1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
58 #include "typeprint.h"
61 #include "completer.h"
62 #include "common/vec.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
72 #include "common/filestuff.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
84 #include <sys/types.h>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "common/selftest.h"
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
112 static const struct objfile_data *dwarf2_objfile_data_key;
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
134 struct name_component
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
141 /* The symbol's index in the symbol and constant pool tables of a
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
149 struct mapped_index_base
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
167 /* Return whether the name at IDX in the symbol table should be
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
174 /* Build the symbol name component sorted vector, if we haven't
176 void build_name_components ();
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
185 /* Prevent deleting/destroying via a base class pointer. */
187 ~mapped_index_base() = default;
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
197 const offset_type name;
198 const offset_type vec;
201 /* Index data format version. */
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
213 bool symbol_name_slot_invalid (offset_type idx) const override
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
219 /* Convenience method to get at the name of the symbol at IDX in the
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
254 /* Attribute name DW_IDX_*. */
257 /* Attribute form DW_FORM_*. */
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
263 std::vector<attr> attr_vec;
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
268 const char *namei_to_name (uint32_t namei) const;
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
276 size_t symbol_name_count () const override
277 { return this->name_count; }
280 /* See dwarf2read.h. */
283 get_dwarf2_per_objfile (struct objfile *objfile)
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
299 /* Default names of the debugging sections. */
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
327 /* List of DWO/DWP sections. */
329 static const struct dwop_section_names
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
360 /* local data types */
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
378 enum dwarf_unit_type unit_type;
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
400 /* The type to which the method is attached, i.e., its parent class. */
403 /* The index of the method in the type's function fieldlists. */
406 /* The index of the method in the fieldlist. */
409 /* The name of the DIE. */
412 /* The DIE associated with this method. */
413 struct die_info *die;
416 /* Internal state when decoding a particular compilation unit. */
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
424 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
425 Create the set of symtabs used by this TU, or if this TU is sharing
426 symtabs with another TU and the symtabs have already been created
427 then restore those symtabs in the line header.
428 We don't need the pc/line-number mapping for type units. */
429 void setup_type_unit_groups (struct die_info *die);
431 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
432 buildsym_compunit constructor. */
433 struct compunit_symtab *start_symtab (const char *name,
434 const char *comp_dir,
437 /* Reset the builder. */
438 void reset_builder () { m_builder.reset (); }
440 /* The header of the compilation unit. */
441 struct comp_unit_head header {};
443 /* Base address of this compilation unit. */
444 CORE_ADDR base_address = 0;
446 /* Non-zero if base_address has been set. */
449 /* The language we are debugging. */
450 enum language language = language_unknown;
451 const struct language_defn *language_defn = nullptr;
453 const char *producer = nullptr;
456 /* The symtab builder for this CU. This is only non-NULL when full
457 symbols are being read. */
458 std::unique_ptr<buildsym_compunit> m_builder;
461 /* The generic symbol table building routines have separate lists for
462 file scope symbols and all all other scopes (local scopes). So
463 we need to select the right one to pass to add_symbol_to_list().
464 We do it by keeping a pointer to the correct list in list_in_scope.
466 FIXME: The original dwarf code just treated the file scope as the
467 first local scope, and all other local scopes as nested local
468 scopes, and worked fine. Check to see if we really need to
469 distinguish these in buildsym.c. */
470 struct pending **list_in_scope = nullptr;
472 /* Hash table holding all the loaded partial DIEs
473 with partial_die->offset.SECT_OFF as hash. */
474 htab_t partial_dies = nullptr;
476 /* Storage for things with the same lifetime as this read-in compilation
477 unit, including partial DIEs. */
478 auto_obstack comp_unit_obstack;
480 /* When multiple dwarf2_cu structures are living in memory, this field
481 chains them all together, so that they can be released efficiently.
482 We will probably also want a generation counter so that most-recently-used
483 compilation units are cached... */
484 struct dwarf2_per_cu_data *read_in_chain = nullptr;
486 /* Backlink to our per_cu entry. */
487 struct dwarf2_per_cu_data *per_cu;
489 /* How many compilation units ago was this CU last referenced? */
492 /* A hash table of DIE cu_offset for following references with
493 die_info->offset.sect_off as hash. */
494 htab_t die_hash = nullptr;
496 /* Full DIEs if read in. */
497 struct die_info *dies = nullptr;
499 /* A set of pointers to dwarf2_per_cu_data objects for compilation
500 units referenced by this one. Only set during full symbol processing;
501 partial symbol tables do not have dependencies. */
502 htab_t dependencies = nullptr;
504 /* Header data from the line table, during full symbol processing. */
505 struct line_header *line_header = nullptr;
506 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
507 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
508 this is the DW_TAG_compile_unit die for this CU. We'll hold on
509 to the line header as long as this DIE is being processed. See
510 process_die_scope. */
511 die_info *line_header_die_owner = nullptr;
513 /* A list of methods which need to have physnames computed
514 after all type information has been read. */
515 std::vector<delayed_method_info> method_list;
517 /* To be copied to symtab->call_site_htab. */
518 htab_t call_site_htab = nullptr;
520 /* Non-NULL if this CU came from a DWO file.
521 There is an invariant here that is important to remember:
522 Except for attributes copied from the top level DIE in the "main"
523 (or "stub") file in preparation for reading the DWO file
524 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
525 Either there isn't a DWO file (in which case this is NULL and the point
526 is moot), or there is and either we're not going to read it (in which
527 case this is NULL) or there is and we are reading it (in which case this
529 struct dwo_unit *dwo_unit = nullptr;
531 /* The DW_AT_addr_base attribute if present, zero otherwise
532 (zero is a valid value though).
533 Note this value comes from the Fission stub CU/TU's DIE. */
534 ULONGEST addr_base = 0;
536 /* The DW_AT_ranges_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE.
539 Also note that the value is zero in the non-DWO case so this value can
540 be used without needing to know whether DWO files are in use or not.
541 N.B. This does not apply to DW_AT_ranges appearing in
542 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
543 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
544 DW_AT_ranges_base *would* have to be applied, and we'd have to care
545 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
546 ULONGEST ranges_base = 0;
548 /* When reading debug info generated by older versions of rustc, we
549 have to rewrite some union types to be struct types with a
550 variant part. This rewriting must be done after the CU is fully
551 read in, because otherwise at the point of rewriting some struct
552 type might not have been fully processed. So, we keep a list of
553 all such types here and process them after expansion. */
554 std::vector<struct type *> rust_unions;
556 /* Mark used when releasing cached dies. */
559 /* This CU references .debug_loc. See the symtab->locations_valid field.
560 This test is imperfect as there may exist optimized debug code not using
561 any location list and still facing inlining issues if handled as
562 unoptimized code. For a future better test see GCC PR other/32998. */
563 bool has_loclist : 1;
565 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
566 if all the producer_is_* fields are valid. This information is cached
567 because profiling CU expansion showed excessive time spent in
568 producer_is_gxx_lt_4_6. */
569 bool checked_producer : 1;
570 bool producer_is_gxx_lt_4_6 : 1;
571 bool producer_is_gcc_lt_4_3 : 1;
572 bool producer_is_icc : 1;
573 bool producer_is_icc_lt_14 : 1;
574 bool producer_is_codewarrior : 1;
576 /* When true, the file that we're processing is known to have
577 debugging info for C++ namespaces. GCC 3.3.x did not produce
578 this information, but later versions do. */
580 bool processing_has_namespace_info : 1;
582 struct partial_die_info *find_partial_die (sect_offset sect_off);
584 /* If this CU was inherited by another CU (via specification,
585 abstract_origin, etc), this is the ancestor CU. */
588 /* Get the buildsym_compunit for this CU. */
589 buildsym_compunit *get_builder ()
591 /* If this CU has a builder associated with it, use that. */
592 if (m_builder != nullptr)
593 return m_builder.get ();
595 /* Otherwise, search ancestors for a valid builder. */
596 if (ancestor != nullptr)
597 return ancestor->get_builder ();
603 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
604 This includes type_unit_group and quick_file_names. */
606 struct stmt_list_hash
608 /* The DWO unit this table is from or NULL if there is none. */
609 struct dwo_unit *dwo_unit;
611 /* Offset in .debug_line or .debug_line.dwo. */
612 sect_offset line_sect_off;
615 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
616 an object of this type. */
618 struct type_unit_group
620 /* dwarf2read.c's main "handle" on a TU symtab.
621 To simplify things we create an artificial CU that "includes" all the
622 type units using this stmt_list so that the rest of the code still has
623 a "per_cu" handle on the symtab.
624 This PER_CU is recognized by having no section. */
625 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
626 struct dwarf2_per_cu_data per_cu;
628 /* The TUs that share this DW_AT_stmt_list entry.
629 This is added to while parsing type units to build partial symtabs,
630 and is deleted afterwards and not used again. */
631 VEC (sig_type_ptr) *tus;
633 /* The compunit symtab.
634 Type units in a group needn't all be defined in the same source file,
635 so we create an essentially anonymous symtab as the compunit symtab. */
636 struct compunit_symtab *compunit_symtab;
638 /* The data used to construct the hash key. */
639 struct stmt_list_hash hash;
641 /* The number of symtabs from the line header.
642 The value here must match line_header.num_file_names. */
643 unsigned int num_symtabs;
645 /* The symbol tables for this TU (obtained from the files listed in
647 WARNING: The order of entries here must match the order of entries
648 in the line header. After the first TU using this type_unit_group, the
649 line header for the subsequent TUs is recreated from this. This is done
650 because we need to use the same symtabs for each TU using the same
651 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
652 there's no guarantee the line header doesn't have duplicate entries. */
653 struct symtab **symtabs;
656 /* These sections are what may appear in a (real or virtual) DWO file. */
660 struct dwarf2_section_info abbrev;
661 struct dwarf2_section_info line;
662 struct dwarf2_section_info loc;
663 struct dwarf2_section_info loclists;
664 struct dwarf2_section_info macinfo;
665 struct dwarf2_section_info macro;
666 struct dwarf2_section_info str;
667 struct dwarf2_section_info str_offsets;
668 /* In the case of a virtual DWO file, these two are unused. */
669 struct dwarf2_section_info info;
670 VEC (dwarf2_section_info_def) *types;
673 /* CUs/TUs in DWP/DWO files. */
677 /* Backlink to the containing struct dwo_file. */
678 struct dwo_file *dwo_file;
680 /* The "id" that distinguishes this CU/TU.
681 .debug_info calls this "dwo_id", .debug_types calls this "signature".
682 Since signatures came first, we stick with it for consistency. */
685 /* The section this CU/TU lives in, in the DWO file. */
686 struct dwarf2_section_info *section;
688 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
689 sect_offset sect_off;
692 /* For types, offset in the type's DIE of the type defined by this TU. */
693 cu_offset type_offset_in_tu;
696 /* include/dwarf2.h defines the DWP section codes.
697 It defines a max value but it doesn't define a min value, which we
698 use for error checking, so provide one. */
700 enum dwp_v2_section_ids
705 /* Data for one DWO file.
707 This includes virtual DWO files (a virtual DWO file is a DWO file as it
708 appears in a DWP file). DWP files don't really have DWO files per se -
709 comdat folding of types "loses" the DWO file they came from, and from
710 a high level view DWP files appear to contain a mass of random types.
711 However, to maintain consistency with the non-DWP case we pretend DWP
712 files contain virtual DWO files, and we assign each TU with one virtual
713 DWO file (generally based on the line and abbrev section offsets -
714 a heuristic that seems to work in practice). */
718 /* The DW_AT_GNU_dwo_name attribute.
719 For virtual DWO files the name is constructed from the section offsets
720 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
721 from related CU+TUs. */
722 const char *dwo_name;
724 /* The DW_AT_comp_dir attribute. */
725 const char *comp_dir;
727 /* The bfd, when the file is open. Otherwise this is NULL.
728 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
731 /* The sections that make up this DWO file.
732 Remember that for virtual DWO files in DWP V2, these are virtual
733 sections (for lack of a better name). */
734 struct dwo_sections sections;
736 /* The CUs in the file.
737 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
738 an extension to handle LLVM's Link Time Optimization output (where
739 multiple source files may be compiled into a single object/dwo pair). */
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
747 /* These sections are what may appear in a DWP file. */
751 /* These are used by both DWP version 1 and 2. */
752 struct dwarf2_section_info str;
753 struct dwarf2_section_info cu_index;
754 struct dwarf2_section_info tu_index;
756 /* These are only used by DWP version 2 files.
757 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
758 sections are referenced by section number, and are not recorded here.
759 In DWP version 2 there is at most one copy of all these sections, each
760 section being (effectively) comprised of the concatenation of all of the
761 individual sections that exist in the version 1 format.
762 To keep the code simple we treat each of these concatenated pieces as a
763 section itself (a virtual section?). */
764 struct dwarf2_section_info abbrev;
765 struct dwarf2_section_info info;
766 struct dwarf2_section_info line;
767 struct dwarf2_section_info loc;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info str_offsets;
771 struct dwarf2_section_info types;
774 /* These sections are what may appear in a virtual DWO file in DWP version 1.
775 A virtual DWO file is a DWO file as it appears in a DWP file. */
777 struct virtual_v1_dwo_sections
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
786 That is recorded here, and copied to dwo_unit.section. */
787 struct dwarf2_section_info info_or_types;
790 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
791 In version 2, the sections of the DWO files are concatenated together
792 and stored in one section of that name. Thus each ELF section contains
793 several "virtual" sections. */
795 struct virtual_v2_dwo_sections
797 bfd_size_type abbrev_offset;
798 bfd_size_type abbrev_size;
800 bfd_size_type line_offset;
801 bfd_size_type line_size;
803 bfd_size_type loc_offset;
804 bfd_size_type loc_size;
806 bfd_size_type macinfo_offset;
807 bfd_size_type macinfo_size;
809 bfd_size_type macro_offset;
810 bfd_size_type macro_size;
812 bfd_size_type str_offsets_offset;
813 bfd_size_type str_offsets_size;
815 /* Each DWP hash table entry records one CU or one TU.
816 That is recorded here, and copied to dwo_unit.section. */
817 bfd_size_type info_or_types_offset;
818 bfd_size_type info_or_types_size;
821 /* Contents of DWP hash tables. */
823 struct dwp_hash_table
825 uint32_t version, nr_columns;
826 uint32_t nr_units, nr_slots;
827 const gdb_byte *hash_table, *unit_table;
832 const gdb_byte *indices;
836 /* This is indexed by column number and gives the id of the section
838 #define MAX_NR_V2_DWO_SECTIONS \
839 (1 /* .debug_info or .debug_types */ \
840 + 1 /* .debug_abbrev */ \
841 + 1 /* .debug_line */ \
842 + 1 /* .debug_loc */ \
843 + 1 /* .debug_str_offsets */ \
844 + 1 /* .debug_macro or .debug_macinfo */)
845 int section_ids[MAX_NR_V2_DWO_SECTIONS];
846 const gdb_byte *offsets;
847 const gdb_byte *sizes;
852 /* Data for one DWP file. */
856 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
858 dbfd (std::move (abfd))
862 /* Name of the file. */
865 /* File format version. */
869 gdb_bfd_ref_ptr dbfd;
871 /* Section info for this file. */
872 struct dwp_sections sections {};
874 /* Table of CUs in the file. */
875 const struct dwp_hash_table *cus = nullptr;
877 /* Table of TUs in the file. */
878 const struct dwp_hash_table *tus = nullptr;
880 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
881 htab_t loaded_cus {};
882 htab_t loaded_tus {};
884 /* Table to map ELF section numbers to their sections.
885 This is only needed for the DWP V1 file format. */
886 unsigned int num_sections = 0;
887 asection **elf_sections = nullptr;
890 /* This represents a '.dwz' file. */
894 dwz_file (gdb_bfd_ref_ptr &&bfd)
895 : dwz_bfd (std::move (bfd))
899 /* A dwz file can only contain a few sections. */
900 struct dwarf2_section_info abbrev {};
901 struct dwarf2_section_info info {};
902 struct dwarf2_section_info str {};
903 struct dwarf2_section_info line {};
904 struct dwarf2_section_info macro {};
905 struct dwarf2_section_info gdb_index {};
906 struct dwarf2_section_info debug_names {};
909 gdb_bfd_ref_ptr dwz_bfd;
911 /* If we loaded the index from an external file, this contains the
912 resources associated to the open file, memory mapping, etc. */
913 std::unique_ptr<index_cache_resource> index_cache_res;
916 /* Struct used to pass misc. parameters to read_die_and_children, et
917 al. which are used for both .debug_info and .debug_types dies.
918 All parameters here are unchanging for the life of the call. This
919 struct exists to abstract away the constant parameters of die reading. */
921 struct die_reader_specs
923 /* The bfd of die_section. */
926 /* The CU of the DIE we are parsing. */
927 struct dwarf2_cu *cu;
929 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
930 struct dwo_file *dwo_file;
932 /* The section the die comes from.
933 This is either .debug_info or .debug_types, or the .dwo variants. */
934 struct dwarf2_section_info *die_section;
936 /* die_section->buffer. */
937 const gdb_byte *buffer;
939 /* The end of the buffer. */
940 const gdb_byte *buffer_end;
942 /* The value of the DW_AT_comp_dir attribute. */
943 const char *comp_dir;
945 /* The abbreviation table to use when reading the DIEs. */
946 struct abbrev_table *abbrev_table;
949 /* Type of function passed to init_cutu_and_read_dies, et.al. */
950 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
951 const gdb_byte *info_ptr,
952 struct die_info *comp_unit_die,
956 /* A 1-based directory index. This is a strong typedef to prevent
957 accidentally using a directory index as a 0-based index into an
959 enum class dir_index : unsigned int {};
961 /* Likewise, a 1-based file name index. */
962 enum class file_name_index : unsigned int {};
966 file_entry () = default;
968 file_entry (const char *name_, dir_index d_index_,
969 unsigned int mod_time_, unsigned int length_)
972 mod_time (mod_time_),
976 /* Return the include directory at D_INDEX stored in LH. Returns
977 NULL if D_INDEX is out of bounds. */
978 const char *include_dir (const line_header *lh) const;
980 /* The file name. Note this is an observing pointer. The memory is
981 owned by debug_line_buffer. */
984 /* The directory index (1-based). */
985 dir_index d_index {};
987 unsigned int mod_time {};
989 unsigned int length {};
991 /* True if referenced by the Line Number Program. */
994 /* The associated symbol table, if any. */
995 struct symtab *symtab {};
998 /* The line number information for a compilation unit (found in the
999 .debug_line section) begins with a "statement program header",
1000 which contains the following information. */
1007 /* Add an entry to the include directory table. */
1008 void add_include_dir (const char *include_dir);
1010 /* Add an entry to the file name table. */
1011 void add_file_name (const char *name, dir_index d_index,
1012 unsigned int mod_time, unsigned int length);
1014 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1015 is out of bounds. */
1016 const char *include_dir_at (dir_index index) const
1018 /* Convert directory index number (1-based) to vector index
1020 size_t vec_index = to_underlying (index) - 1;
1022 if (vec_index >= include_dirs.size ())
1024 return include_dirs[vec_index];
1027 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1028 is out of bounds. */
1029 file_entry *file_name_at (file_name_index index)
1031 /* Convert file name index number (1-based) to vector index
1033 size_t vec_index = to_underlying (index) - 1;
1035 if (vec_index >= file_names.size ())
1037 return &file_names[vec_index];
1040 /* Const version of the above. */
1041 const file_entry *file_name_at (unsigned int index) const
1043 if (index >= file_names.size ())
1045 return &file_names[index];
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1070 /* The include_directories table. Note these are observing
1071 pointers. The memory is owned by debug_line_buffer. */
1072 std::vector<const char *> include_dirs;
1074 /* The file_names table. */
1075 std::vector<file_entry> file_names;
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start {}, *statement_program_end {};
1082 typedef std::unique_ptr<line_header> line_header_up;
1085 file_entry::include_dir (const line_header *lh) const
1087 return lh->include_dir_at (d_index);
1090 /* When we construct a partial symbol table entry we only
1091 need this much information. */
1092 struct partial_die_info : public allocate_on_obstack
1094 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1096 /* Disable assign but still keep copy ctor, which is needed
1097 load_partial_dies. */
1098 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1100 /* Adjust the partial die before generating a symbol for it. This
1101 function may set the is_external flag or change the DIE's
1103 void fixup (struct dwarf2_cu *cu);
1105 /* Read a minimal amount of information into the minimal die
1107 const gdb_byte *read (const struct die_reader_specs *reader,
1108 const struct abbrev_info &abbrev,
1109 const gdb_byte *info_ptr);
1111 /* Offset of this DIE. */
1112 const sect_offset sect_off;
1114 /* DWARF-2 tag for this DIE. */
1115 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1117 /* Assorted flags describing the data found in this DIE. */
1118 const unsigned int has_children : 1;
1120 unsigned int is_external : 1;
1121 unsigned int is_declaration : 1;
1122 unsigned int has_type : 1;
1123 unsigned int has_specification : 1;
1124 unsigned int has_pc_info : 1;
1125 unsigned int may_be_inlined : 1;
1127 /* This DIE has been marked DW_AT_main_subprogram. */
1128 unsigned int main_subprogram : 1;
1130 /* Flag set if the SCOPE field of this structure has been
1132 unsigned int scope_set : 1;
1134 /* Flag set if the DIE has a byte_size attribute. */
1135 unsigned int has_byte_size : 1;
1137 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1138 unsigned int has_const_value : 1;
1140 /* Flag set if any of the DIE's children are template arguments. */
1141 unsigned int has_template_arguments : 1;
1143 /* Flag set if fixup has been called on this die. */
1144 unsigned int fixup_called : 1;
1146 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1147 unsigned int is_dwz : 1;
1149 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1150 unsigned int spec_is_dwz : 1;
1152 /* The name of this DIE. Normally the value of DW_AT_name, but
1153 sometimes a default name for unnamed DIEs. */
1154 const char *name = nullptr;
1156 /* The linkage name, if present. */
1157 const char *linkage_name = nullptr;
1159 /* The scope to prepend to our children. This is generally
1160 allocated on the comp_unit_obstack, so will disappear
1161 when this compilation unit leaves the cache. */
1162 const char *scope = nullptr;
1164 /* Some data associated with the partial DIE. The tag determines
1165 which field is live. */
1168 /* The location description associated with this DIE, if any. */
1169 struct dwarf_block *locdesc;
1170 /* The offset of an import, for DW_TAG_imported_unit. */
1171 sect_offset sect_off;
1174 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1175 CORE_ADDR lowpc = 0;
1176 CORE_ADDR highpc = 0;
1178 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1179 DW_AT_sibling, if any. */
1180 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1181 could return DW_AT_sibling values to its caller load_partial_dies. */
1182 const gdb_byte *sibling = nullptr;
1184 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1185 DW_AT_specification (or DW_AT_abstract_origin or
1186 DW_AT_extension). */
1187 sect_offset spec_offset {};
1189 /* Pointers to this DIE's parent, first child, and next sibling,
1191 struct partial_die_info *die_parent = nullptr;
1192 struct partial_die_info *die_child = nullptr;
1193 struct partial_die_info *die_sibling = nullptr;
1195 friend struct partial_die_info *
1196 dwarf2_cu::find_partial_die (sect_offset sect_off);
1199 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1200 partial_die_info (sect_offset sect_off)
1201 : partial_die_info (sect_off, DW_TAG_padding, 0)
1205 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1207 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1212 has_specification = 0;
1215 main_subprogram = 0;
1218 has_const_value = 0;
1219 has_template_arguments = 0;
1226 /* This data structure holds the information of an abbrev. */
1229 unsigned int number; /* number identifying abbrev */
1230 enum dwarf_tag tag; /* dwarf tag */
1231 unsigned short has_children; /* boolean */
1232 unsigned short num_attrs; /* number of attributes */
1233 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1234 struct abbrev_info *next; /* next in chain */
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 16;
1242 /* It is valid only if FORM is DW_FORM_implicit_const. */
1243 LONGEST implicit_const;
1246 /* Size of abbrev_table.abbrev_hash_table. */
1247 #define ABBREV_HASH_SIZE 121
1249 /* Top level data structure to contain an abbreviation table. */
1253 explicit abbrev_table (sect_offset off)
1257 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1258 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1261 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1263 /* Allocate space for a struct abbrev_info object in
1265 struct abbrev_info *alloc_abbrev ();
1267 /* Add an abbreviation to the table. */
1268 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1270 /* Look up an abbrev in the table.
1271 Returns NULL if the abbrev is not found. */
1273 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1276 /* Where the abbrev table came from.
1277 This is used as a sanity check when the table is used. */
1278 const sect_offset sect_off;
1280 /* Storage for the abbrev table. */
1281 auto_obstack abbrev_obstack;
1285 /* Hash table of abbrevs.
1286 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1287 It could be statically allocated, but the previous code didn't so we
1289 struct abbrev_info **m_abbrevs;
1292 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1294 /* Attributes have a name and a value. */
1297 ENUM_BITFIELD(dwarf_attribute) name : 16;
1298 ENUM_BITFIELD(dwarf_form) form : 15;
1300 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1301 field should be in u.str (existing only for DW_STRING) but it is kept
1302 here for better struct attribute alignment. */
1303 unsigned int string_is_canonical : 1;
1308 struct dwarf_block *blk;
1317 /* This data structure holds a complete die structure. */
1320 /* DWARF-2 tag for this DIE. */
1321 ENUM_BITFIELD(dwarf_tag) tag : 16;
1323 /* Number of attributes */
1324 unsigned char num_attrs;
1326 /* True if we're presently building the full type name for the
1327 type derived from this DIE. */
1328 unsigned char building_fullname : 1;
1330 /* True if this die is in process. PR 16581. */
1331 unsigned char in_process : 1;
1334 unsigned int abbrev;
1336 /* Offset in .debug_info or .debug_types section. */
1337 sect_offset sect_off;
1339 /* The dies in a compilation unit form an n-ary tree. PARENT
1340 points to this die's parent; CHILD points to the first child of
1341 this node; and all the children of a given node are chained
1342 together via their SIBLING fields. */
1343 struct die_info *child; /* Its first child, if any. */
1344 struct die_info *sibling; /* Its next sibling, if any. */
1345 struct die_info *parent; /* Its parent, if any. */
1347 /* An array of attributes, with NUM_ATTRS elements. There may be
1348 zero, but it's not common and zero-sized arrays are not
1349 sufficiently portable C. */
1350 struct attribute attrs[1];
1353 /* Get at parts of an attribute structure. */
1355 #define DW_STRING(attr) ((attr)->u.str)
1356 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1357 #define DW_UNSND(attr) ((attr)->u.unsnd)
1358 #define DW_BLOCK(attr) ((attr)->u.blk)
1359 #define DW_SND(attr) ((attr)->u.snd)
1360 #define DW_ADDR(attr) ((attr)->u.addr)
1361 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1363 /* Blocks are a bunch of untyped bytes. */
1368 /* Valid only if SIZE is not zero. */
1369 const gdb_byte *data;
1372 #ifndef ATTR_ALLOC_CHUNK
1373 #define ATTR_ALLOC_CHUNK 4
1376 /* Allocate fields for structs, unions and enums in this size. */
1377 #ifndef DW_FIELD_ALLOC_CHUNK
1378 #define DW_FIELD_ALLOC_CHUNK 4
1381 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1382 but this would require a corresponding change in unpack_field_as_long
1384 static int bits_per_byte = 8;
1386 /* When reading a variant or variant part, we track a bit more
1387 information about the field, and store it in an object of this
1390 struct variant_field
1392 /* If we see a DW_TAG_variant, then this will be the discriminant
1394 ULONGEST discriminant_value;
1395 /* If we see a DW_TAG_variant, then this will be set if this is the
1397 bool default_branch;
1398 /* While reading a DW_TAG_variant_part, this will be set if this
1399 field is the discriminant. */
1400 bool is_discriminant;
1405 int accessibility = 0;
1407 /* Extra information to describe a variant or variant part. */
1408 struct variant_field variant {};
1409 struct field field {};
1414 const char *name = nullptr;
1415 std::vector<struct fn_field> fnfields;
1418 /* The routines that read and process dies for a C struct or C++ class
1419 pass lists of data member fields and lists of member function fields
1420 in an instance of a field_info structure, as defined below. */
1423 /* List of data member and baseclasses fields. */
1424 std::vector<struct nextfield> fields;
1425 std::vector<struct nextfield> baseclasses;
1427 /* Number of fields (including baseclasses). */
1430 /* Set if the accesibility of one of the fields is not public. */
1431 int non_public_fields = 0;
1433 /* Member function fieldlist array, contains name of possibly overloaded
1434 member function, number of overloaded member functions and a pointer
1435 to the head of the member function field chain. */
1436 std::vector<struct fnfieldlist> fnfieldlists;
1438 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1439 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1440 std::vector<struct decl_field> typedef_field_list;
1442 /* Nested types defined by this class and the number of elements in this
1444 std::vector<struct decl_field> nested_types_list;
1447 /* One item on the queue of compilation units to read in full symbols
1449 struct dwarf2_queue_item
1451 struct dwarf2_per_cu_data *per_cu;
1452 enum language pretend_language;
1453 struct dwarf2_queue_item *next;
1456 /* The current queue. */
1457 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1459 /* Loaded secondary compilation units are kept in memory until they
1460 have not been referenced for the processing of this many
1461 compilation units. Set this to zero to disable caching. Cache
1462 sizes of up to at least twenty will improve startup time for
1463 typical inter-CU-reference binaries, at an obvious memory cost. */
1464 static int dwarf_max_cache_age = 5;
1466 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1467 struct cmd_list_element *c, const char *value)
1469 fprintf_filtered (file, _("The upper bound on the age of cached "
1470 "DWARF compilation units is %s.\n"),
1474 /* local function prototypes */
1476 static const char *get_section_name (const struct dwarf2_section_info *);
1478 static const char *get_section_file_name (const struct dwarf2_section_info *);
1480 static void dwarf2_find_base_address (struct die_info *die,
1481 struct dwarf2_cu *cu);
1483 static struct partial_symtab *create_partial_symtab
1484 (struct dwarf2_per_cu_data *per_cu, const char *name);
1486 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1487 const gdb_byte *info_ptr,
1488 struct die_info *type_unit_die,
1489 int has_children, void *data);
1491 static void dwarf2_build_psymtabs_hard
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1494 static void scan_partial_symbols (struct partial_die_info *,
1495 CORE_ADDR *, CORE_ADDR *,
1496 int, struct dwarf2_cu *);
1498 static void add_partial_symbol (struct partial_die_info *,
1499 struct dwarf2_cu *);
1501 static void add_partial_namespace (struct partial_die_info *pdi,
1502 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1503 int set_addrmap, struct dwarf2_cu *cu);
1505 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1506 CORE_ADDR *highpc, int set_addrmap,
1507 struct dwarf2_cu *cu);
1509 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1510 struct dwarf2_cu *cu);
1512 static void add_partial_subprogram (struct partial_die_info *pdi,
1513 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1514 int need_pc, struct dwarf2_cu *cu);
1516 static void dwarf2_read_symtab (struct partial_symtab *,
1519 static void psymtab_to_symtab_1 (struct partial_symtab *);
1521 static abbrev_table_up abbrev_table_read_table
1522 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1525 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1527 static struct partial_die_info *load_partial_dies
1528 (const struct die_reader_specs *, const gdb_byte *, int);
1530 static struct partial_die_info *find_partial_die (sect_offset, int,
1531 struct dwarf2_cu *);
1533 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1534 struct attribute *, struct attr_abbrev *,
1537 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1539 static int read_1_signed_byte (bfd *, const gdb_byte *);
1541 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1639 static int need_gnat_info (struct dwarf2_cu *);
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1699 struct partial_symtab *);
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1720 struct dwarf2_cu *);
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1783 static const char *dwarf_tag_name (unsigned int);
1785 static const char *dwarf_attr_name (unsigned int);
1787 static const char *dwarf_form_name (unsigned int);
1789 static const char *dwarf_bool_name (unsigned int);
1791 static const char *dwarf_type_encoding_name (unsigned int);
1793 static struct die_info *sibling_die (struct die_info *);
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1797 static void dump_die_for_error (struct die_info *);
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1832 static void read_signatured_type (struct signatured_type *);
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1838 /* memory allocation interface */
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1846 static int attr_form_is_block (const struct attribute *);
1848 static int attr_form_is_section_offset (const struct attribute *);
1850 static int attr_form_is_constant (const struct attribute *);
1852 static int attr_form_is_ref (const struct attribute *);
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1860 struct dwarf2_cu *cu,
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1867 static hashval_t partial_die_hash (const void *item);
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1902 static void dwarf2_mark (struct dwarf2_cu *);
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1921 class dwarf2_queue_guard
1924 dwarf2_queue_guard () = default;
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1930 struct dwarf2_queue_item *item, *last;
1932 item = dwarf2_queue;
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1956 struct file_and_directory
1958 /* The filename. This is never NULL. */
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2017 static void free_dwo_file (struct dwo_file *);
2019 /* A unique_ptr helper to free a dwo_file. */
2021 struct dwo_file_deleter
2023 void operator() (struct dwo_file *df) const
2029 /* A unique pointer to a dwo_file. */
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2035 static void check_producer (struct dwarf2_cu *cu);
2037 static void free_line_header_voidp (void *arg);
2039 /* Various complaints about symbol reading that don't abort the process. */
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2048 dwarf2_debug_line_missing_file_complaint (void)
2050 complaint (_(".debug_line section has line data without a file"));
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2061 dwarf2_complex_location_expr_complaint (void)
2063 complaint (_("location expression too complex"));
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2077 complaint (_("debug info runs off end of %s section"
2079 get_section_name (section),
2080 get_section_file_name (section));
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2098 /* Hash function for line_header_hash. */
2101 line_header_hash (const struct line_header *ofs)
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2109 line_header_hash_voidp (const void *item)
2111 const struct line_header *ofs = (const struct line_header *) item;
2113 return line_header_hash (ofs);
2116 /* Equality function for line_header_hash. */
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2134 attr_value_as_address (struct attribute *attr)
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2140 /* Aside from a few clearly defined exceptions, attributes that
2141 contain an address must always be in DW_FORM_addr form.
2142 Unfortunately, some compilers happen to be violating this
2143 requirement by encoding addresses using other forms, such
2144 as DW_FORM_data4 for example. For those broken compilers,
2145 we try to do our best, without any guarantee of success,
2146 to interpret the address correctly. It would also be nice
2147 to generate a complaint, but that would require us to maintain
2148 a list of legitimate cases where a non-address form is allowed,
2149 as well as update callers to pass in at least the CU's DWARF
2150 version. This is more overhead than what we're willing to
2151 expand for a pretty rare case. */
2152 addr = DW_UNSND (attr);
2155 addr = DW_ADDR (attr);
2160 /* See declaration. */
2162 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2163 const dwarf2_debug_sections *names)
2164 : objfile (objfile_)
2167 names = &dwarf2_elf_names;
2169 bfd *obfd = objfile->obfd;
2171 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2172 locate_sections (obfd, sec, *names);
2175 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2180 free_cached_comp_units ();
2182 if (quick_file_names_table)
2183 htab_delete (quick_file_names_table);
2185 if (line_header_hash)
2186 htab_delete (line_header_hash);
2188 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2189 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191 for (signatured_type *sig_type : all_type_units)
2192 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194 VEC_free (dwarf2_section_info_def, types);
2196 if (dwo_files != NULL)
2197 free_dwo_files (dwo_files, objfile);
2199 /* Everything else should be on the objfile obstack. */
2202 /* See declaration. */
2205 dwarf2_per_objfile::free_cached_comp_units ()
2207 dwarf2_per_cu_data *per_cu = read_in_chain;
2208 dwarf2_per_cu_data **last_chain = &read_in_chain;
2209 while (per_cu != NULL)
2211 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2214 *last_chain = next_cu;
2219 /* A helper class that calls free_cached_comp_units on
2222 class free_cached_comp_units
2226 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2227 : m_per_objfile (per_objfile)
2231 ~free_cached_comp_units ()
2233 m_per_objfile->free_cached_comp_units ();
2236 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2240 dwarf2_per_objfile *m_per_objfile;
2243 /* Try to locate the sections we need for DWARF 2 debugging
2244 information and return true if we have enough to do something.
2245 NAMES points to the dwarf2 section names, or is NULL if the standard
2246 ELF names are used. */
2249 dwarf2_has_info (struct objfile *objfile,
2250 const struct dwarf2_debug_sections *names)
2252 if (objfile->flags & OBJF_READNEVER)
2255 struct dwarf2_per_objfile *dwarf2_per_objfile
2256 = get_dwarf2_per_objfile (objfile);
2258 if (dwarf2_per_objfile == NULL)
2260 /* Initialize per-objfile state. */
2262 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2264 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2266 return (!dwarf2_per_objfile->info.is_virtual
2267 && dwarf2_per_objfile->info.s.section != NULL
2268 && !dwarf2_per_objfile->abbrev.is_virtual
2269 && dwarf2_per_objfile->abbrev.s.section != NULL);
2272 /* Return the containing section of virtual section SECTION. */
2274 static struct dwarf2_section_info *
2275 get_containing_section (const struct dwarf2_section_info *section)
2277 gdb_assert (section->is_virtual);
2278 return section->s.containing_section;
2281 /* Return the bfd owner of SECTION. */
2284 get_section_bfd_owner (const struct dwarf2_section_info *section)
2286 if (section->is_virtual)
2288 section = get_containing_section (section);
2289 gdb_assert (!section->is_virtual);
2291 return section->s.section->owner;
2294 /* Return the bfd section of SECTION.
2295 Returns NULL if the section is not present. */
2298 get_section_bfd_section (const struct dwarf2_section_info *section)
2300 if (section->is_virtual)
2302 section = get_containing_section (section);
2303 gdb_assert (!section->is_virtual);
2305 return section->s.section;
2308 /* Return the name of SECTION. */
2311 get_section_name (const struct dwarf2_section_info *section)
2313 asection *sectp = get_section_bfd_section (section);
2315 gdb_assert (sectp != NULL);
2316 return bfd_section_name (get_section_bfd_owner (section), sectp);
2319 /* Return the name of the file SECTION is in. */
2322 get_section_file_name (const struct dwarf2_section_info *section)
2324 bfd *abfd = get_section_bfd_owner (section);
2326 return bfd_get_filename (abfd);
2329 /* Return the id of SECTION.
2330 Returns 0 if SECTION doesn't exist. */
2333 get_section_id (const struct dwarf2_section_info *section)
2335 asection *sectp = get_section_bfd_section (section);
2342 /* Return the flags of SECTION.
2343 SECTION (or containing section if this is a virtual section) must exist. */
2346 get_section_flags (const struct dwarf2_section_info *section)
2348 asection *sectp = get_section_bfd_section (section);
2350 gdb_assert (sectp != NULL);
2351 return bfd_get_section_flags (sectp->owner, sectp);
2354 /* When loading sections, we look either for uncompressed section or for
2355 compressed section names. */
2358 section_is_p (const char *section_name,
2359 const struct dwarf2_section_names *names)
2361 if (names->normal != NULL
2362 && strcmp (section_name, names->normal) == 0)
2364 if (names->compressed != NULL
2365 && strcmp (section_name, names->compressed) == 0)
2370 /* See declaration. */
2373 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2374 const dwarf2_debug_sections &names)
2376 flagword aflag = bfd_get_section_flags (abfd, sectp);
2378 if ((aflag & SEC_HAS_CONTENTS) == 0)
2381 else if (section_is_p (sectp->name, &names.info))
2383 this->info.s.section = sectp;
2384 this->info.size = bfd_get_section_size (sectp);
2386 else if (section_is_p (sectp->name, &names.abbrev))
2388 this->abbrev.s.section = sectp;
2389 this->abbrev.size = bfd_get_section_size (sectp);
2391 else if (section_is_p (sectp->name, &names.line))
2393 this->line.s.section = sectp;
2394 this->line.size = bfd_get_section_size (sectp);
2396 else if (section_is_p (sectp->name, &names.loc))
2398 this->loc.s.section = sectp;
2399 this->loc.size = bfd_get_section_size (sectp);
2401 else if (section_is_p (sectp->name, &names.loclists))
2403 this->loclists.s.section = sectp;
2404 this->loclists.size = bfd_get_section_size (sectp);
2406 else if (section_is_p (sectp->name, &names.macinfo))
2408 this->macinfo.s.section = sectp;
2409 this->macinfo.size = bfd_get_section_size (sectp);
2411 else if (section_is_p (sectp->name, &names.macro))
2413 this->macro.s.section = sectp;
2414 this->macro.size = bfd_get_section_size (sectp);
2416 else if (section_is_p (sectp->name, &names.str))
2418 this->str.s.section = sectp;
2419 this->str.size = bfd_get_section_size (sectp);
2421 else if (section_is_p (sectp->name, &names.line_str))
2423 this->line_str.s.section = sectp;
2424 this->line_str.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &names.addr))
2428 this->addr.s.section = sectp;
2429 this->addr.size = bfd_get_section_size (sectp);
2431 else if (section_is_p (sectp->name, &names.frame))
2433 this->frame.s.section = sectp;
2434 this->frame.size = bfd_get_section_size (sectp);
2436 else if (section_is_p (sectp->name, &names.eh_frame))
2438 this->eh_frame.s.section = sectp;
2439 this->eh_frame.size = bfd_get_section_size (sectp);
2441 else if (section_is_p (sectp->name, &names.ranges))
2443 this->ranges.s.section = sectp;
2444 this->ranges.size = bfd_get_section_size (sectp);
2446 else if (section_is_p (sectp->name, &names.rnglists))
2448 this->rnglists.s.section = sectp;
2449 this->rnglists.size = bfd_get_section_size (sectp);
2451 else if (section_is_p (sectp->name, &names.types))
2453 struct dwarf2_section_info type_section;
2455 memset (&type_section, 0, sizeof (type_section));
2456 type_section.s.section = sectp;
2457 type_section.size = bfd_get_section_size (sectp);
2459 VEC_safe_push (dwarf2_section_info_def, this->types,
2462 else if (section_is_p (sectp->name, &names.gdb_index))
2464 this->gdb_index.s.section = sectp;
2465 this->gdb_index.size = bfd_get_section_size (sectp);
2467 else if (section_is_p (sectp->name, &names.debug_names))
2469 this->debug_names.s.section = sectp;
2470 this->debug_names.size = bfd_get_section_size (sectp);
2472 else if (section_is_p (sectp->name, &names.debug_aranges))
2474 this->debug_aranges.s.section = sectp;
2475 this->debug_aranges.size = bfd_get_section_size (sectp);
2478 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2479 && bfd_section_vma (abfd, sectp) == 0)
2480 this->has_section_at_zero = true;
2483 /* A helper function that decides whether a section is empty,
2487 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2489 if (section->is_virtual)
2490 return section->size == 0;
2491 return section->s.section == NULL || section->size == 0;
2494 /* See dwarf2read.h. */
2497 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2501 gdb_byte *buf, *retbuf;
2505 info->buffer = NULL;
2508 if (dwarf2_section_empty_p (info))
2511 sectp = get_section_bfd_section (info);
2513 /* If this is a virtual section we need to read in the real one first. */
2514 if (info->is_virtual)
2516 struct dwarf2_section_info *containing_section =
2517 get_containing_section (info);
2519 gdb_assert (sectp != NULL);
2520 if ((sectp->flags & SEC_RELOC) != 0)
2522 error (_("Dwarf Error: DWP format V2 with relocations is not"
2523 " supported in section %s [in module %s]"),
2524 get_section_name (info), get_section_file_name (info));
2526 dwarf2_read_section (objfile, containing_section);
2527 /* Other code should have already caught virtual sections that don't
2529 gdb_assert (info->virtual_offset + info->size
2530 <= containing_section->size);
2531 /* If the real section is empty or there was a problem reading the
2532 section we shouldn't get here. */
2533 gdb_assert (containing_section->buffer != NULL);
2534 info->buffer = containing_section->buffer + info->virtual_offset;
2538 /* If the section has relocations, we must read it ourselves.
2539 Otherwise we attach it to the BFD. */
2540 if ((sectp->flags & SEC_RELOC) == 0)
2542 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2546 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2549 /* When debugging .o files, we may need to apply relocations; see
2550 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2551 We never compress sections in .o files, so we only need to
2552 try this when the section is not compressed. */
2553 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2556 info->buffer = retbuf;
2560 abfd = get_section_bfd_owner (info);
2561 gdb_assert (abfd != NULL);
2563 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2564 || bfd_bread (buf, info->size, abfd) != info->size)
2566 error (_("Dwarf Error: Can't read DWARF data"
2567 " in section %s [in module %s]"),
2568 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2572 /* A helper function that returns the size of a section in a safe way.
2573 If you are positive that the section has been read before using the
2574 size, then it is safe to refer to the dwarf2_section_info object's
2575 "size" field directly. In other cases, you must call this
2576 function, because for compressed sections the size field is not set
2577 correctly until the section has been read. */
2579 static bfd_size_type
2580 dwarf2_section_size (struct objfile *objfile,
2581 struct dwarf2_section_info *info)
2584 dwarf2_read_section (objfile, info);
2588 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2592 dwarf2_get_section_info (struct objfile *objfile,
2593 enum dwarf2_section_enum sect,
2594 asection **sectp, const gdb_byte **bufp,
2595 bfd_size_type *sizep)
2597 struct dwarf2_per_objfile *data
2598 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2599 dwarf2_objfile_data_key);
2600 struct dwarf2_section_info *info;
2602 /* We may see an objfile without any DWARF, in which case we just
2613 case DWARF2_DEBUG_FRAME:
2614 info = &data->frame;
2616 case DWARF2_EH_FRAME:
2617 info = &data->eh_frame;
2620 gdb_assert_not_reached ("unexpected section");
2623 dwarf2_read_section (objfile, info);
2625 *sectp = get_section_bfd_section (info);
2626 *bufp = info->buffer;
2627 *sizep = info->size;
2630 /* A helper function to find the sections for a .dwz file. */
2633 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2635 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2637 /* Note that we only support the standard ELF names, because .dwz
2638 is ELF-only (at the time of writing). */
2639 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2641 dwz_file->abbrev.s.section = sectp;
2642 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2646 dwz_file->info.s.section = sectp;
2647 dwz_file->info.size = bfd_get_section_size (sectp);
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2651 dwz_file->str.s.section = sectp;
2652 dwz_file->str.size = bfd_get_section_size (sectp);
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2656 dwz_file->line.s.section = sectp;
2657 dwz_file->line.size = bfd_get_section_size (sectp);
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2661 dwz_file->macro.s.section = sectp;
2662 dwz_file->macro.size = bfd_get_section_size (sectp);
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2666 dwz_file->gdb_index.s.section = sectp;
2667 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2671 dwz_file->debug_names.s.section = sectp;
2672 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2683 const char *filename;
2684 bfd_size_type buildid_len_arg;
2688 if (dwarf2_per_objfile->dwz_file != NULL)
2689 return dwarf2_per_objfile->dwz_file.get ();
2691 bfd_set_error (bfd_error_no_error);
2692 gdb::unique_xmalloc_ptr<char> data
2693 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2694 &buildid_len_arg, &buildid));
2697 if (bfd_get_error () == bfd_error_no_error)
2699 error (_("could not read '.gnu_debugaltlink' section: %s"),
2700 bfd_errmsg (bfd_get_error ()));
2703 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2705 buildid_len = (size_t) buildid_len_arg;
2707 filename = data.get ();
2709 std::string abs_storage;
2710 if (!IS_ABSOLUTE_PATH (filename))
2712 gdb::unique_xmalloc_ptr<char> abs
2713 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2715 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2716 filename = abs_storage.c_str ();
2719 /* First try the file name given in the section. If that doesn't
2720 work, try to use the build-id instead. */
2721 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2722 if (dwz_bfd != NULL)
2724 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2728 if (dwz_bfd == NULL)
2729 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2731 if (dwz_bfd == NULL)
2732 error (_("could not find '.gnu_debugaltlink' file for %s"),
2733 objfile_name (dwarf2_per_objfile->objfile));
2735 std::unique_ptr<struct dwz_file> result
2736 (new struct dwz_file (std::move (dwz_bfd)));
2738 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2742 result->dwz_bfd.get ());
2743 dwarf2_per_objfile->dwz_file = std::move (result);
2744 return dwarf2_per_objfile->dwz_file.get ();
2747 /* DWARF quick_symbols_functions support. */
2749 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2750 unique line tables, so we maintain a separate table of all .debug_line
2751 derived entries to support the sharing.
2752 All the quick functions need is the list of file names. We discard the
2753 line_header when we're done and don't need to record it here. */
2754 struct quick_file_names
2756 /* The data used to construct the hash key. */
2757 struct stmt_list_hash hash;
2759 /* The number of entries in file_names, real_names. */
2760 unsigned int num_file_names;
2762 /* The file names from the line table, after being run through
2764 const char **file_names;
2766 /* The file names from the line table after being run through
2767 gdb_realpath. These are computed lazily. */
2768 const char **real_names;
2771 /* When using the index (and thus not using psymtabs), each CU has an
2772 object of this type. This is used to hold information needed by
2773 the various "quick" methods. */
2774 struct dwarf2_per_cu_quick_data
2776 /* The file table. This can be NULL if there was no file table
2777 or it's currently not read in.
2778 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2779 struct quick_file_names *file_names;
2781 /* The corresponding symbol table. This is NULL if symbols for this
2782 CU have not yet been read. */
2783 struct compunit_symtab *compunit_symtab;
2785 /* A temporary mark bit used when iterating over all CUs in
2786 expand_symtabs_matching. */
2787 unsigned int mark : 1;
2789 /* True if we've tried to read the file table and found there isn't one.
2790 There will be no point in trying to read it again next time. */
2791 unsigned int no_file_data : 1;
2794 /* Utility hash function for a stmt_list_hash. */
2797 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801 if (stmt_list_hash->dwo_unit != NULL)
2802 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2803 v += to_underlying (stmt_list_hash->line_sect_off);
2807 /* Utility equality function for a stmt_list_hash. */
2810 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2811 const struct stmt_list_hash *rhs)
2813 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2815 if (lhs->dwo_unit != NULL
2816 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2819 return lhs->line_sect_off == rhs->line_sect_off;
2822 /* Hash function for a quick_file_names. */
2825 hash_file_name_entry (const void *e)
2827 const struct quick_file_names *file_data
2828 = (const struct quick_file_names *) e;
2830 return hash_stmt_list_entry (&file_data->hash);
2833 /* Equality function for a quick_file_names. */
2836 eq_file_name_entry (const void *a, const void *b)
2838 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2839 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2841 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2844 /* Delete function for a quick_file_names. */
2847 delete_file_name_entry (void *e)
2849 struct quick_file_names *file_data = (struct quick_file_names *) e;
2852 for (i = 0; i < file_data->num_file_names; ++i)
2854 xfree ((void*) file_data->file_names[i]);
2855 if (file_data->real_names)
2856 xfree ((void*) file_data->real_names[i]);
2859 /* The space for the struct itself lives on objfile_obstack,
2860 so we don't free it here. */
2863 /* Create a quick_file_names hash table. */
2866 create_quick_file_names_table (unsigned int nr_initial_entries)
2868 return htab_create_alloc (nr_initial_entries,
2869 hash_file_name_entry, eq_file_name_entry,
2870 delete_file_name_entry, xcalloc, xfree);
2873 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2874 have to be created afterwards. You should call age_cached_comp_units after
2875 processing PER_CU->CU. dw2_setup must have been already called. */
2878 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2880 if (per_cu->is_debug_types)
2881 load_full_type_unit (per_cu);
2883 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2885 if (per_cu->cu == NULL)
2886 return; /* Dummy CU. */
2888 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2891 /* Read in the symbols for PER_CU. */
2894 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2898 /* Skip type_unit_groups, reading the type units they contain
2899 is handled elsewhere. */
2900 if (IS_TYPE_UNIT_GROUP (per_cu))
2903 /* The destructor of dwarf2_queue_guard frees any entries left on
2904 the queue. After this point we're guaranteed to leave this function
2905 with the dwarf queue empty. */
2906 dwarf2_queue_guard q_guard;
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu, skip_partial);
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file (dwarf2_per_objfile) == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2928 process_queue (dwarf2_per_objfile);
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units (dwarf2_per_objfile);
2935 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2936 the objfile from which this CU came. Returns the resulting symbol
2939 static struct compunit_symtab *
2940 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2942 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2947 free_cached_comp_units freer (dwarf2_per_objfile);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu, skip_partial);
2950 process_cu_includes (dwarf2_per_objfile);
2953 return per_cu->v.quick->compunit_symtab;
2956 /* See declaration. */
2958 dwarf2_per_cu_data *
2959 dwarf2_per_objfile::get_cutu (int index)
2961 if (index >= this->all_comp_units.size ())
2963 index -= this->all_comp_units.size ();
2964 gdb_assert (index < this->all_type_units.size ());
2965 return &this->all_type_units[index]->per_cu;
2968 return this->all_comp_units[index];
2971 /* See declaration. */
2973 dwarf2_per_cu_data *
2974 dwarf2_per_objfile::get_cu (int index)
2976 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2978 return this->all_comp_units[index];
2981 /* See declaration. */
2984 dwarf2_per_objfile::get_tu (int index)
2986 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2988 return this->all_type_units[index];
2991 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2992 objfile_obstack, and constructed with the specified field
2995 static dwarf2_per_cu_data *
2996 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 struct dwarf2_section_info *section,
2999 sect_offset sect_off, ULONGEST length)
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 dwarf2_per_cu_data *the_cu
3003 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3004 struct dwarf2_per_cu_data);
3005 the_cu->sect_off = sect_off;
3006 the_cu->length = length;
3007 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3008 the_cu->section = section;
3009 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3010 struct dwarf2_per_cu_quick_data);
3011 the_cu->is_dwz = is_dwz;
3015 /* A helper for create_cus_from_index that handles a given list of
3019 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3020 const gdb_byte *cu_list, offset_type n_elements,
3021 struct dwarf2_section_info *section,
3024 for (offset_type i = 0; i < n_elements; i += 2)
3026 gdb_static_assert (sizeof (ULONGEST) >= 8);
3028 sect_offset sect_off
3029 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3030 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3033 dwarf2_per_cu_data *per_cu
3034 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3036 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3040 /* Read the CU list from the mapped index, and use it to create all
3041 the CU objects for this objfile. */
3044 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3045 const gdb_byte *cu_list, offset_type cu_list_elements,
3046 const gdb_byte *dwz_list, offset_type dwz_elements)
3048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3049 dwarf2_per_objfile->all_comp_units.reserve
3050 ((cu_list_elements + dwz_elements) / 2);
3052 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0);
3055 if (dwz_elements == 0)
3058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3059 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3063 /* Create the signatured type hash table from the index. */
3066 create_signatured_type_table_from_index
3067 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3068 struct dwarf2_section_info *section,
3069 const gdb_byte *bytes,
3070 offset_type elements)
3072 struct objfile *objfile = dwarf2_per_objfile->objfile;
3074 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3075 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3077 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3079 for (offset_type i = 0; i < elements; i += 3)
3081 struct signatured_type *sig_type;
3084 cu_offset type_offset_in_tu;
3086 gdb_static_assert (sizeof (ULONGEST) >= 8);
3087 sect_offset sect_off
3088 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3090 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3092 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3096 struct signatured_type);
3097 sig_type->signature = signature;
3098 sig_type->type_offset_in_tu = type_offset_in_tu;
3099 sig_type->per_cu.is_debug_types = 1;
3100 sig_type->per_cu.section = section;
3101 sig_type->per_cu.sect_off = sect_off;
3102 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3103 sig_type->per_cu.v.quick
3104 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3105 struct dwarf2_per_cu_quick_data);
3107 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3113 dwarf2_per_objfile->signatured_types = sig_types_hash;
3116 /* Create the signatured type hash table from .debug_names. */
3119 create_signatured_type_table_from_debug_names
3120 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3121 const mapped_debug_names &map,
3122 struct dwarf2_section_info *section,
3123 struct dwarf2_section_info *abbrev_section)
3125 struct objfile *objfile = dwarf2_per_objfile->objfile;
3127 dwarf2_read_section (objfile, section);
3128 dwarf2_read_section (objfile, abbrev_section);
3130 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3131 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3133 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3135 for (uint32_t i = 0; i < map.tu_count; ++i)
3137 struct signatured_type *sig_type;
3140 sect_offset sect_off
3141 = (sect_offset) (extract_unsigned_integer
3142 (map.tu_table_reordered + i * map.offset_size,
3144 map.dwarf5_byte_order));
3146 comp_unit_head cu_header;
3147 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3149 section->buffer + to_underlying (sect_off),
3152 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3153 struct signatured_type);
3154 sig_type->signature = cu_header.signature;
3155 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3156 sig_type->per_cu.is_debug_types = 1;
3157 sig_type->per_cu.section = section;
3158 sig_type->per_cu.sect_off = sect_off;
3159 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3160 sig_type->per_cu.v.quick
3161 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3162 struct dwarf2_per_cu_quick_data);
3164 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3167 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3170 dwarf2_per_objfile->signatured_types = sig_types_hash;
3173 /* Read the address map data from the mapped index, and use it to
3174 populate the objfile's psymtabs_addrmap. */
3177 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3178 struct mapped_index *index)
3180 struct objfile *objfile = dwarf2_per_objfile->objfile;
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const gdb_byte *iter, *end;
3183 struct addrmap *mutable_map;
3186 auto_obstack temp_obstack;
3188 mutable_map = addrmap_create_mutable (&temp_obstack);
3190 iter = index->address_table.data ();
3191 end = iter + index->address_table.size ();
3193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3197 ULONGEST hi, lo, cu_index;
3198 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3200 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3202 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3207 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3208 hex_string (lo), hex_string (hi));
3212 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3214 complaint (_(".gdb_index address table has invalid CU number %u"),
3215 (unsigned) cu_index);
3219 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3220 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3221 addrmap_set_empty (mutable_map, lo, hi - 1,
3222 dwarf2_per_objfile->get_cu (cu_index));
3225 objfile->partial_symtabs->psymtabs_addrmap
3226 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3229 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3230 populate the objfile's psymtabs_addrmap. */
3233 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3234 struct dwarf2_section_info *section)
3236 struct objfile *objfile = dwarf2_per_objfile->objfile;
3237 bfd *abfd = objfile->obfd;
3238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3239 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3240 SECT_OFF_TEXT (objfile));
3242 auto_obstack temp_obstack;
3243 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3245 std::unordered_map<sect_offset,
3246 dwarf2_per_cu_data *,
3247 gdb::hash_enum<sect_offset>>
3248 debug_info_offset_to_per_cu;
3249 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3251 const auto insertpair
3252 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3253 if (!insertpair.second)
3255 warning (_("Section .debug_aranges in %s has duplicate "
3256 "debug_info_offset %s, ignoring .debug_aranges."),
3257 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3262 dwarf2_read_section (objfile, section);
3264 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3266 const gdb_byte *addr = section->buffer;
3268 while (addr < section->buffer + section->size)
3270 const gdb_byte *const entry_addr = addr;
3271 unsigned int bytes_read;
3273 const LONGEST entry_length = read_initial_length (abfd, addr,
3277 const gdb_byte *const entry_end = addr + entry_length;
3278 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3279 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3280 if (addr + entry_length > section->buffer + section->size)
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "length %s exceeds section length %s, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 plongest (bytes_read + entry_length),
3287 pulongest (section->size));
3291 /* The version number. */
3292 const uint16_t version = read_2_bytes (abfd, addr);
3296 warning (_("Section .debug_aranges in %s entry at offset %zu "
3297 "has unsupported version %d, ignoring .debug_aranges."),
3298 objfile_name (objfile), entry_addr - section->buffer,
3303 const uint64_t debug_info_offset
3304 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3305 addr += offset_size;
3306 const auto per_cu_it
3307 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3308 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "debug_info_offset %s does not exists, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 pulongest (debug_info_offset));
3317 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3319 const uint8_t address_size = *addr++;
3320 if (address_size < 1 || address_size > 8)
3322 warning (_("Section .debug_aranges in %s entry at offset %zu "
3323 "address_size %u is invalid, ignoring .debug_aranges."),
3324 objfile_name (objfile), entry_addr - section->buffer,
3329 const uint8_t segment_selector_size = *addr++;
3330 if (segment_selector_size != 0)
3332 warning (_("Section .debug_aranges in %s entry at offset %zu "
3333 "segment_selector_size %u is not supported, "
3334 "ignoring .debug_aranges."),
3335 objfile_name (objfile), entry_addr - section->buffer,
3336 segment_selector_size);
3340 /* Must pad to an alignment boundary that is twice the address
3341 size. It is undocumented by the DWARF standard but GCC does
3343 for (size_t padding = ((-(addr - section->buffer))
3344 & (2 * address_size - 1));
3345 padding > 0; padding--)
3348 warning (_("Section .debug_aranges in %s entry at offset %zu "
3349 "padding is not zero, ignoring .debug_aranges."),
3350 objfile_name (objfile), entry_addr - section->buffer);
3356 if (addr + 2 * address_size > entry_end)
3358 warning (_("Section .debug_aranges in %s entry at offset %zu "
3359 "address list is not properly terminated, "
3360 "ignoring .debug_aranges."),
3361 objfile_name (objfile), entry_addr - section->buffer);
3364 ULONGEST start = extract_unsigned_integer (addr, address_size,
3366 addr += address_size;
3367 ULONGEST length = extract_unsigned_integer (addr, address_size,
3369 addr += address_size;
3370 if (start == 0 && length == 0)
3372 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3374 /* Symbol was eliminated due to a COMDAT group. */
3377 ULONGEST end = start + length;
3378 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3380 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3382 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3386 objfile->partial_symtabs->psymtabs_addrmap
3387 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3390 /* Find a slot in the mapped index INDEX for the object named NAME.
3391 If NAME is found, set *VEC_OUT to point to the CU vector in the
3392 constant pool and return true. If NAME cannot be found, return
3396 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3397 offset_type **vec_out)
3400 offset_type slot, step;
3401 int (*cmp) (const char *, const char *);
3403 gdb::unique_xmalloc_ptr<char> without_params;
3404 if (current_language->la_language == language_cplus
3405 || current_language->la_language == language_fortran
3406 || current_language->la_language == language_d)
3408 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3411 if (strchr (name, '(') != NULL)
3413 without_params = cp_remove_params (name);
3415 if (without_params != NULL)
3416 name = without_params.get ();
3420 /* Index version 4 did not support case insensitive searches. But the
3421 indices for case insensitive languages are built in lowercase, therefore
3422 simulate our NAME being searched is also lowercased. */
3423 hash = mapped_index_string_hash ((index->version == 4
3424 && case_sensitivity == case_sensitive_off
3425 ? 5 : index->version),
3428 slot = hash & (index->symbol_table.size () - 1);
3429 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3430 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3436 const auto &bucket = index->symbol_table[slot];
3437 if (bucket.name == 0 && bucket.vec == 0)
3440 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3441 if (!cmp (name, str))
3443 *vec_out = (offset_type *) (index->constant_pool
3444 + MAYBE_SWAP (bucket.vec));
3448 slot = (slot + step) & (index->symbol_table.size () - 1);
3452 /* A helper function that reads the .gdb_index from BUFFER and fills
3453 in MAP. FILENAME is the name of the file containing the data;
3454 it is used for error reporting. DEPRECATED_OK is true if it is
3455 ok to use deprecated sections.
3457 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3458 out parameters that are filled in with information about the CU and
3459 TU lists in the section.
3461 Returns true if all went well, false otherwise. */
3464 read_gdb_index_from_buffer (struct objfile *objfile,
3465 const char *filename,
3467 gdb::array_view<const gdb_byte> buffer,
3468 struct mapped_index *map,
3469 const gdb_byte **cu_list,
3470 offset_type *cu_list_elements,
3471 const gdb_byte **types_list,
3472 offset_type *types_list_elements)
3474 const gdb_byte *addr = &buffer[0];
3476 /* Version check. */
3477 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3489 warning_printed = 1;
3493 /* Index version 4 uses a different hash function than index version
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3511 warning_printed = 1;
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3528 map->version = version;
3530 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3533 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3534 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3538 *types_list = addr + MAYBE_SWAP (metadata[i]);
3539 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3540 - MAYBE_SWAP (metadata[i]))
3544 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3550 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3551 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3553 = gdb::array_view<mapped_index::symbol_table_slot>
3554 ((mapped_index::symbol_table_slot *) symbol_table,
3555 (mapped_index::symbol_table_slot *) symbol_table_end);
3558 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3563 /* Callback types for dwarf2_read_gdb_index. */
3565 typedef gdb::function_view
3566 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3567 get_gdb_index_contents_ftype;
3568 typedef gdb::function_view
3569 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3570 get_gdb_index_contents_dwz_ftype;
3572 /* Read .gdb_index. If everything went ok, initialize the "quick"
3573 elements of all the CUs and return 1. Otherwise, return 0. */
3576 dwarf2_read_gdb_index
3577 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3578 get_gdb_index_contents_ftype get_gdb_index_contents,
3579 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3581 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3582 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3583 struct dwz_file *dwz;
3584 struct objfile *objfile = dwarf2_per_objfile->objfile;
3586 gdb::array_view<const gdb_byte> main_index_contents
3587 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3589 if (main_index_contents.empty ())
3592 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3593 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3594 use_deprecated_index_sections,
3595 main_index_contents, map.get (), &cu_list,
3596 &cu_list_elements, &types_list,
3597 &types_list_elements))
3600 /* Don't use the index if it's empty. */
3601 if (map->symbol_table.empty ())
3604 /* If there is a .dwz file, read it so we can get its CU list as
3606 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3609 struct mapped_index dwz_map;
3610 const gdb_byte *dwz_types_ignore;
3611 offset_type dwz_types_elements_ignore;
3613 gdb::array_view<const gdb_byte> dwz_index_content
3614 = get_gdb_index_contents_dwz (objfile, dwz);
3616 if (dwz_index_content.empty ())
3619 if (!read_gdb_index_from_buffer (objfile,
3620 bfd_get_filename (dwz->dwz_bfd), 1,
3621 dwz_index_content, &dwz_map,
3622 &dwz_list, &dwz_list_elements,
3624 &dwz_types_elements_ignore))
3626 warning (_("could not read '.gdb_index' section from %s; skipping"),
3627 bfd_get_filename (dwz->dwz_bfd));
3632 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3633 dwz_list, dwz_list_elements);
3635 if (types_list_elements)
3637 struct dwarf2_section_info *section;
3639 /* We can only handle a single .debug_types when we have an
3641 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3644 section = VEC_index (dwarf2_section_info_def,
3645 dwarf2_per_objfile->types, 0);
3647 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3648 types_list, types_list_elements);
3651 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3653 dwarf2_per_objfile->index_table = std::move (map);
3654 dwarf2_per_objfile->using_index = 1;
3655 dwarf2_per_objfile->quick_file_names_table =
3656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3661 /* die_reader_func for dw2_get_file_names. */
3664 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3665 const gdb_byte *info_ptr,
3666 struct die_info *comp_unit_die,
3670 struct dwarf2_cu *cu = reader->cu;
3671 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = cu->per_cu->dwarf2_per_objfile;
3674 struct objfile *objfile = dwarf2_per_objfile->objfile;
3675 struct dwarf2_per_cu_data *lh_cu;
3676 struct attribute *attr;
3679 struct quick_file_names *qfn;
3681 gdb_assert (! this_cu->is_debug_types);
3683 /* Our callers never want to match partial units -- instead they
3684 will match the enclosing full CU. */
3685 if (comp_unit_die->tag == DW_TAG_partial_unit)
3687 this_cu->v.quick->no_file_data = 1;
3695 sect_offset line_offset {};
3697 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3700 struct quick_file_names find_entry;
3702 line_offset = (sect_offset) DW_UNSND (attr);
3704 /* We may have already read in this line header (TU line header sharing).
3705 If we have we're done. */
3706 find_entry.hash.dwo_unit = cu->dwo_unit;
3707 find_entry.hash.line_sect_off = line_offset;
3708 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3709 &find_entry, INSERT);
3712 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3716 lh = dwarf_decode_line_header (line_offset, cu);
3720 lh_cu->v.quick->no_file_data = 1;
3724 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3725 qfn->hash.dwo_unit = cu->dwo_unit;
3726 qfn->hash.line_sect_off = line_offset;
3727 gdb_assert (slot != NULL);
3730 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3732 qfn->num_file_names = lh->file_names.size ();
3734 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3735 for (i = 0; i < lh->file_names.size (); ++i)
3736 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3737 qfn->real_names = NULL;
3739 lh_cu->v.quick->file_names = qfn;
3742 /* A helper for the "quick" functions which attempts to read the line
3743 table for THIS_CU. */
3745 static struct quick_file_names *
3746 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3748 /* This should never be called for TUs. */
3749 gdb_assert (! this_cu->is_debug_types);
3750 /* Nor type unit groups. */
3751 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3753 if (this_cu->v.quick->file_names != NULL)
3754 return this_cu->v.quick->file_names;
3755 /* If we know there is no line data, no point in looking again. */
3756 if (this_cu->v.quick->no_file_data)
3759 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3761 if (this_cu->v.quick->no_file_data)
3763 return this_cu->v.quick->file_names;
3766 /* A helper for the "quick" functions which computes and caches the
3767 real path for a given file name from the line table. */
3770 dw2_get_real_path (struct objfile *objfile,
3771 struct quick_file_names *qfn, int index)
3773 if (qfn->real_names == NULL)
3774 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3775 qfn->num_file_names, const char *);
3777 if (qfn->real_names[index] == NULL)
3778 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3780 return qfn->real_names[index];
3783 static struct symtab *
3784 dw2_find_last_source_symtab (struct objfile *objfile)
3786 struct dwarf2_per_objfile *dwarf2_per_objfile
3787 = get_dwarf2_per_objfile (objfile);
3788 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3789 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3794 return compunit_primary_filetab (cust);
3797 /* Traversal function for dw2_forget_cached_source_info. */
3800 dw2_free_cached_file_names (void **slot, void *info)
3802 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3804 if (file_data->real_names)
3808 for (i = 0; i < file_data->num_file_names; ++i)
3810 xfree ((void*) file_data->real_names[i]);
3811 file_data->real_names[i] = NULL;
3819 dw2_forget_cached_source_info (struct objfile *objfile)
3821 struct dwarf2_per_objfile *dwarf2_per_objfile
3822 = get_dwarf2_per_objfile (objfile);
3824 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3825 dw2_free_cached_file_names, NULL);
3828 /* Helper function for dw2_map_symtabs_matching_filename that expands
3829 the symtabs and calls the iterator. */
3832 dw2_map_expand_apply (struct objfile *objfile,
3833 struct dwarf2_per_cu_data *per_cu,
3834 const char *name, const char *real_path,
3835 gdb::function_view<bool (symtab *)> callback)
3837 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3839 /* Don't visit already-expanded CUs. */
3840 if (per_cu->v.quick->compunit_symtab)
3843 /* This may expand more than one symtab, and we want to iterate over
3845 dw2_instantiate_symtab (per_cu, false);
3847 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3848 last_made, callback);
3851 /* Implementation of the map_symtabs_matching_filename method. */
3854 dw2_map_symtabs_matching_filename
3855 (struct objfile *objfile, const char *name, const char *real_path,
3856 gdb::function_view<bool (symtab *)> callback)
3858 const char *name_basename = lbasename (name);
3859 struct dwarf2_per_objfile *dwarf2_per_objfile
3860 = get_dwarf2_per_objfile (objfile);
3862 /* The rule is CUs specify all the files, including those used by
3863 any TU, so there's no need to scan TUs here. */
3865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3867 /* We only need to look at symtabs not already expanded. */
3868 if (per_cu->v.quick->compunit_symtab)
3871 quick_file_names *file_data = dw2_get_file_names (per_cu);
3872 if (file_data == NULL)
3875 for (int j = 0; j < file_data->num_file_names; ++j)
3877 const char *this_name = file_data->file_names[j];
3878 const char *this_real_name;
3880 if (compare_filenames_for_search (this_name, name))
3882 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3888 /* Before we invoke realpath, which can get expensive when many
3889 files are involved, do a quick comparison of the basenames. */
3890 if (! basenames_may_differ
3891 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3894 this_real_name = dw2_get_real_path (objfile, file_data, j);
3895 if (compare_filenames_for_search (this_real_name, name))
3897 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3903 if (real_path != NULL)
3905 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3906 gdb_assert (IS_ABSOLUTE_PATH (name));
3907 if (this_real_name != NULL
3908 && FILENAME_CMP (real_path, this_real_name) == 0)
3910 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3922 /* Struct used to manage iterating over all CUs looking for a symbol. */
3924 struct dw2_symtab_iterator
3926 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3927 struct dwarf2_per_objfile *dwarf2_per_objfile;
3928 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3929 int want_specific_block;
3930 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3931 Unused if !WANT_SPECIFIC_BLOCK. */
3933 /* The kind of symbol we're looking for. */
3935 /* The list of CUs from the index entry of the symbol,
3936 or NULL if not found. */
3938 /* The next element in VEC to look at. */
3940 /* The number of elements in VEC, or zero if there is no match. */
3942 /* Have we seen a global version of the symbol?
3943 If so we can ignore all further global instances.
3944 This is to work around gold/15646, inefficient gold-generated
3949 /* Initialize the index symtab iterator ITER.
3950 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3951 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3954 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3955 struct dwarf2_per_objfile *dwarf2_per_objfile,
3956 int want_specific_block,
3961 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3962 iter->want_specific_block = want_specific_block;
3963 iter->block_index = block_index;
3964 iter->domain = domain;
3966 iter->global_seen = 0;
3968 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3970 /* index is NULL if OBJF_READNOW. */
3971 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3972 iter->length = MAYBE_SWAP (*iter->vec);
3980 /* Return the next matching CU or NULL if there are no more. */
3982 static struct dwarf2_per_cu_data *
3983 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3985 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3987 for ( ; iter->next < iter->length; ++iter->next)
3989 offset_type cu_index_and_attrs =
3990 MAYBE_SWAP (iter->vec[iter->next + 1]);
3991 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3992 int want_static = iter->block_index != GLOBAL_BLOCK;
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4002 (dwarf2_per_objfile->index_table->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4007 + dwarf2_per_objfile->all_type_units.size ()))
4009 complaint (_(".gdb_index entry has bad CU index"
4011 objfile_name (dwarf2_per_objfile->objfile));
4015 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4017 /* Skip if already read in. */
4018 if (per_cu->v.quick->compunit_symtab)
4021 /* Check static vs global. */
4024 if (iter->want_specific_block
4025 && want_static != is_static)
4027 /* Work around gold/15646. */
4028 if (!is_static && iter->global_seen)
4031 iter->global_seen = 1;
4034 /* Only check the symbol's kind if it has one. */
4037 switch (iter->domain)
4040 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4042 /* Some types are also in VAR_DOMAIN. */
4043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4051 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4066 static struct compunit_symtab *
4067 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4068 const char *name, domain_enum domain)
4070 struct compunit_symtab *stab_best = NULL;
4071 struct dwarf2_per_objfile *dwarf2_per_objfile
4072 = get_dwarf2_per_objfile (objfile);
4074 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4076 struct dw2_symtab_iterator iter;
4077 struct dwarf2_per_cu_data *per_cu;
4079 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4081 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4083 struct symbol *sym, *with_opaque = NULL;
4084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4086 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4088 sym = block_find_symbol (block, name, domain,
4089 block_find_non_opaque_type_preferred,
4092 /* Some caution must be observed with overloaded functions
4093 and methods, since the index will not contain any overload
4094 information (but NAME might contain it). */
4097 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4099 if (with_opaque != NULL
4100 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4103 /* Keep looking through other CUs. */
4110 dw2_print_stats (struct objfile *objfile)
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114 int total = (dwarf2_per_objfile->all_comp_units.size ()
4115 + dwarf2_per_objfile->all_type_units.size ());
4118 for (int i = 0; i < total; ++i)
4120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4122 if (!per_cu->v.quick->compunit_symtab)
4125 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4126 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4129 /* This dumps minimal information about the index.
4130 It is called via "mt print objfiles".
4131 One use is to verify .gdb_index has been loaded by the
4132 gdb.dwarf2/gdb-index.exp testcase. */
4135 dw2_dump (struct objfile *objfile)
4137 struct dwarf2_per_objfile *dwarf2_per_objfile
4138 = get_dwarf2_per_objfile (objfile);
4140 gdb_assert (dwarf2_per_objfile->using_index);
4141 printf_filtered (".gdb_index:");
4142 if (dwarf2_per_objfile->index_table != NULL)
4144 printf_filtered (" version %d\n",
4145 dwarf2_per_objfile->index_table->version);
4148 printf_filtered (" faked for \"readnow\"\n");
4149 printf_filtered ("\n");
4153 dw2_expand_symtabs_for_function (struct objfile *objfile,
4154 const char *func_name)
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4159 struct dw2_symtab_iterator iter;
4160 struct dwarf2_per_cu_data *per_cu;
4162 /* Note: It doesn't matter what we pass for block_index here. */
4163 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4166 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4167 dw2_instantiate_symtab (per_cu, false);
4172 dw2_expand_all_symtabs (struct objfile *objfile)
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4176 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4177 + dwarf2_per_objfile->all_type_units.size ());
4179 for (int i = 0; i < total_units; ++i)
4181 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4183 /* We don't want to directly expand a partial CU, because if we
4184 read it with the wrong language, then assertion failures can
4185 be triggered later on. See PR symtab/23010. So, tell
4186 dw2_instantiate_symtab to skip partial CUs -- any important
4187 partial CU will be read via DW_TAG_imported_unit anyway. */
4188 dw2_instantiate_symtab (per_cu, true);
4193 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4194 const char *fullname)
4196 struct dwarf2_per_objfile *dwarf2_per_objfile
4197 = get_dwarf2_per_objfile (objfile);
4199 /* We don't need to consider type units here.
4200 This is only called for examining code, e.g. expand_line_sal.
4201 There can be an order of magnitude (or more) more type units
4202 than comp units, and we avoid them if we can. */
4204 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4206 /* We only need to look at symtabs not already expanded. */
4207 if (per_cu->v.quick->compunit_symtab)
4210 quick_file_names *file_data = dw2_get_file_names (per_cu);
4211 if (file_data == NULL)
4214 for (int j = 0; j < file_data->num_file_names; ++j)
4216 const char *this_fullname = file_data->file_names[j];
4218 if (filename_cmp (this_fullname, fullname) == 0)
4220 dw2_instantiate_symtab (per_cu, false);
4228 dw2_map_matching_symbols (struct objfile *objfile,
4229 const char * name, domain_enum domain,
4231 int (*callback) (struct block *,
4232 struct symbol *, void *),
4233 void *data, symbol_name_match_type match,
4234 symbol_compare_ftype *ordered_compare)
4236 /* Currently unimplemented; used for Ada. The function can be called if the
4237 current language is Ada for a non-Ada objfile using GNU index. As Ada
4238 does not look for non-Ada symbols this function should just return. */
4241 /* Symbol name matcher for .gdb_index names.
4243 Symbol names in .gdb_index have a few particularities:
4245 - There's no indication of which is the language of each symbol.
4247 Since each language has its own symbol name matching algorithm,
4248 and we don't know which language is the right one, we must match
4249 each symbol against all languages. This would be a potential
4250 performance problem if it were not mitigated by the
4251 mapped_index::name_components lookup table, which significantly
4252 reduces the number of times we need to call into this matcher,
4253 making it a non-issue.
4255 - Symbol names in the index have no overload (parameter)
4256 information. I.e., in C++, "foo(int)" and "foo(long)" both
4257 appear as "foo" in the index, for example.
4259 This means that the lookup names passed to the symbol name
4260 matcher functions must have no parameter information either
4261 because (e.g.) symbol search name "foo" does not match
4262 lookup-name "foo(int)" [while swapping search name for lookup
4265 class gdb_index_symbol_name_matcher
4268 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4269 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4271 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4272 Returns true if any matcher matches. */
4273 bool matches (const char *symbol_name);
4276 /* A reference to the lookup name we're matching against. */
4277 const lookup_name_info &m_lookup_name;
4279 /* A vector holding all the different symbol name matchers, for all
4281 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4284 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4285 (const lookup_name_info &lookup_name)
4286 : m_lookup_name (lookup_name)
4288 /* Prepare the vector of comparison functions upfront, to avoid
4289 doing the same work for each symbol. Care is taken to avoid
4290 matching with the same matcher more than once if/when multiple
4291 languages use the same matcher function. */
4292 auto &matchers = m_symbol_name_matcher_funcs;
4293 matchers.reserve (nr_languages);
4295 matchers.push_back (default_symbol_name_matcher);
4297 for (int i = 0; i < nr_languages; i++)
4299 const language_defn *lang = language_def ((enum language) i);
4300 symbol_name_matcher_ftype *name_matcher
4301 = get_symbol_name_matcher (lang, m_lookup_name);
4303 /* Don't insert the same comparison routine more than once.
4304 Note that we do this linear walk instead of a seemingly
4305 cheaper sorted insert, or use a std::set or something like
4306 that, because relative order of function addresses is not
4307 stable. This is not a problem in practice because the number
4308 of supported languages is low, and the cost here is tiny
4309 compared to the number of searches we'll do afterwards using
4311 if (name_matcher != default_symbol_name_matcher
4312 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4313 == matchers.end ()))
4314 matchers.push_back (name_matcher);
4319 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4321 for (auto matches_name : m_symbol_name_matcher_funcs)
4322 if (matches_name (symbol_name, m_lookup_name, NULL))
4328 /* Starting from a search name, return the string that finds the upper
4329 bound of all strings that start with SEARCH_NAME in a sorted name
4330 list. Returns the empty string to indicate that the upper bound is
4331 the end of the list. */
4334 make_sort_after_prefix_name (const char *search_name)
4336 /* When looking to complete "func", we find the upper bound of all
4337 symbols that start with "func" by looking for where we'd insert
4338 the closest string that would follow "func" in lexicographical
4339 order. Usually, that's "func"-with-last-character-incremented,
4340 i.e. "fund". Mind non-ASCII characters, though. Usually those
4341 will be UTF-8 multi-byte sequences, but we can't be certain.
4342 Especially mind the 0xff character, which is a valid character in
4343 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4344 rule out compilers allowing it in identifiers. Note that
4345 conveniently, strcmp/strcasecmp are specified to compare
4346 characters interpreted as unsigned char. So what we do is treat
4347 the whole string as a base 256 number composed of a sequence of
4348 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4349 to 0, and carries 1 to the following more-significant position.
4350 If the very first character in SEARCH_NAME ends up incremented
4351 and carries/overflows, then the upper bound is the end of the
4352 list. The string after the empty string is also the empty
4355 Some examples of this operation:
4357 SEARCH_NAME => "+1" RESULT
4361 "\xff" "a" "\xff" => "\xff" "b"
4366 Then, with these symbols for example:
4372 completing "func" looks for symbols between "func" and
4373 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4374 which finds "func" and "func1", but not "fund".
4378 funcÿ (Latin1 'ÿ' [0xff])
4382 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4383 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4387 ÿÿ (Latin1 'ÿ' [0xff])
4390 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4391 the end of the list.
4393 std::string after = search_name;
4394 while (!after.empty () && (unsigned char) after.back () == 0xff)
4396 if (!after.empty ())
4397 after.back () = (unsigned char) after.back () + 1;
4401 /* See declaration. */
4403 std::pair<std::vector<name_component>::const_iterator,
4404 std::vector<name_component>::const_iterator>
4405 mapped_index_base::find_name_components_bounds
4406 (const lookup_name_info &lookup_name_without_params) const
4409 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4412 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4414 /* Comparison function object for lower_bound that matches against a
4415 given symbol name. */
4416 auto lookup_compare_lower = [&] (const name_component &elem,
4419 const char *elem_qualified = this->symbol_name_at (elem.idx);
4420 const char *elem_name = elem_qualified + elem.name_offset;
4421 return name_cmp (elem_name, name) < 0;
4424 /* Comparison function object for upper_bound that matches against a
4425 given symbol name. */
4426 auto lookup_compare_upper = [&] (const char *name,
4427 const name_component &elem)
4429 const char *elem_qualified = this->symbol_name_at (elem.idx);
4430 const char *elem_name = elem_qualified + elem.name_offset;
4431 return name_cmp (name, elem_name) < 0;
4434 auto begin = this->name_components.begin ();
4435 auto end = this->name_components.end ();
4437 /* Find the lower bound. */
4440 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4443 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4446 /* Find the upper bound. */
4449 if (lookup_name_without_params.completion_mode ())
4451 /* In completion mode, we want UPPER to point past all
4452 symbols names that have the same prefix. I.e., with
4453 these symbols, and completing "func":
4455 function << lower bound
4457 other_function << upper bound
4459 We find the upper bound by looking for the insertion
4460 point of "func"-with-last-character-incremented,
4462 std::string after = make_sort_after_prefix_name (cplus);
4465 return std::lower_bound (lower, end, after.c_str (),
4466 lookup_compare_lower);
4469 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4472 return {lower, upper};
4475 /* See declaration. */
4478 mapped_index_base::build_name_components ()
4480 if (!this->name_components.empty ())
4483 this->name_components_casing = case_sensitivity;
4485 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4487 /* The code below only knows how to break apart components of C++
4488 symbol names (and other languages that use '::' as
4489 namespace/module separator). If we add support for wild matching
4490 to some language that uses some other operator (E.g., Ada, Go and
4491 D use '.'), then we'll need to try splitting the symbol name
4492 according to that language too. Note that Ada does support wild
4493 matching, but doesn't currently support .gdb_index. */
4494 auto count = this->symbol_name_count ();
4495 for (offset_type idx = 0; idx < count; idx++)
4497 if (this->symbol_name_slot_invalid (idx))
4500 const char *name = this->symbol_name_at (idx);
4502 /* Add each name component to the name component table. */
4503 unsigned int previous_len = 0;
4504 for (unsigned int current_len = cp_find_first_component (name);
4505 name[current_len] != '\0';
4506 current_len += cp_find_first_component (name + current_len))
4508 gdb_assert (name[current_len] == ':');
4509 this->name_components.push_back ({previous_len, idx});
4510 /* Skip the '::'. */
4512 previous_len = current_len;
4514 this->name_components.push_back ({previous_len, idx});
4517 /* Sort name_components elements by name. */
4518 auto name_comp_compare = [&] (const name_component &left,
4519 const name_component &right)
4521 const char *left_qualified = this->symbol_name_at (left.idx);
4522 const char *right_qualified = this->symbol_name_at (right.idx);
4524 const char *left_name = left_qualified + left.name_offset;
4525 const char *right_name = right_qualified + right.name_offset;
4527 return name_cmp (left_name, right_name) < 0;
4530 std::sort (this->name_components.begin (),
4531 this->name_components.end (),
4535 /* Helper for dw2_expand_symtabs_matching that works with a
4536 mapped_index_base instead of the containing objfile. This is split
4537 to a separate function in order to be able to unit test the
4538 name_components matching using a mock mapped_index_base. For each
4539 symbol name that matches, calls MATCH_CALLBACK, passing it the
4540 symbol's index in the mapped_index_base symbol table. */
4543 dw2_expand_symtabs_matching_symbol
4544 (mapped_index_base &index,
4545 const lookup_name_info &lookup_name_in,
4546 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4547 enum search_domain kind,
4548 gdb::function_view<void (offset_type)> match_callback)
4550 lookup_name_info lookup_name_without_params
4551 = lookup_name_in.make_ignore_params ();
4552 gdb_index_symbol_name_matcher lookup_name_matcher
4553 (lookup_name_without_params);
4555 /* Build the symbol name component sorted vector, if we haven't
4557 index.build_name_components ();
4559 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4561 /* Now for each symbol name in range, check to see if we have a name
4562 match, and if so, call the MATCH_CALLBACK callback. */
4564 /* The same symbol may appear more than once in the range though.
4565 E.g., if we're looking for symbols that complete "w", and we have
4566 a symbol named "w1::w2", we'll find the two name components for
4567 that same symbol in the range. To be sure we only call the
4568 callback once per symbol, we first collect the symbol name
4569 indexes that matched in a temporary vector and ignore
4571 std::vector<offset_type> matches;
4572 matches.reserve (std::distance (bounds.first, bounds.second));
4574 for (; bounds.first != bounds.second; ++bounds.first)
4576 const char *qualified = index.symbol_name_at (bounds.first->idx);
4578 if (!lookup_name_matcher.matches (qualified)
4579 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4582 matches.push_back (bounds.first->idx);
4585 std::sort (matches.begin (), matches.end ());
4587 /* Finally call the callback, once per match. */
4589 for (offset_type idx : matches)
4593 match_callback (idx);
4598 /* Above we use a type wider than idx's for 'prev', since 0 and
4599 (offset_type)-1 are both possible values. */
4600 static_assert (sizeof (prev) > sizeof (offset_type), "");
4605 namespace selftests { namespace dw2_expand_symtabs_matching {
4607 /* A mock .gdb_index/.debug_names-like name index table, enough to
4608 exercise dw2_expand_symtabs_matching_symbol, which works with the
4609 mapped_index_base interface. Builds an index from the symbol list
4610 passed as parameter to the constructor. */
4611 class mock_mapped_index : public mapped_index_base
4614 mock_mapped_index (gdb::array_view<const char *> symbols)
4615 : m_symbol_table (symbols)
4618 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4620 /* Return the number of names in the symbol table. */
4621 size_t symbol_name_count () const override
4623 return m_symbol_table.size ();
4626 /* Get the name of the symbol at IDX in the symbol table. */
4627 const char *symbol_name_at (offset_type idx) const override
4629 return m_symbol_table[idx];
4633 gdb::array_view<const char *> m_symbol_table;
4636 /* Convenience function that converts a NULL pointer to a "<null>"
4637 string, to pass to print routines. */
4640 string_or_null (const char *str)
4642 return str != NULL ? str : "<null>";
4645 /* Check if a lookup_name_info built from
4646 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4647 index. EXPECTED_LIST is the list of expected matches, in expected
4648 matching order. If no match expected, then an empty list is
4649 specified. Returns true on success. On failure prints a warning
4650 indicating the file:line that failed, and returns false. */
4653 check_match (const char *file, int line,
4654 mock_mapped_index &mock_index,
4655 const char *name, symbol_name_match_type match_type,
4656 bool completion_mode,
4657 std::initializer_list<const char *> expected_list)
4659 lookup_name_info lookup_name (name, match_type, completion_mode);
4661 bool matched = true;
4663 auto mismatch = [&] (const char *expected_str,
4666 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4667 "expected=\"%s\", got=\"%s\"\n"),
4669 (match_type == symbol_name_match_type::FULL
4671 name, string_or_null (expected_str), string_or_null (got));
4675 auto expected_it = expected_list.begin ();
4676 auto expected_end = expected_list.end ();
4678 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4680 [&] (offset_type idx)
4682 const char *matched_name = mock_index.symbol_name_at (idx);
4683 const char *expected_str
4684 = expected_it == expected_end ? NULL : *expected_it++;
4686 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4687 mismatch (expected_str, matched_name);
4690 const char *expected_str
4691 = expected_it == expected_end ? NULL : *expected_it++;
4692 if (expected_str != NULL)
4693 mismatch (expected_str, NULL);
4698 /* The symbols added to the mock mapped_index for testing (in
4700 static const char *test_symbols[] = {
4709 "ns2::tmpl<int>::foo2",
4710 "(anonymous namespace)::A::B::C",
4712 /* These are used to check that the increment-last-char in the
4713 matching algorithm for completion doesn't match "t1_fund" when
4714 completing "t1_func". */
4720 /* A UTF-8 name with multi-byte sequences to make sure that
4721 cp-name-parser understands this as a single identifier ("função"
4722 is "function" in PT). */
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4728 /* \377 (0xff) is Latin1 'ÿ'. */
4732 /* A name with all sorts of complications. Starts with "z" to make
4733 it easier for the completion tests below. */
4734 #define Z_SYM_NAME \
4735 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4736 "::tuple<(anonymous namespace)::ui*, " \
4737 "std::default_delete<(anonymous namespace)::ui>, void>"
4742 /* Returns true if the mapped_index_base::find_name_component_bounds
4743 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4744 in completion mode. */
4747 check_find_bounds_finds (mapped_index_base &index,
4748 const char *search_name,
4749 gdb::array_view<const char *> expected_syms)
4751 lookup_name_info lookup_name (search_name,
4752 symbol_name_match_type::FULL, true);
4754 auto bounds = index.find_name_components_bounds (lookup_name);
4756 size_t distance = std::distance (bounds.first, bounds.second);
4757 if (distance != expected_syms.size ())
4760 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4762 auto nc_elem = bounds.first + exp_elem;
4763 const char *qualified = index.symbol_name_at (nc_elem->idx);
4764 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4771 /* Test the lower-level mapped_index::find_name_component_bounds
4775 test_mapped_index_find_name_component_bounds ()
4777 mock_mapped_index mock_index (test_symbols);
4779 mock_index.build_name_components ();
4781 /* Test the lower-level mapped_index::find_name_component_bounds
4782 method in completion mode. */
4784 static const char *expected_syms[] = {
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "t1_func", expected_syms));
4793 /* Check that the increment-last-char in the name matching algorithm
4794 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4796 static const char *expected_syms1[] = {
4800 SELF_CHECK (check_find_bounds_finds (mock_index,
4801 "\377", expected_syms1));
4803 static const char *expected_syms2[] = {
4806 SELF_CHECK (check_find_bounds_finds (mock_index,
4807 "\377\377", expected_syms2));
4811 /* Test dw2_expand_symtabs_matching_symbol. */
4814 test_dw2_expand_symtabs_matching_symbol ()
4816 mock_mapped_index mock_index (test_symbols);
4818 /* We let all tests run until the end even if some fails, for debug
4820 bool any_mismatch = false;
4822 /* Create the expected symbols list (an initializer_list). Needed
4823 because lists have commas, and we need to pass them to CHECK,
4824 which is a macro. */
4825 #define EXPECT(...) { __VA_ARGS__ }
4827 /* Wrapper for check_match that passes down the current
4828 __FILE__/__LINE__. */
4829 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4830 any_mismatch |= !check_match (__FILE__, __LINE__, \
4832 NAME, MATCH_TYPE, COMPLETION_MODE, \
4835 /* Identity checks. */
4836 for (const char *sym : test_symbols)
4838 /* Should be able to match all existing symbols. */
4839 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4842 /* Should be able to match all existing symbols with
4844 std::string with_params = std::string (sym) + "(int)";
4845 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4848 /* Should be able to match all existing symbols with
4849 parameters and qualifiers. */
4850 with_params = std::string (sym) + " ( int ) const";
4851 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4854 /* This should really find sym, but cp-name-parser.y doesn't
4855 know about lvalue/rvalue qualifiers yet. */
4856 with_params = std::string (sym) + " ( int ) &&";
4857 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4861 /* Check that the name matching algorithm for completion doesn't get
4862 confused with Latin1 'ÿ' / 0xff. */
4864 static const char str[] = "\377";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("\377", "\377\377123"));
4869 /* Check that the increment-last-char in the matching algorithm for
4870 completion doesn't match "t1_fund" when completing "t1_func". */
4872 static const char str[] = "t1_func";
4873 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4874 EXPECT ("t1_func", "t1_func1"));
4877 /* Check that completion mode works at each prefix of the expected
4880 static const char str[] = "function(int)";
4881 size_t len = strlen (str);
4884 for (size_t i = 1; i < len; i++)
4886 lookup.assign (str, i);
4887 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4888 EXPECT ("function"));
4892 /* While "w" is a prefix of both components, the match function
4893 should still only be called once. */
4895 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4897 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4901 /* Same, with a "complicated" symbol. */
4903 static const char str[] = Z_SYM_NAME;
4904 size_t len = strlen (str);
4907 for (size_t i = 1; i < len; i++)
4909 lookup.assign (str, i);
4910 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4911 EXPECT (Z_SYM_NAME));
4915 /* In FULL mode, an incomplete symbol doesn't match. */
4917 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4921 /* A complete symbol with parameters matches any overload, since the
4922 index has no overload info. */
4924 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4925 EXPECT ("std::zfunction", "std::zfunction2"));
4926 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4927 EXPECT ("std::zfunction", "std::zfunction2"));
4928 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4929 EXPECT ("std::zfunction", "std::zfunction2"));
4932 /* Check that whitespace is ignored appropriately. A symbol with a
4933 template argument list. */
4935 static const char expected[] = "ns::foo<int>";
4936 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4938 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4942 /* Check that whitespace is ignored appropriately. A symbol with a
4943 template argument list that includes a pointer. */
4945 static const char expected[] = "ns::foo<char*>";
4946 /* Try both completion and non-completion modes. */
4947 static const bool completion_mode[2] = {false, true};
4948 for (size_t i = 0; i < 2; i++)
4950 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4955 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4956 completion_mode[i], EXPECT (expected));
4957 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4958 completion_mode[i], EXPECT (expected));
4963 /* Check method qualifiers are ignored. */
4964 static const char expected[] = "ns::foo<char*>";
4965 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4966 symbol_name_match_type::FULL, true, EXPECT (expected));
4967 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4968 symbol_name_match_type::FULL, true, EXPECT (expected));
4969 CHECK_MATCH ("foo < char * > ( int ) const",
4970 symbol_name_match_type::WILD, true, EXPECT (expected));
4971 CHECK_MATCH ("foo < char * > ( int ) &&",
4972 symbol_name_match_type::WILD, true, EXPECT (expected));
4975 /* Test lookup names that don't match anything. */
4977 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4980 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4984 /* Some wild matching tests, exercising "(anonymous namespace)",
4985 which should not be confused with a parameter list. */
4987 static const char *syms[] = {
4991 "A :: B :: C ( int )",
4996 for (const char *s : syms)
4998 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4999 EXPECT ("(anonymous namespace)::A::B::C"));
5004 static const char expected[] = "ns2::tmpl<int>::foo2";
5005 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5007 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5011 SELF_CHECK (!any_mismatch);
5020 test_mapped_index_find_name_component_bounds ();
5021 test_dw2_expand_symtabs_matching_symbol ();
5024 }} // namespace selftests::dw2_expand_symtabs_matching
5026 #endif /* GDB_SELF_TEST */
5028 /* If FILE_MATCHER is NULL or if PER_CU has
5029 dwarf2_per_cu_quick_data::MARK set (see
5030 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5031 EXPANSION_NOTIFY on it. */
5034 dw2_expand_symtabs_matching_one
5035 (struct dwarf2_per_cu_data *per_cu,
5036 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5037 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5039 if (file_matcher == NULL || per_cu->v.quick->mark)
5041 bool symtab_was_null
5042 = (per_cu->v.quick->compunit_symtab == NULL);
5044 dw2_instantiate_symtab (per_cu, false);
5046 if (expansion_notify != NULL
5048 && per_cu->v.quick->compunit_symtab != NULL)
5049 expansion_notify (per_cu->v.quick->compunit_symtab);
5053 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5054 matched, to expand corresponding CUs that were marked. IDX is the
5055 index of the symbol name that matched. */
5058 dw2_expand_marked_cus
5059 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5060 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5061 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5064 offset_type *vec, vec_len, vec_idx;
5065 bool global_seen = false;
5066 mapped_index &index = *dwarf2_per_objfile->index_table;
5068 vec = (offset_type *) (index.constant_pool
5069 + MAYBE_SWAP (index.symbol_table[idx].vec));
5070 vec_len = MAYBE_SWAP (vec[0]);
5071 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5073 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5074 /* This value is only valid for index versions >= 7. */
5075 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5076 gdb_index_symbol_kind symbol_kind =
5077 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5078 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5079 /* Only check the symbol attributes if they're present.
5080 Indices prior to version 7 don't record them,
5081 and indices >= 7 may elide them for certain symbols
5082 (gold does this). */
5085 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5087 /* Work around gold/15646. */
5090 if (!is_static && global_seen)
5096 /* Only check the symbol's kind if it has one. */
5101 case VARIABLES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5105 case FUNCTIONS_DOMAIN:
5106 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5110 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5118 /* Don't crash on bad data. */
5119 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5120 + dwarf2_per_objfile->all_type_units.size ()))
5122 complaint (_(".gdb_index entry has bad CU index"
5124 objfile_name (dwarf2_per_objfile->objfile));
5128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5134 /* If FILE_MATCHER is non-NULL, set all the
5135 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5136 that match FILE_MATCHER. */
5139 dw_expand_symtabs_matching_file_matcher
5140 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5143 if (file_matcher == NULL)
5146 objfile *const objfile = dwarf2_per_objfile->objfile;
5148 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5150 NULL, xcalloc, xfree));
5151 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5153 NULL, xcalloc, xfree));
5155 /* The rule is CUs specify all the files, including those used by
5156 any TU, so there's no need to scan TUs here. */
5158 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5162 per_cu->v.quick->mark = 0;
5164 /* We only need to look at symtabs not already expanded. */
5165 if (per_cu->v.quick->compunit_symtab)
5168 quick_file_names *file_data = dw2_get_file_names (per_cu);
5169 if (file_data == NULL)
5172 if (htab_find (visited_not_found.get (), file_data) != NULL)
5174 else if (htab_find (visited_found.get (), file_data) != NULL)
5176 per_cu->v.quick->mark = 1;
5180 for (int j = 0; j < file_data->num_file_names; ++j)
5182 const char *this_real_name;
5184 if (file_matcher (file_data->file_names[j], false))
5186 per_cu->v.quick->mark = 1;
5190 /* Before we invoke realpath, which can get expensive when many
5191 files are involved, do a quick comparison of the basenames. */
5192 if (!basenames_may_differ
5193 && !file_matcher (lbasename (file_data->file_names[j]),
5197 this_real_name = dw2_get_real_path (objfile, file_data, j);
5198 if (file_matcher (this_real_name, false))
5200 per_cu->v.quick->mark = 1;
5205 void **slot = htab_find_slot (per_cu->v.quick->mark
5206 ? visited_found.get ()
5207 : visited_not_found.get (),
5214 dw2_expand_symtabs_matching
5215 (struct objfile *objfile,
5216 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5217 const lookup_name_info &lookup_name,
5218 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5219 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5220 enum search_domain kind)
5222 struct dwarf2_per_objfile *dwarf2_per_objfile
5223 = get_dwarf2_per_objfile (objfile);
5225 /* index_table is NULL if OBJF_READNOW. */
5226 if (!dwarf2_per_objfile->index_table)
5229 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5231 mapped_index &index = *dwarf2_per_objfile->index_table;
5233 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5235 kind, [&] (offset_type idx)
5237 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5238 expansion_notify, kind);
5242 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5245 static struct compunit_symtab *
5246 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5251 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5252 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5255 if (cust->includes == NULL)
5258 for (i = 0; cust->includes[i]; ++i)
5260 struct compunit_symtab *s = cust->includes[i];
5262 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5270 static struct compunit_symtab *
5271 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5272 struct bound_minimal_symbol msymbol,
5274 struct obj_section *section,
5277 struct dwarf2_per_cu_data *data;
5278 struct compunit_symtab *result;
5280 if (!objfile->partial_symtabs->psymtabs_addrmap)
5283 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5284 SECT_OFF_TEXT (objfile));
5285 data = (struct dwarf2_per_cu_data *) addrmap_find
5286 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5290 if (warn_if_readin && data->v.quick->compunit_symtab)
5291 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5292 paddress (get_objfile_arch (objfile), pc));
5295 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5298 gdb_assert (result != NULL);
5303 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5304 void *data, int need_fullname)
5306 struct dwarf2_per_objfile *dwarf2_per_objfile
5307 = get_dwarf2_per_objfile (objfile);
5309 if (!dwarf2_per_objfile->filenames_cache)
5311 dwarf2_per_objfile->filenames_cache.emplace ();
5313 htab_up visited (htab_create_alloc (10,
5314 htab_hash_pointer, htab_eq_pointer,
5315 NULL, xcalloc, xfree));
5317 /* The rule is CUs specify all the files, including those used
5318 by any TU, so there's no need to scan TUs here. We can
5319 ignore file names coming from already-expanded CUs. */
5321 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5323 if (per_cu->v.quick->compunit_symtab)
5325 void **slot = htab_find_slot (visited.get (),
5326 per_cu->v.quick->file_names,
5329 *slot = per_cu->v.quick->file_names;
5333 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5335 /* We only need to look at symtabs not already expanded. */
5336 if (per_cu->v.quick->compunit_symtab)
5339 quick_file_names *file_data = dw2_get_file_names (per_cu);
5340 if (file_data == NULL)
5343 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5346 /* Already visited. */
5351 for (int j = 0; j < file_data->num_file_names; ++j)
5353 const char *filename = file_data->file_names[j];
5354 dwarf2_per_objfile->filenames_cache->seen (filename);
5359 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5361 gdb::unique_xmalloc_ptr<char> this_real_name;
5364 this_real_name = gdb_realpath (filename);
5365 (*fun) (filename, this_real_name.get (), data);
5370 dw2_has_symbols (struct objfile *objfile)
5375 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5378 dw2_find_last_source_symtab,
5379 dw2_forget_cached_source_info,
5380 dw2_map_symtabs_matching_filename,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5391 dw2_map_symbol_filenames
5394 /* DWARF-5 debug_names reader. */
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5403 Returns true if all went well, false otherwise. */
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5411 if (dwarf2_section_empty_p (section))
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5419 dwarf2_read_section (objfile, section);
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5423 const gdb_byte *addr = section->buffer;
5425 bfd *const abfd = get_section_bfd_owner (section);
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5455 uint16_t padding = read_2_bytes (abfd, addr);
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5469 /* local_type_unit_count - The number of TUs in the local TU
5471 map.tu_count = read_4_bytes (abfd, addr);
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5478 if (foreign_tu_count != 0)
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5486 /* bucket_count - The number of hash buckets in the hash lookup
5488 map.bucket_count = read_4_bytes (abfd, addr);
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5531 const gdb_byte *abbrev_table_start = addr;
5534 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5539 const auto insertpair
5540 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5541 if (!insertpair.second)
5543 warning (_("Section .debug_names in %s has duplicate index %s, "
5544 "ignoring .debug_names."),
5545 filename, pulongest (index_num));
5548 mapped_debug_names::index_val &indexval = insertpair.first->second;
5549 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5554 mapped_debug_names::index_val::attr attr;
5555 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5557 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5559 if (attr.form == DW_FORM_implicit_const)
5561 attr.implicit_const = read_signed_leb128 (abfd, addr,
5565 if (attr.dw_idx == 0 && attr.form == 0)
5567 indexval.attr_vec.push_back (std::move (attr));
5570 if (addr != abbrev_table_start + abbrev_table_size)
5572 warning (_("Section .debug_names in %s has abbreviation_table "
5573 "of size %zu vs. written as %u, ignoring .debug_names."),
5574 filename, addr - abbrev_table_start, abbrev_table_size);
5577 map.entry_pool = addr;
5582 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5586 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 dwarf2_section_info §ion,
5591 sect_offset sect_off_prev;
5592 for (uint32_t i = 0; i <= map.cu_count; ++i)
5594 sect_offset sect_off_next;
5595 if (i < map.cu_count)
5598 = (sect_offset) (extract_unsigned_integer
5599 (map.cu_table_reordered + i * map.offset_size,
5601 map.dwarf5_byte_order));
5604 sect_off_next = (sect_offset) section.size;
5607 const ULONGEST length = sect_off_next - sect_off_prev;
5608 dwarf2_per_cu_data *per_cu
5609 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5610 sect_off_prev, length);
5611 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5613 sect_off_prev = sect_off_next;
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5626 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5629 dwarf2_per_objfile->info,
5630 false /* is_dwz */);
5632 if (dwz_map.cu_count == 0)
5635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5636 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5640 /* Read .debug_names. If everything went ok, initialize the "quick"
5641 elements of all the CUs and return true. Otherwise, return false. */
5644 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5646 std::unique_ptr<mapped_debug_names> map
5647 (new mapped_debug_names (dwarf2_per_objfile));
5648 mapped_debug_names dwz_map (dwarf2_per_objfile);
5649 struct objfile *objfile = dwarf2_per_objfile->objfile;
5651 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5652 &dwarf2_per_objfile->debug_names,
5656 /* Don't use the index if it's empty. */
5657 if (map->name_count == 0)
5660 /* If there is a .dwz file, read it so we can get its CU list as
5662 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5665 if (!read_debug_names_from_section (objfile,
5666 bfd_get_filename (dwz->dwz_bfd),
5667 &dwz->debug_names, dwz_map))
5669 warning (_("could not read '.debug_names' section from %s; skipping"),
5670 bfd_get_filename (dwz->dwz_bfd));
5675 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5677 if (map->tu_count != 0)
5679 /* We can only handle a single .debug_types when we have an
5681 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5684 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5685 dwarf2_per_objfile->types, 0);
5687 create_signatured_type_table_from_debug_names
5688 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5691 create_addrmap_from_aranges (dwarf2_per_objfile,
5692 &dwarf2_per_objfile->debug_aranges);
5694 dwarf2_per_objfile->debug_names_table = std::move (map);
5695 dwarf2_per_objfile->using_index = 1;
5696 dwarf2_per_objfile->quick_file_names_table =
5697 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5702 /* Type used to manage iterating over all CUs looking for a symbol for
5705 class dw2_debug_names_iterator
5708 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5709 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5710 dw2_debug_names_iterator (const mapped_debug_names &map,
5711 bool want_specific_block,
5712 block_enum block_index, domain_enum domain,
5714 : m_map (map), m_want_specific_block (want_specific_block),
5715 m_block_index (block_index), m_domain (domain),
5716 m_addr (find_vec_in_debug_names (map, name))
5719 dw2_debug_names_iterator (const mapped_debug_names &map,
5720 search_domain search, uint32_t namei)
5723 m_addr (find_vec_in_debug_names (map, namei))
5726 /* Return the next matching CU or NULL if there are no more. */
5727 dwarf2_per_cu_data *next ();
5730 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5732 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5735 /* The internalized form of .debug_names. */
5736 const mapped_debug_names &m_map;
5738 /* If true, only look for symbols that match BLOCK_INDEX. */
5739 const bool m_want_specific_block = false;
5741 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5742 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5744 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5746 /* The kind of symbol we're looking for. */
5747 const domain_enum m_domain = UNDEF_DOMAIN;
5748 const search_domain m_search = ALL_DOMAIN;
5750 /* The list of CUs from the index entry of the symbol, or NULL if
5752 const gdb_byte *m_addr;
5756 mapped_debug_names::namei_to_name (uint32_t namei) const
5758 const ULONGEST namei_string_offs
5759 = extract_unsigned_integer ((name_table_string_offs_reordered
5760 + namei * offset_size),
5763 return read_indirect_string_at_offset
5764 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5767 /* Find a slot in .debug_names for the object named NAME. If NAME is
5768 found, return pointer to its pool data. If NAME cannot be found,
5772 dw2_debug_names_iterator::find_vec_in_debug_names
5773 (const mapped_debug_names &map, const char *name)
5775 int (*cmp) (const char *, const char *);
5777 if (current_language->la_language == language_cplus
5778 || current_language->la_language == language_fortran
5779 || current_language->la_language == language_d)
5781 /* NAME is already canonical. Drop any qualifiers as
5782 .debug_names does not contain any. */
5784 if (strchr (name, '(') != NULL)
5786 gdb::unique_xmalloc_ptr<char> without_params
5787 = cp_remove_params (name);
5789 if (without_params != NULL)
5791 name = without_params.get();
5796 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5798 const uint32_t full_hash = dwarf5_djb_hash (name);
5800 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5801 (map.bucket_table_reordered
5802 + (full_hash % map.bucket_count)), 4,
5803 map.dwarf5_byte_order);
5807 if (namei >= map.name_count)
5809 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5811 namei, map.name_count,
5812 objfile_name (map.dwarf2_per_objfile->objfile));
5818 const uint32_t namei_full_hash
5819 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5820 (map.hash_table_reordered + namei), 4,
5821 map.dwarf5_byte_order);
5822 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5825 if (full_hash == namei_full_hash)
5827 const char *const namei_string = map.namei_to_name (namei);
5829 #if 0 /* An expensive sanity check. */
5830 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5832 complaint (_("Wrong .debug_names hash for string at index %u "
5834 namei, objfile_name (dwarf2_per_objfile->objfile));
5839 if (cmp (namei_string, name) == 0)
5841 const ULONGEST namei_entry_offs
5842 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5843 + namei * map.offset_size),
5844 map.offset_size, map.dwarf5_byte_order);
5845 return map.entry_pool + namei_entry_offs;
5850 if (namei >= map.name_count)
5856 dw2_debug_names_iterator::find_vec_in_debug_names
5857 (const mapped_debug_names &map, uint32_t namei)
5859 if (namei >= map.name_count)
5861 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5863 namei, map.name_count,
5864 objfile_name (map.dwarf2_per_objfile->objfile));
5868 const ULONGEST namei_entry_offs
5869 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5870 + namei * map.offset_size),
5871 map.offset_size, map.dwarf5_byte_order);
5872 return map.entry_pool + namei_entry_offs;
5875 /* See dw2_debug_names_iterator. */
5877 dwarf2_per_cu_data *
5878 dw2_debug_names_iterator::next ()
5883 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5884 struct objfile *objfile = dwarf2_per_objfile->objfile;
5885 bfd *const abfd = objfile->obfd;
5889 unsigned int bytes_read;
5890 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5891 m_addr += bytes_read;
5895 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5896 if (indexval_it == m_map.abbrev_map.cend ())
5898 complaint (_("Wrong .debug_names undefined abbrev code %s "
5900 pulongest (abbrev), objfile_name (objfile));
5903 const mapped_debug_names::index_val &indexval = indexval_it->second;
5904 bool have_is_static = false;
5906 dwarf2_per_cu_data *per_cu = NULL;
5907 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5912 case DW_FORM_implicit_const:
5913 ull = attr.implicit_const;
5915 case DW_FORM_flag_present:
5919 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5920 m_addr += bytes_read;
5923 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5924 dwarf_form_name (attr.form),
5925 objfile_name (objfile));
5928 switch (attr.dw_idx)
5930 case DW_IDX_compile_unit:
5931 /* Don't crash on bad data. */
5932 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5934 complaint (_(".debug_names entry has bad CU index %s"
5937 objfile_name (dwarf2_per_objfile->objfile));
5940 per_cu = dwarf2_per_objfile->get_cutu (ull);
5942 case DW_IDX_type_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5946 complaint (_(".debug_names entry has bad TU index %s"
5949 objfile_name (dwarf2_per_objfile->objfile));
5952 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5954 case DW_IDX_GNU_internal:
5955 if (!m_map.augmentation_is_gdb)
5957 have_is_static = true;
5960 case DW_IDX_GNU_external:
5961 if (!m_map.augmentation_is_gdb)
5963 have_is_static = true;
5969 /* Skip if already read in. */
5970 if (per_cu->v.quick->compunit_symtab)
5973 /* Check static vs global. */
5976 const bool want_static = m_block_index != GLOBAL_BLOCK;
5977 if (m_want_specific_block && want_static != is_static)
5981 /* Match dw2_symtab_iter_next, symbol_kind
5982 and debug_names::psymbol_tag. */
5986 switch (indexval.dwarf_tag)
5988 case DW_TAG_variable:
5989 case DW_TAG_subprogram:
5990 /* Some types are also in VAR_DOMAIN. */
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5999 switch (indexval.dwarf_tag)
6001 case DW_TAG_typedef:
6002 case DW_TAG_structure_type:
6009 switch (indexval.dwarf_tag)
6012 case DW_TAG_variable:
6022 /* Match dw2_expand_symtabs_matching, symbol_kind and
6023 debug_names::psymbol_tag. */
6026 case VARIABLES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6029 case DW_TAG_variable:
6035 case FUNCTIONS_DOMAIN:
6036 switch (indexval.dwarf_tag)
6038 case DW_TAG_subprogram:
6045 switch (indexval.dwarf_tag)
6047 case DW_TAG_typedef:
6048 case DW_TAG_structure_type:
6061 static struct compunit_symtab *
6062 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6063 const char *name, domain_enum domain)
6065 const block_enum block_index = static_cast<block_enum> (block_index_int);
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6069 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6072 /* index is NULL if OBJF_READNOW. */
6075 const auto &map = *mapp;
6077 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6078 block_index, domain, name);
6080 struct compunit_symtab *stab_best = NULL;
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6084 struct symbol *sym, *with_opaque = NULL;
6085 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6087 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6089 sym = block_find_symbol (block, name, domain,
6090 block_find_non_opaque_type_preferred,
6093 /* Some caution must be observed with overloaded functions and
6094 methods, since the index will not contain any overload
6095 information (but NAME might contain it). */
6098 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6100 if (with_opaque != NULL
6101 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6104 /* Keep looking through other CUs. */
6110 /* This dumps minimal information about .debug_names. It is called
6111 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6112 uses this to verify that .debug_names has been loaded. */
6115 dw2_debug_names_dump (struct objfile *objfile)
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6120 gdb_assert (dwarf2_per_objfile->using_index);
6121 printf_filtered (".debug_names:");
6122 if (dwarf2_per_objfile->debug_names_table)
6123 printf_filtered (" exists\n");
6125 printf_filtered (" faked for \"readnow\"\n");
6126 printf_filtered ("\n");
6130 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6131 const char *func_name)
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6136 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6137 if (dwarf2_per_objfile->debug_names_table)
6139 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6141 /* Note: It doesn't matter what we pass for block_index here. */
6142 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6143 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_instantiate_symtab (per_cu, false);
6152 dw2_debug_names_expand_symtabs_matching
6153 (struct objfile *objfile,
6154 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6155 const lookup_name_info &lookup_name,
6156 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6157 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6158 enum search_domain kind)
6160 struct dwarf2_per_objfile *dwarf2_per_objfile
6161 = get_dwarf2_per_objfile (objfile);
6163 /* debug_names_table is NULL if OBJF_READNOW. */
6164 if (!dwarf2_per_objfile->debug_names_table)
6167 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6169 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6171 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6173 kind, [&] (offset_type namei)
6175 /* The name was matched, now expand corresponding CUs that were
6177 dw2_debug_names_iterator iter (map, kind, namei);
6179 struct dwarf2_per_cu_data *per_cu;
6180 while ((per_cu = iter.next ()) != NULL)
6181 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6186 const struct quick_symbol_functions dwarf2_debug_names_functions =
6189 dw2_find_last_source_symtab,
6190 dw2_forget_cached_source_info,
6191 dw2_map_symtabs_matching_filename,
6192 dw2_debug_names_lookup_symbol,
6194 dw2_debug_names_dump,
6195 dw2_debug_names_expand_symtabs_for_function,
6196 dw2_expand_all_symtabs,
6197 dw2_expand_symtabs_with_fullname,
6198 dw2_map_matching_symbols,
6199 dw2_debug_names_expand_symtabs_matching,
6200 dw2_find_pc_sect_compunit_symtab,
6202 dw2_map_symbol_filenames
6205 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6206 to either a dwarf2_per_objfile or dwz_file object. */
6208 template <typename T>
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6212 dwarf2_section_info *section = §ion_owner->gdb_index;
6214 if (dwarf2_section_empty_p (section))
6217 /* Older elfutils strip versions could keep the section in the main
6218 executable while splitting it for the separate debug info file. */
6219 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6222 dwarf2_read_section (obj, section);
6224 /* dwarf2_section_info::size is a bfd_size_type, while
6225 gdb::array_view works with size_t. On 32-bit hosts, with
6226 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6227 is 32-bit. So we need an explicit narrowing conversion here.
6228 This is fine, because it's impossible to allocate or mmap an
6229 array/buffer larger than what size_t can represent. */
6230 return gdb::make_array_view (section->buffer, section->size);
6233 /* Lookup the index cache for the contents of the index associated to
6236 static gdb::array_view<const gdb_byte>
6237 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6239 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6240 if (build_id == nullptr)
6243 return global_index_cache.lookup_gdb_index (build_id,
6244 &dwarf2_obj->index_cache_res);
6247 /* Same as the above, but for DWZ. */
6249 static gdb::array_view<const gdb_byte>
6250 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6252 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6253 if (build_id == nullptr)
6256 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6259 /* See symfile.h. */
6262 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6264 struct dwarf2_per_objfile *dwarf2_per_objfile
6265 = get_dwarf2_per_objfile (objfile);
6267 /* If we're about to read full symbols, don't bother with the
6268 indices. In this case we also don't care if some other debug
6269 format is making psymtabs, because they are all about to be
6271 if ((objfile->flags & OBJF_READNOW))
6273 dwarf2_per_objfile->using_index = 1;
6274 create_all_comp_units (dwarf2_per_objfile);
6275 create_all_type_units (dwarf2_per_objfile);
6276 dwarf2_per_objfile->quick_file_names_table
6277 = create_quick_file_names_table
6278 (dwarf2_per_objfile->all_comp_units.size ());
6280 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6281 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6283 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6285 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6286 struct dwarf2_per_cu_quick_data);
6289 /* Return 1 so that gdb sees the "quick" functions. However,
6290 these functions will be no-ops because we will have expanded
6292 *index_kind = dw_index_kind::GDB_INDEX;
6296 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6298 *index_kind = dw_index_kind::DEBUG_NAMES;
6302 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6303 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6304 get_gdb_index_contents_from_section<dwz_file>))
6306 *index_kind = dw_index_kind::GDB_INDEX;
6310 /* ... otherwise, try to find the index in the index cache. */
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_cache,
6313 get_gdb_index_contents_from_cache_dwz))
6315 global_index_cache.hit ();
6316 *index_kind = dw_index_kind::GDB_INDEX;
6320 global_index_cache.miss ();
6326 /* Build a partial symbol table. */
6329 dwarf2_build_psymtabs (struct objfile *objfile)
6331 struct dwarf2_per_objfile *dwarf2_per_objfile
6332 = get_dwarf2_per_objfile (objfile);
6334 init_psymbol_list (objfile, 1024);
6338 /* This isn't really ideal: all the data we allocate on the
6339 objfile's obstack is still uselessly kept around. However,
6340 freeing it seems unsafe. */
6341 psymtab_discarder psymtabs (objfile);
6342 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6345 /* (maybe) store an index in the cache. */
6346 global_index_cache.store (dwarf2_per_objfile);
6348 CATCH (except, RETURN_MASK_ERROR)
6350 exception_print (gdb_stderr, except);
6355 /* Return the total length of the CU described by HEADER. */
6358 get_cu_length (const struct comp_unit_head *header)
6360 return header->initial_length_size + header->length;
6363 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6366 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6368 sect_offset bottom = cu_header->sect_off;
6369 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6371 return sect_off >= bottom && sect_off < top;
6374 /* Find the base address of the compilation unit for range lists and
6375 location lists. It will normally be specified by DW_AT_low_pc.
6376 In DWARF-3 draft 4, the base address could be overridden by
6377 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6378 compilation units with discontinuous ranges. */
6381 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6383 struct attribute *attr;
6386 cu->base_address = 0;
6388 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6391 cu->base_address = attr_value_as_address (attr);
6396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6399 cu->base_address = attr_value_as_address (attr);
6405 /* Read in the comp unit header information from the debug_info at info_ptr.
6406 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6407 NOTE: This leaves members offset, first_die_offset to be filled in
6410 static const gdb_byte *
6411 read_comp_unit_head (struct comp_unit_head *cu_header,
6412 const gdb_byte *info_ptr,
6413 struct dwarf2_section_info *section,
6414 rcuh_kind section_kind)
6417 unsigned int bytes_read;
6418 const char *filename = get_section_file_name (section);
6419 bfd *abfd = get_section_bfd_owner (section);
6421 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6422 cu_header->initial_length_size = bytes_read;
6423 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6424 info_ptr += bytes_read;
6425 cu_header->version = read_2_bytes (abfd, info_ptr);
6426 if (cu_header->version < 2 || cu_header->version > 5)
6427 error (_("Dwarf Error: wrong version in compilation unit header "
6428 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6429 cu_header->version, filename);
6431 if (cu_header->version < 5)
6432 switch (section_kind)
6434 case rcuh_kind::COMPILE:
6435 cu_header->unit_type = DW_UT_compile;
6437 case rcuh_kind::TYPE:
6438 cu_header->unit_type = DW_UT_type;
6441 internal_error (__FILE__, __LINE__,
6442 _("read_comp_unit_head: invalid section_kind"));
6446 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6447 (read_1_byte (abfd, info_ptr));
6449 switch (cu_header->unit_type)
6452 if (section_kind != rcuh_kind::COMPILE)
6453 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6454 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6458 section_kind = rcuh_kind::TYPE;
6461 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6462 "(is %d, should be %d or %d) [in module %s]"),
6463 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6466 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6469 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6472 info_ptr += bytes_read;
6473 if (cu_header->version < 5)
6475 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6478 signed_addr = bfd_get_sign_extend_vma (abfd);
6479 if (signed_addr < 0)
6480 internal_error (__FILE__, __LINE__,
6481 _("read_comp_unit_head: dwarf from non elf file"));
6482 cu_header->signed_addr_p = signed_addr;
6484 if (section_kind == rcuh_kind::TYPE)
6486 LONGEST type_offset;
6488 cu_header->signature = read_8_bytes (abfd, info_ptr);
6491 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6492 info_ptr += bytes_read;
6493 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6494 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6495 error (_("Dwarf Error: Too big type_offset in compilation unit "
6496 "header (is %s) [in module %s]"), plongest (type_offset),
6503 /* Helper function that returns the proper abbrev section for
6506 static struct dwarf2_section_info *
6507 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6509 struct dwarf2_section_info *abbrev;
6510 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6512 if (this_cu->is_dwz)
6513 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6515 abbrev = &dwarf2_per_objfile->abbrev;
6520 /* Subroutine of read_and_check_comp_unit_head and
6521 read_and_check_type_unit_head to simplify them.
6522 Perform various error checking on the header. */
6525 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section)
6530 const char *filename = get_section_file_name (section);
6532 if (to_underlying (header->abbrev_sect_off)
6533 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6534 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6535 "(offset %s + 6) [in module %s]"),
6536 sect_offset_str (header->abbrev_sect_off),
6537 sect_offset_str (header->sect_off),
6540 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6541 avoid potential 32-bit overflow. */
6542 if (((ULONGEST) header->sect_off + get_cu_length (header))
6544 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6545 "(offset %s + 0) [in module %s]"),
6546 header->length, sect_offset_str (header->sect_off),
6550 /* Read in a CU/TU header and perform some basic error checking.
6551 The contents of the header are stored in HEADER.
6552 The result is a pointer to the start of the first DIE. */
6554 static const gdb_byte *
6555 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6556 struct comp_unit_head *header,
6557 struct dwarf2_section_info *section,
6558 struct dwarf2_section_info *abbrev_section,
6559 const gdb_byte *info_ptr,
6560 rcuh_kind section_kind)
6562 const gdb_byte *beg_of_comp_unit = info_ptr;
6564 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6566 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6568 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6570 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6576 /* Fetch the abbreviation table offset from a comp or type unit header. */
6579 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6580 struct dwarf2_section_info *section,
6581 sect_offset sect_off)
6583 bfd *abfd = get_section_bfd_owner (section);
6584 const gdb_byte *info_ptr;
6585 unsigned int initial_length_size, offset_size;
6588 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6589 info_ptr = section->buffer + to_underlying (sect_off);
6590 read_initial_length (abfd, info_ptr, &initial_length_size);
6591 offset_size = initial_length_size == 4 ? 4 : 8;
6592 info_ptr += initial_length_size;
6594 version = read_2_bytes (abfd, info_ptr);
6598 /* Skip unit type and address size. */
6602 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6605 /* Allocate a new partial symtab for file named NAME and mark this new
6606 partial symtab as being an include of PST. */
6609 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6610 struct objfile *objfile)
6612 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6614 if (!IS_ABSOLUTE_PATH (subpst->filename))
6616 /* It shares objfile->objfile_obstack. */
6617 subpst->dirname = pst->dirname;
6620 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6621 subpst->dependencies[0] = pst;
6622 subpst->number_of_dependencies = 1;
6624 subpst->read_symtab = pst->read_symtab;
6626 /* No private part is necessary for include psymtabs. This property
6627 can be used to differentiate between such include psymtabs and
6628 the regular ones. */
6629 subpst->read_symtab_private = NULL;
6632 /* Read the Line Number Program data and extract the list of files
6633 included by the source file represented by PST. Build an include
6634 partial symtab for each of these included files. */
6637 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6638 struct die_info *die,
6639 struct partial_symtab *pst)
6642 struct attribute *attr;
6644 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6646 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6648 return; /* No linetable, so no includes. */
6650 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6651 that we pass in the raw text_low here; that is ok because we're
6652 only decoding the line table to make include partial symtabs, and
6653 so the addresses aren't really used. */
6654 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6655 pst->raw_text_low (), 1);
6659 hash_signatured_type (const void *item)
6661 const struct signatured_type *sig_type
6662 = (const struct signatured_type *) item;
6664 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6665 return sig_type->signature;
6669 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6671 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6672 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6674 return lhs->signature == rhs->signature;
6677 /* Allocate a hash table for signatured types. */
6680 allocate_signatured_type_table (struct objfile *objfile)
6682 return htab_create_alloc_ex (41,
6683 hash_signatured_type,
6686 &objfile->objfile_obstack,
6687 hashtab_obstack_allocate,
6688 dummy_obstack_deallocate);
6691 /* A helper function to add a signatured type CU to a table. */
6694 add_signatured_type_cu_to_table (void **slot, void *datum)
6696 struct signatured_type *sigt = (struct signatured_type *) *slot;
6697 std::vector<signatured_type *> *all_type_units
6698 = (std::vector<signatured_type *> *) datum;
6700 all_type_units->push_back (sigt);
6705 /* A helper for create_debug_types_hash_table. Read types from SECTION
6706 and fill them into TYPES_HTAB. It will process only type units,
6707 therefore DW_UT_type. */
6710 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6711 struct dwo_file *dwo_file,
6712 dwarf2_section_info *section, htab_t &types_htab,
6713 rcuh_kind section_kind)
6715 struct objfile *objfile = dwarf2_per_objfile->objfile;
6716 struct dwarf2_section_info *abbrev_section;
6718 const gdb_byte *info_ptr, *end_ptr;
6720 abbrev_section = (dwo_file != NULL
6721 ? &dwo_file->sections.abbrev
6722 : &dwarf2_per_objfile->abbrev);
6724 if (dwarf_read_debug)
6725 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6726 get_section_name (section),
6727 get_section_file_name (abbrev_section));
6729 dwarf2_read_section (objfile, section);
6730 info_ptr = section->buffer;
6732 if (info_ptr == NULL)
6735 /* We can't set abfd until now because the section may be empty or
6736 not present, in which case the bfd is unknown. */
6737 abfd = get_section_bfd_owner (section);
6739 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6740 because we don't need to read any dies: the signature is in the
6743 end_ptr = info_ptr + section->size;
6744 while (info_ptr < end_ptr)
6746 struct signatured_type *sig_type;
6747 struct dwo_unit *dwo_tu;
6749 const gdb_byte *ptr = info_ptr;
6750 struct comp_unit_head header;
6751 unsigned int length;
6753 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6755 /* Initialize it due to a false compiler warning. */
6756 header.signature = -1;
6757 header.type_cu_offset_in_tu = (cu_offset) -1;
6759 /* We need to read the type's signature in order to build the hash
6760 table, but we don't need anything else just yet. */
6762 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6763 abbrev_section, ptr, section_kind);
6765 length = get_cu_length (&header);
6767 /* Skip dummy type units. */
6768 if (ptr >= info_ptr + length
6769 || peek_abbrev_code (abfd, ptr) == 0
6770 || header.unit_type != DW_UT_type)
6776 if (types_htab == NULL)
6779 types_htab = allocate_dwo_unit_table (objfile);
6781 types_htab = allocate_signatured_type_table (objfile);
6787 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6789 dwo_tu->dwo_file = dwo_file;
6790 dwo_tu->signature = header.signature;
6791 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6792 dwo_tu->section = section;
6793 dwo_tu->sect_off = sect_off;
6794 dwo_tu->length = length;
6798 /* N.B.: type_offset is not usable if this type uses a DWO file.
6799 The real type_offset is in the DWO file. */
6801 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6802 struct signatured_type);
6803 sig_type->signature = header.signature;
6804 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6805 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6806 sig_type->per_cu.is_debug_types = 1;
6807 sig_type->per_cu.section = section;
6808 sig_type->per_cu.sect_off = sect_off;
6809 sig_type->per_cu.length = length;
6812 slot = htab_find_slot (types_htab,
6813 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6815 gdb_assert (slot != NULL);
6818 sect_offset dup_sect_off;
6822 const struct dwo_unit *dup_tu
6823 = (const struct dwo_unit *) *slot;
6825 dup_sect_off = dup_tu->sect_off;
6829 const struct signatured_type *dup_tu
6830 = (const struct signatured_type *) *slot;
6832 dup_sect_off = dup_tu->per_cu.sect_off;
6835 complaint (_("debug type entry at offset %s is duplicate to"
6836 " the entry at offset %s, signature %s"),
6837 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6838 hex_string (header.signature));
6840 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6842 if (dwarf_read_debug > 1)
6843 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6844 sect_offset_str (sect_off),
6845 hex_string (header.signature));
6851 /* Create the hash table of all entries in the .debug_types
6852 (or .debug_types.dwo) section(s).
6853 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6854 otherwise it is NULL.
6856 The result is a pointer to the hash table or NULL if there are no types.
6858 Note: This function processes DWO files only, not DWP files. */
6861 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct dwo_file *dwo_file,
6863 VEC (dwarf2_section_info_def) *types,
6867 struct dwarf2_section_info *section;
6869 if (VEC_empty (dwarf2_section_info_def, types))
6873 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6875 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6876 types_htab, rcuh_kind::TYPE);
6879 /* Create the hash table of all entries in the .debug_types section,
6880 and initialize all_type_units.
6881 The result is zero if there is an error (e.g. missing .debug_types section),
6882 otherwise non-zero. */
6885 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6887 htab_t types_htab = NULL;
6889 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6890 &dwarf2_per_objfile->info, types_htab,
6891 rcuh_kind::COMPILE);
6892 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6893 dwarf2_per_objfile->types, types_htab);
6894 if (types_htab == NULL)
6896 dwarf2_per_objfile->signatured_types = NULL;
6900 dwarf2_per_objfile->signatured_types = types_htab;
6902 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6903 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6905 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6906 &dwarf2_per_objfile->all_type_units);
6911 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6912 If SLOT is non-NULL, it is the entry to use in the hash table.
6913 Otherwise we find one. */
6915 static struct signatured_type *
6916 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6919 struct objfile *objfile = dwarf2_per_objfile->objfile;
6921 if (dwarf2_per_objfile->all_type_units.size ()
6922 == dwarf2_per_objfile->all_type_units.capacity ())
6923 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6925 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6926 struct signatured_type);
6928 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6929 sig_type->signature = sig;
6930 sig_type->per_cu.is_debug_types = 1;
6931 if (dwarf2_per_objfile->using_index)
6933 sig_type->per_cu.v.quick =
6934 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6935 struct dwarf2_per_cu_quick_data);
6940 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6943 gdb_assert (*slot == NULL);
6945 /* The rest of sig_type must be filled in by the caller. */
6949 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6950 Fill in SIG_ENTRY with DWO_ENTRY. */
6953 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6954 struct signatured_type *sig_entry,
6955 struct dwo_unit *dwo_entry)
6957 /* Make sure we're not clobbering something we don't expect to. */
6958 gdb_assert (! sig_entry->per_cu.queued);
6959 gdb_assert (sig_entry->per_cu.cu == NULL);
6960 if (dwarf2_per_objfile->using_index)
6962 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6963 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6966 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6967 gdb_assert (sig_entry->signature == dwo_entry->signature);
6968 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6969 gdb_assert (sig_entry->type_unit_group == NULL);
6970 gdb_assert (sig_entry->dwo_unit == NULL);
6972 sig_entry->per_cu.section = dwo_entry->section;
6973 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6974 sig_entry->per_cu.length = dwo_entry->length;
6975 sig_entry->per_cu.reading_dwo_directly = 1;
6976 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6977 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6978 sig_entry->dwo_unit = dwo_entry;
6981 /* Subroutine of lookup_signatured_type.
6982 If we haven't read the TU yet, create the signatured_type data structure
6983 for a TU to be read in directly from a DWO file, bypassing the stub.
6984 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6985 using .gdb_index, then when reading a CU we want to stay in the DWO file
6986 containing that CU. Otherwise we could end up reading several other DWO
6987 files (due to comdat folding) to process the transitive closure of all the
6988 mentioned TUs, and that can be slow. The current DWO file will have every
6989 type signature that it needs.
6990 We only do this for .gdb_index because in the psymtab case we already have
6991 to read all the DWOs to build the type unit groups. */
6993 static struct signatured_type *
6994 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6996 struct dwarf2_per_objfile *dwarf2_per_objfile
6997 = cu->per_cu->dwarf2_per_objfile;
6998 struct objfile *objfile = dwarf2_per_objfile->objfile;
6999 struct dwo_file *dwo_file;
7000 struct dwo_unit find_dwo_entry, *dwo_entry;
7001 struct signatured_type find_sig_entry, *sig_entry;
7004 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7006 /* If TU skeletons have been removed then we may not have read in any
7008 if (dwarf2_per_objfile->signatured_types == NULL)
7010 dwarf2_per_objfile->signatured_types
7011 = allocate_signatured_type_table (objfile);
7014 /* We only ever need to read in one copy of a signatured type.
7015 Use the global signatured_types array to do our own comdat-folding
7016 of types. If this is the first time we're reading this TU, and
7017 the TU has an entry in .gdb_index, replace the recorded data from
7018 .gdb_index with this TU. */
7020 find_sig_entry.signature = sig;
7021 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7022 &find_sig_entry, INSERT);
7023 sig_entry = (struct signatured_type *) *slot;
7025 /* We can get here with the TU already read, *or* in the process of being
7026 read. Don't reassign the global entry to point to this DWO if that's
7027 the case. Also note that if the TU is already being read, it may not
7028 have come from a DWO, the program may be a mix of Fission-compiled
7029 code and non-Fission-compiled code. */
7031 /* Have we already tried to read this TU?
7032 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7033 needn't exist in the global table yet). */
7034 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7037 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7038 dwo_unit of the TU itself. */
7039 dwo_file = cu->dwo_unit->dwo_file;
7041 /* Ok, this is the first time we're reading this TU. */
7042 if (dwo_file->tus == NULL)
7044 find_dwo_entry.signature = sig;
7045 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7046 if (dwo_entry == NULL)
7049 /* If the global table doesn't have an entry for this TU, add one. */
7050 if (sig_entry == NULL)
7051 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7053 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7054 sig_entry->per_cu.tu_read = 1;
7058 /* Subroutine of lookup_signatured_type.
7059 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7060 then try the DWP file. If the TU stub (skeleton) has been removed then
7061 it won't be in .gdb_index. */
7063 static struct signatured_type *
7064 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7066 struct dwarf2_per_objfile *dwarf2_per_objfile
7067 = cu->per_cu->dwarf2_per_objfile;
7068 struct objfile *objfile = dwarf2_per_objfile->objfile;
7069 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7070 struct dwo_unit *dwo_entry;
7071 struct signatured_type find_sig_entry, *sig_entry;
7074 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7075 gdb_assert (dwp_file != NULL);
7077 /* If TU skeletons have been removed then we may not have read in any
7079 if (dwarf2_per_objfile->signatured_types == NULL)
7081 dwarf2_per_objfile->signatured_types
7082 = allocate_signatured_type_table (objfile);
7085 find_sig_entry.signature = sig;
7086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7087 &find_sig_entry, INSERT);
7088 sig_entry = (struct signatured_type *) *slot;
7090 /* Have we already tried to read this TU?
7091 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7092 needn't exist in the global table yet). */
7093 if (sig_entry != NULL)
7096 if (dwp_file->tus == NULL)
7098 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7099 sig, 1 /* is_debug_types */);
7100 if (dwo_entry == NULL)
7103 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7104 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7109 /* Lookup a signature based type for DW_FORM_ref_sig8.
7110 Returns NULL if signature SIG is not present in the table.
7111 It is up to the caller to complain about this. */
7113 static struct signatured_type *
7114 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7116 struct dwarf2_per_objfile *dwarf2_per_objfile
7117 = cu->per_cu->dwarf2_per_objfile;
7120 && dwarf2_per_objfile->using_index)
7122 /* We're in a DWO/DWP file, and we're using .gdb_index.
7123 These cases require special processing. */
7124 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7125 return lookup_dwo_signatured_type (cu, sig);
7127 return lookup_dwp_signatured_type (cu, sig);
7131 struct signatured_type find_entry, *entry;
7133 if (dwarf2_per_objfile->signatured_types == NULL)
7135 find_entry.signature = sig;
7136 entry = ((struct signatured_type *)
7137 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7142 /* Low level DIE reading support. */
7144 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7147 init_cu_die_reader (struct die_reader_specs *reader,
7148 struct dwarf2_cu *cu,
7149 struct dwarf2_section_info *section,
7150 struct dwo_file *dwo_file,
7151 struct abbrev_table *abbrev_table)
7153 gdb_assert (section->readin && section->buffer != NULL);
7154 reader->abfd = get_section_bfd_owner (section);
7156 reader->dwo_file = dwo_file;
7157 reader->die_section = section;
7158 reader->buffer = section->buffer;
7159 reader->buffer_end = section->buffer + section->size;
7160 reader->comp_dir = NULL;
7161 reader->abbrev_table = abbrev_table;
7164 /* Subroutine of init_cutu_and_read_dies to simplify it.
7165 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7166 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7169 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7170 from it to the DIE in the DWO. If NULL we are skipping the stub.
7171 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7172 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7173 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7174 STUB_COMP_DIR may be non-NULL.
7175 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7176 are filled in with the info of the DIE from the DWO file.
7177 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7178 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7179 kept around for at least as long as *RESULT_READER.
7181 The result is non-zero if a valid (non-dummy) DIE was found. */
7184 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7185 struct dwo_unit *dwo_unit,
7186 struct die_info *stub_comp_unit_die,
7187 const char *stub_comp_dir,
7188 struct die_reader_specs *result_reader,
7189 const gdb_byte **result_info_ptr,
7190 struct die_info **result_comp_unit_die,
7191 int *result_has_children,
7192 abbrev_table_up *result_dwo_abbrev_table)
7194 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7195 struct objfile *objfile = dwarf2_per_objfile->objfile;
7196 struct dwarf2_cu *cu = this_cu->cu;
7198 const gdb_byte *begin_info_ptr, *info_ptr;
7199 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7200 int i,num_extra_attrs;
7201 struct dwarf2_section_info *dwo_abbrev_section;
7202 struct attribute *attr;
7203 struct die_info *comp_unit_die;
7205 /* At most one of these may be provided. */
7206 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7208 /* These attributes aren't processed until later:
7209 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7210 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7211 referenced later. However, these attributes are found in the stub
7212 which we won't have later. In order to not impose this complication
7213 on the rest of the code, we read them here and copy them to the
7222 if (stub_comp_unit_die != NULL)
7224 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7226 if (! this_cu->is_debug_types)
7227 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7228 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7229 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7230 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7231 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7233 /* There should be a DW_AT_addr_base attribute here (if needed).
7234 We need the value before we can process DW_FORM_GNU_addr_index. */
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7238 cu->addr_base = DW_UNSND (attr);
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7245 cu->ranges_base = DW_UNSND (attr);
7247 else if (stub_comp_dir != NULL)
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
7259 dwarf2_section_info *section = dwo_unit->section;
7260 dwarf2_read_section (objfile, section);
7261 abfd = get_section_bfd_owner (section);
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7266 if (this_cu->is_debug_types)
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
7273 info_ptr, rcuh_kind::TYPE);
7274 /* This is not an assert because it can be caused by bad debug info. */
7275 if (sig_type->signature != cu->header.signature)
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7278 " TU at offset %s [in module %s]"),
7279 hex_string (sig_type->signature),
7280 hex_string (cu->header.signature),
7281 sect_offset_str (dwo_unit->sect_off),
7282 bfd_get_filename (abfd));
7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
7300 info_ptr, rcuh_kind::COMPILE);
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7304 dwo_unit->length = get_cu_length (&cu->header);
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7340 if (dwarf_die_debug)
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
7344 get_section_name (section),
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
7347 dump_die (comp_unit_die, dwarf_die_debug);
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7362 *result_info_ptr = info_ptr;
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7368 Returns NULL if the specified DWO unit cannot be found. */
7370 static struct dwo_unit *
7371 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7372 struct die_info *comp_unit_die)
7374 struct dwarf2_cu *cu = this_cu->cu;
7376 struct dwo_unit *dwo_unit;
7377 const char *comp_dir, *dwo_name;
7379 gdb_assert (cu != NULL);
7381 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7382 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7383 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7385 if (this_cu->is_debug_types)
7387 struct signatured_type *sig_type;
7389 /* Since this_cu is the first member of struct signatured_type,
7390 we can go from a pointer to one to a pointer to the other. */
7391 sig_type = (struct signatured_type *) this_cu;
7392 signature = sig_type->signature;
7393 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7397 struct attribute *attr;
7399 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7401 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7403 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7404 signature = DW_UNSND (attr);
7405 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7412 /* Subroutine of init_cutu_and_read_dies to simplify it.
7413 See it for a description of the parameters.
7414 Read a TU directly from a DWO file, bypassing the stub. */
7417 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7418 int use_existing_cu, int keep,
7419 die_reader_func_ftype *die_reader_func,
7422 std::unique_ptr<dwarf2_cu> new_cu;
7423 struct signatured_type *sig_type;
7424 struct die_reader_specs reader;
7425 const gdb_byte *info_ptr;
7426 struct die_info *comp_unit_die;
7428 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7430 /* Verify we can do the following downcast, and that we have the
7432 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7433 sig_type = (struct signatured_type *) this_cu;
7434 gdb_assert (sig_type->dwo_unit != NULL);
7436 if (use_existing_cu && this_cu->cu != NULL)
7438 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7439 /* There's no need to do the rereading_dwo_cu handling that
7440 init_cutu_and_read_dies does since we don't read the stub. */
7444 /* If !use_existing_cu, this_cu->cu must be NULL. */
7445 gdb_assert (this_cu->cu == NULL);
7446 new_cu.reset (new dwarf2_cu (this_cu));
7449 /* A future optimization, if needed, would be to use an existing
7450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7451 could share abbrev tables. */
7453 /* The abbreviation table used by READER, this must live at least as long as
7455 abbrev_table_up dwo_abbrev_table;
7457 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7458 NULL /* stub_comp_unit_die */,
7459 sig_type->dwo_unit->dwo_file->comp_dir,
7461 &comp_unit_die, &has_children,
7462 &dwo_abbrev_table) == 0)
7468 /* All the "real" work is done here. */
7469 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7471 /* This duplicates the code in init_cutu_and_read_dies,
7472 but the alternative is making the latter more complex.
7473 This function is only for the special case of using DWO files directly:
7474 no point in overly complicating the general case just to handle this. */
7475 if (new_cu != NULL && keep)
7477 /* Link this CU into read_in_chain. */
7478 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7479 dwarf2_per_objfile->read_in_chain = this_cu;
7480 /* The chain owns it now. */
7485 /* Initialize a CU (or TU) and read its DIEs.
7486 If the CU defers to a DWO file, read the DWO file as well.
7488 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7489 Otherwise the table specified in the comp unit header is read in and used.
7490 This is an optimization for when we already have the abbrev table.
7492 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7493 Otherwise, a new CU is allocated with xmalloc.
7495 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7496 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7498 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7499 linker) then DIE_READER_FUNC will not get called. */
7502 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7503 struct abbrev_table *abbrev_table,
7504 int use_existing_cu, int keep,
7506 die_reader_func_ftype *die_reader_func,
7509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7510 struct objfile *objfile = dwarf2_per_objfile->objfile;
7511 struct dwarf2_section_info *section = this_cu->section;
7512 bfd *abfd = get_section_bfd_owner (section);
7513 struct dwarf2_cu *cu;
7514 const gdb_byte *begin_info_ptr, *info_ptr;
7515 struct die_reader_specs reader;
7516 struct die_info *comp_unit_die;
7518 struct attribute *attr;
7519 struct signatured_type *sig_type = NULL;
7520 struct dwarf2_section_info *abbrev_section;
7521 /* Non-zero if CU currently points to a DWO file and we need to
7522 reread it. When this happens we need to reread the skeleton die
7523 before we can reread the DWO file (this only applies to CUs, not TUs). */
7524 int rereading_dwo_cu = 0;
7526 if (dwarf_die_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7528 this_cu->is_debug_types ? "type" : "comp",
7529 sect_offset_str (this_cu->sect_off));
7531 if (use_existing_cu)
7534 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7535 file (instead of going through the stub), short-circuit all of this. */
7536 if (this_cu->reading_dwo_directly)
7538 /* Narrow down the scope of possibilities to have to understand. */
7539 gdb_assert (this_cu->is_debug_types);
7540 gdb_assert (abbrev_table == NULL);
7541 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7542 die_reader_func, data);
7546 /* This is cheap if the section is already read in. */
7547 dwarf2_read_section (objfile, section);
7549 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7551 abbrev_section = get_abbrev_section_for_cu (this_cu);
7553 std::unique_ptr<dwarf2_cu> new_cu;
7554 if (use_existing_cu && this_cu->cu != NULL)
7557 /* If this CU is from a DWO file we need to start over, we need to
7558 refetch the attributes from the skeleton CU.
7559 This could be optimized by retrieving those attributes from when we
7560 were here the first time: the previous comp_unit_die was stored in
7561 comp_unit_obstack. But there's no data yet that we need this
7563 if (cu->dwo_unit != NULL)
7564 rereading_dwo_cu = 1;
7568 /* If !use_existing_cu, this_cu->cu must be NULL. */
7569 gdb_assert (this_cu->cu == NULL);
7570 new_cu.reset (new dwarf2_cu (this_cu));
7574 /* Get the header. */
7575 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7577 /* We already have the header, there's no need to read it in again. */
7578 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7582 if (this_cu->is_debug_types)
7584 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7585 &cu->header, section,
7586 abbrev_section, info_ptr,
7589 /* Since per_cu is the first member of struct signatured_type,
7590 we can go from a pointer to one to a pointer to the other. */
7591 sig_type = (struct signatured_type *) this_cu;
7592 gdb_assert (sig_type->signature == cu->header.signature);
7593 gdb_assert (sig_type->type_offset_in_tu
7594 == cu->header.type_cu_offset_in_tu);
7595 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7597 /* LENGTH has not been set yet for type units if we're
7598 using .gdb_index. */
7599 this_cu->length = get_cu_length (&cu->header);
7601 /* Establish the type offset that can be used to lookup the type. */
7602 sig_type->type_offset_in_section =
7603 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7605 this_cu->dwarf_version = cu->header.version;
7609 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7610 &cu->header, section,
7613 rcuh_kind::COMPILE);
7615 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7616 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7617 this_cu->dwarf_version = cu->header.version;
7621 /* Skip dummy compilation units. */
7622 if (info_ptr >= begin_info_ptr + this_cu->length
7623 || peek_abbrev_code (abfd, info_ptr) == 0)
7626 /* If we don't have them yet, read the abbrevs for this compilation unit.
7627 And if we need to read them now, make sure they're freed when we're
7628 done (own the table through ABBREV_TABLE_HOLDER). */
7629 abbrev_table_up abbrev_table_holder;
7630 if (abbrev_table != NULL)
7631 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7635 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7636 cu->header.abbrev_sect_off);
7637 abbrev_table = abbrev_table_holder.get ();
7640 /* Read the top level CU/TU die. */
7641 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7642 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7644 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7647 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7648 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7649 table from the DWO file and pass the ownership over to us. It will be
7650 referenced from READER, so we must make sure to free it after we're done
7653 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7654 DWO CU, that this test will fail (the attribute will not be present). */
7655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7656 abbrev_table_up dwo_abbrev_table;
7659 struct dwo_unit *dwo_unit;
7660 struct die_info *dwo_comp_unit_die;
7664 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7665 " has children (offset %s) [in module %s]"),
7666 sect_offset_str (this_cu->sect_off),
7667 bfd_get_filename (abfd));
7669 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7670 if (dwo_unit != NULL)
7672 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7673 comp_unit_die, NULL,
7675 &dwo_comp_unit_die, &has_children,
7676 &dwo_abbrev_table) == 0)
7681 comp_unit_die = dwo_comp_unit_die;
7685 /* Yikes, we couldn't find the rest of the DIE, we only have
7686 the stub. A complaint has already been logged. There's
7687 not much more we can do except pass on the stub DIE to
7688 die_reader_func. We don't want to throw an error on bad
7693 /* All of the above is setup for this call. Yikes. */
7694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7696 /* Done, clean up. */
7697 if (new_cu != NULL && keep)
7699 /* Link this CU into read_in_chain. */
7700 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7701 dwarf2_per_objfile->read_in_chain = this_cu;
7702 /* The chain owns it now. */
7707 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7708 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7709 to have already done the lookup to find the DWO file).
7711 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7712 THIS_CU->is_debug_types, but nothing else.
7714 We fill in THIS_CU->length.
7716 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7717 linker) then DIE_READER_FUNC will not get called.
7719 THIS_CU->cu is always freed when done.
7720 This is done in order to not leave THIS_CU->cu in a state where we have
7721 to care whether it refers to the "main" CU or the DWO CU. */
7724 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7725 struct dwo_file *dwo_file,
7726 die_reader_func_ftype *die_reader_func,
7729 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7730 struct objfile *objfile = dwarf2_per_objfile->objfile;
7731 struct dwarf2_section_info *section = this_cu->section;
7732 bfd *abfd = get_section_bfd_owner (section);
7733 struct dwarf2_section_info *abbrev_section;
7734 const gdb_byte *begin_info_ptr, *info_ptr;
7735 struct die_reader_specs reader;
7736 struct die_info *comp_unit_die;
7739 if (dwarf_die_debug)
7740 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7741 this_cu->is_debug_types ? "type" : "comp",
7742 sect_offset_str (this_cu->sect_off));
7744 gdb_assert (this_cu->cu == NULL);
7746 abbrev_section = (dwo_file != NULL
7747 ? &dwo_file->sections.abbrev
7748 : get_abbrev_section_for_cu (this_cu));
7750 /* This is cheap if the section is already read in. */
7751 dwarf2_read_section (objfile, section);
7753 struct dwarf2_cu cu (this_cu);
7755 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7756 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7757 &cu.header, section,
7758 abbrev_section, info_ptr,
7759 (this_cu->is_debug_types
7761 : rcuh_kind::COMPILE));
7763 this_cu->length = get_cu_length (&cu.header);
7765 /* Skip dummy compilation units. */
7766 if (info_ptr >= begin_info_ptr + this_cu->length
7767 || peek_abbrev_code (abfd, info_ptr) == 0)
7770 abbrev_table_up abbrev_table
7771 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7772 cu.header.abbrev_sect_off);
7774 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7775 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7777 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7780 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7781 does not lookup the specified DWO file.
7782 This cannot be used to read DWO files.
7784 THIS_CU->cu is always freed when done.
7785 This is done in order to not leave THIS_CU->cu in a state where we have
7786 to care whether it refers to the "main" CU or the DWO CU.
7787 We can revisit this if the data shows there's a performance issue. */
7790 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7791 die_reader_func_ftype *die_reader_func,
7794 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7797 /* Type Unit Groups.
7799 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7800 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7801 so that all types coming from the same compilation (.o file) are grouped
7802 together. A future step could be to put the types in the same symtab as
7803 the CU the types ultimately came from. */
7806 hash_type_unit_group (const void *item)
7808 const struct type_unit_group *tu_group
7809 = (const struct type_unit_group *) item;
7811 return hash_stmt_list_entry (&tu_group->hash);
7815 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7817 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7818 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7820 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7823 /* Allocate a hash table for type unit groups. */
7826 allocate_type_unit_groups_table (struct objfile *objfile)
7828 return htab_create_alloc_ex (3,
7829 hash_type_unit_group,
7832 &objfile->objfile_obstack,
7833 hashtab_obstack_allocate,
7834 dummy_obstack_deallocate);
7837 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7838 partial symtabs. We combine several TUs per psymtab to not let the size
7839 of any one psymtab grow too big. */
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7841 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7843 /* Helper routine for get_type_unit_group.
7844 Create the type_unit_group object used to hold one or more TUs. */
7846 static struct type_unit_group *
7847 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7849 struct dwarf2_per_objfile *dwarf2_per_objfile
7850 = cu->per_cu->dwarf2_per_objfile;
7851 struct objfile *objfile = dwarf2_per_objfile->objfile;
7852 struct dwarf2_per_cu_data *per_cu;
7853 struct type_unit_group *tu_group;
7855 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7856 struct type_unit_group);
7857 per_cu = &tu_group->per_cu;
7858 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7860 if (dwarf2_per_objfile->using_index)
7862 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7863 struct dwarf2_per_cu_quick_data);
7867 unsigned int line_offset = to_underlying (line_offset_struct);
7868 struct partial_symtab *pst;
7871 /* Give the symtab a useful name for debug purposes. */
7872 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7873 name = string_printf ("<type_units_%d>",
7874 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7876 name = string_printf ("<type_units_at_0x%x>", line_offset);
7878 pst = create_partial_symtab (per_cu, name.c_str ());
7882 tu_group->hash.dwo_unit = cu->dwo_unit;
7883 tu_group->hash.line_sect_off = line_offset_struct;
7888 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7889 STMT_LIST is a DW_AT_stmt_list attribute. */
7891 static struct type_unit_group *
7892 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7894 struct dwarf2_per_objfile *dwarf2_per_objfile
7895 = cu->per_cu->dwarf2_per_objfile;
7896 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7897 struct type_unit_group *tu_group;
7899 unsigned int line_offset;
7900 struct type_unit_group type_unit_group_for_lookup;
7902 if (dwarf2_per_objfile->type_unit_groups == NULL)
7904 dwarf2_per_objfile->type_unit_groups =
7905 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7908 /* Do we need to create a new group, or can we use an existing one? */
7912 line_offset = DW_UNSND (stmt_list);
7913 ++tu_stats->nr_symtab_sharers;
7917 /* Ugh, no stmt_list. Rare, but we have to handle it.
7918 We can do various things here like create one group per TU or
7919 spread them over multiple groups to split up the expansion work.
7920 To avoid worst case scenarios (too many groups or too large groups)
7921 we, umm, group them in bunches. */
7922 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7923 | (tu_stats->nr_stmt_less_type_units
7924 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7925 ++tu_stats->nr_stmt_less_type_units;
7928 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7929 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7930 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7931 &type_unit_group_for_lookup, INSERT);
7934 tu_group = (struct type_unit_group *) *slot;
7935 gdb_assert (tu_group != NULL);
7939 sect_offset line_offset_struct = (sect_offset) line_offset;
7940 tu_group = create_type_unit_group (cu, line_offset_struct);
7942 ++tu_stats->nr_symtabs;
7948 /* Partial symbol tables. */
7950 /* Create a psymtab named NAME and assign it to PER_CU.
7952 The caller must fill in the following details:
7953 dirname, textlow, texthigh. */
7955 static struct partial_symtab *
7956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7958 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7959 struct partial_symtab *pst;
7961 pst = start_psymtab_common (objfile, name, 0);
7963 pst->psymtabs_addrmap_supported = 1;
7965 /* This is the glue that links PST into GDB's symbol API. */
7966 pst->read_symtab_private = per_cu;
7967 pst->read_symtab = dwarf2_read_symtab;
7968 per_cu->v.psymtab = pst;
7973 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7976 struct process_psymtab_comp_unit_data
7978 /* True if we are reading a DW_TAG_partial_unit. */
7980 int want_partial_unit;
7982 /* The "pretend" language that is used if the CU doesn't declare a
7985 enum language pretend_language;
7988 /* die_reader_func for process_psymtab_comp_unit. */
7991 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7992 const gdb_byte *info_ptr,
7993 struct die_info *comp_unit_die,
7997 struct dwarf2_cu *cu = reader->cu;
7998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8002 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8003 struct partial_symtab *pst;
8004 enum pc_bounds_kind cu_bounds_kind;
8005 const char *filename;
8006 struct process_psymtab_comp_unit_data *info
8007 = (struct process_psymtab_comp_unit_data *) data;
8009 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8012 gdb_assert (! per_cu->is_debug_types);
8014 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8016 /* Allocate a new partial symbol table structure. */
8017 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8018 if (filename == NULL)
8021 pst = create_partial_symtab (per_cu, filename);
8023 /* This must be done before calling dwarf2_build_include_psymtabs. */
8024 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028 dwarf2_find_base_address (comp_unit_die, cu);
8030 /* Possibly set the default values of LOWPC and HIGHPC from
8032 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8033 &best_highpc, cu, pst);
8034 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8042 /* Store the contiguous range if it is not empty; it can be
8043 empty for CUs with no code. */
8044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8053 struct partial_die_info *first_die;
8054 CORE_ADDR lowpc, highpc;
8056 lowpc = ((CORE_ADDR) -1);
8057 highpc = ((CORE_ADDR) 0);
8059 first_die = load_partial_dies (reader, info_ptr, 1);
8061 scan_partial_symbols (first_die, &lowpc, &highpc,
8062 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8064 /* If we didn't find a lowpc, set it to highpc to avoid
8065 complaints from `maint check'. */
8066 if (lowpc == ((CORE_ADDR) -1))
8069 /* If the compilation unit didn't have an explicit address range,
8070 then use the information extracted from its child dies. */
8071 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8074 best_highpc = highpc;
8077 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_lowpc + baseaddr)
8080 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_highpc + baseaddr)
8084 end_psymtab_common (objfile, pst);
8086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8090 struct dwarf2_per_cu_data *iter;
8092 /* Fill in 'dependencies' here; we fill in 'users' in a
8094 pst->number_of_dependencies = len;
8096 = objfile->partial_symtabs->allocate_dependencies (len);
8098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8101 pst->dependencies[i] = iter->v.psymtab;
8103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8106 /* Get the list of files included in the current compilation unit,
8107 and build a psymtab for each of them. */
8108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8110 if (dwarf_read_debug)
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Psymtab for %s unit @%s: %s - %s"
8113 ", %d global, %d static syms\n",
8114 per_cu->is_debug_types ? "type" : "comp",
8115 sect_offset_str (per_cu->sect_off),
8116 paddress (gdbarch, pst->text_low (objfile)),
8117 paddress (gdbarch, pst->text_high (objfile)),
8118 pst->n_global_syms, pst->n_static_syms);
8121 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8122 Process compilation unit THIS_CU for a psymtab. */
8125 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8126 int want_partial_unit,
8127 enum language pretend_language)
8129 /* If this compilation unit was already read in, free the
8130 cached copy in order to read it in again. This is
8131 necessary because we skipped some symbols when we first
8132 read in the compilation unit (see load_partial_dies).
8133 This problem could be avoided, but the benefit is unclear. */
8134 if (this_cu->cu != NULL)
8135 free_one_cached_comp_unit (this_cu);
8137 if (this_cu->is_debug_types)
8138 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8139 build_type_psymtabs_reader, NULL);
8142 process_psymtab_comp_unit_data info;
8143 info.want_partial_unit = want_partial_unit;
8144 info.pretend_language = pretend_language;
8145 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8146 process_psymtab_comp_unit_reader, &info);
8149 /* Age out any secondary CUs. */
8150 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8153 /* Reader function for build_type_psymtabs. */
8156 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8157 const gdb_byte *info_ptr,
8158 struct die_info *type_unit_die,
8162 struct dwarf2_per_objfile *dwarf2_per_objfile
8163 = reader->cu->per_cu->dwarf2_per_objfile;
8164 struct objfile *objfile = dwarf2_per_objfile->objfile;
8165 struct dwarf2_cu *cu = reader->cu;
8166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8167 struct signatured_type *sig_type;
8168 struct type_unit_group *tu_group;
8169 struct attribute *attr;
8170 struct partial_die_info *first_die;
8171 CORE_ADDR lowpc, highpc;
8172 struct partial_symtab *pst;
8174 gdb_assert (data == NULL);
8175 gdb_assert (per_cu->is_debug_types);
8176 sig_type = (struct signatured_type *) per_cu;
8181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8182 tu_group = get_type_unit_group (cu, attr);
8184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8187 pst = create_partial_symtab (per_cu, "");
8190 first_die = load_partial_dies (reader, info_ptr, 1);
8192 lowpc = (CORE_ADDR) -1;
8193 highpc = (CORE_ADDR) 0;
8194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8196 end_psymtab_common (objfile, pst);
8199 /* Struct used to sort TUs by their abbreviation table offset. */
8201 struct tu_abbrev_offset
8203 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8204 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8207 signatured_type *sig_type;
8208 sect_offset abbrev_offset;
8211 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8214 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8215 const struct tu_abbrev_offset &b)
8217 return a.abbrev_offset < b.abbrev_offset;
8220 /* Efficiently read all the type units.
8221 This does the bulk of the work for build_type_psymtabs.
8223 The efficiency is because we sort TUs by the abbrev table they use and
8224 only read each abbrev table once. In one program there are 200K TUs
8225 sharing 8K abbrev tables.
8227 The main purpose of this function is to support building the
8228 dwarf2_per_objfile->type_unit_groups table.
8229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8230 can collapse the search space by grouping them by stmt_list.
8231 The savings can be significant, in the same program from above the 200K TUs
8232 share 8K stmt_list tables.
8234 FUNC is expected to call get_type_unit_group, which will create the
8235 struct type_unit_group if necessary and add it to
8236 dwarf2_per_objfile->type_unit_groups. */
8239 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242 abbrev_table_up abbrev_table;
8243 sect_offset abbrev_offset;
8245 /* It's up to the caller to not call us multiple times. */
8246 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8248 if (dwarf2_per_objfile->all_type_units.empty ())
8251 /* TUs typically share abbrev tables, and there can be way more TUs than
8252 abbrev tables. Sort by abbrev table to reduce the number of times we
8253 read each abbrev table in.
8254 Alternatives are to punt or to maintain a cache of abbrev tables.
8255 This is simpler and efficient enough for now.
8257 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8258 symtab to use). Typically TUs with the same abbrev offset have the same
8259 stmt_list value too so in practice this should work well.
8261 The basic algorithm here is:
8263 sort TUs by abbrev table
8264 for each TU with same abbrev table:
8265 read abbrev table if first user
8266 read TU top level DIE
8267 [IWBN if DWO skeletons had DW_AT_stmt_list]
8270 if (dwarf_read_debug)
8271 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8273 /* Sort in a separate table to maintain the order of all_type_units
8274 for .gdb_index: TU indices directly index all_type_units. */
8275 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8276 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8278 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8279 sorted_by_abbrev.emplace_back
8280 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8281 sig_type->per_cu.section,
8282 sig_type->per_cu.sect_off));
8284 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8285 sort_tu_by_abbrev_offset);
8287 abbrev_offset = (sect_offset) ~(unsigned) 0;
8289 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8291 /* Switch to the next abbrev table if necessary. */
8292 if (abbrev_table == NULL
8293 || tu.abbrev_offset != abbrev_offset)
8295 abbrev_offset = tu.abbrev_offset;
8297 abbrev_table_read_table (dwarf2_per_objfile,
8298 &dwarf2_per_objfile->abbrev,
8300 ++tu_stats->nr_uniq_abbrev_tables;
8303 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8304 0, 0, false, build_type_psymtabs_reader, NULL);
8308 /* Print collected type unit statistics. */
8311 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8313 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8315 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8316 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8317 dwarf2_per_objfile->all_type_units.size ());
8318 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8319 tu_stats->nr_uniq_abbrev_tables);
8320 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8321 tu_stats->nr_symtabs);
8322 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8323 tu_stats->nr_symtab_sharers);
8324 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8325 tu_stats->nr_stmt_less_type_units);
8326 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8327 tu_stats->nr_all_type_units_reallocs);
8330 /* Traversal function for build_type_psymtabs. */
8333 build_type_psymtab_dependencies (void **slot, void *info)
8335 struct dwarf2_per_objfile *dwarf2_per_objfile
8336 = (struct dwarf2_per_objfile *) info;
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8339 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 int len = VEC_length (sig_type_ptr, tu_group->tus);
8342 struct signatured_type *iter;
8345 gdb_assert (len > 0);
8346 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8348 pst->number_of_dependencies = len;
8349 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8351 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8354 gdb_assert (iter->per_cu.is_debug_types);
8355 pst->dependencies[i] = iter->per_cu.v.psymtab;
8356 iter->type_unit_group = tu_group;
8359 VEC_free (sig_type_ptr, tu_group->tus);
8364 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8365 Build partial symbol tables for the .debug_types comp-units. */
8368 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8370 if (! create_all_type_units (dwarf2_per_objfile))
8373 build_type_psymtabs_1 (dwarf2_per_objfile);
8376 /* Traversal function for process_skeletonless_type_unit.
8377 Read a TU in a DWO file and build partial symbols for it. */
8380 process_skeletonless_type_unit (void **slot, void *info)
8382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8383 struct dwarf2_per_objfile *dwarf2_per_objfile
8384 = (struct dwarf2_per_objfile *) info;
8385 struct signatured_type find_entry, *entry;
8387 /* If this TU doesn't exist in the global table, add it and read it in. */
8389 if (dwarf2_per_objfile->signatured_types == NULL)
8391 dwarf2_per_objfile->signatured_types
8392 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8395 find_entry.signature = dwo_unit->signature;
8396 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8398 /* If we've already seen this type there's nothing to do. What's happening
8399 is we're doing our own version of comdat-folding here. */
8403 /* This does the job that create_all_type_units would have done for
8405 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8406 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8409 /* This does the job that build_type_psymtabs_1 would have done. */
8410 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8411 build_type_psymtabs_reader, NULL);
8416 /* Traversal function for process_skeletonless_type_units. */
8419 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8421 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8423 if (dwo_file->tus != NULL)
8425 htab_traverse_noresize (dwo_file->tus,
8426 process_skeletonless_type_unit, info);
8432 /* Scan all TUs of DWO files, verifying we've processed them.
8433 This is needed in case a TU was emitted without its skeleton.
8434 Note: This can't be done until we know what all the DWO files are. */
8437 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8439 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8440 if (get_dwp_file (dwarf2_per_objfile) == NULL
8441 && dwarf2_per_objfile->dwo_files != NULL)
8443 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8444 process_dwo_file_for_skeletonless_type_units,
8445 dwarf2_per_objfile);
8449 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8452 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8454 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8456 struct partial_symtab *pst = per_cu->v.psymtab;
8461 for (int j = 0; j < pst->number_of_dependencies; ++j)
8463 /* Set the 'user' field only if it is not already set. */
8464 if (pst->dependencies[j]->user == NULL)
8465 pst->dependencies[j]->user = pst;
8470 /* Build the partial symbol table by doing a quick pass through the
8471 .debug_info and .debug_abbrev sections. */
8474 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8476 struct objfile *objfile = dwarf2_per_objfile->objfile;
8478 if (dwarf_read_debug)
8480 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8481 objfile_name (objfile));
8484 dwarf2_per_objfile->reading_partial_symbols = 1;
8486 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8488 /* Any cached compilation units will be linked by the per-objfile
8489 read_in_chain. Make sure to free them when we're done. */
8490 free_cached_comp_units freer (dwarf2_per_objfile);
8492 build_type_psymtabs (dwarf2_per_objfile);
8494 create_all_comp_units (dwarf2_per_objfile);
8496 /* Create a temporary address map on a temporary obstack. We later
8497 copy this to the final obstack. */
8498 auto_obstack temp_obstack;
8500 scoped_restore save_psymtabs_addrmap
8501 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8502 addrmap_create_mutable (&temp_obstack));
8504 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8505 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8507 /* This has to wait until we read the CUs, we need the list of DWOs. */
8508 process_skeletonless_type_units (dwarf2_per_objfile);
8510 /* Now that all TUs have been processed we can fill in the dependencies. */
8511 if (dwarf2_per_objfile->type_unit_groups != NULL)
8513 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8514 build_type_psymtab_dependencies, dwarf2_per_objfile);
8517 if (dwarf_read_debug)
8518 print_tu_stats (dwarf2_per_objfile);
8520 set_partial_user (dwarf2_per_objfile);
8522 objfile->partial_symtabs->psymtabs_addrmap
8523 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8524 objfile->partial_symtabs->obstack ());
8525 /* At this point we want to keep the address map. */
8526 save_psymtabs_addrmap.release ();
8528 if (dwarf_read_debug)
8529 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8530 objfile_name (objfile));
8533 /* die_reader_func for load_partial_comp_unit. */
8536 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8537 const gdb_byte *info_ptr,
8538 struct die_info *comp_unit_die,
8542 struct dwarf2_cu *cu = reader->cu;
8544 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8546 /* Check if comp unit has_children.
8547 If so, read the rest of the partial symbols from this comp unit.
8548 If not, there's no more debug_info for this comp unit. */
8550 load_partial_dies (reader, info_ptr, 0);
8553 /* Load the partial DIEs for a secondary CU into memory.
8554 This is also used when rereading a primary CU with load_all_dies. */
8557 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8559 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8560 load_partial_comp_unit_reader, NULL);
8564 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8565 struct dwarf2_section_info *section,
8566 struct dwarf2_section_info *abbrev_section,
8567 unsigned int is_dwz)
8569 const gdb_byte *info_ptr;
8570 struct objfile *objfile = dwarf2_per_objfile->objfile;
8572 if (dwarf_read_debug)
8573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8574 get_section_name (section),
8575 get_section_file_name (section));
8577 dwarf2_read_section (objfile, section);
8579 info_ptr = section->buffer;
8581 while (info_ptr < section->buffer + section->size)
8583 struct dwarf2_per_cu_data *this_cu;
8585 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8587 comp_unit_head cu_header;
8588 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8589 abbrev_section, info_ptr,
8590 rcuh_kind::COMPILE);
8592 /* Save the compilation unit for later lookup. */
8593 if (cu_header.unit_type != DW_UT_type)
8595 this_cu = XOBNEW (&objfile->objfile_obstack,
8596 struct dwarf2_per_cu_data);
8597 memset (this_cu, 0, sizeof (*this_cu));
8601 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8602 struct signatured_type);
8603 memset (sig_type, 0, sizeof (*sig_type));
8604 sig_type->signature = cu_header.signature;
8605 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8606 this_cu = &sig_type->per_cu;
8608 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8609 this_cu->sect_off = sect_off;
8610 this_cu->length = cu_header.length + cu_header.initial_length_size;
8611 this_cu->is_dwz = is_dwz;
8612 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8613 this_cu->section = section;
8615 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8617 info_ptr = info_ptr + this_cu->length;
8621 /* Create a list of all compilation units in OBJFILE.
8622 This is only done for -readnow and building partial symtabs. */
8625 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8627 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8629 &dwarf2_per_objfile->abbrev, 0);
8631 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8633 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8637 /* Process all loaded DIEs for compilation unit CU, starting at
8638 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8639 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8640 DW_AT_ranges). See the comments of add_partial_subprogram on how
8641 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8645 CORE_ADDR *highpc, int set_addrmap,
8646 struct dwarf2_cu *cu)
8648 struct partial_die_info *pdi;
8650 /* Now, march along the PDI's, descending into ones which have
8651 interesting children but skipping the children of the other ones,
8652 until we reach the end of the compilation unit. */
8660 /* Anonymous namespaces or modules have no name but have interesting
8661 children, so we need to look at them. Ditto for anonymous
8664 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8665 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8666 || pdi->tag == DW_TAG_imported_unit
8667 || pdi->tag == DW_TAG_inlined_subroutine)
8671 case DW_TAG_subprogram:
8672 case DW_TAG_inlined_subroutine:
8673 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8675 case DW_TAG_constant:
8676 case DW_TAG_variable:
8677 case DW_TAG_typedef:
8678 case DW_TAG_union_type:
8679 if (!pdi->is_declaration)
8681 add_partial_symbol (pdi, cu);
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 if (!pdi->is_declaration)
8689 add_partial_symbol (pdi, cu);
8691 if ((cu->language == language_rust
8692 || cu->language == language_cplus) && pdi->has_children)
8693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8696 case DW_TAG_enumeration_type:
8697 if (!pdi->is_declaration)
8698 add_partial_enumeration (pdi, cu);
8700 case DW_TAG_base_type:
8701 case DW_TAG_subrange_type:
8702 /* File scope base type definitions are added to the partial
8704 add_partial_symbol (pdi, cu);
8706 case DW_TAG_namespace:
8707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8712 case DW_TAG_imported_unit:
8714 struct dwarf2_per_cu_data *per_cu;
8716 /* For now we don't handle imported units in type units. */
8717 if (cu->per_cu->is_debug_types)
8719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8720 " supported in type units [in module %s]"),
8721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8724 per_cu = dwarf2_find_containing_comp_unit
8725 (pdi->d.sect_off, pdi->is_dwz,
8726 cu->per_cu->dwarf2_per_objfile);
8728 /* Go read the partial unit, if needed. */
8729 if (per_cu->v.psymtab == NULL)
8730 process_psymtab_comp_unit (per_cu, 1, cu->language);
8732 VEC_safe_push (dwarf2_per_cu_ptr,
8733 cu->per_cu->imported_symtabs, per_cu);
8736 case DW_TAG_imported_declaration:
8737 add_partial_symbol (pdi, cu);
8744 /* If the die has a sibling, skip to the sibling. */
8746 pdi = pdi->die_sibling;
8750 /* Functions used to compute the fully scoped name of a partial DIE.
8752 Normally, this is simple. For C++, the parent DIE's fully scoped
8753 name is concatenated with "::" and the partial DIE's name.
8754 Enumerators are an exception; they use the scope of their parent
8755 enumeration type, i.e. the name of the enumeration type is not
8756 prepended to the enumerator.
8758 There are two complexities. One is DW_AT_specification; in this
8759 case "parent" means the parent of the target of the specification,
8760 instead of the direct parent of the DIE. The other is compilers
8761 which do not emit DW_TAG_namespace; in this case we try to guess
8762 the fully qualified name of structure types from their members'
8763 linkage names. This must be done using the DIE's children rather
8764 than the children of any DW_AT_specification target. We only need
8765 to do this for structures at the top level, i.e. if the target of
8766 any DW_AT_specification (if any; otherwise the DIE itself) does not
8769 /* Compute the scope prefix associated with PDI's parent, in
8770 compilation unit CU. The result will be allocated on CU's
8771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8772 field. NULL is returned if no prefix is necessary. */
8774 partial_die_parent_scope (struct partial_die_info *pdi,
8775 struct dwarf2_cu *cu)
8777 const char *grandparent_scope;
8778 struct partial_die_info *parent, *real_pdi;
8780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8781 then this means the parent of the specification DIE. */
8784 while (real_pdi->has_specification)
8785 real_pdi = find_partial_die (real_pdi->spec_offset,
8786 real_pdi->spec_is_dwz, cu);
8788 parent = real_pdi->die_parent;
8792 if (parent->scope_set)
8793 return parent->scope;
8797 grandparent_scope = partial_die_parent_scope (parent, cu);
8799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8801 Work around this problem here. */
8802 if (cu->language == language_cplus
8803 && parent->tag == DW_TAG_namespace
8804 && strcmp (parent->name, "::") == 0
8805 && grandparent_scope == NULL)
8807 parent->scope = NULL;
8808 parent->scope_set = 1;
8812 if (pdi->tag == DW_TAG_enumerator)
8813 /* Enumerators should not get the name of the enumeration as a prefix. */
8814 parent->scope = grandparent_scope;
8815 else if (parent->tag == DW_TAG_namespace
8816 || parent->tag == DW_TAG_module
8817 || parent->tag == DW_TAG_structure_type
8818 || parent->tag == DW_TAG_class_type
8819 || parent->tag == DW_TAG_interface_type
8820 || parent->tag == DW_TAG_union_type
8821 || parent->tag == DW_TAG_enumeration_type)
8823 if (grandparent_scope == NULL)
8824 parent->scope = parent->name;
8826 parent->scope = typename_concat (&cu->comp_unit_obstack,
8828 parent->name, 0, cu);
8832 /* FIXME drow/2004-04-01: What should we be doing with
8833 function-local names? For partial symbols, we should probably be
8835 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8836 parent->tag, sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8840 parent->scope_set = 1;
8841 return parent->scope;
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8851 const char *parent_scope;
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8892 const char *actual_name = NULL;
8894 char *built_actual_name;
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8911 if (pdi->is_external || cu->language == language_ada)
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8923 cu->language, objfile);
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8946 case DW_TAG_variable:
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8952 && !dwarf2_per_objfile->has_section_at_zero)
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8959 else if (pdi->is_external)
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8984 int has_loc = pdi->d.locdesc != NULL;
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8990 xfree (built_actual_name);
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
9000 cu->language, objfile);
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9039 xfree (built_actual_name);
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9067 xfree (built_actual_name);
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9079 /* Add a symbol for the namespace. */
9081 add_partial_symbol (pdi, cu);
9083 /* Now scan partial symbols in that namespace. */
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9089 /* Read a partial die corresponding to a Fortran module. */
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9095 /* Add a symbol for the namespace. */
9097 add_partial_symbol (pdi, cu);
9099 /* Now scan partial symbols in that module. */
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9124 if (pdi->has_pc_info)
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9161 add_partial_symbol (pdi, cu);
9165 if (! pdi->has_children)
9168 if (cu->language == language_ada)
9170 pdi = pdi->die_child;
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9183 /* Read a partial die corresponding to an enumeration type. */
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9189 struct partial_die_info *pdi;
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9194 pdi = enum_pdi->die_child;
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9210 unsigned int bytes_read;
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9231 if (abbrev_number == 0)
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9259 return info_ptr + bytes_read;
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9283 for (i = 0; i < abbrev->num_attrs; i++)
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9316 info_ptr += cu->header.offset_size;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9322 info_ptr += cu->header.addr_size;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9342 case DW_FORM_ref_sig8:
9345 case DW_FORM_data16:
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9352 case DW_FORM_sec_offset:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9357 case DW_FORM_exprloc:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9373 case DW_FORM_ref_udata:
9374 case DW_FORM_GNU_addr_index:
9375 case DW_FORM_GNU_str_index:
9376 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9378 case DW_FORM_indirect:
9379 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9380 info_ptr += bytes_read;
9381 /* We need to continue parsing from here, so just go back to
9383 goto skip_attribute;
9386 error (_("Dwarf Error: Cannot handle %s "
9387 "in DWARF reader [in module %s]"),
9388 dwarf_form_name (form),
9389 bfd_get_filename (abfd));
9393 if (abbrev->has_children)
9394 return skip_children (reader, info_ptr);
9399 /* Locate ORIG_PDI's sibling.
9400 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9402 static const gdb_byte *
9403 locate_pdi_sibling (const struct die_reader_specs *reader,
9404 struct partial_die_info *orig_pdi,
9405 const gdb_byte *info_ptr)
9407 /* Do we know the sibling already? */
9409 if (orig_pdi->sibling)
9410 return orig_pdi->sibling;
9412 /* Are there any children to deal with? */
9414 if (!orig_pdi->has_children)
9417 /* Skip the children the long way. */
9419 return skip_children (reader, info_ptr);
9422 /* Expand this partial symbol table into a full symbol table. SELF is
9426 dwarf2_read_symtab (struct partial_symtab *self,
9427 struct objfile *objfile)
9429 struct dwarf2_per_objfile *dwarf2_per_objfile
9430 = get_dwarf2_per_objfile (objfile);
9434 warning (_("bug: psymtab for %s is already read in."),
9441 printf_filtered (_("Reading in symbols for %s..."),
9443 gdb_flush (gdb_stdout);
9446 /* If this psymtab is constructed from a debug-only objfile, the
9447 has_section_at_zero flag will not necessarily be correct. We
9448 can get the correct value for this flag by looking at the data
9449 associated with the (presumably stripped) associated objfile. */
9450 if (objfile->separate_debug_objfile_backlink)
9452 struct dwarf2_per_objfile *dpo_backlink
9453 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9455 dwarf2_per_objfile->has_section_at_zero
9456 = dpo_backlink->has_section_at_zero;
9459 dwarf2_per_objfile->reading_partial_symbols = 0;
9461 psymtab_to_symtab_1 (self);
9463 /* Finish up the debug error message. */
9465 printf_filtered (_("done.\n"));
9468 process_cu_includes (dwarf2_per_objfile);
9471 /* Reading in full CUs. */
9473 /* Add PER_CU to the queue. */
9476 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9477 enum language pretend_language)
9479 struct dwarf2_queue_item *item;
9482 item = XNEW (struct dwarf2_queue_item);
9483 item->per_cu = per_cu;
9484 item->pretend_language = pretend_language;
9487 if (dwarf2_queue == NULL)
9488 dwarf2_queue = item;
9490 dwarf2_queue_tail->next = item;
9492 dwarf2_queue_tail = item;
9495 /* If PER_CU is not yet queued, add it to the queue.
9496 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9498 The result is non-zero if PER_CU was queued, otherwise the result is zero
9499 meaning either PER_CU is already queued or it is already loaded.
9501 N.B. There is an invariant here that if a CU is queued then it is loaded.
9502 The caller is required to load PER_CU if we return non-zero. */
9505 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9506 struct dwarf2_per_cu_data *per_cu,
9507 enum language pretend_language)
9509 /* We may arrive here during partial symbol reading, if we need full
9510 DIEs to process an unusual case (e.g. template arguments). Do
9511 not queue PER_CU, just tell our caller to load its DIEs. */
9512 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9514 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9519 /* Mark the dependence relation so that we don't flush PER_CU
9521 if (dependent_cu != NULL)
9522 dwarf2_add_dependence (dependent_cu, per_cu);
9524 /* If it's already on the queue, we have nothing to do. */
9528 /* If the compilation unit is already loaded, just mark it as
9530 if (per_cu->cu != NULL)
9532 per_cu->cu->last_used = 0;
9536 /* Add it to the queue. */
9537 queue_comp_unit (per_cu, pretend_language);
9542 /* Process the queue. */
9545 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9547 struct dwarf2_queue_item *item, *next_item;
9549 if (dwarf_read_debug)
9551 fprintf_unfiltered (gdb_stdlog,
9552 "Expanding one or more symtabs of objfile %s ...\n",
9553 objfile_name (dwarf2_per_objfile->objfile));
9556 /* The queue starts out with one item, but following a DIE reference
9557 may load a new CU, adding it to the end of the queue. */
9558 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9560 if ((dwarf2_per_objfile->using_index
9561 ? !item->per_cu->v.quick->compunit_symtab
9562 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9563 /* Skip dummy CUs. */
9564 && item->per_cu->cu != NULL)
9566 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9567 unsigned int debug_print_threshold;
9570 if (per_cu->is_debug_types)
9572 struct signatured_type *sig_type =
9573 (struct signatured_type *) per_cu;
9575 sprintf (buf, "TU %s at offset %s",
9576 hex_string (sig_type->signature),
9577 sect_offset_str (per_cu->sect_off));
9578 /* There can be 100s of TUs.
9579 Only print them in verbose mode. */
9580 debug_print_threshold = 2;
9584 sprintf (buf, "CU at offset %s",
9585 sect_offset_str (per_cu->sect_off));
9586 debug_print_threshold = 1;
9589 if (dwarf_read_debug >= debug_print_threshold)
9590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9592 if (per_cu->is_debug_types)
9593 process_full_type_unit (per_cu, item->pretend_language);
9595 process_full_comp_unit (per_cu, item->pretend_language);
9597 if (dwarf_read_debug >= debug_print_threshold)
9598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9601 item->per_cu->queued = 0;
9602 next_item = item->next;
9606 dwarf2_queue_tail = NULL;
9608 if (dwarf_read_debug)
9610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9611 objfile_name (dwarf2_per_objfile->objfile));
9615 /* Read in full symbols for PST, and anything it depends on. */
9618 psymtab_to_symtab_1 (struct partial_symtab *pst)
9620 struct dwarf2_per_cu_data *per_cu;
9626 for (i = 0; i < pst->number_of_dependencies; i++)
9627 if (!pst->dependencies[i]->readin
9628 && pst->dependencies[i]->user == NULL)
9630 /* Inform about additional files that need to be read in. */
9633 /* FIXME: i18n: Need to make this a single string. */
9634 fputs_filtered (" ", gdb_stdout);
9636 fputs_filtered ("and ", gdb_stdout);
9638 printf_filtered ("%s...", pst->dependencies[i]->filename);
9639 wrap_here (""); /* Flush output. */
9640 gdb_flush (gdb_stdout);
9642 psymtab_to_symtab_1 (pst->dependencies[i]);
9645 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9649 /* It's an include file, no symbols to read for it.
9650 Everything is in the parent symtab. */
9655 dw2_do_instantiate_symtab (per_cu, false);
9658 /* Trivial hash function for die_info: the hash value of a DIE
9659 is its offset in .debug_info for this objfile. */
9662 die_hash (const void *item)
9664 const struct die_info *die = (const struct die_info *) item;
9666 return to_underlying (die->sect_off);
9669 /* Trivial comparison function for die_info structures: two DIEs
9670 are equal if they have the same offset. */
9673 die_eq (const void *item_lhs, const void *item_rhs)
9675 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9676 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9678 return die_lhs->sect_off == die_rhs->sect_off;
9681 /* die_reader_func for load_full_comp_unit.
9682 This is identical to read_signatured_type_reader,
9683 but is kept separate for now. */
9686 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9687 const gdb_byte *info_ptr,
9688 struct die_info *comp_unit_die,
9692 struct dwarf2_cu *cu = reader->cu;
9693 enum language *language_ptr = (enum language *) data;
9695 gdb_assert (cu->die_hash == NULL);
9697 htab_create_alloc_ex (cu->header.length / 12,
9701 &cu->comp_unit_obstack,
9702 hashtab_obstack_allocate,
9703 dummy_obstack_deallocate);
9706 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9707 &info_ptr, comp_unit_die);
9708 cu->dies = comp_unit_die;
9709 /* comp_unit_die is not stored in die_hash, no need. */
9711 /* We try not to read any attributes in this function, because not
9712 all CUs needed for references have been loaded yet, and symbol
9713 table processing isn't initialized. But we have to set the CU language,
9714 or we won't be able to build types correctly.
9715 Similarly, if we do not read the producer, we can not apply
9716 producer-specific interpretation. */
9717 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9720 /* Load the DIEs associated with PER_CU into memory. */
9723 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9725 enum language pretend_language)
9727 gdb_assert (! this_cu->is_debug_types);
9729 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9730 load_full_comp_unit_reader, &pretend_language);
9733 /* Add a DIE to the delayed physname list. */
9736 add_to_method_list (struct type *type, int fnfield_index, int index,
9737 const char *name, struct die_info *die,
9738 struct dwarf2_cu *cu)
9740 struct delayed_method_info mi;
9742 mi.fnfield_index = fnfield_index;
9746 cu->method_list.push_back (mi);
9749 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9750 "const" / "volatile". If so, decrements LEN by the length of the
9751 modifier and return true. Otherwise return false. */
9755 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9757 size_t mod_len = sizeof (mod) - 1;
9758 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9766 /* Compute the physnames of any methods on the CU's method list.
9768 The computation of method physnames is delayed in order to avoid the
9769 (bad) condition that one of the method's formal parameters is of an as yet
9773 compute_delayed_physnames (struct dwarf2_cu *cu)
9775 /* Only C++ delays computing physnames. */
9776 if (cu->method_list.empty ())
9778 gdb_assert (cu->language == language_cplus);
9780 for (const delayed_method_info &mi : cu->method_list)
9782 const char *physname;
9783 struct fn_fieldlist *fn_flp
9784 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9785 physname = dwarf2_physname (mi.name, mi.die, cu);
9786 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9787 = physname ? physname : "";
9789 /* Since there's no tag to indicate whether a method is a
9790 const/volatile overload, extract that information out of the
9792 if (physname != NULL)
9794 size_t len = strlen (physname);
9798 if (physname[len] == ')') /* shortcut */
9800 else if (check_modifier (physname, len, " const"))
9801 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9802 else if (check_modifier (physname, len, " volatile"))
9803 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9810 /* The list is no longer needed. */
9811 cu->method_list.clear ();
9814 /* Go objects should be embedded in a DW_TAG_module DIE,
9815 and it's not clear if/how imported objects will appear.
9816 To keep Go support simple until that's worked out,
9817 go back through what we've read and create something usable.
9818 We could do this while processing each DIE, and feels kinda cleaner,
9819 but that way is more invasive.
9820 This is to, for example, allow the user to type "p var" or "b main"
9821 without having to specify the package name, and allow lookups
9822 of module.object to work in contexts that use the expression
9826 fixup_go_packaging (struct dwarf2_cu *cu)
9828 char *package_name = NULL;
9829 struct pending *list;
9832 for (list = *cu->get_builder ()->get_global_symbols ();
9836 for (i = 0; i < list->nsyms; ++i)
9838 struct symbol *sym = list->symbol[i];
9840 if (SYMBOL_LANGUAGE (sym) == language_go
9841 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9843 char *this_package_name = go_symbol_package_name (sym);
9845 if (this_package_name == NULL)
9847 if (package_name == NULL)
9848 package_name = this_package_name;
9851 struct objfile *objfile
9852 = cu->per_cu->dwarf2_per_objfile->objfile;
9853 if (strcmp (package_name, this_package_name) != 0)
9854 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9855 (symbol_symtab (sym) != NULL
9856 ? symtab_to_filename_for_display
9857 (symbol_symtab (sym))
9858 : objfile_name (objfile)),
9859 this_package_name, package_name);
9860 xfree (this_package_name);
9866 if (package_name != NULL)
9868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9869 const char *saved_package_name
9870 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9872 strlen (package_name));
9873 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9874 saved_package_name);
9877 sym = allocate_symbol (objfile);
9878 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9879 SYMBOL_SET_NAMES (sym, saved_package_name,
9880 strlen (saved_package_name), 0, objfile);
9881 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9882 e.g., "main" finds the "main" module and not C's main(). */
9883 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9884 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9885 SYMBOL_TYPE (sym) = type;
9887 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9889 xfree (package_name);
9893 /* Allocate a fully-qualified name consisting of the two parts on the
9897 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9899 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9902 /* A helper that allocates a struct discriminant_info to attach to a
9905 static struct discriminant_info *
9906 alloc_discriminant_info (struct type *type, int discriminant_index,
9909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9910 gdb_assert (discriminant_index == -1
9911 || (discriminant_index >= 0
9912 && discriminant_index < TYPE_NFIELDS (type)));
9913 gdb_assert (default_index == -1
9914 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9916 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9918 struct discriminant_info *disc
9919 = ((struct discriminant_info *)
9921 offsetof (struct discriminant_info, discriminants)
9922 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9923 disc->default_index = default_index;
9924 disc->discriminant_index = discriminant_index;
9926 struct dynamic_prop prop;
9927 prop.kind = PROP_UNDEFINED;
9928 prop.data.baton = disc;
9930 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9935 /* Some versions of rustc emitted enums in an unusual way.
9937 Ordinary enums were emitted as unions. The first element of each
9938 structure in the union was named "RUST$ENUM$DISR". This element
9939 held the discriminant.
9941 These versions of Rust also implemented the "non-zero"
9942 optimization. When the enum had two values, and one is empty and
9943 the other holds a pointer that cannot be zero, the pointer is used
9944 as the discriminant, with a zero value meaning the empty variant.
9945 Here, the union's first member is of the form
9946 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9947 where the fieldnos are the indices of the fields that should be
9948 traversed in order to find the field (which may be several fields deep)
9949 and the variantname is the name of the variant of the case when the
9952 This function recognizes whether TYPE is of one of these forms,
9953 and, if so, smashes it to be a variant type. */
9956 quirk_rust_enum (struct type *type, struct objfile *objfile)
9958 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9960 /* We don't need to deal with empty enums. */
9961 if (TYPE_NFIELDS (type) == 0)
9964 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9965 if (TYPE_NFIELDS (type) == 1
9966 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9968 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9970 /* Decode the field name to find the offset of the
9972 ULONGEST bit_offset = 0;
9973 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9974 while (name[0] >= '0' && name[0] <= '9')
9977 unsigned long index = strtoul (name, &tail, 10);
9980 || index >= TYPE_NFIELDS (field_type)
9981 || (TYPE_FIELD_LOC_KIND (field_type, index)
9982 != FIELD_LOC_KIND_BITPOS))
9984 complaint (_("Could not parse Rust enum encoding string \"%s\""
9986 TYPE_FIELD_NAME (type, 0),
9987 objfile_name (objfile));
9992 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9993 field_type = TYPE_FIELD_TYPE (field_type, index);
9996 /* Make a union to hold the variants. */
9997 struct type *union_type = alloc_type (objfile);
9998 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9999 TYPE_NFIELDS (union_type) = 3;
10000 TYPE_FIELDS (union_type)
10001 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10002 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10003 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10005 /* Put the discriminant must at index 0. */
10006 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10007 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10008 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10009 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10011 /* The order of fields doesn't really matter, so put the real
10012 field at index 1 and the data-less field at index 2. */
10013 struct discriminant_info *disc
10014 = alloc_discriminant_info (union_type, 0, 1);
10015 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10016 TYPE_FIELD_NAME (union_type, 1)
10017 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10018 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10019 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10020 TYPE_FIELD_NAME (union_type, 1));
10022 const char *dataless_name
10023 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10025 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10027 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10028 /* NAME points into the original discriminant name, which
10029 already has the correct lifetime. */
10030 TYPE_FIELD_NAME (union_type, 2) = name;
10031 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10032 disc->discriminants[2] = 0;
10034 /* Smash this type to be a structure type. We have to do this
10035 because the type has already been recorded. */
10036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10037 TYPE_NFIELDS (type) = 1;
10039 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10041 /* Install the variant part. */
10042 TYPE_FIELD_TYPE (type, 0) = union_type;
10043 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10044 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10046 else if (TYPE_NFIELDS (type) == 1)
10048 /* We assume that a union with a single field is a univariant
10050 /* Smash this type to be a structure type. We have to do this
10051 because the type has already been recorded. */
10052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10054 /* Make a union to hold the variants. */
10055 struct type *union_type = alloc_type (objfile);
10056 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10057 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10058 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10059 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10060 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10062 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10063 const char *variant_name
10064 = rust_last_path_segment (TYPE_NAME (field_type));
10065 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10066 TYPE_NAME (field_type)
10067 = rust_fully_qualify (&objfile->objfile_obstack,
10068 TYPE_NAME (type), variant_name);
10070 /* Install the union in the outer struct type. */
10071 TYPE_NFIELDS (type) = 1;
10073 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10074 TYPE_FIELD_TYPE (type, 0) = union_type;
10075 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10076 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10078 alloc_discriminant_info (union_type, -1, 0);
10082 struct type *disr_type = nullptr;
10083 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10085 disr_type = TYPE_FIELD_TYPE (type, i);
10087 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10089 /* All fields of a true enum will be structs. */
10092 else if (TYPE_NFIELDS (disr_type) == 0)
10094 /* Could be data-less variant, so keep going. */
10095 disr_type = nullptr;
10097 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10098 "RUST$ENUM$DISR") != 0)
10100 /* Not a Rust enum. */
10110 /* If we got here without a discriminant, then it's probably
10112 if (disr_type == nullptr)
10115 /* Smash this type to be a structure type. We have to do this
10116 because the type has already been recorded. */
10117 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10119 /* Make a union to hold the variants. */
10120 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10121 struct type *union_type = alloc_type (objfile);
10122 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10123 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10124 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10125 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10126 TYPE_FIELDS (union_type)
10127 = (struct field *) TYPE_ZALLOC (union_type,
10128 (TYPE_NFIELDS (union_type)
10129 * sizeof (struct field)));
10131 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10132 TYPE_NFIELDS (type) * sizeof (struct field));
10134 /* Install the discriminant at index 0 in the union. */
10135 TYPE_FIELD (union_type, 0) = *disr_field;
10136 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10137 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10139 /* Install the union in the outer struct type. */
10140 TYPE_FIELD_TYPE (type, 0) = union_type;
10141 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10142 TYPE_NFIELDS (type) = 1;
10144 /* Set the size and offset of the union type. */
10145 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10147 /* We need a way to find the correct discriminant given a
10148 variant name. For convenience we build a map here. */
10149 struct type *enum_type = FIELD_TYPE (*disr_field);
10150 std::unordered_map<std::string, ULONGEST> discriminant_map;
10151 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10153 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10156 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10157 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10161 int n_fields = TYPE_NFIELDS (union_type);
10162 struct discriminant_info *disc
10163 = alloc_discriminant_info (union_type, 0, -1);
10164 /* Skip the discriminant here. */
10165 for (int i = 1; i < n_fields; ++i)
10167 /* Find the final word in the name of this variant's type.
10168 That name can be used to look up the correct
10170 const char *variant_name
10171 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10174 auto iter = discriminant_map.find (variant_name);
10175 if (iter != discriminant_map.end ())
10176 disc->discriminants[i] = iter->second;
10178 /* Remove the discriminant field, if it exists. */
10179 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10180 if (TYPE_NFIELDS (sub_type) > 0)
10182 --TYPE_NFIELDS (sub_type);
10183 ++TYPE_FIELDS (sub_type);
10185 TYPE_FIELD_NAME (union_type, i) = variant_name;
10186 TYPE_NAME (sub_type)
10187 = rust_fully_qualify (&objfile->objfile_obstack,
10188 TYPE_NAME (type), variant_name);
10193 /* Rewrite some Rust unions to be structures with variants parts. */
10196 rust_union_quirks (struct dwarf2_cu *cu)
10198 gdb_assert (cu->language == language_rust);
10199 for (type *type_ : cu->rust_unions)
10200 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10201 /* We don't need this any more. */
10202 cu->rust_unions.clear ();
10205 /* Return the symtab for PER_CU. This works properly regardless of
10206 whether we're using the index or psymtabs. */
10208 static struct compunit_symtab *
10209 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10211 return (per_cu->dwarf2_per_objfile->using_index
10212 ? per_cu->v.quick->compunit_symtab
10213 : per_cu->v.psymtab->compunit_symtab);
10216 /* A helper function for computing the list of all symbol tables
10217 included by PER_CU. */
10220 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10221 htab_t all_children, htab_t all_type_symtabs,
10222 struct dwarf2_per_cu_data *per_cu,
10223 struct compunit_symtab *immediate_parent)
10227 struct compunit_symtab *cust;
10228 struct dwarf2_per_cu_data *iter;
10230 slot = htab_find_slot (all_children, per_cu, INSERT);
10233 /* This inclusion and its children have been processed. */
10238 /* Only add a CU if it has a symbol table. */
10239 cust = get_compunit_symtab (per_cu);
10242 /* If this is a type unit only add its symbol table if we haven't
10243 seen it yet (type unit per_cu's can share symtabs). */
10244 if (per_cu->is_debug_types)
10246 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10250 result->push_back (cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10257 result->push_back (cust);
10258 if (cust->user == NULL)
10259 cust->user = immediate_parent;
10264 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10267 recursively_compute_inclusions (result, all_children,
10268 all_type_symtabs, iter, cust);
10272 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10276 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10278 gdb_assert (! per_cu->is_debug_types);
10280 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10283 struct dwarf2_per_cu_data *per_cu_iter;
10284 std::vector<compunit_symtab *> result_symtabs;
10285 htab_t all_children, all_type_symtabs;
10286 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10288 /* If we don't have a symtab, we can just skip this case. */
10292 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10293 NULL, xcalloc, xfree);
10294 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10298 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10302 recursively_compute_inclusions (&result_symtabs, all_children,
10303 all_type_symtabs, per_cu_iter,
10307 /* Now we have a transitive closure of all the included symtabs. */
10308 len = result_symtabs.size ();
10310 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10311 struct compunit_symtab *, len + 1);
10312 memcpy (cust->includes, result_symtabs.data (),
10313 len * sizeof (compunit_symtab *));
10314 cust->includes[len] = NULL;
10316 htab_delete (all_children);
10317 htab_delete (all_type_symtabs);
10321 /* Compute the 'includes' field for the symtabs of all the CUs we just
10325 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10327 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10329 if (! iter->is_debug_types)
10330 compute_compunit_symtab_includes (iter);
10333 dwarf2_per_objfile->just_read_cus.clear ();
10336 /* Generate full symbol information for PER_CU, whose DIEs have
10337 already been loaded into memory. */
10340 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10347 CORE_ADDR lowpc, highpc;
10348 struct compunit_symtab *cust;
10349 CORE_ADDR baseaddr;
10350 struct block *static_block;
10353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10358 cu->language = pretend_language;
10359 cu->language_defn = language_def (cu->language);
10361 /* Do line number decoding in read_file_scope () */
10362 process_die (cu->dies, cu);
10364 /* For now fudge the Go package. */
10365 if (cu->language == language_go)
10366 fixup_go_packaging (cu);
10368 /* Now that we have processed all the DIEs in the CU, all the types
10369 should be complete, and it should now be safe to compute all of the
10371 compute_delayed_physnames (cu);
10373 if (cu->language == language_rust)
10374 rust_union_quirks (cu);
10376 /* Some compilers don't define a DW_AT_high_pc attribute for the
10377 compilation unit. If the DW_AT_high_pc is missing, synthesize
10378 it, by scanning the DIE's below the compilation unit. */
10379 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10381 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10382 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10384 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10385 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10386 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10387 addrmap to help ensure it has an accurate map of pc values belonging to
10389 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10391 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10392 SECT_OFF_TEXT (objfile),
10397 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10399 /* Set symtab language to language from DW_AT_language. If the
10400 compilation is from a C file generated by language preprocessors, do
10401 not set the language if it was already deduced by start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10406 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10407 produce DW_AT_location with location lists but it can be possibly
10408 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10409 there were bugs in prologue debug info, fixed later in GCC-4.5
10410 by "unwind info for epilogues" patch (which is not directly related).
10412 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10413 needed, it would be wrong due to missing DW_AT_producer there.
10415 Still one can confuse GDB by using non-standard GCC compilation
10416 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10418 if (cu->has_loclist && gcc_4_minor >= 5)
10419 cust->locations_valid = 1;
10421 if (gcc_4_minor >= 5)
10422 cust->epilogue_unwind_valid = 1;
10424 cust->call_site_htab = cu->call_site_htab;
10427 if (dwarf2_per_objfile->using_index)
10428 per_cu->v.quick->compunit_symtab = cust;
10431 struct partial_symtab *pst = per_cu->v.psymtab;
10432 pst->compunit_symtab = cust;
10436 /* Push it for inclusion processing later. */
10437 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10439 /* Not needed any more. */
10440 cu->reset_builder ();
10443 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10444 already been loaded into memory. */
10447 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10448 enum language pretend_language)
10450 struct dwarf2_cu *cu = per_cu->cu;
10451 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
10453 struct compunit_symtab *cust;
10454 struct signatured_type *sig_type;
10456 gdb_assert (per_cu->is_debug_types);
10457 sig_type = (struct signatured_type *) per_cu;
10459 /* Clear the list here in case something was left over. */
10460 cu->method_list.clear ();
10462 cu->language = pretend_language;
10463 cu->language_defn = language_def (cu->language);
10465 /* The symbol tables are set up in read_type_unit_scope. */
10466 process_die (cu->dies, cu);
10468 /* For now fudge the Go package. */
10469 if (cu->language == language_go)
10470 fixup_go_packaging (cu);
10472 /* Now that we have processed all the DIEs in the CU, all the types
10473 should be complete, and it should now be safe to compute all of the
10475 compute_delayed_physnames (cu);
10477 if (cu->language == language_rust)
10478 rust_union_quirks (cu);
10480 /* TUs share symbol tables.
10481 If this is the first TU to use this symtab, complete the construction
10482 of it with end_expandable_symtab. Otherwise, complete the addition of
10483 this TU's symbols to the existing symtab. */
10484 if (sig_type->type_unit_group->compunit_symtab == NULL)
10486 buildsym_compunit *builder = cu->get_builder ();
10487 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10488 sig_type->type_unit_group->compunit_symtab = cust;
10492 /* Set symtab language to language from DW_AT_language. If the
10493 compilation is from a C file generated by language preprocessors,
10494 do not set the language if it was already deduced by
10496 if (!(cu->language == language_c
10497 && COMPUNIT_FILETABS (cust)->language != language_c))
10498 COMPUNIT_FILETABS (cust)->language = cu->language;
10503 cu->get_builder ()->augment_type_symtab ();
10504 cust = sig_type->type_unit_group->compunit_symtab;
10507 if (dwarf2_per_objfile->using_index)
10508 per_cu->v.quick->compunit_symtab = cust;
10511 struct partial_symtab *pst = per_cu->v.psymtab;
10512 pst->compunit_symtab = cust;
10516 /* Not needed any more. */
10517 cu->reset_builder ();
10520 /* Process an imported unit DIE. */
10523 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10525 struct attribute *attr;
10527 /* For now we don't handle imported units in type units. */
10528 if (cu->per_cu->is_debug_types)
10530 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10531 " supported in type units [in module %s]"),
10532 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10535 attr = dwarf2_attr (die, DW_AT_import, cu);
10538 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10539 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10540 dwarf2_per_cu_data *per_cu
10541 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10542 cu->per_cu->dwarf2_per_objfile);
10544 /* If necessary, add it to the queue and load its DIEs. */
10545 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10546 load_full_comp_unit (per_cu, false, cu->language);
10548 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10553 /* RAII object that represents a process_die scope: i.e.,
10554 starts/finishes processing a DIE. */
10555 class process_die_scope
10558 process_die_scope (die_info *die, dwarf2_cu *cu)
10559 : m_die (die), m_cu (cu)
10561 /* We should only be processing DIEs not already in process. */
10562 gdb_assert (!m_die->in_process);
10563 m_die->in_process = true;
10566 ~process_die_scope ()
10568 m_die->in_process = false;
10570 /* If we're done processing the DIE for the CU that owns the line
10571 header, we don't need the line header anymore. */
10572 if (m_cu->line_header_die_owner == m_die)
10574 delete m_cu->line_header;
10575 m_cu->line_header = NULL;
10576 m_cu->line_header_die_owner = NULL;
10585 /* Process a die and its children. */
10588 process_die (struct die_info *die, struct dwarf2_cu *cu)
10590 process_die_scope scope (die, cu);
10594 case DW_TAG_padding:
10596 case DW_TAG_compile_unit:
10597 case DW_TAG_partial_unit:
10598 read_file_scope (die, cu);
10600 case DW_TAG_type_unit:
10601 read_type_unit_scope (die, cu);
10603 case DW_TAG_subprogram:
10604 case DW_TAG_inlined_subroutine:
10605 read_func_scope (die, cu);
10607 case DW_TAG_lexical_block:
10608 case DW_TAG_try_block:
10609 case DW_TAG_catch_block:
10610 read_lexical_block_scope (die, cu);
10612 case DW_TAG_call_site:
10613 case DW_TAG_GNU_call_site:
10614 read_call_site_scope (die, cu);
10616 case DW_TAG_class_type:
10617 case DW_TAG_interface_type:
10618 case DW_TAG_structure_type:
10619 case DW_TAG_union_type:
10620 process_structure_scope (die, cu);
10622 case DW_TAG_enumeration_type:
10623 process_enumeration_scope (die, cu);
10626 /* These dies have a type, but processing them does not create
10627 a symbol or recurse to process the children. Therefore we can
10628 read them on-demand through read_type_die. */
10629 case DW_TAG_subroutine_type:
10630 case DW_TAG_set_type:
10631 case DW_TAG_array_type:
10632 case DW_TAG_pointer_type:
10633 case DW_TAG_ptr_to_member_type:
10634 case DW_TAG_reference_type:
10635 case DW_TAG_rvalue_reference_type:
10636 case DW_TAG_string_type:
10639 case DW_TAG_base_type:
10640 case DW_TAG_subrange_type:
10641 case DW_TAG_typedef:
10642 /* Add a typedef symbol for the type definition, if it has a
10644 new_symbol (die, read_type_die (die, cu), cu);
10646 case DW_TAG_common_block:
10647 read_common_block (die, cu);
10649 case DW_TAG_common_inclusion:
10651 case DW_TAG_namespace:
10652 cu->processing_has_namespace_info = true;
10653 read_namespace (die, cu);
10655 case DW_TAG_module:
10656 cu->processing_has_namespace_info = true;
10657 read_module (die, cu);
10659 case DW_TAG_imported_declaration:
10660 cu->processing_has_namespace_info = true;
10661 if (read_namespace_alias (die, cu))
10663 /* The declaration is not a global namespace alias. */
10664 /* Fall through. */
10665 case DW_TAG_imported_module:
10666 cu->processing_has_namespace_info = true;
10667 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10668 || cu->language != language_fortran))
10669 complaint (_("Tag '%s' has unexpected children"),
10670 dwarf_tag_name (die->tag));
10671 read_import_statement (die, cu);
10674 case DW_TAG_imported_unit:
10675 process_imported_unit_die (die, cu);
10678 case DW_TAG_variable:
10679 read_variable (die, cu);
10683 new_symbol (die, NULL, cu);
10688 /* DWARF name computation. */
10690 /* A helper function for dwarf2_compute_name which determines whether DIE
10691 needs to have the name of the scope prepended to the name listed in the
10695 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10697 struct attribute *attr;
10701 case DW_TAG_namespace:
10702 case DW_TAG_typedef:
10703 case DW_TAG_class_type:
10704 case DW_TAG_interface_type:
10705 case DW_TAG_structure_type:
10706 case DW_TAG_union_type:
10707 case DW_TAG_enumeration_type:
10708 case DW_TAG_enumerator:
10709 case DW_TAG_subprogram:
10710 case DW_TAG_inlined_subroutine:
10711 case DW_TAG_member:
10712 case DW_TAG_imported_declaration:
10715 case DW_TAG_variable:
10716 case DW_TAG_constant:
10717 /* We only need to prefix "globally" visible variables. These include
10718 any variable marked with DW_AT_external or any variable that
10719 lives in a namespace. [Variables in anonymous namespaces
10720 require prefixing, but they are not DW_AT_external.] */
10722 if (dwarf2_attr (die, DW_AT_specification, cu))
10724 struct dwarf2_cu *spec_cu = cu;
10726 return die_needs_namespace (die_specification (die, &spec_cu),
10730 attr = dwarf2_attr (die, DW_AT_external, cu);
10731 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10732 && die->parent->tag != DW_TAG_module)
10734 /* A variable in a lexical block of some kind does not need a
10735 namespace, even though in C++ such variables may be external
10736 and have a mangled name. */
10737 if (die->parent->tag == DW_TAG_lexical_block
10738 || die->parent->tag == DW_TAG_try_block
10739 || die->parent->tag == DW_TAG_catch_block
10740 || die->parent->tag == DW_TAG_subprogram)
10749 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10750 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10751 defined for the given DIE. */
10753 static struct attribute *
10754 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10756 struct attribute *attr;
10758 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10760 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10765 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10766 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10767 defined for the given DIE. */
10769 static const char *
10770 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10772 const char *linkage_name;
10774 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10775 if (linkage_name == NULL)
10776 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10778 return linkage_name;
10781 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10782 compute the physname for the object, which include a method's:
10783 - formal parameters (C++),
10784 - receiver type (Go),
10786 The term "physname" is a bit confusing.
10787 For C++, for example, it is the demangled name.
10788 For Go, for example, it's the mangled name.
10790 For Ada, return the DIE's linkage name rather than the fully qualified
10791 name. PHYSNAME is ignored..
10793 The result is allocated on the objfile_obstack and canonicalized. */
10795 static const char *
10796 dwarf2_compute_name (const char *name,
10797 struct die_info *die, struct dwarf2_cu *cu,
10800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10803 name = dwarf2_name (die, cu);
10805 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10806 but otherwise compute it by typename_concat inside GDB.
10807 FIXME: Actually this is not really true, or at least not always true.
10808 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10809 Fortran names because there is no mangling standard. So new_symbol
10810 will set the demangled name to the result of dwarf2_full_name, and it is
10811 the demangled name that GDB uses if it exists. */
10812 if (cu->language == language_ada
10813 || (cu->language == language_fortran && physname))
10815 /* For Ada unit, we prefer the linkage name over the name, as
10816 the former contains the exported name, which the user expects
10817 to be able to reference. Ideally, we want the user to be able
10818 to reference this entity using either natural or linkage name,
10819 but we haven't started looking at this enhancement yet. */
10820 const char *linkage_name = dw2_linkage_name (die, cu);
10822 if (linkage_name != NULL)
10823 return linkage_name;
10826 /* These are the only languages we know how to qualify names in. */
10828 && (cu->language == language_cplus
10829 || cu->language == language_fortran || cu->language == language_d
10830 || cu->language == language_rust))
10832 if (die_needs_namespace (die, cu))
10834 const char *prefix;
10835 const char *canonical_name = NULL;
10839 prefix = determine_prefix (die, cu);
10840 if (*prefix != '\0')
10842 char *prefixed_name = typename_concat (NULL, prefix, name,
10845 buf.puts (prefixed_name);
10846 xfree (prefixed_name);
10851 /* Template parameters may be specified in the DIE's DW_AT_name, or
10852 as children with DW_TAG_template_type_param or
10853 DW_TAG_value_type_param. If the latter, add them to the name
10854 here. If the name already has template parameters, then
10855 skip this step; some versions of GCC emit both, and
10856 it is more efficient to use the pre-computed name.
10858 Something to keep in mind about this process: it is very
10859 unlikely, or in some cases downright impossible, to produce
10860 something that will match the mangled name of a function.
10861 If the definition of the function has the same debug info,
10862 we should be able to match up with it anyway. But fallbacks
10863 using the minimal symbol, for instance to find a method
10864 implemented in a stripped copy of libstdc++, will not work.
10865 If we do not have debug info for the definition, we will have to
10866 match them up some other way.
10868 When we do name matching there is a related problem with function
10869 templates; two instantiated function templates are allowed to
10870 differ only by their return types, which we do not add here. */
10872 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10874 struct attribute *attr;
10875 struct die_info *child;
10878 die->building_fullname = 1;
10880 for (child = die->child; child != NULL; child = child->sibling)
10884 const gdb_byte *bytes;
10885 struct dwarf2_locexpr_baton *baton;
10888 if (child->tag != DW_TAG_template_type_param
10889 && child->tag != DW_TAG_template_value_param)
10900 attr = dwarf2_attr (child, DW_AT_type, cu);
10903 complaint (_("template parameter missing DW_AT_type"));
10904 buf.puts ("UNKNOWN_TYPE");
10907 type = die_type (child, cu);
10909 if (child->tag == DW_TAG_template_type_param)
10911 c_print_type (type, "", &buf, -1, 0, cu->language,
10912 &type_print_raw_options);
10916 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10919 complaint (_("template parameter missing "
10920 "DW_AT_const_value"));
10921 buf.puts ("UNKNOWN_VALUE");
10925 dwarf2_const_value_attr (attr, type, name,
10926 &cu->comp_unit_obstack, cu,
10927 &value, &bytes, &baton);
10929 if (TYPE_NOSIGN (type))
10930 /* GDB prints characters as NUMBER 'CHAR'. If that's
10931 changed, this can use value_print instead. */
10932 c_printchar (value, type, &buf);
10935 struct value_print_options opts;
10938 v = dwarf2_evaluate_loc_desc (type, NULL,
10942 else if (bytes != NULL)
10944 v = allocate_value (type);
10945 memcpy (value_contents_writeable (v), bytes,
10946 TYPE_LENGTH (type));
10949 v = value_from_longest (type, value);
10951 /* Specify decimal so that we do not depend on
10953 get_formatted_print_options (&opts, 'd');
10955 value_print (v, &buf, &opts);
10960 die->building_fullname = 0;
10964 /* Close the argument list, with a space if necessary
10965 (nested templates). */
10966 if (!buf.empty () && buf.string ().back () == '>')
10973 /* For C++ methods, append formal parameter type
10974 information, if PHYSNAME. */
10976 if (physname && die->tag == DW_TAG_subprogram
10977 && cu->language == language_cplus)
10979 struct type *type = read_type_die (die, cu);
10981 c_type_print_args (type, &buf, 1, cu->language,
10982 &type_print_raw_options);
10984 if (cu->language == language_cplus)
10986 /* Assume that an artificial first parameter is
10987 "this", but do not crash if it is not. RealView
10988 marks unnamed (and thus unused) parameters as
10989 artificial; there is no way to differentiate
10991 if (TYPE_NFIELDS (type) > 0
10992 && TYPE_FIELD_ARTIFICIAL (type, 0)
10993 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10994 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10996 buf.puts (" const");
11000 const std::string &intermediate_name = buf.string ();
11002 if (cu->language == language_cplus)
11004 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11005 &objfile->per_bfd->storage_obstack);
11007 /* If we only computed INTERMEDIATE_NAME, or if
11008 INTERMEDIATE_NAME is already canonical, then we need to
11009 copy it to the appropriate obstack. */
11010 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11011 name = ((const char *)
11012 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11013 intermediate_name.c_str (),
11014 intermediate_name.length ()));
11016 name = canonical_name;
11023 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11024 If scope qualifiers are appropriate they will be added. The result
11025 will be allocated on the storage_obstack, or NULL if the DIE does
11026 not have a name. NAME may either be from a previous call to
11027 dwarf2_name or NULL.
11029 The output string will be canonicalized (if C++). */
11031 static const char *
11032 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11034 return dwarf2_compute_name (name, die, cu, 0);
11037 /* Construct a physname for the given DIE in CU. NAME may either be
11038 from a previous call to dwarf2_name or NULL. The result will be
11039 allocated on the objfile_objstack or NULL if the DIE does not have a
11042 The output string will be canonicalized (if C++). */
11044 static const char *
11045 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11047 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11048 const char *retval, *mangled = NULL, *canon = NULL;
11051 /* In this case dwarf2_compute_name is just a shortcut not building anything
11053 if (!die_needs_namespace (die, cu))
11054 return dwarf2_compute_name (name, die, cu, 1);
11056 mangled = dw2_linkage_name (die, cu);
11058 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11059 See https://github.com/rust-lang/rust/issues/32925. */
11060 if (cu->language == language_rust && mangled != NULL
11061 && strchr (mangled, '{') != NULL)
11064 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11066 gdb::unique_xmalloc_ptr<char> demangled;
11067 if (mangled != NULL)
11070 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11072 /* Do nothing (do not demangle the symbol name). */
11074 else if (cu->language == language_go)
11076 /* This is a lie, but we already lie to the caller new_symbol.
11077 new_symbol assumes we return the mangled name.
11078 This just undoes that lie until things are cleaned up. */
11082 /* Use DMGL_RET_DROP for C++ template functions to suppress
11083 their return type. It is easier for GDB users to search
11084 for such functions as `name(params)' than `long name(params)'.
11085 In such case the minimal symbol names do not match the full
11086 symbol names but for template functions there is never a need
11087 to look up their definition from their declaration so
11088 the only disadvantage remains the minimal symbol variant
11089 `long name(params)' does not have the proper inferior type. */
11090 demangled.reset (gdb_demangle (mangled,
11091 (DMGL_PARAMS | DMGL_ANSI
11092 | DMGL_RET_DROP)));
11095 canon = demangled.get ();
11103 if (canon == NULL || check_physname)
11105 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11107 if (canon != NULL && strcmp (physname, canon) != 0)
11109 /* It may not mean a bug in GDB. The compiler could also
11110 compute DW_AT_linkage_name incorrectly. But in such case
11111 GDB would need to be bug-to-bug compatible. */
11113 complaint (_("Computed physname <%s> does not match demangled <%s> "
11114 "(from linkage <%s>) - DIE at %s [in module %s]"),
11115 physname, canon, mangled, sect_offset_str (die->sect_off),
11116 objfile_name (objfile));
11118 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11119 is available here - over computed PHYSNAME. It is safer
11120 against both buggy GDB and buggy compilers. */
11134 retval = ((const char *)
11135 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11136 retval, strlen (retval)));
11141 /* Inspect DIE in CU for a namespace alias. If one exists, record
11142 a new symbol for it.
11144 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11147 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11149 struct attribute *attr;
11151 /* If the die does not have a name, this is not a namespace
11153 attr = dwarf2_attr (die, DW_AT_name, cu);
11157 struct die_info *d = die;
11158 struct dwarf2_cu *imported_cu = cu;
11160 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11161 keep inspecting DIEs until we hit the underlying import. */
11162 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11163 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11165 attr = dwarf2_attr (d, DW_AT_import, cu);
11169 d = follow_die_ref (d, attr, &imported_cu);
11170 if (d->tag != DW_TAG_imported_declaration)
11174 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11176 complaint (_("DIE at %s has too many recursively imported "
11177 "declarations"), sect_offset_str (d->sect_off));
11184 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11186 type = get_die_type_at_offset (sect_off, cu->per_cu);
11187 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11189 /* This declaration is a global namespace alias. Add
11190 a symbol for it whose type is the aliased namespace. */
11191 new_symbol (die, type, cu);
11200 /* Return the using directives repository (global or local?) to use in the
11201 current context for CU.
11203 For Ada, imported declarations can materialize renamings, which *may* be
11204 global. However it is impossible (for now?) in DWARF to distinguish
11205 "external" imported declarations and "static" ones. As all imported
11206 declarations seem to be static in all other languages, make them all CU-wide
11207 global only in Ada. */
11209 static struct using_direct **
11210 using_directives (struct dwarf2_cu *cu)
11212 if (cu->language == language_ada
11213 && cu->get_builder ()->outermost_context_p ())
11214 return cu->get_builder ()->get_global_using_directives ();
11216 return cu->get_builder ()->get_local_using_directives ();
11219 /* Read the import statement specified by the given die and record it. */
11222 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11224 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11225 struct attribute *import_attr;
11226 struct die_info *imported_die, *child_die;
11227 struct dwarf2_cu *imported_cu;
11228 const char *imported_name;
11229 const char *imported_name_prefix;
11230 const char *canonical_name;
11231 const char *import_alias;
11232 const char *imported_declaration = NULL;
11233 const char *import_prefix;
11234 std::vector<const char *> excludes;
11236 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11237 if (import_attr == NULL)
11239 complaint (_("Tag '%s' has no DW_AT_import"),
11240 dwarf_tag_name (die->tag));
11245 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11246 imported_name = dwarf2_name (imported_die, imported_cu);
11247 if (imported_name == NULL)
11249 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11251 The import in the following code:
11265 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11266 <52> DW_AT_decl_file : 1
11267 <53> DW_AT_decl_line : 6
11268 <54> DW_AT_import : <0x75>
11269 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11270 <59> DW_AT_name : B
11271 <5b> DW_AT_decl_file : 1
11272 <5c> DW_AT_decl_line : 2
11273 <5d> DW_AT_type : <0x6e>
11275 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11276 <76> DW_AT_byte_size : 4
11277 <77> DW_AT_encoding : 5 (signed)
11279 imports the wrong die ( 0x75 instead of 0x58 ).
11280 This case will be ignored until the gcc bug is fixed. */
11284 /* Figure out the local name after import. */
11285 import_alias = dwarf2_name (die, cu);
11287 /* Figure out where the statement is being imported to. */
11288 import_prefix = determine_prefix (die, cu);
11290 /* Figure out what the scope of the imported die is and prepend it
11291 to the name of the imported die. */
11292 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11294 if (imported_die->tag != DW_TAG_namespace
11295 && imported_die->tag != DW_TAG_module)
11297 imported_declaration = imported_name;
11298 canonical_name = imported_name_prefix;
11300 else if (strlen (imported_name_prefix) > 0)
11301 canonical_name = obconcat (&objfile->objfile_obstack,
11302 imported_name_prefix,
11303 (cu->language == language_d ? "." : "::"),
11304 imported_name, (char *) NULL);
11306 canonical_name = imported_name;
11308 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11309 for (child_die = die->child; child_die && child_die->tag;
11310 child_die = sibling_die (child_die))
11312 /* DWARF-4: A Fortran use statement with a “rename list” may be
11313 represented by an imported module entry with an import attribute
11314 referring to the module and owned entries corresponding to those
11315 entities that are renamed as part of being imported. */
11317 if (child_die->tag != DW_TAG_imported_declaration)
11319 complaint (_("child DW_TAG_imported_declaration expected "
11320 "- DIE at %s [in module %s]"),
11321 sect_offset_str (child_die->sect_off),
11322 objfile_name (objfile));
11326 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11327 if (import_attr == NULL)
11329 complaint (_("Tag '%s' has no DW_AT_import"),
11330 dwarf_tag_name (child_die->tag));
11335 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11337 imported_name = dwarf2_name (imported_die, imported_cu);
11338 if (imported_name == NULL)
11340 complaint (_("child DW_TAG_imported_declaration has unknown "
11341 "imported name - DIE at %s [in module %s]"),
11342 sect_offset_str (child_die->sect_off),
11343 objfile_name (objfile));
11347 excludes.push_back (imported_name);
11349 process_die (child_die, cu);
11352 add_using_directive (using_directives (cu),
11356 imported_declaration,
11359 &objfile->objfile_obstack);
11362 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11363 types, but gives them a size of zero. Starting with version 14,
11364 ICC is compatible with GCC. */
11367 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11369 if (!cu->checked_producer)
11370 check_producer (cu);
11372 return cu->producer_is_icc_lt_14;
11375 /* ICC generates a DW_AT_type for C void functions. This was observed on
11376 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11377 which says that void functions should not have a DW_AT_type. */
11380 producer_is_icc (struct dwarf2_cu *cu)
11382 if (!cu->checked_producer)
11383 check_producer (cu);
11385 return cu->producer_is_icc;
11388 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11389 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11390 this, it was first present in GCC release 4.3.0. */
11393 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11395 if (!cu->checked_producer)
11396 check_producer (cu);
11398 return cu->producer_is_gcc_lt_4_3;
11401 static file_and_directory
11402 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11404 file_and_directory res;
11406 /* Find the filename. Do not use dwarf2_name here, since the filename
11407 is not a source language identifier. */
11408 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11409 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11411 if (res.comp_dir == NULL
11412 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11413 && IS_ABSOLUTE_PATH (res.name))
11415 res.comp_dir_storage = ldirname (res.name);
11416 if (!res.comp_dir_storage.empty ())
11417 res.comp_dir = res.comp_dir_storage.c_str ();
11419 if (res.comp_dir != NULL)
11421 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11422 directory, get rid of it. */
11423 const char *cp = strchr (res.comp_dir, ':');
11425 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11426 res.comp_dir = cp + 1;
11429 if (res.name == NULL)
11430 res.name = "<unknown>";
11435 /* Handle DW_AT_stmt_list for a compilation unit.
11436 DIE is the DW_TAG_compile_unit die for CU.
11437 COMP_DIR is the compilation directory. LOWPC is passed to
11438 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11441 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11442 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11444 struct dwarf2_per_objfile *dwarf2_per_objfile
11445 = cu->per_cu->dwarf2_per_objfile;
11446 struct objfile *objfile = dwarf2_per_objfile->objfile;
11447 struct attribute *attr;
11448 struct line_header line_header_local;
11449 hashval_t line_header_local_hash;
11451 int decode_mapping;
11453 gdb_assert (! cu->per_cu->is_debug_types);
11455 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11459 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11461 /* The line header hash table is only created if needed (it exists to
11462 prevent redundant reading of the line table for partial_units).
11463 If we're given a partial_unit, we'll need it. If we're given a
11464 compile_unit, then use the line header hash table if it's already
11465 created, but don't create one just yet. */
11467 if (dwarf2_per_objfile->line_header_hash == NULL
11468 && die->tag == DW_TAG_partial_unit)
11470 dwarf2_per_objfile->line_header_hash
11471 = htab_create_alloc_ex (127, line_header_hash_voidp,
11472 line_header_eq_voidp,
11473 free_line_header_voidp,
11474 &objfile->objfile_obstack,
11475 hashtab_obstack_allocate,
11476 dummy_obstack_deallocate);
11479 line_header_local.sect_off = line_offset;
11480 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11481 line_header_local_hash = line_header_hash (&line_header_local);
11482 if (dwarf2_per_objfile->line_header_hash != NULL)
11484 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11485 &line_header_local,
11486 line_header_local_hash, NO_INSERT);
11488 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11489 is not present in *SLOT (since if there is something in *SLOT then
11490 it will be for a partial_unit). */
11491 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11493 gdb_assert (*slot != NULL);
11494 cu->line_header = (struct line_header *) *slot;
11499 /* dwarf_decode_line_header does not yet provide sufficient information.
11500 We always have to call also dwarf_decode_lines for it. */
11501 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11505 cu->line_header = lh.release ();
11506 cu->line_header_die_owner = die;
11508 if (dwarf2_per_objfile->line_header_hash == NULL)
11512 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11513 &line_header_local,
11514 line_header_local_hash, INSERT);
11515 gdb_assert (slot != NULL);
11517 if (slot != NULL && *slot == NULL)
11519 /* This newly decoded line number information unit will be owned
11520 by line_header_hash hash table. */
11521 *slot = cu->line_header;
11522 cu->line_header_die_owner = NULL;
11526 /* We cannot free any current entry in (*slot) as that struct line_header
11527 may be already used by multiple CUs. Create only temporary decoded
11528 line_header for this CU - it may happen at most once for each line
11529 number information unit. And if we're not using line_header_hash
11530 then this is what we want as well. */
11531 gdb_assert (die->tag != DW_TAG_partial_unit);
11533 decode_mapping = (die->tag != DW_TAG_partial_unit);
11534 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11539 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11542 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11544 struct dwarf2_per_objfile *dwarf2_per_objfile
11545 = cu->per_cu->dwarf2_per_objfile;
11546 struct objfile *objfile = dwarf2_per_objfile->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11549 CORE_ADDR highpc = ((CORE_ADDR) 0);
11550 struct attribute *attr;
11551 struct die_info *child_die;
11552 CORE_ADDR baseaddr;
11554 prepare_one_comp_unit (cu, die, cu->language);
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11557 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11559 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11560 from finish_block. */
11561 if (lowpc == ((CORE_ADDR) -1))
11563 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11565 file_and_directory fnd = find_file_and_directory (die, cu);
11567 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11568 standardised yet. As a workaround for the language detection we fall
11569 back to the DW_AT_producer string. */
11570 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11571 cu->language = language_opencl;
11573 /* Similar hack for Go. */
11574 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11575 set_cu_language (DW_LANG_Go, cu);
11577 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11579 /* Decode line number information if present. We do this before
11580 processing child DIEs, so that the line header table is available
11581 for DW_AT_decl_file. */
11582 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11584 /* Process all dies in compilation unit. */
11585 if (die->child != NULL)
11587 child_die = die->child;
11588 while (child_die && child_die->tag)
11590 process_die (child_die, cu);
11591 child_die = sibling_die (child_die);
11595 /* Decode macro information, if present. Dwarf 2 macro information
11596 refers to information in the line number info statement program
11597 header, so we can only read it if we've read the header
11599 attr = dwarf2_attr (die, DW_AT_macros, cu);
11601 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11602 if (attr && cu->line_header)
11604 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11605 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11607 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11611 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11612 if (attr && cu->line_header)
11614 unsigned int macro_offset = DW_UNSND (attr);
11616 dwarf_decode_macros (cu, macro_offset, 0);
11622 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11624 struct type_unit_group *tu_group;
11626 struct attribute *attr;
11628 struct signatured_type *sig_type;
11630 gdb_assert (per_cu->is_debug_types);
11631 sig_type = (struct signatured_type *) per_cu;
11633 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11635 /* If we're using .gdb_index (includes -readnow) then
11636 per_cu->type_unit_group may not have been set up yet. */
11637 if (sig_type->type_unit_group == NULL)
11638 sig_type->type_unit_group = get_type_unit_group (this, attr);
11639 tu_group = sig_type->type_unit_group;
11641 /* If we've already processed this stmt_list there's no real need to
11642 do it again, we could fake it and just recreate the part we need
11643 (file name,index -> symtab mapping). If data shows this optimization
11644 is useful we can do it then. */
11645 first_time = tu_group->compunit_symtab == NULL;
11647 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11652 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11653 lh = dwarf_decode_line_header (line_offset, this);
11658 start_symtab ("", NULL, 0);
11661 gdb_assert (tu_group->symtabs == NULL);
11662 gdb_assert (m_builder == nullptr);
11663 struct compunit_symtab *cust = tu_group->compunit_symtab;
11664 m_builder.reset (new struct buildsym_compunit
11665 (COMPUNIT_OBJFILE (cust), "",
11666 COMPUNIT_DIRNAME (cust),
11667 compunit_language (cust),
11673 line_header = lh.release ();
11674 line_header_die_owner = die;
11678 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11680 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11681 still initializing it, and our caller (a few levels up)
11682 process_full_type_unit still needs to know if this is the first
11685 tu_group->num_symtabs = line_header->file_names.size ();
11686 tu_group->symtabs = XNEWVEC (struct symtab *,
11687 line_header->file_names.size ());
11689 for (i = 0; i < line_header->file_names.size (); ++i)
11691 file_entry &fe = line_header->file_names[i];
11693 dwarf2_start_subfile (this, fe.name,
11694 fe.include_dir (line_header));
11695 buildsym_compunit *b = get_builder ();
11696 if (b->get_current_subfile ()->symtab == NULL)
11698 /* NOTE: start_subfile will recognize when it's been
11699 passed a file it has already seen. So we can't
11700 assume there's a simple mapping from
11701 cu->line_header->file_names to subfiles, plus
11702 cu->line_header->file_names may contain dups. */
11703 b->get_current_subfile ()->symtab
11704 = allocate_symtab (cust, b->get_current_subfile ()->name);
11707 fe.symtab = b->get_current_subfile ()->symtab;
11708 tu_group->symtabs[i] = fe.symtab;
11713 gdb_assert (m_builder == nullptr);
11714 struct compunit_symtab *cust = tu_group->compunit_symtab;
11715 m_builder.reset (new struct buildsym_compunit
11716 (COMPUNIT_OBJFILE (cust), "",
11717 COMPUNIT_DIRNAME (cust),
11718 compunit_language (cust),
11721 for (i = 0; i < line_header->file_names.size (); ++i)
11723 file_entry &fe = line_header->file_names[i];
11725 fe.symtab = tu_group->symtabs[i];
11729 /* The main symtab is allocated last. Type units don't have DW_AT_name
11730 so they don't have a "real" (so to speak) symtab anyway.
11731 There is later code that will assign the main symtab to all symbols
11732 that don't have one. We need to handle the case of a symbol with a
11733 missing symtab (DW_AT_decl_file) anyway. */
11736 /* Process DW_TAG_type_unit.
11737 For TUs we want to skip the first top level sibling if it's not the
11738 actual type being defined by this TU. In this case the first top
11739 level sibling is there to provide context only. */
11742 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11744 struct die_info *child_die;
11746 prepare_one_comp_unit (cu, die, language_minimal);
11748 /* Initialize (or reinitialize) the machinery for building symtabs.
11749 We do this before processing child DIEs, so that the line header table
11750 is available for DW_AT_decl_file. */
11751 cu->setup_type_unit_groups (die);
11753 if (die->child != NULL)
11755 child_die = die->child;
11756 while (child_die && child_die->tag)
11758 process_die (child_die, cu);
11759 child_die = sibling_die (child_die);
11766 http://gcc.gnu.org/wiki/DebugFission
11767 http://gcc.gnu.org/wiki/DebugFissionDWP
11769 To simplify handling of both DWO files ("object" files with the DWARF info)
11770 and DWP files (a file with the DWOs packaged up into one file), we treat
11771 DWP files as having a collection of virtual DWO files. */
11774 hash_dwo_file (const void *item)
11776 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11779 hash = htab_hash_string (dwo_file->dwo_name);
11780 if (dwo_file->comp_dir != NULL)
11781 hash += htab_hash_string (dwo_file->comp_dir);
11786 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11788 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11789 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11791 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11793 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11794 return lhs->comp_dir == rhs->comp_dir;
11795 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11798 /* Allocate a hash table for DWO files. */
11801 allocate_dwo_file_hash_table (struct objfile *objfile)
11803 return htab_create_alloc_ex (41,
11807 &objfile->objfile_obstack,
11808 hashtab_obstack_allocate,
11809 dummy_obstack_deallocate);
11812 /* Lookup DWO file DWO_NAME. */
11815 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11816 const char *dwo_name,
11817 const char *comp_dir)
11819 struct dwo_file find_entry;
11822 if (dwarf2_per_objfile->dwo_files == NULL)
11823 dwarf2_per_objfile->dwo_files
11824 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11826 memset (&find_entry, 0, sizeof (find_entry));
11827 find_entry.dwo_name = dwo_name;
11828 find_entry.comp_dir = comp_dir;
11829 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11835 hash_dwo_unit (const void *item)
11837 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11839 /* This drops the top 32 bits of the id, but is ok for a hash. */
11840 return dwo_unit->signature;
11844 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11846 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11847 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11849 /* The signature is assumed to be unique within the DWO file.
11850 So while object file CU dwo_id's always have the value zero,
11851 that's OK, assuming each object file DWO file has only one CU,
11852 and that's the rule for now. */
11853 return lhs->signature == rhs->signature;
11856 /* Allocate a hash table for DWO CUs,TUs.
11857 There is one of these tables for each of CUs,TUs for each DWO file. */
11860 allocate_dwo_unit_table (struct objfile *objfile)
11862 /* Start out with a pretty small number.
11863 Generally DWO files contain only one CU and maybe some TUs. */
11864 return htab_create_alloc_ex (3,
11868 &objfile->objfile_obstack,
11869 hashtab_obstack_allocate,
11870 dummy_obstack_deallocate);
11873 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11875 struct create_dwo_cu_data
11877 struct dwo_file *dwo_file;
11878 struct dwo_unit dwo_unit;
11881 /* die_reader_func for create_dwo_cu. */
11884 create_dwo_cu_reader (const struct die_reader_specs *reader,
11885 const gdb_byte *info_ptr,
11886 struct die_info *comp_unit_die,
11890 struct dwarf2_cu *cu = reader->cu;
11891 sect_offset sect_off = cu->per_cu->sect_off;
11892 struct dwarf2_section_info *section = cu->per_cu->section;
11893 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11894 struct dwo_file *dwo_file = data->dwo_file;
11895 struct dwo_unit *dwo_unit = &data->dwo_unit;
11896 struct attribute *attr;
11898 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11901 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11902 " its dwo_id [in module %s]"),
11903 sect_offset_str (sect_off), dwo_file->dwo_name);
11907 dwo_unit->dwo_file = dwo_file;
11908 dwo_unit->signature = DW_UNSND (attr);
11909 dwo_unit->section = section;
11910 dwo_unit->sect_off = sect_off;
11911 dwo_unit->length = cu->per_cu->length;
11913 if (dwarf_read_debug)
11914 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11915 sect_offset_str (sect_off),
11916 hex_string (dwo_unit->signature));
11919 /* Create the dwo_units for the CUs in a DWO_FILE.
11920 Note: This function processes DWO files only, not DWP files. */
11923 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11924 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11927 struct objfile *objfile = dwarf2_per_objfile->objfile;
11928 const gdb_byte *info_ptr, *end_ptr;
11930 dwarf2_read_section (objfile, §ion);
11931 info_ptr = section.buffer;
11933 if (info_ptr == NULL)
11936 if (dwarf_read_debug)
11938 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11939 get_section_name (§ion),
11940 get_section_file_name (§ion));
11943 end_ptr = info_ptr + section.size;
11944 while (info_ptr < end_ptr)
11946 struct dwarf2_per_cu_data per_cu;
11947 struct create_dwo_cu_data create_dwo_cu_data;
11948 struct dwo_unit *dwo_unit;
11950 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11952 memset (&create_dwo_cu_data.dwo_unit, 0,
11953 sizeof (create_dwo_cu_data.dwo_unit));
11954 memset (&per_cu, 0, sizeof (per_cu));
11955 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11956 per_cu.is_debug_types = 0;
11957 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11958 per_cu.section = §ion;
11959 create_dwo_cu_data.dwo_file = &dwo_file;
11961 init_cutu_and_read_dies_no_follow (
11962 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11963 info_ptr += per_cu.length;
11965 // If the unit could not be parsed, skip it.
11966 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11969 if (cus_htab == NULL)
11970 cus_htab = allocate_dwo_unit_table (objfile);
11972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11973 *dwo_unit = create_dwo_cu_data.dwo_unit;
11974 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11975 gdb_assert (slot != NULL);
11978 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11979 sect_offset dup_sect_off = dup_cu->sect_off;
11981 complaint (_("debug cu entry at offset %s is duplicate to"
11982 " the entry at offset %s, signature %s"),
11983 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11984 hex_string (dwo_unit->signature));
11986 *slot = (void *)dwo_unit;
11990 /* DWP file .debug_{cu,tu}_index section format:
11991 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11995 Both index sections have the same format, and serve to map a 64-bit
11996 signature to a set of section numbers. Each section begins with a header,
11997 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11998 indexes, and a pool of 32-bit section numbers. The index sections will be
11999 aligned at 8-byte boundaries in the file.
12001 The index section header consists of:
12003 V, 32 bit version number
12005 N, 32 bit number of compilation units or type units in the index
12006 M, 32 bit number of slots in the hash table
12008 Numbers are recorded using the byte order of the application binary.
12010 The hash table begins at offset 16 in the section, and consists of an array
12011 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12012 order of the application binary). Unused slots in the hash table are 0.
12013 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12015 The parallel table begins immediately after the hash table
12016 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12017 array of 32-bit indexes (using the byte order of the application binary),
12018 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12019 table contains a 32-bit index into the pool of section numbers. For unused
12020 hash table slots, the corresponding entry in the parallel table will be 0.
12022 The pool of section numbers begins immediately following the hash table
12023 (at offset 16 + 12 * M from the beginning of the section). The pool of
12024 section numbers consists of an array of 32-bit words (using the byte order
12025 of the application binary). Each item in the array is indexed starting
12026 from 0. The hash table entry provides the index of the first section
12027 number in the set. Additional section numbers in the set follow, and the
12028 set is terminated by a 0 entry (section number 0 is not used in ELF).
12030 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12031 section must be the first entry in the set, and the .debug_abbrev.dwo must
12032 be the second entry. Other members of the set may follow in any order.
12038 DWP Version 2 combines all the .debug_info, etc. sections into one,
12039 and the entries in the index tables are now offsets into these sections.
12040 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12043 Index Section Contents:
12045 Hash Table of Signatures dwp_hash_table.hash_table
12046 Parallel Table of Indices dwp_hash_table.unit_table
12047 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12048 Table of Section Sizes dwp_hash_table.v2.sizes
12050 The index section header consists of:
12052 V, 32 bit version number
12053 L, 32 bit number of columns in the table of section offsets
12054 N, 32 bit number of compilation units or type units in the index
12055 M, 32 bit number of slots in the hash table
12057 Numbers are recorded using the byte order of the application binary.
12059 The hash table has the same format as version 1.
12060 The parallel table of indices has the same format as version 1,
12061 except that the entries are origin-1 indices into the table of sections
12062 offsets and the table of section sizes.
12064 The table of offsets begins immediately following the parallel table
12065 (at offset 16 + 12 * M from the beginning of the section). The table is
12066 a two-dimensional array of 32-bit words (using the byte order of the
12067 application binary), with L columns and N+1 rows, in row-major order.
12068 Each row in the array is indexed starting from 0. The first row provides
12069 a key to the remaining rows: each column in this row provides an identifier
12070 for a debug section, and the offsets in the same column of subsequent rows
12071 refer to that section. The section identifiers are:
12073 DW_SECT_INFO 1 .debug_info.dwo
12074 DW_SECT_TYPES 2 .debug_types.dwo
12075 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12076 DW_SECT_LINE 4 .debug_line.dwo
12077 DW_SECT_LOC 5 .debug_loc.dwo
12078 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12079 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12080 DW_SECT_MACRO 8 .debug_macro.dwo
12082 The offsets provided by the CU and TU index sections are the base offsets
12083 for the contributions made by each CU or TU to the corresponding section
12084 in the package file. Each CU and TU header contains an abbrev_offset
12085 field, used to find the abbreviations table for that CU or TU within the
12086 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12087 be interpreted as relative to the base offset given in the index section.
12088 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12089 should be interpreted as relative to the base offset for .debug_line.dwo,
12090 and offsets into other debug sections obtained from DWARF attributes should
12091 also be interpreted as relative to the corresponding base offset.
12093 The table of sizes begins immediately following the table of offsets.
12094 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12095 with L columns and N rows, in row-major order. Each row in the array is
12096 indexed starting from 1 (row 0 is shared by the two tables).
12100 Hash table lookup is handled the same in version 1 and 2:
12102 We assume that N and M will not exceed 2^32 - 1.
12103 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12105 Given a 64-bit compilation unit signature or a type signature S, an entry
12106 in the hash table is located as follows:
12108 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12109 the low-order k bits all set to 1.
12111 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12113 3) If the hash table entry at index H matches the signature, use that
12114 entry. If the hash table entry at index H is unused (all zeroes),
12115 terminate the search: the signature is not present in the table.
12117 4) Let H = (H + H') modulo M. Repeat at Step 3.
12119 Because M > N and H' and M are relatively prime, the search is guaranteed
12120 to stop at an unused slot or find the match. */
12122 /* Create a hash table to map DWO IDs to their CU/TU entry in
12123 .debug_{info,types}.dwo in DWP_FILE.
12124 Returns NULL if there isn't one.
12125 Note: This function processes DWP files only, not DWO files. */
12127 static struct dwp_hash_table *
12128 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12129 struct dwp_file *dwp_file, int is_debug_types)
12131 struct objfile *objfile = dwarf2_per_objfile->objfile;
12132 bfd *dbfd = dwp_file->dbfd.get ();
12133 const gdb_byte *index_ptr, *index_end;
12134 struct dwarf2_section_info *index;
12135 uint32_t version, nr_columns, nr_units, nr_slots;
12136 struct dwp_hash_table *htab;
12138 if (is_debug_types)
12139 index = &dwp_file->sections.tu_index;
12141 index = &dwp_file->sections.cu_index;
12143 if (dwarf2_section_empty_p (index))
12145 dwarf2_read_section (objfile, index);
12147 index_ptr = index->buffer;
12148 index_end = index_ptr + index->size;
12150 version = read_4_bytes (dbfd, index_ptr);
12153 nr_columns = read_4_bytes (dbfd, index_ptr);
12157 nr_units = read_4_bytes (dbfd, index_ptr);
12159 nr_slots = read_4_bytes (dbfd, index_ptr);
12162 if (version != 1 && version != 2)
12164 error (_("Dwarf Error: unsupported DWP file version (%s)"
12165 " [in module %s]"),
12166 pulongest (version), dwp_file->name);
12168 if (nr_slots != (nr_slots & -nr_slots))
12170 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12171 " is not power of 2 [in module %s]"),
12172 pulongest (nr_slots), dwp_file->name);
12175 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12176 htab->version = version;
12177 htab->nr_columns = nr_columns;
12178 htab->nr_units = nr_units;
12179 htab->nr_slots = nr_slots;
12180 htab->hash_table = index_ptr;
12181 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12183 /* Exit early if the table is empty. */
12184 if (nr_slots == 0 || nr_units == 0
12185 || (version == 2 && nr_columns == 0))
12187 /* All must be zero. */
12188 if (nr_slots != 0 || nr_units != 0
12189 || (version == 2 && nr_columns != 0))
12191 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12192 " all zero [in modules %s]"),
12200 htab->section_pool.v1.indices =
12201 htab->unit_table + sizeof (uint32_t) * nr_slots;
12202 /* It's harder to decide whether the section is too small in v1.
12203 V1 is deprecated anyway so we punt. */
12207 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12208 int *ids = htab->section_pool.v2.section_ids;
12209 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12210 /* Reverse map for error checking. */
12211 int ids_seen[DW_SECT_MAX + 1];
12214 if (nr_columns < 2)
12216 error (_("Dwarf Error: bad DWP hash table, too few columns"
12217 " in section table [in module %s]"),
12220 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12222 error (_("Dwarf Error: bad DWP hash table, too many columns"
12223 " in section table [in module %s]"),
12226 memset (ids, 255, sizeof_ids);
12227 memset (ids_seen, 255, sizeof (ids_seen));
12228 for (i = 0; i < nr_columns; ++i)
12230 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12232 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12234 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12235 " in section table [in module %s]"),
12236 id, dwp_file->name);
12238 if (ids_seen[id] != -1)
12240 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12241 " id %d in section table [in module %s]"),
12242 id, dwp_file->name);
12247 /* Must have exactly one info or types section. */
12248 if (((ids_seen[DW_SECT_INFO] != -1)
12249 + (ids_seen[DW_SECT_TYPES] != -1))
12252 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12253 " DWO info/types section [in module %s]"),
12256 /* Must have an abbrev section. */
12257 if (ids_seen[DW_SECT_ABBREV] == -1)
12259 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12260 " section [in module %s]"),
12263 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12264 htab->section_pool.v2.sizes =
12265 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12266 * nr_units * nr_columns);
12267 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12268 * nr_units * nr_columns))
12271 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12272 " [in module %s]"),
12280 /* Update SECTIONS with the data from SECTP.
12282 This function is like the other "locate" section routines that are
12283 passed to bfd_map_over_sections, but in this context the sections to
12284 read comes from the DWP V1 hash table, not the full ELF section table.
12286 The result is non-zero for success, or zero if an error was found. */
12289 locate_v1_virtual_dwo_sections (asection *sectp,
12290 struct virtual_v1_dwo_sections *sections)
12292 const struct dwop_section_names *names = &dwop_section_names;
12294 if (section_is_p (sectp->name, &names->abbrev_dwo))
12296 /* There can be only one. */
12297 if (sections->abbrev.s.section != NULL)
12299 sections->abbrev.s.section = sectp;
12300 sections->abbrev.size = bfd_get_section_size (sectp);
12302 else if (section_is_p (sectp->name, &names->info_dwo)
12303 || section_is_p (sectp->name, &names->types_dwo))
12305 /* There can be only one. */
12306 if (sections->info_or_types.s.section != NULL)
12308 sections->info_or_types.s.section = sectp;
12309 sections->info_or_types.size = bfd_get_section_size (sectp);
12311 else if (section_is_p (sectp->name, &names->line_dwo))
12313 /* There can be only one. */
12314 if (sections->line.s.section != NULL)
12316 sections->line.s.section = sectp;
12317 sections->line.size = bfd_get_section_size (sectp);
12319 else if (section_is_p (sectp->name, &names->loc_dwo))
12321 /* There can be only one. */
12322 if (sections->loc.s.section != NULL)
12324 sections->loc.s.section = sectp;
12325 sections->loc.size = bfd_get_section_size (sectp);
12327 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12329 /* There can be only one. */
12330 if (sections->macinfo.s.section != NULL)
12332 sections->macinfo.s.section = sectp;
12333 sections->macinfo.size = bfd_get_section_size (sectp);
12335 else if (section_is_p (sectp->name, &names->macro_dwo))
12337 /* There can be only one. */
12338 if (sections->macro.s.section != NULL)
12340 sections->macro.s.section = sectp;
12341 sections->macro.size = bfd_get_section_size (sectp);
12343 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12345 /* There can be only one. */
12346 if (sections->str_offsets.s.section != NULL)
12348 sections->str_offsets.s.section = sectp;
12349 sections->str_offsets.size = bfd_get_section_size (sectp);
12353 /* No other kind of section is valid. */
12360 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12361 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12362 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12363 This is for DWP version 1 files. */
12365 static struct dwo_unit *
12366 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12367 struct dwp_file *dwp_file,
12368 uint32_t unit_index,
12369 const char *comp_dir,
12370 ULONGEST signature, int is_debug_types)
12372 struct objfile *objfile = dwarf2_per_objfile->objfile;
12373 const struct dwp_hash_table *dwp_htab =
12374 is_debug_types ? dwp_file->tus : dwp_file->cus;
12375 bfd *dbfd = dwp_file->dbfd.get ();
12376 const char *kind = is_debug_types ? "TU" : "CU";
12377 struct dwo_file *dwo_file;
12378 struct dwo_unit *dwo_unit;
12379 struct virtual_v1_dwo_sections sections;
12380 void **dwo_file_slot;
12383 gdb_assert (dwp_file->version == 1);
12385 if (dwarf_read_debug)
12387 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12389 pulongest (unit_index), hex_string (signature),
12393 /* Fetch the sections of this DWO unit.
12394 Put a limit on the number of sections we look for so that bad data
12395 doesn't cause us to loop forever. */
12397 #define MAX_NR_V1_DWO_SECTIONS \
12398 (1 /* .debug_info or .debug_types */ \
12399 + 1 /* .debug_abbrev */ \
12400 + 1 /* .debug_line */ \
12401 + 1 /* .debug_loc */ \
12402 + 1 /* .debug_str_offsets */ \
12403 + 1 /* .debug_macro or .debug_macinfo */ \
12404 + 1 /* trailing zero */)
12406 memset (§ions, 0, sizeof (sections));
12408 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12411 uint32_t section_nr =
12412 read_4_bytes (dbfd,
12413 dwp_htab->section_pool.v1.indices
12414 + (unit_index + i) * sizeof (uint32_t));
12416 if (section_nr == 0)
12418 if (section_nr >= dwp_file->num_sections)
12420 error (_("Dwarf Error: bad DWP hash table, section number too large"
12421 " [in module %s]"),
12425 sectp = dwp_file->elf_sections[section_nr];
12426 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12428 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12429 " [in module %s]"),
12435 || dwarf2_section_empty_p (§ions.info_or_types)
12436 || dwarf2_section_empty_p (§ions.abbrev))
12438 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12439 " [in module %s]"),
12442 if (i == MAX_NR_V1_DWO_SECTIONS)
12444 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12445 " [in module %s]"),
12449 /* It's easier for the rest of the code if we fake a struct dwo_file and
12450 have dwo_unit "live" in that. At least for now.
12452 The DWP file can be made up of a random collection of CUs and TUs.
12453 However, for each CU + set of TUs that came from the same original DWO
12454 file, we can combine them back into a virtual DWO file to save space
12455 (fewer struct dwo_file objects to allocate). Remember that for really
12456 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12458 std::string virtual_dwo_name =
12459 string_printf ("virtual-dwo/%d-%d-%d-%d",
12460 get_section_id (§ions.abbrev),
12461 get_section_id (§ions.line),
12462 get_section_id (§ions.loc),
12463 get_section_id (§ions.str_offsets));
12464 /* Can we use an existing virtual DWO file? */
12465 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12466 virtual_dwo_name.c_str (),
12468 /* Create one if necessary. */
12469 if (*dwo_file_slot == NULL)
12471 if (dwarf_read_debug)
12473 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12474 virtual_dwo_name.c_str ());
12476 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12478 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12479 virtual_dwo_name.c_str (),
12480 virtual_dwo_name.size ());
12481 dwo_file->comp_dir = comp_dir;
12482 dwo_file->sections.abbrev = sections.abbrev;
12483 dwo_file->sections.line = sections.line;
12484 dwo_file->sections.loc = sections.loc;
12485 dwo_file->sections.macinfo = sections.macinfo;
12486 dwo_file->sections.macro = sections.macro;
12487 dwo_file->sections.str_offsets = sections.str_offsets;
12488 /* The "str" section is global to the entire DWP file. */
12489 dwo_file->sections.str = dwp_file->sections.str;
12490 /* The info or types section is assigned below to dwo_unit,
12491 there's no need to record it in dwo_file.
12492 Also, we can't simply record type sections in dwo_file because
12493 we record a pointer into the vector in dwo_unit. As we collect more
12494 types we'll grow the vector and eventually have to reallocate space
12495 for it, invalidating all copies of pointers into the previous
12497 *dwo_file_slot = dwo_file;
12501 if (dwarf_read_debug)
12503 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12504 virtual_dwo_name.c_str ());
12506 dwo_file = (struct dwo_file *) *dwo_file_slot;
12509 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12510 dwo_unit->dwo_file = dwo_file;
12511 dwo_unit->signature = signature;
12512 dwo_unit->section =
12513 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12514 *dwo_unit->section = sections.info_or_types;
12515 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12520 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12521 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12522 piece within that section used by a TU/CU, return a virtual section
12523 of just that piece. */
12525 static struct dwarf2_section_info
12526 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12527 struct dwarf2_section_info *section,
12528 bfd_size_type offset, bfd_size_type size)
12530 struct dwarf2_section_info result;
12533 gdb_assert (section != NULL);
12534 gdb_assert (!section->is_virtual);
12536 memset (&result, 0, sizeof (result));
12537 result.s.containing_section = section;
12538 result.is_virtual = 1;
12543 sectp = get_section_bfd_section (section);
12545 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12546 bounds of the real section. This is a pretty-rare event, so just
12547 flag an error (easier) instead of a warning and trying to cope. */
12549 || offset + size > bfd_get_section_size (sectp))
12551 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12552 " in section %s [in module %s]"),
12553 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12554 objfile_name (dwarf2_per_objfile->objfile));
12557 result.virtual_offset = offset;
12558 result.size = size;
12562 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12563 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12564 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12565 This is for DWP version 2 files. */
12567 static struct dwo_unit *
12568 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12569 struct dwp_file *dwp_file,
12570 uint32_t unit_index,
12571 const char *comp_dir,
12572 ULONGEST signature, int is_debug_types)
12574 struct objfile *objfile = dwarf2_per_objfile->objfile;
12575 const struct dwp_hash_table *dwp_htab =
12576 is_debug_types ? dwp_file->tus : dwp_file->cus;
12577 bfd *dbfd = dwp_file->dbfd.get ();
12578 const char *kind = is_debug_types ? "TU" : "CU";
12579 struct dwo_file *dwo_file;
12580 struct dwo_unit *dwo_unit;
12581 struct virtual_v2_dwo_sections sections;
12582 void **dwo_file_slot;
12585 gdb_assert (dwp_file->version == 2);
12587 if (dwarf_read_debug)
12589 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12591 pulongest (unit_index), hex_string (signature),
12595 /* Fetch the section offsets of this DWO unit. */
12597 memset (§ions, 0, sizeof (sections));
12599 for (i = 0; i < dwp_htab->nr_columns; ++i)
12601 uint32_t offset = read_4_bytes (dbfd,
12602 dwp_htab->section_pool.v2.offsets
12603 + (((unit_index - 1) * dwp_htab->nr_columns
12605 * sizeof (uint32_t)));
12606 uint32_t size = read_4_bytes (dbfd,
12607 dwp_htab->section_pool.v2.sizes
12608 + (((unit_index - 1) * dwp_htab->nr_columns
12610 * sizeof (uint32_t)));
12612 switch (dwp_htab->section_pool.v2.section_ids[i])
12615 case DW_SECT_TYPES:
12616 sections.info_or_types_offset = offset;
12617 sections.info_or_types_size = size;
12619 case DW_SECT_ABBREV:
12620 sections.abbrev_offset = offset;
12621 sections.abbrev_size = size;
12624 sections.line_offset = offset;
12625 sections.line_size = size;
12628 sections.loc_offset = offset;
12629 sections.loc_size = size;
12631 case DW_SECT_STR_OFFSETS:
12632 sections.str_offsets_offset = offset;
12633 sections.str_offsets_size = size;
12635 case DW_SECT_MACINFO:
12636 sections.macinfo_offset = offset;
12637 sections.macinfo_size = size;
12639 case DW_SECT_MACRO:
12640 sections.macro_offset = offset;
12641 sections.macro_size = size;
12646 /* It's easier for the rest of the code if we fake a struct dwo_file and
12647 have dwo_unit "live" in that. At least for now.
12649 The DWP file can be made up of a random collection of CUs and TUs.
12650 However, for each CU + set of TUs that came from the same original DWO
12651 file, we can combine them back into a virtual DWO file to save space
12652 (fewer struct dwo_file objects to allocate). Remember that for really
12653 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12655 std::string virtual_dwo_name =
12656 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12657 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12658 (long) (sections.line_size ? sections.line_offset : 0),
12659 (long) (sections.loc_size ? sections.loc_offset : 0),
12660 (long) (sections.str_offsets_size
12661 ? sections.str_offsets_offset : 0));
12662 /* Can we use an existing virtual DWO file? */
12663 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12664 virtual_dwo_name.c_str (),
12666 /* Create one if necessary. */
12667 if (*dwo_file_slot == NULL)
12669 if (dwarf_read_debug)
12671 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12672 virtual_dwo_name.c_str ());
12674 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12676 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12677 virtual_dwo_name.c_str (),
12678 virtual_dwo_name.size ());
12679 dwo_file->comp_dir = comp_dir;
12680 dwo_file->sections.abbrev =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12682 sections.abbrev_offset, sections.abbrev_size);
12683 dwo_file->sections.line =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12685 sections.line_offset, sections.line_size);
12686 dwo_file->sections.loc =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12688 sections.loc_offset, sections.loc_size);
12689 dwo_file->sections.macinfo =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12691 sections.macinfo_offset, sections.macinfo_size);
12692 dwo_file->sections.macro =
12693 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12694 sections.macro_offset, sections.macro_size);
12695 dwo_file->sections.str_offsets =
12696 create_dwp_v2_section (dwarf2_per_objfile,
12697 &dwp_file->sections.str_offsets,
12698 sections.str_offsets_offset,
12699 sections.str_offsets_size);
12700 /* The "str" section is global to the entire DWP file. */
12701 dwo_file->sections.str = dwp_file->sections.str;
12702 /* The info or types section is assigned below to dwo_unit,
12703 there's no need to record it in dwo_file.
12704 Also, we can't simply record type sections in dwo_file because
12705 we record a pointer into the vector in dwo_unit. As we collect more
12706 types we'll grow the vector and eventually have to reallocate space
12707 for it, invalidating all copies of pointers into the previous
12709 *dwo_file_slot = dwo_file;
12713 if (dwarf_read_debug)
12715 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12716 virtual_dwo_name.c_str ());
12718 dwo_file = (struct dwo_file *) *dwo_file_slot;
12721 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12722 dwo_unit->dwo_file = dwo_file;
12723 dwo_unit->signature = signature;
12724 dwo_unit->section =
12725 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12726 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12728 ? &dwp_file->sections.types
12729 : &dwp_file->sections.info,
12730 sections.info_or_types_offset,
12731 sections.info_or_types_size);
12732 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12737 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12738 Returns NULL if the signature isn't found. */
12740 static struct dwo_unit *
12741 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12742 struct dwp_file *dwp_file, const char *comp_dir,
12743 ULONGEST signature, int is_debug_types)
12745 const struct dwp_hash_table *dwp_htab =
12746 is_debug_types ? dwp_file->tus : dwp_file->cus;
12747 bfd *dbfd = dwp_file->dbfd.get ();
12748 uint32_t mask = dwp_htab->nr_slots - 1;
12749 uint32_t hash = signature & mask;
12750 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12753 struct dwo_unit find_dwo_cu;
12755 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12756 find_dwo_cu.signature = signature;
12757 slot = htab_find_slot (is_debug_types
12758 ? dwp_file->loaded_tus
12759 : dwp_file->loaded_cus,
12760 &find_dwo_cu, INSERT);
12763 return (struct dwo_unit *) *slot;
12765 /* Use a for loop so that we don't loop forever on bad debug info. */
12766 for (i = 0; i < dwp_htab->nr_slots; ++i)
12768 ULONGEST signature_in_table;
12770 signature_in_table =
12771 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12772 if (signature_in_table == signature)
12774 uint32_t unit_index =
12775 read_4_bytes (dbfd,
12776 dwp_htab->unit_table + hash * sizeof (uint32_t));
12778 if (dwp_file->version == 1)
12780 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12781 dwp_file, unit_index,
12782 comp_dir, signature,
12787 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12788 dwp_file, unit_index,
12789 comp_dir, signature,
12792 return (struct dwo_unit *) *slot;
12794 if (signature_in_table == 0)
12796 hash = (hash + hash2) & mask;
12799 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12800 " [in module %s]"),
12804 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12805 Open the file specified by FILE_NAME and hand it off to BFD for
12806 preliminary analysis. Return a newly initialized bfd *, which
12807 includes a canonicalized copy of FILE_NAME.
12808 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12809 SEARCH_CWD is true if the current directory is to be searched.
12810 It will be searched before debug-file-directory.
12811 If successful, the file is added to the bfd include table of the
12812 objfile's bfd (see gdb_bfd_record_inclusion).
12813 If unable to find/open the file, return NULL.
12814 NOTE: This function is derived from symfile_bfd_open. */
12816 static gdb_bfd_ref_ptr
12817 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12818 const char *file_name, int is_dwp, int search_cwd)
12821 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12822 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12823 to debug_file_directory. */
12824 const char *search_path;
12825 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12827 gdb::unique_xmalloc_ptr<char> search_path_holder;
12830 if (*debug_file_directory != '\0')
12832 search_path_holder.reset (concat (".", dirname_separator_string,
12833 debug_file_directory,
12835 search_path = search_path_holder.get ();
12841 search_path = debug_file_directory;
12843 openp_flags flags = OPF_RETURN_REALPATH;
12845 flags |= OPF_SEARCH_IN_PATH;
12847 gdb::unique_xmalloc_ptr<char> absolute_name;
12848 desc = openp (search_path, flags, file_name,
12849 O_RDONLY | O_BINARY, &absolute_name);
12853 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12855 if (sym_bfd == NULL)
12857 bfd_set_cacheable (sym_bfd.get (), 1);
12859 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12862 /* Success. Record the bfd as having been included by the objfile's bfd.
12863 This is important because things like demangled_names_hash lives in the
12864 objfile's per_bfd space and may have references to things like symbol
12865 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12866 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12871 /* Try to open DWO file FILE_NAME.
12872 COMP_DIR is the DW_AT_comp_dir attribute.
12873 The result is the bfd handle of the file.
12874 If there is a problem finding or opening the file, return NULL.
12875 Upon success, the canonicalized path of the file is stored in the bfd,
12876 same as symfile_bfd_open. */
12878 static gdb_bfd_ref_ptr
12879 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12880 const char *file_name, const char *comp_dir)
12882 if (IS_ABSOLUTE_PATH (file_name))
12883 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12884 0 /*is_dwp*/, 0 /*search_cwd*/);
12886 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12888 if (comp_dir != NULL)
12890 char *path_to_try = concat (comp_dir, SLASH_STRING,
12891 file_name, (char *) NULL);
12893 /* NOTE: If comp_dir is a relative path, this will also try the
12894 search path, which seems useful. */
12895 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12898 1 /*search_cwd*/));
12899 xfree (path_to_try);
12904 /* That didn't work, try debug-file-directory, which, despite its name,
12905 is a list of paths. */
12907 if (*debug_file_directory == '\0')
12910 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12911 0 /*is_dwp*/, 1 /*search_cwd*/);
12914 /* This function is mapped across the sections and remembers the offset and
12915 size of each of the DWO debugging sections we are interested in. */
12918 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12920 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12921 const struct dwop_section_names *names = &dwop_section_names;
12923 if (section_is_p (sectp->name, &names->abbrev_dwo))
12925 dwo_sections->abbrev.s.section = sectp;
12926 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12928 else if (section_is_p (sectp->name, &names->info_dwo))
12930 dwo_sections->info.s.section = sectp;
12931 dwo_sections->info.size = bfd_get_section_size (sectp);
12933 else if (section_is_p (sectp->name, &names->line_dwo))
12935 dwo_sections->line.s.section = sectp;
12936 dwo_sections->line.size = bfd_get_section_size (sectp);
12938 else if (section_is_p (sectp->name, &names->loc_dwo))
12940 dwo_sections->loc.s.section = sectp;
12941 dwo_sections->loc.size = bfd_get_section_size (sectp);
12943 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12945 dwo_sections->macinfo.s.section = sectp;
12946 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12948 else if (section_is_p (sectp->name, &names->macro_dwo))
12950 dwo_sections->macro.s.section = sectp;
12951 dwo_sections->macro.size = bfd_get_section_size (sectp);
12953 else if (section_is_p (sectp->name, &names->str_dwo))
12955 dwo_sections->str.s.section = sectp;
12956 dwo_sections->str.size = bfd_get_section_size (sectp);
12958 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12960 dwo_sections->str_offsets.s.section = sectp;
12961 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12963 else if (section_is_p (sectp->name, &names->types_dwo))
12965 struct dwarf2_section_info type_section;
12967 memset (&type_section, 0, sizeof (type_section));
12968 type_section.s.section = sectp;
12969 type_section.size = bfd_get_section_size (sectp);
12970 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12975 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12976 by PER_CU. This is for the non-DWP case.
12977 The result is NULL if DWO_NAME can't be found. */
12979 static struct dwo_file *
12980 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12981 const char *dwo_name, const char *comp_dir)
12983 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12984 struct objfile *objfile = dwarf2_per_objfile->objfile;
12986 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12989 if (dwarf_read_debug)
12990 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12994 /* We use a unique pointer here, despite the obstack allocation,
12995 because a dwo_file needs some cleanup if it is abandoned. */
12996 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12998 dwo_file->dwo_name = dwo_name;
12999 dwo_file->comp_dir = comp_dir;
13000 dwo_file->dbfd = dbfd.release ();
13002 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13003 &dwo_file->sections);
13005 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13008 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13009 dwo_file->sections.types, dwo_file->tus);
13011 if (dwarf_read_debug)
13012 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13014 return dwo_file.release ();
13017 /* This function is mapped across the sections and remembers the offset and
13018 size of each of the DWP debugging sections common to version 1 and 2 that
13019 we are interested in. */
13022 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13023 void *dwp_file_ptr)
13025 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13026 const struct dwop_section_names *names = &dwop_section_names;
13027 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13029 /* Record the ELF section number for later lookup: this is what the
13030 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13031 gdb_assert (elf_section_nr < dwp_file->num_sections);
13032 dwp_file->elf_sections[elf_section_nr] = sectp;
13034 /* Look for specific sections that we need. */
13035 if (section_is_p (sectp->name, &names->str_dwo))
13037 dwp_file->sections.str.s.section = sectp;
13038 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13040 else if (section_is_p (sectp->name, &names->cu_index))
13042 dwp_file->sections.cu_index.s.section = sectp;
13043 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13045 else if (section_is_p (sectp->name, &names->tu_index))
13047 dwp_file->sections.tu_index.s.section = sectp;
13048 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13052 /* This function is mapped across the sections and remembers the offset and
13053 size of each of the DWP version 2 debugging sections that we are interested
13054 in. This is split into a separate function because we don't know if we
13055 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13058 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13060 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13061 const struct dwop_section_names *names = &dwop_section_names;
13062 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13064 /* Record the ELF section number for later lookup: this is what the
13065 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13066 gdb_assert (elf_section_nr < dwp_file->num_sections);
13067 dwp_file->elf_sections[elf_section_nr] = sectp;
13069 /* Look for specific sections that we need. */
13070 if (section_is_p (sectp->name, &names->abbrev_dwo))
13072 dwp_file->sections.abbrev.s.section = sectp;
13073 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13075 else if (section_is_p (sectp->name, &names->info_dwo))
13077 dwp_file->sections.info.s.section = sectp;
13078 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13080 else if (section_is_p (sectp->name, &names->line_dwo))
13082 dwp_file->sections.line.s.section = sectp;
13083 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13085 else if (section_is_p (sectp->name, &names->loc_dwo))
13087 dwp_file->sections.loc.s.section = sectp;
13088 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13090 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13092 dwp_file->sections.macinfo.s.section = sectp;
13093 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13095 else if (section_is_p (sectp->name, &names->macro_dwo))
13097 dwp_file->sections.macro.s.section = sectp;
13098 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13100 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13102 dwp_file->sections.str_offsets.s.section = sectp;
13103 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13105 else if (section_is_p (sectp->name, &names->types_dwo))
13107 dwp_file->sections.types.s.section = sectp;
13108 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13112 /* Hash function for dwp_file loaded CUs/TUs. */
13115 hash_dwp_loaded_cutus (const void *item)
13117 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13119 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13120 return dwo_unit->signature;
13123 /* Equality function for dwp_file loaded CUs/TUs. */
13126 eq_dwp_loaded_cutus (const void *a, const void *b)
13128 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13129 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13131 return dua->signature == dub->signature;
13134 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13137 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13139 return htab_create_alloc_ex (3,
13140 hash_dwp_loaded_cutus,
13141 eq_dwp_loaded_cutus,
13143 &objfile->objfile_obstack,
13144 hashtab_obstack_allocate,
13145 dummy_obstack_deallocate);
13148 /* Try to open DWP file FILE_NAME.
13149 The result is the bfd handle of the file.
13150 If there is a problem finding or opening the file, return NULL.
13151 Upon success, the canonicalized path of the file is stored in the bfd,
13152 same as symfile_bfd_open. */
13154 static gdb_bfd_ref_ptr
13155 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13156 const char *file_name)
13158 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13160 1 /*search_cwd*/));
13164 /* Work around upstream bug 15652.
13165 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13166 [Whether that's a "bug" is debatable, but it is getting in our way.]
13167 We have no real idea where the dwp file is, because gdb's realpath-ing
13168 of the executable's path may have discarded the needed info.
13169 [IWBN if the dwp file name was recorded in the executable, akin to
13170 .gnu_debuglink, but that doesn't exist yet.]
13171 Strip the directory from FILE_NAME and search again. */
13172 if (*debug_file_directory != '\0')
13174 /* Don't implicitly search the current directory here.
13175 If the user wants to search "." to handle this case,
13176 it must be added to debug-file-directory. */
13177 return try_open_dwop_file (dwarf2_per_objfile,
13178 lbasename (file_name), 1 /*is_dwp*/,
13185 /* Initialize the use of the DWP file for the current objfile.
13186 By convention the name of the DWP file is ${objfile}.dwp.
13187 The result is NULL if it can't be found. */
13189 static std::unique_ptr<struct dwp_file>
13190 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13192 struct objfile *objfile = dwarf2_per_objfile->objfile;
13194 /* Try to find first .dwp for the binary file before any symbolic links
13197 /* If the objfile is a debug file, find the name of the real binary
13198 file and get the name of dwp file from there. */
13199 std::string dwp_name;
13200 if (objfile->separate_debug_objfile_backlink != NULL)
13202 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13203 const char *backlink_basename = lbasename (backlink->original_name);
13205 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13208 dwp_name = objfile->original_name;
13210 dwp_name += ".dwp";
13212 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13214 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13216 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13217 dwp_name = objfile_name (objfile);
13218 dwp_name += ".dwp";
13219 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13224 if (dwarf_read_debug)
13225 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13226 return std::unique_ptr<dwp_file> ();
13229 const char *name = bfd_get_filename (dbfd.get ());
13230 std::unique_ptr<struct dwp_file> dwp_file
13231 (new struct dwp_file (name, std::move (dbfd)));
13233 /* +1: section 0 is unused */
13234 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13235 dwp_file->elf_sections =
13236 OBSTACK_CALLOC (&objfile->objfile_obstack,
13237 dwp_file->num_sections, asection *);
13239 bfd_map_over_sections (dwp_file->dbfd.get (),
13240 dwarf2_locate_common_dwp_sections,
13243 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13246 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13249 /* The DWP file version is stored in the hash table. Oh well. */
13250 if (dwp_file->cus && dwp_file->tus
13251 && dwp_file->cus->version != dwp_file->tus->version)
13253 /* Technically speaking, we should try to limp along, but this is
13254 pretty bizarre. We use pulongest here because that's the established
13255 portability solution (e.g, we cannot use %u for uint32_t). */
13256 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13257 " TU version %s [in DWP file %s]"),
13258 pulongest (dwp_file->cus->version),
13259 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13263 dwp_file->version = dwp_file->cus->version;
13264 else if (dwp_file->tus)
13265 dwp_file->version = dwp_file->tus->version;
13267 dwp_file->version = 2;
13269 if (dwp_file->version == 2)
13270 bfd_map_over_sections (dwp_file->dbfd.get (),
13271 dwarf2_locate_v2_dwp_sections,
13274 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13275 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13277 if (dwarf_read_debug)
13279 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13280 fprintf_unfiltered (gdb_stdlog,
13281 " %s CUs, %s TUs\n",
13282 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13283 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13289 /* Wrapper around open_and_init_dwp_file, only open it once. */
13291 static struct dwp_file *
13292 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13294 if (! dwarf2_per_objfile->dwp_checked)
13296 dwarf2_per_objfile->dwp_file
13297 = open_and_init_dwp_file (dwarf2_per_objfile);
13298 dwarf2_per_objfile->dwp_checked = 1;
13300 return dwarf2_per_objfile->dwp_file.get ();
13303 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13304 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13305 or in the DWP file for the objfile, referenced by THIS_UNIT.
13306 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13307 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13309 This is called, for example, when wanting to read a variable with a
13310 complex location. Therefore we don't want to do file i/o for every call.
13311 Therefore we don't want to look for a DWO file on every call.
13312 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13313 then we check if we've already seen DWO_NAME, and only THEN do we check
13316 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13317 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13319 static struct dwo_unit *
13320 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature, int is_debug_types)
13324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13325 struct objfile *objfile = dwarf2_per_objfile->objfile;
13326 const char *kind = is_debug_types ? "TU" : "CU";
13327 void **dwo_file_slot;
13328 struct dwo_file *dwo_file;
13329 struct dwp_file *dwp_file;
13331 /* First see if there's a DWP file.
13332 If we have a DWP file but didn't find the DWO inside it, don't
13333 look for the original DWO file. It makes gdb behave differently
13334 depending on whether one is debugging in the build tree. */
13336 dwp_file = get_dwp_file (dwarf2_per_objfile);
13337 if (dwp_file != NULL)
13339 const struct dwp_hash_table *dwp_htab =
13340 is_debug_types ? dwp_file->tus : dwp_file->cus;
13342 if (dwp_htab != NULL)
13344 struct dwo_unit *dwo_cutu =
13345 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13346 signature, is_debug_types);
13348 if (dwo_cutu != NULL)
13350 if (dwarf_read_debug)
13352 fprintf_unfiltered (gdb_stdlog,
13353 "Virtual DWO %s %s found: @%s\n",
13354 kind, hex_string (signature),
13355 host_address_to_string (dwo_cutu));
13363 /* No DWP file, look for the DWO file. */
13365 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13366 dwo_name, comp_dir);
13367 if (*dwo_file_slot == NULL)
13369 /* Read in the file and build a table of the CUs/TUs it contains. */
13370 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13372 /* NOTE: This will be NULL if unable to open the file. */
13373 dwo_file = (struct dwo_file *) *dwo_file_slot;
13375 if (dwo_file != NULL)
13377 struct dwo_unit *dwo_cutu = NULL;
13379 if (is_debug_types && dwo_file->tus)
13381 struct dwo_unit find_dwo_cutu;
13383 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13384 find_dwo_cutu.signature = signature;
13386 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13388 else if (!is_debug_types && dwo_file->cus)
13390 struct dwo_unit find_dwo_cutu;
13392 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13393 find_dwo_cutu.signature = signature;
13394 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13398 if (dwo_cutu != NULL)
13400 if (dwarf_read_debug)
13402 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13403 kind, dwo_name, hex_string (signature),
13404 host_address_to_string (dwo_cutu));
13411 /* We didn't find it. This could mean a dwo_id mismatch, or
13412 someone deleted the DWO/DWP file, or the search path isn't set up
13413 correctly to find the file. */
13415 if (dwarf_read_debug)
13417 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13418 kind, dwo_name, hex_string (signature));
13421 /* This is a warning and not a complaint because it can be caused by
13422 pilot error (e.g., user accidentally deleting the DWO). */
13424 /* Print the name of the DWP file if we looked there, helps the user
13425 better diagnose the problem. */
13426 std::string dwp_text;
13428 if (dwp_file != NULL)
13429 dwp_text = string_printf (" [in DWP file %s]",
13430 lbasename (dwp_file->name));
13432 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13433 " [in module %s]"),
13434 kind, dwo_name, hex_string (signature),
13436 this_unit->is_debug_types ? "TU" : "CU",
13437 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13442 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13443 See lookup_dwo_cutu_unit for details. */
13445 static struct dwo_unit *
13446 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13447 const char *dwo_name, const char *comp_dir,
13448 ULONGEST signature)
13450 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13453 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13454 See lookup_dwo_cutu_unit for details. */
13456 static struct dwo_unit *
13457 lookup_dwo_type_unit (struct signatured_type *this_tu,
13458 const char *dwo_name, const char *comp_dir)
13460 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13463 /* Traversal function for queue_and_load_all_dwo_tus. */
13466 queue_and_load_dwo_tu (void **slot, void *info)
13468 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13469 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13470 ULONGEST signature = dwo_unit->signature;
13471 struct signatured_type *sig_type =
13472 lookup_dwo_signatured_type (per_cu->cu, signature);
13474 if (sig_type != NULL)
13476 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13478 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13479 a real dependency of PER_CU on SIG_TYPE. That is detected later
13480 while processing PER_CU. */
13481 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13482 load_full_type_unit (sig_cu);
13483 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13489 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13490 The DWO may have the only definition of the type, though it may not be
13491 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13492 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13495 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13497 struct dwo_unit *dwo_unit;
13498 struct dwo_file *dwo_file;
13500 gdb_assert (!per_cu->is_debug_types);
13501 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13502 gdb_assert (per_cu->cu != NULL);
13504 dwo_unit = per_cu->cu->dwo_unit;
13505 gdb_assert (dwo_unit != NULL);
13507 dwo_file = dwo_unit->dwo_file;
13508 if (dwo_file->tus != NULL)
13509 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13512 /* Free all resources associated with DWO_FILE.
13513 Close the DWO file and munmap the sections. */
13516 free_dwo_file (struct dwo_file *dwo_file)
13518 /* Note: dbfd is NULL for virtual DWO files. */
13519 gdb_bfd_unref (dwo_file->dbfd);
13521 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13524 /* Traversal function for free_dwo_files. */
13527 free_dwo_file_from_slot (void **slot, void *info)
13529 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13531 free_dwo_file (dwo_file);
13536 /* Free all resources associated with DWO_FILES. */
13539 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13541 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13544 /* Read in various DIEs. */
13546 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13547 Inherit only the children of the DW_AT_abstract_origin DIE not being
13548 already referenced by DW_AT_abstract_origin from the children of the
13552 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13554 struct die_info *child_die;
13555 sect_offset *offsetp;
13556 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13557 struct die_info *origin_die;
13558 /* Iterator of the ORIGIN_DIE children. */
13559 struct die_info *origin_child_die;
13560 struct attribute *attr;
13561 struct dwarf2_cu *origin_cu;
13562 struct pending **origin_previous_list_in_scope;
13564 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13568 /* Note that following die references may follow to a die in a
13572 origin_die = follow_die_ref (die, attr, &origin_cu);
13574 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13576 origin_previous_list_in_scope = origin_cu->list_in_scope;
13577 origin_cu->list_in_scope = cu->list_in_scope;
13579 if (die->tag != origin_die->tag
13580 && !(die->tag == DW_TAG_inlined_subroutine
13581 && origin_die->tag == DW_TAG_subprogram))
13582 complaint (_("DIE %s and its abstract origin %s have different tags"),
13583 sect_offset_str (die->sect_off),
13584 sect_offset_str (origin_die->sect_off));
13586 std::vector<sect_offset> offsets;
13588 for (child_die = die->child;
13589 child_die && child_die->tag;
13590 child_die = sibling_die (child_die))
13592 struct die_info *child_origin_die;
13593 struct dwarf2_cu *child_origin_cu;
13595 /* We are trying to process concrete instance entries:
13596 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13597 it's not relevant to our analysis here. i.e. detecting DIEs that are
13598 present in the abstract instance but not referenced in the concrete
13600 if (child_die->tag == DW_TAG_call_site
13601 || child_die->tag == DW_TAG_GNU_call_site)
13604 /* For each CHILD_DIE, find the corresponding child of
13605 ORIGIN_DIE. If there is more than one layer of
13606 DW_AT_abstract_origin, follow them all; there shouldn't be,
13607 but GCC versions at least through 4.4 generate this (GCC PR
13609 child_origin_die = child_die;
13610 child_origin_cu = cu;
13613 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13617 child_origin_die = follow_die_ref (child_origin_die, attr,
13621 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13622 counterpart may exist. */
13623 if (child_origin_die != child_die)
13625 if (child_die->tag != child_origin_die->tag
13626 && !(child_die->tag == DW_TAG_inlined_subroutine
13627 && child_origin_die->tag == DW_TAG_subprogram))
13628 complaint (_("Child DIE %s and its abstract origin %s have "
13630 sect_offset_str (child_die->sect_off),
13631 sect_offset_str (child_origin_die->sect_off));
13632 if (child_origin_die->parent != origin_die)
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different parents"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13638 offsets.push_back (child_origin_die->sect_off);
13641 std::sort (offsets.begin (), offsets.end ());
13642 sect_offset *offsets_end = offsets.data () + offsets.size ();
13643 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13644 if (offsetp[-1] == *offsetp)
13645 complaint (_("Multiple children of DIE %s refer "
13646 "to DIE %s as their abstract origin"),
13647 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13649 offsetp = offsets.data ();
13650 origin_child_die = origin_die->child;
13651 while (origin_child_die && origin_child_die->tag)
13653 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13654 while (offsetp < offsets_end
13655 && *offsetp < origin_child_die->sect_off)
13657 if (offsetp >= offsets_end
13658 || *offsetp > origin_child_die->sect_off)
13660 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13661 Check whether we're already processing ORIGIN_CHILD_DIE.
13662 This can happen with mutually referenced abstract_origins.
13664 if (!origin_child_die->in_process)
13665 process_die (origin_child_die, origin_cu);
13667 origin_child_die = sibling_die (origin_child_die);
13669 origin_cu->list_in_scope = origin_previous_list_in_scope;
13673 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13676 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13677 struct context_stack *newobj;
13680 struct die_info *child_die;
13681 struct attribute *attr, *call_line, *call_file;
13683 CORE_ADDR baseaddr;
13684 struct block *block;
13685 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13686 std::vector<struct symbol *> template_args;
13687 struct template_symbol *templ_func = NULL;
13691 /* If we do not have call site information, we can't show the
13692 caller of this inlined function. That's too confusing, so
13693 only use the scope for local variables. */
13694 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13695 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13696 if (call_line == NULL || call_file == NULL)
13698 read_lexical_block_scope (die, cu);
13703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13705 name = dwarf2_name (die, cu);
13707 /* Ignore functions with missing or empty names. These are actually
13708 illegal according to the DWARF standard. */
13711 complaint (_("missing name for subprogram DIE at %s"),
13712 sect_offset_str (die->sect_off));
13716 /* Ignore functions with missing or invalid low and high pc attributes. */
13717 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13718 <= PC_BOUNDS_INVALID)
13720 attr = dwarf2_attr (die, DW_AT_external, cu);
13721 if (!attr || !DW_UNSND (attr))
13722 complaint (_("cannot get low and high bounds "
13723 "for subprogram DIE at %s"),
13724 sect_offset_str (die->sect_off));
13728 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13729 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13731 /* If we have any template arguments, then we must allocate a
13732 different sort of symbol. */
13733 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13735 if (child_die->tag == DW_TAG_template_type_param
13736 || child_die->tag == DW_TAG_template_value_param)
13738 templ_func = allocate_template_symbol (objfile);
13739 templ_func->subclass = SYMBOL_TEMPLATE;
13744 newobj = cu->get_builder ()->push_context (0, lowpc);
13745 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13746 (struct symbol *) templ_func);
13748 /* If there is a location expression for DW_AT_frame_base, record
13750 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13752 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13754 /* If there is a location for the static link, record it. */
13755 newobj->static_link = NULL;
13756 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13759 newobj->static_link
13760 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13761 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13764 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13766 if (die->child != NULL)
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13774 struct symbol *arg = new_symbol (child_die, NULL, cu);
13777 template_args.push_back (arg);
13780 process_die (child_die, cu);
13781 child_die = sibling_die (child_die);
13785 inherit_abstract_dies (die, cu);
13787 /* If we have a DW_AT_specification, we might need to import using
13788 directives from the context of the specification DIE. See the
13789 comment in determine_prefix. */
13790 if (cu->language == language_cplus
13791 && dwarf2_attr (die, DW_AT_specification, cu))
13793 struct dwarf2_cu *spec_cu = cu;
13794 struct die_info *spec_die = die_specification (die, &spec_cu);
13798 child_die = spec_die->child;
13799 while (child_die && child_die->tag)
13801 if (child_die->tag == DW_TAG_imported_module)
13802 process_die (child_die, spec_cu);
13803 child_die = sibling_die (child_die);
13806 /* In some cases, GCC generates specification DIEs that
13807 themselves contain DW_AT_specification attributes. */
13808 spec_die = die_specification (spec_die, &spec_cu);
13812 struct context_stack cstk = cu->get_builder ()->pop_context ();
13813 /* Make a block for the local symbols within. */
13814 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13815 cstk.static_link, lowpc, highpc);
13817 /* For C++, set the block's scope. */
13818 if ((cu->language == language_cplus
13819 || cu->language == language_fortran
13820 || cu->language == language_d
13821 || cu->language == language_rust)
13822 && cu->processing_has_namespace_info)
13823 block_set_scope (block, determine_prefix (die, cu),
13824 &objfile->objfile_obstack);
13826 /* If we have address ranges, record them. */
13827 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13829 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13831 /* Attach template arguments to function. */
13832 if (!template_args.empty ())
13834 gdb_assert (templ_func != NULL);
13836 templ_func->n_template_arguments = template_args.size ();
13837 templ_func->template_arguments
13838 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13839 templ_func->n_template_arguments);
13840 memcpy (templ_func->template_arguments,
13841 template_args.data (),
13842 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13844 /* Make sure that the symtab is set on the new symbols. Even
13845 though they don't appear in this symtab directly, other parts
13846 of gdb assume that symbols do, and this is reasonably
13848 for (symbol *sym : template_args)
13849 symbol_set_symtab (sym, symbol_symtab (templ_func));
13852 /* In C++, we can have functions nested inside functions (e.g., when
13853 a function declares a class that has methods). This means that
13854 when we finish processing a function scope, we may need to go
13855 back to building a containing block's symbol lists. */
13856 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13857 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13859 /* If we've finished processing a top-level function, subsequent
13860 symbols go in the file symbol list. */
13861 if (cu->get_builder ()->outermost_context_p ())
13862 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13865 /* Process all the DIES contained within a lexical block scope. Start
13866 a new scope, process the dies, and then close the scope. */
13869 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13873 CORE_ADDR lowpc, highpc;
13874 struct die_info *child_die;
13875 CORE_ADDR baseaddr;
13877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13879 /* Ignore blocks with missing or invalid low and high pc attributes. */
13880 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13881 as multiple lexical blocks? Handling children in a sane way would
13882 be nasty. Might be easier to properly extend generic blocks to
13883 describe ranges. */
13884 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13886 case PC_BOUNDS_NOT_PRESENT:
13887 /* DW_TAG_lexical_block has no attributes, process its children as if
13888 there was no wrapping by that DW_TAG_lexical_block.
13889 GCC does no longer produces such DWARF since GCC r224161. */
13890 for (child_die = die->child;
13891 child_die != NULL && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 process_die (child_die, cu);
13895 case PC_BOUNDS_INVALID:
13898 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13899 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13901 cu->get_builder ()->push_context (0, lowpc);
13902 if (die->child != NULL)
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13907 process_die (child_die, cu);
13908 child_die = sibling_die (child_die);
13911 inherit_abstract_dies (die, cu);
13912 struct context_stack cstk = cu->get_builder ()->pop_context ();
13914 if (*cu->get_builder ()->get_local_symbols () != NULL
13915 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13917 struct block *block
13918 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13919 cstk.start_addr, highpc);
13921 /* Note that recording ranges after traversing children, as we
13922 do here, means that recording a parent's ranges entails
13923 walking across all its children's ranges as they appear in
13924 the address map, which is quadratic behavior.
13926 It would be nicer to record the parent's ranges before
13927 traversing its children, simply overriding whatever you find
13928 there. But since we don't even decide whether to create a
13929 block until after we've traversed its children, that's hard
13931 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13933 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13934 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13937 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13940 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13944 CORE_ADDR pc, baseaddr;
13945 struct attribute *attr;
13946 struct call_site *call_site, call_site_local;
13949 struct die_info *child_die;
13951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13953 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13956 /* This was a pre-DWARF-5 GNU extension alias
13957 for DW_AT_call_return_pc. */
13958 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13962 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 sect_offset_str (die->sect_off), objfile_name (objfile));
13967 pc = attr_value_as_address (attr) + baseaddr;
13968 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13970 if (cu->call_site_htab == NULL)
13971 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13972 NULL, &objfile->objfile_obstack,
13973 hashtab_obstack_allocate, NULL);
13974 call_site_local.pc = pc;
13975 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13978 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13979 "DIE %s [in module %s]"),
13980 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13981 objfile_name (objfile));
13985 /* Count parameters at the caller. */
13988 for (child_die = die->child; child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13991 if (child_die->tag != DW_TAG_call_site_parameter
13992 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13994 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13995 "DW_TAG_call_site child DIE %s [in module %s]"),
13996 child_die->tag, sect_offset_str (child_die->sect_off),
13997 objfile_name (objfile));
14005 = ((struct call_site *)
14006 obstack_alloc (&objfile->objfile_obstack,
14007 sizeof (*call_site)
14008 + (sizeof (*call_site->parameter) * (nparams - 1))));
14010 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14011 call_site->pc = pc;
14013 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14014 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14016 struct die_info *func_die;
14018 /* Skip also over DW_TAG_inlined_subroutine. */
14019 for (func_die = die->parent;
14020 func_die && func_die->tag != DW_TAG_subprogram
14021 && func_die->tag != DW_TAG_subroutine_type;
14022 func_die = func_die->parent);
14024 /* DW_AT_call_all_calls is a superset
14025 of DW_AT_call_all_tail_calls. */
14027 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14030 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14032 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14033 not complete. But keep CALL_SITE for look ups via call_site_htab,
14034 both the initial caller containing the real return address PC and
14035 the final callee containing the current PC of a chain of tail
14036 calls do not need to have the tail call list complete. But any
14037 function candidate for a virtual tail call frame searched via
14038 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14039 determined unambiguously. */
14043 struct type *func_type = NULL;
14046 func_type = get_die_type (func_die, cu);
14047 if (func_type != NULL)
14049 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14051 /* Enlist this call site to the function. */
14052 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14053 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14056 complaint (_("Cannot find function owning DW_TAG_call_site "
14057 "DIE %s [in module %s]"),
14058 sect_offset_str (die->sect_off), objfile_name (objfile));
14062 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14064 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14066 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14069 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14070 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14072 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14073 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14074 /* Keep NULL DWARF_BLOCK. */;
14075 else if (attr_form_is_block (attr))
14077 struct dwarf2_locexpr_baton *dlbaton;
14079 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14080 dlbaton->data = DW_BLOCK (attr)->data;
14081 dlbaton->size = DW_BLOCK (attr)->size;
14082 dlbaton->per_cu = cu->per_cu;
14084 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14086 else if (attr_form_is_ref (attr))
14088 struct dwarf2_cu *target_cu = cu;
14089 struct die_info *target_die;
14091 target_die = follow_die_ref (die, attr, &target_cu);
14092 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14093 if (die_is_declaration (target_die, target_cu))
14095 const char *target_physname;
14097 /* Prefer the mangled name; otherwise compute the demangled one. */
14098 target_physname = dw2_linkage_name (target_die, target_cu);
14099 if (target_physname == NULL)
14100 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14101 if (target_physname == NULL)
14102 complaint (_("DW_AT_call_target target DIE has invalid "
14103 "physname, for referencing DIE %s [in module %s]"),
14104 sect_offset_str (die->sect_off), objfile_name (objfile));
14106 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14112 /* DW_AT_entry_pc should be preferred. */
14113 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14114 <= PC_BOUNDS_INVALID)
14115 complaint (_("DW_AT_call_target target DIE has invalid "
14116 "low pc, for referencing DIE %s [in module %s]"),
14117 sect_offset_str (die->sect_off), objfile_name (objfile));
14120 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14121 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14126 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14127 "block nor reference, for DIE %s [in module %s]"),
14128 sect_offset_str (die->sect_off), objfile_name (objfile));
14130 call_site->per_cu = cu->per_cu;
14132 for (child_die = die->child;
14133 child_die && child_die->tag;
14134 child_die = sibling_die (child_die))
14136 struct call_site_parameter *parameter;
14137 struct attribute *loc, *origin;
14139 if (child_die->tag != DW_TAG_call_site_parameter
14140 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14142 /* Already printed the complaint above. */
14146 gdb_assert (call_site->parameter_count < nparams);
14147 parameter = &call_site->parameter[call_site->parameter_count];
14149 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14150 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14151 register is contained in DW_AT_call_value. */
14153 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14154 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14155 if (origin == NULL)
14157 /* This was a pre-DWARF-5 GNU extension alias
14158 for DW_AT_call_parameter. */
14159 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14161 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14163 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14165 sect_offset sect_off
14166 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14167 if (!offset_in_cu_p (&cu->header, sect_off))
14169 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14170 binding can be done only inside one CU. Such referenced DIE
14171 therefore cannot be even moved to DW_TAG_partial_unit. */
14172 complaint (_("DW_AT_call_parameter offset is not in CU for "
14173 "DW_TAG_call_site child DIE %s [in module %s]"),
14174 sect_offset_str (child_die->sect_off),
14175 objfile_name (objfile));
14178 parameter->u.param_cu_off
14179 = (cu_offset) (sect_off - cu->header.sect_off);
14181 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14183 complaint (_("No DW_FORM_block* DW_AT_location for "
14184 "DW_TAG_call_site child DIE %s [in module %s]"),
14185 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14190 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14191 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14192 if (parameter->u.dwarf_reg != -1)
14193 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14194 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14195 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14196 ¶meter->u.fb_offset))
14197 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14200 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14201 "for DW_FORM_block* DW_AT_location is supported for "
14202 "DW_TAG_call_site child DIE %s "
14204 sect_offset_str (child_die->sect_off),
14205 objfile_name (objfile));
14210 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14213 if (!attr_form_is_block (attr))
14215 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14216 "DW_TAG_call_site child DIE %s [in module %s]"),
14217 sect_offset_str (child_die->sect_off),
14218 objfile_name (objfile));
14221 parameter->value = DW_BLOCK (attr)->data;
14222 parameter->value_size = DW_BLOCK (attr)->size;
14224 /* Parameters are not pre-cleared by memset above. */
14225 parameter->data_value = NULL;
14226 parameter->data_value_size = 0;
14227 call_site->parameter_count++;
14229 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14231 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14234 if (!attr_form_is_block (attr))
14235 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14236 "DW_TAG_call_site child DIE %s [in module %s]"),
14237 sect_offset_str (child_die->sect_off),
14238 objfile_name (objfile));
14241 parameter->data_value = DW_BLOCK (attr)->data;
14242 parameter->data_value_size = DW_BLOCK (attr)->size;
14248 /* Helper function for read_variable. If DIE represents a virtual
14249 table, then return the type of the concrete object that is
14250 associated with the virtual table. Otherwise, return NULL. */
14252 static struct type *
14253 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14255 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14259 /* Find the type DIE. */
14260 struct die_info *type_die = NULL;
14261 struct dwarf2_cu *type_cu = cu;
14263 if (attr_form_is_ref (attr))
14264 type_die = follow_die_ref (die, attr, &type_cu);
14265 if (type_die == NULL)
14268 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14270 return die_containing_type (type_die, type_cu);
14273 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14276 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14278 struct rust_vtable_symbol *storage = NULL;
14280 if (cu->language == language_rust)
14282 struct type *containing_type = rust_containing_type (die, cu);
14284 if (containing_type != NULL)
14286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14288 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14289 struct rust_vtable_symbol);
14290 initialize_objfile_symbol (storage);
14291 storage->concrete_type = containing_type;
14292 storage->subclass = SYMBOL_RUST_VTABLE;
14296 struct symbol *res = new_symbol (die, NULL, cu, storage);
14297 struct attribute *abstract_origin
14298 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14299 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14300 if (res == NULL && loc && abstract_origin)
14302 /* We have a variable without a name, but with a location and an abstract
14303 origin. This may be a concrete instance of an abstract variable
14304 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14306 struct dwarf2_cu *origin_cu = cu;
14307 struct die_info *origin_die
14308 = follow_die_ref (die, abstract_origin, &origin_cu);
14309 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14310 dpo->abstract_to_concrete[origin_die].push_back (die);
14314 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14315 reading .debug_rnglists.
14316 Callback's type should be:
14317 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14318 Return true if the attributes are present and valid, otherwise,
14321 template <typename Callback>
14323 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14324 Callback &&callback)
14326 struct dwarf2_per_objfile *dwarf2_per_objfile
14327 = cu->per_cu->dwarf2_per_objfile;
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 bfd *obfd = objfile->obfd;
14330 /* Base address selection entry. */
14333 const gdb_byte *buffer;
14334 CORE_ADDR baseaddr;
14335 bool overflow = false;
14337 found_base = cu->base_known;
14338 base = cu->base_address;
14340 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14341 if (offset >= dwarf2_per_objfile->rnglists.size)
14343 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14347 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14353 /* Initialize it due to a false compiler warning. */
14354 CORE_ADDR range_beginning = 0, range_end = 0;
14355 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14356 + dwarf2_per_objfile->rnglists.size);
14357 unsigned int bytes_read;
14359 if (buffer == buf_end)
14364 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14367 case DW_RLE_end_of_list:
14369 case DW_RLE_base_address:
14370 if (buffer + cu->header.addr_size > buf_end)
14375 base = read_address (obfd, buffer, cu, &bytes_read);
14377 buffer += bytes_read;
14379 case DW_RLE_start_length:
14380 if (buffer + cu->header.addr_size > buf_end)
14385 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14387 range_end = (range_beginning
14388 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14396 case DW_RLE_offset_pair:
14397 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14404 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14405 buffer += bytes_read;
14406 if (buffer > buf_end)
14412 case DW_RLE_start_end:
14413 if (buffer + 2 * cu->header.addr_size > buf_end)
14418 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 range_end = read_address (obfd, buffer, cu, &bytes_read);
14421 buffer += bytes_read;
14424 complaint (_("Invalid .debug_rnglists data (no base address)"));
14427 if (rlet == DW_RLE_end_of_list || overflow)
14429 if (rlet == DW_RLE_base_address)
14434 /* We have no valid base address for the ranges
14436 complaint (_("Invalid .debug_rnglists data (no base address)"));
14440 if (range_beginning > range_end)
14442 /* Inverted range entries are invalid. */
14443 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14447 /* Empty range entries have no effect. */
14448 if (range_beginning == range_end)
14451 range_beginning += base;
14454 /* A not-uncommon case of bad debug info.
14455 Don't pollute the addrmap with bad data. */
14456 if (range_beginning + baseaddr == 0
14457 && !dwarf2_per_objfile->has_section_at_zero)
14459 complaint (_(".debug_rnglists entry has start address of zero"
14460 " [in module %s]"), objfile_name (objfile));
14464 callback (range_beginning, range_end);
14469 complaint (_("Offset %d is not terminated "
14470 "for DW_AT_ranges attribute"),
14478 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14479 Callback's type should be:
14480 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14481 Return 1 if the attributes are present and valid, otherwise, return 0. */
14483 template <typename Callback>
14485 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14486 Callback &&callback)
14488 struct dwarf2_per_objfile *dwarf2_per_objfile
14489 = cu->per_cu->dwarf2_per_objfile;
14490 struct objfile *objfile = dwarf2_per_objfile->objfile;
14491 struct comp_unit_head *cu_header = &cu->header;
14492 bfd *obfd = objfile->obfd;
14493 unsigned int addr_size = cu_header->addr_size;
14494 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14495 /* Base address selection entry. */
14498 unsigned int dummy;
14499 const gdb_byte *buffer;
14500 CORE_ADDR baseaddr;
14502 if (cu_header->version >= 5)
14503 return dwarf2_rnglists_process (offset, cu, callback);
14505 found_base = cu->base_known;
14506 base = cu->base_address;
14508 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14509 if (offset >= dwarf2_per_objfile->ranges.size)
14511 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14515 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14517 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14521 CORE_ADDR range_beginning, range_end;
14523 range_beginning = read_address (obfd, buffer, cu, &dummy);
14524 buffer += addr_size;
14525 range_end = read_address (obfd, buffer, cu, &dummy);
14526 buffer += addr_size;
14527 offset += 2 * addr_size;
14529 /* An end of list marker is a pair of zero addresses. */
14530 if (range_beginning == 0 && range_end == 0)
14531 /* Found the end of list entry. */
14534 /* Each base address selection entry is a pair of 2 values.
14535 The first is the largest possible address, the second is
14536 the base address. Check for a base address here. */
14537 if ((range_beginning & mask) == mask)
14539 /* If we found the largest possible address, then we already
14540 have the base address in range_end. */
14548 /* We have no valid base address for the ranges
14550 complaint (_("Invalid .debug_ranges data (no base address)"));
14554 if (range_beginning > range_end)
14556 /* Inverted range entries are invalid. */
14557 complaint (_("Invalid .debug_ranges data (inverted range)"));
14561 /* Empty range entries have no effect. */
14562 if (range_beginning == range_end)
14565 range_beginning += base;
14568 /* A not-uncommon case of bad debug info.
14569 Don't pollute the addrmap with bad data. */
14570 if (range_beginning + baseaddr == 0
14571 && !dwarf2_per_objfile->has_section_at_zero)
14573 complaint (_(".debug_ranges entry has start address of zero"
14574 " [in module %s]"), objfile_name (objfile));
14578 callback (range_beginning, range_end);
14584 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14585 Return 1 if the attributes are present and valid, otherwise, return 0.
14586 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14589 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14590 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14591 struct partial_symtab *ranges_pst)
14593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14595 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14596 SECT_OFF_TEXT (objfile));
14599 CORE_ADDR high = 0;
14602 retval = dwarf2_ranges_process (offset, cu,
14603 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14605 if (ranges_pst != NULL)
14610 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14611 range_beginning + baseaddr)
14613 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14614 range_end + baseaddr)
14616 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14617 lowpc, highpc - 1, ranges_pst);
14620 /* FIXME: This is recording everything as a low-high
14621 segment of consecutive addresses. We should have a
14622 data structure for discontiguous block ranges
14626 low = range_beginning;
14632 if (range_beginning < low)
14633 low = range_beginning;
14634 if (range_end > high)
14642 /* If the first entry is an end-of-list marker, the range
14643 describes an empty scope, i.e. no instructions. */
14649 *high_return = high;
14653 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14654 definition for the return value. *LOWPC and *HIGHPC are set iff
14655 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14657 static enum pc_bounds_kind
14658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14660 struct partial_symtab *pst)
14662 struct dwarf2_per_objfile *dwarf2_per_objfile
14663 = cu->per_cu->dwarf2_per_objfile;
14664 struct attribute *attr;
14665 struct attribute *attr_high;
14667 CORE_ADDR high = 0;
14668 enum pc_bounds_kind ret;
14670 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14673 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14676 low = attr_value_as_address (attr);
14677 high = attr_value_as_address (attr_high);
14678 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14682 /* Found high w/o low attribute. */
14683 return PC_BOUNDS_INVALID;
14685 /* Found consecutive range of addresses. */
14686 ret = PC_BOUNDS_HIGH_LOW;
14690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14694 We take advantage of the fact that DW_AT_ranges does not appear
14695 in DW_TAG_compile_unit of DWO files. */
14696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14697 unsigned int ranges_offset = (DW_UNSND (attr)
14698 + (need_ranges_base
14702 /* Value of the DW_AT_ranges attribute is the offset in the
14703 .debug_ranges section. */
14704 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14705 return PC_BOUNDS_INVALID;
14706 /* Found discontinuous range of addresses. */
14707 ret = PC_BOUNDS_RANGES;
14710 return PC_BOUNDS_NOT_PRESENT;
14713 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14715 return PC_BOUNDS_INVALID;
14717 /* When using the GNU linker, .gnu.linkonce. sections are used to
14718 eliminate duplicate copies of functions and vtables and such.
14719 The linker will arbitrarily choose one and discard the others.
14720 The AT_*_pc values for such functions refer to local labels in
14721 these sections. If the section from that file was discarded, the
14722 labels are not in the output, so the relocs get a value of 0.
14723 If this is a discarded function, mark the pc bounds as invalid,
14724 so that GDB will ignore it. */
14725 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14726 return PC_BOUNDS_INVALID;
14734 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14735 its low and high PC addresses. Do nothing if these addresses could not
14736 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14737 and HIGHPC to the high address if greater than HIGHPC. */
14740 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14741 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14742 struct dwarf2_cu *cu)
14744 CORE_ADDR low, high;
14745 struct die_info *child = die->child;
14747 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14749 *lowpc = std::min (*lowpc, low);
14750 *highpc = std::max (*highpc, high);
14753 /* If the language does not allow nested subprograms (either inside
14754 subprograms or lexical blocks), we're done. */
14755 if (cu->language != language_ada)
14758 /* Check all the children of the given DIE. If it contains nested
14759 subprograms, then check their pc bounds. Likewise, we need to
14760 check lexical blocks as well, as they may also contain subprogram
14762 while (child && child->tag)
14764 if (child->tag == DW_TAG_subprogram
14765 || child->tag == DW_TAG_lexical_block)
14766 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14767 child = sibling_die (child);
14771 /* Get the low and high pc's represented by the scope DIE, and store
14772 them in *LOWPC and *HIGHPC. If the correct values can't be
14773 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14776 get_scope_pc_bounds (struct die_info *die,
14777 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14778 struct dwarf2_cu *cu)
14780 CORE_ADDR best_low = (CORE_ADDR) -1;
14781 CORE_ADDR best_high = (CORE_ADDR) 0;
14782 CORE_ADDR current_low, current_high;
14784 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14785 >= PC_BOUNDS_RANGES)
14787 best_low = current_low;
14788 best_high = current_high;
14792 struct die_info *child = die->child;
14794 while (child && child->tag)
14796 switch (child->tag) {
14797 case DW_TAG_subprogram:
14798 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14800 case DW_TAG_namespace:
14801 case DW_TAG_module:
14802 /* FIXME: carlton/2004-01-16: Should we do this for
14803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14804 that current GCC's always emit the DIEs corresponding
14805 to definitions of methods of classes as children of a
14806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14807 the DIEs giving the declarations, which could be
14808 anywhere). But I don't see any reason why the
14809 standards says that they have to be there. */
14810 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14812 if (current_low != ((CORE_ADDR) -1))
14814 best_low = std::min (best_low, current_low);
14815 best_high = std::max (best_high, current_high);
14823 child = sibling_die (child);
14828 *highpc = best_high;
14831 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14835 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14836 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14840 struct attribute *attr;
14841 struct attribute *attr_high;
14843 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14849 CORE_ADDR low = attr_value_as_address (attr);
14850 CORE_ADDR high = attr_value_as_address (attr_high);
14852 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14855 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14856 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14857 cu->get_builder ()->record_block_range (block, low, high - 1);
14861 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14864 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14865 We take advantage of the fact that DW_AT_ranges does not appear
14866 in DW_TAG_compile_unit of DWO files. */
14867 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14869 /* The value of the DW_AT_ranges attribute is the offset of the
14870 address range list in the .debug_ranges section. */
14871 unsigned long offset = (DW_UNSND (attr)
14872 + (need_ranges_base ? cu->ranges_base : 0));
14874 std::vector<blockrange> blockvec;
14875 dwarf2_ranges_process (offset, cu,
14876 [&] (CORE_ADDR start, CORE_ADDR end)
14880 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14881 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14882 cu->get_builder ()->record_block_range (block, start, end - 1);
14883 blockvec.emplace_back (start, end);
14886 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14890 /* Check whether the producer field indicates either of GCC < 4.6, or the
14891 Intel C/C++ compiler, and cache the result in CU. */
14894 check_producer (struct dwarf2_cu *cu)
14898 if (cu->producer == NULL)
14900 /* For unknown compilers expect their behavior is DWARF version
14903 GCC started to support .debug_types sections by -gdwarf-4 since
14904 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14905 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14906 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14907 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14909 else if (producer_is_gcc (cu->producer, &major, &minor))
14911 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14912 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14914 else if (producer_is_icc (cu->producer, &major, &minor))
14916 cu->producer_is_icc = true;
14917 cu->producer_is_icc_lt_14 = major < 14;
14919 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14920 cu->producer_is_codewarrior = true;
14923 /* For other non-GCC compilers, expect their behavior is DWARF version
14927 cu->checked_producer = true;
14930 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14931 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14932 during 4.6.0 experimental. */
14935 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14937 if (!cu->checked_producer)
14938 check_producer (cu);
14940 return cu->producer_is_gxx_lt_4_6;
14944 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14945 with incorrect is_stmt attributes. */
14948 producer_is_codewarrior (struct dwarf2_cu *cu)
14950 if (!cu->checked_producer)
14951 check_producer (cu);
14953 return cu->producer_is_codewarrior;
14956 /* Return the default accessibility type if it is not overriden by
14957 DW_AT_accessibility. */
14959 static enum dwarf_access_attribute
14960 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14962 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14964 /* The default DWARF 2 accessibility for members is public, the default
14965 accessibility for inheritance is private. */
14967 if (die->tag != DW_TAG_inheritance)
14968 return DW_ACCESS_public;
14970 return DW_ACCESS_private;
14974 /* DWARF 3+ defines the default accessibility a different way. The same
14975 rules apply now for DW_TAG_inheritance as for the members and it only
14976 depends on the container kind. */
14978 if (die->parent->tag == DW_TAG_class_type)
14979 return DW_ACCESS_private;
14981 return DW_ACCESS_public;
14985 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14986 offset. If the attribute was not found return 0, otherwise return
14987 1. If it was found but could not properly be handled, set *OFFSET
14991 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14994 struct attribute *attr;
14996 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15001 /* Note that we do not check for a section offset first here.
15002 This is because DW_AT_data_member_location is new in DWARF 4,
15003 so if we see it, we can assume that a constant form is really
15004 a constant and not a section offset. */
15005 if (attr_form_is_constant (attr))
15006 *offset = dwarf2_get_attr_constant_value (attr, 0);
15007 else if (attr_form_is_section_offset (attr))
15008 dwarf2_complex_location_expr_complaint ();
15009 else if (attr_form_is_block (attr))
15010 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15012 dwarf2_complex_location_expr_complaint ();
15020 /* Add an aggregate field to the field list. */
15023 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15024 struct dwarf2_cu *cu)
15026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15028 struct nextfield *new_field;
15029 struct attribute *attr;
15031 const char *fieldname = "";
15033 if (die->tag == DW_TAG_inheritance)
15035 fip->baseclasses.emplace_back ();
15036 new_field = &fip->baseclasses.back ();
15040 fip->fields.emplace_back ();
15041 new_field = &fip->fields.back ();
15046 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15048 new_field->accessibility = DW_UNSND (attr);
15050 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15051 if (new_field->accessibility != DW_ACCESS_public)
15052 fip->non_public_fields = 1;
15054 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15056 new_field->virtuality = DW_UNSND (attr);
15058 new_field->virtuality = DW_VIRTUALITY_none;
15060 fp = &new_field->field;
15062 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15066 /* Data member other than a C++ static data member. */
15068 /* Get type of field. */
15069 fp->type = die_type (die, cu);
15071 SET_FIELD_BITPOS (*fp, 0);
15073 /* Get bit size of field (zero if none). */
15074 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15077 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15081 FIELD_BITSIZE (*fp) = 0;
15084 /* Get bit offset of field. */
15085 if (handle_data_member_location (die, cu, &offset))
15086 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15087 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15090 if (gdbarch_bits_big_endian (gdbarch))
15092 /* For big endian bits, the DW_AT_bit_offset gives the
15093 additional bit offset from the MSB of the containing
15094 anonymous object to the MSB of the field. We don't
15095 have to do anything special since we don't need to
15096 know the size of the anonymous object. */
15097 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15101 /* For little endian bits, compute the bit offset to the
15102 MSB of the anonymous object, subtract off the number of
15103 bits from the MSB of the field to the MSB of the
15104 object, and then subtract off the number of bits of
15105 the field itself. The result is the bit offset of
15106 the LSB of the field. */
15107 int anonymous_size;
15108 int bit_offset = DW_UNSND (attr);
15110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15113 /* The size of the anonymous object containing
15114 the bit field is explicit, so use the
15115 indicated size (in bytes). */
15116 anonymous_size = DW_UNSND (attr);
15120 /* The size of the anonymous object containing
15121 the bit field must be inferred from the type
15122 attribute of the data member containing the
15124 anonymous_size = TYPE_LENGTH (fp->type);
15126 SET_FIELD_BITPOS (*fp,
15127 (FIELD_BITPOS (*fp)
15128 + anonymous_size * bits_per_byte
15129 - bit_offset - FIELD_BITSIZE (*fp)));
15132 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15134 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15135 + dwarf2_get_attr_constant_value (attr, 0)));
15137 /* Get name of field. */
15138 fieldname = dwarf2_name (die, cu);
15139 if (fieldname == NULL)
15142 /* The name is already allocated along with this objfile, so we don't
15143 need to duplicate it for the type. */
15144 fp->name = fieldname;
15146 /* Change accessibility for artificial fields (e.g. virtual table
15147 pointer or virtual base class pointer) to private. */
15148 if (dwarf2_attr (die, DW_AT_artificial, cu))
15150 FIELD_ARTIFICIAL (*fp) = 1;
15151 new_field->accessibility = DW_ACCESS_private;
15152 fip->non_public_fields = 1;
15155 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15157 /* C++ static member. */
15159 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15160 is a declaration, but all versions of G++ as of this writing
15161 (so through at least 3.2.1) incorrectly generate
15162 DW_TAG_variable tags. */
15164 const char *physname;
15166 /* Get name of field. */
15167 fieldname = dwarf2_name (die, cu);
15168 if (fieldname == NULL)
15171 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15173 /* Only create a symbol if this is an external value.
15174 new_symbol checks this and puts the value in the global symbol
15175 table, which we want. If it is not external, new_symbol
15176 will try to put the value in cu->list_in_scope which is wrong. */
15177 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15179 /* A static const member, not much different than an enum as far as
15180 we're concerned, except that we can support more types. */
15181 new_symbol (die, NULL, cu);
15184 /* Get physical name. */
15185 physname = dwarf2_physname (fieldname, die, cu);
15187 /* The name is already allocated along with this objfile, so we don't
15188 need to duplicate it for the type. */
15189 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15190 FIELD_TYPE (*fp) = die_type (die, cu);
15191 FIELD_NAME (*fp) = fieldname;
15193 else if (die->tag == DW_TAG_inheritance)
15197 /* C++ base class field. */
15198 if (handle_data_member_location (die, cu, &offset))
15199 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15200 FIELD_BITSIZE (*fp) = 0;
15201 FIELD_TYPE (*fp) = die_type (die, cu);
15202 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15204 else if (die->tag == DW_TAG_variant_part)
15206 /* process_structure_scope will treat this DIE as a union. */
15207 process_structure_scope (die, cu);
15209 /* The variant part is relative to the start of the enclosing
15211 SET_FIELD_BITPOS (*fp, 0);
15212 fp->type = get_die_type (die, cu);
15213 fp->artificial = 1;
15214 fp->name = "<<variant>>";
15216 /* Normally a DW_TAG_variant_part won't have a size, but our
15217 representation requires one, so set it to the maximum of the
15219 if (TYPE_LENGTH (fp->type) == 0)
15222 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15223 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15224 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15225 TYPE_LENGTH (fp->type) = max;
15229 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15232 /* Can the type given by DIE define another type? */
15235 type_can_define_types (const struct die_info *die)
15239 case DW_TAG_typedef:
15240 case DW_TAG_class_type:
15241 case DW_TAG_structure_type:
15242 case DW_TAG_union_type:
15243 case DW_TAG_enumeration_type:
15251 /* Add a type definition defined in the scope of the FIP's class. */
15254 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15255 struct dwarf2_cu *cu)
15257 struct decl_field fp;
15258 memset (&fp, 0, sizeof (fp));
15260 gdb_assert (type_can_define_types (die));
15262 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15263 fp.name = dwarf2_name (die, cu);
15264 fp.type = read_type_die (die, cu);
15266 /* Save accessibility. */
15267 enum dwarf_access_attribute accessibility;
15268 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15270 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15272 accessibility = dwarf2_default_access_attribute (die, cu);
15273 switch (accessibility)
15275 case DW_ACCESS_public:
15276 /* The assumed value if neither private nor protected. */
15278 case DW_ACCESS_private:
15281 case DW_ACCESS_protected:
15282 fp.is_protected = 1;
15285 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15288 if (die->tag == DW_TAG_typedef)
15289 fip->typedef_field_list.push_back (fp);
15291 fip->nested_types_list.push_back (fp);
15294 /* Create the vector of fields, and attach it to the type. */
15297 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15298 struct dwarf2_cu *cu)
15300 int nfields = fip->nfields;
15302 /* Record the field count, allocate space for the array of fields,
15303 and create blank accessibility bitfields if necessary. */
15304 TYPE_NFIELDS (type) = nfields;
15305 TYPE_FIELDS (type) = (struct field *)
15306 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15308 if (fip->non_public_fields && cu->language != language_ada)
15310 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15312 TYPE_FIELD_PRIVATE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15316 TYPE_FIELD_PROTECTED_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15320 TYPE_FIELD_IGNORE_BITS (type) =
15321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15322 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15325 /* If the type has baseclasses, allocate and clear a bit vector for
15326 TYPE_FIELD_VIRTUAL_BITS. */
15327 if (!fip->baseclasses.empty () && cu->language != language_ada)
15329 int num_bytes = B_BYTES (fip->baseclasses.size ());
15330 unsigned char *pointer;
15332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15333 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15334 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15335 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15336 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15339 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15341 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15343 for (int index = 0; index < nfields; ++index)
15345 struct nextfield &field = fip->fields[index];
15347 if (field.variant.is_discriminant)
15348 di->discriminant_index = index;
15349 else if (field.variant.default_branch)
15350 di->default_index = index;
15352 di->discriminants[index] = field.variant.discriminant_value;
15356 /* Copy the saved-up fields into the field vector. */
15357 for (int i = 0; i < nfields; ++i)
15359 struct nextfield &field
15360 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15361 : fip->fields[i - fip->baseclasses.size ()]);
15363 TYPE_FIELD (type, i) = field.field;
15364 switch (field.accessibility)
15366 case DW_ACCESS_private:
15367 if (cu->language != language_ada)
15368 SET_TYPE_FIELD_PRIVATE (type, i);
15371 case DW_ACCESS_protected:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PROTECTED (type, i);
15376 case DW_ACCESS_public:
15380 /* Unknown accessibility. Complain and treat it as public. */
15382 complaint (_("unsupported accessibility %d"),
15383 field.accessibility);
15387 if (i < fip->baseclasses.size ())
15389 switch (field.virtuality)
15391 case DW_VIRTUALITY_virtual:
15392 case DW_VIRTUALITY_pure_virtual:
15393 if (cu->language == language_ada)
15394 error (_("unexpected virtuality in component of Ada type"));
15395 SET_TYPE_FIELD_VIRTUAL (type, i);
15402 /* Return true if this member function is a constructor, false
15406 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15408 const char *fieldname;
15409 const char *type_name;
15412 if (die->parent == NULL)
15415 if (die->parent->tag != DW_TAG_structure_type
15416 && die->parent->tag != DW_TAG_union_type
15417 && die->parent->tag != DW_TAG_class_type)
15420 fieldname = dwarf2_name (die, cu);
15421 type_name = dwarf2_name (die->parent, cu);
15422 if (fieldname == NULL || type_name == NULL)
15425 len = strlen (fieldname);
15426 return (strncmp (fieldname, type_name, len) == 0
15427 && (type_name[len] == '\0' || type_name[len] == '<'));
15430 /* Add a member function to the proper fieldlist. */
15433 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15434 struct type *type, struct dwarf2_cu *cu)
15436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15437 struct attribute *attr;
15439 struct fnfieldlist *flp = nullptr;
15440 struct fn_field *fnp;
15441 const char *fieldname;
15442 struct type *this_type;
15443 enum dwarf_access_attribute accessibility;
15445 if (cu->language == language_ada)
15446 error (_("unexpected member function in Ada type"));
15448 /* Get name of member function. */
15449 fieldname = dwarf2_name (die, cu);
15450 if (fieldname == NULL)
15453 /* Look up member function name in fieldlist. */
15454 for (i = 0; i < fip->fnfieldlists.size (); i++)
15456 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15458 flp = &fip->fnfieldlists[i];
15463 /* Create a new fnfieldlist if necessary. */
15464 if (flp == nullptr)
15466 fip->fnfieldlists.emplace_back ();
15467 flp = &fip->fnfieldlists.back ();
15468 flp->name = fieldname;
15469 i = fip->fnfieldlists.size () - 1;
15472 /* Create a new member function field and add it to the vector of
15474 flp->fnfields.emplace_back ();
15475 fnp = &flp->fnfields.back ();
15477 /* Delay processing of the physname until later. */
15478 if (cu->language == language_cplus)
15479 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15483 const char *physname = dwarf2_physname (fieldname, die, cu);
15484 fnp->physname = physname ? physname : "";
15487 fnp->type = alloc_type (objfile);
15488 this_type = read_type_die (die, cu);
15489 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15491 int nparams = TYPE_NFIELDS (this_type);
15493 /* TYPE is the domain of this method, and THIS_TYPE is the type
15494 of the method itself (TYPE_CODE_METHOD). */
15495 smash_to_method_type (fnp->type, type,
15496 TYPE_TARGET_TYPE (this_type),
15497 TYPE_FIELDS (this_type),
15498 TYPE_NFIELDS (this_type),
15499 TYPE_VARARGS (this_type));
15501 /* Handle static member functions.
15502 Dwarf2 has no clean way to discern C++ static and non-static
15503 member functions. G++ helps GDB by marking the first
15504 parameter for non-static member functions (which is the this
15505 pointer) as artificial. We obtain this information from
15506 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15507 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15508 fnp->voffset = VOFFSET_STATIC;
15511 complaint (_("member function type missing for '%s'"),
15512 dwarf2_full_name (fieldname, die, cu));
15514 /* Get fcontext from DW_AT_containing_type if present. */
15515 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15516 fnp->fcontext = die_containing_type (die, cu);
15518 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15519 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15521 /* Get accessibility. */
15522 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15524 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15526 accessibility = dwarf2_default_access_attribute (die, cu);
15527 switch (accessibility)
15529 case DW_ACCESS_private:
15530 fnp->is_private = 1;
15532 case DW_ACCESS_protected:
15533 fnp->is_protected = 1;
15537 /* Check for artificial methods. */
15538 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15539 if (attr && DW_UNSND (attr) != 0)
15540 fnp->is_artificial = 1;
15542 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15544 /* Get index in virtual function table if it is a virtual member
15545 function. For older versions of GCC, this is an offset in the
15546 appropriate virtual table, as specified by DW_AT_containing_type.
15547 For everyone else, it is an expression to be evaluated relative
15548 to the object address. */
15550 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15553 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15555 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15557 /* Old-style GCC. */
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15560 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15561 || (DW_BLOCK (attr)->size > 1
15562 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15563 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15565 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15566 if ((fnp->voffset % cu->header.addr_size) != 0)
15567 dwarf2_complex_location_expr_complaint ();
15569 fnp->voffset /= cu->header.addr_size;
15573 dwarf2_complex_location_expr_complaint ();
15575 if (!fnp->fcontext)
15577 /* If there is no `this' field and no DW_AT_containing_type,
15578 we cannot actually find a base class context for the
15580 if (TYPE_NFIELDS (this_type) == 0
15581 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15583 complaint (_("cannot determine context for virtual member "
15584 "function \"%s\" (offset %s)"),
15585 fieldname, sect_offset_str (die->sect_off));
15590 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15594 else if (attr_form_is_section_offset (attr))
15596 dwarf2_complex_location_expr_complaint ();
15600 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15606 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15607 if (attr && DW_UNSND (attr))
15609 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15610 complaint (_("Member function \"%s\" (offset %s) is virtual "
15611 "but the vtable offset is not specified"),
15612 fieldname, sect_offset_str (die->sect_off));
15613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15614 TYPE_CPLUS_DYNAMIC (type) = 1;
15619 /* Create the vector of member function fields, and attach it to the type. */
15622 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15623 struct dwarf2_cu *cu)
15625 if (cu->language == language_ada)
15626 error (_("unexpected member functions in Ada type"));
15628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15629 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15631 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15633 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15635 struct fnfieldlist &nf = fip->fnfieldlists[i];
15636 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15638 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15639 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15640 fn_flp->fn_fields = (struct fn_field *)
15641 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15643 for (int k = 0; k < nf.fnfields.size (); ++k)
15644 fn_flp->fn_fields[k] = nf.fnfields[k];
15647 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15650 /* Returns non-zero if NAME is the name of a vtable member in CU's
15651 language, zero otherwise. */
15653 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15655 static const char vptr[] = "_vptr";
15657 /* Look for the C++ form of the vtable. */
15658 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15664 /* GCC outputs unnamed structures that are really pointers to member
15665 functions, with the ABI-specified layout. If TYPE describes
15666 such a structure, smash it into a member function type.
15668 GCC shouldn't do this; it should just output pointer to member DIEs.
15669 This is GCC PR debug/28767. */
15672 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15674 struct type *pfn_type, *self_type, *new_type;
15676 /* Check for a structure with no name and two children. */
15677 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15680 /* Check for __pfn and __delta members. */
15681 if (TYPE_FIELD_NAME (type, 0) == NULL
15682 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15683 || TYPE_FIELD_NAME (type, 1) == NULL
15684 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15687 /* Find the type of the method. */
15688 pfn_type = TYPE_FIELD_TYPE (type, 0);
15689 if (pfn_type == NULL
15690 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15691 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15694 /* Look for the "this" argument. */
15695 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15696 if (TYPE_NFIELDS (pfn_type) == 0
15697 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15698 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15701 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15702 new_type = alloc_type (objfile);
15703 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15704 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15705 TYPE_VARARGS (pfn_type));
15706 smash_to_methodptr_type (type, new_type);
15709 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15710 appropriate error checking and issuing complaints if there is a
15714 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15716 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15718 if (attr == nullptr)
15721 if (!attr_form_is_constant (attr))
15723 complaint (_("DW_AT_alignment must have constant form"
15724 " - DIE at %s [in module %s]"),
15725 sect_offset_str (die->sect_off),
15726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15731 if (attr->form == DW_FORM_sdata)
15733 LONGEST val = DW_SND (attr);
15736 complaint (_("DW_AT_alignment value must not be negative"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 align = DW_UNSND (attr);
15749 complaint (_("DW_AT_alignment value must not be zero"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15755 if ((align & (align - 1)) != 0)
15757 complaint (_("DW_AT_alignment value must be a power of 2"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15767 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15768 the alignment for TYPE. */
15771 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15774 if (!set_type_align (type, get_alignment (cu, die)))
15775 complaint (_("DW_AT_alignment value too large"
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15781 /* Called when we find the DIE that starts a structure or union scope
15782 (definition) to create a type for the structure or union. Fill in
15783 the type's name and general properties; the members will not be
15784 processed until process_structure_scope. A symbol table entry for
15785 the type will also not be done until process_structure_scope (assuming
15786 the type has a name).
15788 NOTE: we need to call these functions regardless of whether or not the
15789 DIE has a DW_AT_name attribute, since it might be an anonymous
15790 structure or union. This gets the type entered into our set of
15791 user defined types. */
15793 static struct type *
15794 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15798 struct attribute *attr;
15801 /* If the definition of this type lives in .debug_types, read that type.
15802 Don't follow DW_AT_specification though, that will take us back up
15803 the chain and we want to go down. */
15804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15807 type = get_DW_AT_signature_type (die, attr, cu);
15809 /* The type's CU may not be the same as CU.
15810 Ensure TYPE is recorded with CU in die_type_hash. */
15811 return set_die_type (die, type, cu);
15814 type = alloc_type (objfile);
15815 INIT_CPLUS_SPECIFIC (type);
15817 name = dwarf2_name (die, cu);
15820 if (cu->language == language_cplus
15821 || cu->language == language_d
15822 || cu->language == language_rust)
15824 const char *full_name = dwarf2_full_name (name, die, cu);
15826 /* dwarf2_full_name might have already finished building the DIE's
15827 type. If so, there is no need to continue. */
15828 if (get_die_type (die, cu) != NULL)
15829 return get_die_type (die, cu);
15831 TYPE_NAME (type) = full_name;
15835 /* The name is already allocated along with this objfile, so
15836 we don't need to duplicate it for the type. */
15837 TYPE_NAME (type) = name;
15841 if (die->tag == DW_TAG_structure_type)
15843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15845 else if (die->tag == DW_TAG_union_type)
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15849 else if (die->tag == DW_TAG_variant_part)
15851 TYPE_CODE (type) = TYPE_CODE_UNION;
15852 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15856 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15859 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15860 TYPE_DECLARED_CLASS (type) = 1;
15862 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15865 if (attr_form_is_constant (attr))
15866 TYPE_LENGTH (type) = DW_UNSND (attr);
15869 /* For the moment, dynamic type sizes are not supported
15870 by GDB's struct type. The actual size is determined
15871 on-demand when resolving the type of a given object,
15872 so set the type's length to zero for now. Otherwise,
15873 we record an expression as the length, and that expression
15874 could lead to a very large value, which could eventually
15875 lead to us trying to allocate that much memory when creating
15876 a value of that type. */
15877 TYPE_LENGTH (type) = 0;
15882 TYPE_LENGTH (type) = 0;
15885 maybe_set_alignment (cu, die, type);
15887 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15889 /* ICC<14 does not output the required DW_AT_declaration on
15890 incomplete types, but gives them a size of zero. */
15891 TYPE_STUB (type) = 1;
15894 TYPE_STUB_SUPPORTED (type) = 1;
15896 if (die_is_declaration (die, cu))
15897 TYPE_STUB (type) = 1;
15898 else if (attr == NULL && die->child == NULL
15899 && producer_is_realview (cu->producer))
15900 /* RealView does not output the required DW_AT_declaration
15901 on incomplete types. */
15902 TYPE_STUB (type) = 1;
15904 /* We need to add the type field to the die immediately so we don't
15905 infinitely recurse when dealing with pointers to the structure
15906 type within the structure itself. */
15907 set_die_type (die, type, cu);
15909 /* set_die_type should be already done. */
15910 set_descriptive_type (type, die, cu);
15915 /* A helper for process_structure_scope that handles a single member
15919 handle_struct_member_die (struct die_info *child_die, struct type *type,
15920 struct field_info *fi,
15921 std::vector<struct symbol *> *template_args,
15922 struct dwarf2_cu *cu)
15924 if (child_die->tag == DW_TAG_member
15925 || child_die->tag == DW_TAG_variable
15926 || child_die->tag == DW_TAG_variant_part)
15928 /* NOTE: carlton/2002-11-05: A C++ static data member
15929 should be a DW_TAG_member that is a declaration, but
15930 all versions of G++ as of this writing (so through at
15931 least 3.2.1) incorrectly generate DW_TAG_variable
15932 tags for them instead. */
15933 dwarf2_add_field (fi, child_die, cu);
15935 else if (child_die->tag == DW_TAG_subprogram)
15937 /* Rust doesn't have member functions in the C++ sense.
15938 However, it does emit ordinary functions as children
15939 of a struct DIE. */
15940 if (cu->language == language_rust)
15941 read_func_scope (child_die, cu);
15944 /* C++ member function. */
15945 dwarf2_add_member_fn (fi, child_die, type, cu);
15948 else if (child_die->tag == DW_TAG_inheritance)
15950 /* C++ base class field. */
15951 dwarf2_add_field (fi, child_die, cu);
15953 else if (type_can_define_types (child_die))
15954 dwarf2_add_type_defn (fi, child_die, cu);
15955 else if (child_die->tag == DW_TAG_template_type_param
15956 || child_die->tag == DW_TAG_template_value_param)
15958 struct symbol *arg = new_symbol (child_die, NULL, cu);
15961 template_args->push_back (arg);
15963 else if (child_die->tag == DW_TAG_variant)
15965 /* In a variant we want to get the discriminant and also add a
15966 field for our sole member child. */
15967 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15969 for (struct die_info *variant_child = child_die->child;
15970 variant_child != NULL;
15971 variant_child = sibling_die (variant_child))
15973 if (variant_child->tag == DW_TAG_member)
15975 handle_struct_member_die (variant_child, type, fi,
15976 template_args, cu);
15977 /* Only handle the one. */
15982 /* We don't handle this but we might as well report it if we see
15984 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15985 complaint (_("DW_AT_discr_list is not supported yet"
15986 " - DIE at %s [in module %s]"),
15987 sect_offset_str (child_die->sect_off),
15988 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15990 /* The first field was just added, so we can stash the
15991 discriminant there. */
15992 gdb_assert (!fi->fields.empty ());
15994 fi->fields.back ().variant.default_branch = true;
15996 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16000 /* Finish creating a structure or union type, including filling in
16001 its members and creating a symbol for it. */
16004 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16007 struct die_info *child_die;
16010 type = get_die_type (die, cu);
16012 type = read_structure_type (die, cu);
16014 /* When reading a DW_TAG_variant_part, we need to notice when we
16015 read the discriminant member, so we can record it later in the
16016 discriminant_info. */
16017 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16018 sect_offset discr_offset;
16019 bool has_template_parameters = false;
16021 if (is_variant_part)
16023 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16026 /* Maybe it's a univariant form, an extension we support.
16027 In this case arrange not to check the offset. */
16028 is_variant_part = false;
16030 else if (attr_form_is_ref (discr))
16032 struct dwarf2_cu *target_cu = cu;
16033 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16035 discr_offset = target_die->sect_off;
16039 complaint (_("DW_AT_discr does not have DIE reference form"
16040 " - DIE at %s [in module %s]"),
16041 sect_offset_str (die->sect_off),
16042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16043 is_variant_part = false;
16047 if (die->child != NULL && ! die_is_declaration (die, cu))
16049 struct field_info fi;
16050 std::vector<struct symbol *> template_args;
16052 child_die = die->child;
16054 while (child_die && child_die->tag)
16056 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16058 if (is_variant_part && discr_offset == child_die->sect_off)
16059 fi.fields.back ().variant.is_discriminant = true;
16061 child_die = sibling_die (child_die);
16064 /* Attach template arguments to type. */
16065 if (!template_args.empty ())
16067 has_template_parameters = true;
16068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16069 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16070 TYPE_TEMPLATE_ARGUMENTS (type)
16071 = XOBNEWVEC (&objfile->objfile_obstack,
16073 TYPE_N_TEMPLATE_ARGUMENTS (type));
16074 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16075 template_args.data (),
16076 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16077 * sizeof (struct symbol *)));
16080 /* Attach fields and member functions to the type. */
16082 dwarf2_attach_fields_to_type (&fi, type, cu);
16083 if (!fi.fnfieldlists.empty ())
16085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16087 /* Get the type which refers to the base class (possibly this
16088 class itself) which contains the vtable pointer for the current
16089 class from the DW_AT_containing_type attribute. This use of
16090 DW_AT_containing_type is a GNU extension. */
16092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16094 struct type *t = die_containing_type (die, cu);
16096 set_type_vptr_basetype (type, t);
16101 /* Our own class provides vtbl ptr. */
16102 for (i = TYPE_NFIELDS (t) - 1;
16103 i >= TYPE_N_BASECLASSES (t);
16106 const char *fieldname = TYPE_FIELD_NAME (t, i);
16108 if (is_vtable_name (fieldname, cu))
16110 set_type_vptr_fieldno (type, i);
16115 /* Complain if virtual function table field not found. */
16116 if (i < TYPE_N_BASECLASSES (t))
16117 complaint (_("virtual function table pointer "
16118 "not found when defining class '%s'"),
16119 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16123 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16126 else if (cu->producer
16127 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16129 /* The IBM XLC compiler does not provide direct indication
16130 of the containing type, but the vtable pointer is
16131 always named __vfp. */
16135 for (i = TYPE_NFIELDS (type) - 1;
16136 i >= TYPE_N_BASECLASSES (type);
16139 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16141 set_type_vptr_fieldno (type, i);
16142 set_type_vptr_basetype (type, type);
16149 /* Copy fi.typedef_field_list linked list elements content into the
16150 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16151 if (!fi.typedef_field_list.empty ())
16153 int count = fi.typedef_field_list.size ();
16155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16156 TYPE_TYPEDEF_FIELD_ARRAY (type)
16157 = ((struct decl_field *)
16159 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16160 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16162 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16163 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16166 /* Copy fi.nested_types_list linked list elements content into the
16167 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16168 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16170 int count = fi.nested_types_list.size ();
16172 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16173 TYPE_NESTED_TYPES_ARRAY (type)
16174 = ((struct decl_field *)
16175 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16176 TYPE_NESTED_TYPES_COUNT (type) = count;
16178 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16179 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16183 quirk_gcc_member_function_pointer (type, objfile);
16184 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16185 cu->rust_unions.push_back (type);
16187 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16188 snapshots) has been known to create a die giving a declaration
16189 for a class that has, as a child, a die giving a definition for a
16190 nested class. So we have to process our children even if the
16191 current die is a declaration. Normally, of course, a declaration
16192 won't have any children at all. */
16194 child_die = die->child;
16196 while (child_die != NULL && child_die->tag)
16198 if (child_die->tag == DW_TAG_member
16199 || child_die->tag == DW_TAG_variable
16200 || child_die->tag == DW_TAG_inheritance
16201 || child_die->tag == DW_TAG_template_value_param
16202 || child_die->tag == DW_TAG_template_type_param)
16207 process_die (child_die, cu);
16209 child_die = sibling_die (child_die);
16212 /* Do not consider external references. According to the DWARF standard,
16213 these DIEs are identified by the fact that they have no byte_size
16214 attribute, and a declaration attribute. */
16215 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16216 || !die_is_declaration (die, cu))
16218 struct symbol *sym = new_symbol (die, type, cu);
16220 if (has_template_parameters)
16222 /* Make sure that the symtab is set on the new symbols.
16223 Even though they don't appear in this symtab directly,
16224 other parts of gdb assume that symbols do, and this is
16225 reasonably true. */
16226 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16227 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16228 symbol_symtab (sym));
16233 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16234 update TYPE using some information only available in DIE's children. */
16237 update_enumeration_type_from_children (struct die_info *die,
16239 struct dwarf2_cu *cu)
16241 struct die_info *child_die;
16242 int unsigned_enum = 1;
16246 auto_obstack obstack;
16248 for (child_die = die->child;
16249 child_die != NULL && child_die->tag;
16250 child_die = sibling_die (child_die))
16252 struct attribute *attr;
16254 const gdb_byte *bytes;
16255 struct dwarf2_locexpr_baton *baton;
16258 if (child_die->tag != DW_TAG_enumerator)
16261 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16265 name = dwarf2_name (child_die, cu);
16267 name = "<anonymous enumerator>";
16269 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16270 &value, &bytes, &baton);
16276 else if ((mask & value) != 0)
16281 /* If we already know that the enum type is neither unsigned, nor
16282 a flag type, no need to look at the rest of the enumerates. */
16283 if (!unsigned_enum && !flag_enum)
16288 TYPE_UNSIGNED (type) = 1;
16290 TYPE_FLAG_ENUM (type) = 1;
16293 /* Given a DW_AT_enumeration_type die, set its type. We do not
16294 complete the type's fields yet, or create any symbols. */
16296 static struct type *
16297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16301 struct attribute *attr;
16304 /* If the definition of this type lives in .debug_types, read that type.
16305 Don't follow DW_AT_specification though, that will take us back up
16306 the chain and we want to go down. */
16307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16310 type = get_DW_AT_signature_type (die, attr, cu);
16312 /* The type's CU may not be the same as CU.
16313 Ensure TYPE is recorded with CU in die_type_hash. */
16314 return set_die_type (die, type, cu);
16317 type = alloc_type (objfile);
16319 TYPE_CODE (type) = TYPE_CODE_ENUM;
16320 name = dwarf2_full_name (NULL, die, cu);
16322 TYPE_NAME (type) = name;
16324 attr = dwarf2_attr (die, DW_AT_type, cu);
16327 struct type *underlying_type = die_type (die, cu);
16329 TYPE_TARGET_TYPE (type) = underlying_type;
16332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16335 TYPE_LENGTH (type) = DW_UNSND (attr);
16339 TYPE_LENGTH (type) = 0;
16342 maybe_set_alignment (cu, die, type);
16344 /* The enumeration DIE can be incomplete. In Ada, any type can be
16345 declared as private in the package spec, and then defined only
16346 inside the package body. Such types are known as Taft Amendment
16347 Types. When another package uses such a type, an incomplete DIE
16348 may be generated by the compiler. */
16349 if (die_is_declaration (die, cu))
16350 TYPE_STUB (type) = 1;
16352 /* Finish the creation of this type by using the enum's children.
16353 We must call this even when the underlying type has been provided
16354 so that we can determine if we're looking at a "flag" enum. */
16355 update_enumeration_type_from_children (die, type, cu);
16357 /* If this type has an underlying type that is not a stub, then we
16358 may use its attributes. We always use the "unsigned" attribute
16359 in this situation, because ordinarily we guess whether the type
16360 is unsigned -- but the guess can be wrong and the underlying type
16361 can tell us the reality. However, we defer to a local size
16362 attribute if one exists, because this lets the compiler override
16363 the underlying type if needed. */
16364 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16366 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16367 if (TYPE_LENGTH (type) == 0)
16368 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16369 if (TYPE_RAW_ALIGN (type) == 0
16370 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16371 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16374 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16376 return set_die_type (die, type, cu);
16379 /* Given a pointer to a die which begins an enumeration, process all
16380 the dies that define the members of the enumeration, and create the
16381 symbol for the enumeration type.
16383 NOTE: We reverse the order of the element list. */
16386 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16388 struct type *this_type;
16390 this_type = get_die_type (die, cu);
16391 if (this_type == NULL)
16392 this_type = read_enumeration_type (die, cu);
16394 if (die->child != NULL)
16396 struct die_info *child_die;
16397 struct symbol *sym;
16398 struct field *fields = NULL;
16399 int num_fields = 0;
16402 child_die = die->child;
16403 while (child_die && child_die->tag)
16405 if (child_die->tag != DW_TAG_enumerator)
16407 process_die (child_die, cu);
16411 name = dwarf2_name (child_die, cu);
16414 sym = new_symbol (child_die, this_type, cu);
16416 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16418 fields = (struct field *)
16420 (num_fields + DW_FIELD_ALLOC_CHUNK)
16421 * sizeof (struct field));
16424 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16425 FIELD_TYPE (fields[num_fields]) = NULL;
16426 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16427 FIELD_BITSIZE (fields[num_fields]) = 0;
16433 child_die = sibling_die (child_die);
16438 TYPE_NFIELDS (this_type) = num_fields;
16439 TYPE_FIELDS (this_type) = (struct field *)
16440 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16441 memcpy (TYPE_FIELDS (this_type), fields,
16442 sizeof (struct field) * num_fields);
16447 /* If we are reading an enum from a .debug_types unit, and the enum
16448 is a declaration, and the enum is not the signatured type in the
16449 unit, then we do not want to add a symbol for it. Adding a
16450 symbol would in some cases obscure the true definition of the
16451 enum, giving users an incomplete type when the definition is
16452 actually available. Note that we do not want to do this for all
16453 enums which are just declarations, because C++0x allows forward
16454 enum declarations. */
16455 if (cu->per_cu->is_debug_types
16456 && die_is_declaration (die, cu))
16458 struct signatured_type *sig_type;
16460 sig_type = (struct signatured_type *) cu->per_cu;
16461 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16462 if (sig_type->type_offset_in_section != die->sect_off)
16466 new_symbol (die, this_type, cu);
16469 /* Extract all information from a DW_TAG_array_type DIE and put it in
16470 the DIE's type field. For now, this only handles one dimensional
16473 static struct type *
16474 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16477 struct die_info *child_die;
16479 struct type *element_type, *range_type, *index_type;
16480 struct attribute *attr;
16482 struct dynamic_prop *byte_stride_prop = NULL;
16483 unsigned int bit_stride = 0;
16485 element_type = die_type (die, cu);
16487 /* The die_type call above may have already set the type for this DIE. */
16488 type = get_die_type (die, cu);
16492 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16498 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16499 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16502 complaint (_("unable to read array DW_AT_byte_stride "
16503 " - DIE at %s [in module %s]"),
16504 sect_offset_str (die->sect_off),
16505 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16506 /* Ignore this attribute. We will likely not be able to print
16507 arrays of this type correctly, but there is little we can do
16508 to help if we cannot read the attribute's value. */
16509 byte_stride_prop = NULL;
16513 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16515 bit_stride = DW_UNSND (attr);
16517 /* Irix 6.2 native cc creates array types without children for
16518 arrays with unspecified length. */
16519 if (die->child == NULL)
16521 index_type = objfile_type (objfile)->builtin_int;
16522 range_type = create_static_range_type (NULL, index_type, 0, -1);
16523 type = create_array_type_with_stride (NULL, element_type, range_type,
16524 byte_stride_prop, bit_stride);
16525 return set_die_type (die, type, cu);
16528 std::vector<struct type *> range_types;
16529 child_die = die->child;
16530 while (child_die && child_die->tag)
16532 if (child_die->tag == DW_TAG_subrange_type)
16534 struct type *child_type = read_type_die (child_die, cu);
16536 if (child_type != NULL)
16538 /* The range type was succesfully read. Save it for the
16539 array type creation. */
16540 range_types.push_back (child_type);
16543 child_die = sibling_die (child_die);
16546 /* Dwarf2 dimensions are output from left to right, create the
16547 necessary array types in backwards order. */
16549 type = element_type;
16551 if (read_array_order (die, cu) == DW_ORD_col_major)
16555 while (i < range_types.size ())
16556 type = create_array_type_with_stride (NULL, type, range_types[i++],
16557 byte_stride_prop, bit_stride);
16561 size_t ndim = range_types.size ();
16563 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16564 byte_stride_prop, bit_stride);
16567 /* Understand Dwarf2 support for vector types (like they occur on
16568 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16569 array type. This is not part of the Dwarf2/3 standard yet, but a
16570 custom vendor extension. The main difference between a regular
16571 array and the vector variant is that vectors are passed by value
16573 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16575 make_vector_type (type);
16577 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16578 implementation may choose to implement triple vectors using this
16580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16583 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16584 TYPE_LENGTH (type) = DW_UNSND (attr);
16586 complaint (_("DW_AT_byte_size for array type smaller "
16587 "than the total size of elements"));
16590 name = dwarf2_name (die, cu);
16592 TYPE_NAME (type) = name;
16594 maybe_set_alignment (cu, die, type);
16596 /* Install the type in the die. */
16597 set_die_type (die, type, cu);
16599 /* set_die_type should be already done. */
16600 set_descriptive_type (type, die, cu);
16605 static enum dwarf_array_dim_ordering
16606 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16608 struct attribute *attr;
16610 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16613 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16615 /* GNU F77 is a special case, as at 08/2004 array type info is the
16616 opposite order to the dwarf2 specification, but data is still
16617 laid out as per normal fortran.
16619 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16620 version checking. */
16622 if (cu->language == language_fortran
16623 && cu->producer && strstr (cu->producer, "GNU F77"))
16625 return DW_ORD_row_major;
16628 switch (cu->language_defn->la_array_ordering)
16630 case array_column_major:
16631 return DW_ORD_col_major;
16632 case array_row_major:
16634 return DW_ORD_row_major;
16638 /* Extract all information from a DW_TAG_set_type DIE and put it in
16639 the DIE's type field. */
16641 static struct type *
16642 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16644 struct type *domain_type, *set_type;
16645 struct attribute *attr;
16647 domain_type = die_type (die, cu);
16649 /* The die_type call above may have already set the type for this DIE. */
16650 set_type = get_die_type (die, cu);
16654 set_type = create_set_type (NULL, domain_type);
16656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16658 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16660 maybe_set_alignment (cu, die, set_type);
16662 return set_die_type (die, set_type, cu);
16665 /* A helper for read_common_block that creates a locexpr baton.
16666 SYM is the symbol which we are marking as computed.
16667 COMMON_DIE is the DIE for the common block.
16668 COMMON_LOC is the location expression attribute for the common
16670 MEMBER_LOC is the location expression attribute for the particular
16671 member of the common block that we are processing.
16672 CU is the CU from which the above come. */
16675 mark_common_block_symbol_computed (struct symbol *sym,
16676 struct die_info *common_die,
16677 struct attribute *common_loc,
16678 struct attribute *member_loc,
16679 struct dwarf2_cu *cu)
16681 struct dwarf2_per_objfile *dwarf2_per_objfile
16682 = cu->per_cu->dwarf2_per_objfile;
16683 struct objfile *objfile = dwarf2_per_objfile->objfile;
16684 struct dwarf2_locexpr_baton *baton;
16686 unsigned int cu_off;
16687 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16688 LONGEST offset = 0;
16690 gdb_assert (common_loc && member_loc);
16691 gdb_assert (attr_form_is_block (common_loc));
16692 gdb_assert (attr_form_is_block (member_loc)
16693 || attr_form_is_constant (member_loc));
16695 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16696 baton->per_cu = cu->per_cu;
16697 gdb_assert (baton->per_cu);
16699 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16701 if (attr_form_is_constant (member_loc))
16703 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16704 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16707 baton->size += DW_BLOCK (member_loc)->size;
16709 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16712 *ptr++ = DW_OP_call4;
16713 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16714 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16717 if (attr_form_is_constant (member_loc))
16719 *ptr++ = DW_OP_addr;
16720 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16721 ptr += cu->header.addr_size;
16725 /* We have to copy the data here, because DW_OP_call4 will only
16726 use a DW_AT_location attribute. */
16727 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16728 ptr += DW_BLOCK (member_loc)->size;
16731 *ptr++ = DW_OP_plus;
16732 gdb_assert (ptr - baton->data == baton->size);
16734 SYMBOL_LOCATION_BATON (sym) = baton;
16735 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16738 /* Create appropriate locally-scoped variables for all the
16739 DW_TAG_common_block entries. Also create a struct common_block
16740 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16741 is used to sepate the common blocks name namespace from regular
16745 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16747 struct attribute *attr;
16749 attr = dwarf2_attr (die, DW_AT_location, cu);
16752 /* Support the .debug_loc offsets. */
16753 if (attr_form_is_block (attr))
16757 else if (attr_form_is_section_offset (attr))
16759 dwarf2_complex_location_expr_complaint ();
16764 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16765 "common block member");
16770 if (die->child != NULL)
16772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16773 struct die_info *child_die;
16774 size_t n_entries = 0, size;
16775 struct common_block *common_block;
16776 struct symbol *sym;
16778 for (child_die = die->child;
16779 child_die && child_die->tag;
16780 child_die = sibling_die (child_die))
16783 size = (sizeof (struct common_block)
16784 + (n_entries - 1) * sizeof (struct symbol *));
16786 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16788 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16789 common_block->n_entries = 0;
16791 for (child_die = die->child;
16792 child_die && child_die->tag;
16793 child_die = sibling_die (child_die))
16795 /* Create the symbol in the DW_TAG_common_block block in the current
16797 sym = new_symbol (child_die, NULL, cu);
16800 struct attribute *member_loc;
16802 common_block->contents[common_block->n_entries++] = sym;
16804 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16808 /* GDB has handled this for a long time, but it is
16809 not specified by DWARF. It seems to have been
16810 emitted by gfortran at least as recently as:
16811 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16812 complaint (_("Variable in common block has "
16813 "DW_AT_data_member_location "
16814 "- DIE at %s [in module %s]"),
16815 sect_offset_str (child_die->sect_off),
16816 objfile_name (objfile));
16818 if (attr_form_is_section_offset (member_loc))
16819 dwarf2_complex_location_expr_complaint ();
16820 else if (attr_form_is_constant (member_loc)
16821 || attr_form_is_block (member_loc))
16824 mark_common_block_symbol_computed (sym, die, attr,
16828 dwarf2_complex_location_expr_complaint ();
16833 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16834 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16838 /* Create a type for a C++ namespace. */
16840 static struct type *
16841 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16844 const char *previous_prefix, *name;
16848 /* For extensions, reuse the type of the original namespace. */
16849 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16851 struct die_info *ext_die;
16852 struct dwarf2_cu *ext_cu = cu;
16854 ext_die = dwarf2_extension (die, &ext_cu);
16855 type = read_type_die (ext_die, ext_cu);
16857 /* EXT_CU may not be the same as CU.
16858 Ensure TYPE is recorded with CU in die_type_hash. */
16859 return set_die_type (die, type, cu);
16862 name = namespace_name (die, &is_anonymous, cu);
16864 /* Now build the name of the current namespace. */
16866 previous_prefix = determine_prefix (die, cu);
16867 if (previous_prefix[0] != '\0')
16868 name = typename_concat (&objfile->objfile_obstack,
16869 previous_prefix, name, 0, cu);
16871 /* Create the type. */
16872 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16874 return set_die_type (die, type, cu);
16877 /* Read a namespace scope. */
16880 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16882 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16885 /* Add a symbol associated to this if we haven't seen the namespace
16886 before. Also, add a using directive if it's an anonymous
16889 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16893 type = read_type_die (die, cu);
16894 new_symbol (die, type, cu);
16896 namespace_name (die, &is_anonymous, cu);
16899 const char *previous_prefix = determine_prefix (die, cu);
16901 std::vector<const char *> excludes;
16902 add_using_directive (using_directives (cu),
16903 previous_prefix, TYPE_NAME (type), NULL,
16904 NULL, excludes, 0, &objfile->objfile_obstack);
16908 if (die->child != NULL)
16910 struct die_info *child_die = die->child;
16912 while (child_die && child_die->tag)
16914 process_die (child_die, cu);
16915 child_die = sibling_die (child_die);
16920 /* Read a Fortran module as type. This DIE can be only a declaration used for
16921 imported module. Still we need that type as local Fortran "use ... only"
16922 declaration imports depend on the created type in determine_prefix. */
16924 static struct type *
16925 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16928 const char *module_name;
16931 module_name = dwarf2_name (die, cu);
16933 complaint (_("DW_TAG_module has no name, offset %s"),
16934 sect_offset_str (die->sect_off));
16935 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16937 return set_die_type (die, type, cu);
16940 /* Read a Fortran module. */
16943 read_module (struct die_info *die, struct dwarf2_cu *cu)
16945 struct die_info *child_die = die->child;
16948 type = read_type_die (die, cu);
16949 new_symbol (die, type, cu);
16951 while (child_die && child_die->tag)
16953 process_die (child_die, cu);
16954 child_die = sibling_die (child_die);
16958 /* Return the name of the namespace represented by DIE. Set
16959 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16962 static const char *
16963 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16965 struct die_info *current_die;
16966 const char *name = NULL;
16968 /* Loop through the extensions until we find a name. */
16970 for (current_die = die;
16971 current_die != NULL;
16972 current_die = dwarf2_extension (die, &cu))
16974 /* We don't use dwarf2_name here so that we can detect the absence
16975 of a name -> anonymous namespace. */
16976 name = dwarf2_string_attr (die, DW_AT_name, cu);
16982 /* Is it an anonymous namespace? */
16984 *is_anonymous = (name == NULL);
16986 name = CP_ANONYMOUS_NAMESPACE_STR;
16991 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16992 the user defined type vector. */
16994 static struct type *
16995 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16997 struct gdbarch *gdbarch
16998 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16999 struct comp_unit_head *cu_header = &cu->header;
17001 struct attribute *attr_byte_size;
17002 struct attribute *attr_address_class;
17003 int byte_size, addr_class;
17004 struct type *target_type;
17006 target_type = die_type (die, cu);
17008 /* The die_type call above may have already set the type for this DIE. */
17009 type = get_die_type (die, cu);
17013 type = lookup_pointer_type (target_type);
17015 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17016 if (attr_byte_size)
17017 byte_size = DW_UNSND (attr_byte_size);
17019 byte_size = cu_header->addr_size;
17021 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17022 if (attr_address_class)
17023 addr_class = DW_UNSND (attr_address_class);
17025 addr_class = DW_ADDR_none;
17027 ULONGEST alignment = get_alignment (cu, die);
17029 /* If the pointer size, alignment, or address class is different
17030 than the default, create a type variant marked as such and set
17031 the length accordingly. */
17032 if (TYPE_LENGTH (type) != byte_size
17033 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17034 && alignment != TYPE_RAW_ALIGN (type))
17035 || addr_class != DW_ADDR_none)
17037 if (gdbarch_address_class_type_flags_p (gdbarch))
17041 type_flags = gdbarch_address_class_type_flags
17042 (gdbarch, byte_size, addr_class);
17043 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17045 type = make_type_with_address_space (type, type_flags);
17047 else if (TYPE_LENGTH (type) != byte_size)
17049 complaint (_("invalid pointer size %d"), byte_size);
17051 else if (TYPE_RAW_ALIGN (type) != alignment)
17053 complaint (_("Invalid DW_AT_alignment"
17054 " - DIE at %s [in module %s]"),
17055 sect_offset_str (die->sect_off),
17056 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17060 /* Should we also complain about unhandled address classes? */
17064 TYPE_LENGTH (type) = byte_size;
17065 set_type_align (type, alignment);
17066 return set_die_type (die, type, cu);
17069 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17070 the user defined type vector. */
17072 static struct type *
17073 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17076 struct type *to_type;
17077 struct type *domain;
17079 to_type = die_type (die, cu);
17080 domain = die_containing_type (die, cu);
17082 /* The calls above may have already set the type for this DIE. */
17083 type = get_die_type (die, cu);
17087 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17088 type = lookup_methodptr_type (to_type);
17089 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17091 struct type *new_type
17092 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17094 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17095 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17096 TYPE_VARARGS (to_type));
17097 type = lookup_methodptr_type (new_type);
17100 type = lookup_memberptr_type (to_type, domain);
17102 return set_die_type (die, type, cu);
17105 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17106 the user defined type vector. */
17108 static struct type *
17109 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17110 enum type_code refcode)
17112 struct comp_unit_head *cu_header = &cu->header;
17113 struct type *type, *target_type;
17114 struct attribute *attr;
17116 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17118 target_type = die_type (die, cu);
17120 /* The die_type call above may have already set the type for this DIE. */
17121 type = get_die_type (die, cu);
17125 type = lookup_reference_type (target_type, refcode);
17126 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17129 TYPE_LENGTH (type) = DW_UNSND (attr);
17133 TYPE_LENGTH (type) = cu_header->addr_size;
17135 maybe_set_alignment (cu, die, type);
17136 return set_die_type (die, type, cu);
17139 /* Add the given cv-qualifiers to the element type of the array. GCC
17140 outputs DWARF type qualifiers that apply to an array, not the
17141 element type. But GDB relies on the array element type to carry
17142 the cv-qualifiers. This mimics section 6.7.3 of the C99
17145 static struct type *
17146 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17147 struct type *base_type, int cnst, int voltl)
17149 struct type *el_type, *inner_array;
17151 base_type = copy_type (base_type);
17152 inner_array = base_type;
17154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17156 TYPE_TARGET_TYPE (inner_array) =
17157 copy_type (TYPE_TARGET_TYPE (inner_array));
17158 inner_array = TYPE_TARGET_TYPE (inner_array);
17161 el_type = TYPE_TARGET_TYPE (inner_array);
17162 cnst |= TYPE_CONST (el_type);
17163 voltl |= TYPE_VOLATILE (el_type);
17164 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17166 return set_die_type (die, base_type, cu);
17169 static struct type *
17170 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17172 struct type *base_type, *cv_type;
17174 base_type = die_type (die, cu);
17176 /* The die_type call above may have already set the type for this DIE. */
17177 cv_type = get_die_type (die, cu);
17181 /* In case the const qualifier is applied to an array type, the element type
17182 is so qualified, not the array type (section 6.7.3 of C99). */
17183 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17184 return add_array_cv_type (die, cu, base_type, 1, 0);
17186 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17187 return set_die_type (die, cv_type, cu);
17190 static struct type *
17191 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17193 struct type *base_type, *cv_type;
17195 base_type = die_type (die, cu);
17197 /* The die_type call above may have already set the type for this DIE. */
17198 cv_type = get_die_type (die, cu);
17202 /* In case the volatile qualifier is applied to an array type, the
17203 element type is so qualified, not the array type (section 6.7.3
17205 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17206 return add_array_cv_type (die, cu, base_type, 0, 1);
17208 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17209 return set_die_type (die, cv_type, cu);
17212 /* Handle DW_TAG_restrict_type. */
17214 static struct type *
17215 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17217 struct type *base_type, *cv_type;
17219 base_type = die_type (die, cu);
17221 /* The die_type call above may have already set the type for this DIE. */
17222 cv_type = get_die_type (die, cu);
17226 cv_type = make_restrict_type (base_type);
17227 return set_die_type (die, cv_type, cu);
17230 /* Handle DW_TAG_atomic_type. */
17232 static struct type *
17233 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17235 struct type *base_type, *cv_type;
17237 base_type = die_type (die, cu);
17239 /* The die_type call above may have already set the type for this DIE. */
17240 cv_type = get_die_type (die, cu);
17244 cv_type = make_atomic_type (base_type);
17245 return set_die_type (die, cv_type, cu);
17248 /* Extract all information from a DW_TAG_string_type DIE and add to
17249 the user defined type vector. It isn't really a user defined type,
17250 but it behaves like one, with other DIE's using an AT_user_def_type
17251 attribute to reference it. */
17253 static struct type *
17254 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17258 struct type *type, *range_type, *index_type, *char_type;
17259 struct attribute *attr;
17260 unsigned int length;
17262 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17265 length = DW_UNSND (attr);
17269 /* Check for the DW_AT_byte_size attribute. */
17270 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17273 length = DW_UNSND (attr);
17281 index_type = objfile_type (objfile)->builtin_int;
17282 range_type = create_static_range_type (NULL, index_type, 1, length);
17283 char_type = language_string_char_type (cu->language_defn, gdbarch);
17284 type = create_string_type (NULL, char_type, range_type);
17286 return set_die_type (die, type, cu);
17289 /* Assuming that DIE corresponds to a function, returns nonzero
17290 if the function is prototyped. */
17293 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17295 struct attribute *attr;
17297 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17298 if (attr && (DW_UNSND (attr) != 0))
17301 /* The DWARF standard implies that the DW_AT_prototyped attribute
17302 is only meaninful for C, but the concept also extends to other
17303 languages that allow unprototyped functions (Eg: Objective C).
17304 For all other languages, assume that functions are always
17306 if (cu->language != language_c
17307 && cu->language != language_objc
17308 && cu->language != language_opencl)
17311 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17312 prototyped and unprototyped functions; default to prototyped,
17313 since that is more common in modern code (and RealView warns
17314 about unprototyped functions). */
17315 if (producer_is_realview (cu->producer))
17321 /* Handle DIES due to C code like:
17325 int (*funcp)(int a, long l);
17329 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17331 static struct type *
17332 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17334 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17335 struct type *type; /* Type that this function returns. */
17336 struct type *ftype; /* Function that returns above type. */
17337 struct attribute *attr;
17339 type = die_type (die, cu);
17341 /* The die_type call above may have already set the type for this DIE. */
17342 ftype = get_die_type (die, cu);
17346 ftype = lookup_function_type (type);
17348 if (prototyped_function_p (die, cu))
17349 TYPE_PROTOTYPED (ftype) = 1;
17351 /* Store the calling convention in the type if it's available in
17352 the subroutine die. Otherwise set the calling convention to
17353 the default value DW_CC_normal. */
17354 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17356 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17357 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17358 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17360 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17362 /* Record whether the function returns normally to its caller or not
17363 if the DWARF producer set that information. */
17364 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17365 if (attr && (DW_UNSND (attr) != 0))
17366 TYPE_NO_RETURN (ftype) = 1;
17368 /* We need to add the subroutine type to the die immediately so
17369 we don't infinitely recurse when dealing with parameters
17370 declared as the same subroutine type. */
17371 set_die_type (die, ftype, cu);
17373 if (die->child != NULL)
17375 struct type *void_type = objfile_type (objfile)->builtin_void;
17376 struct die_info *child_die;
17377 int nparams, iparams;
17379 /* Count the number of parameters.
17380 FIXME: GDB currently ignores vararg functions, but knows about
17381 vararg member functions. */
17383 child_die = die->child;
17384 while (child_die && child_die->tag)
17386 if (child_die->tag == DW_TAG_formal_parameter)
17388 else if (child_die->tag == DW_TAG_unspecified_parameters)
17389 TYPE_VARARGS (ftype) = 1;
17390 child_die = sibling_die (child_die);
17393 /* Allocate storage for parameters and fill them in. */
17394 TYPE_NFIELDS (ftype) = nparams;
17395 TYPE_FIELDS (ftype) = (struct field *)
17396 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17398 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17399 even if we error out during the parameters reading below. */
17400 for (iparams = 0; iparams < nparams; iparams++)
17401 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17404 child_die = die->child;
17405 while (child_die && child_die->tag)
17407 if (child_die->tag == DW_TAG_formal_parameter)
17409 struct type *arg_type;
17411 /* DWARF version 2 has no clean way to discern C++
17412 static and non-static member functions. G++ helps
17413 GDB by marking the first parameter for non-static
17414 member functions (which is the this pointer) as
17415 artificial. We pass this information to
17416 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17418 DWARF version 3 added DW_AT_object_pointer, which GCC
17419 4.5 does not yet generate. */
17420 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17424 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17425 arg_type = die_type (child_die, cu);
17427 /* RealView does not mark THIS as const, which the testsuite
17428 expects. GCC marks THIS as const in method definitions,
17429 but not in the class specifications (GCC PR 43053). */
17430 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17431 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17434 struct dwarf2_cu *arg_cu = cu;
17435 const char *name = dwarf2_name (child_die, cu);
17437 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17440 /* If the compiler emits this, use it. */
17441 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17444 else if (name && strcmp (name, "this") == 0)
17445 /* Function definitions will have the argument names. */
17447 else if (name == NULL && iparams == 0)
17448 /* Declarations may not have the names, so like
17449 elsewhere in GDB, assume an artificial first
17450 argument is "this". */
17454 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17458 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17461 child_die = sibling_die (child_die);
17468 static struct type *
17469 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17471 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17472 const char *name = NULL;
17473 struct type *this_type, *target_type;
17475 name = dwarf2_full_name (NULL, die, cu);
17476 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17477 TYPE_TARGET_STUB (this_type) = 1;
17478 set_die_type (die, this_type, cu);
17479 target_type = die_type (die, cu);
17480 if (target_type != this_type)
17481 TYPE_TARGET_TYPE (this_type) = target_type;
17484 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17485 spec and cause infinite loops in GDB. */
17486 complaint (_("Self-referential DW_TAG_typedef "
17487 "- DIE at %s [in module %s]"),
17488 sect_offset_str (die->sect_off), objfile_name (objfile));
17489 TYPE_TARGET_TYPE (this_type) = NULL;
17494 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17495 (which may be different from NAME) to the architecture back-end to allow
17496 it to guess the correct format if necessary. */
17498 static struct type *
17499 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17500 const char *name_hint)
17502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17503 const struct floatformat **format;
17506 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17508 type = init_float_type (objfile, bits, name, format);
17510 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17515 /* Allocate an integer type of size BITS and name NAME. */
17517 static struct type *
17518 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17519 int bits, int unsigned_p, const char *name)
17523 /* Versions of Intel's C Compiler generate an integer type called "void"
17524 instead of using DW_TAG_unspecified_type. This has been seen on
17525 at least versions 14, 17, and 18. */
17526 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17527 && strcmp (name, "void") == 0)
17528 type = objfile_type (objfile)->builtin_void;
17530 type = init_integer_type (objfile, bits, unsigned_p, name);
17535 /* Find a representation of a given base type and install
17536 it in the TYPE field of the die. */
17538 static struct type *
17539 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17541 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17543 struct attribute *attr;
17544 int encoding = 0, bits = 0;
17547 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17550 encoding = DW_UNSND (attr);
17552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17555 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17557 name = dwarf2_name (die, cu);
17560 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17565 case DW_ATE_address:
17566 /* Turn DW_ATE_address into a void * pointer. */
17567 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17568 type = init_pointer_type (objfile, bits, name, type);
17570 case DW_ATE_boolean:
17571 type = init_boolean_type (objfile, bits, 1, name);
17573 case DW_ATE_complex_float:
17574 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17575 type = init_complex_type (objfile, name, type);
17577 case DW_ATE_decimal_float:
17578 type = init_decfloat_type (objfile, bits, name);
17581 type = dwarf2_init_float_type (objfile, bits, name, name);
17583 case DW_ATE_signed:
17584 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17586 case DW_ATE_unsigned:
17587 if (cu->language == language_fortran
17589 && startswith (name, "character("))
17590 type = init_character_type (objfile, bits, 1, name);
17592 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17594 case DW_ATE_signed_char:
17595 if (cu->language == language_ada || cu->language == language_m2
17596 || cu->language == language_pascal
17597 || cu->language == language_fortran)
17598 type = init_character_type (objfile, bits, 0, name);
17600 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17602 case DW_ATE_unsigned_char:
17603 if (cu->language == language_ada || cu->language == language_m2
17604 || cu->language == language_pascal
17605 || cu->language == language_fortran
17606 || cu->language == language_rust)
17607 type = init_character_type (objfile, bits, 1, name);
17609 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17613 gdbarch *arch = get_objfile_arch (objfile);
17616 type = builtin_type (arch)->builtin_char16;
17617 else if (bits == 32)
17618 type = builtin_type (arch)->builtin_char32;
17621 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17623 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17625 return set_die_type (die, type, cu);
17630 complaint (_("unsupported DW_AT_encoding: '%s'"),
17631 dwarf_type_encoding_name (encoding));
17632 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17636 if (name && strcmp (name, "char") == 0)
17637 TYPE_NOSIGN (type) = 1;
17639 maybe_set_alignment (cu, die, type);
17641 return set_die_type (die, type, cu);
17644 /* Parse dwarf attribute if it's a block, reference or constant and put the
17645 resulting value of the attribute into struct bound_prop.
17646 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17649 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17650 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17652 struct dwarf2_property_baton *baton;
17653 struct obstack *obstack
17654 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17656 if (attr == NULL || prop == NULL)
17659 if (attr_form_is_block (attr))
17661 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17662 baton->referenced_type = NULL;
17663 baton->locexpr.per_cu = cu->per_cu;
17664 baton->locexpr.size = DW_BLOCK (attr)->size;
17665 baton->locexpr.data = DW_BLOCK (attr)->data;
17666 prop->data.baton = baton;
17667 prop->kind = PROP_LOCEXPR;
17668 gdb_assert (prop->data.baton != NULL);
17670 else if (attr_form_is_ref (attr))
17672 struct dwarf2_cu *target_cu = cu;
17673 struct die_info *target_die;
17674 struct attribute *target_attr;
17676 target_die = follow_die_ref (die, attr, &target_cu);
17677 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17678 if (target_attr == NULL)
17679 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17681 if (target_attr == NULL)
17684 switch (target_attr->name)
17686 case DW_AT_location:
17687 if (attr_form_is_section_offset (target_attr))
17689 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17690 baton->referenced_type = die_type (target_die, target_cu);
17691 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17692 prop->data.baton = baton;
17693 prop->kind = PROP_LOCLIST;
17694 gdb_assert (prop->data.baton != NULL);
17696 else if (attr_form_is_block (target_attr))
17698 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17699 baton->referenced_type = die_type (target_die, target_cu);
17700 baton->locexpr.per_cu = cu->per_cu;
17701 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17702 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17703 prop->data.baton = baton;
17704 prop->kind = PROP_LOCEXPR;
17705 gdb_assert (prop->data.baton != NULL);
17709 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17710 "dynamic property");
17714 case DW_AT_data_member_location:
17718 if (!handle_data_member_location (target_die, target_cu,
17722 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17723 baton->referenced_type = read_type_die (target_die->parent,
17725 baton->offset_info.offset = offset;
17726 baton->offset_info.type = die_type (target_die, target_cu);
17727 prop->data.baton = baton;
17728 prop->kind = PROP_ADDR_OFFSET;
17733 else if (attr_form_is_constant (attr))
17735 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17736 prop->kind = PROP_CONST;
17740 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17741 dwarf2_name (die, cu));
17748 /* Read the given DW_AT_subrange DIE. */
17750 static struct type *
17751 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17753 struct type *base_type, *orig_base_type;
17754 struct type *range_type;
17755 struct attribute *attr;
17756 struct dynamic_prop low, high;
17757 int low_default_is_valid;
17758 int high_bound_is_count = 0;
17760 ULONGEST negative_mask;
17762 orig_base_type = die_type (die, cu);
17763 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17764 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17765 creating the range type, but we use the result of check_typedef
17766 when examining properties of the type. */
17767 base_type = check_typedef (orig_base_type);
17769 /* The die_type call above may have already set the type for this DIE. */
17770 range_type = get_die_type (die, cu);
17774 low.kind = PROP_CONST;
17775 high.kind = PROP_CONST;
17776 high.data.const_val = 0;
17778 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17779 omitting DW_AT_lower_bound. */
17780 switch (cu->language)
17783 case language_cplus:
17784 low.data.const_val = 0;
17785 low_default_is_valid = 1;
17787 case language_fortran:
17788 low.data.const_val = 1;
17789 low_default_is_valid = 1;
17792 case language_objc:
17793 case language_rust:
17794 low.data.const_val = 0;
17795 low_default_is_valid = (cu->header.version >= 4);
17799 case language_pascal:
17800 low.data.const_val = 1;
17801 low_default_is_valid = (cu->header.version >= 4);
17804 low.data.const_val = 0;
17805 low_default_is_valid = 0;
17809 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17811 attr_to_dynamic_prop (attr, die, cu, &low);
17812 else if (!low_default_is_valid)
17813 complaint (_("Missing DW_AT_lower_bound "
17814 "- DIE at %s [in module %s]"),
17815 sect_offset_str (die->sect_off),
17816 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17818 struct attribute *attr_ub, *attr_count;
17819 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17820 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17822 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17823 if (attr_to_dynamic_prop (attr, die, cu, &high))
17825 /* If bounds are constant do the final calculation here. */
17826 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17827 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17829 high_bound_is_count = 1;
17833 if (attr_ub != NULL)
17834 complaint (_("Unresolved DW_AT_upper_bound "
17835 "- DIE at %s [in module %s]"),
17836 sect_offset_str (die->sect_off),
17837 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17838 if (attr_count != NULL)
17839 complaint (_("Unresolved DW_AT_count "
17840 "- DIE at %s [in module %s]"),
17841 sect_offset_str (die->sect_off),
17842 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17847 /* Dwarf-2 specifications explicitly allows to create subrange types
17848 without specifying a base type.
17849 In that case, the base type must be set to the type of
17850 the lower bound, upper bound or count, in that order, if any of these
17851 three attributes references an object that has a type.
17852 If no base type is found, the Dwarf-2 specifications say that
17853 a signed integer type of size equal to the size of an address should
17855 For the following C code: `extern char gdb_int [];'
17856 GCC produces an empty range DIE.
17857 FIXME: muller/2010-05-28: Possible references to object for low bound,
17858 high bound or count are not yet handled by this code. */
17859 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17863 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17864 struct type *int_type = objfile_type (objfile)->builtin_int;
17866 /* Test "int", "long int", and "long long int" objfile types,
17867 and select the first one having a size above or equal to the
17868 architecture address size. */
17869 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17870 base_type = int_type;
17873 int_type = objfile_type (objfile)->builtin_long;
17874 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17875 base_type = int_type;
17878 int_type = objfile_type (objfile)->builtin_long_long;
17879 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17880 base_type = int_type;
17885 /* Normally, the DWARF producers are expected to use a signed
17886 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17887 But this is unfortunately not always the case, as witnessed
17888 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17889 is used instead. To work around that ambiguity, we treat
17890 the bounds as signed, and thus sign-extend their values, when
17891 the base type is signed. */
17893 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17894 if (low.kind == PROP_CONST
17895 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17896 low.data.const_val |= negative_mask;
17897 if (high.kind == PROP_CONST
17898 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17899 high.data.const_val |= negative_mask;
17901 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17903 if (high_bound_is_count)
17904 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17906 /* Ada expects an empty array on no boundary attributes. */
17907 if (attr == NULL && cu->language != language_ada)
17908 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17910 name = dwarf2_name (die, cu);
17912 TYPE_NAME (range_type) = name;
17914 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17916 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17918 maybe_set_alignment (cu, die, range_type);
17920 set_die_type (die, range_type, cu);
17922 /* set_die_type should be already done. */
17923 set_descriptive_type (range_type, die, cu);
17928 static struct type *
17929 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17933 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17935 TYPE_NAME (type) = dwarf2_name (die, cu);
17937 /* In Ada, an unspecified type is typically used when the description
17938 of the type is defered to a different unit. When encountering
17939 such a type, we treat it as a stub, and try to resolve it later on,
17941 if (cu->language == language_ada)
17942 TYPE_STUB (type) = 1;
17944 return set_die_type (die, type, cu);
17947 /* Read a single die and all its descendents. Set the die's sibling
17948 field to NULL; set other fields in the die correctly, and set all
17949 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17950 location of the info_ptr after reading all of those dies. PARENT
17951 is the parent of the die in question. */
17953 static struct die_info *
17954 read_die_and_children (const struct die_reader_specs *reader,
17955 const gdb_byte *info_ptr,
17956 const gdb_byte **new_info_ptr,
17957 struct die_info *parent)
17959 struct die_info *die;
17960 const gdb_byte *cur_ptr;
17963 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17966 *new_info_ptr = cur_ptr;
17969 store_in_ref_table (die, reader->cu);
17972 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17976 *new_info_ptr = cur_ptr;
17979 die->sibling = NULL;
17980 die->parent = parent;
17984 /* Read a die, all of its descendents, and all of its siblings; set
17985 all of the fields of all of the dies correctly. Arguments are as
17986 in read_die_and_children. */
17988 static struct die_info *
17989 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17990 const gdb_byte *info_ptr,
17991 const gdb_byte **new_info_ptr,
17992 struct die_info *parent)
17994 struct die_info *first_die, *last_sibling;
17995 const gdb_byte *cur_ptr;
17997 cur_ptr = info_ptr;
17998 first_die = last_sibling = NULL;
18002 struct die_info *die
18003 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18007 *new_info_ptr = cur_ptr;
18014 last_sibling->sibling = die;
18016 last_sibling = die;
18020 /* Read a die, all of its descendents, and all of its siblings; set
18021 all of the fields of all of the dies correctly. Arguments are as
18022 in read_die_and_children.
18023 This the main entry point for reading a DIE and all its children. */
18025 static struct die_info *
18026 read_die_and_siblings (const struct die_reader_specs *reader,
18027 const gdb_byte *info_ptr,
18028 const gdb_byte **new_info_ptr,
18029 struct die_info *parent)
18031 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18032 new_info_ptr, parent);
18034 if (dwarf_die_debug)
18036 fprintf_unfiltered (gdb_stdlog,
18037 "Read die from %s@0x%x of %s:\n",
18038 get_section_name (reader->die_section),
18039 (unsigned) (info_ptr - reader->die_section->buffer),
18040 bfd_get_filename (reader->abfd));
18041 dump_die (die, dwarf_die_debug);
18047 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18049 The caller is responsible for filling in the extra attributes
18050 and updating (*DIEP)->num_attrs.
18051 Set DIEP to point to a newly allocated die with its information,
18052 except for its child, sibling, and parent fields.
18053 Set HAS_CHILDREN to tell whether the die has children or not. */
18055 static const gdb_byte *
18056 read_full_die_1 (const struct die_reader_specs *reader,
18057 struct die_info **diep, const gdb_byte *info_ptr,
18058 int *has_children, int num_extra_attrs)
18060 unsigned int abbrev_number, bytes_read, i;
18061 struct abbrev_info *abbrev;
18062 struct die_info *die;
18063 struct dwarf2_cu *cu = reader->cu;
18064 bfd *abfd = reader->abfd;
18066 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18067 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18068 info_ptr += bytes_read;
18069 if (!abbrev_number)
18076 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18078 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18080 bfd_get_filename (abfd));
18082 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18083 die->sect_off = sect_off;
18084 die->tag = abbrev->tag;
18085 die->abbrev = abbrev_number;
18087 /* Make the result usable.
18088 The caller needs to update num_attrs after adding the extra
18090 die->num_attrs = abbrev->num_attrs;
18092 for (i = 0; i < abbrev->num_attrs; ++i)
18093 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18097 *has_children = abbrev->has_children;
18101 /* Read a die and all its attributes.
18102 Set DIEP to point to a newly allocated die with its information,
18103 except for its child, sibling, and parent fields.
18104 Set HAS_CHILDREN to tell whether the die has children or not. */
18106 static const gdb_byte *
18107 read_full_die (const struct die_reader_specs *reader,
18108 struct die_info **diep, const gdb_byte *info_ptr,
18111 const gdb_byte *result;
18113 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18115 if (dwarf_die_debug)
18117 fprintf_unfiltered (gdb_stdlog,
18118 "Read die from %s@0x%x of %s:\n",
18119 get_section_name (reader->die_section),
18120 (unsigned) (info_ptr - reader->die_section->buffer),
18121 bfd_get_filename (reader->abfd));
18122 dump_die (*diep, dwarf_die_debug);
18128 /* Abbreviation tables.
18130 In DWARF version 2, the description of the debugging information is
18131 stored in a separate .debug_abbrev section. Before we read any
18132 dies from a section we read in all abbreviations and install them
18133 in a hash table. */
18135 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18137 struct abbrev_info *
18138 abbrev_table::alloc_abbrev ()
18140 struct abbrev_info *abbrev;
18142 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18143 memset (abbrev, 0, sizeof (struct abbrev_info));
18148 /* Add an abbreviation to the table. */
18151 abbrev_table::add_abbrev (unsigned int abbrev_number,
18152 struct abbrev_info *abbrev)
18154 unsigned int hash_number;
18156 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18157 abbrev->next = m_abbrevs[hash_number];
18158 m_abbrevs[hash_number] = abbrev;
18161 /* Look up an abbrev in the table.
18162 Returns NULL if the abbrev is not found. */
18164 struct abbrev_info *
18165 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18167 unsigned int hash_number;
18168 struct abbrev_info *abbrev;
18170 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18171 abbrev = m_abbrevs[hash_number];
18175 if (abbrev->number == abbrev_number)
18177 abbrev = abbrev->next;
18182 /* Read in an abbrev table. */
18184 static abbrev_table_up
18185 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18186 struct dwarf2_section_info *section,
18187 sect_offset sect_off)
18189 struct objfile *objfile = dwarf2_per_objfile->objfile;
18190 bfd *abfd = get_section_bfd_owner (section);
18191 const gdb_byte *abbrev_ptr;
18192 struct abbrev_info *cur_abbrev;
18193 unsigned int abbrev_number, bytes_read, abbrev_name;
18194 unsigned int abbrev_form;
18195 struct attr_abbrev *cur_attrs;
18196 unsigned int allocated_attrs;
18198 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18200 dwarf2_read_section (objfile, section);
18201 abbrev_ptr = section->buffer + to_underlying (sect_off);
18202 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18203 abbrev_ptr += bytes_read;
18205 allocated_attrs = ATTR_ALLOC_CHUNK;
18206 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18208 /* Loop until we reach an abbrev number of 0. */
18209 while (abbrev_number)
18211 cur_abbrev = abbrev_table->alloc_abbrev ();
18213 /* read in abbrev header */
18214 cur_abbrev->number = abbrev_number;
18216 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18217 abbrev_ptr += bytes_read;
18218 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18221 /* now read in declarations */
18224 LONGEST implicit_const;
18226 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18227 abbrev_ptr += bytes_read;
18228 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18229 abbrev_ptr += bytes_read;
18230 if (abbrev_form == DW_FORM_implicit_const)
18232 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18234 abbrev_ptr += bytes_read;
18238 /* Initialize it due to a false compiler warning. */
18239 implicit_const = -1;
18242 if (abbrev_name == 0)
18245 if (cur_abbrev->num_attrs == allocated_attrs)
18247 allocated_attrs += ATTR_ALLOC_CHUNK;
18249 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18252 cur_attrs[cur_abbrev->num_attrs].name
18253 = (enum dwarf_attribute) abbrev_name;
18254 cur_attrs[cur_abbrev->num_attrs].form
18255 = (enum dwarf_form) abbrev_form;
18256 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18257 ++cur_abbrev->num_attrs;
18260 cur_abbrev->attrs =
18261 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18262 cur_abbrev->num_attrs);
18263 memcpy (cur_abbrev->attrs, cur_attrs,
18264 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18266 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18268 /* Get next abbreviation.
18269 Under Irix6 the abbreviations for a compilation unit are not
18270 always properly terminated with an abbrev number of 0.
18271 Exit loop if we encounter an abbreviation which we have
18272 already read (which means we are about to read the abbreviations
18273 for the next compile unit) or if the end of the abbreviation
18274 table is reached. */
18275 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18277 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18278 abbrev_ptr += bytes_read;
18279 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18284 return abbrev_table;
18287 /* Returns nonzero if TAG represents a type that we might generate a partial
18291 is_type_tag_for_partial (int tag)
18296 /* Some types that would be reasonable to generate partial symbols for,
18297 that we don't at present. */
18298 case DW_TAG_array_type:
18299 case DW_TAG_file_type:
18300 case DW_TAG_ptr_to_member_type:
18301 case DW_TAG_set_type:
18302 case DW_TAG_string_type:
18303 case DW_TAG_subroutine_type:
18305 case DW_TAG_base_type:
18306 case DW_TAG_class_type:
18307 case DW_TAG_interface_type:
18308 case DW_TAG_enumeration_type:
18309 case DW_TAG_structure_type:
18310 case DW_TAG_subrange_type:
18311 case DW_TAG_typedef:
18312 case DW_TAG_union_type:
18319 /* Load all DIEs that are interesting for partial symbols into memory. */
18321 static struct partial_die_info *
18322 load_partial_dies (const struct die_reader_specs *reader,
18323 const gdb_byte *info_ptr, int building_psymtab)
18325 struct dwarf2_cu *cu = reader->cu;
18326 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18327 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18328 unsigned int bytes_read;
18329 unsigned int load_all = 0;
18330 int nesting_level = 1;
18335 gdb_assert (cu->per_cu != NULL);
18336 if (cu->per_cu->load_all_dies)
18340 = htab_create_alloc_ex (cu->header.length / 12,
18344 &cu->comp_unit_obstack,
18345 hashtab_obstack_allocate,
18346 dummy_obstack_deallocate);
18350 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18352 /* A NULL abbrev means the end of a series of children. */
18353 if (abbrev == NULL)
18355 if (--nesting_level == 0)
18358 info_ptr += bytes_read;
18359 last_die = parent_die;
18360 parent_die = parent_die->die_parent;
18364 /* Check for template arguments. We never save these; if
18365 they're seen, we just mark the parent, and go on our way. */
18366 if (parent_die != NULL
18367 && cu->language == language_cplus
18368 && (abbrev->tag == DW_TAG_template_type_param
18369 || abbrev->tag == DW_TAG_template_value_param))
18371 parent_die->has_template_arguments = 1;
18375 /* We don't need a partial DIE for the template argument. */
18376 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18381 /* We only recurse into c++ subprograms looking for template arguments.
18382 Skip their other children. */
18384 && cu->language == language_cplus
18385 && parent_die != NULL
18386 && parent_die->tag == DW_TAG_subprogram)
18388 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18392 /* Check whether this DIE is interesting enough to save. Normally
18393 we would not be interested in members here, but there may be
18394 later variables referencing them via DW_AT_specification (for
18395 static members). */
18397 && !is_type_tag_for_partial (abbrev->tag)
18398 && abbrev->tag != DW_TAG_constant
18399 && abbrev->tag != DW_TAG_enumerator
18400 && abbrev->tag != DW_TAG_subprogram
18401 && abbrev->tag != DW_TAG_inlined_subroutine
18402 && abbrev->tag != DW_TAG_lexical_block
18403 && abbrev->tag != DW_TAG_variable
18404 && abbrev->tag != DW_TAG_namespace
18405 && abbrev->tag != DW_TAG_module
18406 && abbrev->tag != DW_TAG_member
18407 && abbrev->tag != DW_TAG_imported_unit
18408 && abbrev->tag != DW_TAG_imported_declaration)
18410 /* Otherwise we skip to the next sibling, if any. */
18411 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18415 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18418 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18420 /* This two-pass algorithm for processing partial symbols has a
18421 high cost in cache pressure. Thus, handle some simple cases
18422 here which cover the majority of C partial symbols. DIEs
18423 which neither have specification tags in them, nor could have
18424 specification tags elsewhere pointing at them, can simply be
18425 processed and discarded.
18427 This segment is also optional; scan_partial_symbols and
18428 add_partial_symbol will handle these DIEs if we chain
18429 them in normally. When compilers which do not emit large
18430 quantities of duplicate debug information are more common,
18431 this code can probably be removed. */
18433 /* Any complete simple types at the top level (pretty much all
18434 of them, for a language without namespaces), can be processed
18436 if (parent_die == NULL
18437 && pdi.has_specification == 0
18438 && pdi.is_declaration == 0
18439 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18440 || pdi.tag == DW_TAG_base_type
18441 || pdi.tag == DW_TAG_subrange_type))
18443 if (building_psymtab && pdi.name != NULL)
18444 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18445 VAR_DOMAIN, LOC_TYPEDEF, -1,
18446 psymbol_placement::STATIC,
18447 0, cu->language, objfile);
18448 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18452 /* The exception for DW_TAG_typedef with has_children above is
18453 a workaround of GCC PR debug/47510. In the case of this complaint
18454 type_name_or_error will error on such types later.
18456 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18457 it could not find the child DIEs referenced later, this is checked
18458 above. In correct DWARF DW_TAG_typedef should have no children. */
18460 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18461 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18462 "- DIE at %s [in module %s]"),
18463 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18465 /* If we're at the second level, and we're an enumerator, and
18466 our parent has no specification (meaning possibly lives in a
18467 namespace elsewhere), then we can add the partial symbol now
18468 instead of queueing it. */
18469 if (pdi.tag == DW_TAG_enumerator
18470 && parent_die != NULL
18471 && parent_die->die_parent == NULL
18472 && parent_die->tag == DW_TAG_enumeration_type
18473 && parent_die->has_specification == 0)
18475 if (pdi.name == NULL)
18476 complaint (_("malformed enumerator DIE ignored"));
18477 else if (building_psymtab)
18478 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18479 VAR_DOMAIN, LOC_CONST, -1,
18480 cu->language == language_cplus
18481 ? psymbol_placement::GLOBAL
18482 : psymbol_placement::STATIC,
18483 0, cu->language, objfile);
18485 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18489 struct partial_die_info *part_die
18490 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18492 /* We'll save this DIE so link it in. */
18493 part_die->die_parent = parent_die;
18494 part_die->die_sibling = NULL;
18495 part_die->die_child = NULL;
18497 if (last_die && last_die == parent_die)
18498 last_die->die_child = part_die;
18500 last_die->die_sibling = part_die;
18502 last_die = part_die;
18504 if (first_die == NULL)
18505 first_die = part_die;
18507 /* Maybe add the DIE to the hash table. Not all DIEs that we
18508 find interesting need to be in the hash table, because we
18509 also have the parent/sibling/child chains; only those that we
18510 might refer to by offset later during partial symbol reading.
18512 For now this means things that might have be the target of a
18513 DW_AT_specification, DW_AT_abstract_origin, or
18514 DW_AT_extension. DW_AT_extension will refer only to
18515 namespaces; DW_AT_abstract_origin refers to functions (and
18516 many things under the function DIE, but we do not recurse
18517 into function DIEs during partial symbol reading) and
18518 possibly variables as well; DW_AT_specification refers to
18519 declarations. Declarations ought to have the DW_AT_declaration
18520 flag. It happens that GCC forgets to put it in sometimes, but
18521 only for functions, not for types.
18523 Adding more things than necessary to the hash table is harmless
18524 except for the performance cost. Adding too few will result in
18525 wasted time in find_partial_die, when we reread the compilation
18526 unit with load_all_dies set. */
18529 || abbrev->tag == DW_TAG_constant
18530 || abbrev->tag == DW_TAG_subprogram
18531 || abbrev->tag == DW_TAG_variable
18532 || abbrev->tag == DW_TAG_namespace
18533 || part_die->is_declaration)
18537 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18538 to_underlying (part_die->sect_off),
18543 /* For some DIEs we want to follow their children (if any). For C
18544 we have no reason to follow the children of structures; for other
18545 languages we have to, so that we can get at method physnames
18546 to infer fully qualified class names, for DW_AT_specification,
18547 and for C++ template arguments. For C++, we also look one level
18548 inside functions to find template arguments (if the name of the
18549 function does not already contain the template arguments).
18551 For Ada, we need to scan the children of subprograms and lexical
18552 blocks as well because Ada allows the definition of nested
18553 entities that could be interesting for the debugger, such as
18554 nested subprograms for instance. */
18555 if (last_die->has_children
18557 || last_die->tag == DW_TAG_namespace
18558 || last_die->tag == DW_TAG_module
18559 || last_die->tag == DW_TAG_enumeration_type
18560 || (cu->language == language_cplus
18561 && last_die->tag == DW_TAG_subprogram
18562 && (last_die->name == NULL
18563 || strchr (last_die->name, '<') == NULL))
18564 || (cu->language != language_c
18565 && (last_die->tag == DW_TAG_class_type
18566 || last_die->tag == DW_TAG_interface_type
18567 || last_die->tag == DW_TAG_structure_type
18568 || last_die->tag == DW_TAG_union_type))
18569 || (cu->language == language_ada
18570 && (last_die->tag == DW_TAG_subprogram
18571 || last_die->tag == DW_TAG_lexical_block))))
18574 parent_die = last_die;
18578 /* Otherwise we skip to the next sibling, if any. */
18579 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18581 /* Back to the top, do it again. */
18585 partial_die_info::partial_die_info (sect_offset sect_off_,
18586 struct abbrev_info *abbrev)
18587 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18591 /* Read a minimal amount of information into the minimal die structure.
18592 INFO_PTR should point just after the initial uleb128 of a DIE. */
18595 partial_die_info::read (const struct die_reader_specs *reader,
18596 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18598 struct dwarf2_cu *cu = reader->cu;
18599 struct dwarf2_per_objfile *dwarf2_per_objfile
18600 = cu->per_cu->dwarf2_per_objfile;
18602 int has_low_pc_attr = 0;
18603 int has_high_pc_attr = 0;
18604 int high_pc_relative = 0;
18606 for (i = 0; i < abbrev.num_attrs; ++i)
18608 struct attribute attr;
18610 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18612 /* Store the data if it is of an attribute we want to keep in a
18613 partial symbol table. */
18619 case DW_TAG_compile_unit:
18620 case DW_TAG_partial_unit:
18621 case DW_TAG_type_unit:
18622 /* Compilation units have a DW_AT_name that is a filename, not
18623 a source language identifier. */
18624 case DW_TAG_enumeration_type:
18625 case DW_TAG_enumerator:
18626 /* These tags always have simple identifiers already; no need
18627 to canonicalize them. */
18628 name = DW_STRING (&attr);
18632 struct objfile *objfile = dwarf2_per_objfile->objfile;
18635 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18636 &objfile->per_bfd->storage_obstack);
18641 case DW_AT_linkage_name:
18642 case DW_AT_MIPS_linkage_name:
18643 /* Note that both forms of linkage name might appear. We
18644 assume they will be the same, and we only store the last
18646 if (cu->language == language_ada)
18647 name = DW_STRING (&attr);
18648 linkage_name = DW_STRING (&attr);
18651 has_low_pc_attr = 1;
18652 lowpc = attr_value_as_address (&attr);
18654 case DW_AT_high_pc:
18655 has_high_pc_attr = 1;
18656 highpc = attr_value_as_address (&attr);
18657 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18658 high_pc_relative = 1;
18660 case DW_AT_location:
18661 /* Support the .debug_loc offsets. */
18662 if (attr_form_is_block (&attr))
18664 d.locdesc = DW_BLOCK (&attr);
18666 else if (attr_form_is_section_offset (&attr))
18668 dwarf2_complex_location_expr_complaint ();
18672 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18673 "partial symbol information");
18676 case DW_AT_external:
18677 is_external = DW_UNSND (&attr);
18679 case DW_AT_declaration:
18680 is_declaration = DW_UNSND (&attr);
18685 case DW_AT_abstract_origin:
18686 case DW_AT_specification:
18687 case DW_AT_extension:
18688 has_specification = 1;
18689 spec_offset = dwarf2_get_ref_die_offset (&attr);
18690 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18691 || cu->per_cu->is_dwz);
18693 case DW_AT_sibling:
18694 /* Ignore absolute siblings, they might point outside of
18695 the current compile unit. */
18696 if (attr.form == DW_FORM_ref_addr)
18697 complaint (_("ignoring absolute DW_AT_sibling"));
18700 const gdb_byte *buffer = reader->buffer;
18701 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18702 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18704 if (sibling_ptr < info_ptr)
18705 complaint (_("DW_AT_sibling points backwards"));
18706 else if (sibling_ptr > reader->buffer_end)
18707 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18709 sibling = sibling_ptr;
18712 case DW_AT_byte_size:
18715 case DW_AT_const_value:
18716 has_const_value = 1;
18718 case DW_AT_calling_convention:
18719 /* DWARF doesn't provide a way to identify a program's source-level
18720 entry point. DW_AT_calling_convention attributes are only meant
18721 to describe functions' calling conventions.
18723 However, because it's a necessary piece of information in
18724 Fortran, and before DWARF 4 DW_CC_program was the only
18725 piece of debugging information whose definition refers to
18726 a 'main program' at all, several compilers marked Fortran
18727 main programs with DW_CC_program --- even when those
18728 functions use the standard calling conventions.
18730 Although DWARF now specifies a way to provide this
18731 information, we support this practice for backward
18733 if (DW_UNSND (&attr) == DW_CC_program
18734 && cu->language == language_fortran)
18735 main_subprogram = 1;
18738 if (DW_UNSND (&attr) == DW_INL_inlined
18739 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18740 may_be_inlined = 1;
18744 if (tag == DW_TAG_imported_unit)
18746 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18747 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18748 || cu->per_cu->is_dwz);
18752 case DW_AT_main_subprogram:
18753 main_subprogram = DW_UNSND (&attr);
18761 if (high_pc_relative)
18764 if (has_low_pc_attr && has_high_pc_attr)
18766 /* When using the GNU linker, .gnu.linkonce. sections are used to
18767 eliminate duplicate copies of functions and vtables and such.
18768 The linker will arbitrarily choose one and discard the others.
18769 The AT_*_pc values for such functions refer to local labels in
18770 these sections. If the section from that file was discarded, the
18771 labels are not in the output, so the relocs get a value of 0.
18772 If this is a discarded function, mark the pc bounds as invalid,
18773 so that GDB will ignore it. */
18774 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18776 struct objfile *objfile = dwarf2_per_objfile->objfile;
18777 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18779 complaint (_("DW_AT_low_pc %s is zero "
18780 "for DIE at %s [in module %s]"),
18781 paddress (gdbarch, lowpc),
18782 sect_offset_str (sect_off),
18783 objfile_name (objfile));
18785 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18786 else if (lowpc >= highpc)
18788 struct objfile *objfile = dwarf2_per_objfile->objfile;
18789 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18791 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18792 "for DIE at %s [in module %s]"),
18793 paddress (gdbarch, lowpc),
18794 paddress (gdbarch, highpc),
18795 sect_offset_str (sect_off),
18796 objfile_name (objfile));
18805 /* Find a cached partial DIE at OFFSET in CU. */
18807 struct partial_die_info *
18808 dwarf2_cu::find_partial_die (sect_offset sect_off)
18810 struct partial_die_info *lookup_die = NULL;
18811 struct partial_die_info part_die (sect_off);
18813 lookup_die = ((struct partial_die_info *)
18814 htab_find_with_hash (partial_dies, &part_die,
18815 to_underlying (sect_off)));
18820 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18821 except in the case of .debug_types DIEs which do not reference
18822 outside their CU (they do however referencing other types via
18823 DW_FORM_ref_sig8). */
18825 static struct partial_die_info *
18826 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18828 struct dwarf2_per_objfile *dwarf2_per_objfile
18829 = cu->per_cu->dwarf2_per_objfile;
18830 struct objfile *objfile = dwarf2_per_objfile->objfile;
18831 struct dwarf2_per_cu_data *per_cu = NULL;
18832 struct partial_die_info *pd = NULL;
18834 if (offset_in_dwz == cu->per_cu->is_dwz
18835 && offset_in_cu_p (&cu->header, sect_off))
18837 pd = cu->find_partial_die (sect_off);
18840 /* We missed recording what we needed.
18841 Load all dies and try again. */
18842 per_cu = cu->per_cu;
18846 /* TUs don't reference other CUs/TUs (except via type signatures). */
18847 if (cu->per_cu->is_debug_types)
18849 error (_("Dwarf Error: Type Unit at offset %s contains"
18850 " external reference to offset %s [in module %s].\n"),
18851 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18852 bfd_get_filename (objfile->obfd));
18854 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18855 dwarf2_per_objfile);
18857 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18858 load_partial_comp_unit (per_cu);
18860 per_cu->cu->last_used = 0;
18861 pd = per_cu->cu->find_partial_die (sect_off);
18864 /* If we didn't find it, and not all dies have been loaded,
18865 load them all and try again. */
18867 if (pd == NULL && per_cu->load_all_dies == 0)
18869 per_cu->load_all_dies = 1;
18871 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18872 THIS_CU->cu may already be in use. So we can't just free it and
18873 replace its DIEs with the ones we read in. Instead, we leave those
18874 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18875 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18877 load_partial_comp_unit (per_cu);
18879 pd = per_cu->cu->find_partial_die (sect_off);
18883 internal_error (__FILE__, __LINE__,
18884 _("could not find partial DIE %s "
18885 "in cache [from module %s]\n"),
18886 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18890 /* See if we can figure out if the class lives in a namespace. We do
18891 this by looking for a member function; its demangled name will
18892 contain namespace info, if there is any. */
18895 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18896 struct dwarf2_cu *cu)
18898 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18899 what template types look like, because the demangler
18900 frequently doesn't give the same name as the debug info. We
18901 could fix this by only using the demangled name to get the
18902 prefix (but see comment in read_structure_type). */
18904 struct partial_die_info *real_pdi;
18905 struct partial_die_info *child_pdi;
18907 /* If this DIE (this DIE's specification, if any) has a parent, then
18908 we should not do this. We'll prepend the parent's fully qualified
18909 name when we create the partial symbol. */
18911 real_pdi = struct_pdi;
18912 while (real_pdi->has_specification)
18913 real_pdi = find_partial_die (real_pdi->spec_offset,
18914 real_pdi->spec_is_dwz, cu);
18916 if (real_pdi->die_parent != NULL)
18919 for (child_pdi = struct_pdi->die_child;
18921 child_pdi = child_pdi->die_sibling)
18923 if (child_pdi->tag == DW_TAG_subprogram
18924 && child_pdi->linkage_name != NULL)
18926 char *actual_class_name
18927 = language_class_name_from_physname (cu->language_defn,
18928 child_pdi->linkage_name);
18929 if (actual_class_name != NULL)
18931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18934 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18936 strlen (actual_class_name)));
18937 xfree (actual_class_name);
18945 partial_die_info::fixup (struct dwarf2_cu *cu)
18947 /* Once we've fixed up a die, there's no point in doing so again.
18948 This also avoids a memory leak if we were to call
18949 guess_partial_die_structure_name multiple times. */
18953 /* If we found a reference attribute and the DIE has no name, try
18954 to find a name in the referred to DIE. */
18956 if (name == NULL && has_specification)
18958 struct partial_die_info *spec_die;
18960 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18962 spec_die->fixup (cu);
18964 if (spec_die->name)
18966 name = spec_die->name;
18968 /* Copy DW_AT_external attribute if it is set. */
18969 if (spec_die->is_external)
18970 is_external = spec_die->is_external;
18974 /* Set default names for some unnamed DIEs. */
18976 if (name == NULL && tag == DW_TAG_namespace)
18977 name = CP_ANONYMOUS_NAMESPACE_STR;
18979 /* If there is no parent die to provide a namespace, and there are
18980 children, see if we can determine the namespace from their linkage
18982 if (cu->language == language_cplus
18983 && !VEC_empty (dwarf2_section_info_def,
18984 cu->per_cu->dwarf2_per_objfile->types)
18985 && die_parent == NULL
18987 && (tag == DW_TAG_class_type
18988 || tag == DW_TAG_structure_type
18989 || tag == DW_TAG_union_type))
18990 guess_partial_die_structure_name (this, cu);
18992 /* GCC might emit a nameless struct or union that has a linkage
18993 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18995 && (tag == DW_TAG_class_type
18996 || tag == DW_TAG_interface_type
18997 || tag == DW_TAG_structure_type
18998 || tag == DW_TAG_union_type)
18999 && linkage_name != NULL)
19003 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19008 /* Strip any leading namespaces/classes, keep only the base name.
19009 DW_AT_name for named DIEs does not contain the prefixes. */
19010 base = strrchr (demangled, ':');
19011 if (base && base > demangled && base[-1] == ':')
19016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19019 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19020 base, strlen (base)));
19028 /* Read an attribute value described by an attribute form. */
19030 static const gdb_byte *
19031 read_attribute_value (const struct die_reader_specs *reader,
19032 struct attribute *attr, unsigned form,
19033 LONGEST implicit_const, const gdb_byte *info_ptr)
19035 struct dwarf2_cu *cu = reader->cu;
19036 struct dwarf2_per_objfile *dwarf2_per_objfile
19037 = cu->per_cu->dwarf2_per_objfile;
19038 struct objfile *objfile = dwarf2_per_objfile->objfile;
19039 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19040 bfd *abfd = reader->abfd;
19041 struct comp_unit_head *cu_header = &cu->header;
19042 unsigned int bytes_read;
19043 struct dwarf_block *blk;
19045 attr->form = (enum dwarf_form) form;
19048 case DW_FORM_ref_addr:
19049 if (cu->header.version == 2)
19050 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19052 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19053 &cu->header, &bytes_read);
19054 info_ptr += bytes_read;
19056 case DW_FORM_GNU_ref_alt:
19057 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19058 info_ptr += bytes_read;
19061 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19062 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19063 info_ptr += bytes_read;
19065 case DW_FORM_block2:
19066 blk = dwarf_alloc_block (cu);
19067 blk->size = read_2_bytes (abfd, info_ptr);
19069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19070 info_ptr += blk->size;
19071 DW_BLOCK (attr) = blk;
19073 case DW_FORM_block4:
19074 blk = dwarf_alloc_block (cu);
19075 blk->size = read_4_bytes (abfd, info_ptr);
19077 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19078 info_ptr += blk->size;
19079 DW_BLOCK (attr) = blk;
19081 case DW_FORM_data2:
19082 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19085 case DW_FORM_data4:
19086 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19089 case DW_FORM_data8:
19090 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19093 case DW_FORM_data16:
19094 blk = dwarf_alloc_block (cu);
19096 blk->data = read_n_bytes (abfd, info_ptr, 16);
19098 DW_BLOCK (attr) = blk;
19100 case DW_FORM_sec_offset:
19101 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19102 info_ptr += bytes_read;
19104 case DW_FORM_string:
19105 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19106 DW_STRING_IS_CANONICAL (attr) = 0;
19107 info_ptr += bytes_read;
19110 if (!cu->per_cu->is_dwz)
19112 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19113 abfd, info_ptr, cu_header,
19115 DW_STRING_IS_CANONICAL (attr) = 0;
19116 info_ptr += bytes_read;
19120 case DW_FORM_line_strp:
19121 if (!cu->per_cu->is_dwz)
19123 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19125 cu_header, &bytes_read);
19126 DW_STRING_IS_CANONICAL (attr) = 0;
19127 info_ptr += bytes_read;
19131 case DW_FORM_GNU_strp_alt:
19133 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19134 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19137 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19139 DW_STRING_IS_CANONICAL (attr) = 0;
19140 info_ptr += bytes_read;
19143 case DW_FORM_exprloc:
19144 case DW_FORM_block:
19145 blk = dwarf_alloc_block (cu);
19146 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19147 info_ptr += bytes_read;
19148 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19149 info_ptr += blk->size;
19150 DW_BLOCK (attr) = blk;
19152 case DW_FORM_block1:
19153 blk = dwarf_alloc_block (cu);
19154 blk->size = read_1_byte (abfd, info_ptr);
19156 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19157 info_ptr += blk->size;
19158 DW_BLOCK (attr) = blk;
19160 case DW_FORM_data1:
19161 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19165 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19168 case DW_FORM_flag_present:
19169 DW_UNSND (attr) = 1;
19171 case DW_FORM_sdata:
19172 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19173 info_ptr += bytes_read;
19175 case DW_FORM_udata:
19176 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19177 info_ptr += bytes_read;
19180 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19181 + read_1_byte (abfd, info_ptr));
19185 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19186 + read_2_bytes (abfd, info_ptr));
19190 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19191 + read_4_bytes (abfd, info_ptr));
19195 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19196 + read_8_bytes (abfd, info_ptr));
19199 case DW_FORM_ref_sig8:
19200 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19203 case DW_FORM_ref_udata:
19204 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19205 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19206 info_ptr += bytes_read;
19208 case DW_FORM_indirect:
19209 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19210 info_ptr += bytes_read;
19211 if (form == DW_FORM_implicit_const)
19213 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19214 info_ptr += bytes_read;
19216 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19219 case DW_FORM_implicit_const:
19220 DW_SND (attr) = implicit_const;
19222 case DW_FORM_GNU_addr_index:
19223 if (reader->dwo_file == NULL)
19225 /* For now flag a hard error.
19226 Later we can turn this into a complaint. */
19227 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19228 dwarf_form_name (form),
19229 bfd_get_filename (abfd));
19231 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19232 info_ptr += bytes_read;
19234 case DW_FORM_GNU_str_index:
19235 if (reader->dwo_file == NULL)
19237 /* For now flag a hard error.
19238 Later we can turn this into a complaint if warranted. */
19239 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19240 dwarf_form_name (form),
19241 bfd_get_filename (abfd));
19244 ULONGEST str_index =
19245 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19247 DW_STRING (attr) = read_str_index (reader, str_index);
19248 DW_STRING_IS_CANONICAL (attr) = 0;
19249 info_ptr += bytes_read;
19253 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19254 dwarf_form_name (form),
19255 bfd_get_filename (abfd));
19259 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19260 attr->form = DW_FORM_GNU_ref_alt;
19262 /* We have seen instances where the compiler tried to emit a byte
19263 size attribute of -1 which ended up being encoded as an unsigned
19264 0xffffffff. Although 0xffffffff is technically a valid size value,
19265 an object of this size seems pretty unlikely so we can relatively
19266 safely treat these cases as if the size attribute was invalid and
19267 treat them as zero by default. */
19268 if (attr->name == DW_AT_byte_size
19269 && form == DW_FORM_data4
19270 && DW_UNSND (attr) >= 0xffffffff)
19273 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19274 hex_string (DW_UNSND (attr)));
19275 DW_UNSND (attr) = 0;
19281 /* Read an attribute described by an abbreviated attribute. */
19283 static const gdb_byte *
19284 read_attribute (const struct die_reader_specs *reader,
19285 struct attribute *attr, struct attr_abbrev *abbrev,
19286 const gdb_byte *info_ptr)
19288 attr->name = abbrev->name;
19289 return read_attribute_value (reader, attr, abbrev->form,
19290 abbrev->implicit_const, info_ptr);
19293 /* Read dwarf information from a buffer. */
19295 static unsigned int
19296 read_1_byte (bfd *abfd, const gdb_byte *buf)
19298 return bfd_get_8 (abfd, buf);
19302 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19304 return bfd_get_signed_8 (abfd, buf);
19307 static unsigned int
19308 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19310 return bfd_get_16 (abfd, buf);
19314 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19316 return bfd_get_signed_16 (abfd, buf);
19319 static unsigned int
19320 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19322 return bfd_get_32 (abfd, buf);
19326 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19328 return bfd_get_signed_32 (abfd, buf);
19332 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19334 return bfd_get_64 (abfd, buf);
19338 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19339 unsigned int *bytes_read)
19341 struct comp_unit_head *cu_header = &cu->header;
19342 CORE_ADDR retval = 0;
19344 if (cu_header->signed_addr_p)
19346 switch (cu_header->addr_size)
19349 retval = bfd_get_signed_16 (abfd, buf);
19352 retval = bfd_get_signed_32 (abfd, buf);
19355 retval = bfd_get_signed_64 (abfd, buf);
19358 internal_error (__FILE__, __LINE__,
19359 _("read_address: bad switch, signed [in module %s]"),
19360 bfd_get_filename (abfd));
19365 switch (cu_header->addr_size)
19368 retval = bfd_get_16 (abfd, buf);
19371 retval = bfd_get_32 (abfd, buf);
19374 retval = bfd_get_64 (abfd, buf);
19377 internal_error (__FILE__, __LINE__,
19378 _("read_address: bad switch, "
19379 "unsigned [in module %s]"),
19380 bfd_get_filename (abfd));
19384 *bytes_read = cu_header->addr_size;
19388 /* Read the initial length from a section. The (draft) DWARF 3
19389 specification allows the initial length to take up either 4 bytes
19390 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19391 bytes describe the length and all offsets will be 8 bytes in length
19394 An older, non-standard 64-bit format is also handled by this
19395 function. The older format in question stores the initial length
19396 as an 8-byte quantity without an escape value. Lengths greater
19397 than 2^32 aren't very common which means that the initial 4 bytes
19398 is almost always zero. Since a length value of zero doesn't make
19399 sense for the 32-bit format, this initial zero can be considered to
19400 be an escape value which indicates the presence of the older 64-bit
19401 format. As written, the code can't detect (old format) lengths
19402 greater than 4GB. If it becomes necessary to handle lengths
19403 somewhat larger than 4GB, we could allow other small values (such
19404 as the non-sensical values of 1, 2, and 3) to also be used as
19405 escape values indicating the presence of the old format.
19407 The value returned via bytes_read should be used to increment the
19408 relevant pointer after calling read_initial_length().
19410 [ Note: read_initial_length() and read_offset() are based on the
19411 document entitled "DWARF Debugging Information Format", revision
19412 3, draft 8, dated November 19, 2001. This document was obtained
19415 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19417 This document is only a draft and is subject to change. (So beware.)
19419 Details regarding the older, non-standard 64-bit format were
19420 determined empirically by examining 64-bit ELF files produced by
19421 the SGI toolchain on an IRIX 6.5 machine.
19423 - Kevin, July 16, 2002
19427 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19429 LONGEST length = bfd_get_32 (abfd, buf);
19431 if (length == 0xffffffff)
19433 length = bfd_get_64 (abfd, buf + 4);
19436 else if (length == 0)
19438 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19439 length = bfd_get_64 (abfd, buf);
19450 /* Cover function for read_initial_length.
19451 Returns the length of the object at BUF, and stores the size of the
19452 initial length in *BYTES_READ and stores the size that offsets will be in
19454 If the initial length size is not equivalent to that specified in
19455 CU_HEADER then issue a complaint.
19456 This is useful when reading non-comp-unit headers. */
19459 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19460 const struct comp_unit_head *cu_header,
19461 unsigned int *bytes_read,
19462 unsigned int *offset_size)
19464 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19466 gdb_assert (cu_header->initial_length_size == 4
19467 || cu_header->initial_length_size == 8
19468 || cu_header->initial_length_size == 12);
19470 if (cu_header->initial_length_size != *bytes_read)
19471 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19473 *offset_size = (*bytes_read == 4) ? 4 : 8;
19477 /* Read an offset from the data stream. The size of the offset is
19478 given by cu_header->offset_size. */
19481 read_offset (bfd *abfd, const gdb_byte *buf,
19482 const struct comp_unit_head *cu_header,
19483 unsigned int *bytes_read)
19485 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19487 *bytes_read = cu_header->offset_size;
19491 /* Read an offset from the data stream. */
19494 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19496 LONGEST retval = 0;
19498 switch (offset_size)
19501 retval = bfd_get_32 (abfd, buf);
19504 retval = bfd_get_64 (abfd, buf);
19507 internal_error (__FILE__, __LINE__,
19508 _("read_offset_1: bad switch [in module %s]"),
19509 bfd_get_filename (abfd));
19515 static const gdb_byte *
19516 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19518 /* If the size of a host char is 8 bits, we can return a pointer
19519 to the buffer, otherwise we have to copy the data to a buffer
19520 allocated on the temporary obstack. */
19521 gdb_assert (HOST_CHAR_BIT == 8);
19525 static const char *
19526 read_direct_string (bfd *abfd, const gdb_byte *buf,
19527 unsigned int *bytes_read_ptr)
19529 /* If the size of a host char is 8 bits, we can return a pointer
19530 to the string, otherwise we have to copy the string to a buffer
19531 allocated on the temporary obstack. */
19532 gdb_assert (HOST_CHAR_BIT == 8);
19535 *bytes_read_ptr = 1;
19538 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19539 return (const char *) buf;
19542 /* Return pointer to string at section SECT offset STR_OFFSET with error
19543 reporting strings FORM_NAME and SECT_NAME. */
19545 static const char *
19546 read_indirect_string_at_offset_from (struct objfile *objfile,
19547 bfd *abfd, LONGEST str_offset,
19548 struct dwarf2_section_info *sect,
19549 const char *form_name,
19550 const char *sect_name)
19552 dwarf2_read_section (objfile, sect);
19553 if (sect->buffer == NULL)
19554 error (_("%s used without %s section [in module %s]"),
19555 form_name, sect_name, bfd_get_filename (abfd));
19556 if (str_offset >= sect->size)
19557 error (_("%s pointing outside of %s section [in module %s]"),
19558 form_name, sect_name, bfd_get_filename (abfd));
19559 gdb_assert (HOST_CHAR_BIT == 8);
19560 if (sect->buffer[str_offset] == '\0')
19562 return (const char *) (sect->buffer + str_offset);
19565 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19567 static const char *
19568 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19569 bfd *abfd, LONGEST str_offset)
19571 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19573 &dwarf2_per_objfile->str,
19574 "DW_FORM_strp", ".debug_str");
19577 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19579 static const char *
19580 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19581 bfd *abfd, LONGEST str_offset)
19583 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19585 &dwarf2_per_objfile->line_str,
19586 "DW_FORM_line_strp",
19587 ".debug_line_str");
19590 /* Read a string at offset STR_OFFSET in the .debug_str section from
19591 the .dwz file DWZ. Throw an error if the offset is too large. If
19592 the string consists of a single NUL byte, return NULL; otherwise
19593 return a pointer to the string. */
19595 static const char *
19596 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19597 LONGEST str_offset)
19599 dwarf2_read_section (objfile, &dwz->str);
19601 if (dwz->str.buffer == NULL)
19602 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19603 "section [in module %s]"),
19604 bfd_get_filename (dwz->dwz_bfd));
19605 if (str_offset >= dwz->str.size)
19606 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19607 ".debug_str section [in module %s]"),
19608 bfd_get_filename (dwz->dwz_bfd));
19609 gdb_assert (HOST_CHAR_BIT == 8);
19610 if (dwz->str.buffer[str_offset] == '\0')
19612 return (const char *) (dwz->str.buffer + str_offset);
19615 /* Return pointer to string at .debug_str offset as read from BUF.
19616 BUF is assumed to be in a compilation unit described by CU_HEADER.
19617 Return *BYTES_READ_PTR count of bytes read from BUF. */
19619 static const char *
19620 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19621 const gdb_byte *buf,
19622 const struct comp_unit_head *cu_header,
19623 unsigned int *bytes_read_ptr)
19625 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19627 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19630 /* Return pointer to string at .debug_line_str offset as read from BUF.
19631 BUF is assumed to be in a compilation unit described by CU_HEADER.
19632 Return *BYTES_READ_PTR count of bytes read from BUF. */
19634 static const char *
19635 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19636 bfd *abfd, const gdb_byte *buf,
19637 const struct comp_unit_head *cu_header,
19638 unsigned int *bytes_read_ptr)
19640 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19642 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19647 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19648 unsigned int *bytes_read_ptr)
19651 unsigned int num_read;
19653 unsigned char byte;
19660 byte = bfd_get_8 (abfd, buf);
19663 result |= ((ULONGEST) (byte & 127) << shift);
19664 if ((byte & 128) == 0)
19670 *bytes_read_ptr = num_read;
19675 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19676 unsigned int *bytes_read_ptr)
19679 int shift, num_read;
19680 unsigned char byte;
19687 byte = bfd_get_8 (abfd, buf);
19690 result |= ((ULONGEST) (byte & 127) << shift);
19692 if ((byte & 128) == 0)
19697 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19698 result |= -(((ULONGEST) 1) << shift);
19699 *bytes_read_ptr = num_read;
19703 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19704 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19705 ADDR_SIZE is the size of addresses from the CU header. */
19708 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19709 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19711 struct objfile *objfile = dwarf2_per_objfile->objfile;
19712 bfd *abfd = objfile->obfd;
19713 const gdb_byte *info_ptr;
19715 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19716 if (dwarf2_per_objfile->addr.buffer == NULL)
19717 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19718 objfile_name (objfile));
19719 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19720 error (_("DW_FORM_addr_index pointing outside of "
19721 ".debug_addr section [in module %s]"),
19722 objfile_name (objfile));
19723 info_ptr = (dwarf2_per_objfile->addr.buffer
19724 + addr_base + addr_index * addr_size);
19725 if (addr_size == 4)
19726 return bfd_get_32 (abfd, info_ptr);
19728 return bfd_get_64 (abfd, info_ptr);
19731 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19734 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19736 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19737 cu->addr_base, cu->header.addr_size);
19740 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19743 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19744 unsigned int *bytes_read)
19746 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19747 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19749 return read_addr_index (cu, addr_index);
19752 /* Data structure to pass results from dwarf2_read_addr_index_reader
19753 back to dwarf2_read_addr_index. */
19755 struct dwarf2_read_addr_index_data
19757 ULONGEST addr_base;
19761 /* die_reader_func for dwarf2_read_addr_index. */
19764 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19765 const gdb_byte *info_ptr,
19766 struct die_info *comp_unit_die,
19770 struct dwarf2_cu *cu = reader->cu;
19771 struct dwarf2_read_addr_index_data *aidata =
19772 (struct dwarf2_read_addr_index_data *) data;
19774 aidata->addr_base = cu->addr_base;
19775 aidata->addr_size = cu->header.addr_size;
19778 /* Given an index in .debug_addr, fetch the value.
19779 NOTE: This can be called during dwarf expression evaluation,
19780 long after the debug information has been read, and thus per_cu->cu
19781 may no longer exist. */
19784 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19785 unsigned int addr_index)
19787 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19788 struct dwarf2_cu *cu = per_cu->cu;
19789 ULONGEST addr_base;
19792 /* We need addr_base and addr_size.
19793 If we don't have PER_CU->cu, we have to get it.
19794 Nasty, but the alternative is storing the needed info in PER_CU,
19795 which at this point doesn't seem justified: it's not clear how frequently
19796 it would get used and it would increase the size of every PER_CU.
19797 Entry points like dwarf2_per_cu_addr_size do a similar thing
19798 so we're not in uncharted territory here.
19799 Alas we need to be a bit more complicated as addr_base is contained
19802 We don't need to read the entire CU(/TU).
19803 We just need the header and top level die.
19805 IWBN to use the aging mechanism to let us lazily later discard the CU.
19806 For now we skip this optimization. */
19810 addr_base = cu->addr_base;
19811 addr_size = cu->header.addr_size;
19815 struct dwarf2_read_addr_index_data aidata;
19817 /* Note: We can't use init_cutu_and_read_dies_simple here,
19818 we need addr_base. */
19819 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19820 dwarf2_read_addr_index_reader, &aidata);
19821 addr_base = aidata.addr_base;
19822 addr_size = aidata.addr_size;
19825 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19829 /* Given a DW_FORM_GNU_str_index, fetch the string.
19830 This is only used by the Fission support. */
19832 static const char *
19833 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19835 struct dwarf2_cu *cu = reader->cu;
19836 struct dwarf2_per_objfile *dwarf2_per_objfile
19837 = cu->per_cu->dwarf2_per_objfile;
19838 struct objfile *objfile = dwarf2_per_objfile->objfile;
19839 const char *objf_name = objfile_name (objfile);
19840 bfd *abfd = objfile->obfd;
19841 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19842 struct dwarf2_section_info *str_offsets_section =
19843 &reader->dwo_file->sections.str_offsets;
19844 const gdb_byte *info_ptr;
19845 ULONGEST str_offset;
19846 static const char form_name[] = "DW_FORM_GNU_str_index";
19848 dwarf2_read_section (objfile, str_section);
19849 dwarf2_read_section (objfile, str_offsets_section);
19850 if (str_section->buffer == NULL)
19851 error (_("%s used without .debug_str.dwo section"
19852 " in CU at offset %s [in module %s]"),
19853 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19854 if (str_offsets_section->buffer == NULL)
19855 error (_("%s used without .debug_str_offsets.dwo section"
19856 " in CU at offset %s [in module %s]"),
19857 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19858 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19859 error (_("%s pointing outside of .debug_str_offsets.dwo"
19860 " section in CU at offset %s [in module %s]"),
19861 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19862 info_ptr = (str_offsets_section->buffer
19863 + str_index * cu->header.offset_size);
19864 if (cu->header.offset_size == 4)
19865 str_offset = bfd_get_32 (abfd, info_ptr);
19867 str_offset = bfd_get_64 (abfd, info_ptr);
19868 if (str_offset >= str_section->size)
19869 error (_("Offset from %s pointing outside of"
19870 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19871 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19872 return (const char *) (str_section->buffer + str_offset);
19875 /* Return the length of an LEB128 number in BUF. */
19878 leb128_size (const gdb_byte *buf)
19880 const gdb_byte *begin = buf;
19886 if ((byte & 128) == 0)
19887 return buf - begin;
19892 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19901 cu->language = language_c;
19904 case DW_LANG_C_plus_plus:
19905 case DW_LANG_C_plus_plus_11:
19906 case DW_LANG_C_plus_plus_14:
19907 cu->language = language_cplus;
19910 cu->language = language_d;
19912 case DW_LANG_Fortran77:
19913 case DW_LANG_Fortran90:
19914 case DW_LANG_Fortran95:
19915 case DW_LANG_Fortran03:
19916 case DW_LANG_Fortran08:
19917 cu->language = language_fortran;
19920 cu->language = language_go;
19922 case DW_LANG_Mips_Assembler:
19923 cu->language = language_asm;
19925 case DW_LANG_Ada83:
19926 case DW_LANG_Ada95:
19927 cu->language = language_ada;
19929 case DW_LANG_Modula2:
19930 cu->language = language_m2;
19932 case DW_LANG_Pascal83:
19933 cu->language = language_pascal;
19936 cu->language = language_objc;
19939 case DW_LANG_Rust_old:
19940 cu->language = language_rust;
19942 case DW_LANG_Cobol74:
19943 case DW_LANG_Cobol85:
19945 cu->language = language_minimal;
19948 cu->language_defn = language_def (cu->language);
19951 /* Return the named attribute or NULL if not there. */
19953 static struct attribute *
19954 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19959 struct attribute *spec = NULL;
19961 for (i = 0; i < die->num_attrs; ++i)
19963 if (die->attrs[i].name == name)
19964 return &die->attrs[i];
19965 if (die->attrs[i].name == DW_AT_specification
19966 || die->attrs[i].name == DW_AT_abstract_origin)
19967 spec = &die->attrs[i];
19973 die = follow_die_ref (die, spec, &cu);
19979 /* Return the named attribute or NULL if not there,
19980 but do not follow DW_AT_specification, etc.
19981 This is for use in contexts where we're reading .debug_types dies.
19982 Following DW_AT_specification, DW_AT_abstract_origin will take us
19983 back up the chain, and we want to go down. */
19985 static struct attribute *
19986 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19990 for (i = 0; i < die->num_attrs; ++i)
19991 if (die->attrs[i].name == name)
19992 return &die->attrs[i];
19997 /* Return the string associated with a string-typed attribute, or NULL if it
19998 is either not found or is of an incorrect type. */
20000 static const char *
20001 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20003 struct attribute *attr;
20004 const char *str = NULL;
20006 attr = dwarf2_attr (die, name, cu);
20010 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20011 || attr->form == DW_FORM_string
20012 || attr->form == DW_FORM_GNU_str_index
20013 || attr->form == DW_FORM_GNU_strp_alt)
20014 str = DW_STRING (attr);
20016 complaint (_("string type expected for attribute %s for "
20017 "DIE at %s in module %s"),
20018 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20019 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20025 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20026 and holds a non-zero value. This function should only be used for
20027 DW_FORM_flag or DW_FORM_flag_present attributes. */
20030 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20032 struct attribute *attr = dwarf2_attr (die, name, cu);
20034 return (attr && DW_UNSND (attr));
20038 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20040 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20041 which value is non-zero. However, we have to be careful with
20042 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20043 (via dwarf2_flag_true_p) follows this attribute. So we may
20044 end up accidently finding a declaration attribute that belongs
20045 to a different DIE referenced by the specification attribute,
20046 even though the given DIE does not have a declaration attribute. */
20047 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20048 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20051 /* Return the die giving the specification for DIE, if there is
20052 one. *SPEC_CU is the CU containing DIE on input, and the CU
20053 containing the return value on output. If there is no
20054 specification, but there is an abstract origin, that is
20057 static struct die_info *
20058 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20060 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20063 if (spec_attr == NULL)
20064 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20066 if (spec_attr == NULL)
20069 return follow_die_ref (die, spec_attr, spec_cu);
20072 /* Stub for free_line_header to match void * callback types. */
20075 free_line_header_voidp (void *arg)
20077 struct line_header *lh = (struct line_header *) arg;
20083 line_header::add_include_dir (const char *include_dir)
20085 if (dwarf_line_debug >= 2)
20086 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20087 include_dirs.size () + 1, include_dir);
20089 include_dirs.push_back (include_dir);
20093 line_header::add_file_name (const char *name,
20095 unsigned int mod_time,
20096 unsigned int length)
20098 if (dwarf_line_debug >= 2)
20099 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20100 (unsigned) file_names.size () + 1, name);
20102 file_names.emplace_back (name, d_index, mod_time, length);
20105 /* A convenience function to find the proper .debug_line section for a CU. */
20107 static struct dwarf2_section_info *
20108 get_debug_line_section (struct dwarf2_cu *cu)
20110 struct dwarf2_section_info *section;
20111 struct dwarf2_per_objfile *dwarf2_per_objfile
20112 = cu->per_cu->dwarf2_per_objfile;
20114 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20116 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20117 section = &cu->dwo_unit->dwo_file->sections.line;
20118 else if (cu->per_cu->is_dwz)
20120 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20122 section = &dwz->line;
20125 section = &dwarf2_per_objfile->line;
20130 /* Read directory or file name entry format, starting with byte of
20131 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20132 entries count and the entries themselves in the described entry
20136 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20137 bfd *abfd, const gdb_byte **bufp,
20138 struct line_header *lh,
20139 const struct comp_unit_head *cu_header,
20140 void (*callback) (struct line_header *lh,
20143 unsigned int mod_time,
20144 unsigned int length))
20146 gdb_byte format_count, formati;
20147 ULONGEST data_count, datai;
20148 const gdb_byte *buf = *bufp;
20149 const gdb_byte *format_header_data;
20150 unsigned int bytes_read;
20152 format_count = read_1_byte (abfd, buf);
20154 format_header_data = buf;
20155 for (formati = 0; formati < format_count; formati++)
20157 read_unsigned_leb128 (abfd, buf, &bytes_read);
20159 read_unsigned_leb128 (abfd, buf, &bytes_read);
20163 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20165 for (datai = 0; datai < data_count; datai++)
20167 const gdb_byte *format = format_header_data;
20168 struct file_entry fe;
20170 for (formati = 0; formati < format_count; formati++)
20172 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20173 format += bytes_read;
20175 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20176 format += bytes_read;
20178 gdb::optional<const char *> string;
20179 gdb::optional<unsigned int> uint;
20183 case DW_FORM_string:
20184 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20188 case DW_FORM_line_strp:
20189 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20196 case DW_FORM_data1:
20197 uint.emplace (read_1_byte (abfd, buf));
20201 case DW_FORM_data2:
20202 uint.emplace (read_2_bytes (abfd, buf));
20206 case DW_FORM_data4:
20207 uint.emplace (read_4_bytes (abfd, buf));
20211 case DW_FORM_data8:
20212 uint.emplace (read_8_bytes (abfd, buf));
20216 case DW_FORM_udata:
20217 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20221 case DW_FORM_block:
20222 /* It is valid only for DW_LNCT_timestamp which is ignored by
20227 switch (content_type)
20230 if (string.has_value ())
20233 case DW_LNCT_directory_index:
20234 if (uint.has_value ())
20235 fe.d_index = (dir_index) *uint;
20237 case DW_LNCT_timestamp:
20238 if (uint.has_value ())
20239 fe.mod_time = *uint;
20242 if (uint.has_value ())
20248 complaint (_("Unknown format content type %s"),
20249 pulongest (content_type));
20253 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20259 /* Read the statement program header starting at OFFSET in
20260 .debug_line, or .debug_line.dwo. Return a pointer
20261 to a struct line_header, allocated using xmalloc.
20262 Returns NULL if there is a problem reading the header, e.g., if it
20263 has a version we don't understand.
20265 NOTE: the strings in the include directory and file name tables of
20266 the returned object point into the dwarf line section buffer,
20267 and must not be freed. */
20269 static line_header_up
20270 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20272 const gdb_byte *line_ptr;
20273 unsigned int bytes_read, offset_size;
20275 const char *cur_dir, *cur_file;
20276 struct dwarf2_section_info *section;
20278 struct dwarf2_per_objfile *dwarf2_per_objfile
20279 = cu->per_cu->dwarf2_per_objfile;
20281 section = get_debug_line_section (cu);
20282 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20283 if (section->buffer == NULL)
20285 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20286 complaint (_("missing .debug_line.dwo section"));
20288 complaint (_("missing .debug_line section"));
20292 /* We can't do this until we know the section is non-empty.
20293 Only then do we know we have such a section. */
20294 abfd = get_section_bfd_owner (section);
20296 /* Make sure that at least there's room for the total_length field.
20297 That could be 12 bytes long, but we're just going to fudge that. */
20298 if (to_underlying (sect_off) + 4 >= section->size)
20300 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20304 line_header_up lh (new line_header ());
20306 lh->sect_off = sect_off;
20307 lh->offset_in_dwz = cu->per_cu->is_dwz;
20309 line_ptr = section->buffer + to_underlying (sect_off);
20311 /* Read in the header. */
20313 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20314 &bytes_read, &offset_size);
20315 line_ptr += bytes_read;
20316 if (line_ptr + lh->total_length > (section->buffer + section->size))
20318 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20321 lh->statement_program_end = line_ptr + lh->total_length;
20322 lh->version = read_2_bytes (abfd, line_ptr);
20324 if (lh->version > 5)
20326 /* This is a version we don't understand. The format could have
20327 changed in ways we don't handle properly so just punt. */
20328 complaint (_("unsupported version in .debug_line section"));
20331 if (lh->version >= 5)
20333 gdb_byte segment_selector_size;
20335 /* Skip address size. */
20336 read_1_byte (abfd, line_ptr);
20339 segment_selector_size = read_1_byte (abfd, line_ptr);
20341 if (segment_selector_size != 0)
20343 complaint (_("unsupported segment selector size %u "
20344 "in .debug_line section"),
20345 segment_selector_size);
20349 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20350 line_ptr += offset_size;
20351 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20353 if (lh->version >= 4)
20355 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20359 lh->maximum_ops_per_instruction = 1;
20361 if (lh->maximum_ops_per_instruction == 0)
20363 lh->maximum_ops_per_instruction = 1;
20364 complaint (_("invalid maximum_ops_per_instruction "
20365 "in `.debug_line' section"));
20368 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20370 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20372 lh->line_range = read_1_byte (abfd, line_ptr);
20374 lh->opcode_base = read_1_byte (abfd, line_ptr);
20376 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20378 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20379 for (i = 1; i < lh->opcode_base; ++i)
20381 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20385 if (lh->version >= 5)
20387 /* Read directory table. */
20388 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20390 [] (struct line_header *header, const char *name,
20391 dir_index d_index, unsigned int mod_time,
20392 unsigned int length)
20394 header->add_include_dir (name);
20397 /* Read file name table. */
20398 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20400 [] (struct line_header *header, const char *name,
20401 dir_index d_index, unsigned int mod_time,
20402 unsigned int length)
20404 header->add_file_name (name, d_index, mod_time, length);
20409 /* Read directory table. */
20410 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20412 line_ptr += bytes_read;
20413 lh->add_include_dir (cur_dir);
20415 line_ptr += bytes_read;
20417 /* Read file name table. */
20418 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20420 unsigned int mod_time, length;
20423 line_ptr += bytes_read;
20424 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20425 line_ptr += bytes_read;
20426 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20427 line_ptr += bytes_read;
20428 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20429 line_ptr += bytes_read;
20431 lh->add_file_name (cur_file, d_index, mod_time, length);
20433 line_ptr += bytes_read;
20435 lh->statement_program_start = line_ptr;
20437 if (line_ptr > (section->buffer + section->size))
20438 complaint (_("line number info header doesn't "
20439 "fit in `.debug_line' section"));
20444 /* Subroutine of dwarf_decode_lines to simplify it.
20445 Return the file name of the psymtab for included file FILE_INDEX
20446 in line header LH of PST.
20447 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20448 If space for the result is malloc'd, *NAME_HOLDER will be set.
20449 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20451 static const char *
20452 psymtab_include_file_name (const struct line_header *lh, int file_index,
20453 const struct partial_symtab *pst,
20454 const char *comp_dir,
20455 gdb::unique_xmalloc_ptr<char> *name_holder)
20457 const file_entry &fe = lh->file_names[file_index];
20458 const char *include_name = fe.name;
20459 const char *include_name_to_compare = include_name;
20460 const char *pst_filename;
20463 const char *dir_name = fe.include_dir (lh);
20465 gdb::unique_xmalloc_ptr<char> hold_compare;
20466 if (!IS_ABSOLUTE_PATH (include_name)
20467 && (dir_name != NULL || comp_dir != NULL))
20469 /* Avoid creating a duplicate psymtab for PST.
20470 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20471 Before we do the comparison, however, we need to account
20472 for DIR_NAME and COMP_DIR.
20473 First prepend dir_name (if non-NULL). If we still don't
20474 have an absolute path prepend comp_dir (if non-NULL).
20475 However, the directory we record in the include-file's
20476 psymtab does not contain COMP_DIR (to match the
20477 corresponding symtab(s)).
20482 bash$ gcc -g ./hello.c
20483 include_name = "hello.c"
20485 DW_AT_comp_dir = comp_dir = "/tmp"
20486 DW_AT_name = "./hello.c"
20490 if (dir_name != NULL)
20492 name_holder->reset (concat (dir_name, SLASH_STRING,
20493 include_name, (char *) NULL));
20494 include_name = name_holder->get ();
20495 include_name_to_compare = include_name;
20497 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20499 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20500 include_name, (char *) NULL));
20501 include_name_to_compare = hold_compare.get ();
20505 pst_filename = pst->filename;
20506 gdb::unique_xmalloc_ptr<char> copied_name;
20507 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20509 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20510 pst_filename, (char *) NULL));
20511 pst_filename = copied_name.get ();
20514 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20518 return include_name;
20521 /* State machine to track the state of the line number program. */
20523 class lnp_state_machine
20526 /* Initialize a machine state for the start of a line number
20528 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20529 bool record_lines_p);
20531 file_entry *current_file ()
20533 /* lh->file_names is 0-based, but the file name numbers in the
20534 statement program are 1-based. */
20535 return m_line_header->file_name_at (m_file);
20538 /* Record the line in the state machine. END_SEQUENCE is true if
20539 we're processing the end of a sequence. */
20540 void record_line (bool end_sequence);
20542 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20543 nop-out rest of the lines in this sequence. */
20544 void check_line_address (struct dwarf2_cu *cu,
20545 const gdb_byte *line_ptr,
20546 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20548 void handle_set_discriminator (unsigned int discriminator)
20550 m_discriminator = discriminator;
20551 m_line_has_non_zero_discriminator |= discriminator != 0;
20554 /* Handle DW_LNE_set_address. */
20555 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20558 address += baseaddr;
20559 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20562 /* Handle DW_LNS_advance_pc. */
20563 void handle_advance_pc (CORE_ADDR adjust);
20565 /* Handle a special opcode. */
20566 void handle_special_opcode (unsigned char op_code);
20568 /* Handle DW_LNS_advance_line. */
20569 void handle_advance_line (int line_delta)
20571 advance_line (line_delta);
20574 /* Handle DW_LNS_set_file. */
20575 void handle_set_file (file_name_index file);
20577 /* Handle DW_LNS_negate_stmt. */
20578 void handle_negate_stmt ()
20580 m_is_stmt = !m_is_stmt;
20583 /* Handle DW_LNS_const_add_pc. */
20584 void handle_const_add_pc ();
20586 /* Handle DW_LNS_fixed_advance_pc. */
20587 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20589 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20593 /* Handle DW_LNS_copy. */
20594 void handle_copy ()
20596 record_line (false);
20597 m_discriminator = 0;
20600 /* Handle DW_LNE_end_sequence. */
20601 void handle_end_sequence ()
20603 m_currently_recording_lines = true;
20607 /* Advance the line by LINE_DELTA. */
20608 void advance_line (int line_delta)
20610 m_line += line_delta;
20612 if (line_delta != 0)
20613 m_line_has_non_zero_discriminator = m_discriminator != 0;
20616 struct dwarf2_cu *m_cu;
20618 gdbarch *m_gdbarch;
20620 /* True if we're recording lines.
20621 Otherwise we're building partial symtabs and are just interested in
20622 finding include files mentioned by the line number program. */
20623 bool m_record_lines_p;
20625 /* The line number header. */
20626 line_header *m_line_header;
20628 /* These are part of the standard DWARF line number state machine,
20629 and initialized according to the DWARF spec. */
20631 unsigned char m_op_index = 0;
20632 /* The line table index (1-based) of the current file. */
20633 file_name_index m_file = (file_name_index) 1;
20634 unsigned int m_line = 1;
20636 /* These are initialized in the constructor. */
20638 CORE_ADDR m_address;
20640 unsigned int m_discriminator;
20642 /* Additional bits of state we need to track. */
20644 /* The last file that we called dwarf2_start_subfile for.
20645 This is only used for TLLs. */
20646 unsigned int m_last_file = 0;
20647 /* The last file a line number was recorded for. */
20648 struct subfile *m_last_subfile = NULL;
20650 /* When true, record the lines we decode. */
20651 bool m_currently_recording_lines = false;
20653 /* The last line number that was recorded, used to coalesce
20654 consecutive entries for the same line. This can happen, for
20655 example, when discriminators are present. PR 17276. */
20656 unsigned int m_last_line = 0;
20657 bool m_line_has_non_zero_discriminator = false;
20661 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20663 CORE_ADDR addr_adj = (((m_op_index + adjust)
20664 / m_line_header->maximum_ops_per_instruction)
20665 * m_line_header->minimum_instruction_length);
20666 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20667 m_op_index = ((m_op_index + adjust)
20668 % m_line_header->maximum_ops_per_instruction);
20672 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20674 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20675 CORE_ADDR addr_adj = (((m_op_index
20676 + (adj_opcode / m_line_header->line_range))
20677 / m_line_header->maximum_ops_per_instruction)
20678 * m_line_header->minimum_instruction_length);
20679 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20680 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20681 % m_line_header->maximum_ops_per_instruction);
20683 int line_delta = (m_line_header->line_base
20684 + (adj_opcode % m_line_header->line_range));
20685 advance_line (line_delta);
20686 record_line (false);
20687 m_discriminator = 0;
20691 lnp_state_machine::handle_set_file (file_name_index file)
20695 const file_entry *fe = current_file ();
20697 dwarf2_debug_line_missing_file_complaint ();
20698 else if (m_record_lines_p)
20700 const char *dir = fe->include_dir (m_line_header);
20702 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20703 m_line_has_non_zero_discriminator = m_discriminator != 0;
20704 dwarf2_start_subfile (m_cu, fe->name, dir);
20709 lnp_state_machine::handle_const_add_pc ()
20712 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20715 = (((m_op_index + adjust)
20716 / m_line_header->maximum_ops_per_instruction)
20717 * m_line_header->minimum_instruction_length);
20719 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20720 m_op_index = ((m_op_index + adjust)
20721 % m_line_header->maximum_ops_per_instruction);
20724 /* Return non-zero if we should add LINE to the line number table.
20725 LINE is the line to add, LAST_LINE is the last line that was added,
20726 LAST_SUBFILE is the subfile for LAST_LINE.
20727 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20728 had a non-zero discriminator.
20730 We have to be careful in the presence of discriminators.
20731 E.g., for this line:
20733 for (i = 0; i < 100000; i++);
20735 clang can emit four line number entries for that one line,
20736 each with a different discriminator.
20737 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20739 However, we want gdb to coalesce all four entries into one.
20740 Otherwise the user could stepi into the middle of the line and
20741 gdb would get confused about whether the pc really was in the
20742 middle of the line.
20744 Things are further complicated by the fact that two consecutive
20745 line number entries for the same line is a heuristic used by gcc
20746 to denote the end of the prologue. So we can't just discard duplicate
20747 entries, we have to be selective about it. The heuristic we use is
20748 that we only collapse consecutive entries for the same line if at least
20749 one of those entries has a non-zero discriminator. PR 17276.
20751 Note: Addresses in the line number state machine can never go backwards
20752 within one sequence, thus this coalescing is ok. */
20755 dwarf_record_line_p (struct dwarf2_cu *cu,
20756 unsigned int line, unsigned int last_line,
20757 int line_has_non_zero_discriminator,
20758 struct subfile *last_subfile)
20760 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20762 if (line != last_line)
20764 /* Same line for the same file that we've seen already.
20765 As a last check, for pr 17276, only record the line if the line
20766 has never had a non-zero discriminator. */
20767 if (!line_has_non_zero_discriminator)
20772 /* Use the CU's builder to record line number LINE beginning at
20773 address ADDRESS in the line table of subfile SUBFILE. */
20776 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20777 unsigned int line, CORE_ADDR address,
20778 struct dwarf2_cu *cu)
20780 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20782 if (dwarf_line_debug)
20784 fprintf_unfiltered (gdb_stdlog,
20785 "Recording line %u, file %s, address %s\n",
20786 line, lbasename (subfile->name),
20787 paddress (gdbarch, address));
20791 cu->get_builder ()->record_line (subfile, line, addr);
20794 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20795 Mark the end of a set of line number records.
20796 The arguments are the same as for dwarf_record_line_1.
20797 If SUBFILE is NULL the request is ignored. */
20800 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20801 CORE_ADDR address, struct dwarf2_cu *cu)
20803 if (subfile == NULL)
20806 if (dwarf_line_debug)
20808 fprintf_unfiltered (gdb_stdlog,
20809 "Finishing current line, file %s, address %s\n",
20810 lbasename (subfile->name),
20811 paddress (gdbarch, address));
20814 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20818 lnp_state_machine::record_line (bool end_sequence)
20820 if (dwarf_line_debug)
20822 fprintf_unfiltered (gdb_stdlog,
20823 "Processing actual line %u: file %u,"
20824 " address %s, is_stmt %u, discrim %u\n",
20825 m_line, to_underlying (m_file),
20826 paddress (m_gdbarch, m_address),
20827 m_is_stmt, m_discriminator);
20830 file_entry *fe = current_file ();
20833 dwarf2_debug_line_missing_file_complaint ();
20834 /* For now we ignore lines not starting on an instruction boundary.
20835 But not when processing end_sequence for compatibility with the
20836 previous version of the code. */
20837 else if (m_op_index == 0 || end_sequence)
20839 fe->included_p = 1;
20840 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20842 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20845 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20846 m_currently_recording_lines ? m_cu : nullptr);
20851 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20852 m_line_has_non_zero_discriminator,
20855 buildsym_compunit *builder = m_cu->get_builder ();
20856 dwarf_record_line_1 (m_gdbarch,
20857 builder->get_current_subfile (),
20859 m_currently_recording_lines ? m_cu : nullptr);
20861 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20862 m_last_line = m_line;
20868 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20869 line_header *lh, bool record_lines_p)
20873 m_record_lines_p = record_lines_p;
20874 m_line_header = lh;
20876 m_currently_recording_lines = true;
20878 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20879 was a line entry for it so that the backend has a chance to adjust it
20880 and also record it in case it needs it. This is currently used by MIPS
20881 code, cf. `mips_adjust_dwarf2_line'. */
20882 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20883 m_is_stmt = lh->default_is_stmt;
20884 m_discriminator = 0;
20888 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20889 const gdb_byte *line_ptr,
20890 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20892 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20893 the pc range of the CU. However, we restrict the test to only ADDRESS
20894 values of zero to preserve GDB's previous behaviour which is to handle
20895 the specific case of a function being GC'd by the linker. */
20897 if (address == 0 && address < unrelocated_lowpc)
20899 /* This line table is for a function which has been
20900 GCd by the linker. Ignore it. PR gdb/12528 */
20902 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20903 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20905 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20906 line_offset, objfile_name (objfile));
20907 m_currently_recording_lines = false;
20908 /* Note: m_currently_recording_lines is left as false until we see
20909 DW_LNE_end_sequence. */
20913 /* Subroutine of dwarf_decode_lines to simplify it.
20914 Process the line number information in LH.
20915 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20916 program in order to set included_p for every referenced header. */
20919 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20920 const int decode_for_pst_p, CORE_ADDR lowpc)
20922 const gdb_byte *line_ptr, *extended_end;
20923 const gdb_byte *line_end;
20924 unsigned int bytes_read, extended_len;
20925 unsigned char op_code, extended_op;
20926 CORE_ADDR baseaddr;
20927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20928 bfd *abfd = objfile->obfd;
20929 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20930 /* True if we're recording line info (as opposed to building partial
20931 symtabs and just interested in finding include files mentioned by
20932 the line number program). */
20933 bool record_lines_p = !decode_for_pst_p;
20935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20937 line_ptr = lh->statement_program_start;
20938 line_end = lh->statement_program_end;
20940 /* Read the statement sequences until there's nothing left. */
20941 while (line_ptr < line_end)
20943 /* The DWARF line number program state machine. Reset the state
20944 machine at the start of each sequence. */
20945 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20946 bool end_sequence = false;
20948 if (record_lines_p)
20950 /* Start a subfile for the current file of the state
20952 const file_entry *fe = state_machine.current_file ();
20955 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20958 /* Decode the table. */
20959 while (line_ptr < line_end && !end_sequence)
20961 op_code = read_1_byte (abfd, line_ptr);
20964 if (op_code >= lh->opcode_base)
20966 /* Special opcode. */
20967 state_machine.handle_special_opcode (op_code);
20969 else switch (op_code)
20971 case DW_LNS_extended_op:
20972 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20974 line_ptr += bytes_read;
20975 extended_end = line_ptr + extended_len;
20976 extended_op = read_1_byte (abfd, line_ptr);
20978 switch (extended_op)
20980 case DW_LNE_end_sequence:
20981 state_machine.handle_end_sequence ();
20982 end_sequence = true;
20984 case DW_LNE_set_address:
20987 = read_address (abfd, line_ptr, cu, &bytes_read);
20988 line_ptr += bytes_read;
20990 state_machine.check_line_address (cu, line_ptr,
20991 lowpc - baseaddr, address);
20992 state_machine.handle_set_address (baseaddr, address);
20995 case DW_LNE_define_file:
20997 const char *cur_file;
20998 unsigned int mod_time, length;
21001 cur_file = read_direct_string (abfd, line_ptr,
21003 line_ptr += bytes_read;
21004 dindex = (dir_index)
21005 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21006 line_ptr += bytes_read;
21008 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21009 line_ptr += bytes_read;
21011 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21012 line_ptr += bytes_read;
21013 lh->add_file_name (cur_file, dindex, mod_time, length);
21016 case DW_LNE_set_discriminator:
21018 /* The discriminator is not interesting to the
21019 debugger; just ignore it. We still need to
21020 check its value though:
21021 if there are consecutive entries for the same
21022 (non-prologue) line we want to coalesce them.
21025 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21026 line_ptr += bytes_read;
21028 state_machine.handle_set_discriminator (discr);
21032 complaint (_("mangled .debug_line section"));
21035 /* Make sure that we parsed the extended op correctly. If e.g.
21036 we expected a different address size than the producer used,
21037 we may have read the wrong number of bytes. */
21038 if (line_ptr != extended_end)
21040 complaint (_("mangled .debug_line section"));
21045 state_machine.handle_copy ();
21047 case DW_LNS_advance_pc:
21050 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21051 line_ptr += bytes_read;
21053 state_machine.handle_advance_pc (adjust);
21056 case DW_LNS_advance_line:
21059 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21060 line_ptr += bytes_read;
21062 state_machine.handle_advance_line (line_delta);
21065 case DW_LNS_set_file:
21067 file_name_index file
21068 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21070 line_ptr += bytes_read;
21072 state_machine.handle_set_file (file);
21075 case DW_LNS_set_column:
21076 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21077 line_ptr += bytes_read;
21079 case DW_LNS_negate_stmt:
21080 state_machine.handle_negate_stmt ();
21082 case DW_LNS_set_basic_block:
21084 /* Add to the address register of the state machine the
21085 address increment value corresponding to special opcode
21086 255. I.e., this value is scaled by the minimum
21087 instruction length since special opcode 255 would have
21088 scaled the increment. */
21089 case DW_LNS_const_add_pc:
21090 state_machine.handle_const_add_pc ();
21092 case DW_LNS_fixed_advance_pc:
21094 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21097 state_machine.handle_fixed_advance_pc (addr_adj);
21102 /* Unknown standard opcode, ignore it. */
21105 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21107 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21108 line_ptr += bytes_read;
21115 dwarf2_debug_line_missing_end_sequence_complaint ();
21117 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21118 in which case we still finish recording the last line). */
21119 state_machine.record_line (true);
21123 /* Decode the Line Number Program (LNP) for the given line_header
21124 structure and CU. The actual information extracted and the type
21125 of structures created from the LNP depends on the value of PST.
21127 1. If PST is NULL, then this procedure uses the data from the program
21128 to create all necessary symbol tables, and their linetables.
21130 2. If PST is not NULL, this procedure reads the program to determine
21131 the list of files included by the unit represented by PST, and
21132 builds all the associated partial symbol tables.
21134 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21135 It is used for relative paths in the line table.
21136 NOTE: When processing partial symtabs (pst != NULL),
21137 comp_dir == pst->dirname.
21139 NOTE: It is important that psymtabs have the same file name (via strcmp)
21140 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21141 symtab we don't use it in the name of the psymtabs we create.
21142 E.g. expand_line_sal requires this when finding psymtabs to expand.
21143 A good testcase for this is mb-inline.exp.
21145 LOWPC is the lowest address in CU (or 0 if not known).
21147 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21148 for its PC<->lines mapping information. Otherwise only the filename
21149 table is read in. */
21152 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21153 struct dwarf2_cu *cu, struct partial_symtab *pst,
21154 CORE_ADDR lowpc, int decode_mapping)
21156 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21157 const int decode_for_pst_p = (pst != NULL);
21159 if (decode_mapping)
21160 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21162 if (decode_for_pst_p)
21166 /* Now that we're done scanning the Line Header Program, we can
21167 create the psymtab of each included file. */
21168 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21169 if (lh->file_names[file_index].included_p == 1)
21171 gdb::unique_xmalloc_ptr<char> name_holder;
21172 const char *include_name =
21173 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21175 if (include_name != NULL)
21176 dwarf2_create_include_psymtab (include_name, pst, objfile);
21181 /* Make sure a symtab is created for every file, even files
21182 which contain only variables (i.e. no code with associated
21184 buildsym_compunit *builder = cu->get_builder ();
21185 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21188 for (i = 0; i < lh->file_names.size (); i++)
21190 file_entry &fe = lh->file_names[i];
21192 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21194 if (builder->get_current_subfile ()->symtab == NULL)
21196 builder->get_current_subfile ()->symtab
21197 = allocate_symtab (cust,
21198 builder->get_current_subfile ()->name);
21200 fe.symtab = builder->get_current_subfile ()->symtab;
21205 /* Start a subfile for DWARF. FILENAME is the name of the file and
21206 DIRNAME the name of the source directory which contains FILENAME
21207 or NULL if not known.
21208 This routine tries to keep line numbers from identical absolute and
21209 relative file names in a common subfile.
21211 Using the `list' example from the GDB testsuite, which resides in
21212 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21213 of /srcdir/list0.c yields the following debugging information for list0.c:
21215 DW_AT_name: /srcdir/list0.c
21216 DW_AT_comp_dir: /compdir
21217 files.files[0].name: list0.h
21218 files.files[0].dir: /srcdir
21219 files.files[1].name: list0.c
21220 files.files[1].dir: /srcdir
21222 The line number information for list0.c has to end up in a single
21223 subfile, so that `break /srcdir/list0.c:1' works as expected.
21224 start_subfile will ensure that this happens provided that we pass the
21225 concatenation of files.files[1].dir and files.files[1].name as the
21229 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21230 const char *dirname)
21234 /* In order not to lose the line information directory,
21235 we concatenate it to the filename when it makes sense.
21236 Note that the Dwarf3 standard says (speaking of filenames in line
21237 information): ``The directory index is ignored for file names
21238 that represent full path names''. Thus ignoring dirname in the
21239 `else' branch below isn't an issue. */
21241 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21243 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21247 cu->get_builder ()->start_subfile (filename);
21253 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21254 buildsym_compunit constructor. */
21256 struct compunit_symtab *
21257 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21260 gdb_assert (m_builder == nullptr);
21262 m_builder.reset (new struct buildsym_compunit
21263 (per_cu->dwarf2_per_objfile->objfile,
21264 name, comp_dir, language, low_pc));
21266 list_in_scope = get_builder ()->get_file_symbols ();
21268 get_builder ()->record_debugformat ("DWARF 2");
21269 get_builder ()->record_producer (producer);
21271 processing_has_namespace_info = false;
21273 return get_builder ()->get_compunit_symtab ();
21277 var_decode_location (struct attribute *attr, struct symbol *sym,
21278 struct dwarf2_cu *cu)
21280 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21281 struct comp_unit_head *cu_header = &cu->header;
21283 /* NOTE drow/2003-01-30: There used to be a comment and some special
21284 code here to turn a symbol with DW_AT_external and a
21285 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21286 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21287 with some versions of binutils) where shared libraries could have
21288 relocations against symbols in their debug information - the
21289 minimal symbol would have the right address, but the debug info
21290 would not. It's no longer necessary, because we will explicitly
21291 apply relocations when we read in the debug information now. */
21293 /* A DW_AT_location attribute with no contents indicates that a
21294 variable has been optimized away. */
21295 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21297 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21301 /* Handle one degenerate form of location expression specially, to
21302 preserve GDB's previous behavior when section offsets are
21303 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21304 then mark this symbol as LOC_STATIC. */
21306 if (attr_form_is_block (attr)
21307 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21308 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21309 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21310 && (DW_BLOCK (attr)->size
21311 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21313 unsigned int dummy;
21315 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21316 SYMBOL_VALUE_ADDRESS (sym) =
21317 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21319 SYMBOL_VALUE_ADDRESS (sym) =
21320 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21321 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21322 fixup_symbol_section (sym, objfile);
21323 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21324 SYMBOL_SECTION (sym));
21328 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21329 expression evaluator, and use LOC_COMPUTED only when necessary
21330 (i.e. when the value of a register or memory location is
21331 referenced, or a thread-local block, etc.). Then again, it might
21332 not be worthwhile. I'm assuming that it isn't unless performance
21333 or memory numbers show me otherwise. */
21335 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21337 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21338 cu->has_loclist = true;
21341 /* Given a pointer to a DWARF information entry, figure out if we need
21342 to make a symbol table entry for it, and if so, create a new entry
21343 and return a pointer to it.
21344 If TYPE is NULL, determine symbol type from the die, otherwise
21345 used the passed type.
21346 If SPACE is not NULL, use it to hold the new symbol. If it is
21347 NULL, allocate a new symbol on the objfile's obstack. */
21349 static struct symbol *
21350 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21351 struct symbol *space)
21353 struct dwarf2_per_objfile *dwarf2_per_objfile
21354 = cu->per_cu->dwarf2_per_objfile;
21355 struct objfile *objfile = dwarf2_per_objfile->objfile;
21356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21357 struct symbol *sym = NULL;
21359 struct attribute *attr = NULL;
21360 struct attribute *attr2 = NULL;
21361 CORE_ADDR baseaddr;
21362 struct pending **list_to_add = NULL;
21364 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21366 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21368 name = dwarf2_name (die, cu);
21371 const char *linkagename;
21372 int suppress_add = 0;
21377 sym = allocate_symbol (objfile);
21378 OBJSTAT (objfile, n_syms++);
21380 /* Cache this symbol's name and the name's demangled form (if any). */
21381 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21382 linkagename = dwarf2_physname (name, die, cu);
21383 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21385 /* Fortran does not have mangling standard and the mangling does differ
21386 between gfortran, iFort etc. */
21387 if (cu->language == language_fortran
21388 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21389 symbol_set_demangled_name (&(sym->ginfo),
21390 dwarf2_full_name (name, die, cu),
21393 /* Default assumptions.
21394 Use the passed type or decode it from the die. */
21395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21396 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21398 SYMBOL_TYPE (sym) = type;
21400 SYMBOL_TYPE (sym) = die_type (die, cu);
21401 attr = dwarf2_attr (die,
21402 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21406 SYMBOL_LINE (sym) = DW_UNSND (attr);
21409 attr = dwarf2_attr (die,
21410 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21414 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21415 struct file_entry *fe;
21417 if (cu->line_header != NULL)
21418 fe = cu->line_header->file_name_at (file_index);
21423 complaint (_("file index out of range"));
21425 symbol_set_symtab (sym, fe->symtab);
21431 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21436 addr = attr_value_as_address (attr);
21437 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21438 SYMBOL_VALUE_ADDRESS (sym) = addr;
21440 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21441 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21442 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21443 add_symbol_to_list (sym, cu->list_in_scope);
21445 case DW_TAG_subprogram:
21446 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21448 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21449 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21450 if ((attr2 && (DW_UNSND (attr2) != 0))
21451 || cu->language == language_ada)
21453 /* Subprograms marked external are stored as a global symbol.
21454 Ada subprograms, whether marked external or not, are always
21455 stored as a global symbol, because we want to be able to
21456 access them globally. For instance, we want to be able
21457 to break on a nested subprogram without having to
21458 specify the context. */
21459 list_to_add = cu->get_builder ()->get_global_symbols ();
21463 list_to_add = cu->list_in_scope;
21466 case DW_TAG_inlined_subroutine:
21467 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21469 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21470 SYMBOL_INLINED (sym) = 1;
21471 list_to_add = cu->list_in_scope;
21473 case DW_TAG_template_value_param:
21475 /* Fall through. */
21476 case DW_TAG_constant:
21477 case DW_TAG_variable:
21478 case DW_TAG_member:
21479 /* Compilation with minimal debug info may result in
21480 variables with missing type entries. Change the
21481 misleading `void' type to something sensible. */
21482 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21483 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21485 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21486 /* In the case of DW_TAG_member, we should only be called for
21487 static const members. */
21488 if (die->tag == DW_TAG_member)
21490 /* dwarf2_add_field uses die_is_declaration,
21491 so we do the same. */
21492 gdb_assert (die_is_declaration (die, cu));
21497 dwarf2_const_value (attr, sym, cu);
21498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21501 if (attr2 && (DW_UNSND (attr2) != 0))
21502 list_to_add = cu->get_builder ()->get_global_symbols ();
21504 list_to_add = cu->list_in_scope;
21508 attr = dwarf2_attr (die, DW_AT_location, cu);
21511 var_decode_location (attr, sym, cu);
21512 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21514 /* Fortran explicitly imports any global symbols to the local
21515 scope by DW_TAG_common_block. */
21516 if (cu->language == language_fortran && die->parent
21517 && die->parent->tag == DW_TAG_common_block)
21520 if (SYMBOL_CLASS (sym) == LOC_STATIC
21521 && SYMBOL_VALUE_ADDRESS (sym) == 0
21522 && !dwarf2_per_objfile->has_section_at_zero)
21524 /* When a static variable is eliminated by the linker,
21525 the corresponding debug information is not stripped
21526 out, but the variable address is set to null;
21527 do not add such variables into symbol table. */
21529 else if (attr2 && (DW_UNSND (attr2) != 0))
21531 /* Workaround gfortran PR debug/40040 - it uses
21532 DW_AT_location for variables in -fPIC libraries which may
21533 get overriden by other libraries/executable and get
21534 a different address. Resolve it by the minimal symbol
21535 which may come from inferior's executable using copy
21536 relocation. Make this workaround only for gfortran as for
21537 other compilers GDB cannot guess the minimal symbol
21538 Fortran mangling kind. */
21539 if (cu->language == language_fortran && die->parent
21540 && die->parent->tag == DW_TAG_module
21542 && startswith (cu->producer, "GNU Fortran"))
21543 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21545 /* A variable with DW_AT_external is never static,
21546 but it may be block-scoped. */
21548 = ((cu->list_in_scope
21549 == cu->get_builder ()->get_file_symbols ())
21550 ? cu->get_builder ()->get_global_symbols ()
21551 : cu->list_in_scope);
21554 list_to_add = cu->list_in_scope;
21558 /* We do not know the address of this symbol.
21559 If it is an external symbol and we have type information
21560 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21561 The address of the variable will then be determined from
21562 the minimal symbol table whenever the variable is
21564 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21566 /* Fortran explicitly imports any global symbols to the local
21567 scope by DW_TAG_common_block. */
21568 if (cu->language == language_fortran && die->parent
21569 && die->parent->tag == DW_TAG_common_block)
21571 /* SYMBOL_CLASS doesn't matter here because
21572 read_common_block is going to reset it. */
21574 list_to_add = cu->list_in_scope;
21576 else if (attr2 && (DW_UNSND (attr2) != 0)
21577 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21579 /* A variable with DW_AT_external is never static, but it
21580 may be block-scoped. */
21582 = ((cu->list_in_scope
21583 == cu->get_builder ()->get_file_symbols ())
21584 ? cu->get_builder ()->get_global_symbols ()
21585 : cu->list_in_scope);
21587 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21589 else if (!die_is_declaration (die, cu))
21591 /* Use the default LOC_OPTIMIZED_OUT class. */
21592 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21594 list_to_add = cu->list_in_scope;
21598 case DW_TAG_formal_parameter:
21600 /* If we are inside a function, mark this as an argument. If
21601 not, we might be looking at an argument to an inlined function
21602 when we do not have enough information to show inlined frames;
21603 pretend it's a local variable in that case so that the user can
21605 struct context_stack *curr
21606 = cu->get_builder ()->get_current_context_stack ();
21607 if (curr != nullptr && curr->name != nullptr)
21608 SYMBOL_IS_ARGUMENT (sym) = 1;
21609 attr = dwarf2_attr (die, DW_AT_location, cu);
21612 var_decode_location (attr, sym, cu);
21614 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21617 dwarf2_const_value (attr, sym, cu);
21620 list_to_add = cu->list_in_scope;
21623 case DW_TAG_unspecified_parameters:
21624 /* From varargs functions; gdb doesn't seem to have any
21625 interest in this information, so just ignore it for now.
21628 case DW_TAG_template_type_param:
21630 /* Fall through. */
21631 case DW_TAG_class_type:
21632 case DW_TAG_interface_type:
21633 case DW_TAG_structure_type:
21634 case DW_TAG_union_type:
21635 case DW_TAG_set_type:
21636 case DW_TAG_enumeration_type:
21637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21638 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21641 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21642 really ever be static objects: otherwise, if you try
21643 to, say, break of a class's method and you're in a file
21644 which doesn't mention that class, it won't work unless
21645 the check for all static symbols in lookup_symbol_aux
21646 saves you. See the OtherFileClass tests in
21647 gdb.c++/namespace.exp. */
21651 buildsym_compunit *builder = cu->get_builder ();
21653 = (cu->list_in_scope == builder->get_file_symbols ()
21654 && cu->language == language_cplus
21655 ? builder->get_global_symbols ()
21656 : cu->list_in_scope);
21658 /* The semantics of C++ state that "struct foo {
21659 ... }" also defines a typedef for "foo". */
21660 if (cu->language == language_cplus
21661 || cu->language == language_ada
21662 || cu->language == language_d
21663 || cu->language == language_rust)
21665 /* The symbol's name is already allocated along
21666 with this objfile, so we don't need to
21667 duplicate it for the type. */
21668 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21669 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21674 case DW_TAG_typedef:
21675 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21676 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21677 list_to_add = cu->list_in_scope;
21679 case DW_TAG_base_type:
21680 case DW_TAG_subrange_type:
21681 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21683 list_to_add = cu->list_in_scope;
21685 case DW_TAG_enumerator:
21686 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21689 dwarf2_const_value (attr, sym, cu);
21692 /* NOTE: carlton/2003-11-10: See comment above in the
21693 DW_TAG_class_type, etc. block. */
21696 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21697 && cu->language == language_cplus
21698 ? cu->get_builder ()->get_global_symbols ()
21699 : cu->list_in_scope);
21702 case DW_TAG_imported_declaration:
21703 case DW_TAG_namespace:
21704 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21705 list_to_add = cu->get_builder ()->get_global_symbols ();
21707 case DW_TAG_module:
21708 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21709 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21710 list_to_add = cu->get_builder ()->get_global_symbols ();
21712 case DW_TAG_common_block:
21713 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21714 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21715 add_symbol_to_list (sym, cu->list_in_scope);
21718 /* Not a tag we recognize. Hopefully we aren't processing
21719 trash data, but since we must specifically ignore things
21720 we don't recognize, there is nothing else we should do at
21722 complaint (_("unsupported tag: '%s'"),
21723 dwarf_tag_name (die->tag));
21729 sym->hash_next = objfile->template_symbols;
21730 objfile->template_symbols = sym;
21731 list_to_add = NULL;
21734 if (list_to_add != NULL)
21735 add_symbol_to_list (sym, list_to_add);
21737 /* For the benefit of old versions of GCC, check for anonymous
21738 namespaces based on the demangled name. */
21739 if (!cu->processing_has_namespace_info
21740 && cu->language == language_cplus)
21741 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21746 /* Given an attr with a DW_FORM_dataN value in host byte order,
21747 zero-extend it as appropriate for the symbol's type. The DWARF
21748 standard (v4) is not entirely clear about the meaning of using
21749 DW_FORM_dataN for a constant with a signed type, where the type is
21750 wider than the data. The conclusion of a discussion on the DWARF
21751 list was that this is unspecified. We choose to always zero-extend
21752 because that is the interpretation long in use by GCC. */
21755 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21756 struct dwarf2_cu *cu, LONGEST *value, int bits)
21758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21759 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21760 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21761 LONGEST l = DW_UNSND (attr);
21763 if (bits < sizeof (*value) * 8)
21765 l &= ((LONGEST) 1 << bits) - 1;
21768 else if (bits == sizeof (*value) * 8)
21772 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21773 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21780 /* Read a constant value from an attribute. Either set *VALUE, or if
21781 the value does not fit in *VALUE, set *BYTES - either already
21782 allocated on the objfile obstack, or newly allocated on OBSTACK,
21783 or, set *BATON, if we translated the constant to a location
21787 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21788 const char *name, struct obstack *obstack,
21789 struct dwarf2_cu *cu,
21790 LONGEST *value, const gdb_byte **bytes,
21791 struct dwarf2_locexpr_baton **baton)
21793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21794 struct comp_unit_head *cu_header = &cu->header;
21795 struct dwarf_block *blk;
21796 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21797 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21803 switch (attr->form)
21806 case DW_FORM_GNU_addr_index:
21810 if (TYPE_LENGTH (type) != cu_header->addr_size)
21811 dwarf2_const_value_length_mismatch_complaint (name,
21812 cu_header->addr_size,
21813 TYPE_LENGTH (type));
21814 /* Symbols of this form are reasonably rare, so we just
21815 piggyback on the existing location code rather than writing
21816 a new implementation of symbol_computed_ops. */
21817 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21818 (*baton)->per_cu = cu->per_cu;
21819 gdb_assert ((*baton)->per_cu);
21821 (*baton)->size = 2 + cu_header->addr_size;
21822 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21823 (*baton)->data = data;
21825 data[0] = DW_OP_addr;
21826 store_unsigned_integer (&data[1], cu_header->addr_size,
21827 byte_order, DW_ADDR (attr));
21828 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21831 case DW_FORM_string:
21833 case DW_FORM_GNU_str_index:
21834 case DW_FORM_GNU_strp_alt:
21835 /* DW_STRING is already allocated on the objfile obstack, point
21837 *bytes = (const gdb_byte *) DW_STRING (attr);
21839 case DW_FORM_block1:
21840 case DW_FORM_block2:
21841 case DW_FORM_block4:
21842 case DW_FORM_block:
21843 case DW_FORM_exprloc:
21844 case DW_FORM_data16:
21845 blk = DW_BLOCK (attr);
21846 if (TYPE_LENGTH (type) != blk->size)
21847 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21848 TYPE_LENGTH (type));
21849 *bytes = blk->data;
21852 /* The DW_AT_const_value attributes are supposed to carry the
21853 symbol's value "represented as it would be on the target
21854 architecture." By the time we get here, it's already been
21855 converted to host endianness, so we just need to sign- or
21856 zero-extend it as appropriate. */
21857 case DW_FORM_data1:
21858 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21860 case DW_FORM_data2:
21861 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21863 case DW_FORM_data4:
21864 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21866 case DW_FORM_data8:
21867 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21870 case DW_FORM_sdata:
21871 case DW_FORM_implicit_const:
21872 *value = DW_SND (attr);
21875 case DW_FORM_udata:
21876 *value = DW_UNSND (attr);
21880 complaint (_("unsupported const value attribute form: '%s'"),
21881 dwarf_form_name (attr->form));
21888 /* Copy constant value from an attribute to a symbol. */
21891 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21892 struct dwarf2_cu *cu)
21894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21896 const gdb_byte *bytes;
21897 struct dwarf2_locexpr_baton *baton;
21899 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21900 SYMBOL_PRINT_NAME (sym),
21901 &objfile->objfile_obstack, cu,
21902 &value, &bytes, &baton);
21906 SYMBOL_LOCATION_BATON (sym) = baton;
21907 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21909 else if (bytes != NULL)
21911 SYMBOL_VALUE_BYTES (sym) = bytes;
21912 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21916 SYMBOL_VALUE (sym) = value;
21917 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21921 /* Return the type of the die in question using its DW_AT_type attribute. */
21923 static struct type *
21924 die_type (struct die_info *die, struct dwarf2_cu *cu)
21926 struct attribute *type_attr;
21928 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21932 /* A missing DW_AT_type represents a void type. */
21933 return objfile_type (objfile)->builtin_void;
21936 return lookup_die_type (die, type_attr, cu);
21939 /* True iff CU's producer generates GNAT Ada auxiliary information
21940 that allows to find parallel types through that information instead
21941 of having to do expensive parallel lookups by type name. */
21944 need_gnat_info (struct dwarf2_cu *cu)
21946 /* Assume that the Ada compiler was GNAT, which always produces
21947 the auxiliary information. */
21948 return (cu->language == language_ada);
21951 /* Return the auxiliary type of the die in question using its
21952 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21953 attribute is not present. */
21955 static struct type *
21956 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21958 struct attribute *type_attr;
21960 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21964 return lookup_die_type (die, type_attr, cu);
21967 /* If DIE has a descriptive_type attribute, then set the TYPE's
21968 descriptive type accordingly. */
21971 set_descriptive_type (struct type *type, struct die_info *die,
21972 struct dwarf2_cu *cu)
21974 struct type *descriptive_type = die_descriptive_type (die, cu);
21976 if (descriptive_type)
21978 ALLOCATE_GNAT_AUX_TYPE (type);
21979 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21983 /* Return the containing type of the die in question using its
21984 DW_AT_containing_type attribute. */
21986 static struct type *
21987 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21989 struct attribute *type_attr;
21990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21992 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21994 error (_("Dwarf Error: Problem turning containing type into gdb type "
21995 "[in module %s]"), objfile_name (objfile));
21997 return lookup_die_type (die, type_attr, cu);
22000 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22002 static struct type *
22003 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22005 struct dwarf2_per_objfile *dwarf2_per_objfile
22006 = cu->per_cu->dwarf2_per_objfile;
22007 struct objfile *objfile = dwarf2_per_objfile->objfile;
22010 std::string message
22011 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22012 objfile_name (objfile),
22013 sect_offset_str (cu->header.sect_off),
22014 sect_offset_str (die->sect_off));
22015 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22016 message.c_str (), message.length ());
22018 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22021 /* Look up the type of DIE in CU using its type attribute ATTR.
22022 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22023 DW_AT_containing_type.
22024 If there is no type substitute an error marker. */
22026 static struct type *
22027 lookup_die_type (struct die_info *die, const struct attribute *attr,
22028 struct dwarf2_cu *cu)
22030 struct dwarf2_per_objfile *dwarf2_per_objfile
22031 = cu->per_cu->dwarf2_per_objfile;
22032 struct objfile *objfile = dwarf2_per_objfile->objfile;
22033 struct type *this_type;
22035 gdb_assert (attr->name == DW_AT_type
22036 || attr->name == DW_AT_GNAT_descriptive_type
22037 || attr->name == DW_AT_containing_type);
22039 /* First see if we have it cached. */
22041 if (attr->form == DW_FORM_GNU_ref_alt)
22043 struct dwarf2_per_cu_data *per_cu;
22044 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22046 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22047 dwarf2_per_objfile);
22048 this_type = get_die_type_at_offset (sect_off, per_cu);
22050 else if (attr_form_is_ref (attr))
22052 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22054 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22056 else if (attr->form == DW_FORM_ref_sig8)
22058 ULONGEST signature = DW_SIGNATURE (attr);
22060 return get_signatured_type (die, signature, cu);
22064 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22065 " at %s [in module %s]"),
22066 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22067 objfile_name (objfile));
22068 return build_error_marker_type (cu, die);
22071 /* If not cached we need to read it in. */
22073 if (this_type == NULL)
22075 struct die_info *type_die = NULL;
22076 struct dwarf2_cu *type_cu = cu;
22078 if (attr_form_is_ref (attr))
22079 type_die = follow_die_ref (die, attr, &type_cu);
22080 if (type_die == NULL)
22081 return build_error_marker_type (cu, die);
22082 /* If we find the type now, it's probably because the type came
22083 from an inter-CU reference and the type's CU got expanded before
22085 this_type = read_type_die (type_die, type_cu);
22088 /* If we still don't have a type use an error marker. */
22090 if (this_type == NULL)
22091 return build_error_marker_type (cu, die);
22096 /* Return the type in DIE, CU.
22097 Returns NULL for invalid types.
22099 This first does a lookup in die_type_hash,
22100 and only reads the die in if necessary.
22102 NOTE: This can be called when reading in partial or full symbols. */
22104 static struct type *
22105 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22107 struct type *this_type;
22109 this_type = get_die_type (die, cu);
22113 return read_type_die_1 (die, cu);
22116 /* Read the type in DIE, CU.
22117 Returns NULL for invalid types. */
22119 static struct type *
22120 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22122 struct type *this_type = NULL;
22126 case DW_TAG_class_type:
22127 case DW_TAG_interface_type:
22128 case DW_TAG_structure_type:
22129 case DW_TAG_union_type:
22130 this_type = read_structure_type (die, cu);
22132 case DW_TAG_enumeration_type:
22133 this_type = read_enumeration_type (die, cu);
22135 case DW_TAG_subprogram:
22136 case DW_TAG_subroutine_type:
22137 case DW_TAG_inlined_subroutine:
22138 this_type = read_subroutine_type (die, cu);
22140 case DW_TAG_array_type:
22141 this_type = read_array_type (die, cu);
22143 case DW_TAG_set_type:
22144 this_type = read_set_type (die, cu);
22146 case DW_TAG_pointer_type:
22147 this_type = read_tag_pointer_type (die, cu);
22149 case DW_TAG_ptr_to_member_type:
22150 this_type = read_tag_ptr_to_member_type (die, cu);
22152 case DW_TAG_reference_type:
22153 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22155 case DW_TAG_rvalue_reference_type:
22156 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22158 case DW_TAG_const_type:
22159 this_type = read_tag_const_type (die, cu);
22161 case DW_TAG_volatile_type:
22162 this_type = read_tag_volatile_type (die, cu);
22164 case DW_TAG_restrict_type:
22165 this_type = read_tag_restrict_type (die, cu);
22167 case DW_TAG_string_type:
22168 this_type = read_tag_string_type (die, cu);
22170 case DW_TAG_typedef:
22171 this_type = read_typedef (die, cu);
22173 case DW_TAG_subrange_type:
22174 this_type = read_subrange_type (die, cu);
22176 case DW_TAG_base_type:
22177 this_type = read_base_type (die, cu);
22179 case DW_TAG_unspecified_type:
22180 this_type = read_unspecified_type (die, cu);
22182 case DW_TAG_namespace:
22183 this_type = read_namespace_type (die, cu);
22185 case DW_TAG_module:
22186 this_type = read_module_type (die, cu);
22188 case DW_TAG_atomic_type:
22189 this_type = read_tag_atomic_type (die, cu);
22192 complaint (_("unexpected tag in read_type_die: '%s'"),
22193 dwarf_tag_name (die->tag));
22200 /* See if we can figure out if the class lives in a namespace. We do
22201 this by looking for a member function; its demangled name will
22202 contain namespace info, if there is any.
22203 Return the computed name or NULL.
22204 Space for the result is allocated on the objfile's obstack.
22205 This is the full-die version of guess_partial_die_structure_name.
22206 In this case we know DIE has no useful parent. */
22209 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22211 struct die_info *spec_die;
22212 struct dwarf2_cu *spec_cu;
22213 struct die_info *child;
22214 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22217 spec_die = die_specification (die, &spec_cu);
22218 if (spec_die != NULL)
22224 for (child = die->child;
22226 child = child->sibling)
22228 if (child->tag == DW_TAG_subprogram)
22230 const char *linkage_name = dw2_linkage_name (child, cu);
22232 if (linkage_name != NULL)
22235 = language_class_name_from_physname (cu->language_defn,
22239 if (actual_name != NULL)
22241 const char *die_name = dwarf2_name (die, cu);
22243 if (die_name != NULL
22244 && strcmp (die_name, actual_name) != 0)
22246 /* Strip off the class name from the full name.
22247 We want the prefix. */
22248 int die_name_len = strlen (die_name);
22249 int actual_name_len = strlen (actual_name);
22251 /* Test for '::' as a sanity check. */
22252 if (actual_name_len > die_name_len + 2
22253 && actual_name[actual_name_len
22254 - die_name_len - 1] == ':')
22255 name = (char *) obstack_copy0 (
22256 &objfile->per_bfd->storage_obstack,
22257 actual_name, actual_name_len - die_name_len - 2);
22260 xfree (actual_name);
22269 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22270 prefix part in such case. See
22271 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22273 static const char *
22274 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22276 struct attribute *attr;
22279 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22280 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22283 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22286 attr = dw2_linkage_name_attr (die, cu);
22287 if (attr == NULL || DW_STRING (attr) == NULL)
22290 /* dwarf2_name had to be already called. */
22291 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22293 /* Strip the base name, keep any leading namespaces/classes. */
22294 base = strrchr (DW_STRING (attr), ':');
22295 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22299 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22301 &base[-1] - DW_STRING (attr));
22304 /* Return the name of the namespace/class that DIE is defined within,
22305 or "" if we can't tell. The caller should not xfree the result.
22307 For example, if we're within the method foo() in the following
22317 then determine_prefix on foo's die will return "N::C". */
22319 static const char *
22320 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22322 struct dwarf2_per_objfile *dwarf2_per_objfile
22323 = cu->per_cu->dwarf2_per_objfile;
22324 struct die_info *parent, *spec_die;
22325 struct dwarf2_cu *spec_cu;
22326 struct type *parent_type;
22327 const char *retval;
22329 if (cu->language != language_cplus
22330 && cu->language != language_fortran && cu->language != language_d
22331 && cu->language != language_rust)
22334 retval = anonymous_struct_prefix (die, cu);
22338 /* We have to be careful in the presence of DW_AT_specification.
22339 For example, with GCC 3.4, given the code
22343 // Definition of N::foo.
22347 then we'll have a tree of DIEs like this:
22349 1: DW_TAG_compile_unit
22350 2: DW_TAG_namespace // N
22351 3: DW_TAG_subprogram // declaration of N::foo
22352 4: DW_TAG_subprogram // definition of N::foo
22353 DW_AT_specification // refers to die #3
22355 Thus, when processing die #4, we have to pretend that we're in
22356 the context of its DW_AT_specification, namely the contex of die
22359 spec_die = die_specification (die, &spec_cu);
22360 if (spec_die == NULL)
22361 parent = die->parent;
22364 parent = spec_die->parent;
22368 if (parent == NULL)
22370 else if (parent->building_fullname)
22373 const char *parent_name;
22375 /* It has been seen on RealView 2.2 built binaries,
22376 DW_TAG_template_type_param types actually _defined_ as
22377 children of the parent class:
22380 template class <class Enum> Class{};
22381 Class<enum E> class_e;
22383 1: DW_TAG_class_type (Class)
22384 2: DW_TAG_enumeration_type (E)
22385 3: DW_TAG_enumerator (enum1:0)
22386 3: DW_TAG_enumerator (enum2:1)
22388 2: DW_TAG_template_type_param
22389 DW_AT_type DW_FORM_ref_udata (E)
22391 Besides being broken debug info, it can put GDB into an
22392 infinite loop. Consider:
22394 When we're building the full name for Class<E>, we'll start
22395 at Class, and go look over its template type parameters,
22396 finding E. We'll then try to build the full name of E, and
22397 reach here. We're now trying to build the full name of E,
22398 and look over the parent DIE for containing scope. In the
22399 broken case, if we followed the parent DIE of E, we'd again
22400 find Class, and once again go look at its template type
22401 arguments, etc., etc. Simply don't consider such parent die
22402 as source-level parent of this die (it can't be, the language
22403 doesn't allow it), and break the loop here. */
22404 name = dwarf2_name (die, cu);
22405 parent_name = dwarf2_name (parent, cu);
22406 complaint (_("template param type '%s' defined within parent '%s'"),
22407 name ? name : "<unknown>",
22408 parent_name ? parent_name : "<unknown>");
22412 switch (parent->tag)
22414 case DW_TAG_namespace:
22415 parent_type = read_type_die (parent, cu);
22416 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22417 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22418 Work around this problem here. */
22419 if (cu->language == language_cplus
22420 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22422 /* We give a name to even anonymous namespaces. */
22423 return TYPE_NAME (parent_type);
22424 case DW_TAG_class_type:
22425 case DW_TAG_interface_type:
22426 case DW_TAG_structure_type:
22427 case DW_TAG_union_type:
22428 case DW_TAG_module:
22429 parent_type = read_type_die (parent, cu);
22430 if (TYPE_NAME (parent_type) != NULL)
22431 return TYPE_NAME (parent_type);
22433 /* An anonymous structure is only allowed non-static data
22434 members; no typedefs, no member functions, et cetera.
22435 So it does not need a prefix. */
22437 case DW_TAG_compile_unit:
22438 case DW_TAG_partial_unit:
22439 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22440 if (cu->language == language_cplus
22441 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22442 && die->child != NULL
22443 && (die->tag == DW_TAG_class_type
22444 || die->tag == DW_TAG_structure_type
22445 || die->tag == DW_TAG_union_type))
22447 char *name = guess_full_die_structure_name (die, cu);
22452 case DW_TAG_enumeration_type:
22453 parent_type = read_type_die (parent, cu);
22454 if (TYPE_DECLARED_CLASS (parent_type))
22456 if (TYPE_NAME (parent_type) != NULL)
22457 return TYPE_NAME (parent_type);
22460 /* Fall through. */
22462 return determine_prefix (parent, cu);
22466 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22467 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22468 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22469 an obconcat, otherwise allocate storage for the result. The CU argument is
22470 used to determine the language and hence, the appropriate separator. */
22472 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22475 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22476 int physname, struct dwarf2_cu *cu)
22478 const char *lead = "";
22481 if (suffix == NULL || suffix[0] == '\0'
22482 || prefix == NULL || prefix[0] == '\0')
22484 else if (cu->language == language_d)
22486 /* For D, the 'main' function could be defined in any module, but it
22487 should never be prefixed. */
22488 if (strcmp (suffix, "D main") == 0)
22496 else if (cu->language == language_fortran && physname)
22498 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22499 DW_AT_MIPS_linkage_name is preferred and used instead. */
22507 if (prefix == NULL)
22509 if (suffix == NULL)
22516 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22518 strcpy (retval, lead);
22519 strcat (retval, prefix);
22520 strcat (retval, sep);
22521 strcat (retval, suffix);
22526 /* We have an obstack. */
22527 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22531 /* Return sibling of die, NULL if no sibling. */
22533 static struct die_info *
22534 sibling_die (struct die_info *die)
22536 return die->sibling;
22539 /* Get name of a die, return NULL if not found. */
22541 static const char *
22542 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22543 struct obstack *obstack)
22545 if (name && cu->language == language_cplus)
22547 std::string canon_name = cp_canonicalize_string (name);
22549 if (!canon_name.empty ())
22551 if (canon_name != name)
22552 name = (const char *) obstack_copy0 (obstack,
22553 canon_name.c_str (),
22554 canon_name.length ());
22561 /* Get name of a die, return NULL if not found.
22562 Anonymous namespaces are converted to their magic string. */
22564 static const char *
22565 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22567 struct attribute *attr;
22568 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22570 attr = dwarf2_attr (die, DW_AT_name, cu);
22571 if ((!attr || !DW_STRING (attr))
22572 && die->tag != DW_TAG_namespace
22573 && die->tag != DW_TAG_class_type
22574 && die->tag != DW_TAG_interface_type
22575 && die->tag != DW_TAG_structure_type
22576 && die->tag != DW_TAG_union_type)
22581 case DW_TAG_compile_unit:
22582 case DW_TAG_partial_unit:
22583 /* Compilation units have a DW_AT_name that is a filename, not
22584 a source language identifier. */
22585 case DW_TAG_enumeration_type:
22586 case DW_TAG_enumerator:
22587 /* These tags always have simple identifiers already; no need
22588 to canonicalize them. */
22589 return DW_STRING (attr);
22591 case DW_TAG_namespace:
22592 if (attr != NULL && DW_STRING (attr) != NULL)
22593 return DW_STRING (attr);
22594 return CP_ANONYMOUS_NAMESPACE_STR;
22596 case DW_TAG_class_type:
22597 case DW_TAG_interface_type:
22598 case DW_TAG_structure_type:
22599 case DW_TAG_union_type:
22600 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22601 structures or unions. These were of the form "._%d" in GCC 4.1,
22602 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22603 and GCC 4.4. We work around this problem by ignoring these. */
22604 if (attr && DW_STRING (attr)
22605 && (startswith (DW_STRING (attr), "._")
22606 || startswith (DW_STRING (attr), "<anonymous")))
22609 /* GCC might emit a nameless typedef that has a linkage name. See
22610 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22611 if (!attr || DW_STRING (attr) == NULL)
22613 char *demangled = NULL;
22615 attr = dw2_linkage_name_attr (die, cu);
22616 if (attr == NULL || DW_STRING (attr) == NULL)
22619 /* Avoid demangling DW_STRING (attr) the second time on a second
22620 call for the same DIE. */
22621 if (!DW_STRING_IS_CANONICAL (attr))
22622 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22628 /* FIXME: we already did this for the partial symbol... */
22631 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22632 demangled, strlen (demangled)));
22633 DW_STRING_IS_CANONICAL (attr) = 1;
22636 /* Strip any leading namespaces/classes, keep only the base name.
22637 DW_AT_name for named DIEs does not contain the prefixes. */
22638 base = strrchr (DW_STRING (attr), ':');
22639 if (base && base > DW_STRING (attr) && base[-1] == ':')
22642 return DW_STRING (attr);
22651 if (!DW_STRING_IS_CANONICAL (attr))
22654 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22655 &objfile->per_bfd->storage_obstack);
22656 DW_STRING_IS_CANONICAL (attr) = 1;
22658 return DW_STRING (attr);
22661 /* Return the die that this die in an extension of, or NULL if there
22662 is none. *EXT_CU is the CU containing DIE on input, and the CU
22663 containing the return value on output. */
22665 static struct die_info *
22666 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22668 struct attribute *attr;
22670 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22674 return follow_die_ref (die, attr, ext_cu);
22677 /* Convert a DIE tag into its string name. */
22679 static const char *
22680 dwarf_tag_name (unsigned tag)
22682 const char *name = get_DW_TAG_name (tag);
22685 return "DW_TAG_<unknown>";
22690 /* Convert a DWARF attribute code into its string name. */
22692 static const char *
22693 dwarf_attr_name (unsigned attr)
22697 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22698 if (attr == DW_AT_MIPS_fde)
22699 return "DW_AT_MIPS_fde";
22701 if (attr == DW_AT_HP_block_index)
22702 return "DW_AT_HP_block_index";
22705 name = get_DW_AT_name (attr);
22708 return "DW_AT_<unknown>";
22713 /* Convert a DWARF value form code into its string name. */
22715 static const char *
22716 dwarf_form_name (unsigned form)
22718 const char *name = get_DW_FORM_name (form);
22721 return "DW_FORM_<unknown>";
22726 static const char *
22727 dwarf_bool_name (unsigned mybool)
22735 /* Convert a DWARF type code into its string name. */
22737 static const char *
22738 dwarf_type_encoding_name (unsigned enc)
22740 const char *name = get_DW_ATE_name (enc);
22743 return "DW_ATE_<unknown>";
22749 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22753 print_spaces (indent, f);
22754 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22755 dwarf_tag_name (die->tag), die->abbrev,
22756 sect_offset_str (die->sect_off));
22758 if (die->parent != NULL)
22760 print_spaces (indent, f);
22761 fprintf_unfiltered (f, " parent at offset: %s\n",
22762 sect_offset_str (die->parent->sect_off));
22765 print_spaces (indent, f);
22766 fprintf_unfiltered (f, " has children: %s\n",
22767 dwarf_bool_name (die->child != NULL));
22769 print_spaces (indent, f);
22770 fprintf_unfiltered (f, " attributes:\n");
22772 for (i = 0; i < die->num_attrs; ++i)
22774 print_spaces (indent, f);
22775 fprintf_unfiltered (f, " %s (%s) ",
22776 dwarf_attr_name (die->attrs[i].name),
22777 dwarf_form_name (die->attrs[i].form));
22779 switch (die->attrs[i].form)
22782 case DW_FORM_GNU_addr_index:
22783 fprintf_unfiltered (f, "address: ");
22784 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22786 case DW_FORM_block2:
22787 case DW_FORM_block4:
22788 case DW_FORM_block:
22789 case DW_FORM_block1:
22790 fprintf_unfiltered (f, "block: size %s",
22791 pulongest (DW_BLOCK (&die->attrs[i])->size));
22793 case DW_FORM_exprloc:
22794 fprintf_unfiltered (f, "expression: size %s",
22795 pulongest (DW_BLOCK (&die->attrs[i])->size));
22797 case DW_FORM_data16:
22798 fprintf_unfiltered (f, "constant of 16 bytes");
22800 case DW_FORM_ref_addr:
22801 fprintf_unfiltered (f, "ref address: ");
22802 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22804 case DW_FORM_GNU_ref_alt:
22805 fprintf_unfiltered (f, "alt ref address: ");
22806 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22812 case DW_FORM_ref_udata:
22813 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22814 (long) (DW_UNSND (&die->attrs[i])));
22816 case DW_FORM_data1:
22817 case DW_FORM_data2:
22818 case DW_FORM_data4:
22819 case DW_FORM_data8:
22820 case DW_FORM_udata:
22821 case DW_FORM_sdata:
22822 fprintf_unfiltered (f, "constant: %s",
22823 pulongest (DW_UNSND (&die->attrs[i])));
22825 case DW_FORM_sec_offset:
22826 fprintf_unfiltered (f, "section offset: %s",
22827 pulongest (DW_UNSND (&die->attrs[i])));
22829 case DW_FORM_ref_sig8:
22830 fprintf_unfiltered (f, "signature: %s",
22831 hex_string (DW_SIGNATURE (&die->attrs[i])));
22833 case DW_FORM_string:
22835 case DW_FORM_line_strp:
22836 case DW_FORM_GNU_str_index:
22837 case DW_FORM_GNU_strp_alt:
22838 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22839 DW_STRING (&die->attrs[i])
22840 ? DW_STRING (&die->attrs[i]) : "",
22841 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22844 if (DW_UNSND (&die->attrs[i]))
22845 fprintf_unfiltered (f, "flag: TRUE");
22847 fprintf_unfiltered (f, "flag: FALSE");
22849 case DW_FORM_flag_present:
22850 fprintf_unfiltered (f, "flag: TRUE");
22852 case DW_FORM_indirect:
22853 /* The reader will have reduced the indirect form to
22854 the "base form" so this form should not occur. */
22855 fprintf_unfiltered (f,
22856 "unexpected attribute form: DW_FORM_indirect");
22858 case DW_FORM_implicit_const:
22859 fprintf_unfiltered (f, "constant: %s",
22860 plongest (DW_SND (&die->attrs[i])));
22863 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22864 die->attrs[i].form);
22867 fprintf_unfiltered (f, "\n");
22872 dump_die_for_error (struct die_info *die)
22874 dump_die_shallow (gdb_stderr, 0, die);
22878 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22880 int indent = level * 4;
22882 gdb_assert (die != NULL);
22884 if (level >= max_level)
22887 dump_die_shallow (f, indent, die);
22889 if (die->child != NULL)
22891 print_spaces (indent, f);
22892 fprintf_unfiltered (f, " Children:");
22893 if (level + 1 < max_level)
22895 fprintf_unfiltered (f, "\n");
22896 dump_die_1 (f, level + 1, max_level, die->child);
22900 fprintf_unfiltered (f,
22901 " [not printed, max nesting level reached]\n");
22905 if (die->sibling != NULL && level > 0)
22907 dump_die_1 (f, level, max_level, die->sibling);
22911 /* This is called from the pdie macro in gdbinit.in.
22912 It's not static so gcc will keep a copy callable from gdb. */
22915 dump_die (struct die_info *die, int max_level)
22917 dump_die_1 (gdb_stdlog, 0, max_level, die);
22921 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22925 slot = htab_find_slot_with_hash (cu->die_hash, die,
22926 to_underlying (die->sect_off),
22932 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22936 dwarf2_get_ref_die_offset (const struct attribute *attr)
22938 if (attr_form_is_ref (attr))
22939 return (sect_offset) DW_UNSND (attr);
22941 complaint (_("unsupported die ref attribute form: '%s'"),
22942 dwarf_form_name (attr->form));
22946 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22947 * the value held by the attribute is not constant. */
22950 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22952 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22953 return DW_SND (attr);
22954 else if (attr->form == DW_FORM_udata
22955 || attr->form == DW_FORM_data1
22956 || attr->form == DW_FORM_data2
22957 || attr->form == DW_FORM_data4
22958 || attr->form == DW_FORM_data8)
22959 return DW_UNSND (attr);
22962 /* For DW_FORM_data16 see attr_form_is_constant. */
22963 complaint (_("Attribute value is not a constant (%s)"),
22964 dwarf_form_name (attr->form));
22965 return default_value;
22969 /* Follow reference or signature attribute ATTR of SRC_DIE.
22970 On entry *REF_CU is the CU of SRC_DIE.
22971 On exit *REF_CU is the CU of the result. */
22973 static struct die_info *
22974 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22975 struct dwarf2_cu **ref_cu)
22977 struct die_info *die;
22979 if (attr_form_is_ref (attr))
22980 die = follow_die_ref (src_die, attr, ref_cu);
22981 else if (attr->form == DW_FORM_ref_sig8)
22982 die = follow_die_sig (src_die, attr, ref_cu);
22985 dump_die_for_error (src_die);
22986 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22987 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22993 /* Follow reference OFFSET.
22994 On entry *REF_CU is the CU of the source die referencing OFFSET.
22995 On exit *REF_CU is the CU of the result.
22996 Returns NULL if OFFSET is invalid. */
22998 static struct die_info *
22999 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23000 struct dwarf2_cu **ref_cu)
23002 struct die_info temp_die;
23003 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23004 struct dwarf2_per_objfile *dwarf2_per_objfile
23005 = cu->per_cu->dwarf2_per_objfile;
23007 gdb_assert (cu->per_cu != NULL);
23011 if (cu->per_cu->is_debug_types)
23013 /* .debug_types CUs cannot reference anything outside their CU.
23014 If they need to, they have to reference a signatured type via
23015 DW_FORM_ref_sig8. */
23016 if (!offset_in_cu_p (&cu->header, sect_off))
23019 else if (offset_in_dwz != cu->per_cu->is_dwz
23020 || !offset_in_cu_p (&cu->header, sect_off))
23022 struct dwarf2_per_cu_data *per_cu;
23024 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23025 dwarf2_per_objfile);
23027 /* If necessary, add it to the queue and load its DIEs. */
23028 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23029 load_full_comp_unit (per_cu, false, cu->language);
23031 target_cu = per_cu->cu;
23033 else if (cu->dies == NULL)
23035 /* We're loading full DIEs during partial symbol reading. */
23036 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23037 load_full_comp_unit (cu->per_cu, false, language_minimal);
23040 *ref_cu = target_cu;
23041 temp_die.sect_off = sect_off;
23043 if (target_cu != cu)
23044 target_cu->ancestor = cu;
23046 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23048 to_underlying (sect_off));
23051 /* Follow reference attribute ATTR of SRC_DIE.
23052 On entry *REF_CU is the CU of SRC_DIE.
23053 On exit *REF_CU is the CU of the result. */
23055 static struct die_info *
23056 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23057 struct dwarf2_cu **ref_cu)
23059 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23060 struct dwarf2_cu *cu = *ref_cu;
23061 struct die_info *die;
23063 die = follow_die_offset (sect_off,
23064 (attr->form == DW_FORM_GNU_ref_alt
23065 || cu->per_cu->is_dwz),
23068 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23069 "at %s [in module %s]"),
23070 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23071 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23076 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23077 Returned value is intended for DW_OP_call*. Returned
23078 dwarf2_locexpr_baton->data has lifetime of
23079 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23081 struct dwarf2_locexpr_baton
23082 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23083 struct dwarf2_per_cu_data *per_cu,
23084 CORE_ADDR (*get_frame_pc) (void *baton),
23085 void *baton, bool resolve_abstract_p)
23087 struct dwarf2_cu *cu;
23088 struct die_info *die;
23089 struct attribute *attr;
23090 struct dwarf2_locexpr_baton retval;
23091 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23092 struct objfile *objfile = dwarf2_per_objfile->objfile;
23094 if (per_cu->cu == NULL)
23095 load_cu (per_cu, false);
23099 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23100 Instead just throw an error, not much else we can do. */
23101 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23102 sect_offset_str (sect_off), objfile_name (objfile));
23105 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23107 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23108 sect_offset_str (sect_off), objfile_name (objfile));
23110 attr = dwarf2_attr (die, DW_AT_location, cu);
23111 if (!attr && resolve_abstract_p
23112 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23113 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23115 CORE_ADDR pc = (*get_frame_pc) (baton);
23117 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23120 || cand->parent->tag != DW_TAG_subprogram)
23123 CORE_ADDR pc_low, pc_high;
23124 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23125 if (pc_low == ((CORE_ADDR) -1)
23126 || !(pc_low <= pc && pc < pc_high))
23130 attr = dwarf2_attr (die, DW_AT_location, cu);
23137 /* DWARF: "If there is no such attribute, then there is no effect.".
23138 DATA is ignored if SIZE is 0. */
23140 retval.data = NULL;
23143 else if (attr_form_is_section_offset (attr))
23145 struct dwarf2_loclist_baton loclist_baton;
23146 CORE_ADDR pc = (*get_frame_pc) (baton);
23149 fill_in_loclist_baton (cu, &loclist_baton, attr);
23151 retval.data = dwarf2_find_location_expression (&loclist_baton,
23153 retval.size = size;
23157 if (!attr_form_is_block (attr))
23158 error (_("Dwarf Error: DIE at %s referenced in module %s "
23159 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23160 sect_offset_str (sect_off), objfile_name (objfile));
23162 retval.data = DW_BLOCK (attr)->data;
23163 retval.size = DW_BLOCK (attr)->size;
23165 retval.per_cu = cu->per_cu;
23167 age_cached_comp_units (dwarf2_per_objfile);
23172 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23175 struct dwarf2_locexpr_baton
23176 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23177 struct dwarf2_per_cu_data *per_cu,
23178 CORE_ADDR (*get_frame_pc) (void *baton),
23181 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23183 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23186 /* Write a constant of a given type as target-ordered bytes into
23189 static const gdb_byte *
23190 write_constant_as_bytes (struct obstack *obstack,
23191 enum bfd_endian byte_order,
23198 *len = TYPE_LENGTH (type);
23199 result = (gdb_byte *) obstack_alloc (obstack, *len);
23200 store_unsigned_integer (result, *len, byte_order, value);
23205 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23206 pointer to the constant bytes and set LEN to the length of the
23207 data. If memory is needed, allocate it on OBSTACK. If the DIE
23208 does not have a DW_AT_const_value, return NULL. */
23211 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23212 struct dwarf2_per_cu_data *per_cu,
23213 struct obstack *obstack,
23216 struct dwarf2_cu *cu;
23217 struct die_info *die;
23218 struct attribute *attr;
23219 const gdb_byte *result = NULL;
23222 enum bfd_endian byte_order;
23223 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23225 if (per_cu->cu == NULL)
23226 load_cu (per_cu, false);
23230 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23231 Instead just throw an error, not much else we can do. */
23232 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23233 sect_offset_str (sect_off), objfile_name (objfile));
23236 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23238 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23239 sect_offset_str (sect_off), objfile_name (objfile));
23241 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23245 byte_order = (bfd_big_endian (objfile->obfd)
23246 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23248 switch (attr->form)
23251 case DW_FORM_GNU_addr_index:
23255 *len = cu->header.addr_size;
23256 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23257 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23261 case DW_FORM_string:
23263 case DW_FORM_GNU_str_index:
23264 case DW_FORM_GNU_strp_alt:
23265 /* DW_STRING is already allocated on the objfile obstack, point
23267 result = (const gdb_byte *) DW_STRING (attr);
23268 *len = strlen (DW_STRING (attr));
23270 case DW_FORM_block1:
23271 case DW_FORM_block2:
23272 case DW_FORM_block4:
23273 case DW_FORM_block:
23274 case DW_FORM_exprloc:
23275 case DW_FORM_data16:
23276 result = DW_BLOCK (attr)->data;
23277 *len = DW_BLOCK (attr)->size;
23280 /* The DW_AT_const_value attributes are supposed to carry the
23281 symbol's value "represented as it would be on the target
23282 architecture." By the time we get here, it's already been
23283 converted to host endianness, so we just need to sign- or
23284 zero-extend it as appropriate. */
23285 case DW_FORM_data1:
23286 type = die_type (die, cu);
23287 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23288 if (result == NULL)
23289 result = write_constant_as_bytes (obstack, byte_order,
23292 case DW_FORM_data2:
23293 type = die_type (die, cu);
23294 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23295 if (result == NULL)
23296 result = write_constant_as_bytes (obstack, byte_order,
23299 case DW_FORM_data4:
23300 type = die_type (die, cu);
23301 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23302 if (result == NULL)
23303 result = write_constant_as_bytes (obstack, byte_order,
23306 case DW_FORM_data8:
23307 type = die_type (die, cu);
23308 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23309 if (result == NULL)
23310 result = write_constant_as_bytes (obstack, byte_order,
23314 case DW_FORM_sdata:
23315 case DW_FORM_implicit_const:
23316 type = die_type (die, cu);
23317 result = write_constant_as_bytes (obstack, byte_order,
23318 type, DW_SND (attr), len);
23321 case DW_FORM_udata:
23322 type = die_type (die, cu);
23323 result = write_constant_as_bytes (obstack, byte_order,
23324 type, DW_UNSND (attr), len);
23328 complaint (_("unsupported const value attribute form: '%s'"),
23329 dwarf_form_name (attr->form));
23336 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23337 valid type for this die is found. */
23340 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23341 struct dwarf2_per_cu_data *per_cu)
23343 struct dwarf2_cu *cu;
23344 struct die_info *die;
23346 if (per_cu->cu == NULL)
23347 load_cu (per_cu, false);
23352 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23356 return die_type (die, cu);
23359 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23363 dwarf2_get_die_type (cu_offset die_offset,
23364 struct dwarf2_per_cu_data *per_cu)
23366 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23367 return get_die_type_at_offset (die_offset_sect, per_cu);
23370 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23371 On entry *REF_CU is the CU of SRC_DIE.
23372 On exit *REF_CU is the CU of the result.
23373 Returns NULL if the referenced DIE isn't found. */
23375 static struct die_info *
23376 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23377 struct dwarf2_cu **ref_cu)
23379 struct die_info temp_die;
23380 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23381 struct die_info *die;
23383 /* While it might be nice to assert sig_type->type == NULL here,
23384 we can get here for DW_AT_imported_declaration where we need
23385 the DIE not the type. */
23387 /* If necessary, add it to the queue and load its DIEs. */
23389 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23390 read_signatured_type (sig_type);
23392 sig_cu = sig_type->per_cu.cu;
23393 gdb_assert (sig_cu != NULL);
23394 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23395 temp_die.sect_off = sig_type->type_offset_in_section;
23396 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23397 to_underlying (temp_die.sect_off));
23400 struct dwarf2_per_objfile *dwarf2_per_objfile
23401 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23403 /* For .gdb_index version 7 keep track of included TUs.
23404 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23405 if (dwarf2_per_objfile->index_table != NULL
23406 && dwarf2_per_objfile->index_table->version <= 7)
23408 VEC_safe_push (dwarf2_per_cu_ptr,
23409 (*ref_cu)->per_cu->imported_symtabs,
23415 sig_cu->ancestor = cu;
23423 /* Follow signatured type referenced by ATTR in SRC_DIE.
23424 On entry *REF_CU is the CU of SRC_DIE.
23425 On exit *REF_CU is the CU of the result.
23426 The result is the DIE of the type.
23427 If the referenced type cannot be found an error is thrown. */
23429 static struct die_info *
23430 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23431 struct dwarf2_cu **ref_cu)
23433 ULONGEST signature = DW_SIGNATURE (attr);
23434 struct signatured_type *sig_type;
23435 struct die_info *die;
23437 gdb_assert (attr->form == DW_FORM_ref_sig8);
23439 sig_type = lookup_signatured_type (*ref_cu, signature);
23440 /* sig_type will be NULL if the signatured type is missing from
23442 if (sig_type == NULL)
23444 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23445 " from DIE at %s [in module %s]"),
23446 hex_string (signature), sect_offset_str (src_die->sect_off),
23447 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23450 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23453 dump_die_for_error (src_die);
23454 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23455 " from DIE at %s [in module %s]"),
23456 hex_string (signature), sect_offset_str (src_die->sect_off),
23457 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23463 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23464 reading in and processing the type unit if necessary. */
23466 static struct type *
23467 get_signatured_type (struct die_info *die, ULONGEST signature,
23468 struct dwarf2_cu *cu)
23470 struct dwarf2_per_objfile *dwarf2_per_objfile
23471 = cu->per_cu->dwarf2_per_objfile;
23472 struct signatured_type *sig_type;
23473 struct dwarf2_cu *type_cu;
23474 struct die_info *type_die;
23477 sig_type = lookup_signatured_type (cu, signature);
23478 /* sig_type will be NULL if the signatured type is missing from
23480 if (sig_type == NULL)
23482 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23483 " from DIE at %s [in module %s]"),
23484 hex_string (signature), sect_offset_str (die->sect_off),
23485 objfile_name (dwarf2_per_objfile->objfile));
23486 return build_error_marker_type (cu, die);
23489 /* If we already know the type we're done. */
23490 if (sig_type->type != NULL)
23491 return sig_type->type;
23494 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23495 if (type_die != NULL)
23497 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23498 is created. This is important, for example, because for c++ classes
23499 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23500 type = read_type_die (type_die, type_cu);
23503 complaint (_("Dwarf Error: Cannot build signatured type %s"
23504 " referenced from DIE at %s [in module %s]"),
23505 hex_string (signature), sect_offset_str (die->sect_off),
23506 objfile_name (dwarf2_per_objfile->objfile));
23507 type = build_error_marker_type (cu, die);
23512 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23513 " from DIE at %s [in module %s]"),
23514 hex_string (signature), sect_offset_str (die->sect_off),
23515 objfile_name (dwarf2_per_objfile->objfile));
23516 type = build_error_marker_type (cu, die);
23518 sig_type->type = type;
23523 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23524 reading in and processing the type unit if necessary. */
23526 static struct type *
23527 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23528 struct dwarf2_cu *cu) /* ARI: editCase function */
23530 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23531 if (attr_form_is_ref (attr))
23533 struct dwarf2_cu *type_cu = cu;
23534 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23536 return read_type_die (type_die, type_cu);
23538 else if (attr->form == DW_FORM_ref_sig8)
23540 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23544 struct dwarf2_per_objfile *dwarf2_per_objfile
23545 = cu->per_cu->dwarf2_per_objfile;
23547 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23548 " at %s [in module %s]"),
23549 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23550 objfile_name (dwarf2_per_objfile->objfile));
23551 return build_error_marker_type (cu, die);
23555 /* Load the DIEs associated with type unit PER_CU into memory. */
23558 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23560 struct signatured_type *sig_type;
23562 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23563 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23565 /* We have the per_cu, but we need the signatured_type.
23566 Fortunately this is an easy translation. */
23567 gdb_assert (per_cu->is_debug_types);
23568 sig_type = (struct signatured_type *) per_cu;
23570 gdb_assert (per_cu->cu == NULL);
23572 read_signatured_type (sig_type);
23574 gdb_assert (per_cu->cu != NULL);
23577 /* die_reader_func for read_signatured_type.
23578 This is identical to load_full_comp_unit_reader,
23579 but is kept separate for now. */
23582 read_signatured_type_reader (const struct die_reader_specs *reader,
23583 const gdb_byte *info_ptr,
23584 struct die_info *comp_unit_die,
23588 struct dwarf2_cu *cu = reader->cu;
23590 gdb_assert (cu->die_hash == NULL);
23592 htab_create_alloc_ex (cu->header.length / 12,
23596 &cu->comp_unit_obstack,
23597 hashtab_obstack_allocate,
23598 dummy_obstack_deallocate);
23601 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23602 &info_ptr, comp_unit_die);
23603 cu->dies = comp_unit_die;
23604 /* comp_unit_die is not stored in die_hash, no need. */
23606 /* We try not to read any attributes in this function, because not
23607 all CUs needed for references have been loaded yet, and symbol
23608 table processing isn't initialized. But we have to set the CU language,
23609 or we won't be able to build types correctly.
23610 Similarly, if we do not read the producer, we can not apply
23611 producer-specific interpretation. */
23612 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23615 /* Read in a signatured type and build its CU and DIEs.
23616 If the type is a stub for the real type in a DWO file,
23617 read in the real type from the DWO file as well. */
23620 read_signatured_type (struct signatured_type *sig_type)
23622 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23624 gdb_assert (per_cu->is_debug_types);
23625 gdb_assert (per_cu->cu == NULL);
23627 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23628 read_signatured_type_reader, NULL);
23629 sig_type->per_cu.tu_read = 1;
23632 /* Decode simple location descriptions.
23633 Given a pointer to a dwarf block that defines a location, compute
23634 the location and return the value.
23636 NOTE drow/2003-11-18: This function is called in two situations
23637 now: for the address of static or global variables (partial symbols
23638 only) and for offsets into structures which are expected to be
23639 (more or less) constant. The partial symbol case should go away,
23640 and only the constant case should remain. That will let this
23641 function complain more accurately. A few special modes are allowed
23642 without complaint for global variables (for instance, global
23643 register values and thread-local values).
23645 A location description containing no operations indicates that the
23646 object is optimized out. The return value is 0 for that case.
23647 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23648 callers will only want a very basic result and this can become a
23651 Note that stack[0] is unused except as a default error return. */
23654 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23656 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23658 size_t size = blk->size;
23659 const gdb_byte *data = blk->data;
23660 CORE_ADDR stack[64];
23662 unsigned int bytes_read, unsnd;
23668 stack[++stacki] = 0;
23707 stack[++stacki] = op - DW_OP_lit0;
23742 stack[++stacki] = op - DW_OP_reg0;
23744 dwarf2_complex_location_expr_complaint ();
23748 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23750 stack[++stacki] = unsnd;
23752 dwarf2_complex_location_expr_complaint ();
23756 stack[++stacki] = read_address (objfile->obfd, &data[i],
23761 case DW_OP_const1u:
23762 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23766 case DW_OP_const1s:
23767 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23771 case DW_OP_const2u:
23772 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23776 case DW_OP_const2s:
23777 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23781 case DW_OP_const4u:
23782 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23786 case DW_OP_const4s:
23787 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23791 case DW_OP_const8u:
23792 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23797 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23803 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23808 stack[stacki + 1] = stack[stacki];
23813 stack[stacki - 1] += stack[stacki];
23817 case DW_OP_plus_uconst:
23818 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23824 stack[stacki - 1] -= stack[stacki];
23829 /* If we're not the last op, then we definitely can't encode
23830 this using GDB's address_class enum. This is valid for partial
23831 global symbols, although the variable's address will be bogus
23834 dwarf2_complex_location_expr_complaint ();
23837 case DW_OP_GNU_push_tls_address:
23838 case DW_OP_form_tls_address:
23839 /* The top of the stack has the offset from the beginning
23840 of the thread control block at which the variable is located. */
23841 /* Nothing should follow this operator, so the top of stack would
23843 /* This is valid for partial global symbols, but the variable's
23844 address will be bogus in the psymtab. Make it always at least
23845 non-zero to not look as a variable garbage collected by linker
23846 which have DW_OP_addr 0. */
23848 dwarf2_complex_location_expr_complaint ();
23852 case DW_OP_GNU_uninit:
23855 case DW_OP_GNU_addr_index:
23856 case DW_OP_GNU_const_index:
23857 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23864 const char *name = get_DW_OP_name (op);
23867 complaint (_("unsupported stack op: '%s'"),
23870 complaint (_("unsupported stack op: '%02x'"),
23874 return (stack[stacki]);
23877 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23878 outside of the allocated space. Also enforce minimum>0. */
23879 if (stacki >= ARRAY_SIZE (stack) - 1)
23881 complaint (_("location description stack overflow"));
23887 complaint (_("location description stack underflow"));
23891 return (stack[stacki]);
23894 /* memory allocation interface */
23896 static struct dwarf_block *
23897 dwarf_alloc_block (struct dwarf2_cu *cu)
23899 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23902 static struct die_info *
23903 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23905 struct die_info *die;
23906 size_t size = sizeof (struct die_info);
23909 size += (num_attrs - 1) * sizeof (struct attribute);
23911 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23912 memset (die, 0, sizeof (struct die_info));
23917 /* Macro support. */
23919 /* Return file name relative to the compilation directory of file number I in
23920 *LH's file name table. The result is allocated using xmalloc; the caller is
23921 responsible for freeing it. */
23924 file_file_name (int file, struct line_header *lh)
23926 /* Is the file number a valid index into the line header's file name
23927 table? Remember that file numbers start with one, not zero. */
23928 if (1 <= file && file <= lh->file_names.size ())
23930 const file_entry &fe = lh->file_names[file - 1];
23932 if (!IS_ABSOLUTE_PATH (fe.name))
23934 const char *dir = fe.include_dir (lh);
23936 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23938 return xstrdup (fe.name);
23942 /* The compiler produced a bogus file number. We can at least
23943 record the macro definitions made in the file, even if we
23944 won't be able to find the file by name. */
23945 char fake_name[80];
23947 xsnprintf (fake_name, sizeof (fake_name),
23948 "<bad macro file number %d>", file);
23950 complaint (_("bad file number in macro information (%d)"),
23953 return xstrdup (fake_name);
23957 /* Return the full name of file number I in *LH's file name table.
23958 Use COMP_DIR as the name of the current directory of the
23959 compilation. The result is allocated using xmalloc; the caller is
23960 responsible for freeing it. */
23962 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23964 /* Is the file number a valid index into the line header's file name
23965 table? Remember that file numbers start with one, not zero. */
23966 if (1 <= file && file <= lh->file_names.size ())
23968 char *relative = file_file_name (file, lh);
23970 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23972 return reconcat (relative, comp_dir, SLASH_STRING,
23973 relative, (char *) NULL);
23976 return file_file_name (file, lh);
23980 static struct macro_source_file *
23981 macro_start_file (struct dwarf2_cu *cu,
23982 int file, int line,
23983 struct macro_source_file *current_file,
23984 struct line_header *lh)
23986 /* File name relative to the compilation directory of this source file. */
23987 char *file_name = file_file_name (file, lh);
23989 if (! current_file)
23991 /* Note: We don't create a macro table for this compilation unit
23992 at all until we actually get a filename. */
23993 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23995 /* If we have no current file, then this must be the start_file
23996 directive for the compilation unit's main source file. */
23997 current_file = macro_set_main (macro_table, file_name);
23998 macro_define_special (macro_table);
24001 current_file = macro_include (current_file, line, file_name);
24005 return current_file;
24008 static const char *
24009 consume_improper_spaces (const char *p, const char *body)
24013 complaint (_("macro definition contains spaces "
24014 "in formal argument list:\n`%s'"),
24026 parse_macro_definition (struct macro_source_file *file, int line,
24031 /* The body string takes one of two forms. For object-like macro
24032 definitions, it should be:
24034 <macro name> " " <definition>
24036 For function-like macro definitions, it should be:
24038 <macro name> "() " <definition>
24040 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24042 Spaces may appear only where explicitly indicated, and in the
24045 The Dwarf 2 spec says that an object-like macro's name is always
24046 followed by a space, but versions of GCC around March 2002 omit
24047 the space when the macro's definition is the empty string.
24049 The Dwarf 2 spec says that there should be no spaces between the
24050 formal arguments in a function-like macro's formal argument list,
24051 but versions of GCC around March 2002 include spaces after the
24055 /* Find the extent of the macro name. The macro name is terminated
24056 by either a space or null character (for an object-like macro) or
24057 an opening paren (for a function-like macro). */
24058 for (p = body; *p; p++)
24059 if (*p == ' ' || *p == '(')
24062 if (*p == ' ' || *p == '\0')
24064 /* It's an object-like macro. */
24065 int name_len = p - body;
24066 char *name = savestring (body, name_len);
24067 const char *replacement;
24070 replacement = body + name_len + 1;
24073 dwarf2_macro_malformed_definition_complaint (body);
24074 replacement = body + name_len;
24077 macro_define_object (file, line, name, replacement);
24081 else if (*p == '(')
24083 /* It's a function-like macro. */
24084 char *name = savestring (body, p - body);
24087 char **argv = XNEWVEC (char *, argv_size);
24091 p = consume_improper_spaces (p, body);
24093 /* Parse the formal argument list. */
24094 while (*p && *p != ')')
24096 /* Find the extent of the current argument name. */
24097 const char *arg_start = p;
24099 while (*p && *p != ',' && *p != ')' && *p != ' ')
24102 if (! *p || p == arg_start)
24103 dwarf2_macro_malformed_definition_complaint (body);
24106 /* Make sure argv has room for the new argument. */
24107 if (argc >= argv_size)
24110 argv = XRESIZEVEC (char *, argv, argv_size);
24113 argv[argc++] = savestring (arg_start, p - arg_start);
24116 p = consume_improper_spaces (p, body);
24118 /* Consume the comma, if present. */
24123 p = consume_improper_spaces (p, body);
24132 /* Perfectly formed definition, no complaints. */
24133 macro_define_function (file, line, name,
24134 argc, (const char **) argv,
24136 else if (*p == '\0')
24138 /* Complain, but do define it. */
24139 dwarf2_macro_malformed_definition_complaint (body);
24140 macro_define_function (file, line, name,
24141 argc, (const char **) argv,
24145 /* Just complain. */
24146 dwarf2_macro_malformed_definition_complaint (body);
24149 /* Just complain. */
24150 dwarf2_macro_malformed_definition_complaint (body);
24156 for (i = 0; i < argc; i++)
24162 dwarf2_macro_malformed_definition_complaint (body);
24165 /* Skip some bytes from BYTES according to the form given in FORM.
24166 Returns the new pointer. */
24168 static const gdb_byte *
24169 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24170 enum dwarf_form form,
24171 unsigned int offset_size,
24172 struct dwarf2_section_info *section)
24174 unsigned int bytes_read;
24178 case DW_FORM_data1:
24183 case DW_FORM_data2:
24187 case DW_FORM_data4:
24191 case DW_FORM_data8:
24195 case DW_FORM_data16:
24199 case DW_FORM_string:
24200 read_direct_string (abfd, bytes, &bytes_read);
24201 bytes += bytes_read;
24204 case DW_FORM_sec_offset:
24206 case DW_FORM_GNU_strp_alt:
24207 bytes += offset_size;
24210 case DW_FORM_block:
24211 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24212 bytes += bytes_read;
24215 case DW_FORM_block1:
24216 bytes += 1 + read_1_byte (abfd, bytes);
24218 case DW_FORM_block2:
24219 bytes += 2 + read_2_bytes (abfd, bytes);
24221 case DW_FORM_block4:
24222 bytes += 4 + read_4_bytes (abfd, bytes);
24225 case DW_FORM_sdata:
24226 case DW_FORM_udata:
24227 case DW_FORM_GNU_addr_index:
24228 case DW_FORM_GNU_str_index:
24229 bytes = gdb_skip_leb128 (bytes, buffer_end);
24232 dwarf2_section_buffer_overflow_complaint (section);
24237 case DW_FORM_implicit_const:
24242 complaint (_("invalid form 0x%x in `%s'"),
24243 form, get_section_name (section));
24251 /* A helper for dwarf_decode_macros that handles skipping an unknown
24252 opcode. Returns an updated pointer to the macro data buffer; or,
24253 on error, issues a complaint and returns NULL. */
24255 static const gdb_byte *
24256 skip_unknown_opcode (unsigned int opcode,
24257 const gdb_byte **opcode_definitions,
24258 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24260 unsigned int offset_size,
24261 struct dwarf2_section_info *section)
24263 unsigned int bytes_read, i;
24265 const gdb_byte *defn;
24267 if (opcode_definitions[opcode] == NULL)
24269 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24274 defn = opcode_definitions[opcode];
24275 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24276 defn += bytes_read;
24278 for (i = 0; i < arg; ++i)
24280 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24281 (enum dwarf_form) defn[i], offset_size,
24283 if (mac_ptr == NULL)
24285 /* skip_form_bytes already issued the complaint. */
24293 /* A helper function which parses the header of a macro section.
24294 If the macro section is the extended (for now called "GNU") type,
24295 then this updates *OFFSET_SIZE. Returns a pointer to just after
24296 the header, or issues a complaint and returns NULL on error. */
24298 static const gdb_byte *
24299 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24301 const gdb_byte *mac_ptr,
24302 unsigned int *offset_size,
24303 int section_is_gnu)
24305 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24307 if (section_is_gnu)
24309 unsigned int version, flags;
24311 version = read_2_bytes (abfd, mac_ptr);
24312 if (version != 4 && version != 5)
24314 complaint (_("unrecognized version `%d' in .debug_macro section"),
24320 flags = read_1_byte (abfd, mac_ptr);
24322 *offset_size = (flags & 1) ? 8 : 4;
24324 if ((flags & 2) != 0)
24325 /* We don't need the line table offset. */
24326 mac_ptr += *offset_size;
24328 /* Vendor opcode descriptions. */
24329 if ((flags & 4) != 0)
24331 unsigned int i, count;
24333 count = read_1_byte (abfd, mac_ptr);
24335 for (i = 0; i < count; ++i)
24337 unsigned int opcode, bytes_read;
24340 opcode = read_1_byte (abfd, mac_ptr);
24342 opcode_definitions[opcode] = mac_ptr;
24343 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24344 mac_ptr += bytes_read;
24353 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24354 including DW_MACRO_import. */
24357 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24359 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24360 struct macro_source_file *current_file,
24361 struct line_header *lh,
24362 struct dwarf2_section_info *section,
24363 int section_is_gnu, int section_is_dwz,
24364 unsigned int offset_size,
24365 htab_t include_hash)
24367 struct dwarf2_per_objfile *dwarf2_per_objfile
24368 = cu->per_cu->dwarf2_per_objfile;
24369 struct objfile *objfile = dwarf2_per_objfile->objfile;
24370 enum dwarf_macro_record_type macinfo_type;
24371 int at_commandline;
24372 const gdb_byte *opcode_definitions[256];
24374 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24375 &offset_size, section_is_gnu);
24376 if (mac_ptr == NULL)
24378 /* We already issued a complaint. */
24382 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24383 GDB is still reading the definitions from command line. First
24384 DW_MACINFO_start_file will need to be ignored as it was already executed
24385 to create CURRENT_FILE for the main source holding also the command line
24386 definitions. On first met DW_MACINFO_start_file this flag is reset to
24387 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24389 at_commandline = 1;
24393 /* Do we at least have room for a macinfo type byte? */
24394 if (mac_ptr >= mac_end)
24396 dwarf2_section_buffer_overflow_complaint (section);
24400 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24403 /* Note that we rely on the fact that the corresponding GNU and
24404 DWARF constants are the same. */
24406 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24407 switch (macinfo_type)
24409 /* A zero macinfo type indicates the end of the macro
24414 case DW_MACRO_define:
24415 case DW_MACRO_undef:
24416 case DW_MACRO_define_strp:
24417 case DW_MACRO_undef_strp:
24418 case DW_MACRO_define_sup:
24419 case DW_MACRO_undef_sup:
24421 unsigned int bytes_read;
24426 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24427 mac_ptr += bytes_read;
24429 if (macinfo_type == DW_MACRO_define
24430 || macinfo_type == DW_MACRO_undef)
24432 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24433 mac_ptr += bytes_read;
24437 LONGEST str_offset;
24439 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24440 mac_ptr += offset_size;
24442 if (macinfo_type == DW_MACRO_define_sup
24443 || macinfo_type == DW_MACRO_undef_sup
24446 struct dwz_file *dwz
24447 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24449 body = read_indirect_string_from_dwz (objfile,
24453 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24457 is_define = (macinfo_type == DW_MACRO_define
24458 || macinfo_type == DW_MACRO_define_strp
24459 || macinfo_type == DW_MACRO_define_sup);
24460 if (! current_file)
24462 /* DWARF violation as no main source is present. */
24463 complaint (_("debug info with no main source gives macro %s "
24465 is_define ? _("definition") : _("undefinition"),
24469 if ((line == 0 && !at_commandline)
24470 || (line != 0 && at_commandline))
24471 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24472 at_commandline ? _("command-line") : _("in-file"),
24473 is_define ? _("definition") : _("undefinition"),
24474 line == 0 ? _("zero") : _("non-zero"), line, body);
24477 parse_macro_definition (current_file, line, body);
24480 gdb_assert (macinfo_type == DW_MACRO_undef
24481 || macinfo_type == DW_MACRO_undef_strp
24482 || macinfo_type == DW_MACRO_undef_sup);
24483 macro_undef (current_file, line, body);
24488 case DW_MACRO_start_file:
24490 unsigned int bytes_read;
24493 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24494 mac_ptr += bytes_read;
24495 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24496 mac_ptr += bytes_read;
24498 if ((line == 0 && !at_commandline)
24499 || (line != 0 && at_commandline))
24500 complaint (_("debug info gives source %d included "
24501 "from %s at %s line %d"),
24502 file, at_commandline ? _("command-line") : _("file"),
24503 line == 0 ? _("zero") : _("non-zero"), line);
24505 if (at_commandline)
24507 /* This DW_MACRO_start_file was executed in the
24509 at_commandline = 0;
24512 current_file = macro_start_file (cu, file, line, current_file,
24517 case DW_MACRO_end_file:
24518 if (! current_file)
24519 complaint (_("macro debug info has an unmatched "
24520 "`close_file' directive"));
24523 current_file = current_file->included_by;
24524 if (! current_file)
24526 enum dwarf_macro_record_type next_type;
24528 /* GCC circa March 2002 doesn't produce the zero
24529 type byte marking the end of the compilation
24530 unit. Complain if it's not there, but exit no
24533 /* Do we at least have room for a macinfo type byte? */
24534 if (mac_ptr >= mac_end)
24536 dwarf2_section_buffer_overflow_complaint (section);
24540 /* We don't increment mac_ptr here, so this is just
24543 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24545 if (next_type != 0)
24546 complaint (_("no terminating 0-type entry for "
24547 "macros in `.debug_macinfo' section"));
24554 case DW_MACRO_import:
24555 case DW_MACRO_import_sup:
24559 bfd *include_bfd = abfd;
24560 struct dwarf2_section_info *include_section = section;
24561 const gdb_byte *include_mac_end = mac_end;
24562 int is_dwz = section_is_dwz;
24563 const gdb_byte *new_mac_ptr;
24565 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24566 mac_ptr += offset_size;
24568 if (macinfo_type == DW_MACRO_import_sup)
24570 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24572 dwarf2_read_section (objfile, &dwz->macro);
24574 include_section = &dwz->macro;
24575 include_bfd = get_section_bfd_owner (include_section);
24576 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24580 new_mac_ptr = include_section->buffer + offset;
24581 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24585 /* This has actually happened; see
24586 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24587 complaint (_("recursive DW_MACRO_import in "
24588 ".debug_macro section"));
24592 *slot = (void *) new_mac_ptr;
24594 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24595 include_mac_end, current_file, lh,
24596 section, section_is_gnu, is_dwz,
24597 offset_size, include_hash);
24599 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24604 case DW_MACINFO_vendor_ext:
24605 if (!section_is_gnu)
24607 unsigned int bytes_read;
24609 /* This reads the constant, but since we don't recognize
24610 any vendor extensions, we ignore it. */
24611 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24612 mac_ptr += bytes_read;
24613 read_direct_string (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24616 /* We don't recognize any vendor extensions. */
24622 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24623 mac_ptr, mac_end, abfd, offset_size,
24625 if (mac_ptr == NULL)
24630 } while (macinfo_type != 0);
24634 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24635 int section_is_gnu)
24637 struct dwarf2_per_objfile *dwarf2_per_objfile
24638 = cu->per_cu->dwarf2_per_objfile;
24639 struct objfile *objfile = dwarf2_per_objfile->objfile;
24640 struct line_header *lh = cu->line_header;
24642 const gdb_byte *mac_ptr, *mac_end;
24643 struct macro_source_file *current_file = 0;
24644 enum dwarf_macro_record_type macinfo_type;
24645 unsigned int offset_size = cu->header.offset_size;
24646 const gdb_byte *opcode_definitions[256];
24648 struct dwarf2_section_info *section;
24649 const char *section_name;
24651 if (cu->dwo_unit != NULL)
24653 if (section_is_gnu)
24655 section = &cu->dwo_unit->dwo_file->sections.macro;
24656 section_name = ".debug_macro.dwo";
24660 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24661 section_name = ".debug_macinfo.dwo";
24666 if (section_is_gnu)
24668 section = &dwarf2_per_objfile->macro;
24669 section_name = ".debug_macro";
24673 section = &dwarf2_per_objfile->macinfo;
24674 section_name = ".debug_macinfo";
24678 dwarf2_read_section (objfile, section);
24679 if (section->buffer == NULL)
24681 complaint (_("missing %s section"), section_name);
24684 abfd = get_section_bfd_owner (section);
24686 /* First pass: Find the name of the base filename.
24687 This filename is needed in order to process all macros whose definition
24688 (or undefinition) comes from the command line. These macros are defined
24689 before the first DW_MACINFO_start_file entry, and yet still need to be
24690 associated to the base file.
24692 To determine the base file name, we scan the macro definitions until we
24693 reach the first DW_MACINFO_start_file entry. We then initialize
24694 CURRENT_FILE accordingly so that any macro definition found before the
24695 first DW_MACINFO_start_file can still be associated to the base file. */
24697 mac_ptr = section->buffer + offset;
24698 mac_end = section->buffer + section->size;
24700 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24701 &offset_size, section_is_gnu);
24702 if (mac_ptr == NULL)
24704 /* We already issued a complaint. */
24710 /* Do we at least have room for a macinfo type byte? */
24711 if (mac_ptr >= mac_end)
24713 /* Complaint is printed during the second pass as GDB will probably
24714 stop the first pass earlier upon finding
24715 DW_MACINFO_start_file. */
24719 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24722 /* Note that we rely on the fact that the corresponding GNU and
24723 DWARF constants are the same. */
24725 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24726 switch (macinfo_type)
24728 /* A zero macinfo type indicates the end of the macro
24733 case DW_MACRO_define:
24734 case DW_MACRO_undef:
24735 /* Only skip the data by MAC_PTR. */
24737 unsigned int bytes_read;
24739 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24740 mac_ptr += bytes_read;
24741 read_direct_string (abfd, mac_ptr, &bytes_read);
24742 mac_ptr += bytes_read;
24746 case DW_MACRO_start_file:
24748 unsigned int bytes_read;
24751 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24752 mac_ptr += bytes_read;
24753 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24754 mac_ptr += bytes_read;
24756 current_file = macro_start_file (cu, file, line, current_file, lh);
24760 case DW_MACRO_end_file:
24761 /* No data to skip by MAC_PTR. */
24764 case DW_MACRO_define_strp:
24765 case DW_MACRO_undef_strp:
24766 case DW_MACRO_define_sup:
24767 case DW_MACRO_undef_sup:
24769 unsigned int bytes_read;
24771 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 mac_ptr += offset_size;
24777 case DW_MACRO_import:
24778 case DW_MACRO_import_sup:
24779 /* Note that, according to the spec, a transparent include
24780 chain cannot call DW_MACRO_start_file. So, we can just
24781 skip this opcode. */
24782 mac_ptr += offset_size;
24785 case DW_MACINFO_vendor_ext:
24786 /* Only skip the data by MAC_PTR. */
24787 if (!section_is_gnu)
24789 unsigned int bytes_read;
24791 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24792 mac_ptr += bytes_read;
24793 read_direct_string (abfd, mac_ptr, &bytes_read);
24794 mac_ptr += bytes_read;
24799 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24800 mac_ptr, mac_end, abfd, offset_size,
24802 if (mac_ptr == NULL)
24807 } while (macinfo_type != 0 && current_file == NULL);
24809 /* Second pass: Process all entries.
24811 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24812 command-line macro definitions/undefinitions. This flag is unset when we
24813 reach the first DW_MACINFO_start_file entry. */
24815 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24817 NULL, xcalloc, xfree));
24818 mac_ptr = section->buffer + offset;
24819 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24820 *slot = (void *) mac_ptr;
24821 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24822 current_file, lh, section,
24823 section_is_gnu, 0, offset_size,
24824 include_hash.get ());
24827 /* Check if the attribute's form is a DW_FORM_block*
24828 if so return true else false. */
24831 attr_form_is_block (const struct attribute *attr)
24833 return (attr == NULL ? 0 :
24834 attr->form == DW_FORM_block1
24835 || attr->form == DW_FORM_block2
24836 || attr->form == DW_FORM_block4
24837 || attr->form == DW_FORM_block
24838 || attr->form == DW_FORM_exprloc);
24841 /* Return non-zero if ATTR's value is a section offset --- classes
24842 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24843 You may use DW_UNSND (attr) to retrieve such offsets.
24845 Section 7.5.4, "Attribute Encodings", explains that no attribute
24846 may have a value that belongs to more than one of these classes; it
24847 would be ambiguous if we did, because we use the same forms for all
24851 attr_form_is_section_offset (const struct attribute *attr)
24853 return (attr->form == DW_FORM_data4
24854 || attr->form == DW_FORM_data8
24855 || attr->form == DW_FORM_sec_offset);
24858 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24859 zero otherwise. When this function returns true, you can apply
24860 dwarf2_get_attr_constant_value to it.
24862 However, note that for some attributes you must check
24863 attr_form_is_section_offset before using this test. DW_FORM_data4
24864 and DW_FORM_data8 are members of both the constant class, and of
24865 the classes that contain offsets into other debug sections
24866 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24867 that, if an attribute's can be either a constant or one of the
24868 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24869 taken as section offsets, not constants.
24871 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24872 cannot handle that. */
24875 attr_form_is_constant (const struct attribute *attr)
24877 switch (attr->form)
24879 case DW_FORM_sdata:
24880 case DW_FORM_udata:
24881 case DW_FORM_data1:
24882 case DW_FORM_data2:
24883 case DW_FORM_data4:
24884 case DW_FORM_data8:
24885 case DW_FORM_implicit_const:
24893 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24894 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24897 attr_form_is_ref (const struct attribute *attr)
24899 switch (attr->form)
24901 case DW_FORM_ref_addr:
24906 case DW_FORM_ref_udata:
24907 case DW_FORM_GNU_ref_alt:
24914 /* Return the .debug_loc section to use for CU.
24915 For DWO files use .debug_loc.dwo. */
24917 static struct dwarf2_section_info *
24918 cu_debug_loc_section (struct dwarf2_cu *cu)
24920 struct dwarf2_per_objfile *dwarf2_per_objfile
24921 = cu->per_cu->dwarf2_per_objfile;
24925 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24927 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24929 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24930 : &dwarf2_per_objfile->loc);
24933 /* A helper function that fills in a dwarf2_loclist_baton. */
24936 fill_in_loclist_baton (struct dwarf2_cu *cu,
24937 struct dwarf2_loclist_baton *baton,
24938 const struct attribute *attr)
24940 struct dwarf2_per_objfile *dwarf2_per_objfile
24941 = cu->per_cu->dwarf2_per_objfile;
24942 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24944 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24946 baton->per_cu = cu->per_cu;
24947 gdb_assert (baton->per_cu);
24948 /* We don't know how long the location list is, but make sure we
24949 don't run off the edge of the section. */
24950 baton->size = section->size - DW_UNSND (attr);
24951 baton->data = section->buffer + DW_UNSND (attr);
24952 baton->base_address = cu->base_address;
24953 baton->from_dwo = cu->dwo_unit != NULL;
24957 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24958 struct dwarf2_cu *cu, int is_block)
24960 struct dwarf2_per_objfile *dwarf2_per_objfile
24961 = cu->per_cu->dwarf2_per_objfile;
24962 struct objfile *objfile = dwarf2_per_objfile->objfile;
24963 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24965 if (attr_form_is_section_offset (attr)
24966 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24967 the section. If so, fall through to the complaint in the
24969 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24971 struct dwarf2_loclist_baton *baton;
24973 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24975 fill_in_loclist_baton (cu, baton, attr);
24977 if (cu->base_known == 0)
24978 complaint (_("Location list used without "
24979 "specifying the CU base address."));
24981 SYMBOL_ACLASS_INDEX (sym) = (is_block
24982 ? dwarf2_loclist_block_index
24983 : dwarf2_loclist_index);
24984 SYMBOL_LOCATION_BATON (sym) = baton;
24988 struct dwarf2_locexpr_baton *baton;
24990 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24991 baton->per_cu = cu->per_cu;
24992 gdb_assert (baton->per_cu);
24994 if (attr_form_is_block (attr))
24996 /* Note that we're just copying the block's data pointer
24997 here, not the actual data. We're still pointing into the
24998 info_buffer for SYM's objfile; right now we never release
24999 that buffer, but when we do clean up properly this may
25001 baton->size = DW_BLOCK (attr)->size;
25002 baton->data = DW_BLOCK (attr)->data;
25006 dwarf2_invalid_attrib_class_complaint ("location description",
25007 SYMBOL_NATURAL_NAME (sym));
25011 SYMBOL_ACLASS_INDEX (sym) = (is_block
25012 ? dwarf2_locexpr_block_index
25013 : dwarf2_locexpr_index);
25014 SYMBOL_LOCATION_BATON (sym) = baton;
25018 /* Return the OBJFILE associated with the compilation unit CU. If CU
25019 came from a separate debuginfo file, then the master objfile is
25023 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25025 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25027 /* Return the master objfile, so that we can report and look up the
25028 correct file containing this variable. */
25029 if (objfile->separate_debug_objfile_backlink)
25030 objfile = objfile->separate_debug_objfile_backlink;
25035 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25036 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25037 CU_HEADERP first. */
25039 static const struct comp_unit_head *
25040 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25041 struct dwarf2_per_cu_data *per_cu)
25043 const gdb_byte *info_ptr;
25046 return &per_cu->cu->header;
25048 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25050 memset (cu_headerp, 0, sizeof (*cu_headerp));
25051 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25052 rcuh_kind::COMPILE);
25057 /* Return the address size given in the compilation unit header for CU. */
25060 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25062 struct comp_unit_head cu_header_local;
25063 const struct comp_unit_head *cu_headerp;
25065 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25067 return cu_headerp->addr_size;
25070 /* Return the offset size given in the compilation unit header for CU. */
25073 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25075 struct comp_unit_head cu_header_local;
25076 const struct comp_unit_head *cu_headerp;
25078 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25080 return cu_headerp->offset_size;
25083 /* See its dwarf2loc.h declaration. */
25086 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25088 struct comp_unit_head cu_header_local;
25089 const struct comp_unit_head *cu_headerp;
25091 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25093 if (cu_headerp->version == 2)
25094 return cu_headerp->addr_size;
25096 return cu_headerp->offset_size;
25099 /* Return the text offset of the CU. The returned offset comes from
25100 this CU's objfile. If this objfile came from a separate debuginfo
25101 file, then the offset may be different from the corresponding
25102 offset in the parent objfile. */
25105 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25107 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25109 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25112 /* Return DWARF version number of PER_CU. */
25115 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25117 return per_cu->dwarf_version;
25120 /* Locate the .debug_info compilation unit from CU's objfile which contains
25121 the DIE at OFFSET. Raises an error on failure. */
25123 static struct dwarf2_per_cu_data *
25124 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25125 unsigned int offset_in_dwz,
25126 struct dwarf2_per_objfile *dwarf2_per_objfile)
25128 struct dwarf2_per_cu_data *this_cu;
25132 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25135 struct dwarf2_per_cu_data *mid_cu;
25136 int mid = low + (high - low) / 2;
25138 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25139 if (mid_cu->is_dwz > offset_in_dwz
25140 || (mid_cu->is_dwz == offset_in_dwz
25141 && mid_cu->sect_off + mid_cu->length >= sect_off))
25146 gdb_assert (low == high);
25147 this_cu = dwarf2_per_objfile->all_comp_units[low];
25148 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25150 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25151 error (_("Dwarf Error: could not find partial DIE containing "
25152 "offset %s [in module %s]"),
25153 sect_offset_str (sect_off),
25154 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25156 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25158 return dwarf2_per_objfile->all_comp_units[low-1];
25162 this_cu = dwarf2_per_objfile->all_comp_units[low];
25163 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25164 && sect_off >= this_cu->sect_off + this_cu->length)
25165 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25166 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25171 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25173 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25174 : per_cu (per_cu_),
25176 has_loclist (false),
25177 checked_producer (false),
25178 producer_is_gxx_lt_4_6 (false),
25179 producer_is_gcc_lt_4_3 (false),
25180 producer_is_icc (false),
25181 producer_is_icc_lt_14 (false),
25182 producer_is_codewarrior (false),
25183 processing_has_namespace_info (false)
25188 /* Destroy a dwarf2_cu. */
25190 dwarf2_cu::~dwarf2_cu ()
25195 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25198 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25199 enum language pretend_language)
25201 struct attribute *attr;
25203 /* Set the language we're debugging. */
25204 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25206 set_cu_language (DW_UNSND (attr), cu);
25209 cu->language = pretend_language;
25210 cu->language_defn = language_def (cu->language);
25213 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25216 /* Increase the age counter on each cached compilation unit, and free
25217 any that are too old. */
25220 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25222 struct dwarf2_per_cu_data *per_cu, **last_chain;
25224 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25225 per_cu = dwarf2_per_objfile->read_in_chain;
25226 while (per_cu != NULL)
25228 per_cu->cu->last_used ++;
25229 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25230 dwarf2_mark (per_cu->cu);
25231 per_cu = per_cu->cu->read_in_chain;
25234 per_cu = dwarf2_per_objfile->read_in_chain;
25235 last_chain = &dwarf2_per_objfile->read_in_chain;
25236 while (per_cu != NULL)
25238 struct dwarf2_per_cu_data *next_cu;
25240 next_cu = per_cu->cu->read_in_chain;
25242 if (!per_cu->cu->mark)
25245 *last_chain = next_cu;
25248 last_chain = &per_cu->cu->read_in_chain;
25254 /* Remove a single compilation unit from the cache. */
25257 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25259 struct dwarf2_per_cu_data *per_cu, **last_chain;
25260 struct dwarf2_per_objfile *dwarf2_per_objfile
25261 = target_per_cu->dwarf2_per_objfile;
25263 per_cu = dwarf2_per_objfile->read_in_chain;
25264 last_chain = &dwarf2_per_objfile->read_in_chain;
25265 while (per_cu != NULL)
25267 struct dwarf2_per_cu_data *next_cu;
25269 next_cu = per_cu->cu->read_in_chain;
25271 if (per_cu == target_per_cu)
25275 *last_chain = next_cu;
25279 last_chain = &per_cu->cu->read_in_chain;
25285 /* Cleanup function for the dwarf2_per_objfile data. */
25288 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25290 struct dwarf2_per_objfile *dwarf2_per_objfile
25291 = static_cast<struct dwarf2_per_objfile *> (datum);
25293 delete dwarf2_per_objfile;
25296 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25297 We store these in a hash table separate from the DIEs, and preserve them
25298 when the DIEs are flushed out of cache.
25300 The CU "per_cu" pointer is needed because offset alone is not enough to
25301 uniquely identify the type. A file may have multiple .debug_types sections,
25302 or the type may come from a DWO file. Furthermore, while it's more logical
25303 to use per_cu->section+offset, with Fission the section with the data is in
25304 the DWO file but we don't know that section at the point we need it.
25305 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25306 because we can enter the lookup routine, get_die_type_at_offset, from
25307 outside this file, and thus won't necessarily have PER_CU->cu.
25308 Fortunately, PER_CU is stable for the life of the objfile. */
25310 struct dwarf2_per_cu_offset_and_type
25312 const struct dwarf2_per_cu_data *per_cu;
25313 sect_offset sect_off;
25317 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25320 per_cu_offset_and_type_hash (const void *item)
25322 const struct dwarf2_per_cu_offset_and_type *ofs
25323 = (const struct dwarf2_per_cu_offset_and_type *) item;
25325 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25328 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25331 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25333 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25334 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25335 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25336 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25338 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25339 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25342 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25343 table if necessary. For convenience, return TYPE.
25345 The DIEs reading must have careful ordering to:
25346 * Not cause infite loops trying to read in DIEs as a prerequisite for
25347 reading current DIE.
25348 * Not trying to dereference contents of still incompletely read in types
25349 while reading in other DIEs.
25350 * Enable referencing still incompletely read in types just by a pointer to
25351 the type without accessing its fields.
25353 Therefore caller should follow these rules:
25354 * Try to fetch any prerequisite types we may need to build this DIE type
25355 before building the type and calling set_die_type.
25356 * After building type call set_die_type for current DIE as soon as
25357 possible before fetching more types to complete the current type.
25358 * Make the type as complete as possible before fetching more types. */
25360 static struct type *
25361 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25363 struct dwarf2_per_objfile *dwarf2_per_objfile
25364 = cu->per_cu->dwarf2_per_objfile;
25365 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25366 struct objfile *objfile = dwarf2_per_objfile->objfile;
25367 struct attribute *attr;
25368 struct dynamic_prop prop;
25370 /* For Ada types, make sure that the gnat-specific data is always
25371 initialized (if not already set). There are a few types where
25372 we should not be doing so, because the type-specific area is
25373 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25374 where the type-specific area is used to store the floatformat).
25375 But this is not a problem, because the gnat-specific information
25376 is actually not needed for these types. */
25377 if (need_gnat_info (cu)
25378 && TYPE_CODE (type) != TYPE_CODE_FUNC
25379 && TYPE_CODE (type) != TYPE_CODE_FLT
25380 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25381 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25382 && TYPE_CODE (type) != TYPE_CODE_METHOD
25383 && !HAVE_GNAT_AUX_INFO (type))
25384 INIT_GNAT_SPECIFIC (type);
25386 /* Read DW_AT_allocated and set in type. */
25387 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25388 if (attr_form_is_block (attr))
25390 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25391 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25393 else if (attr != NULL)
25395 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25396 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25397 sect_offset_str (die->sect_off));
25400 /* Read DW_AT_associated and set in type. */
25401 attr = dwarf2_attr (die, DW_AT_associated, cu);
25402 if (attr_form_is_block (attr))
25404 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25405 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25407 else if (attr != NULL)
25409 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25410 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25411 sect_offset_str (die->sect_off));
25414 /* Read DW_AT_data_location and set in type. */
25415 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25416 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25417 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25419 if (dwarf2_per_objfile->die_type_hash == NULL)
25421 dwarf2_per_objfile->die_type_hash =
25422 htab_create_alloc_ex (127,
25423 per_cu_offset_and_type_hash,
25424 per_cu_offset_and_type_eq,
25426 &objfile->objfile_obstack,
25427 hashtab_obstack_allocate,
25428 dummy_obstack_deallocate);
25431 ofs.per_cu = cu->per_cu;
25432 ofs.sect_off = die->sect_off;
25434 slot = (struct dwarf2_per_cu_offset_and_type **)
25435 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25437 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25438 sect_offset_str (die->sect_off));
25439 *slot = XOBNEW (&objfile->objfile_obstack,
25440 struct dwarf2_per_cu_offset_and_type);
25445 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25446 or return NULL if the die does not have a saved type. */
25448 static struct type *
25449 get_die_type_at_offset (sect_offset sect_off,
25450 struct dwarf2_per_cu_data *per_cu)
25452 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25453 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25455 if (dwarf2_per_objfile->die_type_hash == NULL)
25458 ofs.per_cu = per_cu;
25459 ofs.sect_off = sect_off;
25460 slot = ((struct dwarf2_per_cu_offset_and_type *)
25461 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25468 /* Look up the type for DIE in CU in die_type_hash,
25469 or return NULL if DIE does not have a saved type. */
25471 static struct type *
25472 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25474 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25477 /* Add a dependence relationship from CU to REF_PER_CU. */
25480 dwarf2_add_dependence (struct dwarf2_cu *cu,
25481 struct dwarf2_per_cu_data *ref_per_cu)
25485 if (cu->dependencies == NULL)
25487 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25488 NULL, &cu->comp_unit_obstack,
25489 hashtab_obstack_allocate,
25490 dummy_obstack_deallocate);
25492 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25494 *slot = ref_per_cu;
25497 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25498 Set the mark field in every compilation unit in the
25499 cache that we must keep because we are keeping CU. */
25502 dwarf2_mark_helper (void **slot, void *data)
25504 struct dwarf2_per_cu_data *per_cu;
25506 per_cu = (struct dwarf2_per_cu_data *) *slot;
25508 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25509 reading of the chain. As such dependencies remain valid it is not much
25510 useful to track and undo them during QUIT cleanups. */
25511 if (per_cu->cu == NULL)
25514 if (per_cu->cu->mark)
25516 per_cu->cu->mark = true;
25518 if (per_cu->cu->dependencies != NULL)
25519 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25524 /* Set the mark field in CU and in every other compilation unit in the
25525 cache that we must keep because we are keeping CU. */
25528 dwarf2_mark (struct dwarf2_cu *cu)
25533 if (cu->dependencies != NULL)
25534 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25538 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25542 per_cu->cu->mark = false;
25543 per_cu = per_cu->cu->read_in_chain;
25547 /* Trivial hash function for partial_die_info: the hash value of a DIE
25548 is its offset in .debug_info for this objfile. */
25551 partial_die_hash (const void *item)
25553 const struct partial_die_info *part_die
25554 = (const struct partial_die_info *) item;
25556 return to_underlying (part_die->sect_off);
25559 /* Trivial comparison function for partial_die_info structures: two DIEs
25560 are equal if they have the same offset. */
25563 partial_die_eq (const void *item_lhs, const void *item_rhs)
25565 const struct partial_die_info *part_die_lhs
25566 = (const struct partial_die_info *) item_lhs;
25567 const struct partial_die_info *part_die_rhs
25568 = (const struct partial_die_info *) item_rhs;
25570 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25573 struct cmd_list_element *set_dwarf_cmdlist;
25574 struct cmd_list_element *show_dwarf_cmdlist;
25577 set_dwarf_cmd (const char *args, int from_tty)
25579 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25584 show_dwarf_cmd (const char *args, int from_tty)
25586 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25589 int dwarf_always_disassemble;
25592 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25593 struct cmd_list_element *c, const char *value)
25595 fprintf_filtered (file,
25596 _("Whether to always disassemble "
25597 "DWARF expressions is %s.\n"),
25602 show_check_physname (struct ui_file *file, int from_tty,
25603 struct cmd_list_element *c, const char *value)
25605 fprintf_filtered (file,
25606 _("Whether to check \"physname\" is %s.\n"),
25611 _initialize_dwarf2_read (void)
25613 dwarf2_objfile_data_key
25614 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25616 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25617 Set DWARF specific variables.\n\
25618 Configure DWARF variables such as the cache size"),
25619 &set_dwarf_cmdlist, "maintenance set dwarf ",
25620 0/*allow-unknown*/, &maintenance_set_cmdlist);
25622 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25623 Show DWARF specific variables\n\
25624 Show DWARF variables such as the cache size"),
25625 &show_dwarf_cmdlist, "maintenance show dwarf ",
25626 0/*allow-unknown*/, &maintenance_show_cmdlist);
25628 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25629 &dwarf_max_cache_age, _("\
25630 Set the upper bound on the age of cached DWARF compilation units."), _("\
25631 Show the upper bound on the age of cached DWARF compilation units."), _("\
25632 A higher limit means that cached compilation units will be stored\n\
25633 in memory longer, and more total memory will be used. Zero disables\n\
25634 caching, which can slow down startup."),
25636 show_dwarf_max_cache_age,
25637 &set_dwarf_cmdlist,
25638 &show_dwarf_cmdlist);
25640 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25641 &dwarf_always_disassemble, _("\
25642 Set whether `info address' always disassembles DWARF expressions."), _("\
25643 Show whether `info address' always disassembles DWARF expressions."), _("\
25644 When enabled, DWARF expressions are always printed in an assembly-like\n\
25645 syntax. When disabled, expressions will be printed in a more\n\
25646 conversational style, when possible."),
25648 show_dwarf_always_disassemble,
25649 &set_dwarf_cmdlist,
25650 &show_dwarf_cmdlist);
25652 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25653 Set debugging of the DWARF reader."), _("\
25654 Show debugging of the DWARF reader."), _("\
25655 When enabled (non-zero), debugging messages are printed during DWARF\n\
25656 reading and symtab expansion. A value of 1 (one) provides basic\n\
25657 information. A value greater than 1 provides more verbose information."),
25660 &setdebuglist, &showdebuglist);
25662 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25663 Set debugging of the DWARF DIE reader."), _("\
25664 Show debugging of the DWARF DIE reader."), _("\
25665 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25666 The value is the maximum depth to print."),
25669 &setdebuglist, &showdebuglist);
25671 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25672 Set debugging of the dwarf line reader."), _("\
25673 Show debugging of the dwarf line reader."), _("\
25674 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25675 A value of 1 (one) provides basic information.\n\
25676 A value greater than 1 provides more verbose information."),
25679 &setdebuglist, &showdebuglist);
25681 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25682 Set cross-checking of \"physname\" code against demangler."), _("\
25683 Show cross-checking of \"physname\" code against demangler."), _("\
25684 When enabled, GDB's internal \"physname\" code is checked against\n\
25686 NULL, show_check_physname,
25687 &setdebuglist, &showdebuglist);
25689 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25690 no_class, &use_deprecated_index_sections, _("\
25691 Set whether to use deprecated gdb_index sections."), _("\
25692 Show whether to use deprecated gdb_index sections."), _("\
25693 When enabled, deprecated .gdb_index sections are used anyway.\n\
25694 Normally they are ignored either because of a missing feature or\n\
25695 performance issue.\n\
25696 Warning: This option must be enabled before gdb reads the file."),
25699 &setlist, &showlist);
25701 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25702 &dwarf2_locexpr_funcs);
25703 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25704 &dwarf2_loclist_funcs);
25706 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25707 &dwarf2_block_frame_base_locexpr_funcs);
25708 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25709 &dwarf2_block_frame_base_loclist_funcs);
25712 selftests::register_test ("dw2_expand_symtabs_matching",
25713 selftests::dw2_expand_symtabs_matching::run_test);