3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
82 if eval test \"\${${r}}\" = \"\ \"
89 m ) staticdefault="${predefault}" ;;
90 M ) staticdefault="0" ;;
91 * ) test "${staticdefault}" || staticdefault=0 ;;
94 # come up with a format, use a few guesses for variables
95 case ":${class}:${fmt}:${print}:" in
97 if [ "${returntype}" = int ]
101 elif [ "${returntype}" = long ]
108 test "${fmt}" || fmt="%ld"
109 test "${print}" || print="(long) ${macro}"
113 case "${invalid_p}" in
115 if test -n "${predefault}"
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 predicate="gdbarch->${function} != ${predefault}"
119 elif class_is_variable_p
121 predicate="gdbarch->${function} != 0"
122 elif class_is_function_p
124 predicate="gdbarch->${function} != NULL"
128 echo "Predicate function ${function} with invalid_p." 1>&2
135 # PREDEFAULT is a valid fallback definition of MEMBER when
136 # multi-arch is not enabled. This ensures that the
137 # default value, when multi-arch is the same as the
138 # default value when not multi-arch. POSTDEFAULT is
139 # always a valid definition of MEMBER as this again
140 # ensures consistency.
142 if [ -n "${postdefault}" ]
144 fallbackdefault="${postdefault}"
145 elif [ -n "${predefault}" ]
147 fallbackdefault="${predefault}"
152 #NOT YET: See gdbarch.log for basic verification of
167 fallback_default_p ()
169 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
170 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
173 class_is_variable_p ()
181 class_is_function_p ()
184 *f* | *F* | *m* | *M* ) true ;;
189 class_is_multiarch_p ()
197 class_is_predicate_p ()
200 *F* | *V* | *M* ) true ;;
214 # dump out/verify the doco
224 # F -> function + predicate
225 # hiding a function + predicate to test function validity
228 # V -> variable + predicate
229 # hiding a variable + predicate to test variables validity
231 # hiding something from the ``struct info'' object
232 # m -> multi-arch function
233 # hiding a multi-arch function (parameterised with the architecture)
234 # M -> multi-arch function + predicate
235 # hiding a multi-arch function + predicate to test function validity
239 # The name of the MACRO that this method is to be accessed by.
243 # For functions, the return type; for variables, the data type
247 # For functions, the member function name; for variables, the
248 # variable name. Member function names are always prefixed with
249 # ``gdbarch_'' for name-space purity.
253 # The formal argument list. It is assumed that the formal
254 # argument list includes the actual name of each list element.
255 # A function with no arguments shall have ``void'' as the
256 # formal argument list.
260 # The list of actual arguments. The arguments specified shall
261 # match the FORMAL list given above. Functions with out
262 # arguments leave this blank.
266 # Any GCC attributes that should be attached to the function
267 # declaration. At present this field is unused.
271 # To help with the GDB startup a static gdbarch object is
272 # created. STATICDEFAULT is the value to insert into that
273 # static gdbarch object. Since this a static object only
274 # simple expressions can be used.
276 # If STATICDEFAULT is empty, zero is used.
280 # An initial value to assign to MEMBER of the freshly
281 # malloc()ed gdbarch object. After initialization, the
282 # freshly malloc()ed object is passed to the target
283 # architecture code for further updates.
285 # If PREDEFAULT is empty, zero is used.
287 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
288 # INVALID_P are specified, PREDEFAULT will be used as the
289 # default for the non- multi-arch target.
291 # A zero PREDEFAULT function will force the fallback to call
294 # Variable declarations can refer to ``gdbarch'' which will
295 # contain the current architecture. Care should be taken.
299 # A value to assign to MEMBER of the new gdbarch object should
300 # the target architecture code fail to change the PREDEFAULT
303 # If POSTDEFAULT is empty, no post update is performed.
305 # If both INVALID_P and POSTDEFAULT are non-empty then
306 # INVALID_P will be used to determine if MEMBER should be
307 # changed to POSTDEFAULT.
309 # If a non-empty POSTDEFAULT and a zero INVALID_P are
310 # specified, POSTDEFAULT will be used as the default for the
311 # non- multi-arch target (regardless of the value of
314 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
316 # Variable declarations can refer to ``current_gdbarch'' which
317 # will contain the current architecture. Care should be
322 # A predicate equation that validates MEMBER. Non-zero is
323 # returned if the code creating the new architecture failed to
324 # initialize MEMBER or the initialized the member is invalid.
325 # If POSTDEFAULT is non-empty then MEMBER will be updated to
326 # that value. If POSTDEFAULT is empty then internal_error()
329 # If INVALID_P is empty, a check that MEMBER is no longer
330 # equal to PREDEFAULT is used.
332 # The expression ``0'' disables the INVALID_P check making
333 # PREDEFAULT a legitimate value.
335 # See also PREDEFAULT and POSTDEFAULT.
339 # printf style format string that can be used to print out the
340 # MEMBER. Sometimes "%s" is useful. For functions, this is
341 # ignored and the function address is printed.
343 # If FMT is empty, ``%ld'' is used.
347 # An optional equation that casts MEMBER to a value suitable
348 # for formatting by FMT.
350 # If PRINT is empty, ``(long)'' is used.
354 # An optional indicator for any predicte to wrap around the
357 # () -> Call a custom function to do the dump.
358 # exp -> Wrap print up in ``if (${print_p}) ...
359 # ``'' -> No predicate
361 # If PRINT_P is empty, ``1'' is always used.
368 echo "Bad field ${field}"
376 # See below (DOCO) for description of each field
378 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
380 i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
382 i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
383 # Number of bits in a char or unsigned char for the target machine.
384 # Just like CHAR_BIT in <limits.h> but describes the target machine.
385 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 # Number of bits in a short or unsigned short for the target machine.
388 v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
389 # Number of bits in an int or unsigned int for the target machine.
390 v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
391 # Number of bits in a long or unsigned long for the target machine.
392 v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
393 # Number of bits in a long long or unsigned long long for the target
395 v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
396 # Number of bits in a float for the target machine.
397 v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 # Number of bits in a double for the target machine.
399 v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 # Number of bits in a long double for the target machine.
401 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 # ptr_bit is the size of a pointer on the target
411 v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
421 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
422 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
423 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
429 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
430 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
432 v:NUM_REGS:int:num_regs::::0:-1
433 # This macro gives the number of pseudo-registers that live in the
434 # register namespace but do not get fetched or stored on the target.
435 # These pseudo-registers may be aliases for other registers,
436 # combinations of other registers, or they may be computed by GDB.
437 v:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
442 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
443 v:SP_REGNUM:int:sp_regnum::::-1:-1::0
444 v:PC_REGNUM:int:pc_regnum::::-1:-1::0
445 v:PS_REGNUM:int:ps_regnum::::-1:-1::0
446 v:FP0_REGNUM:int:fp0_regnum::::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 f:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 f:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
451 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
452 f:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
453 # Convert from an sdb register number to an internal gdb register number.
454 f:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
455 f:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
456 f:REGISTER_NAME:const char *:register_name:int regnr:regnr
458 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
459 M:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
460 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
461 F:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
462 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
463 # from REGISTER_TYPE.
464 v:DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
465 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
466 # register offsets computed using just REGISTER_TYPE, this can be
467 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
468 # function with predicate has a valid (callable) initial value. As a
469 # consequence, even when the predicate is false, the corresponding
470 # function works. This simplifies the migration process - old code,
471 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
472 F:DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
473 # If all registers have identical raw and virtual sizes and those
474 # sizes agree with the value computed from REGISTER_TYPE,
475 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
477 F:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
478 # If all registers have identical raw and virtual sizes and those
479 # sizes agree with the value computed from REGISTER_TYPE,
480 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
482 F:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
484 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
485 M:UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
486 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
487 # SAVE_DUMMY_FRAME_TOS.
488 F:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
489 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
490 # DEPRECATED_FP_REGNUM.
491 v:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
492 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
493 # DEPRECATED_TARGET_READ_FP.
494 F:DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
496 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
497 # replacement for DEPRECATED_PUSH_ARGUMENTS.
498 M:PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
499 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
500 F:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
501 # Implement PUSH_RETURN_ADDRESS, and then merge in
502 # DEPRECATED_PUSH_RETURN_ADDRESS.
503 F:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
504 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
505 F:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
506 # DEPRECATED_REGISTER_SIZE can be deleted.
507 v:DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
508 v:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
509 M:PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
511 F:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
512 m:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
513 M:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
514 M:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
515 # MAP a GDB RAW register number onto a simulator register number. See
516 # also include/...-sim.h.
517 f:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
518 F:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
519 f:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
520 f:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
521 # setjmp/longjmp support.
522 F:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
523 F:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
525 v:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
526 F:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
528 f:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
529 f:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
530 f:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
532 f:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
533 f:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
534 F:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
536 F:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
537 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
538 F:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
540 # It has been suggested that this, well actually its predecessor,
541 # should take the type/value of the function to be called and not the
542 # return type. This is left as an exercise for the reader.
544 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
546 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE and
547 # USE_STRUCT_CONVENTION have all been folded into RETURN_VALUE.
549 f:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
550 f:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
551 f:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
552 f:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
553 f:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
555 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
556 # ABI suitable for the implementation of a robust extract
557 # struct-convention return-value address method (the sparc saves the
558 # address in the callers frame). All the other cases so far examined,
559 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
560 # erreneous - the code was incorrectly assuming that the return-value
561 # address, stored in a register, was preserved across the entire
564 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
565 # the ABIs that are still to be analyzed - perhaps this should simply
566 # be deleted. The commented out extract_returned_value_address method
567 # is provided as a starting point for the 32-bit SPARC. It, or
568 # something like it, along with changes to both infcmd.c and stack.c
569 # will be needed for that case to work. NB: It is passed the callers
570 # frame since it is only after the callee has returned that this
573 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
574 F:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
576 F:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
577 F:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
579 f:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
580 f:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
581 f:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
582 M:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
583 f:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
584 f:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
585 v:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
587 # A function can be addressed by either it's "pointer" (possibly a
588 # descriptor address) or "entry point" (first executable instruction).
589 # The method "convert_from_func_ptr_addr" converting the former to the
590 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
591 # a simplified subset of that functionality - the function's address
592 # corresponds to the "function pointer" and the function's start
593 # corresponds to the "function entry point" - and hence is redundant.
595 v:DEPRECATED_FUNCTION_START_OFFSET:CORE_ADDR:deprecated_function_start_offset::::0:::0
597 m:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
599 v:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
600 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
601 # frame code works regardless of the type of frame - frameless,
602 # stackless, or normal.
603 F:DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
604 F:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
605 F:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
606 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
607 # note, per UNWIND_PC's doco, that while the two have similar
608 # interfaces they have very different underlying implementations.
609 F:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
610 M:UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
611 M:UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
612 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
613 # frame-base. Enable frame-base before frame-unwind.
614 F:DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
615 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
616 # frame-base. Enable frame-base before frame-unwind.
617 F:DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
618 F:DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
619 F:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
621 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
622 # to frame_align and the requirement that methods such as
623 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
625 F:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
626 M::CORE_ADDR:frame_align:CORE_ADDR address:address
627 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
628 # stabs_argument_has_addr.
629 F:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
630 m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
631 v:FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
633 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
634 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
635 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
636 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
637 # On some machines there are bits in addresses which are not really
638 # part of the address, but are used by the kernel, the hardware, etc.
639 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
640 # we get a "real" address such as one would find in a symbol table.
641 # This is used only for addresses of instructions, and even then I'm
642 # not sure it's used in all contexts. It exists to deal with there
643 # being a few stray bits in the PC which would mislead us, not as some
644 # sort of generic thing to handle alignment or segmentation (it's
645 # possible it should be in TARGET_READ_PC instead).
646 f:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
647 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
649 f:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
650 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
651 # the target needs software single step. An ISA method to implement it.
653 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
654 # using the breakpoint system instead of blatting memory directly (as with rs6000).
656 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
657 # single step. If not, then implement single step using breakpoints.
658 F:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
659 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
660 # disassembler. Perhaphs objdump can handle it?
661 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
662 f:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
665 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
666 # evaluates non-zero, this is the address where the debugger will place
667 # a step-resume breakpoint to get us past the dynamic linker.
668 m:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
669 # For SVR4 shared libraries, each call goes through a small piece of
670 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
671 # to nonzero if we are currently stopped in one of these.
672 f:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
674 # Some systems also have trampoline code for returning from shared libs.
675 f:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
677 # A target might have problems with watchpoints as soon as the stack
678 # frame of the current function has been destroyed. This mostly happens
679 # as the first action in a funtion's epilogue. in_function_epilogue_p()
680 # is defined to return a non-zero value if either the given addr is one
681 # instruction after the stack destroying instruction up to the trailing
682 # return instruction or if we can figure out that the stack frame has
683 # already been invalidated regardless of the value of addr. Targets
684 # which don't suffer from that problem could just let this functionality
686 m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
687 # Given a vector of command-line arguments, return a newly allocated
688 # string which, when passed to the create_inferior function, will be
689 # parsed (on Unix systems, by the shell) to yield the same vector.
690 # This function should call error() if the argument vector is not
691 # representable for this target or if this target does not support
692 # command-line arguments.
693 # ARGC is the number of elements in the vector.
694 # ARGV is an array of strings, one per argument.
695 m:CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
696 f:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
697 f:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
698 v:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
699 v:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
700 v:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
701 F:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
702 M:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
703 M:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
704 # Is a register in a group
705 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
706 # Fetch the pointer to the ith function argument.
707 F:FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
709 # Return the appropriate register set for a core file section with
710 # name SECT_NAME and size SECT_SIZE.
711 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
718 exec > new-gdbarch.log
719 function_list | while do_read
722 ${class} ${macro}(${actual})
723 ${returntype} ${function} ($formal)${attrib}
727 eval echo \"\ \ \ \ ${r}=\${${r}}\"
729 if class_is_predicate_p && fallback_default_p
731 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
735 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
737 echo "Error: postdefault is useless when invalid_p=0" 1>&2
741 if class_is_multiarch_p
743 if class_is_predicate_p ; then :
744 elif test "x${predefault}" = "x"
746 echo "Error: pure multi-arch function must have a predefault" 1>&2
755 compare_new gdbarch.log
761 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
763 /* Dynamic architecture support for GDB, the GNU debugger.
765 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
766 Software Foundation, Inc.
768 This file is part of GDB.
770 This program is free software; you can redistribute it and/or modify
771 it under the terms of the GNU General Public License as published by
772 the Free Software Foundation; either version 2 of the License, or
773 (at your option) any later version.
775 This program is distributed in the hope that it will be useful,
776 but WITHOUT ANY WARRANTY; without even the implied warranty of
777 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
778 GNU General Public License for more details.
780 You should have received a copy of the GNU General Public License
781 along with this program; if not, write to the Free Software
782 Foundation, Inc., 59 Temple Place - Suite 330,
783 Boston, MA 02111-1307, USA. */
785 /* This file was created with the aid of \`\`gdbarch.sh''.
787 The Bourne shell script \`\`gdbarch.sh'' creates the files
788 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
789 against the existing \`\`gdbarch.[hc]''. Any differences found
792 If editing this file, please also run gdbarch.sh and merge any
793 changes into that script. Conversely, when making sweeping changes
794 to this file, modifying gdbarch.sh and using its output may prove
815 struct minimal_symbol;
819 struct disassemble_info;
823 extern struct gdbarch *current_gdbarch;
825 /* If any of the following are defined, the target wasn't correctly
828 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
829 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
836 printf "/* The following are pre-initialized by GDBARCH. */\n"
837 function_list | while do_read
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
844 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
845 printf "#error \"Non multi-arch definition of ${macro}\"\n"
847 printf "#if !defined (${macro})\n"
848 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
856 printf "/* The following are initialized by the target dependent code. */\n"
857 function_list | while do_read
859 if [ -n "${comment}" ]
861 echo "${comment}" | sed \
866 if class_is_multiarch_p
868 if class_is_predicate_p
871 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
874 if class_is_predicate_p
877 printf "#if defined (${macro})\n"
878 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
879 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
880 printf "#if !defined (${macro}_P)\n"
881 printf "#define ${macro}_P() (1)\n"
885 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
886 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
887 printf "#error \"Non multi-arch definition of ${macro}\"\n"
889 printf "#if !defined (${macro}_P)\n"
890 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
894 if class_is_variable_p
897 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
898 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
899 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
900 printf "#error \"Non multi-arch definition of ${macro}\"\n"
902 printf "#if !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
906 if class_is_function_p
909 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
912 elif class_is_multiarch_p
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
916 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
918 if [ "x${formal}" = "xvoid" ]
920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
924 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
925 if class_is_multiarch_p ; then :
927 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
928 printf "#error \"Non multi-arch definition of ${macro}\"\n"
930 if [ "x${actual}" = "x" ]
932 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
933 elif [ "x${actual}" = "x-" ]
935 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
937 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
939 printf "#if !defined (${macro})\n"
940 if [ "x${actual}" = "x" ]
942 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
943 elif [ "x${actual}" = "x-" ]
945 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
947 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
957 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
960 /* Mechanism for co-ordinating the selection of a specific
963 GDB targets (*-tdep.c) can register an interest in a specific
964 architecture. Other GDB components can register a need to maintain
965 per-architecture data.
967 The mechanisms below ensures that there is only a loose connection
968 between the set-architecture command and the various GDB
969 components. Each component can independently register their need
970 to maintain architecture specific data with gdbarch.
974 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
977 The more traditional mega-struct containing architecture specific
978 data for all the various GDB components was also considered. Since
979 GDB is built from a variable number of (fairly independent)
980 components it was determined that the global aproach was not
984 /* Register a new architectural family with GDB.
986 Register support for the specified ARCHITECTURE with GDB. When
987 gdbarch determines that the specified architecture has been
988 selected, the corresponding INIT function is called.
992 The INIT function takes two parameters: INFO which contains the
993 information available to gdbarch about the (possibly new)
994 architecture; ARCHES which is a list of the previously created
995 \`\`struct gdbarch'' for this architecture.
997 The INFO parameter is, as far as possible, be pre-initialized with
998 information obtained from INFO.ABFD or the previously selected
1001 The ARCHES parameter is a linked list (sorted most recently used)
1002 of all the previously created architures for this architecture
1003 family. The (possibly NULL) ARCHES->gdbarch can used to access
1004 values from the previously selected architecture for this
1005 architecture family. The global \`\`current_gdbarch'' shall not be
1008 The INIT function shall return any of: NULL - indicating that it
1009 doesn't recognize the selected architecture; an existing \`\`struct
1010 gdbarch'' from the ARCHES list - indicating that the new
1011 architecture is just a synonym for an earlier architecture (see
1012 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1013 - that describes the selected architecture (see gdbarch_alloc()).
1015 The DUMP_TDEP function shall print out all target specific values.
1016 Care should be taken to ensure that the function works in both the
1017 multi-arch and non- multi-arch cases. */
1021 struct gdbarch *gdbarch;
1022 struct gdbarch_list *next;
1027 /* Use default: NULL (ZERO). */
1028 const struct bfd_arch_info *bfd_arch_info;
1030 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1033 /* Use default: NULL (ZERO). */
1036 /* Use default: NULL (ZERO). */
1037 struct gdbarch_tdep_info *tdep_info;
1039 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1040 enum gdb_osabi osabi;
1043 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1044 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1046 /* DEPRECATED - use gdbarch_register() */
1047 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1049 extern void gdbarch_register (enum bfd_architecture architecture,
1050 gdbarch_init_ftype *,
1051 gdbarch_dump_tdep_ftype *);
1054 /* Return a freshly allocated, NULL terminated, array of the valid
1055 architecture names. Since architectures are registered during the
1056 _initialize phase this function only returns useful information
1057 once initialization has been completed. */
1059 extern const char **gdbarch_printable_names (void);
1062 /* Helper function. Search the list of ARCHES for a GDBARCH that
1063 matches the information provided by INFO. */
1065 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1068 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1069 basic initialization using values obtained from the INFO andTDEP
1070 parameters. set_gdbarch_*() functions are called to complete the
1071 initialization of the object. */
1073 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1076 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1077 It is assumed that the caller freeds the \`\`struct
1080 extern void gdbarch_free (struct gdbarch *);
1083 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1084 obstack. The memory is freed when the corresponding architecture
1087 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1088 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1089 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1092 /* Helper function. Force an update of the current architecture.
1094 The actual architecture selected is determined by INFO, \`\`(gdb) set
1095 architecture'' et.al., the existing architecture and BFD's default
1096 architecture. INFO should be initialized to zero and then selected
1097 fields should be updated.
1099 Returns non-zero if the update succeeds */
1101 extern int gdbarch_update_p (struct gdbarch_info info);
1104 /* Helper function. Find an architecture matching info.
1106 INFO should be initialized using gdbarch_info_init, relevant fields
1107 set, and then finished using gdbarch_info_fill.
1109 Returns the corresponding architecture, or NULL if no matching
1110 architecture was found. "current_gdbarch" is not updated. */
1112 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1115 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1117 FIXME: kettenis/20031124: Of the functions that follow, only
1118 gdbarch_from_bfd is supposed to survive. The others will
1119 dissappear since in the future GDB will (hopefully) be truly
1120 multi-arch. However, for now we're still stuck with the concept of
1121 a single active architecture. */
1123 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1126 /* Register per-architecture data-pointer.
1128 Reserve space for a per-architecture data-pointer. An identifier
1129 for the reserved data-pointer is returned. That identifer should
1130 be saved in a local static variable.
1132 Memory for the per-architecture data shall be allocated using
1133 gdbarch_obstack_zalloc. That memory will be deleted when the
1134 corresponding architecture object is deleted.
1136 When a previously created architecture is re-selected, the
1137 per-architecture data-pointer for that previous architecture is
1138 restored. INIT() is not re-called.
1140 Multiple registrarants for any architecture are allowed (and
1141 strongly encouraged). */
1143 struct gdbarch_data;
1145 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1146 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1147 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1148 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1149 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1150 struct gdbarch_data *data,
1153 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1157 /* Register per-architecture memory region.
1159 Provide a memory-region swap mechanism. Per-architecture memory
1160 region are created. These memory regions are swapped whenever the
1161 architecture is changed. For a new architecture, the memory region
1162 is initialized with zero (0) and the INIT function is called.
1164 Memory regions are swapped / initialized in the order that they are
1165 registered. NULL DATA and/or INIT values can be specified.
1167 New code should use gdbarch_data_register_*(). */
1169 typedef void (gdbarch_swap_ftype) (void);
1170 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1171 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1175 /* Set the dynamic target-system-dependent parameters (architecture,
1176 byte-order, ...) using information found in the BFD */
1178 extern void set_gdbarch_from_file (bfd *);
1181 /* Initialize the current architecture to the "first" one we find on
1184 extern void initialize_current_architecture (void);
1186 /* gdbarch trace variable */
1187 extern int gdbarch_debug;
1189 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1194 #../move-if-change new-gdbarch.h gdbarch.h
1195 compare_new gdbarch.h
1202 exec > new-gdbarch.c
1207 #include "arch-utils.h"
1210 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1213 #include "floatformat.h"
1215 #include "gdb_assert.h"
1216 #include "gdb_string.h"
1217 #include "gdb-events.h"
1218 #include "reggroups.h"
1220 #include "gdb_obstack.h"
1222 /* Static function declarations */
1224 static void alloc_gdbarch_data (struct gdbarch *);
1226 /* Non-zero if we want to trace architecture code. */
1228 #ifndef GDBARCH_DEBUG
1229 #define GDBARCH_DEBUG 0
1231 int gdbarch_debug = GDBARCH_DEBUG;
1235 # gdbarch open the gdbarch object
1237 printf "/* Maintain the struct gdbarch object */\n"
1239 printf "struct gdbarch\n"
1241 printf " /* Has this architecture been fully initialized? */\n"
1242 printf " int initialized_p;\n"
1244 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1245 printf " struct obstack *obstack;\n"
1247 printf " /* basic architectural information */\n"
1248 function_list | while do_read
1252 printf " ${returntype} ${function};\n"
1256 printf " /* target specific vector. */\n"
1257 printf " struct gdbarch_tdep *tdep;\n"
1258 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1260 printf " /* per-architecture data-pointers */\n"
1261 printf " unsigned nr_data;\n"
1262 printf " void **data;\n"
1264 printf " /* per-architecture swap-regions */\n"
1265 printf " struct gdbarch_swap *swap;\n"
1268 /* Multi-arch values.
1270 When extending this structure you must:
1272 Add the field below.
1274 Declare set/get functions and define the corresponding
1277 gdbarch_alloc(): If zero/NULL is not a suitable default,
1278 initialize the new field.
1280 verify_gdbarch(): Confirm that the target updated the field
1283 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1286 \`\`startup_gdbarch()'': Append an initial value to the static
1287 variable (base values on the host's c-type system).
1289 get_gdbarch(): Implement the set/get functions (probably using
1290 the macro's as shortcuts).
1295 function_list | while do_read
1297 if class_is_variable_p
1299 printf " ${returntype} ${function};\n"
1300 elif class_is_function_p
1302 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1307 # A pre-initialized vector
1311 /* The default architecture uses host values (for want of a better
1315 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1317 printf "struct gdbarch startup_gdbarch =\n"
1319 printf " 1, /* Always initialized. */\n"
1320 printf " NULL, /* The obstack. */\n"
1321 printf " /* basic architecture information */\n"
1322 function_list | while do_read
1326 printf " ${staticdefault}, /* ${function} */\n"
1330 /* target specific vector and its dump routine */
1332 /*per-architecture data-pointers and swap regions */
1334 /* Multi-arch values */
1336 function_list | while do_read
1338 if class_is_function_p || class_is_variable_p
1340 printf " ${staticdefault}, /* ${function} */\n"
1344 /* startup_gdbarch() */
1347 struct gdbarch *current_gdbarch = &startup_gdbarch;
1350 # Create a new gdbarch struct
1353 /* Create a new \`\`struct gdbarch'' based on information provided by
1354 \`\`struct gdbarch_info''. */
1359 gdbarch_alloc (const struct gdbarch_info *info,
1360 struct gdbarch_tdep *tdep)
1362 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1363 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1364 the current local architecture and not the previous global
1365 architecture. This ensures that the new architectures initial
1366 values are not influenced by the previous architecture. Once
1367 everything is parameterised with gdbarch, this will go away. */
1368 struct gdbarch *current_gdbarch;
1370 /* Create an obstack for allocating all the per-architecture memory,
1371 then use that to allocate the architecture vector. */
1372 struct obstack *obstack = XMALLOC (struct obstack);
1373 obstack_init (obstack);
1374 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1375 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1376 current_gdbarch->obstack = obstack;
1378 alloc_gdbarch_data (current_gdbarch);
1380 current_gdbarch->tdep = tdep;
1383 function_list | while do_read
1387 printf " current_gdbarch->${function} = info->${function};\n"
1391 printf " /* Force the explicit initialization of these. */\n"
1392 function_list | while do_read
1394 if class_is_function_p || class_is_variable_p
1396 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1398 printf " current_gdbarch->${function} = ${predefault};\n"
1403 /* gdbarch_alloc() */
1405 return current_gdbarch;
1409 # Free a gdbarch struct.
1413 /* Allocate extra space using the per-architecture obstack. */
1416 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1418 void *data = obstack_alloc (arch->obstack, size);
1419 memset (data, 0, size);
1424 /* Free a gdbarch struct. This should never happen in normal
1425 operation --- once you've created a gdbarch, you keep it around.
1426 However, if an architecture's init function encounters an error
1427 building the structure, it may need to clean up a partially
1428 constructed gdbarch. */
1431 gdbarch_free (struct gdbarch *arch)
1433 struct obstack *obstack;
1434 gdb_assert (arch != NULL);
1435 gdb_assert (!arch->initialized_p);
1436 obstack = arch->obstack;
1437 obstack_free (obstack, 0); /* Includes the ARCH. */
1442 # verify a new architecture
1446 /* Ensure that all values in a GDBARCH are reasonable. */
1448 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1449 just happens to match the global variable \`\`current_gdbarch''. That
1450 way macros refering to that variable get the local and not the global
1451 version - ulgh. Once everything is parameterised with gdbarch, this
1455 verify_gdbarch (struct gdbarch *current_gdbarch)
1457 struct ui_file *log;
1458 struct cleanup *cleanups;
1461 log = mem_fileopen ();
1462 cleanups = make_cleanup_ui_file_delete (log);
1464 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1465 fprintf_unfiltered (log, "\n\tbyte-order");
1466 if (current_gdbarch->bfd_arch_info == NULL)
1467 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1468 /* Check those that need to be defined for the given multi-arch level. */
1470 function_list | while do_read
1472 if class_is_function_p || class_is_variable_p
1474 if [ "x${invalid_p}" = "x0" ]
1476 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1477 elif class_is_predicate_p
1479 printf " /* Skip verify of ${function}, has predicate */\n"
1480 # FIXME: See do_read for potential simplification
1481 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1483 printf " if (${invalid_p})\n"
1484 printf " current_gdbarch->${function} = ${postdefault};\n"
1485 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1487 printf " if (current_gdbarch->${function} == ${predefault})\n"
1488 printf " current_gdbarch->${function} = ${postdefault};\n"
1489 elif [ -n "${postdefault}" ]
1491 printf " if (current_gdbarch->${function} == 0)\n"
1492 printf " current_gdbarch->${function} = ${postdefault};\n"
1493 elif [ -n "${invalid_p}" ]
1495 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1496 printf " && (${invalid_p}))\n"
1497 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1498 elif [ -n "${predefault}" ]
1500 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1501 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1502 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1507 buf = ui_file_xstrdup (log, &dummy);
1508 make_cleanup (xfree, buf);
1509 if (strlen (buf) > 0)
1510 internal_error (__FILE__, __LINE__,
1511 "verify_gdbarch: the following are invalid ...%s",
1513 do_cleanups (cleanups);
1517 # dump the structure
1521 /* Print out the details of the current architecture. */
1523 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1524 just happens to match the global variable \`\`current_gdbarch''. That
1525 way macros refering to that variable get the local and not the global
1526 version - ulgh. Once everything is parameterised with gdbarch, this
1530 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1532 fprintf_unfiltered (file,
1533 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1536 function_list | sort -t: -k 2 | while do_read
1538 # First the predicate
1539 if class_is_predicate_p
1541 if class_is_multiarch_p
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1545 printf " gdbarch_${function}_p (current_gdbarch));\n"
1547 printf "#ifdef ${macro}_P\n"
1548 printf " fprintf_unfiltered (file,\n"
1549 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1550 printf " \"${macro}_P()\",\n"
1551 printf " XSTRING (${macro}_P ()));\n"
1552 printf " fprintf_unfiltered (file,\n"
1553 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1554 printf " ${macro}_P ());\n"
1558 # multiarch functions don't have macros.
1559 if class_is_multiarch_p
1561 printf " fprintf_unfiltered (file,\n"
1562 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1563 printf " (long) current_gdbarch->${function});\n"
1566 # Print the macro definition.
1567 printf "#ifdef ${macro}\n"
1568 if class_is_function_p
1570 printf " fprintf_unfiltered (file,\n"
1571 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1572 printf " \"${macro}(${actual})\",\n"
1573 printf " XSTRING (${macro} (${actual})));\n"
1575 printf " fprintf_unfiltered (file,\n"
1576 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1577 printf " XSTRING (${macro}));\n"
1579 if [ "x${print_p}" = "x()" ]
1581 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1582 elif [ "x${print_p}" = "x0" ]
1584 printf " /* skip print of ${macro}, print_p == 0. */\n"
1585 elif [ -n "${print_p}" ]
1587 printf " if (${print_p})\n"
1588 printf " fprintf_unfiltered (file,\n"
1589 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1590 printf " ${print});\n"
1591 elif class_is_function_p
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1595 printf " (long) current_gdbarch->${function}\n"
1596 printf " /*${macro} ()*/);\n"
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1600 printf " ${print});\n"
1605 if (current_gdbarch->dump_tdep != NULL)
1606 current_gdbarch->dump_tdep (current_gdbarch, file);
1614 struct gdbarch_tdep *
1615 gdbarch_tdep (struct gdbarch *gdbarch)
1617 if (gdbarch_debug >= 2)
1618 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1619 return gdbarch->tdep;
1623 function_list | while do_read
1625 if class_is_predicate_p
1629 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1631 printf " gdb_assert (gdbarch != NULL);\n"
1632 printf " return ${predicate};\n"
1635 if class_is_function_p
1638 printf "${returntype}\n"
1639 if [ "x${formal}" = "xvoid" ]
1641 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1646 printf " gdb_assert (gdbarch != NULL);\n"
1647 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1648 if class_is_predicate_p && test -n "${predefault}"
1650 # Allow a call to a function with a predicate.
1651 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1653 printf " if (gdbarch_debug >= 2)\n"
1654 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1655 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1657 if class_is_multiarch_p
1664 if class_is_multiarch_p
1666 params="gdbarch, ${actual}"
1671 if [ "x${returntype}" = "xvoid" ]
1673 printf " gdbarch->${function} (${params});\n"
1675 printf " return gdbarch->${function} (${params});\n"
1680 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1681 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1683 printf " gdbarch->${function} = ${function};\n"
1685 elif class_is_variable_p
1688 printf "${returntype}\n"
1689 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1691 printf " gdb_assert (gdbarch != NULL);\n"
1692 if [ "x${invalid_p}" = "x0" ]
1694 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1695 elif [ -n "${invalid_p}" ]
1697 printf " /* Check variable is valid. */\n"
1698 printf " gdb_assert (!(${invalid_p}));\n"
1699 elif [ -n "${predefault}" ]
1701 printf " /* Check variable changed from pre-default. */\n"
1702 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1704 printf " if (gdbarch_debug >= 2)\n"
1705 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1706 printf " return gdbarch->${function};\n"
1710 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1711 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1713 printf " gdbarch->${function} = ${function};\n"
1715 elif class_is_info_p
1718 printf "${returntype}\n"
1719 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 printf " gdb_assert (gdbarch != NULL);\n"
1722 printf " if (gdbarch_debug >= 2)\n"
1723 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1724 printf " return gdbarch->${function};\n"
1729 # All the trailing guff
1733 /* Keep a registry of per-architecture data-pointers required by GDB
1740 gdbarch_data_pre_init_ftype *pre_init;
1741 gdbarch_data_post_init_ftype *post_init;
1744 struct gdbarch_data_registration
1746 struct gdbarch_data *data;
1747 struct gdbarch_data_registration *next;
1750 struct gdbarch_data_registry
1753 struct gdbarch_data_registration *registrations;
1756 struct gdbarch_data_registry gdbarch_data_registry =
1761 static struct gdbarch_data *
1762 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1763 gdbarch_data_post_init_ftype *post_init)
1765 struct gdbarch_data_registration **curr;
1766 /* Append the new registraration. */
1767 for (curr = &gdbarch_data_registry.registrations;
1769 curr = &(*curr)->next);
1770 (*curr) = XMALLOC (struct gdbarch_data_registration);
1771 (*curr)->next = NULL;
1772 (*curr)->data = XMALLOC (struct gdbarch_data);
1773 (*curr)->data->index = gdbarch_data_registry.nr++;
1774 (*curr)->data->pre_init = pre_init;
1775 (*curr)->data->post_init = post_init;
1776 (*curr)->data->init_p = 1;
1777 return (*curr)->data;
1780 struct gdbarch_data *
1781 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1783 return gdbarch_data_register (pre_init, NULL);
1786 struct gdbarch_data *
1787 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1789 return gdbarch_data_register (NULL, post_init);
1792 /* Create/delete the gdbarch data vector. */
1795 alloc_gdbarch_data (struct gdbarch *gdbarch)
1797 gdb_assert (gdbarch->data == NULL);
1798 gdbarch->nr_data = gdbarch_data_registry.nr;
1799 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1802 /* Initialize the current value of the specified per-architecture
1806 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1807 struct gdbarch_data *data,
1810 gdb_assert (data->index < gdbarch->nr_data);
1811 gdb_assert (gdbarch->data[data->index] == NULL);
1812 gdb_assert (data->pre_init == NULL);
1813 gdbarch->data[data->index] = pointer;
1816 /* Return the current value of the specified per-architecture
1820 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1822 gdb_assert (data->index < gdbarch->nr_data);
1823 if (gdbarch->data[data->index] == NULL)
1825 /* The data-pointer isn't initialized, call init() to get a
1827 if (data->pre_init != NULL)
1828 /* Mid architecture creation: pass just the obstack, and not
1829 the entire architecture, as that way it isn't possible for
1830 pre-init code to refer to undefined architecture
1832 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1833 else if (gdbarch->initialized_p
1834 && data->post_init != NULL)
1835 /* Post architecture creation: pass the entire architecture
1836 (as all fields are valid), but be careful to also detect
1837 recursive references. */
1839 gdb_assert (data->init_p);
1841 gdbarch->data[data->index] = data->post_init (gdbarch);
1845 /* The architecture initialization hasn't completed - punt -
1846 hope that the caller knows what they are doing. Once
1847 deprecated_set_gdbarch_data has been initialized, this can be
1848 changed to an internal error. */
1850 gdb_assert (gdbarch->data[data->index] != NULL);
1852 return gdbarch->data[data->index];
1857 /* Keep a registry of swapped data required by GDB modules. */
1862 struct gdbarch_swap_registration *source;
1863 struct gdbarch_swap *next;
1866 struct gdbarch_swap_registration
1869 unsigned long sizeof_data;
1870 gdbarch_swap_ftype *init;
1871 struct gdbarch_swap_registration *next;
1874 struct gdbarch_swap_registry
1877 struct gdbarch_swap_registration *registrations;
1880 struct gdbarch_swap_registry gdbarch_swap_registry =
1886 deprecated_register_gdbarch_swap (void *data,
1887 unsigned long sizeof_data,
1888 gdbarch_swap_ftype *init)
1890 struct gdbarch_swap_registration **rego;
1891 for (rego = &gdbarch_swap_registry.registrations;
1893 rego = &(*rego)->next);
1894 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1895 (*rego)->next = NULL;
1896 (*rego)->init = init;
1897 (*rego)->data = data;
1898 (*rego)->sizeof_data = sizeof_data;
1902 current_gdbarch_swap_init_hack (void)
1904 struct gdbarch_swap_registration *rego;
1905 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1906 for (rego = gdbarch_swap_registry.registrations;
1910 if (rego->data != NULL)
1912 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1913 struct gdbarch_swap);
1914 (*curr)->source = rego;
1915 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1917 (*curr)->next = NULL;
1918 curr = &(*curr)->next;
1920 if (rego->init != NULL)
1925 static struct gdbarch *
1926 current_gdbarch_swap_out_hack (void)
1928 struct gdbarch *old_gdbarch = current_gdbarch;
1929 struct gdbarch_swap *curr;
1931 gdb_assert (old_gdbarch != NULL);
1932 for (curr = old_gdbarch->swap;
1936 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1937 memset (curr->source->data, 0, curr->source->sizeof_data);
1939 current_gdbarch = NULL;
1944 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1946 struct gdbarch_swap *curr;
1948 gdb_assert (current_gdbarch == NULL);
1949 for (curr = new_gdbarch->swap;
1952 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1953 current_gdbarch = new_gdbarch;
1957 /* Keep a registry of the architectures known by GDB. */
1959 struct gdbarch_registration
1961 enum bfd_architecture bfd_architecture;
1962 gdbarch_init_ftype *init;
1963 gdbarch_dump_tdep_ftype *dump_tdep;
1964 struct gdbarch_list *arches;
1965 struct gdbarch_registration *next;
1968 static struct gdbarch_registration *gdbarch_registry = NULL;
1971 append_name (const char ***buf, int *nr, const char *name)
1973 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1979 gdbarch_printable_names (void)
1981 /* Accumulate a list of names based on the registed list of
1983 enum bfd_architecture a;
1985 const char **arches = NULL;
1986 struct gdbarch_registration *rego;
1987 for (rego = gdbarch_registry;
1991 const struct bfd_arch_info *ap;
1992 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1994 internal_error (__FILE__, __LINE__,
1995 "gdbarch_architecture_names: multi-arch unknown");
1998 append_name (&arches, &nr_arches, ap->printable_name);
2003 append_name (&arches, &nr_arches, NULL);
2009 gdbarch_register (enum bfd_architecture bfd_architecture,
2010 gdbarch_init_ftype *init,
2011 gdbarch_dump_tdep_ftype *dump_tdep)
2013 struct gdbarch_registration **curr;
2014 const struct bfd_arch_info *bfd_arch_info;
2015 /* Check that BFD recognizes this architecture */
2016 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2017 if (bfd_arch_info == NULL)
2019 internal_error (__FILE__, __LINE__,
2020 "gdbarch: Attempt to register unknown architecture (%d)",
2023 /* Check that we haven't seen this architecture before */
2024 for (curr = &gdbarch_registry;
2026 curr = &(*curr)->next)
2028 if (bfd_architecture == (*curr)->bfd_architecture)
2029 internal_error (__FILE__, __LINE__,
2030 "gdbarch: Duplicate registraration of architecture (%s)",
2031 bfd_arch_info->printable_name);
2035 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2036 bfd_arch_info->printable_name,
2039 (*curr) = XMALLOC (struct gdbarch_registration);
2040 (*curr)->bfd_architecture = bfd_architecture;
2041 (*curr)->init = init;
2042 (*curr)->dump_tdep = dump_tdep;
2043 (*curr)->arches = NULL;
2044 (*curr)->next = NULL;
2048 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2049 gdbarch_init_ftype *init)
2051 gdbarch_register (bfd_architecture, init, NULL);
2055 /* Look for an architecture using gdbarch_info. Base search on only
2056 BFD_ARCH_INFO and BYTE_ORDER. */
2058 struct gdbarch_list *
2059 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2060 const struct gdbarch_info *info)
2062 for (; arches != NULL; arches = arches->next)
2064 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2066 if (info->byte_order != arches->gdbarch->byte_order)
2068 if (info->osabi != arches->gdbarch->osabi)
2076 /* Find an architecture that matches the specified INFO. Create a new
2077 architecture if needed. Return that new architecture. Assumes
2078 that there is no current architecture. */
2080 static struct gdbarch *
2081 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2083 struct gdbarch *new_gdbarch;
2084 struct gdbarch_registration *rego;
2086 /* The existing architecture has been swapped out - all this code
2087 works from a clean slate. */
2088 gdb_assert (current_gdbarch == NULL);
2090 /* Fill in missing parts of the INFO struct using a number of
2091 sources: "set ..."; INFOabfd supplied; and the existing
2093 gdbarch_info_fill (old_gdbarch, &info);
2095 /* Must have found some sort of architecture. */
2096 gdb_assert (info.bfd_arch_info != NULL);
2100 fprintf_unfiltered (gdb_stdlog,
2101 "find_arch_by_info: info.bfd_arch_info %s\n",
2102 (info.bfd_arch_info != NULL
2103 ? info.bfd_arch_info->printable_name
2105 fprintf_unfiltered (gdb_stdlog,
2106 "find_arch_by_info: info.byte_order %d (%s)\n",
2108 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2109 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2111 fprintf_unfiltered (gdb_stdlog,
2112 "find_arch_by_info: info.osabi %d (%s)\n",
2113 info.osabi, gdbarch_osabi_name (info.osabi));
2114 fprintf_unfiltered (gdb_stdlog,
2115 "find_arch_by_info: info.abfd 0x%lx\n",
2117 fprintf_unfiltered (gdb_stdlog,
2118 "find_arch_by_info: info.tdep_info 0x%lx\n",
2119 (long) info.tdep_info);
2122 /* Find the tdep code that knows about this architecture. */
2123 for (rego = gdbarch_registry;
2126 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2131 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2132 "No matching architecture\n");
2136 /* Ask the tdep code for an architecture that matches "info". */
2137 new_gdbarch = rego->init (info, rego->arches);
2139 /* Did the tdep code like it? No. Reject the change and revert to
2140 the old architecture. */
2141 if (new_gdbarch == NULL)
2144 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2145 "Target rejected architecture\n");
2149 /* Is this a pre-existing architecture (as determined by already
2150 being initialized)? Move it to the front of the architecture
2151 list (keeping the list sorted Most Recently Used). */
2152 if (new_gdbarch->initialized_p)
2154 struct gdbarch_list **list;
2155 struct gdbarch_list *this;
2157 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2158 "Previous architecture 0x%08lx (%s) selected\n",
2160 new_gdbarch->bfd_arch_info->printable_name);
2161 /* Find the existing arch in the list. */
2162 for (list = ®o->arches;
2163 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2164 list = &(*list)->next);
2165 /* It had better be in the list of architectures. */
2166 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2169 (*list) = this->next;
2170 /* Insert THIS at the front. */
2171 this->next = rego->arches;
2172 rego->arches = this;
2177 /* It's a new architecture. */
2179 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2180 "New architecture 0x%08lx (%s) selected\n",
2182 new_gdbarch->bfd_arch_info->printable_name);
2184 /* Insert the new architecture into the front of the architecture
2185 list (keep the list sorted Most Recently Used). */
2187 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2188 this->next = rego->arches;
2189 this->gdbarch = new_gdbarch;
2190 rego->arches = this;
2193 /* Check that the newly installed architecture is valid. Plug in
2194 any post init values. */
2195 new_gdbarch->dump_tdep = rego->dump_tdep;
2196 verify_gdbarch (new_gdbarch);
2197 new_gdbarch->initialized_p = 1;
2199 /* Initialize any per-architecture swap areas. This phase requires
2200 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2201 swap the entire architecture out. */
2202 current_gdbarch = new_gdbarch;
2203 current_gdbarch_swap_init_hack ();
2204 current_gdbarch_swap_out_hack ();
2207 gdbarch_dump (new_gdbarch, gdb_stdlog);
2213 gdbarch_find_by_info (struct gdbarch_info info)
2215 /* Save the previously selected architecture, setting the global to
2216 NULL. This stops things like gdbarch->init() trying to use the
2217 previous architecture's configuration. The previous architecture
2218 may not even be of the same architecture family. The most recent
2219 architecture of the same family is found at the head of the
2220 rego->arches list. */
2221 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2223 /* Find the specified architecture. */
2224 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2226 /* Restore the existing architecture. */
2227 gdb_assert (current_gdbarch == NULL);
2228 current_gdbarch_swap_in_hack (old_gdbarch);
2233 /* Make the specified architecture current, swapping the existing one
2237 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2239 gdb_assert (new_gdbarch != NULL);
2240 gdb_assert (current_gdbarch != NULL);
2241 gdb_assert (new_gdbarch->initialized_p);
2242 current_gdbarch_swap_out_hack ();
2243 current_gdbarch_swap_in_hack (new_gdbarch);
2244 architecture_changed_event ();
2247 extern void _initialize_gdbarch (void);
2250 _initialize_gdbarch (void)
2252 struct cmd_list_element *c;
2254 add_show_from_set (add_set_cmd ("arch",
2257 (char *)&gdbarch_debug,
2258 "Set architecture debugging.\\n\\
2259 When non-zero, architecture debugging is enabled.", &setdebuglist),
2261 c = add_set_cmd ("archdebug",
2264 (char *)&gdbarch_debug,
2265 "Set architecture debugging.\\n\\
2266 When non-zero, architecture debugging is enabled.", &setlist);
2268 deprecate_cmd (c, "set debug arch");
2269 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2275 #../move-if-change new-gdbarch.c gdbarch.c
2276 compare_new gdbarch.c