_rel)
4946 return (r_rel->abfd == NULL);
4951 r_reloc_get_target_offset (const r_reloc *r_rel)
4953 bfd_vma target_offset;
4954 unsigned long r_symndx;
4956 BFD_ASSERT (!r_reloc_is_const (r_rel));
4957 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4958 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4959 return (target_offset + r_rel->rela.r_addend);
4963 static struct elf_link_hash_entry *
4964 r_reloc_get_hash_entry (const r_reloc *r_rel)
4966 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4967 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4972 r_reloc_get_section (const r_reloc *r_rel)
4974 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4975 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4980 r_reloc_is_defined (const r_reloc *r_rel)
4986 sec = r_reloc_get_section (r_rel);
4987 if (sec == bfd_abs_section_ptr
4988 || sec == bfd_com_section_ptr
4989 || sec == bfd_und_section_ptr)
4996 r_reloc_init (r_reloc *r_rel,
4998 Elf_Internal_Rela *irel,
5000 bfd_size_type content_length)
5003 reloc_howto_type *howto;
5007 r_rel->rela = *irel;
5009 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
5010 r_rel->virtual_offset = 0;
5011 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
5012 howto = &elf_howto_table[r_type];
5013 if (howto->partial_inplace)
5015 bfd_vma inplace_val;
5016 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5018 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5019 r_rel->target_offset += inplace_val;
5023 memset (r_rel, 0, sizeof (r_reloc));
5030 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5032 if (r_reloc_is_defined (r_rel))
5034 asection *sec = r_reloc_get_section (r_rel);
5035 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5037 else if (r_reloc_get_hash_entry (r_rel))
5038 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5040 fprintf (fp, " ?? + ");
5042 fprintf_vma (fp, r_rel->target_offset);
5043 if (r_rel->virtual_offset)
5045 fprintf (fp, " + ");
5046 fprintf_vma (fp, r_rel->virtual_offset);
5055 /* source_reloc: relocations that reference literals. */
5057 /* To determine whether literals can be coalesced, we need to first
5058 record all the relocations that reference the literals. The
5059 source_reloc structure below is used for this purpose. The
5060 source_reloc entries are kept in a per-literal-section array, sorted
5061 by offset within the literal section (i.e., target offset).
5063 The source_sec and r_rel.rela.r_offset fields identify the source of
5064 the relocation. The r_rel field records the relocation value, i.e.,
5065 the offset of the literal being referenced. The opnd field is needed
5066 to determine the range of the immediate field to which the relocation
5067 applies, so we can determine whether another literal with the same
5068 value is within range. The is_null field is true when the relocation
5069 is being removed (e.g., when an L32R is being removed due to a CALLX
5070 that is converted to a direct CALL). */
5072 typedef struct source_reloc_struct source_reloc;
5074 struct source_reloc_struct
5076 asection *source_sec;
5078 xtensa_opcode opcode;
5080 bfd_boolean is_null;
5081 bfd_boolean is_abs_literal;
5086 init_source_reloc (source_reloc *reloc,
5087 asection *source_sec,
5088 const r_reloc *r_rel,
5089 xtensa_opcode opcode,
5091 bfd_boolean is_abs_literal)
5093 reloc->source_sec = source_sec;
5094 reloc->r_rel = *r_rel;
5095 reloc->opcode = opcode;
5097 reloc->is_null = FALSE;
5098 reloc->is_abs_literal = is_abs_literal;
5102 /* Find the source_reloc for a particular source offset and relocation
5103 type. Note that the array is sorted by _target_ offset, so this is
5104 just a linear search. */
5106 static source_reloc *
5107 find_source_reloc (source_reloc *src_relocs,
5110 Elf_Internal_Rela *irel)
5114 for (i = 0; i < src_count; i++)
5116 if (src_relocs[i].source_sec == sec
5117 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5118 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5119 == ELF32_R_TYPE (irel->r_info)))
5120 return &src_relocs[i];
5128 source_reloc_compare (const void *ap, const void *bp)
5130 const source_reloc *a = (const source_reloc *) ap;
5131 const source_reloc *b = (const source_reloc *) bp;
5133 if (a->r_rel.target_offset != b->r_rel.target_offset)
5134 return (a->r_rel.target_offset - b->r_rel.target_offset);
5136 /* We don't need to sort on these criteria for correctness,
5137 but enforcing a more strict ordering prevents unstable qsort
5138 from behaving differently with different implementations.
5139 Without the code below we get correct but different results
5140 on Solaris 2.7 and 2.8. We would like to always produce the
5141 same results no matter the host. */
5143 if ((!a->is_null) - (!b->is_null))
5144 return ((!a->is_null) - (!b->is_null));
5145 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5149 /* Literal values and value hash tables. */
5151 /* Literals with the same value can be coalesced. The literal_value
5152 structure records the value of a literal: the "r_rel" field holds the
5153 information from the relocation on the literal (if there is one) and
5154 the "value" field holds the contents of the literal word itself.
5156 The value_map structure records a literal value along with the
5157 location of a literal holding that value. The value_map hash table
5158 is indexed by the literal value, so that we can quickly check if a
5159 particular literal value has been seen before and is thus a candidate
5162 typedef struct literal_value_struct literal_value;
5163 typedef struct value_map_struct value_map;
5164 typedef struct value_map_hash_table_struct value_map_hash_table;
5166 struct literal_value_struct
5169 unsigned long value;
5170 bfd_boolean is_abs_literal;
5173 struct value_map_struct
5175 literal_value val; /* The literal value. */
5176 r_reloc loc; /* Location of the literal. */
5180 struct value_map_hash_table_struct
5182 unsigned bucket_count;
5183 value_map **buckets;
5185 bfd_boolean has_last_loc;
5191 init_literal_value (literal_value *lit,
5192 const r_reloc *r_rel,
5193 unsigned long value,
5194 bfd_boolean is_abs_literal)
5196 lit->r_rel = *r_rel;
5198 lit->is_abs_literal = is_abs_literal;
5203 literal_value_equal (const literal_value *src1,
5204 const literal_value *src2,
5205 bfd_boolean final_static_link)
5207 struct elf_link_hash_entry *h1, *h2;
5209 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5212 if (r_reloc_is_const (&src1->r_rel))
5213 return (src1->value == src2->value);
5215 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5216 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5219 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5222 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5225 if (src1->value != src2->value)
5228 /* Now check for the same section (if defined) or the same elf_hash
5229 (if undefined or weak). */
5230 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5231 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5232 if (r_reloc_is_defined (&src1->r_rel)
5233 && (final_static_link
5234 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5235 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5237 if (r_reloc_get_section (&src1->r_rel)
5238 != r_reloc_get_section (&src2->r_rel))
5243 /* Require that the hash entries (i.e., symbols) be identical. */
5244 if (h1 != h2 || h1 == 0)
5248 if (src1->is_abs_literal != src2->is_abs_literal)
5255 /* Must be power of 2. */
5256 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5258 static value_map_hash_table *
5259 value_map_hash_table_init (void)
5261 value_map_hash_table *values;
5263 values = (value_map_hash_table *)
5264 bfd_zmalloc (sizeof (value_map_hash_table));
5265 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5267 values->buckets = (value_map **)
5268 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5269 if (values->buckets == NULL)
5274 values->has_last_loc = FALSE;
5281 value_map_hash_table_delete (value_map_hash_table *table)
5283 free (table->buckets);
5289 hash_bfd_vma (bfd_vma val)
5291 return (val >> 2) + (val >> 10);
5296 literal_value_hash (const literal_value *src)
5300 hash_val = hash_bfd_vma (src->value);
5301 if (!r_reloc_is_const (&src->r_rel))
5305 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5306 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5307 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5309 /* Now check for the same section and the same elf_hash. */
5310 if (r_reloc_is_defined (&src->r_rel))
5311 sec_or_hash = r_reloc_get_section (&src->r_rel);
5313 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5314 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5320 /* Check if the specified literal_value has been seen before. */
5323 value_map_get_cached_value (value_map_hash_table *map,
5324 const literal_value *val,
5325 bfd_boolean final_static_link)
5331 idx = literal_value_hash (val);
5332 idx = idx & (map->bucket_count - 1);
5333 bucket = map->buckets[idx];
5334 for (map_e = bucket; map_e; map_e = map_e->next)
5336 if (literal_value_equal (&map_e->val, val, final_static_link))
5343 /* Record a new literal value. It is illegal to call this if VALUE
5344 already has an entry here. */
5347 add_value_map (value_map_hash_table *map,
5348 const literal_value *val,
5350 bfd_boolean final_static_link)
5352 value_map **bucket_p;
5355 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5358 bfd_set_error (bfd_error_no_memory);
5362 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5366 idx = literal_value_hash (val);
5367 idx = idx & (map->bucket_count - 1);
5368 bucket_p = &map->buckets[idx];
5370 val_e->next = *bucket_p;
5373 /* FIXME: Consider resizing the hash table if we get too many entries. */
5379 /* Lists of text actions (ta_) for narrowing, widening, longcall
5380 conversion, space fill, code & literal removal, etc. */
5382 /* The following text actions are generated:
5384 "ta_remove_insn" remove an instruction or instructions
5385 "ta_remove_longcall" convert longcall to call
5386 "ta_convert_longcall" convert longcall to nop/call
5387 "ta_narrow_insn" narrow a wide instruction
5388 "ta_widen" widen a narrow instruction
5389 "ta_fill" add fill or remove fill
5390 removed < 0 is a fill; branches to the fill address will be
5391 changed to address + fill size (e.g., address - removed)
5392 removed >= 0 branches to the fill address will stay unchanged
5393 "ta_remove_literal" remove a literal; this action is
5394 indicated when a literal is removed
5396 "ta_add_literal" insert a new literal; this action is
5397 indicated when a literal has been moved.
5398 It may use a virtual_offset because
5399 multiple literals can be placed at the
5402 For each of these text actions, we also record the number of bytes
5403 removed by performing the text action. In the case of a "ta_widen"
5404 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5406 typedef struct text_action_struct text_action;
5407 typedef struct text_action_list_struct text_action_list;
5408 typedef enum text_action_enum_t text_action_t;
5410 enum text_action_enum_t
5413 ta_remove_insn, /* removed = -size */
5414 ta_remove_longcall, /* removed = -size */
5415 ta_convert_longcall, /* removed = 0 */
5416 ta_narrow_insn, /* removed = -1 */
5417 ta_widen_insn, /* removed = +1 */
5418 ta_fill, /* removed = +size */
5424 /* Structure for a text action record. */
5425 struct text_action_struct
5427 text_action_t action;
5428 asection *sec; /* Optional */
5430 bfd_vma virtual_offset; /* Zero except for adding literals. */
5432 literal_value value; /* Only valid when adding literals. */
5435 struct removal_by_action_entry_struct
5440 int eq_removed_before_fill;
5442 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5444 struct removal_by_action_map_struct
5447 removal_by_action_entry *entry;
5449 typedef struct removal_by_action_map_struct removal_by_action_map;
5452 /* List of all of the actions taken on a text section. */
5453 struct text_action_list_struct
5457 removal_by_action_map map;
5461 static text_action *
5462 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5466 /* It is not necessary to fill at the end of a section. */
5467 if (sec->size == offset)
5473 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5475 return (text_action *)node->value;
5481 compute_removed_action_diff (const text_action *ta,
5485 int removable_space)
5488 int current_removed = 0;
5491 current_removed = ta->removed_bytes;
5493 BFD_ASSERT (ta == NULL || ta->offset == offset);
5494 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5496 /* It is not necessary to fill at the end of a section. Clean this up. */
5497 if (sec->size == offset)
5498 new_removed = removable_space - 0;
5502 int added = -removed - current_removed;
5503 /* Ignore multiples of the section alignment. */
5504 added = ((1 << sec->alignment_power) - 1) & added;
5505 new_removed = (-added);
5507 /* Modify for removable. */
5508 space = removable_space - new_removed;
5509 new_removed = (removable_space
5510 - (((1 << sec->alignment_power) - 1) & space));
5512 return (new_removed - current_removed);
5517 adjust_fill_action (text_action *ta, int fill_diff)
5519 ta->removed_bytes += fill_diff;
5524 text_action_compare (splay_tree_key a, splay_tree_key b)
5526 text_action *pa = (text_action *)a;
5527 text_action *pb = (text_action *)b;
5528 static const int action_priority[] =
5532 [ta_convert_longcall] = 2,
5533 [ta_narrow_insn] = 3,
5534 [ta_remove_insn] = 4,
5535 [ta_remove_longcall] = 5,
5536 [ta_remove_literal] = 6,
5537 [ta_widen_insn] = 7,
5538 [ta_add_literal] = 8,
5541 if (pa->offset == pb->offset)
5543 if (pa->action == pb->action)
5545 return action_priority[pa->action] - action_priority[pb->action];
5548 return pa->offset < pb->offset ? -1 : 1;
5551 static text_action *
5552 action_first (text_action_list *action_list)
5554 splay_tree_node node = splay_tree_min (action_list->tree);
5555 return node ? (text_action *)node->value : NULL;
5558 static text_action *
5559 action_next (text_action_list *action_list, text_action *action)
5561 splay_tree_node node = splay_tree_successor (action_list->tree,
5562 (splay_tree_key)action);
5563 return node ? (text_action *)node->value : NULL;
5566 /* Add a modification action to the text. For the case of adding or
5567 removing space, modify any current fill and assume that
5568 "unreachable_space" bytes can be freely contracted. Note that a
5569 negative removed value is a fill. */
5572 text_action_add (text_action_list *l,
5573 text_action_t action,
5581 /* It is not necessary to fill at the end of a section. */
5582 if (action == ta_fill && sec->size == offset)
5585 /* It is not necessary to fill 0 bytes. */
5586 if (action == ta_fill && removed == 0)
5592 if (action == ta_fill)
5594 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5598 ta = (text_action *)node->value;
5599 ta->removed_bytes += removed;
5604 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5606 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5607 ta->action = action;
5609 ta->offset = offset;
5610 ta->removed_bytes = removed;
5611 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5617 text_action_add_literal (text_action_list *l,
5618 text_action_t action,
5620 const literal_value *value,
5624 asection *sec = r_reloc_get_section (loc);
5625 bfd_vma offset = loc->target_offset;
5626 bfd_vma virtual_offset = loc->virtual_offset;
5628 BFD_ASSERT (action == ta_add_literal);
5630 /* Create a new record and fill it up. */
5631 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5632 ta->action = action;
5634 ta->offset = offset;
5635 ta->virtual_offset = virtual_offset;
5637 ta->removed_bytes = removed;
5639 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5640 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5645 /* Find the total offset adjustment for the relaxations specified by
5646 text_actions, beginning from a particular starting action. This is
5647 typically used from offset_with_removed_text to search an entire list of
5648 actions, but it may also be called directly when adjusting adjacent offsets
5649 so that each search may begin where the previous one left off. */
5652 removed_by_actions (text_action_list *action_list,
5653 text_action **p_start_action,
5655 bfd_boolean before_fill)
5660 r = *p_start_action;
5663 splay_tree_node node = splay_tree_lookup (action_list->tree,
5665 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5670 if (r->offset > offset)
5673 if (r->offset == offset
5674 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5677 removed += r->removed_bytes;
5679 r = action_next (action_list, r);
5682 *p_start_action = r;
5688 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5690 text_action *r = action_first (action_list);
5692 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5697 action_list_count (text_action_list *action_list)
5699 return action_list->count;
5702 typedef struct map_action_fn_context_struct map_action_fn_context;
5703 struct map_action_fn_context_struct
5706 removal_by_action_map map;
5707 bfd_boolean eq_complete;
5711 map_action_fn (splay_tree_node node, void *p)
5713 map_action_fn_context *ctx = p;
5714 text_action *r = (text_action *)node->value;
5715 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5717 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5723 ++ctx->map.n_entries;
5724 ctx->eq_complete = FALSE;
5725 ientry->offset = r->offset;
5726 ientry->eq_removed_before_fill = ctx->removed;
5729 if (!ctx->eq_complete)
5731 if (r->action != ta_fill || r->removed_bytes >= 0)
5733 ientry->eq_removed = ctx->removed;
5734 ctx->eq_complete = TRUE;
5737 ientry->eq_removed = ctx->removed + r->removed_bytes;
5740 ctx->removed += r->removed_bytes;
5741 ientry->removed = ctx->removed;
5746 map_removal_by_action (text_action_list *action_list)
5748 map_action_fn_context ctx;
5751 ctx.map.n_entries = 0;
5752 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5753 sizeof (removal_by_action_entry));
5754 ctx.eq_complete = FALSE;
5756 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5757 action_list->map = ctx.map;
5761 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5762 bfd_boolean before_fill)
5766 if (!action_list->map.entry)
5767 map_removal_by_action (action_list);
5769 if (!action_list->map.n_entries)
5773 b = action_list->map.n_entries;
5777 unsigned c = (a + b) / 2;
5779 if (action_list->map.entry[c].offset <= offset)
5785 if (action_list->map.entry[a].offset < offset)
5787 return action_list->map.entry[a].removed;
5789 else if (action_list->map.entry[a].offset == offset)
5791 return before_fill ?
5792 action_list->map.entry[a].eq_removed_before_fill :
5793 action_list->map.entry[a].eq_removed;
5802 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5804 int removed = removed_by_actions_map (action_list, offset, FALSE);
5805 return offset - removed;
5809 /* The find_insn_action routine will only find non-fill actions. */
5811 static text_action *
5812 find_insn_action (text_action_list *action_list, bfd_vma offset)
5814 static const text_action_t action[] =
5816 ta_convert_longcall,
5826 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5828 splay_tree_node node;
5830 a.action = action[i];
5831 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5833 return (text_action *)node->value;
5842 print_action (FILE *fp, text_action *r)
5844 const char *t = "unknown";
5847 case ta_remove_insn:
5848 t = "remove_insn"; break;
5849 case ta_remove_longcall:
5850 t = "remove_longcall"; break;
5851 case ta_convert_longcall:
5852 t = "convert_longcall"; break;
5853 case ta_narrow_insn:
5854 t = "narrow_insn"; break;
5856 t = "widen_insn"; break;
5861 case ta_remove_literal:
5862 t = "remove_literal"; break;
5863 case ta_add_literal:
5864 t = "add_literal"; break;
5867 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5868 r->sec->owner->filename,
5869 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5873 print_action_list_fn (splay_tree_node node, void *p)
5875 text_action *r = (text_action *)node->value;
5877 print_action (p, r);
5882 print_action_list (FILE *fp, text_action_list *action_list)
5884 fprintf (fp, "Text Action\n");
5885 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5891 /* Lists of literals being coalesced or removed. */
5893 /* In the usual case, the literal identified by "from" is being
5894 coalesced with another literal identified by "to". If the literal is
5895 unused and is being removed altogether, "to.abfd" will be NULL.
5896 The removed_literal entries are kept on a per-section list, sorted
5897 by the "from" offset field. */
5899 typedef struct removed_literal_struct removed_literal;
5900 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5901 typedef struct removed_literal_list_struct removed_literal_list;
5903 struct removed_literal_struct
5907 removed_literal *next;
5910 struct removed_literal_map_entry_struct
5913 removed_literal *literal;
5916 struct removed_literal_list_struct
5918 removed_literal *head;
5919 removed_literal *tail;
5922 removed_literal_map_entry *map;
5926 /* Record that the literal at "from" is being removed. If "to" is not
5927 NULL, the "from" literal is being coalesced with the "to" literal. */
5930 add_removed_literal (removed_literal_list *removed_list,
5931 const r_reloc *from,
5934 removed_literal *r, *new_r, *next_r;
5936 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5938 new_r->from = *from;
5942 new_r->to.abfd = NULL;
5945 r = removed_list->head;
5948 removed_list->head = new_r;
5949 removed_list->tail = new_r;
5951 /* Special check for common case of append. */
5952 else if (removed_list->tail->from.target_offset < from->target_offset)
5954 removed_list->tail->next = new_r;
5955 removed_list->tail = new_r;
5959 while (r->from.target_offset < from->target_offset && r->next)
5965 new_r->next = next_r;
5967 removed_list->tail = new_r;
5972 map_removed_literal (removed_literal_list *removed_list)
5976 removed_literal_map_entry *map = NULL;
5977 removed_literal *r = removed_list->head;
5979 for (i = 0; r; ++i, r = r->next)
5983 n_map = (n_map * 2) + 2;
5984 map = bfd_realloc (map, n_map * sizeof (*map));
5986 map[i].addr = r->from.target_offset;
5989 removed_list->map = map;
5990 removed_list->n_map = i;
5994 removed_literal_compare (const void *a, const void *b)
5996 const bfd_vma *key = a;
5997 const removed_literal_map_entry *memb = b;
5999 if (*key == memb->addr)
6002 return *key < memb->addr ? -1 : 1;
6005 /* Check if the list of removed literals contains an entry for the
6006 given address. Return the entry if found. */
6008 static removed_literal *
6009 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
6011 removed_literal_map_entry *p;
6012 removed_literal *r = NULL;
6014 if (removed_list->map == NULL)
6015 map_removed_literal (removed_list);
6017 if (removed_list->map != NULL)
6019 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6020 sizeof (*removed_list->map), removed_literal_compare);
6023 while (p != removed_list->map && (p - 1)->addr == addr)
6035 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6038 r = removed_list->head;
6040 fprintf (fp, "Removed Literals\n");
6041 for (; r != NULL; r = r->next)
6043 print_r_reloc (fp, &r->from);
6044 fprintf (fp, " => ");
6045 if (r->to.abfd == NULL)
6046 fprintf (fp, "REMOVED");
6048 print_r_reloc (fp, &r->to);
6056 /* Per-section data for relaxation. */
6058 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6060 struct xtensa_relax_info_struct
6062 bfd_boolean is_relaxable_literal_section;
6063 bfd_boolean is_relaxable_asm_section;
6064 int visited; /* Number of times visited. */
6066 source_reloc *src_relocs; /* Array[src_count]. */
6068 int src_next; /* Next src_relocs entry to assign. */
6070 removed_literal_list removed_list;
6071 text_action_list action_list;
6073 reloc_bfd_fix *fix_list;
6074 reloc_bfd_fix *fix_array;
6075 unsigned fix_array_count;
6077 /* Support for expanding the reloc array that is stored
6078 in the section structure. If the relocations have been
6079 reallocated, the newly allocated relocations will be referenced
6080 here along with the actual size allocated. The relocation
6081 count will always be found in the section structure. */
6082 Elf_Internal_Rela *allocated_relocs;
6083 unsigned relocs_count;
6084 unsigned allocated_relocs_count;
6087 struct elf_xtensa_section_data
6089 struct bfd_elf_section_data elf;
6090 xtensa_relax_info relax_info;
6095 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6097 if (!sec->used_by_bfd)
6099 struct elf_xtensa_section_data *sdata;
6100 size_t amt = sizeof (*sdata);
6102 sdata = bfd_zalloc (abfd, amt);
6105 sec->used_by_bfd = sdata;
6108 return _bfd_elf_new_section_hook (abfd, sec);
6112 static xtensa_relax_info *
6113 get_xtensa_relax_info (asection *sec)
6115 struct elf_xtensa_section_data *section_data;
6117 /* No info available if no section or if it is an output section. */
6118 if (!sec || sec == sec->output_section)
6121 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6122 return §ion_data->relax_info;
6127 init_xtensa_relax_info (asection *sec)
6129 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6131 relax_info->is_relaxable_literal_section = FALSE;
6132 relax_info->is_relaxable_asm_section = FALSE;
6133 relax_info->visited = 0;
6135 relax_info->src_relocs = NULL;
6136 relax_info->src_count = 0;
6137 relax_info->src_next = 0;
6139 relax_info->removed_list.head = NULL;
6140 relax_info->removed_list.tail = NULL;
6142 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6144 relax_info->action_list.map.n_entries = 0;
6145 relax_info->action_list.map.entry = NULL;
6147 relax_info->fix_list = NULL;
6148 relax_info->fix_array = NULL;
6149 relax_info->fix_array_count = 0;
6151 relax_info->allocated_relocs = NULL;
6152 relax_info->relocs_count = 0;
6153 relax_info->allocated_relocs_count = 0;
6157 /* Coalescing literals may require a relocation to refer to a section in
6158 a different input file, but the standard relocation information
6159 cannot express that. Instead, the reloc_bfd_fix structures are used
6160 to "fix" the relocations that refer to sections in other input files.
6161 These structures are kept on per-section lists. The "src_type" field
6162 records the relocation type in case there are multiple relocations on
6163 the same location. FIXME: This is ugly; an alternative might be to
6164 add new symbols with the "owner" field to some other input file. */
6166 struct reloc_bfd_fix_struct
6170 unsigned src_type; /* Relocation type. */
6172 asection *target_sec;
6173 bfd_vma target_offset;
6174 bfd_boolean translated;
6176 reloc_bfd_fix *next;
6180 static reloc_bfd_fix *
6181 reloc_bfd_fix_init (asection *src_sec,
6184 asection *target_sec,
6185 bfd_vma target_offset,
6186 bfd_boolean translated)
6190 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6191 fix->src_sec = src_sec;
6192 fix->src_offset = src_offset;
6193 fix->src_type = src_type;
6194 fix->target_sec = target_sec;
6195 fix->target_offset = target_offset;
6196 fix->translated = translated;
6203 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6205 xtensa_relax_info *relax_info;
6207 relax_info = get_xtensa_relax_info (src_sec);
6208 fix->next = relax_info->fix_list;
6209 relax_info->fix_list = fix;
6214 fix_compare (const void *ap, const void *bp)
6216 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6217 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6219 if (a->src_offset != b->src_offset)
6220 return (a->src_offset - b->src_offset);
6221 return (a->src_type - b->src_type);
6226 cache_fix_array (asection *sec)
6228 unsigned i, count = 0;
6230 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6232 if (relax_info == NULL)
6234 if (relax_info->fix_list == NULL)
6237 for (r = relax_info->fix_list; r != NULL; r = r->next)
6240 relax_info->fix_array =
6241 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6242 relax_info->fix_array_count = count;
6244 r = relax_info->fix_list;
6245 for (i = 0; i < count; i++, r = r->next)
6247 relax_info->fix_array[count - 1 - i] = *r;
6248 relax_info->fix_array[count - 1 - i].next = NULL;
6251 qsort (relax_info->fix_array, relax_info->fix_array_count,
6252 sizeof (reloc_bfd_fix), fix_compare);
6256 static reloc_bfd_fix *
6257 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6259 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6263 if (relax_info == NULL)
6265 if (relax_info->fix_list == NULL)
6268 if (relax_info->fix_array == NULL)
6269 cache_fix_array (sec);
6271 key.src_offset = offset;
6272 key.src_type = type;
6273 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6274 sizeof (reloc_bfd_fix), fix_compare);
6279 /* Section caching. */
6281 typedef struct section_cache_struct section_cache_t;
6283 struct section_cache_struct
6287 bfd_byte *contents; /* Cache of the section contents. */
6288 bfd_size_type content_length;
6290 property_table_entry *ptbl; /* Cache of the section property table. */
6293 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6294 unsigned reloc_count;
6299 init_section_cache (section_cache_t *sec_cache)
6301 memset (sec_cache, 0, sizeof (*sec_cache));
6306 free_section_cache (section_cache_t *sec_cache)
6310 release_contents (sec_cache->sec, sec_cache->contents);
6311 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6312 free (sec_cache->ptbl);
6318 section_cache_section (section_cache_t *sec_cache,
6320 struct bfd_link_info *link_info)
6323 property_table_entry *prop_table = NULL;
6325 bfd_byte *contents = NULL;
6326 Elf_Internal_Rela *internal_relocs = NULL;
6327 bfd_size_type sec_size;
6331 if (sec == sec_cache->sec)
6335 sec_size = bfd_get_section_limit (abfd, sec);
6337 /* Get the contents. */
6338 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6339 if (contents == NULL && sec_size != 0)
6342 /* Get the relocations. */
6343 internal_relocs = retrieve_internal_relocs (abfd, sec,
6344 link_info->keep_memory);
6346 /* Get the entry table. */
6347 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6348 XTENSA_PROP_SEC_NAME, FALSE);
6352 /* Fill in the new section cache. */
6353 free_section_cache (sec_cache);
6354 init_section_cache (sec_cache);
6356 sec_cache->sec = sec;
6357 sec_cache->contents = contents;
6358 sec_cache->content_length = sec_size;
6359 sec_cache->relocs = internal_relocs;
6360 sec_cache->reloc_count = sec->reloc_count;
6361 sec_cache->pte_count = ptblsize;
6362 sec_cache->ptbl = prop_table;
6367 release_contents (sec, contents);
6368 release_internal_relocs (sec, internal_relocs);
6374 /* Extended basic blocks. */
6376 /* An ebb_struct represents an Extended Basic Block. Within this
6377 range, we guarantee that all instructions are decodable, the
6378 property table entries are contiguous, and no property table
6379 specifies a segment that cannot have instructions moved. This
6380 structure contains caches of the contents, property table and
6381 relocations for the specified section for easy use. The range is
6382 specified by ranges of indices for the byte offset, property table
6383 offsets and relocation offsets. These must be consistent. */
6385 typedef struct ebb_struct ebb_t;
6391 bfd_byte *contents; /* Cache of the section contents. */
6392 bfd_size_type content_length;
6394 property_table_entry *ptbl; /* Cache of the section property table. */
6397 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6398 unsigned reloc_count;
6400 bfd_vma start_offset; /* Offset in section. */
6401 unsigned start_ptbl_idx; /* Offset in the property table. */
6402 unsigned start_reloc_idx; /* Offset in the relocations. */
6405 unsigned end_ptbl_idx;
6406 unsigned end_reloc_idx;
6408 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6410 /* The unreachable property table at the end of this set of blocks;
6411 NULL if the end is not an unreachable block. */
6412 property_table_entry *ends_unreachable;
6416 enum ebb_target_enum
6419 EBB_DESIRE_TGT_ALIGN,
6420 EBB_REQUIRE_TGT_ALIGN,
6421 EBB_REQUIRE_LOOP_ALIGN,
6426 /* proposed_action_struct is similar to the text_action_struct except
6427 that is represents a potential transformation, not one that will
6428 occur. We build a list of these for an extended basic block
6429 and use them to compute the actual actions desired. We must be
6430 careful that the entire set of actual actions we perform do not
6431 break any relocations that would fit if the actions were not
6434 typedef struct proposed_action_struct proposed_action;
6436 struct proposed_action_struct
6438 enum ebb_target_enum align_type; /* for the target alignment */
6439 bfd_vma alignment_pow;
6440 text_action_t action;
6443 bfd_boolean do_action; /* If false, then we will not perform the action. */
6447 /* The ebb_constraint_struct keeps a set of proposed actions for an
6448 extended basic block. */
6450 typedef struct ebb_constraint_struct ebb_constraint;
6452 struct ebb_constraint_struct
6455 bfd_boolean start_movable;
6457 /* Bytes of extra space at the beginning if movable. */
6458 int start_extra_space;
6460 enum ebb_target_enum start_align;
6462 bfd_boolean end_movable;
6464 /* Bytes of extra space at the end if movable. */
6465 int end_extra_space;
6467 unsigned action_count;
6468 unsigned action_allocated;
6470 /* Array of proposed actions. */
6471 proposed_action *actions;
6473 /* Action alignments -- one for each proposed action. */
6474 enum ebb_target_enum *action_aligns;
6479 init_ebb_constraint (ebb_constraint *c)
6481 memset (c, 0, sizeof (ebb_constraint));
6486 free_ebb_constraint (ebb_constraint *c)
6493 init_ebb (ebb_t *ebb,
6496 bfd_size_type content_length,
6497 property_table_entry *prop_table,
6499 Elf_Internal_Rela *internal_relocs,
6500 unsigned reloc_count)
6502 memset (ebb, 0, sizeof (ebb_t));
6504 ebb->contents = contents;
6505 ebb->content_length = content_length;
6506 ebb->ptbl = prop_table;
6507 ebb->pte_count = ptblsize;
6508 ebb->relocs = internal_relocs;
6509 ebb->reloc_count = reloc_count;
6510 ebb->start_offset = 0;
6511 ebb->end_offset = ebb->content_length - 1;
6512 ebb->start_ptbl_idx = 0;
6513 ebb->end_ptbl_idx = ptblsize;
6514 ebb->start_reloc_idx = 0;
6515 ebb->end_reloc_idx = reloc_count;
6519 /* Extend the ebb to all decodable contiguous sections. The algorithm
6520 for building a basic block around an instruction is to push it
6521 forward until we hit the end of a section, an unreachable block or
6522 a block that cannot be transformed. Then we push it backwards
6523 searching for similar conditions. */
6525 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6526 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6527 static bfd_size_type insn_block_decodable_len
6528 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6531 extend_ebb_bounds (ebb_t *ebb)
6533 if (!extend_ebb_bounds_forward (ebb))
6535 if (!extend_ebb_bounds_backward (ebb))
6542 extend_ebb_bounds_forward (ebb_t *ebb)
6544 property_table_entry *the_entry, *new_entry;
6546 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6548 /* Stop when (1) we cannot decode an instruction, (2) we are at
6549 the end of the property tables, (3) we hit a non-contiguous property
6550 table entry, (4) we hit a NO_TRANSFORM region. */
6555 bfd_size_type insn_block_len;
6557 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6559 insn_block_decodable_len (ebb->contents, ebb->content_length,
6561 entry_end - ebb->end_offset);
6562 if (insn_block_len != (entry_end - ebb->end_offset))
6565 /* xgettext:c-format */
6566 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6567 "possible configuration mismatch"),
6568 ebb->sec->owner, ebb->sec,
6569 (uint64_t) (ebb->end_offset + insn_block_len));
6572 ebb->end_offset += insn_block_len;
6574 if (ebb->end_offset == ebb->sec->size)
6575 ebb->ends_section = TRUE;
6577 /* Update the reloc counter. */
6578 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6579 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6582 ebb->end_reloc_idx++;
6585 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6588 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6589 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6590 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6591 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6594 if (the_entry->address + the_entry->size != new_entry->address)
6597 the_entry = new_entry;
6598 ebb->end_ptbl_idx++;
6601 /* Quick check for an unreachable or end of file just at the end. */
6602 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6604 if (ebb->end_offset == ebb->content_length)
6605 ebb->ends_section = TRUE;
6609 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6610 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6611 && the_entry->address + the_entry->size == new_entry->address)
6612 ebb->ends_unreachable = new_entry;
6615 /* Any other ending requires exact alignment. */
6621 extend_ebb_bounds_backward (ebb_t *ebb)
6623 property_table_entry *the_entry, *new_entry;
6625 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6627 /* Stop when (1) we cannot decode the instructions in the current entry.
6628 (2) we are at the beginning of the property tables, (3) we hit a
6629 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6633 bfd_vma block_begin;
6634 bfd_size_type insn_block_len;
6636 block_begin = the_entry->address - ebb->sec->vma;
6638 insn_block_decodable_len (ebb->contents, ebb->content_length,
6640 ebb->start_offset - block_begin);
6641 if (insn_block_len != ebb->start_offset - block_begin)
6644 /* xgettext:c-format */
6645 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6646 "possible configuration mismatch"),
6647 ebb->sec->owner, ebb->sec,
6648 (uint64_t) (ebb->end_offset + insn_block_len));
6651 ebb->start_offset -= insn_block_len;
6653 /* Update the reloc counter. */
6654 while (ebb->start_reloc_idx > 0
6655 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6656 >= ebb->start_offset))
6658 ebb->start_reloc_idx--;
6661 if (ebb->start_ptbl_idx == 0)
6664 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6665 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6666 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6667 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6669 if (new_entry->address + new_entry->size != the_entry->address)
6672 the_entry = new_entry;
6673 ebb->start_ptbl_idx--;
6679 static bfd_size_type
6680 insn_block_decodable_len (bfd_byte *contents,
6681 bfd_size_type content_len,
6682 bfd_vma block_offset,
6683 bfd_size_type block_len)
6685 bfd_vma offset = block_offset;
6687 while (offset < block_offset + block_len)
6689 bfd_size_type insn_len = 0;
6691 insn_len = insn_decode_len (contents, content_len, offset);
6693 return (offset - block_offset);
6696 return (offset - block_offset);
6701 ebb_propose_action (ebb_constraint *c,
6702 enum ebb_target_enum align_type,
6703 bfd_vma alignment_pow,
6704 text_action_t action,
6707 bfd_boolean do_action)
6709 proposed_action *act;
6711 if (c->action_allocated <= c->action_count)
6713 unsigned new_allocated, i;
6714 proposed_action *new_actions;
6716 new_allocated = (c->action_count + 2) * 2;
6717 new_actions = (proposed_action *)
6718 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6720 for (i = 0; i < c->action_count; i++)
6721 new_actions[i] = c->actions[i];
6723 c->actions = new_actions;
6724 c->action_allocated = new_allocated;
6727 act = &c->actions[c->action_count];
6728 act->align_type = align_type;
6729 act->alignment_pow = alignment_pow;
6730 act->action = action;
6731 act->offset = offset;
6732 act->removed_bytes = removed_bytes;
6733 act->do_action = do_action;
6739 /* Access to internal relocations, section contents and symbols. */
6741 /* During relaxation, we need to modify relocations, section contents,
6742 and symbol definitions, and we need to keep the original values from
6743 being reloaded from the input files, i.e., we need to "pin" the
6744 modified values in memory. We also want to continue to observe the
6745 setting of the "keep-memory" flag. The following functions wrap the
6746 standard BFD functions to take care of this for us. */
6748 static Elf_Internal_Rela *
6749 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6751 Elf_Internal_Rela *internal_relocs;
6753 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6756 internal_relocs = elf_section_data (sec)->relocs;
6757 if (internal_relocs == NULL)
6758 internal_relocs = (_bfd_elf_link_read_relocs
6759 (abfd, sec, NULL, NULL, keep_memory));
6760 return internal_relocs;
6765 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6767 elf_section_data (sec)->relocs = internal_relocs;
6772 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6774 if (elf_section_data (sec)->relocs != internal_relocs)
6775 free (internal_relocs);
6780 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6783 bfd_size_type sec_size;
6785 sec_size = bfd_get_section_limit (abfd, sec);
6786 contents = elf_section_data (sec)->this_hdr.contents;
6788 if (contents == NULL && sec_size != 0)
6790 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6796 elf_section_data (sec)->this_hdr.contents = contents;
6803 pin_contents (asection *sec, bfd_byte *contents)
6805 elf_section_data (sec)->this_hdr.contents = contents;
6810 release_contents (asection *sec, bfd_byte *contents)
6812 if (elf_section_data (sec)->this_hdr.contents != contents)
6817 static Elf_Internal_Sym *
6818 retrieve_local_syms (bfd *input_bfd)
6820 Elf_Internal_Shdr *symtab_hdr;
6821 Elf_Internal_Sym *isymbuf;
6824 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6825 locsymcount = symtab_hdr->sh_info;
6827 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6828 if (isymbuf == NULL && locsymcount != 0)
6829 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6832 /* Save the symbols for this input file so they won't be read again. */
6833 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6834 symtab_hdr->contents = (unsigned char *) isymbuf;
6840 /* Code for link-time relaxation. */
6842 /* Initialization for relaxation: */
6843 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6844 static bfd_boolean find_relaxable_sections
6845 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6846 static bfd_boolean collect_source_relocs
6847 (bfd *, asection *, struct bfd_link_info *);
6848 static bfd_boolean is_resolvable_asm_expansion
6849 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6851 static Elf_Internal_Rela *find_associated_l32r_irel
6852 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6853 static bfd_boolean compute_text_actions
6854 (bfd *, asection *, struct bfd_link_info *);
6855 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6856 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6857 typedef struct reloc_range_list_struct reloc_range_list;
6858 static bfd_boolean check_section_ebb_pcrels_fit
6859 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6860 reloc_range_list *, const ebb_constraint *,
6861 const xtensa_opcode *);
6862 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6863 static void text_action_add_proposed
6864 (text_action_list *, const ebb_constraint *, asection *);
6867 static bfd_boolean compute_removed_literals
6868 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6869 static Elf_Internal_Rela *get_irel_at_offset
6870 (asection *, Elf_Internal_Rela *, bfd_vma);
6871 static bfd_boolean is_removable_literal
6872 (const source_reloc *, int, const source_reloc *, int, asection *,
6873 property_table_entry *, int);
6874 static bfd_boolean remove_dead_literal
6875 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6876 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6877 static bfd_boolean identify_literal_placement
6878 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6879 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6880 source_reloc *, property_table_entry *, int, section_cache_t *,
6882 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6883 static bfd_boolean coalesce_shared_literal
6884 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6885 static bfd_boolean move_shared_literal
6886 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6887 int, const r_reloc *, const literal_value *, section_cache_t *);
6890 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6891 static bfd_boolean translate_section_fixes (asection *);
6892 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6893 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6894 static void shrink_dynamic_reloc_sections
6895 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6896 static bfd_boolean move_literal
6897 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6898 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6899 static bfd_boolean relax_property_section
6900 (bfd *, asection *, struct bfd_link_info *);
6903 static bfd_boolean relax_section_symbols (bfd *, asection *);
6907 elf_xtensa_relax_section (bfd *abfd,
6909 struct bfd_link_info *link_info,
6912 static value_map_hash_table *values = NULL;
6913 static bfd_boolean relocations_analyzed = FALSE;
6914 xtensa_relax_info *relax_info;
6916 if (!relocations_analyzed)
6918 /* Do some overall initialization for relaxation. */
6919 values = value_map_hash_table_init ();
6922 relaxing_section = TRUE;
6923 if (!analyze_relocations (link_info))
6925 relocations_analyzed = TRUE;
6929 /* Don't mess with linker-created sections. */
6930 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6933 relax_info = get_xtensa_relax_info (sec);
6934 BFD_ASSERT (relax_info != NULL);
6936 switch (relax_info->visited)
6939 /* Note: It would be nice to fold this pass into
6940 analyze_relocations, but it is important for this step that the
6941 sections be examined in link order. */
6942 if (!compute_removed_literals (abfd, sec, link_info, values))
6949 value_map_hash_table_delete (values);
6951 if (!relax_section (abfd, sec, link_info))
6957 if (!relax_section_symbols (abfd, sec))
6962 relax_info->visited++;
6967 /* Initialization for relaxation. */
6969 /* This function is called once at the start of relaxation. It scans
6970 all the input sections and marks the ones that are relaxable (i.e.,
6971 literal sections with L32R relocations against them), and then
6972 collects source_reloc information for all the relocations against
6973 those relaxable sections. During this process, it also detects
6974 longcalls, i.e., calls relaxed by the assembler into indirect
6975 calls, that can be optimized back into direct calls. Within each
6976 extended basic block (ebb) containing an optimized longcall, it
6977 computes a set of "text actions" that can be performed to remove
6978 the L32R associated with the longcall while optionally preserving
6979 branch target alignments. */
6982 analyze_relocations (struct bfd_link_info *link_info)
6986 bfd_boolean is_relaxable = FALSE;
6988 /* Initialize the per-section relaxation info. */
6989 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6990 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6992 init_xtensa_relax_info (sec);
6995 /* Mark relaxable sections (and count relocations against each one). */
6996 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6997 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6999 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
7003 /* Bail out if there are no relaxable sections. */
7007 /* Allocate space for source_relocs. */
7008 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7011 xtensa_relax_info *relax_info;
7013 relax_info = get_xtensa_relax_info (sec);
7014 if (relax_info->is_relaxable_literal_section
7015 || relax_info->is_relaxable_asm_section)
7017 relax_info->src_relocs = (source_reloc *)
7018 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7021 relax_info->src_count = 0;
7024 /* Collect info on relocations against each relaxable section. */
7025 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7026 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7028 if (!collect_source_relocs (abfd, sec, link_info))
7032 /* Compute the text actions. */
7033 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7034 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7036 if (!compute_text_actions (abfd, sec, link_info))
7044 /* Find all the sections that might be relaxed. The motivation for
7045 this pass is that collect_source_relocs() needs to record _all_ the
7046 relocations that target each relaxable section. That is expensive
7047 and unnecessary unless the target section is actually going to be
7048 relaxed. This pass identifies all such sections by checking if
7049 they have L32Rs pointing to them. In the process, the total number
7050 of relocations targeting each section is also counted so that we
7051 know how much space to allocate for source_relocs against each
7052 relaxable literal section. */
7055 find_relaxable_sections (bfd *abfd,
7057 struct bfd_link_info *link_info,
7058 bfd_boolean *is_relaxable_p)
7060 Elf_Internal_Rela *internal_relocs;
7062 bfd_boolean ok = TRUE;
7064 xtensa_relax_info *source_relax_info;
7065 bfd_boolean is_l32r_reloc;
7067 internal_relocs = retrieve_internal_relocs (abfd, sec,
7068 link_info->keep_memory);
7069 if (internal_relocs == NULL)
7072 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7073 if (contents == NULL && sec->size != 0)
7079 source_relax_info = get_xtensa_relax_info (sec);
7080 for (i = 0; i < sec->reloc_count; i++)
7082 Elf_Internal_Rela *irel = &internal_relocs[i];
7084 asection *target_sec;
7085 xtensa_relax_info *target_relax_info;
7087 /* If this section has not already been marked as "relaxable", and
7088 if it contains any ASM_EXPAND relocations (marking expanded
7089 longcalls) that can be optimized into direct calls, then mark
7090 the section as "relaxable". */
7091 if (source_relax_info
7092 && !source_relax_info->is_relaxable_asm_section
7093 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7095 bfd_boolean is_reachable = FALSE;
7096 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7097 link_info, &is_reachable)
7100 source_relax_info->is_relaxable_asm_section = TRUE;
7101 *is_relaxable_p = TRUE;
7105 r_reloc_init (&r_rel, abfd, irel, contents,
7106 bfd_get_section_limit (abfd, sec));
7108 target_sec = r_reloc_get_section (&r_rel);
7109 target_relax_info = get_xtensa_relax_info (target_sec);
7110 if (!target_relax_info)
7113 /* Count PC-relative operand relocations against the target section.
7114 Note: The conditions tested here must match the conditions under
7115 which init_source_reloc is called in collect_source_relocs(). */
7116 is_l32r_reloc = FALSE;
7117 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7119 xtensa_opcode opcode =
7120 get_relocation_opcode (abfd, sec, contents, irel);
7121 if (opcode != XTENSA_UNDEFINED)
7123 is_l32r_reloc = (opcode == get_l32r_opcode ());
7124 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7126 target_relax_info->src_count++;
7130 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7132 /* Mark the target section as relaxable. */
7133 target_relax_info->is_relaxable_literal_section = TRUE;
7134 *is_relaxable_p = TRUE;
7139 release_contents (sec, contents);
7140 release_internal_relocs (sec, internal_relocs);
7145 /* Record _all_ the relocations that point to relaxable sections, and
7146 get rid of ASM_EXPAND relocs by either converting them to
7147 ASM_SIMPLIFY or by removing them. */
7150 collect_source_relocs (bfd *abfd,
7152 struct bfd_link_info *link_info)
7154 Elf_Internal_Rela *internal_relocs;
7156 bfd_boolean ok = TRUE;
7158 bfd_size_type sec_size;
7160 internal_relocs = retrieve_internal_relocs (abfd, sec,
7161 link_info->keep_memory);
7162 if (internal_relocs == NULL)
7165 sec_size = bfd_get_section_limit (abfd, sec);
7166 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7167 if (contents == NULL && sec_size != 0)
7173 /* Record relocations against relaxable literal sections. */
7174 for (i = 0; i < sec->reloc_count; i++)
7176 Elf_Internal_Rela *irel = &internal_relocs[i];
7178 asection *target_sec;
7179 xtensa_relax_info *target_relax_info;
7181 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7183 target_sec = r_reloc_get_section (&r_rel);
7184 target_relax_info = get_xtensa_relax_info (target_sec);
7186 if (target_relax_info
7187 && (target_relax_info->is_relaxable_literal_section
7188 || target_relax_info->is_relaxable_asm_section))
7190 xtensa_opcode opcode = XTENSA_UNDEFINED;
7192 bfd_boolean is_abs_literal = FALSE;
7194 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7196 /* None of the current alternate relocs are PC-relative,
7197 and only PC-relative relocs matter here. However, we
7198 still need to record the opcode for literal
7200 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7201 if (opcode == get_l32r_opcode ())
7203 is_abs_literal = TRUE;
7207 opcode = XTENSA_UNDEFINED;
7209 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7211 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7212 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7215 if (opcode != XTENSA_UNDEFINED)
7217 int src_next = target_relax_info->src_next++;
7218 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7220 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7226 /* Now get rid of ASM_EXPAND relocations. At this point, the
7227 src_relocs array for the target literal section may still be
7228 incomplete, but it must at least contain the entries for the L32R
7229 relocations associated with ASM_EXPANDs because they were just
7230 added in the preceding loop over the relocations. */
7232 for (i = 0; i < sec->reloc_count; i++)
7234 Elf_Internal_Rela *irel = &internal_relocs[i];
7235 bfd_boolean is_reachable;
7237 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7243 Elf_Internal_Rela *l32r_irel;
7245 asection *target_sec;
7246 xtensa_relax_info *target_relax_info;
7248 /* Mark the source_reloc for the L32R so that it will be
7249 removed in compute_removed_literals(), along with the
7250 associated literal. */
7251 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7252 irel, internal_relocs);
7253 if (l32r_irel == NULL)
7256 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7258 target_sec = r_reloc_get_section (&r_rel);
7259 target_relax_info = get_xtensa_relax_info (target_sec);
7261 if (target_relax_info
7262 && (target_relax_info->is_relaxable_literal_section
7263 || target_relax_info->is_relaxable_asm_section))
7265 source_reloc *s_reloc;
7267 /* Search the source_relocs for the entry corresponding to
7268 the l32r_irel. Note: The src_relocs array is not yet
7269 sorted, but it wouldn't matter anyway because we're
7270 searching by source offset instead of target offset. */
7271 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7272 target_relax_info->src_next,
7274 BFD_ASSERT (s_reloc);
7275 s_reloc->is_null = TRUE;
7278 /* Convert this reloc to ASM_SIMPLIFY. */
7279 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7280 R_XTENSA_ASM_SIMPLIFY);
7281 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7283 pin_internal_relocs (sec, internal_relocs);
7287 /* It is resolvable but doesn't reach. We resolve now
7288 by eliminating the relocation -- the call will remain
7289 expanded into L32R/CALLX. */
7290 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7291 pin_internal_relocs (sec, internal_relocs);
7296 release_contents (sec, contents);
7297 release_internal_relocs (sec, internal_relocs);
7302 /* Return TRUE if the asm expansion can be resolved. Generally it can
7303 be resolved on a final link or when a partial link locates it in the
7304 same section as the target. Set "is_reachable" flag if the target of
7305 the call is within the range of a direct call, given the current VMA
7306 for this section and the target section. */
7309 is_resolvable_asm_expansion (bfd *abfd,
7312 Elf_Internal_Rela *irel,
7313 struct bfd_link_info *link_info,
7314 bfd_boolean *is_reachable_p)
7316 asection *target_sec;
7320 unsigned int first_align;
7321 unsigned int adjust;
7322 bfd_vma target_offset;
7324 xtensa_opcode opcode, direct_call_opcode;
7325 bfd_vma self_address;
7326 bfd_vma dest_address;
7327 bfd_boolean uses_l32r;
7328 bfd_size_type sec_size;
7330 *is_reachable_p = FALSE;
7332 if (contents == NULL)
7335 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7338 sec_size = bfd_get_section_limit (abfd, sec);
7339 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7340 sec_size - irel->r_offset, &uses_l32r);
7341 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7345 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7346 if (direct_call_opcode == XTENSA_UNDEFINED)
7349 /* Check and see that the target resolves. */
7350 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7351 if (!r_reloc_is_defined (&r_rel))
7354 target_sec = r_reloc_get_section (&r_rel);
7355 target_offset = r_rel.target_offset;
7357 /* If the target is in a shared library, then it doesn't reach. This
7358 isn't supposed to come up because the compiler should never generate
7359 non-PIC calls on systems that use shared libraries, but the linker
7360 shouldn't crash regardless. */
7361 if (!target_sec->output_section)
7364 /* For relocatable sections, we can only simplify when the output
7365 section of the target is the same as the output section of the
7367 if (bfd_link_relocatable (link_info)
7368 && (target_sec->output_section != sec->output_section
7369 || is_reloc_sym_weak (abfd, irel)))
7372 if (target_sec->output_section != sec->output_section)
7374 /* If the two sections are sufficiently far away that relaxation
7375 might take the call out of range, we can't simplify. For
7376 example, a positive displacement call into another memory
7377 could get moved to a lower address due to literal removal,
7378 but the destination won't move, and so the displacment might
7381 If the displacement is negative, assume the destination could
7382 move as far back as the start of the output section. The
7383 self_address will be at least as far into the output section
7384 as it is prior to relaxation.
7386 If the displacement is postive, assume the destination will be in
7387 it's pre-relaxed location (because relaxation only makes sections
7388 smaller). The self_address could go all the way to the beginning
7389 of the output section. */
7391 dest_address = target_sec->output_section->vma;
7392 self_address = sec->output_section->vma;
7394 if (sec->output_section->vma > target_sec->output_section->vma)
7395 self_address += sec->output_offset + irel->r_offset + 3;
7397 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7398 /* Call targets should be four-byte aligned. */
7399 dest_address = (dest_address + 3) & ~3;
7404 self_address = (sec->output_section->vma
7405 + sec->output_offset + irel->r_offset + 3);
7406 dest_address = (target_sec->output_section->vma
7407 + target_sec->output_offset + target_offset);
7410 /* Adjust addresses with alignments for the worst case to see if call insn
7411 can fit. Don't relax l32r + callx to call if the target can be out of
7412 range due to alignment.
7413 Caller and target addresses are highest and lowest address.
7414 Search all sections between caller and target, looking for max alignment.
7415 The adjustment is max alignment bytes. If the alignment at the lowest
7416 address is less than the adjustment, apply the adjustment to highest
7419 /* Start from lowest address.
7420 Lowest address aligmnet is from input section.
7421 Initial alignment (adjust) is from input section. */
7422 if (dest_address > self_address)
7424 s = sec->output_section;
7425 last_vma = dest_address;
7426 first_align = sec->alignment_power;
7427 adjust = target_sec->alignment_power;
7431 s = target_sec->output_section;
7432 last_vma = self_address;
7433 first_align = target_sec->alignment_power;
7434 adjust = sec->alignment_power;
7439 /* Find the largest alignment in output section list. */
7440 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7442 if (s->alignment_power > adjust)
7443 adjust = s->alignment_power;
7446 if (adjust > first_align)
7448 /* Alignment may enlarge the range, adjust highest address. */
7449 adjust = 1 << adjust;
7450 if (dest_address > self_address)
7452 dest_address += adjust;
7456 self_address += adjust;
7460 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7461 self_address, dest_address);
7463 if ((self_address >> CALL_SEGMENT_BITS) !=
7464 (dest_address >> CALL_SEGMENT_BITS))
7471 static Elf_Internal_Rela *
7472 find_associated_l32r_irel (bfd *abfd,
7475 Elf_Internal_Rela *other_irel,
7476 Elf_Internal_Rela *internal_relocs)
7480 for (i = 0; i < sec->reloc_count; i++)
7482 Elf_Internal_Rela *irel = &internal_relocs[i];
7484 if (irel == other_irel)
7486 if (irel->r_offset != other_irel->r_offset)
7488 if (is_l32r_relocation (abfd, sec, contents, irel))
7496 static xtensa_opcode *
7497 build_reloc_opcodes (bfd *abfd,
7500 Elf_Internal_Rela *internal_relocs)
7503 xtensa_opcode *reloc_opcodes =
7504 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7505 for (i = 0; i < sec->reloc_count; i++)
7507 Elf_Internal_Rela *irel = &internal_relocs[i];
7508 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7510 return reloc_opcodes;
7513 struct reloc_range_struct
7516 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7517 /* Original irel index in the array of relocations for a section. */
7518 unsigned irel_index;
7520 typedef struct reloc_range_struct reloc_range;
7522 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7523 struct reloc_range_list_entry_struct
7525 reloc_range_list_entry *next;
7526 reloc_range_list_entry *prev;
7527 Elf_Internal_Rela *irel;
7528 xtensa_opcode opcode;
7532 struct reloc_range_list_struct
7534 /* The rest of the structure is only meaningful when ok is TRUE. */
7537 unsigned n_range; /* Number of range markers. */
7538 reloc_range *range; /* Sorted range markers. */
7540 unsigned first; /* Index of a first range element in the list. */
7541 unsigned last; /* One past index of a last range element in the list. */
7543 unsigned n_list; /* Number of list elements. */
7544 reloc_range_list_entry *reloc; /* */
7545 reloc_range_list_entry list_root;
7549 reloc_range_compare (const void *a, const void *b)
7551 const reloc_range *ra = a;
7552 const reloc_range *rb = b;
7554 if (ra->addr != rb->addr)
7555 return ra->addr < rb->addr ? -1 : 1;
7556 if (ra->add != rb->add)
7557 return ra->add ? -1 : 1;
7562 build_reloc_ranges (bfd *abfd, asection *sec,
7564 Elf_Internal_Rela *internal_relocs,
7565 xtensa_opcode *reloc_opcodes,
7566 reloc_range_list *list)
7571 reloc_range *ranges = NULL;
7572 reloc_range_list_entry *reloc =
7573 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7575 memset (list, 0, sizeof (*list));
7578 for (i = 0; i < sec->reloc_count; i++)
7580 Elf_Internal_Rela *irel = &internal_relocs[i];
7581 int r_type = ELF32_R_TYPE (irel->r_info);
7582 reloc_howto_type *howto = &elf_howto_table[r_type];
7585 if (r_type == R_XTENSA_ASM_SIMPLIFY
7586 || r_type == R_XTENSA_32_PCREL
7587 || !howto->pc_relative)
7590 r_reloc_init (&r_rel, abfd, irel, contents,
7591 bfd_get_section_limit (abfd, sec));
7593 if (r_reloc_get_section (&r_rel) != sec)
7598 max_n = (max_n + 2) * 2;
7599 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7602 ranges[n].addr = irel->r_offset;
7603 ranges[n + 1].addr = r_rel.target_offset;
7605 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7606 ranges[n + 1].add = !ranges[n].add;
7608 ranges[n].irel_index = i;
7609 ranges[n + 1].irel_index = i;
7613 reloc[i].irel = irel;
7615 /* Every relocation won't possibly be checked in the optimized version of
7616 check_section_ebb_pcrels_fit, so this needs to be done here. */
7617 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7619 /* None of the current alternate relocs are PC-relative,
7620 and only PC-relative relocs matter here. */
7624 xtensa_opcode opcode;
7628 opcode = reloc_opcodes[i];
7630 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7632 if (opcode == XTENSA_UNDEFINED)
7638 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7639 if (opnum == XTENSA_UNDEFINED)
7645 /* Record relocation opcode and opnum as we've calculated them
7646 anyway and they won't change. */
7647 reloc[i].opcode = opcode;
7648 reloc[i].opnum = opnum;
7654 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7655 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7658 list->range = ranges;
7659 list->reloc = reloc;
7660 list->list_root.prev = &list->list_root;
7661 list->list_root.next = &list->list_root;
7670 static void reloc_range_list_append (reloc_range_list *list,
7671 unsigned irel_index)
7673 reloc_range_list_entry *entry = list->reloc + irel_index;
7675 entry->prev = list->list_root.prev;
7676 entry->next = &list->list_root;
7677 entry->prev->next = entry;
7678 entry->next->prev = entry;
7682 static void reloc_range_list_remove (reloc_range_list *list,
7683 unsigned irel_index)
7685 reloc_range_list_entry *entry = list->reloc + irel_index;
7687 entry->next->prev = entry->prev;
7688 entry->prev->next = entry->next;
7692 /* Update relocation list object so that it lists all relocations that cross
7693 [first; last] range. Range bounds should not decrease with successive
7695 static void reloc_range_list_update_range (reloc_range_list *list,
7696 bfd_vma first, bfd_vma last)
7698 /* This should not happen: EBBs are iterated from lower addresses to higher.
7699 But even if that happens there's no need to break: just flush current list
7700 and start from scratch. */
7701 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7702 (list->first > 0 && list->range[list->first - 1].addr >= first))
7707 list->list_root.next = &list->list_root;
7708 list->list_root.prev = &list->list_root;
7709 fprintf (stderr, "%s: move backwards requested\n", __func__);
7712 for (; list->last < list->n_range &&
7713 list->range[list->last].addr <= last; ++list->last)
7714 if (list->range[list->last].add)
7715 reloc_range_list_append (list, list->range[list->last].irel_index);
7717 for (; list->first < list->n_range &&
7718 list->range[list->first].addr < first; ++list->first)
7719 if (!list->range[list->first].add)
7720 reloc_range_list_remove (list, list->range[list->first].irel_index);
7723 static void free_reloc_range_list (reloc_range_list *list)
7729 /* The compute_text_actions function will build a list of potential
7730 transformation actions for code in the extended basic block of each
7731 longcall that is optimized to a direct call. From this list we
7732 generate a set of actions to actually perform that optimizes for
7733 space and, if not using size_opt, maintains branch target
7736 These actions to be performed are placed on a per-section list.
7737 The actual changes are performed by relax_section() in the second
7741 compute_text_actions (bfd *abfd,
7743 struct bfd_link_info *link_info)
7745 xtensa_opcode *reloc_opcodes = NULL;
7746 xtensa_relax_info *relax_info;
7748 Elf_Internal_Rela *internal_relocs;
7749 bfd_boolean ok = TRUE;
7751 property_table_entry *prop_table = 0;
7753 bfd_size_type sec_size;
7754 reloc_range_list relevant_relocs;
7756 relax_info = get_xtensa_relax_info (sec);
7757 BFD_ASSERT (relax_info);
7758 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7760 /* Do nothing if the section contains no optimized longcalls. */
7761 if (!relax_info->is_relaxable_asm_section)
7764 internal_relocs = retrieve_internal_relocs (abfd, sec,
7765 link_info->keep_memory);
7767 if (internal_relocs)
7768 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7769 internal_reloc_compare);
7771 sec_size = bfd_get_section_limit (abfd, sec);
7772 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7773 if (contents == NULL && sec_size != 0)
7779 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7780 XTENSA_PROP_SEC_NAME, FALSE);
7787 /* Precompute the opcode for each relocation. */
7788 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7790 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7793 for (i = 0; i < sec->reloc_count; i++)
7795 Elf_Internal_Rela *irel = &internal_relocs[i];
7797 property_table_entry *the_entry;
7800 ebb_constraint ebb_table;
7801 bfd_size_type simplify_size;
7803 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7805 r_offset = irel->r_offset;
7807 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7808 if (simplify_size == 0)
7811 /* xgettext:c-format */
7812 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7813 "XTENSA_ASM_SIMPLIFY relocation; "
7814 "possible configuration mismatch"),
7815 sec->owner, sec, (uint64_t) r_offset);
7819 /* If the instruction table is not around, then don't do this
7821 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7822 sec->vma + irel->r_offset);
7823 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7825 text_action_add (&relax_info->action_list,
7826 ta_convert_longcall, sec, r_offset,
7831 /* If the next longcall happens to be at the same address as an
7832 unreachable section of size 0, then skip forward. */
7833 ptbl_idx = the_entry - prop_table;
7834 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7835 && the_entry->size == 0
7836 && ptbl_idx + 1 < ptblsize
7837 && (prop_table[ptbl_idx + 1].address
7838 == prop_table[ptbl_idx].address))
7844 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7845 /* NO_REORDER is OK */
7848 init_ebb_constraint (&ebb_table);
7849 ebb = &ebb_table.ebb;
7850 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7851 internal_relocs, sec->reloc_count);
7852 ebb->start_offset = r_offset + simplify_size;
7853 ebb->end_offset = r_offset + simplify_size;
7854 ebb->start_ptbl_idx = ptbl_idx;
7855 ebb->end_ptbl_idx = ptbl_idx;
7856 ebb->start_reloc_idx = i;
7857 ebb->end_reloc_idx = i;
7859 if (!extend_ebb_bounds (ebb)
7860 || !compute_ebb_proposed_actions (&ebb_table)
7861 || !compute_ebb_actions (&ebb_table)
7862 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7865 &ebb_table, reloc_opcodes)
7866 || !check_section_ebb_reduces (&ebb_table))
7868 /* If anything goes wrong or we get unlucky and something does
7869 not fit, with our plan because of expansion between
7870 critical branches, just convert to a NOP. */
7872 text_action_add (&relax_info->action_list,
7873 ta_convert_longcall, sec, r_offset, 0);
7874 i = ebb_table.ebb.end_reloc_idx;
7875 free_ebb_constraint (&ebb_table);
7879 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7881 /* Update the index so we do not go looking at the relocations
7882 we have already processed. */
7883 i = ebb_table.ebb.end_reloc_idx;
7884 free_ebb_constraint (&ebb_table);
7887 free_reloc_range_list (&relevant_relocs);
7890 if (action_list_count (&relax_info->action_list))
7891 print_action_list (stderr, &relax_info->action_list);
7895 release_contents (sec, contents);
7896 release_internal_relocs (sec, internal_relocs);
7898 free (reloc_opcodes);
7904 /* Do not widen an instruction if it is preceeded by a
7905 loop opcode. It might cause misalignment. */
7908 prev_instr_is_a_loop (bfd_byte *contents,
7909 bfd_size_type content_length,
7910 bfd_size_type offset)
7912 xtensa_opcode prev_opcode;
7916 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7917 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7921 /* Find all of the possible actions for an extended basic block. */
7924 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7926 const ebb_t *ebb = &ebb_table->ebb;
7927 unsigned rel_idx = ebb->start_reloc_idx;
7928 property_table_entry *entry, *start_entry, *end_entry;
7930 xtensa_isa isa = xtensa_default_isa;
7932 static xtensa_insnbuf insnbuf = NULL;
7933 static xtensa_insnbuf slotbuf = NULL;
7935 if (insnbuf == NULL)
7937 insnbuf = xtensa_insnbuf_alloc (isa);
7938 slotbuf = xtensa_insnbuf_alloc (isa);
7941 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7942 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7944 for (entry = start_entry; entry <= end_entry; entry++)
7946 bfd_vma start_offset, end_offset;
7947 bfd_size_type insn_len;
7949 start_offset = entry->address - ebb->sec->vma;
7950 end_offset = entry->address + entry->size - ebb->sec->vma;
7952 if (entry == start_entry)
7953 start_offset = ebb->start_offset;
7954 if (entry == end_entry)
7955 end_offset = ebb->end_offset;
7956 offset = start_offset;
7958 if (offset == entry->address - ebb->sec->vma
7959 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7961 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7962 BFD_ASSERT (offset != end_offset);
7963 if (offset == end_offset)
7966 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7971 if (check_branch_target_aligned_address (offset, insn_len))
7972 align_type = EBB_REQUIRE_TGT_ALIGN;
7974 ebb_propose_action (ebb_table, align_type, 0,
7975 ta_none, offset, 0, TRUE);
7978 while (offset != end_offset)
7980 Elf_Internal_Rela *irel;
7981 xtensa_opcode opcode;
7983 while (rel_idx < ebb->end_reloc_idx
7984 && (ebb->relocs[rel_idx].r_offset < offset
7985 || (ebb->relocs[rel_idx].r_offset == offset
7986 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7987 != R_XTENSA_ASM_SIMPLIFY))))
7990 /* Check for longcall. */
7991 irel = &ebb->relocs[rel_idx];
7992 if (irel->r_offset == offset
7993 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7995 bfd_size_type simplify_size;
7997 simplify_size = get_asm_simplify_size (ebb->contents,
7998 ebb->content_length,
8000 if (simplify_size == 0)
8003 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8004 ta_convert_longcall, offset, 0, TRUE);
8006 offset += simplify_size;
8010 if (offset + MIN_INSN_LENGTH > ebb->content_length)
8012 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
8013 ebb->content_length - offset);
8014 fmt = xtensa_format_decode (isa, insnbuf);
8015 if (fmt == XTENSA_UNDEFINED)
8017 insn_len = xtensa_format_length (isa, fmt);
8018 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
8021 if (xtensa_format_num_slots (isa, fmt) != 1)
8027 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8028 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8029 if (opcode == XTENSA_UNDEFINED)
8032 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
8033 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8034 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
8036 /* Add an instruction narrow action. */
8037 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8038 ta_narrow_insn, offset, 0, FALSE);
8040 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8041 && can_widen_instruction (slotbuf, fmt, opcode) != 0
8042 && ! prev_instr_is_a_loop (ebb->contents,
8043 ebb->content_length, offset))
8045 /* Add an instruction widen action. */
8046 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8047 ta_widen_insn, offset, 0, FALSE);
8049 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
8051 /* Check for branch targets. */
8052 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
8053 ta_none, offset, 0, TRUE);
8060 if (ebb->ends_unreachable)
8062 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8063 ta_fill, ebb->end_offset, 0, TRUE);
8070 /* xgettext:c-format */
8071 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8072 "possible configuration mismatch"),
8073 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8078 /* After all of the information has collected about the
8079 transformations possible in an EBB, compute the appropriate actions
8080 here in compute_ebb_actions. We still must check later to make
8081 sure that the actions do not break any relocations. The algorithm
8082 used here is pretty greedy. Basically, it removes as many no-ops
8083 as possible so that the end of the EBB has the same alignment
8084 characteristics as the original. First, it uses narrowing, then
8085 fill space at the end of the EBB, and finally widenings. If that
8086 does not work, it tries again with one fewer no-op removed. The
8087 optimization will only be performed if all of the branch targets
8088 that were aligned before transformation are also aligned after the
8091 When the size_opt flag is set, ignore the branch target alignments,
8092 narrow all wide instructions, and remove all no-ops unless the end
8093 of the EBB prevents it. */
8096 compute_ebb_actions (ebb_constraint *ebb_table)
8100 int removed_bytes = 0;
8101 ebb_t *ebb = &ebb_table->ebb;
8102 unsigned seg_idx_start = 0;
8103 unsigned seg_idx_end = 0;
8105 /* We perform this like the assembler relaxation algorithm: Start by
8106 assuming all instructions are narrow and all no-ops removed; then
8109 /* For each segment of this that has a solid constraint, check to
8110 see if there are any combinations that will keep the constraint.
8112 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8114 bfd_boolean requires_text_end_align = FALSE;
8115 unsigned longcall_count = 0;
8116 unsigned longcall_convert_count = 0;
8117 unsigned narrowable_count = 0;
8118 unsigned narrowable_convert_count = 0;
8119 unsigned widenable_count = 0;
8120 unsigned widenable_convert_count = 0;
8122 proposed_action *action = NULL;
8123 int align = (1 << ebb_table->ebb.sec->alignment_power);
8125 seg_idx_start = seg_idx_end;
8127 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8129 action = &ebb_table->actions[i];
8130 if (action->action == ta_convert_longcall)
8132 if (action->action == ta_narrow_insn)
8134 if (action->action == ta_widen_insn)
8136 if (action->action == ta_fill)
8138 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8140 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8141 && !elf32xtensa_size_opt)
8146 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8147 requires_text_end_align = TRUE;
8149 if (elf32xtensa_size_opt && !requires_text_end_align
8150 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8151 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8153 longcall_convert_count = longcall_count;
8154 narrowable_convert_count = narrowable_count;
8155 widenable_convert_count = 0;
8159 /* There is a constraint. Convert the max number of longcalls. */
8160 narrowable_convert_count = 0;
8161 longcall_convert_count = 0;
8162 widenable_convert_count = 0;
8164 for (j = 0; j < longcall_count; j++)
8166 int removed = (longcall_count - j) * 3 & (align - 1);
8167 unsigned desire_narrow = (align - removed) & (align - 1);
8168 unsigned desire_widen = removed;
8169 if (desire_narrow <= narrowable_count)
8171 narrowable_convert_count = desire_narrow;
8172 narrowable_convert_count +=
8173 (align * ((narrowable_count - narrowable_convert_count)
8175 longcall_convert_count = (longcall_count - j);
8176 widenable_convert_count = 0;
8179 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8181 narrowable_convert_count = 0;
8182 longcall_convert_count = longcall_count - j;
8183 widenable_convert_count = desire_widen;
8189 /* Now the number of conversions are saved. Do them. */
8190 for (i = seg_idx_start; i < seg_idx_end; i++)
8192 action = &ebb_table->actions[i];
8193 switch (action->action)
8195 case ta_convert_longcall:
8196 if (longcall_convert_count != 0)
8198 action->action = ta_remove_longcall;
8199 action->do_action = TRUE;
8200 action->removed_bytes += 3;
8201 longcall_convert_count--;
8204 case ta_narrow_insn:
8205 if (narrowable_convert_count != 0)
8207 action->do_action = TRUE;
8208 action->removed_bytes += 1;
8209 narrowable_convert_count--;
8213 if (widenable_convert_count != 0)
8215 action->do_action = TRUE;
8216 action->removed_bytes -= 1;
8217 widenable_convert_count--;
8226 /* Now we move on to some local opts. Try to remove each of the
8227 remaining longcalls. */
8229 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8232 for (i = 0; i < ebb_table->action_count; i++)
8234 int old_removed_bytes = removed_bytes;
8235 proposed_action *action = &ebb_table->actions[i];
8237 if (action->do_action && action->action == ta_convert_longcall)
8239 bfd_boolean bad_alignment = FALSE;
8241 for (j = i + 1; j < ebb_table->action_count; j++)
8243 proposed_action *new_action = &ebb_table->actions[j];
8244 bfd_vma offset = new_action->offset;
8245 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8247 if (!check_branch_target_aligned
8248 (ebb_table->ebb.contents,
8249 ebb_table->ebb.content_length,
8250 offset, offset - removed_bytes))
8252 bad_alignment = TRUE;
8256 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8258 if (!check_loop_aligned (ebb_table->ebb.contents,
8259 ebb_table->ebb.content_length,
8261 offset - removed_bytes))
8263 bad_alignment = TRUE;
8267 if (new_action->action == ta_narrow_insn
8268 && !new_action->do_action
8269 && ebb_table->ebb.sec->alignment_power == 2)
8271 /* Narrow an instruction and we are done. */
8272 new_action->do_action = TRUE;
8273 new_action->removed_bytes += 1;
8274 bad_alignment = FALSE;
8277 if (new_action->action == ta_widen_insn
8278 && new_action->do_action
8279 && ebb_table->ebb.sec->alignment_power == 2)
8281 /* Narrow an instruction and we are done. */
8282 new_action->do_action = FALSE;
8283 new_action->removed_bytes += 1;
8284 bad_alignment = FALSE;
8287 if (new_action->do_action)
8288 removed_bytes += new_action->removed_bytes;
8292 action->removed_bytes += 3;
8293 action->action = ta_remove_longcall;
8294 action->do_action = TRUE;
8297 removed_bytes = old_removed_bytes;
8298 if (action->do_action)
8299 removed_bytes += action->removed_bytes;
8304 for (i = 0; i < ebb_table->action_count; ++i)
8306 proposed_action *action = &ebb_table->actions[i];
8307 if (action->do_action)
8308 removed_bytes += action->removed_bytes;
8311 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8312 && ebb->ends_unreachable)
8314 proposed_action *action;
8318 BFD_ASSERT (ebb_table->action_count != 0);
8319 action = &ebb_table->actions[ebb_table->action_count - 1];
8320 BFD_ASSERT (action->action == ta_fill);
8321 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8323 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8324 br = action->removed_bytes + removed_bytes + extra_space;
8325 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8327 action->removed_bytes = extra_space - br;
8333 /* The xlate_map is a sorted array of address mappings designed to
8334 answer the offset_with_removed_text() query with a binary search instead
8335 of a linear search through the section's action_list. */
8337 typedef struct xlate_map_entry xlate_map_entry_t;
8338 typedef struct xlate_map xlate_map_t;
8340 struct xlate_map_entry
8342 bfd_vma orig_address;
8343 bfd_vma new_address;
8349 unsigned entry_count;
8350 xlate_map_entry_t *entry;
8355 xlate_compare (const void *a_v, const void *b_v)
8357 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8358 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8359 if (a->orig_address < b->orig_address)
8361 if (a->orig_address > (b->orig_address + b->size - 1))
8368 xlate_offset_with_removed_text (const xlate_map_t *map,
8369 text_action_list *action_list,
8373 xlate_map_entry_t *e;
8374 struct xlate_map_entry se;
8377 return offset_with_removed_text (action_list, offset);
8379 if (map->entry_count == 0)
8382 se.orig_address = offset;
8383 r = bsearch (&se, map->entry, map->entry_count,
8384 sizeof (xlate_map_entry_t), &xlate_compare);
8385 e = (xlate_map_entry_t *) r;
8387 /* There could be a jump past the end of the section,
8388 allow it using the last xlate map entry to translate its address. */
8391 e = map->entry + map->entry_count - 1;
8392 if (xlate_compare (&se, e) <= 0)
8395 BFD_ASSERT (e != NULL);
8398 return e->new_address - e->orig_address + offset;
8401 typedef struct xlate_map_context_struct xlate_map_context;
8402 struct xlate_map_context_struct
8405 xlate_map_entry_t *current_entry;
8410 xlate_map_fn (splay_tree_node node, void *p)
8412 text_action *r = (text_action *)node->value;
8413 xlate_map_context *ctx = p;
8414 unsigned orig_size = 0;
8419 case ta_remove_insn:
8420 case ta_convert_longcall:
8421 case ta_remove_literal:
8422 case ta_add_literal:
8424 case ta_remove_longcall:
8427 case ta_narrow_insn:
8436 ctx->current_entry->size =
8437 r->offset + orig_size - ctx->current_entry->orig_address;
8438 if (ctx->current_entry->size != 0)
8440 ctx->current_entry++;
8441 ctx->map->entry_count++;
8443 ctx->current_entry->orig_address = r->offset + orig_size;
8444 ctx->removed += r->removed_bytes;
8445 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8446 ctx->current_entry->size = 0;
8450 /* Build a binary searchable offset translation map from a section's
8453 static xlate_map_t *
8454 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8456 text_action_list *action_list = &relax_info->action_list;
8457 unsigned num_actions = 0;
8458 xlate_map_context ctx;
8460 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8462 if (ctx.map == NULL)
8465 num_actions = action_list_count (action_list);
8466 ctx.map->entry = (xlate_map_entry_t *)
8467 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8468 if (ctx.map->entry == NULL)
8473 ctx.map->entry_count = 0;
8476 ctx.current_entry = &ctx.map->entry[0];
8478 ctx.current_entry->orig_address = 0;
8479 ctx.current_entry->new_address = 0;
8480 ctx.current_entry->size = 0;
8482 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8484 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8485 - ctx.current_entry->orig_address);
8486 if (ctx.current_entry->size != 0)
8487 ctx.map->entry_count++;
8493 /* Free an offset translation map. */
8496 free_xlate_map (xlate_map_t *map)
8506 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8507 relocations in a section will fit if a proposed set of actions
8511 check_section_ebb_pcrels_fit (bfd *abfd,
8514 Elf_Internal_Rela *internal_relocs,
8515 reloc_range_list *relevant_relocs,
8516 const ebb_constraint *constraint,
8517 const xtensa_opcode *reloc_opcodes)
8520 unsigned n = sec->reloc_count;
8521 Elf_Internal_Rela *irel;
8522 xlate_map_t *xmap = NULL;
8523 bfd_boolean ok = TRUE;
8524 xtensa_relax_info *relax_info;
8525 reloc_range_list_entry *entry = NULL;
8527 relax_info = get_xtensa_relax_info (sec);
8529 if (relax_info && sec->reloc_count > 100)
8531 xmap = build_xlate_map (sec, relax_info);
8532 /* NULL indicates out of memory, but the slow version
8533 can still be used. */
8536 if (relevant_relocs && constraint->action_count)
8538 if (!relevant_relocs->ok)
8545 bfd_vma min_offset, max_offset;
8546 min_offset = max_offset = constraint->actions[0].offset;
8548 for (i = 1; i < constraint->action_count; ++i)
8550 proposed_action *action = &constraint->actions[i];
8551 bfd_vma offset = action->offset;
8553 if (offset < min_offset)
8554 min_offset = offset;
8555 if (offset > max_offset)
8556 max_offset = offset;
8558 reloc_range_list_update_range (relevant_relocs, min_offset,
8560 n = relevant_relocs->n_list;
8561 entry = &relevant_relocs->list_root;
8566 relevant_relocs = NULL;
8569 for (i = 0; i < n; i++)
8572 bfd_vma orig_self_offset, orig_target_offset;
8573 bfd_vma self_offset, target_offset;
8575 reloc_howto_type *howto;
8576 int self_removed_bytes, target_removed_bytes;
8578 if (relevant_relocs)
8580 entry = entry->next;
8585 irel = internal_relocs + i;
8587 r_type = ELF32_R_TYPE (irel->r_info);
8589 howto = &elf_howto_table[r_type];
8590 /* We maintain the required invariant: PC-relative relocations
8591 that fit before linking must fit after linking. Thus we only
8592 need to deal with relocations to the same section that are
8594 if (r_type == R_XTENSA_ASM_SIMPLIFY
8595 || r_type == R_XTENSA_32_PCREL
8596 || !howto->pc_relative)
8599 r_reloc_init (&r_rel, abfd, irel, contents,
8600 bfd_get_section_limit (abfd, sec));
8602 if (r_reloc_get_section (&r_rel) != sec)
8605 orig_self_offset = irel->r_offset;
8606 orig_target_offset = r_rel.target_offset;
8608 self_offset = orig_self_offset;
8609 target_offset = orig_target_offset;
8614 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8617 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8618 orig_target_offset);
8621 self_removed_bytes = 0;
8622 target_removed_bytes = 0;
8624 for (j = 0; j < constraint->action_count; ++j)
8626 proposed_action *action = &constraint->actions[j];
8627 bfd_vma offset = action->offset;
8628 int removed_bytes = action->removed_bytes;
8629 if (offset < orig_self_offset
8630 || (offset == orig_self_offset && action->action == ta_fill
8631 && action->removed_bytes < 0))
8632 self_removed_bytes += removed_bytes;
8633 if (offset < orig_target_offset
8634 || (offset == orig_target_offset && action->action == ta_fill
8635 && action->removed_bytes < 0))
8636 target_removed_bytes += removed_bytes;
8638 self_offset -= self_removed_bytes;
8639 target_offset -= target_removed_bytes;
8641 /* Try to encode it. Get the operand and check. */
8642 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8644 /* None of the current alternate relocs are PC-relative,
8645 and only PC-relative relocs matter here. */
8649 xtensa_opcode opcode;
8652 if (relevant_relocs)
8654 opcode = entry->opcode;
8655 opnum = entry->opnum;
8660 opcode = reloc_opcodes[relevant_relocs ?
8661 (unsigned)(entry - relevant_relocs->reloc) : i];
8663 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8664 if (opcode == XTENSA_UNDEFINED)
8670 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8671 if (opnum == XTENSA_UNDEFINED)
8678 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8686 free_xlate_map (xmap);
8693 check_section_ebb_reduces (const ebb_constraint *constraint)
8698 for (i = 0; i < constraint->action_count; i++)
8700 const proposed_action *action = &constraint->actions[i];
8701 if (action->do_action)
8702 removed += action->removed_bytes;
8712 text_action_add_proposed (text_action_list *l,
8713 const ebb_constraint *ebb_table,
8718 for (i = 0; i < ebb_table->action_count; i++)
8720 proposed_action *action = &ebb_table->actions[i];
8722 if (!action->do_action)
8724 switch (action->action)
8726 case ta_remove_insn:
8727 case ta_remove_longcall:
8728 case ta_convert_longcall:
8729 case ta_narrow_insn:
8732 case ta_remove_literal:
8733 text_action_add (l, action->action, sec, action->offset,
8734 action->removed_bytes);
8747 xtensa_compute_fill_extra_space (property_table_entry *entry)
8749 int fill_extra_space;
8754 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8757 fill_extra_space = entry->size;
8758 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8760 /* Fill bytes for alignment:
8761 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8762 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8763 int nsm = (1 << pow) - 1;
8764 bfd_vma addr = entry->address + entry->size;
8765 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8766 fill_extra_space += align_fill;
8768 return fill_extra_space;
8772 /* First relaxation pass. */
8774 /* If the section contains relaxable literals, check each literal to
8775 see if it has the same value as another literal that has already
8776 been seen, either in the current section or a previous one. If so,
8777 add an entry to the per-section list of removed literals. The
8778 actual changes are deferred until the next pass. */
8781 compute_removed_literals (bfd *abfd,
8783 struct bfd_link_info *link_info,
8784 value_map_hash_table *values)
8786 xtensa_relax_info *relax_info;
8788 Elf_Internal_Rela *internal_relocs;
8789 source_reloc *src_relocs, *rel;
8790 bfd_boolean ok = TRUE;
8791 property_table_entry *prop_table = NULL;
8794 bfd_boolean last_loc_is_prev = FALSE;
8795 bfd_vma last_target_offset = 0;
8796 section_cache_t target_sec_cache;
8797 bfd_size_type sec_size;
8799 init_section_cache (&target_sec_cache);
8801 /* Do nothing if it is not a relaxable literal section. */
8802 relax_info = get_xtensa_relax_info (sec);
8803 BFD_ASSERT (relax_info);
8804 if (!relax_info->is_relaxable_literal_section)
8807 internal_relocs = retrieve_internal_relocs (abfd, sec,
8808 link_info->keep_memory);
8810 sec_size = bfd_get_section_limit (abfd, sec);
8811 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8812 if (contents == NULL && sec_size != 0)
8818 /* Sort the source_relocs by target offset. */
8819 src_relocs = relax_info->src_relocs;
8820 qsort (src_relocs, relax_info->src_count,
8821 sizeof (source_reloc), source_reloc_compare);
8822 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8823 internal_reloc_compare);
8825 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8826 XTENSA_PROP_SEC_NAME, FALSE);
8834 for (i = 0; i < relax_info->src_count; i++)
8836 Elf_Internal_Rela *irel = NULL;
8838 rel = &src_relocs[i];
8839 if (get_l32r_opcode () != rel->opcode)
8841 irel = get_irel_at_offset (sec, internal_relocs,
8842 rel->r_rel.target_offset);
8844 /* If the relocation on this is not a simple R_XTENSA_32 or
8845 R_XTENSA_PLT then do not consider it. This may happen when
8846 the difference of two symbols is used in a literal. */
8847 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8848 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8851 /* If the target_offset for this relocation is the same as the
8852 previous relocation, then we've already considered whether the
8853 literal can be coalesced. Skip to the next one.... */
8854 if (i != 0 && prev_i != -1
8855 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8859 if (last_loc_is_prev &&
8860 last_target_offset + 4 != rel->r_rel.target_offset)
8861 last_loc_is_prev = FALSE;
8863 /* Check if the relocation was from an L32R that is being removed
8864 because a CALLX was converted to a direct CALL, and check if
8865 there are no other relocations to the literal. */
8866 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8867 sec, prop_table, ptblsize))
8869 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8870 irel, rel, prop_table, ptblsize))
8875 last_target_offset = rel->r_rel.target_offset;
8879 if (!identify_literal_placement (abfd, sec, contents, link_info,
8881 &last_loc_is_prev, irel,
8882 relax_info->src_count - i, rel,
8883 prop_table, ptblsize,
8884 &target_sec_cache, rel->is_abs_literal))
8889 last_target_offset = rel->r_rel.target_offset;
8893 print_removed_literals (stderr, &relax_info->removed_list);
8894 print_action_list (stderr, &relax_info->action_list);
8899 free_section_cache (&target_sec_cache);
8901 release_contents (sec, contents);
8902 release_internal_relocs (sec, internal_relocs);
8907 static Elf_Internal_Rela *
8908 get_irel_at_offset (asection *sec,
8909 Elf_Internal_Rela *internal_relocs,
8913 Elf_Internal_Rela *irel;
8915 Elf_Internal_Rela key;
8917 if (!internal_relocs)
8920 key.r_offset = offset;
8921 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8922 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8926 /* bsearch does not guarantee which will be returned if there are
8927 multiple matches. We need the first that is not an alignment. */
8928 i = irel - internal_relocs;
8931 if (internal_relocs[i-1].r_offset != offset)
8935 for ( ; i < sec->reloc_count; i++)
8937 irel = &internal_relocs[i];
8938 r_type = ELF32_R_TYPE (irel->r_info);
8939 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8948 is_removable_literal (const source_reloc *rel,
8950 const source_reloc *src_relocs,
8953 property_table_entry *prop_table,
8956 const source_reloc *curr_rel;
8957 property_table_entry *entry;
8962 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8963 sec->vma + rel->r_rel.target_offset);
8964 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8967 for (++i; i < src_count; ++i)
8969 curr_rel = &src_relocs[i];
8970 /* If all others have the same target offset.... */
8971 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8974 if (!curr_rel->is_null
8975 && !xtensa_is_property_section (curr_rel->source_sec)
8976 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8984 remove_dead_literal (bfd *abfd,
8986 struct bfd_link_info *link_info,
8987 Elf_Internal_Rela *internal_relocs,
8988 Elf_Internal_Rela *irel,
8990 property_table_entry *prop_table,
8993 property_table_entry *entry;
8994 xtensa_relax_info *relax_info;
8996 relax_info = get_xtensa_relax_info (sec);
9000 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9001 sec->vma + rel->r_rel.target_offset);
9003 /* Mark the unused literal so that it will be removed. */
9004 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
9006 text_action_add (&relax_info->action_list,
9007 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9009 /* If the section is 4-byte aligned, do not add fill. */
9010 if (sec->alignment_power > 2)
9012 int fill_extra_space;
9013 bfd_vma entry_sec_offset;
9015 property_table_entry *the_add_entry;
9019 entry_sec_offset = entry->address - sec->vma + entry->size;
9021 entry_sec_offset = rel->r_rel.target_offset + 4;
9023 /* If the literal range is at the end of the section,
9025 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9027 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
9029 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9030 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9031 -4, fill_extra_space);
9033 adjust_fill_action (fa, removed_diff);
9035 text_action_add (&relax_info->action_list,
9036 ta_fill, sec, entry_sec_offset, removed_diff);
9039 /* Zero out the relocation on this literal location. */
9042 if (elf_hash_table (link_info)->dynamic_sections_created)
9043 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9045 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9046 pin_internal_relocs (sec, internal_relocs);
9049 /* Do not modify "last_loc_is_prev". */
9055 identify_literal_placement (bfd *abfd,
9058 struct bfd_link_info *link_info,
9059 value_map_hash_table *values,
9060 bfd_boolean *last_loc_is_prev_p,
9061 Elf_Internal_Rela *irel,
9062 int remaining_src_rels,
9064 property_table_entry *prop_table,
9066 section_cache_t *target_sec_cache,
9067 bfd_boolean is_abs_literal)
9071 xtensa_relax_info *relax_info;
9072 bfd_boolean literal_placed = FALSE;
9074 unsigned long value;
9075 bfd_boolean final_static_link;
9076 bfd_size_type sec_size;
9078 relax_info = get_xtensa_relax_info (sec);
9082 sec_size = bfd_get_section_limit (abfd, sec);
9085 (!bfd_link_relocatable (link_info)
9086 && !elf_hash_table (link_info)->dynamic_sections_created);
9088 /* The placement algorithm first checks to see if the literal is
9089 already in the value map. If so and the value map is reachable
9090 from all uses, then the literal is moved to that location. If
9091 not, then we identify the last location where a fresh literal was
9092 placed. If the literal can be safely moved there, then we do so.
9093 If not, then we assume that the literal is not to move and leave
9094 the literal where it is, marking it as the last literal
9097 /* Find the literal value. */
9099 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9102 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9103 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9105 init_literal_value (&val, &r_rel, value, is_abs_literal);
9107 /* Check if we've seen another literal with the same value that
9108 is in the same output section. */
9109 val_map = value_map_get_cached_value (values, &val, final_static_link);
9112 && (r_reloc_get_section (&val_map->loc)->output_section
9113 == sec->output_section)
9114 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9115 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9117 /* No change to last_loc_is_prev. */
9118 literal_placed = TRUE;
9121 /* For relocatable links, do not try to move literals. To do it
9122 correctly might increase the number of relocations in an input
9123 section making the default relocatable linking fail. */
9124 if (!bfd_link_relocatable (link_info) && !literal_placed
9125 && values->has_last_loc && !(*last_loc_is_prev_p))
9127 asection *target_sec = r_reloc_get_section (&values->last_loc);
9128 if (target_sec && target_sec->output_section == sec->output_section)
9130 /* Increment the virtual offset. */
9131 r_reloc try_loc = values->last_loc;
9132 try_loc.virtual_offset += 4;
9134 /* There is a last loc that was in the same output section. */
9135 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9136 && move_shared_literal (sec, link_info, rel,
9137 prop_table, ptblsize,
9138 &try_loc, &val, target_sec_cache))
9140 values->last_loc.virtual_offset += 4;
9141 literal_placed = TRUE;
9143 val_map = add_value_map (values, &val, &try_loc,
9146 val_map->loc = try_loc;
9151 if (!literal_placed)
9153 /* Nothing worked, leave the literal alone but update the last loc. */
9154 values->has_last_loc = TRUE;
9155 values->last_loc = rel->r_rel;
9157 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9159 val_map->loc = rel->r_rel;
9160 *last_loc_is_prev_p = TRUE;
9167 /* Check if the original relocations (presumably on L32R instructions)
9168 identified by reloc[0..N] can be changed to reference the literal
9169 identified by r_rel. If r_rel is out of range for any of the
9170 original relocations, then we don't want to coalesce the original
9171 literal with the one at r_rel. We only check reloc[0..N], where the
9172 offsets are all the same as for reloc[0] (i.e., they're all
9173 referencing the same literal) and where N is also bounded by the
9174 number of remaining entries in the "reloc" array. The "reloc" array
9175 is sorted by target offset so we know all the entries for the same
9176 literal will be contiguous. */
9179 relocations_reach (source_reloc *reloc,
9180 int remaining_relocs,
9181 const r_reloc *r_rel)
9183 bfd_vma from_offset, source_address, dest_address;
9187 if (!r_reloc_is_defined (r_rel))
9190 sec = r_reloc_get_section (r_rel);
9191 from_offset = reloc[0].r_rel.target_offset;
9193 for (i = 0; i < remaining_relocs; i++)
9195 if (reloc[i].r_rel.target_offset != from_offset)
9198 /* Ignore relocations that have been removed. */
9199 if (reloc[i].is_null)
9202 /* The original and new output section for these must be the same
9203 in order to coalesce. */
9204 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9205 != sec->output_section)
9208 /* Absolute literals in the same output section can always be
9210 if (reloc[i].is_abs_literal)
9213 /* A literal with no PC-relative relocations can be moved anywhere. */
9214 if (reloc[i].opnd != -1)
9216 /* Otherwise, check to see that it fits. */
9217 source_address = (reloc[i].source_sec->output_section->vma
9218 + reloc[i].source_sec->output_offset
9219 + reloc[i].r_rel.rela.r_offset);
9220 dest_address = (sec->output_section->vma
9221 + sec->output_offset
9222 + r_rel->target_offset);
9224 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9225 source_address, dest_address))
9234 /* Move a literal to another literal location because it is
9235 the same as the other literal value. */
9238 coalesce_shared_literal (asection *sec,
9240 property_table_entry *prop_table,
9244 property_table_entry *entry;
9246 property_table_entry *the_add_entry;
9248 xtensa_relax_info *relax_info;
9250 relax_info = get_xtensa_relax_info (sec);
9254 entry = elf_xtensa_find_property_entry
9255 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9256 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9259 /* Mark that the literal will be coalesced. */
9260 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9262 text_action_add (&relax_info->action_list,
9263 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9265 /* If the section is 4-byte aligned, do not add fill. */
9266 if (sec->alignment_power > 2)
9268 int fill_extra_space;
9269 bfd_vma entry_sec_offset;
9272 entry_sec_offset = entry->address - sec->vma + entry->size;
9274 entry_sec_offset = rel->r_rel.target_offset + 4;
9276 /* If the literal range is at the end of the section,
9278 fill_extra_space = 0;
9279 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9281 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9282 fill_extra_space = the_add_entry->size;
9284 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9285 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9286 -4, fill_extra_space);
9288 adjust_fill_action (fa, removed_diff);
9290 text_action_add (&relax_info->action_list,
9291 ta_fill, sec, entry_sec_offset, removed_diff);
9298 /* Move a literal to another location. This may actually increase the
9299 total amount of space used because of alignments so we need to do
9300 this carefully. Also, it may make a branch go out of range. */
9303 move_shared_literal (asection *sec,
9304 struct bfd_link_info *link_info,
9306 property_table_entry *prop_table,
9308 const r_reloc *target_loc,
9309 const literal_value *lit_value,
9310 section_cache_t *target_sec_cache)
9312 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9313 text_action *fa, *target_fa;
9315 xtensa_relax_info *relax_info, *target_relax_info;
9316 asection *target_sec;
9318 ebb_constraint ebb_table;
9319 bfd_boolean relocs_fit;
9321 /* If this routine always returns FALSE, the literals that cannot be
9322 coalesced will not be moved. */
9323 if (elf32xtensa_no_literal_movement)
9326 relax_info = get_xtensa_relax_info (sec);
9330 target_sec = r_reloc_get_section (target_loc);
9331 target_relax_info = get_xtensa_relax_info (target_sec);
9333 /* Literals to undefined sections may not be moved because they
9334 must report an error. */
9335 if (bfd_is_und_section (target_sec))
9338 src_entry = elf_xtensa_find_property_entry
9339 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9341 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9344 target_entry = elf_xtensa_find_property_entry
9345 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9346 target_sec->vma + target_loc->target_offset);
9351 /* Make sure that we have not broken any branches. */
9354 init_ebb_constraint (&ebb_table);
9355 ebb = &ebb_table.ebb;
9356 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9357 target_sec_cache->content_length,
9358 target_sec_cache->ptbl, target_sec_cache->pte_count,
9359 target_sec_cache->relocs, target_sec_cache->reloc_count);
9361 /* Propose to add 4 bytes + worst-case alignment size increase to
9363 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9364 ta_fill, target_loc->target_offset,
9365 -4 - (1 << target_sec->alignment_power), TRUE);
9367 /* Check all of the PC-relative relocations to make sure they still fit. */
9368 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9369 target_sec_cache->contents,
9370 target_sec_cache->relocs, NULL,
9376 text_action_add_literal (&target_relax_info->action_list,
9377 ta_add_literal, target_loc, lit_value, -4);
9379 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9381 /* May need to add or remove some fill to maintain alignment. */
9382 int fill_extra_space;
9383 bfd_vma entry_sec_offset;
9386 target_entry->address - target_sec->vma + target_entry->size;
9388 /* If the literal range is at the end of the section,
9390 fill_extra_space = 0;
9392 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9393 target_sec_cache->pte_count,
9395 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9396 fill_extra_space = the_add_entry->size;
9398 target_fa = find_fill_action (&target_relax_info->action_list,
9399 target_sec, entry_sec_offset);
9400 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9401 entry_sec_offset, 4,
9404 adjust_fill_action (target_fa, removed_diff);
9406 text_action_add (&target_relax_info->action_list,
9407 ta_fill, target_sec, entry_sec_offset, removed_diff);
9410 /* Mark that the literal will be moved to the new location. */
9411 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9413 /* Remove the literal. */
9414 text_action_add (&relax_info->action_list,
9415 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9417 /* If the section is 4-byte aligned, do not add fill. */
9418 if (sec->alignment_power > 2 && target_entry != src_entry)
9420 int fill_extra_space;
9421 bfd_vma entry_sec_offset;
9424 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9426 entry_sec_offset = rel->r_rel.target_offset+4;
9428 /* If the literal range is at the end of the section,
9430 fill_extra_space = 0;
9431 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9433 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9434 fill_extra_space = the_add_entry->size;
9436 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9437 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9438 -4, fill_extra_space);
9440 adjust_fill_action (fa, removed_diff);
9442 text_action_add (&relax_info->action_list,
9443 ta_fill, sec, entry_sec_offset, removed_diff);
9450 /* Second relaxation pass. */
9453 action_remove_bytes_fn (splay_tree_node node, void *p)
9455 bfd_size_type *final_size = p;
9456 text_action *action = (text_action *)node->value;
9458 *final_size -= action->removed_bytes;
9462 /* Modify all of the relocations to point to the right spot, and if this
9463 is a relaxable section, delete the unwanted literals and fix the
9467 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9469 Elf_Internal_Rela *internal_relocs;
9470 xtensa_relax_info *relax_info;
9472 bfd_boolean ok = TRUE;
9474 bfd_boolean rv = FALSE;
9475 bfd_boolean virtual_action;
9476 bfd_size_type sec_size;
9478 sec_size = bfd_get_section_limit (abfd, sec);
9479 relax_info = get_xtensa_relax_info (sec);
9480 BFD_ASSERT (relax_info);
9482 /* First translate any of the fixes that have been added already. */
9483 translate_section_fixes (sec);
9485 /* Handle property sections (e.g., literal tables) specially. */
9486 if (xtensa_is_property_section (sec))
9488 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9489 return relax_property_section (abfd, sec, link_info);
9492 internal_relocs = retrieve_internal_relocs (abfd, sec,
9493 link_info->keep_memory);
9494 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9497 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9498 if (contents == NULL && sec_size != 0)
9504 if (internal_relocs)
9506 for (i = 0; i < sec->reloc_count; i++)
9508 Elf_Internal_Rela *irel;
9509 xtensa_relax_info *target_relax_info;
9510 bfd_vma source_offset, old_source_offset;
9513 asection *target_sec;
9515 /* Locally change the source address.
9516 Translate the target to the new target address.
9517 If it points to this section and has been removed,
9521 irel = &internal_relocs[i];
9522 source_offset = irel->r_offset;
9523 old_source_offset = source_offset;
9525 r_type = ELF32_R_TYPE (irel->r_info);
9526 r_reloc_init (&r_rel, abfd, irel, contents,
9527 bfd_get_section_limit (abfd, sec));
9529 /* If this section could have changed then we may need to
9530 change the relocation's offset. */
9532 if (relax_info->is_relaxable_literal_section
9533 || relax_info->is_relaxable_asm_section)
9535 pin_internal_relocs (sec, internal_relocs);
9537 if (r_type != R_XTENSA_NONE
9538 && find_removed_literal (&relax_info->removed_list,
9541 /* Remove this relocation. */
9542 if (elf_hash_table (link_info)->dynamic_sections_created)
9543 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9544 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9545 irel->r_offset = offset_with_removed_text_map
9546 (&relax_info->action_list, irel->r_offset);
9550 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9552 text_action *action =
9553 find_insn_action (&relax_info->action_list,
9555 if (action && (action->action == ta_convert_longcall
9556 || action->action == ta_remove_longcall))
9558 bfd_reloc_status_type retval;
9559 char *error_message = NULL;
9561 retval = contract_asm_expansion (contents, sec_size,
9562 irel, &error_message);
9563 if (retval != bfd_reloc_ok)
9565 (*link_info->callbacks->reloc_dangerous)
9566 (link_info, error_message, abfd, sec,
9570 /* Update the action so that the code that moves
9571 the contents will do the right thing. */
9572 /* ta_remove_longcall and ta_remove_insn actions are
9573 grouped together in the tree as well as
9574 ta_convert_longcall and ta_none, so that changes below
9575 can be done w/o removing and reinserting action into
9578 if (action->action == ta_remove_longcall)
9579 action->action = ta_remove_insn;
9581 action->action = ta_none;
9582 /* Refresh the info in the r_rel. */
9583 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9584 r_type = ELF32_R_TYPE (irel->r_info);
9588 source_offset = offset_with_removed_text_map
9589 (&relax_info->action_list, irel->r_offset);
9590 irel->r_offset = source_offset;
9593 /* If the target section could have changed then
9594 we may need to change the relocation's target offset. */
9596 target_sec = r_reloc_get_section (&r_rel);
9598 /* For a reference to a discarded section from a DWARF section,
9599 i.e., where action_discarded is PRETEND, the symbol will
9600 eventually be modified to refer to the kept section (at least if
9601 the kept and discarded sections are the same size). Anticipate
9602 that here and adjust things accordingly. */
9603 if (! elf_xtensa_ignore_discarded_relocs (sec)
9604 && elf_xtensa_action_discarded (sec) == PRETEND
9605 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9606 && target_sec != NULL
9607 && discarded_section (target_sec))
9609 /* It would be natural to call _bfd_elf_check_kept_section
9610 here, but it's not exported from elflink.c. It's also a
9611 fairly expensive check. Adjusting the relocations to the
9612 discarded section is fairly harmless; it will only adjust
9613 some addends and difference values. If it turns out that
9614 _bfd_elf_check_kept_section fails later, it won't matter,
9615 so just compare the section names to find the right group
9617 asection *kept = target_sec->kept_section;
9620 if ((kept->flags & SEC_GROUP) != 0)
9622 asection *first = elf_next_in_group (kept);
9623 asection *s = first;
9628 if (strcmp (s->name, target_sec->name) == 0)
9633 s = elf_next_in_group (s);
9640 && ((target_sec->rawsize != 0
9641 ? target_sec->rawsize : target_sec->size)
9642 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9646 target_relax_info = get_xtensa_relax_info (target_sec);
9647 if (target_relax_info
9648 && (target_relax_info->is_relaxable_literal_section
9649 || target_relax_info->is_relaxable_asm_section))
9652 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9654 if (r_type == R_XTENSA_DIFF8
9655 || r_type == R_XTENSA_DIFF16
9656 || r_type == R_XTENSA_DIFF32
9657 || r_type == R_XTENSA_PDIFF8
9658 || r_type == R_XTENSA_PDIFF16
9659 || r_type == R_XTENSA_PDIFF32
9660 || r_type == R_XTENSA_NDIFF8
9661 || r_type == R_XTENSA_NDIFF16
9662 || r_type == R_XTENSA_NDIFF32)
9664 bfd_signed_vma diff_value = 0;
9665 bfd_vma new_end_offset, diff_mask = 0;
9667 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9669 (*link_info->callbacks->reloc_dangerous)
9670 (link_info, _("invalid relocation address"),
9671 abfd, sec, old_source_offset);
9677 case R_XTENSA_DIFF8:
9680 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9682 case R_XTENSA_DIFF16:
9685 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9687 case R_XTENSA_DIFF32:
9688 diff_mask = 0x7fffffff;
9690 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9692 case R_XTENSA_PDIFF8:
9693 case R_XTENSA_NDIFF8:
9696 bfd_get_8 (abfd, &contents[old_source_offset]);
9698 case R_XTENSA_PDIFF16:
9699 case R_XTENSA_NDIFF16:
9702 bfd_get_16 (abfd, &contents[old_source_offset]);
9704 case R_XTENSA_PDIFF32:
9705 case R_XTENSA_NDIFF32:
9706 diff_mask = 0xffffffff;
9708 bfd_get_32 (abfd, &contents[old_source_offset]);
9712 if (r_type >= R_XTENSA_NDIFF8
9713 && r_type <= R_XTENSA_NDIFF32
9715 diff_value |= ~diff_mask;
9717 new_end_offset = offset_with_removed_text_map
9718 (&target_relax_info->action_list,
9719 r_rel.target_offset + diff_value);
9720 diff_value = new_end_offset - new_reloc.target_offset;
9724 case R_XTENSA_DIFF8:
9725 bfd_put_signed_8 (abfd, diff_value,
9726 &contents[old_source_offset]);
9728 case R_XTENSA_DIFF16:
9729 bfd_put_signed_16 (abfd, diff_value,
9730 &contents[old_source_offset]);
9732 case R_XTENSA_DIFF32:
9733 bfd_put_signed_32 (abfd, diff_value,
9734 &contents[old_source_offset]);
9736 case R_XTENSA_PDIFF8:
9737 case R_XTENSA_NDIFF8:
9738 bfd_put_8 (abfd, diff_value,
9739 &contents[old_source_offset]);
9741 case R_XTENSA_PDIFF16:
9742 case R_XTENSA_NDIFF16:
9743 bfd_put_16 (abfd, diff_value,
9744 &contents[old_source_offset]);
9746 case R_XTENSA_PDIFF32:
9747 case R_XTENSA_NDIFF32:
9748 bfd_put_32 (abfd, diff_value,
9749 &contents[old_source_offset]);
9753 /* Check for overflow. Sign bits must be all zeroes or
9754 all ones. When sign bits are all ones diff_value
9756 if (((diff_value & ~diff_mask) != 0
9757 && (diff_value & ~diff_mask) != ~diff_mask)
9758 || (diff_value && (bfd_vma) diff_value == ~diff_mask))
9760 (*link_info->callbacks->reloc_dangerous)
9761 (link_info, _("overflow after relaxation"),
9762 abfd, sec, old_source_offset);
9766 pin_contents (sec, contents);
9769 /* If the relocation still references a section in the same
9770 input file, modify the relocation directly instead of
9771 adding a "fix" record. */
9772 if (target_sec->owner == abfd)
9774 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9775 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9776 irel->r_addend = new_reloc.rela.r_addend;
9777 pin_internal_relocs (sec, internal_relocs);
9781 bfd_vma addend_displacement;
9784 addend_displacement =
9785 new_reloc.target_offset + new_reloc.virtual_offset;
9786 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9788 addend_displacement, TRUE);
9795 if ((relax_info->is_relaxable_literal_section
9796 || relax_info->is_relaxable_asm_section)
9797 && action_list_count (&relax_info->action_list))
9799 /* Walk through the planned actions and build up a table
9800 of move, copy and fill records. Use the move, copy and
9801 fill records to perform the actions once. */
9803 bfd_size_type final_size, copy_size, orig_insn_size;
9804 bfd_byte *scratch = NULL;
9805 bfd_byte *dup_contents = NULL;
9806 bfd_size_type orig_size = sec->size;
9807 bfd_vma orig_dot = 0;
9808 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9809 orig dot in physical memory. */
9810 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9811 bfd_vma dup_dot = 0;
9813 text_action *action;
9815 final_size = sec->size;
9817 splay_tree_foreach (relax_info->action_list.tree,
9818 action_remove_bytes_fn, &final_size);
9819 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9820 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9822 /* The dot is the current fill location. */
9824 print_action_list (stderr, &relax_info->action_list);
9827 for (action = action_first (&relax_info->action_list); action;
9828 action = action_next (&relax_info->action_list, action))
9830 virtual_action = FALSE;
9831 if (action->offset > orig_dot)
9833 orig_dot += orig_dot_copied;
9834 orig_dot_copied = 0;
9836 /* Out of the virtual world. */
9839 if (action->offset > orig_dot)
9841 copy_size = action->offset - orig_dot;
9842 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9843 orig_dot += copy_size;
9844 dup_dot += copy_size;
9845 BFD_ASSERT (action->offset == orig_dot);
9847 else if (action->offset < orig_dot)
9849 if (action->action == ta_fill
9850 && action->offset - action->removed_bytes == orig_dot)
9852 /* This is OK because the fill only effects the dup_dot. */
9854 else if (action->action == ta_add_literal)
9856 /* TBD. Might need to handle this. */
9859 if (action->offset == orig_dot)
9861 if (action->virtual_offset > orig_dot_vo)
9863 if (orig_dot_vo == 0)
9865 /* Need to copy virtual_offset bytes. Probably four. */
9866 copy_size = action->virtual_offset - orig_dot_vo;
9867 memmove (&dup_contents[dup_dot],
9868 &contents[orig_dot], copy_size);
9869 orig_dot_copied = copy_size;
9870 dup_dot += copy_size;
9872 virtual_action = TRUE;
9875 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9877 switch (action->action)
9879 case ta_remove_literal:
9880 case ta_remove_insn:
9881 BFD_ASSERT (action->removed_bytes >= 0);
9882 orig_dot += action->removed_bytes;
9885 case ta_narrow_insn:
9888 memmove (scratch, &contents[orig_dot], orig_insn_size);
9889 BFD_ASSERT (action->removed_bytes == 1);
9890 rv = narrow_instruction (scratch, final_size, 0);
9892 memmove (&dup_contents[dup_dot], scratch, copy_size);
9893 orig_dot += orig_insn_size;
9894 dup_dot += copy_size;
9898 if (action->removed_bytes >= 0)
9899 orig_dot += action->removed_bytes;
9902 /* Already zeroed in dup_contents. Just bump the
9904 dup_dot += (-action->removed_bytes);
9909 BFD_ASSERT (action->removed_bytes == 0);
9912 case ta_convert_longcall:
9913 case ta_remove_longcall:
9914 /* These will be removed or converted before we get here. */
9921 memmove (scratch, &contents[orig_dot], orig_insn_size);
9922 BFD_ASSERT (action->removed_bytes == -1);
9923 rv = widen_instruction (scratch, final_size, 0);
9925 memmove (&dup_contents[dup_dot], scratch, copy_size);
9926 orig_dot += orig_insn_size;
9927 dup_dot += copy_size;
9930 case ta_add_literal:
9933 BFD_ASSERT (action->removed_bytes == -4);
9934 /* TBD -- place the literal value here and insert
9936 memset (&dup_contents[dup_dot], 0, 4);
9937 pin_internal_relocs (sec, internal_relocs);
9938 pin_contents (sec, contents);
9940 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9941 relax_info, &internal_relocs, &action->value))
9945 orig_dot_vo += copy_size;
9947 orig_dot += orig_insn_size;
9948 dup_dot += copy_size;
9952 /* Not implemented yet. */
9957 BFD_ASSERT (dup_dot <= final_size);
9958 BFD_ASSERT (orig_dot <= orig_size);
9961 orig_dot += orig_dot_copied;
9962 orig_dot_copied = 0;
9964 if (orig_dot != orig_size)
9966 copy_size = orig_size - orig_dot;
9967 BFD_ASSERT (orig_size > orig_dot);
9968 BFD_ASSERT (dup_dot + copy_size == final_size);
9969 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9970 orig_dot += copy_size;
9971 dup_dot += copy_size;
9973 BFD_ASSERT (orig_size == orig_dot);
9974 BFD_ASSERT (final_size == dup_dot);
9976 /* Move the dup_contents back. */
9977 if (final_size > orig_size)
9979 /* Contents need to be reallocated. Swap the dup_contents into
9981 sec->contents = dup_contents;
9983 contents = dup_contents;
9984 pin_contents (sec, contents);
9988 BFD_ASSERT (final_size <= orig_size);
9989 memset (contents, 0, orig_size);
9990 memcpy (contents, dup_contents, final_size);
9991 free (dup_contents);
9994 pin_contents (sec, contents);
9996 if (sec->rawsize == 0)
9997 sec->rawsize = sec->size;
9998 sec->size = final_size;
10002 release_internal_relocs (sec, internal_relocs);
10003 release_contents (sec, contents);
10009 translate_section_fixes (asection *sec)
10011 xtensa_relax_info *relax_info;
10014 relax_info = get_xtensa_relax_info (sec);
10018 for (r = relax_info->fix_list; r != NULL; r = r->next)
10019 if (!translate_reloc_bfd_fix (r))
10026 /* Translate a fix given the mapping in the relax info for the target
10027 section. If it has already been translated, no work is required. */
10030 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
10032 reloc_bfd_fix new_fix;
10034 xtensa_relax_info *relax_info;
10035 removed_literal *removed;
10036 bfd_vma new_offset, target_offset;
10038 if (fix->translated)
10041 sec = fix->target_sec;
10042 target_offset = fix->target_offset;
10044 relax_info = get_xtensa_relax_info (sec);
10047 fix->translated = TRUE;
10053 /* The fix does not need to be translated if the section cannot change. */
10054 if (!relax_info->is_relaxable_literal_section
10055 && !relax_info->is_relaxable_asm_section)
10057 fix->translated = TRUE;
10061 /* If the literal has been moved and this relocation was on an
10062 opcode, then the relocation should move to the new literal
10063 location. Otherwise, the relocation should move within the
10067 if (is_operand_relocation (fix->src_type))
10069 /* Check if the original relocation is against a literal being
10071 removed = find_removed_literal (&relax_info->removed_list,
10079 /* The fact that there is still a relocation to this literal indicates
10080 that the literal is being coalesced, not simply removed. */
10081 BFD_ASSERT (removed->to.abfd != NULL);
10083 /* This was moved to some other address (possibly another section). */
10084 new_sec = r_reloc_get_section (&removed->to);
10085 if (new_sec != sec)
10088 relax_info = get_xtensa_relax_info (sec);
10090 (!relax_info->is_relaxable_literal_section
10091 && !relax_info->is_relaxable_asm_section))
10093 target_offset = removed->to.target_offset;
10094 new_fix.target_sec = new_sec;
10095 new_fix.target_offset = target_offset;
10096 new_fix.translated = TRUE;
10101 target_offset = removed->to.target_offset;
10102 new_fix.target_sec = new_sec;
10105 /* The target address may have been moved within its section. */
10106 new_offset = offset_with_removed_text (&relax_info->action_list,
10109 new_fix.target_offset = new_offset;
10110 new_fix.target_offset = new_offset;
10111 new_fix.translated = TRUE;
10117 /* Fix up a relocation to take account of removed literals. */
10120 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10122 xtensa_relax_info *relax_info;
10123 removed_literal *removed;
10124 bfd_vma target_offset, base_offset;
10126 *new_rel = *orig_rel;
10128 if (!r_reloc_is_defined (orig_rel))
10131 relax_info = get_xtensa_relax_info (sec);
10132 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10133 || relax_info->is_relaxable_asm_section));
10135 target_offset = orig_rel->target_offset;
10138 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10140 /* Check if the original relocation is against a literal being
10142 removed = find_removed_literal (&relax_info->removed_list,
10145 if (removed && removed->to.abfd)
10149 /* The fact that there is still a relocation to this literal indicates
10150 that the literal is being coalesced, not simply removed. */
10151 BFD_ASSERT (removed->to.abfd != NULL);
10153 /* This was moved to some other address
10154 (possibly in another section). */
10155 *new_rel = removed->to;
10156 new_sec = r_reloc_get_section (new_rel);
10157 if (new_sec != sec)
10160 relax_info = get_xtensa_relax_info (sec);
10162 || (!relax_info->is_relaxable_literal_section
10163 && !relax_info->is_relaxable_asm_section))
10166 target_offset = new_rel->target_offset;
10169 /* Find the base offset of the reloc symbol, excluding any addend from the
10170 reloc or from the section contents (for a partial_inplace reloc). Then
10171 find the adjusted values of the offsets due to relaxation. The base
10172 offset is needed to determine the change to the reloc's addend; the reloc
10173 addend should not be adjusted due to relaxations located before the base
10176 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10177 if (base_offset <= target_offset)
10179 int base_removed = removed_by_actions_map (&relax_info->action_list,
10180 base_offset, FALSE);
10181 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10182 target_offset, FALSE) -
10185 new_rel->target_offset = target_offset - base_removed - addend_removed;
10186 new_rel->rela.r_addend -= addend_removed;
10190 /* Handle a negative addend. The base offset comes first. */
10191 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10192 target_offset, FALSE);
10193 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10194 base_offset, FALSE) -
10197 new_rel->target_offset = target_offset - tgt_removed;
10198 new_rel->rela.r_addend += addend_removed;
10205 /* For dynamic links, there may be a dynamic relocation for each
10206 literal. The number of dynamic relocations must be computed in
10207 size_dynamic_sections, which occurs before relaxation. When a
10208 literal is removed, this function checks if there is a corresponding
10209 dynamic relocation and shrinks the size of the appropriate dynamic
10210 relocation section accordingly. At this point, the contents of the
10211 dynamic relocation sections have not yet been filled in, so there's
10212 nothing else that needs to be done. */
10215 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10217 asection *input_section,
10218 Elf_Internal_Rela *rel)
10220 struct elf_xtensa_link_hash_table *htab;
10221 Elf_Internal_Shdr *symtab_hdr;
10222 struct elf_link_hash_entry **sym_hashes;
10223 unsigned long r_symndx;
10225 struct elf_link_hash_entry *h;
10226 bfd_boolean dynamic_symbol;
10228 htab = elf_xtensa_hash_table (info);
10232 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10233 sym_hashes = elf_sym_hashes (abfd);
10235 r_type = ELF32_R_TYPE (rel->r_info);
10236 r_symndx = ELF32_R_SYM (rel->r_info);
10238 if (r_symndx < symtab_hdr->sh_info)
10241 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10243 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10245 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10246 && (input_section->flags & SEC_ALLOC) != 0
10248 || (bfd_link_pic (info)
10249 && (!h || h->root.type != bfd_link_hash_undefweak))))
10252 bfd_boolean is_plt = FALSE;
10254 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10256 srel = htab->elf.srelplt;
10260 srel = htab->elf.srelgot;
10262 /* Reduce size of the .rela.* section by one reloc. */
10263 BFD_ASSERT (srel != NULL);
10264 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10265 srel->size -= sizeof (Elf32_External_Rela);
10269 asection *splt, *sgotplt, *srelgot;
10270 int reloc_index, chunk;
10272 /* Find the PLT reloc index of the entry being removed. This
10273 is computed from the size of ".rela.plt". It is needed to
10274 figure out which PLT chunk to resize. Usually "last index
10275 = size - 1" since the index starts at zero, but in this
10276 context, the size has just been decremented so there's no
10277 need to subtract one. */
10278 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10280 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10281 splt = elf_xtensa_get_plt_section (info, chunk);
10282 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10283 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10285 /* Check if an entire PLT chunk has just been eliminated. */
10286 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10288 /* The two magic GOT entries for that chunk can go away. */
10289 srelgot = htab->elf.srelgot;
10290 BFD_ASSERT (srelgot != NULL);
10291 srelgot->reloc_count -= 2;
10292 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10293 sgotplt->size -= 8;
10295 /* There should be only one entry left (and it will be
10297 BFD_ASSERT (sgotplt->size == 4);
10298 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10301 BFD_ASSERT (sgotplt->size >= 4);
10302 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10304 sgotplt->size -= 4;
10305 splt->size -= PLT_ENTRY_SIZE;
10311 /* Take an r_rel and move it to another section. This usually
10312 requires extending the interal_relocation array and pinning it. If
10313 the original r_rel is from the same BFD, we can complete this here.
10314 Otherwise, we add a fix record to let the final link fix the
10315 appropriate address. Contents and internal relocations for the
10316 section must be pinned after calling this routine. */
10319 move_literal (bfd *abfd,
10320 struct bfd_link_info *link_info,
10323 bfd_byte *contents,
10324 xtensa_relax_info *relax_info,
10325 Elf_Internal_Rela **internal_relocs_p,
10326 const literal_value *lit)
10328 Elf_Internal_Rela *new_relocs = NULL;
10329 size_t new_relocs_count = 0;
10330 Elf_Internal_Rela this_rela;
10331 const r_reloc *r_rel;
10333 r_rel = &lit->r_rel;
10334 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10336 if (r_reloc_is_const (r_rel))
10337 bfd_put_32 (abfd, lit->value, contents + offset);
10342 reloc_bfd_fix *fix;
10343 unsigned insert_at;
10345 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10347 /* This is the difficult case. We have to create a fix up. */
10348 this_rela.r_offset = offset;
10349 this_rela.r_info = ELF32_R_INFO (0, r_type);
10350 this_rela.r_addend =
10351 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10352 bfd_put_32 (abfd, lit->value, contents + offset);
10354 /* Currently, we cannot move relocations during a relocatable link. */
10355 BFD_ASSERT (!bfd_link_relocatable (link_info));
10356 fix = reloc_bfd_fix_init (sec, offset, r_type,
10357 r_reloc_get_section (r_rel),
10358 r_rel->target_offset + r_rel->virtual_offset,
10360 /* We also need to mark that relocations are needed here. */
10361 sec->flags |= SEC_RELOC;
10363 translate_reloc_bfd_fix (fix);
10364 /* This fix has not yet been translated. */
10365 add_fix (sec, fix);
10367 /* Add the relocation. If we have already allocated our own
10368 space for the relocations and we have room for more, then use
10369 it. Otherwise, allocate new space and move the literals. */
10370 insert_at = sec->reloc_count;
10371 for (i = 0; i < sec->reloc_count; ++i)
10373 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10380 if (*internal_relocs_p != relax_info->allocated_relocs
10381 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10383 BFD_ASSERT (relax_info->allocated_relocs == NULL
10384 || sec->reloc_count == relax_info->relocs_count);
10386 if (relax_info->allocated_relocs_count == 0)
10387 new_relocs_count = (sec->reloc_count + 2) * 2;
10389 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10391 new_relocs = (Elf_Internal_Rela *)
10392 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10396 /* We could handle this more quickly by finding the split point. */
10397 if (insert_at != 0)
10398 memcpy (new_relocs, *internal_relocs_p,
10399 insert_at * sizeof (Elf_Internal_Rela));
10401 new_relocs[insert_at] = this_rela;
10403 if (insert_at != sec->reloc_count)
10404 memcpy (new_relocs + insert_at + 1,
10405 (*internal_relocs_p) + insert_at,
10406 (sec->reloc_count - insert_at)
10407 * sizeof (Elf_Internal_Rela));
10409 if (*internal_relocs_p != relax_info->allocated_relocs)
10411 /* The first time we re-allocate, we can only free the
10412 old relocs if they were allocated with bfd_malloc.
10413 This is not true when keep_memory is in effect. */
10414 if (!link_info->keep_memory)
10415 free (*internal_relocs_p);
10418 free (*internal_relocs_p);
10419 relax_info->allocated_relocs = new_relocs;
10420 relax_info->allocated_relocs_count = new_relocs_count;
10421 elf_section_data (sec)->relocs = new_relocs;
10422 sec->reloc_count++;
10423 relax_info->relocs_count = sec->reloc_count;
10424 *internal_relocs_p = new_relocs;
10428 if (insert_at != sec->reloc_count)
10431 for (idx = sec->reloc_count; idx > insert_at; idx--)
10432 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10434 (*internal_relocs_p)[insert_at] = this_rela;
10435 sec->reloc_count++;
10436 if (relax_info->allocated_relocs)
10437 relax_info->relocs_count = sec->reloc_count;
10444 /* This is similar to relax_section except that when a target is moved,
10445 we shift addresses up. We also need to modify the size. This
10446 algorithm does NOT allow for relocations into the middle of the
10447 property sections. */
10450 relax_property_section (bfd *abfd,
10452 struct bfd_link_info *link_info)
10454 Elf_Internal_Rela *internal_relocs;
10455 bfd_byte *contents;
10457 bfd_boolean ok = TRUE;
10458 bfd_boolean is_full_prop_section;
10459 size_t last_zfill_target_offset = 0;
10460 asection *last_zfill_target_sec = NULL;
10461 bfd_size_type sec_size;
10462 bfd_size_type entry_size;
10464 sec_size = bfd_get_section_limit (abfd, sec);
10465 internal_relocs = retrieve_internal_relocs (abfd, sec,
10466 link_info->keep_memory);
10467 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10468 if (contents == NULL && sec_size != 0)
10474 is_full_prop_section = xtensa_is_proptable_section (sec);
10475 if (is_full_prop_section)
10480 if (internal_relocs)
10482 for (i = 0; i < sec->reloc_count; i++)
10484 Elf_Internal_Rela *irel;
10485 xtensa_relax_info *target_relax_info;
10487 asection *target_sec;
10489 bfd_byte *size_p, *flags_p;
10491 /* Locally change the source address.
10492 Translate the target to the new target address.
10493 If it points to this section and has been removed, MOVE IT.
10494 Also, don't forget to modify the associated SIZE at
10497 irel = &internal_relocs[i];
10498 r_type = ELF32_R_TYPE (irel->r_info);
10499 if (r_type == R_XTENSA_NONE)
10502 /* Find the literal value. */
10503 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10504 size_p = &contents[irel->r_offset + 4];
10506 if (is_full_prop_section)
10507 flags_p = &contents[irel->r_offset + 8];
10508 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10510 target_sec = r_reloc_get_section (&val.r_rel);
10511 target_relax_info = get_xtensa_relax_info (target_sec);
10513 if (target_relax_info
10514 && (target_relax_info->is_relaxable_literal_section
10515 || target_relax_info->is_relaxable_asm_section ))
10517 /* Translate the relocation's destination. */
10518 bfd_vma old_offset = val.r_rel.target_offset;
10519 bfd_vma new_offset;
10520 long old_size, new_size;
10521 int removed_by_old_offset =
10522 removed_by_actions_map (&target_relax_info->action_list,
10523 old_offset, FALSE);
10524 new_offset = old_offset - removed_by_old_offset;
10526 /* Assert that we are not out of bounds. */
10527 old_size = bfd_get_32 (abfd, size_p);
10528 new_size = old_size;
10532 /* Only the first zero-sized unreachable entry is
10533 allowed to expand. In this case the new offset
10534 should be the offset before the fill and the new
10535 size is the expansion size. For other zero-sized
10536 entries the resulting size should be zero with an
10537 offset before or after the fill address depending
10538 on whether the expanding unreachable entry
10540 if (last_zfill_target_sec == 0
10541 || last_zfill_target_sec != target_sec
10542 || last_zfill_target_offset != old_offset)
10544 bfd_vma new_end_offset = new_offset;
10546 /* Recompute the new_offset, but this time don't
10547 include any fill inserted by relaxation. */
10548 removed_by_old_offset =
10549 removed_by_actions_map (&target_relax_info->action_list,
10551 new_offset = old_offset - removed_by_old_offset;
10553 /* If it is not unreachable and we have not yet
10554 seen an unreachable at this address, place it
10555 before the fill address. */
10556 if (flags_p && (bfd_get_32 (abfd, flags_p)
10557 & XTENSA_PROP_UNREACHABLE) != 0)
10559 new_size = new_end_offset - new_offset;
10561 last_zfill_target_sec = target_sec;
10562 last_zfill_target_offset = old_offset;
10568 int removed_by_old_offset_size =
10569 removed_by_actions_map (&target_relax_info->action_list,
10570 old_offset + old_size, TRUE);
10571 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10574 if (new_size != old_size)
10576 bfd_put_32 (abfd, new_size, size_p);
10577 pin_contents (sec, contents);
10580 if (new_offset != old_offset)
10582 bfd_vma diff = new_offset - old_offset;
10583 irel->r_addend += diff;
10584 pin_internal_relocs (sec, internal_relocs);
10590 /* Combine adjacent property table entries. This is also done in
10591 finish_dynamic_sections() but at that point it's too late to
10592 reclaim the space in the output section, so we do this twice. */
10594 if (internal_relocs && (!bfd_link_relocatable (link_info)
10595 || xtensa_is_littable_section (sec)))
10597 Elf_Internal_Rela *last_irel = NULL;
10598 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10599 int removed_bytes = 0;
10601 flagword predef_flags;
10603 predef_flags = xtensa_get_property_predef_flags (sec);
10605 /* Walk over memory and relocations at the same time.
10606 This REQUIRES that the internal_relocs be sorted by offset. */
10607 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10608 internal_reloc_compare);
10610 pin_internal_relocs (sec, internal_relocs);
10611 pin_contents (sec, contents);
10613 next_rel = internal_relocs;
10614 rel_end = internal_relocs + sec->reloc_count;
10616 BFD_ASSERT (sec->size % entry_size == 0);
10618 for (offset = 0; offset < sec->size; offset += entry_size)
10620 Elf_Internal_Rela *offset_rel, *extra_rel;
10621 bfd_vma bytes_to_remove, size, actual_offset;
10622 bfd_boolean remove_this_rel;
10625 /* Find the first relocation for the entry at the current offset.
10626 Adjust the offsets of any extra relocations for the previous
10631 for (irel = next_rel; irel < rel_end; irel++)
10633 if ((irel->r_offset == offset
10634 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10635 || irel->r_offset > offset)
10640 irel->r_offset -= removed_bytes;
10644 /* Find the next relocation (if there are any left). */
10648 for (irel = offset_rel + 1; irel < rel_end; irel++)
10650 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10658 /* Check if there are relocations on the current entry. There
10659 should usually be a relocation on the offset field. If there
10660 are relocations on the size or flags, then we can't optimize
10661 this entry. Also, find the next relocation to examine on the
10665 if (offset_rel->r_offset >= offset + entry_size)
10667 next_rel = offset_rel;
10668 /* There are no relocations on the current entry, but we
10669 might still be able to remove it if the size is zero. */
10672 else if (offset_rel->r_offset > offset
10674 && extra_rel->r_offset < offset + entry_size))
10676 /* There is a relocation on the size or flags, so we can't
10677 do anything with this entry. Continue with the next. */
10678 next_rel = offset_rel;
10683 BFD_ASSERT (offset_rel->r_offset == offset);
10684 offset_rel->r_offset -= removed_bytes;
10685 next_rel = offset_rel + 1;
10691 remove_this_rel = FALSE;
10692 bytes_to_remove = 0;
10693 actual_offset = offset - removed_bytes;
10694 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10696 if (is_full_prop_section)
10697 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10699 flags = predef_flags;
10702 && (flags & XTENSA_PROP_ALIGN) == 0
10703 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10705 /* Always remove entries with zero size and no alignment. */
10706 bytes_to_remove = entry_size;
10708 remove_this_rel = TRUE;
10710 else if (offset_rel
10711 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10715 flagword old_flags;
10717 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10718 bfd_vma old_address =
10719 (last_irel->r_addend
10720 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10721 bfd_vma new_address =
10722 (offset_rel->r_addend
10723 + bfd_get_32 (abfd, &contents[actual_offset]));
10724 if (is_full_prop_section)
10725 old_flags = bfd_get_32
10726 (abfd, &contents[last_irel->r_offset + 8]);
10728 old_flags = predef_flags;
10730 if ((ELF32_R_SYM (offset_rel->r_info)
10731 == ELF32_R_SYM (last_irel->r_info))
10732 && old_address + old_size == new_address
10733 && old_flags == flags
10734 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10735 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10737 /* Fix the old size. */
10738 bfd_put_32 (abfd, old_size + size,
10739 &contents[last_irel->r_offset + 4]);
10740 bytes_to_remove = entry_size;
10741 remove_this_rel = TRUE;
10744 last_irel = offset_rel;
10747 last_irel = offset_rel;
10750 if (remove_this_rel)
10752 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10753 offset_rel->r_offset = 0;
10756 if (bytes_to_remove != 0)
10758 removed_bytes += bytes_to_remove;
10759 if (offset + bytes_to_remove < sec->size)
10760 memmove (&contents[actual_offset],
10761 &contents[actual_offset + bytes_to_remove],
10762 sec->size - offset - bytes_to_remove);
10768 /* Fix up any extra relocations on the last entry. */
10769 for (irel = next_rel; irel < rel_end; irel++)
10770 irel->r_offset -= removed_bytes;
10772 /* Clear the removed bytes. */
10773 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10775 if (sec->rawsize == 0)
10776 sec->rawsize = sec->size;
10777 sec->size -= removed_bytes;
10779 if (xtensa_is_littable_section (sec))
10781 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10783 sgotloc->size -= removed_bytes;
10789 release_internal_relocs (sec, internal_relocs);
10790 release_contents (sec, contents);
10795 /* Third relaxation pass. */
10797 /* Change symbol values to account for removed literals. */
10800 relax_section_symbols (bfd *abfd, asection *sec)
10802 xtensa_relax_info *relax_info;
10803 unsigned int sec_shndx;
10804 Elf_Internal_Shdr *symtab_hdr;
10805 Elf_Internal_Sym *isymbuf;
10806 unsigned i, num_syms, num_locals;
10808 relax_info = get_xtensa_relax_info (sec);
10809 BFD_ASSERT (relax_info);
10811 if (!relax_info->is_relaxable_literal_section
10812 && !relax_info->is_relaxable_asm_section)
10815 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10817 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10818 isymbuf = retrieve_local_syms (abfd);
10820 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10821 num_locals = symtab_hdr->sh_info;
10823 /* Adjust the local symbols defined in this section. */
10824 for (i = 0; i < num_locals; i++)
10826 Elf_Internal_Sym *isym = &isymbuf[i];
10828 if (isym->st_shndx == sec_shndx)
10830 bfd_vma orig_addr = isym->st_value;
10831 int removed = removed_by_actions_map (&relax_info->action_list,
10834 isym->st_value -= removed;
10835 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10837 removed_by_actions_map (&relax_info->action_list,
10838 orig_addr + isym->st_size, FALSE) -
10843 /* Now adjust the global symbols defined in this section. */
10844 for (i = 0; i < (num_syms - num_locals); i++)
10846 struct elf_link_hash_entry *sym_hash;
10848 sym_hash = elf_sym_hashes (abfd)[i];
10850 if (sym_hash->root.type == bfd_link_hash_warning)
10851 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10853 if ((sym_hash->root.type == bfd_link_hash_defined
10854 || sym_hash->root.type == bfd_link_hash_defweak)
10855 && sym_hash->root.u.def.section == sec)
10857 bfd_vma orig_addr = sym_hash->root.u.def.value;
10858 int removed = removed_by_actions_map (&relax_info->action_list,
10861 sym_hash->root.u.def.value -= removed;
10863 if (sym_hash->type == STT_FUNC)
10865 removed_by_actions_map (&relax_info->action_list,
10866 orig_addr + sym_hash->size, FALSE) -
10875 /* "Fix" handling functions, called while performing relocations. */
10878 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10880 asection *input_section,
10881 bfd_byte *contents)
10884 asection *sec, *old_sec;
10885 bfd_vma old_offset;
10886 int r_type = ELF32_R_TYPE (rel->r_info);
10887 reloc_bfd_fix *fix;
10889 if (r_type == R_XTENSA_NONE)
10892 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10896 r_reloc_init (&r_rel, input_bfd, rel, contents,
10897 bfd_get_section_limit (input_bfd, input_section));
10898 old_sec = r_reloc_get_section (&r_rel);
10899 old_offset = r_rel.target_offset;
10901 if (!old_sec || !r_reloc_is_defined (&r_rel))
10903 if (r_type != R_XTENSA_ASM_EXPAND)
10906 /* xgettext:c-format */
10907 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10908 input_bfd, input_section, (uint64_t) rel->r_offset,
10909 elf_howto_table[r_type].name);
10912 /* Leave it be. Resolution will happen in a later stage. */
10916 sec = fix->target_sec;
10917 rel->r_addend += ((sec->output_offset + fix->target_offset)
10918 - (old_sec->output_offset + old_offset));
10925 do_fix_for_final_link (Elf_Internal_Rela *rel,
10927 asection *input_section,
10928 bfd_byte *contents,
10929 bfd_vma *relocationp)
10932 int r_type = ELF32_R_TYPE (rel->r_info);
10933 reloc_bfd_fix *fix;
10934 bfd_vma fixup_diff;
10936 if (r_type == R_XTENSA_NONE)
10939 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10943 sec = fix->target_sec;
10945 fixup_diff = rel->r_addend;
10946 if (elf_howto_table[fix->src_type].partial_inplace)
10948 bfd_vma inplace_val;
10949 BFD_ASSERT (fix->src_offset
10950 < bfd_get_section_limit (input_bfd, input_section));
10951 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10952 fixup_diff += inplace_val;
10955 *relocationp = (sec->output_section->vma
10956 + sec->output_offset
10957 + fix->target_offset - fixup_diff);
10961 /* Miscellaneous utility functions.... */
10964 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10970 return elf_hash_table (info)->splt;
10972 dynobj = elf_hash_table (info)->dynobj;
10973 sprintf (plt_name, ".plt.%u", chunk);
10974 return bfd_get_linker_section (dynobj, plt_name);
10979 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10985 return elf_hash_table (info)->sgotplt;
10987 dynobj = elf_hash_table (info)->dynobj;
10988 sprintf (got_name, ".got.plt.%u", chunk);
10989 return bfd_get_linker_section (dynobj, got_name);
10993 /* Get the input section for a given symbol index.
10995 . a section symbol, return the section;
10996 . a common symbol, return the common section;
10997 . an undefined symbol, return the undefined section;
10998 . an indirect symbol, follow the links;
10999 . an absolute value, return the absolute section. */
11002 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
11004 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11005 asection *target_sec = NULL;
11006 if (r_symndx < symtab_hdr->sh_info)
11008 Elf_Internal_Sym *isymbuf;
11009 unsigned int section_index;
11011 isymbuf = retrieve_local_syms (abfd);
11012 section_index = isymbuf[r_symndx].st_shndx;
11014 if (section_index == SHN_UNDEF)
11015 target_sec = bfd_und_section_ptr;
11016 else if (section_index == SHN_ABS)
11017 target_sec = bfd_abs_section_ptr;
11018 else if (section_index == SHN_COMMON)
11019 target_sec = bfd_com_section_ptr;
11021 target_sec = bfd_section_from_elf_index (abfd, section_index);
11025 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11026 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
11028 while (h->root.type == bfd_link_hash_indirect
11029 || h->root.type == bfd_link_hash_warning)
11030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11032 switch (h->root.type)
11034 case bfd_link_hash_defined:
11035 case bfd_link_hash_defweak:
11036 target_sec = h->root.u.def.section;
11038 case bfd_link_hash_common:
11039 target_sec = bfd_com_section_ptr;
11041 case bfd_link_hash_undefined:
11042 case bfd_link_hash_undefweak:
11043 target_sec = bfd_und_section_ptr;
11045 default: /* New indirect warning. */
11046 target_sec = bfd_und_section_ptr;
11054 static struct elf_link_hash_entry *
11055 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
11057 unsigned long indx;
11058 struct elf_link_hash_entry *h;
11059 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11061 if (r_symndx < symtab_hdr->sh_info)
11064 indx = r_symndx - symtab_hdr->sh_info;
11065 h = elf_sym_hashes (abfd)[indx];
11066 while (h->root.type == bfd_link_hash_indirect
11067 || h->root.type == bfd_link_hash_warning)
11068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11073 /* Get the section-relative offset for a symbol number. */
11076 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
11078 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11079 bfd_vma offset = 0;
11081 if (r_symndx < symtab_hdr->sh_info)
11083 Elf_Internal_Sym *isymbuf;
11084 isymbuf = retrieve_local_syms (abfd);
11085 offset = isymbuf[r_symndx].st_value;
11089 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11090 struct elf_link_hash_entry *h =
11091 elf_sym_hashes (abfd)[indx];
11093 while (h->root.type == bfd_link_hash_indirect
11094 || h->root.type == bfd_link_hash_warning)
11095 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11096 if (h->root.type == bfd_link_hash_defined
11097 || h->root.type == bfd_link_hash_defweak)
11098 offset = h->root.u.def.value;
11105 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11107 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11108 struct elf_link_hash_entry *h;
11110 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11111 if (h && h->root.type == bfd_link_hash_defweak)
11118 pcrel_reloc_fits (xtensa_opcode opc,
11120 bfd_vma self_address,
11121 bfd_vma dest_address)
11123 xtensa_isa isa = xtensa_default_isa;
11124 uint32 valp = dest_address;
11125 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11126 || xtensa_operand_encode (isa, opc, opnd, &valp))
11133 xtensa_is_property_section (asection *sec)
11135 if (xtensa_is_insntable_section (sec)
11136 || xtensa_is_littable_section (sec)
11137 || xtensa_is_proptable_section (sec))
11145 xtensa_is_insntable_section (asection *sec)
11147 if (startswith (sec->name, XTENSA_INSN_SEC_NAME)
11148 || startswith (sec->name, ".gnu.linkonce.x."))
11156 xtensa_is_littable_section (asection *sec)
11158 if (startswith (sec->name, XTENSA_LIT_SEC_NAME)
11159 || startswith (sec->name, ".gnu.linkonce.p."))
11167 xtensa_is_proptable_section (asection *sec)
11169 if (startswith (sec->name, XTENSA_PROP_SEC_NAME)
11170 || startswith (sec->name, ".gnu.linkonce.prop."))
11178 internal_reloc_compare (const void *ap, const void *bp)
11180 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11181 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11183 if (a->r_offset != b->r_offset)
11184 return (a->r_offset - b->r_offset);
11186 /* We don't need to sort on these criteria for correctness,
11187 but enforcing a more strict ordering prevents unstable qsort
11188 from behaving differently with different implementations.
11189 Without the code below we get correct but different results
11190 on Solaris 2.7 and 2.8. We would like to always produce the
11191 same results no matter the host. */
11193 if (a->r_info != b->r_info)
11194 return (a->r_info - b->r_info);
11196 return (a->r_addend - b->r_addend);
11201 internal_reloc_matches (const void *ap, const void *bp)
11203 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11204 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11206 /* Check if one entry overlaps with the other; this shouldn't happen
11207 except when searching for a match. */
11208 return (a->r_offset - b->r_offset);
11212 /* Predicate function used to look up a section in a particular group. */
11215 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11217 const char *gname = inf;
11218 const char *group_name = elf_group_name (sec);
11220 return (group_name == gname
11221 || (group_name != NULL
11223 && strcmp (group_name, gname) == 0));
11228 xtensa_add_names (const char *base, const char *suffix)
11232 size_t base_len = strlen (base);
11233 size_t suffix_len = strlen (suffix);
11234 char *str = bfd_malloc (base_len + suffix_len + 1);
11236 memcpy (str, base, base_len);
11237 memcpy (str + base_len, suffix, suffix_len + 1);
11242 return strdup (base);
11246 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11249 xtensa_property_section_name (asection *sec, const char *base_name,
11250 bfd_boolean separate_sections)
11252 const char *suffix, *group_name;
11253 char *prop_sec_name;
11255 group_name = elf_group_name (sec);
11258 suffix = strrchr (sec->name, '.');
11259 if (suffix == sec->name)
11261 prop_sec_name = xtensa_add_names (base_name, suffix);
11263 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11265 char *linkonce_kind = 0;
11267 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11268 linkonce_kind = "x.";
11269 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11270 linkonce_kind = "p.";
11271 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11272 linkonce_kind = "prop.";
11276 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11277 + strlen (linkonce_kind) + 1);
11278 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11279 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11281 suffix = sec->name + linkonce_len;
11282 /* For backward compatibility, replace "t." instead of inserting
11283 the new linkonce_kind (but not for "prop" sections). */
11284 if (startswith (suffix, "t.") && linkonce_kind[1] == '.')
11286 strcat (prop_sec_name + linkonce_len, suffix);
11290 prop_sec_name = xtensa_add_names (base_name,
11291 separate_sections ? sec->name : NULL);
11294 return prop_sec_name;
11299 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11300 bfd_boolean separate_section)
11302 char *prop_sec_name;
11303 asection *prop_sec;
11305 prop_sec_name = xtensa_property_section_name (sec, base_name,
11307 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11308 match_section_group,
11309 (void *) elf_group_name (sec));
11310 free (prop_sec_name);
11315 xtensa_get_property_section (asection *sec, const char *base_name)
11317 asection *prop_sec;
11319 /* Try individual property section first. */
11320 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11322 /* Refer to a common property section if individual is not present. */
11324 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11331 xtensa_make_property_section (asection *sec, const char *base_name)
11333 char *prop_sec_name;
11334 asection *prop_sec;
11336 /* Check if the section already exists. */
11337 prop_sec_name = xtensa_property_section_name (sec, base_name,
11338 elf32xtensa_separate_props);
11339 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11340 match_section_group,
11341 (void *) elf_group_name (sec));
11342 /* If not, create it. */
11345 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11346 flags |= (bfd_section_flags (sec)
11347 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11349 prop_sec = bfd_make_section_anyway_with_flags
11350 (sec->owner, strdup (prop_sec_name), flags);
11354 elf_group_name (prop_sec) = elf_group_name (sec);
11357 free (prop_sec_name);
11363 xtensa_get_property_predef_flags (asection *sec)
11365 if (xtensa_is_insntable_section (sec))
11366 return (XTENSA_PROP_INSN
11367 | XTENSA_PROP_NO_TRANSFORM
11368 | XTENSA_PROP_INSN_NO_REORDER);
11370 if (xtensa_is_littable_section (sec))
11371 return (XTENSA_PROP_LITERAL
11372 | XTENSA_PROP_NO_TRANSFORM
11373 | XTENSA_PROP_INSN_NO_REORDER);
11379 /* Other functions called directly by the linker. */
11382 xtensa_callback_required_dependence (bfd *abfd,
11384 struct bfd_link_info *link_info,
11385 deps_callback_t callback,
11388 Elf_Internal_Rela *internal_relocs;
11389 bfd_byte *contents;
11391 bfd_boolean ok = TRUE;
11392 bfd_size_type sec_size;
11394 sec_size = bfd_get_section_limit (abfd, sec);
11396 /* ".plt*" sections have no explicit relocations but they contain L32R
11397 instructions that reference the corresponding ".got.plt*" sections. */
11398 if ((sec->flags & SEC_LINKER_CREATED) != 0
11399 && startswith (sec->name, ".plt"))
11403 /* Find the corresponding ".got.plt*" section. */
11404 if (sec->name[4] == '\0')
11405 sgotplt = elf_hash_table (link_info)->sgotplt;
11411 BFD_ASSERT (sec->name[4] == '.');
11412 chunk = strtol (&sec->name[5], NULL, 10);
11414 sprintf (got_name, ".got.plt.%u", chunk);
11415 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11417 BFD_ASSERT (sgotplt);
11419 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11420 section referencing a literal at the very beginning of
11421 ".got.plt". This is very close to the real dependence, anyway. */
11422 (*callback) (sec, sec_size, sgotplt, 0, closure);
11425 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11426 when building uclibc, which runs "ld -b binary /dev/null". */
11427 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11430 internal_relocs = retrieve_internal_relocs (abfd, sec,
11431 link_info->keep_memory);
11432 if (internal_relocs == NULL
11433 || sec->reloc_count == 0)
11436 /* Cache the contents for the duration of this scan. */
11437 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11438 if (contents == NULL && sec_size != 0)
11444 if (!xtensa_default_isa)
11445 xtensa_default_isa = xtensa_isa_init (0, 0);
11447 for (i = 0; i < sec->reloc_count; i++)
11449 Elf_Internal_Rela *irel = &internal_relocs[i];
11450 if (is_l32r_relocation (abfd, sec, contents, irel))
11453 asection *target_sec;
11454 bfd_vma target_offset;
11456 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11459 /* L32Rs must be local to the input file. */
11460 if (r_reloc_is_defined (&l32r_rel))
11462 target_sec = r_reloc_get_section (&l32r_rel);
11463 target_offset = l32r_rel.target_offset;
11465 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11471 release_internal_relocs (sec, internal_relocs);
11472 release_contents (sec, contents);
11476 /* The default literal sections should always be marked as "code" (i.e.,
11477 SHF_EXECINSTR). This is particularly important for the Linux kernel
11478 module loader so that the literals are not placed after the text. */
11479 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11481 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11482 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11483 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11484 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11485 { NULL, 0, 0, 0, 0 }
11488 #define ELF_TARGET_ID XTENSA_ELF_DATA
11490 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11491 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11492 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11493 #define TARGET_BIG_NAME "elf32-xtensa-be"
11494 #define ELF_ARCH bfd_arch_xtensa
11496 #define ELF_MACHINE_CODE EM_XTENSA
11497 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11499 #define ELF_MAXPAGESIZE 0x1000
11500 #endif /* ELF_ARCH */
11502 #define elf_backend_can_gc_sections 1
11503 #define elf_backend_can_refcount 1
11504 #define elf_backend_plt_readonly 1
11505 #define elf_backend_got_header_size 4
11506 #define elf_backend_want_dynbss 0
11507 #define elf_backend_want_got_plt 1
11508 #define elf_backend_dtrel_excludes_plt 1
11510 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11512 #define bfd_elf32_mkobject elf_xtensa_mkobject
11514 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11515 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11516 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11517 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11518 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11519 #define bfd_elf32_bfd_reloc_name_lookup \
11520 elf_xtensa_reloc_name_lookup
11521 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11522 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11524 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11525 #define elf_backend_check_relocs elf_xtensa_check_relocs
11526 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11527 #define elf_backend_discard_info elf_xtensa_discard_info
11528 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11529 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11530 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11531 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11532 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11533 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11534 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11535 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11536 #define elf_backend_object_p elf_xtensa_object_p
11537 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11538 #define elf_backend_relocate_section elf_xtensa_relocate_section
11539 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11540 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11541 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11542 #define elf_backend_special_sections elf_xtensa_special_sections
11543 #define elf_backend_action_discarded elf_xtensa_action_discarded
11544 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11546 #include "elf32-target.h"