1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "gdb_string.h"
35 #include "gdb_assert.h"
41 #include "cli/cli-decode.h"
43 #include "python/python.h"
45 /* Prototypes for exported functions. */
47 void _initialize_values (void);
49 /* Definition of a user function. */
50 struct internal_function
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
58 internal_function_fn handler;
60 /* User data for the handler. */
64 static struct cmd_list_element *functionlist;
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
72 /* Is it modifiable? Only relevant if lval != not_lval. */
75 /* Location of value (if lval). */
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
103 /* Only used for bitfields; number of bits contained in them. */
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
114 struct value *parent;
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
120 /* Type of the value. */
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
163 struct type *enclosing_type;
165 int pointed_to_offset;
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
173 /* Register number if the value is from a register. */
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
196 /* If value is a variable, is it initialized or not. */
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
215 /* Prototypes for local functions. */
217 static void show_values (char *, int);
219 static void show_convenience (char *, int);
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
228 #define VALUE_HISTORY_CHUNK 60
230 struct value_history_chunk
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
236 /* Chain of chunks now in use. */
238 static struct value_history_chunk *value_history_chain;
240 static int value_history_count; /* Abs number of last entry stored */
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
247 static struct value *all_values;
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
254 allocate_value_lazy (struct type *type)
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
278 VALUE_REGNUM (val) = -1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
284 val->initialized = 1; /* Default to initialized. */
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
292 /* Allocate the contents of VAL if it has not been allocated yet. */
295 allocate_value_contents (struct value *val)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
301 /* Allocate a value and its contents for type TYPE. */
304 allocate_value (struct type *type)
306 struct value *val = allocate_value_lazy (type);
308 allocate_value_contents (val);
313 /* Allocate a value that has the correct length
314 for COUNT repetitions of type TYPE. */
317 allocate_repeat_value (struct type *type, int count)
319 int low_bound = current_language->string_lower_bound; /* ??? */
320 /* FIXME-type-allocation: need a way to free this type when we are
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
325 return allocate_value (array_type);
329 allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
333 struct value *v = allocate_value (type);
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
343 /* Accessor methods. */
346 value_next (struct value *value)
352 value_type (const struct value *value)
357 deprecated_set_value_type (struct value *value, struct type *type)
363 value_offset (const struct value *value)
365 return value->offset;
368 set_value_offset (struct value *value, int offset)
370 value->offset = offset;
374 value_bitpos (const struct value *value)
376 return value->bitpos;
379 set_value_bitpos (struct value *value, int bit)
385 value_bitsize (const struct value *value)
387 return value->bitsize;
390 set_value_bitsize (struct value *value, int bit)
392 value->bitsize = bit;
396 value_parent (struct value *value)
398 return value->parent;
402 value_contents_raw (struct value *value)
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
409 value_contents_all_raw (struct value *value)
411 allocate_value_contents (value);
412 return value->contents;
416 value_enclosing_type (struct value *value)
418 return value->enclosing_type;
422 require_not_optimized_out (struct value *value)
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
429 value_contents_for_printing (struct value *value)
432 value_fetch_lazy (value);
433 return value->contents;
437 value_contents_all (struct value *value)
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
445 value_lazy (struct value *value)
451 set_value_lazy (struct value *value, int val)
457 value_stack (struct value *value)
463 set_value_stack (struct value *value, int val)
469 value_contents (struct value *value)
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
477 value_contents_writeable (struct value *value)
480 value_fetch_lazy (value);
481 return value_contents_raw (value);
484 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
489 value_contents_equal (struct value *val1, struct value *val2)
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
505 value_optimized_out (struct value *value)
507 return value->optimized_out;
511 set_value_optimized_out (struct value *value, int val)
513 value->optimized_out = val;
517 value_entirely_optimized_out (const struct value *value)
519 if (!value->optimized_out)
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
524 return !value->location.computed.funcs->check_any_valid (value);
528 value_bits_valid (const struct value *value, int offset, int length)
530 if (value == NULL || !value->optimized_out)
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
535 return value->location.computed.funcs->check_validity (value, offset,
540 value_embedded_offset (struct value *value)
542 return value->embedded_offset;
546 set_value_embedded_offset (struct value *value, int val)
548 value->embedded_offset = val;
552 value_pointed_to_offset (struct value *value)
554 return value->pointed_to_offset;
558 set_value_pointed_to_offset (struct value *value, int val)
560 value->pointed_to_offset = val;
564 value_computed_funcs (struct value *v)
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
568 return v->location.computed.funcs;
572 value_computed_closure (const struct value *v)
574 gdb_assert (v->lval == lval_computed);
576 return v->location.computed.closure;
580 deprecated_value_lval_hack (struct value *value)
586 value_address (struct value *value)
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
591 return value->location.address + value->offset;
595 value_raw_address (struct value *value)
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
600 return value->location.address;
604 set_value_address (struct value *value, CORE_ADDR addr)
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
611 struct internalvar **
612 deprecated_value_internalvar_hack (struct value *value)
614 return &value->location.internalvar;
618 deprecated_value_frame_id_hack (struct value *value)
620 return &value->frame_id;
624 deprecated_value_regnum_hack (struct value *value)
626 return &value->regnum;
630 deprecated_value_modifiable (struct value *value)
632 return value->modifiable;
635 deprecated_set_value_modifiable (struct value *value, int modifiable)
637 value->modifiable = modifiable;
640 /* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
649 /* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
653 value_incref (struct value *val)
655 val->reference_count++;
658 /* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
663 value_free (struct value *val)
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
672 /* If there's an associated parent value, drop our reference to
674 if (val->parent != NULL)
675 value_free (val->parent);
677 if (VALUE_LVAL (val) == lval_computed)
679 struct lval_funcs *funcs = val->location.computed.funcs;
681 if (funcs->free_closure)
682 funcs->free_closure (val);
685 xfree (val->contents);
690 /* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
693 value_free_to_mark (struct value *mark)
698 for (val = all_values; val && val != mark; val = next)
706 /* Free all the values that have been allocated (except for those released).
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
711 free_all_values (void)
716 for (val = all_values; val; val = next)
725 /* Frees all the elements in a chain of values. */
728 free_value_chain (struct value *v)
734 next = value_next (v);
739 /* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
743 release_value (struct value *val)
747 if (all_values == val)
749 all_values = val->next;
754 for (v = all_values; v; v = v->next)
765 /* Release all values up to mark */
767 value_release_to_mark (struct value *mark)
772 for (val = next = all_values; next; next = next->next)
773 if (next->next == mark)
775 all_values = next->next;
783 /* Return a copy of the value ARG.
784 It contains the same contents, for same memory address,
785 but it's a different block of storage. */
788 value_copy (struct value *arg)
790 struct type *encl_type = value_enclosing_type (arg);
793 if (value_lazy (arg))
794 val = allocate_value_lazy (encl_type);
796 val = allocate_value (encl_type);
797 val->type = arg->type;
798 VALUE_LVAL (val) = VALUE_LVAL (arg);
799 val->location = arg->location;
800 val->offset = arg->offset;
801 val->bitpos = arg->bitpos;
802 val->bitsize = arg->bitsize;
803 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
804 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
805 val->lazy = arg->lazy;
806 val->optimized_out = arg->optimized_out;
807 val->embedded_offset = value_embedded_offset (arg);
808 val->pointed_to_offset = arg->pointed_to_offset;
809 val->modifiable = arg->modifiable;
810 if (!value_lazy (val))
812 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
813 TYPE_LENGTH (value_enclosing_type (arg)));
816 val->parent = arg->parent;
818 value_incref (val->parent);
819 if (VALUE_LVAL (val) == lval_computed)
821 struct lval_funcs *funcs = val->location.computed.funcs;
823 if (funcs->copy_closure)
824 val->location.computed.closure = funcs->copy_closure (val);
830 set_value_component_location (struct value *component,
831 const struct value *whole)
833 if (whole->lval == lval_internalvar)
834 VALUE_LVAL (component) = lval_internalvar_component;
836 VALUE_LVAL (component) = whole->lval;
838 component->location = whole->location;
839 if (whole->lval == lval_computed)
841 struct lval_funcs *funcs = whole->location.computed.funcs;
843 if (funcs->copy_closure)
844 component->location.computed.closure = funcs->copy_closure (whole);
849 /* Access to the value history. */
851 /* Record a new value in the value history.
852 Returns the absolute history index of the entry.
853 Result of -1 indicates the value was not saved; otherwise it is the
854 value history index of this new item. */
857 record_latest_value (struct value *val)
861 /* We don't want this value to have anything to do with the inferior anymore.
862 In particular, "set $1 = 50" should not affect the variable from which
863 the value was taken, and fast watchpoints should be able to assume that
864 a value on the value history never changes. */
865 if (value_lazy (val))
866 value_fetch_lazy (val);
867 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
868 from. This is a bit dubious, because then *&$1 does not just return $1
869 but the current contents of that location. c'est la vie... */
873 /* Here we treat value_history_count as origin-zero
874 and applying to the value being stored now. */
876 i = value_history_count % VALUE_HISTORY_CHUNK;
879 struct value_history_chunk *new
880 = (struct value_history_chunk *)
882 xmalloc (sizeof (struct value_history_chunk));
883 memset (new->values, 0, sizeof new->values);
884 new->next = value_history_chain;
885 value_history_chain = new;
888 value_history_chain->values[i] = val;
890 /* Now we regard value_history_count as origin-one
891 and applying to the value just stored. */
893 return ++value_history_count;
896 /* Return a copy of the value in the history with sequence number NUM. */
899 access_value_history (int num)
901 struct value_history_chunk *chunk;
906 absnum += value_history_count;
911 error (_("The history is empty."));
913 error (_("There is only one value in the history."));
915 error (_("History does not go back to $$%d."), -num);
917 if (absnum > value_history_count)
918 error (_("History has not yet reached $%d."), absnum);
922 /* Now absnum is always absolute and origin zero. */
924 chunk = value_history_chain;
925 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
929 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
933 show_values (char *num_exp, int from_tty)
941 /* "show values +" should print from the stored position.
942 "show values <exp>" should print around value number <exp>. */
943 if (num_exp[0] != '+' || num_exp[1] != '\0')
944 num = parse_and_eval_long (num_exp) - 5;
948 /* "show values" means print the last 10 values. */
949 num = value_history_count - 9;
955 for (i = num; i < num + 10 && i <= value_history_count; i++)
957 struct value_print_options opts;
959 val = access_value_history (i);
960 printf_filtered (("$%d = "), i);
961 get_user_print_options (&opts);
962 value_print (val, gdb_stdout, &opts);
963 printf_filtered (("\n"));
966 /* The next "show values +" should start after what we just printed. */
969 /* Hitting just return after this command should do the same thing as
970 "show values +". If num_exp is null, this is unnecessary, since
971 "show values +" is not useful after "show values". */
972 if (from_tty && num_exp)
979 /* Internal variables. These are variables within the debugger
980 that hold values assigned by debugger commands.
981 The user refers to them with a '$' prefix
982 that does not appear in the variable names stored internally. */
986 struct internalvar *next;
989 /* We support various different kinds of content of an internal variable.
990 enum internalvar_kind specifies the kind, and union internalvar_data
991 provides the data associated with this particular kind. */
993 enum internalvar_kind
995 /* The internal variable is empty. */
998 /* The value of the internal variable is provided directly as
999 a GDB value object. */
1002 /* A fresh value is computed via a call-back routine on every
1003 access to the internal variable. */
1004 INTERNALVAR_MAKE_VALUE,
1006 /* The internal variable holds a GDB internal convenience function. */
1007 INTERNALVAR_FUNCTION,
1009 /* The variable holds an integer value. */
1010 INTERNALVAR_INTEGER,
1012 /* The variable holds a pointer value. */
1013 INTERNALVAR_POINTER,
1015 /* The variable holds a GDB-provided string. */
1020 union internalvar_data
1022 /* A value object used with INTERNALVAR_VALUE. */
1023 struct value *value;
1025 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1026 internalvar_make_value make_value;
1028 /* The internal function used with INTERNALVAR_FUNCTION. */
1031 struct internal_function *function;
1032 /* True if this is the canonical name for the function. */
1036 /* An integer value used with INTERNALVAR_INTEGER. */
1039 /* If type is non-NULL, it will be used as the type to generate
1040 a value for this internal variable. If type is NULL, a default
1041 integer type for the architecture is used. */
1046 /* A pointer value used with INTERNALVAR_POINTER. */
1053 /* A string value used with INTERNALVAR_STRING. */
1058 static struct internalvar *internalvars;
1060 /* If the variable does not already exist create it and give it the value given.
1061 If no value is given then the default is zero. */
1063 init_if_undefined_command (char* args, int from_tty)
1065 struct internalvar* intvar;
1067 /* Parse the expression - this is taken from set_command(). */
1068 struct expression *expr = parse_expression (args);
1069 register struct cleanup *old_chain =
1070 make_cleanup (free_current_contents, &expr);
1072 /* Validate the expression.
1073 Was the expression an assignment?
1074 Or even an expression at all? */
1075 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1076 error (_("Init-if-undefined requires an assignment expression."));
1078 /* Extract the variable from the parsed expression.
1079 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1080 if (expr->elts[1].opcode != OP_INTERNALVAR)
1081 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1082 intvar = expr->elts[2].internalvar;
1084 /* Only evaluate the expression if the lvalue is void.
1085 This may still fail if the expresssion is invalid. */
1086 if (intvar->kind == INTERNALVAR_VOID)
1087 evaluate_expression (expr);
1089 do_cleanups (old_chain);
1093 /* Look up an internal variable with name NAME. NAME should not
1094 normally include a dollar sign.
1096 If the specified internal variable does not exist,
1097 the return value is NULL. */
1099 struct internalvar *
1100 lookup_only_internalvar (const char *name)
1102 struct internalvar *var;
1104 for (var = internalvars; var; var = var->next)
1105 if (strcmp (var->name, name) == 0)
1112 /* Create an internal variable with name NAME and with a void value.
1113 NAME should not normally include a dollar sign. */
1115 struct internalvar *
1116 create_internalvar (const char *name)
1118 struct internalvar *var;
1120 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1121 var->name = concat (name, (char *)NULL);
1122 var->kind = INTERNALVAR_VOID;
1123 var->next = internalvars;
1128 /* Create an internal variable with name NAME and register FUN as the
1129 function that value_of_internalvar uses to create a value whenever
1130 this variable is referenced. NAME should not normally include a
1133 struct internalvar *
1134 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1136 struct internalvar *var = create_internalvar (name);
1138 var->kind = INTERNALVAR_MAKE_VALUE;
1139 var->u.make_value = fun;
1143 /* Look up an internal variable with name NAME. NAME should not
1144 normally include a dollar sign.
1146 If the specified internal variable does not exist,
1147 one is created, with a void value. */
1149 struct internalvar *
1150 lookup_internalvar (const char *name)
1152 struct internalvar *var;
1154 var = lookup_only_internalvar (name);
1158 return create_internalvar (name);
1161 /* Return current value of internal variable VAR. For variables that
1162 are not inherently typed, use a value type appropriate for GDBARCH. */
1165 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1171 case INTERNALVAR_VOID:
1172 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1175 case INTERNALVAR_FUNCTION:
1176 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1179 case INTERNALVAR_INTEGER:
1180 if (!var->u.integer.type)
1181 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1182 var->u.integer.val);
1184 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1187 case INTERNALVAR_POINTER:
1188 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1191 case INTERNALVAR_STRING:
1192 val = value_cstring (var->u.string, strlen (var->u.string),
1193 builtin_type (gdbarch)->builtin_char);
1196 case INTERNALVAR_VALUE:
1197 val = value_copy (var->u.value);
1198 if (value_lazy (val))
1199 value_fetch_lazy (val);
1202 case INTERNALVAR_MAKE_VALUE:
1203 val = (*var->u.make_value) (gdbarch, var);
1207 internal_error (__FILE__, __LINE__, "bad kind");
1210 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1211 on this value go back to affect the original internal variable.
1213 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1214 no underlying modifyable state in the internal variable.
1216 Likewise, if the variable's value is a computed lvalue, we want
1217 references to it to produce another computed lvalue, where
1218 references and assignments actually operate through the
1219 computed value's functions.
1221 This means that internal variables with computed values
1222 behave a little differently from other internal variables:
1223 assignments to them don't just replace the previous value
1224 altogether. At the moment, this seems like the behavior we
1227 if (var->kind != INTERNALVAR_MAKE_VALUE
1228 && val->lval != lval_computed)
1230 VALUE_LVAL (val) = lval_internalvar;
1231 VALUE_INTERNALVAR (val) = var;
1238 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1242 case INTERNALVAR_INTEGER:
1243 *result = var->u.integer.val;
1252 get_internalvar_function (struct internalvar *var,
1253 struct internal_function **result)
1257 case INTERNALVAR_FUNCTION:
1258 *result = var->u.fn.function;
1267 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1268 int bitsize, struct value *newval)
1274 case INTERNALVAR_VALUE:
1275 addr = value_contents_writeable (var->u.value);
1278 modify_field (value_type (var->u.value), addr + offset,
1279 value_as_long (newval), bitpos, bitsize);
1281 memcpy (addr + offset, value_contents (newval),
1282 TYPE_LENGTH (value_type (newval)));
1286 /* We can never get a component of any other kind. */
1287 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1292 set_internalvar (struct internalvar *var, struct value *val)
1294 enum internalvar_kind new_kind;
1295 union internalvar_data new_data = { 0 };
1297 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1298 error (_("Cannot overwrite convenience function %s"), var->name);
1300 /* Prepare new contents. */
1301 switch (TYPE_CODE (check_typedef (value_type (val))))
1303 case TYPE_CODE_VOID:
1304 new_kind = INTERNALVAR_VOID;
1307 case TYPE_CODE_INTERNAL_FUNCTION:
1308 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1309 new_kind = INTERNALVAR_FUNCTION;
1310 get_internalvar_function (VALUE_INTERNALVAR (val),
1311 &new_data.fn.function);
1312 /* Copies created here are never canonical. */
1316 new_kind = INTERNALVAR_INTEGER;
1317 new_data.integer.type = value_type (val);
1318 new_data.integer.val = value_as_long (val);
1322 new_kind = INTERNALVAR_POINTER;
1323 new_data.pointer.type = value_type (val);
1324 new_data.pointer.val = value_as_address (val);
1328 new_kind = INTERNALVAR_VALUE;
1329 new_data.value = value_copy (val);
1330 new_data.value->modifiable = 1;
1332 /* Force the value to be fetched from the target now, to avoid problems
1333 later when this internalvar is referenced and the target is gone or
1335 if (value_lazy (new_data.value))
1336 value_fetch_lazy (new_data.value);
1338 /* Release the value from the value chain to prevent it from being
1339 deleted by free_all_values. From here on this function should not
1340 call error () until new_data is installed into the var->u to avoid
1342 release_value (new_data.value);
1346 /* Clean up old contents. */
1347 clear_internalvar (var);
1350 var->kind = new_kind;
1352 /* End code which must not call error(). */
1356 set_internalvar_integer (struct internalvar *var, LONGEST l)
1358 /* Clean up old contents. */
1359 clear_internalvar (var);
1361 var->kind = INTERNALVAR_INTEGER;
1362 var->u.integer.type = NULL;
1363 var->u.integer.val = l;
1367 set_internalvar_string (struct internalvar *var, const char *string)
1369 /* Clean up old contents. */
1370 clear_internalvar (var);
1372 var->kind = INTERNALVAR_STRING;
1373 var->u.string = xstrdup (string);
1377 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1379 /* Clean up old contents. */
1380 clear_internalvar (var);
1382 var->kind = INTERNALVAR_FUNCTION;
1383 var->u.fn.function = f;
1384 var->u.fn.canonical = 1;
1385 /* Variables installed here are always the canonical version. */
1389 clear_internalvar (struct internalvar *var)
1391 /* Clean up old contents. */
1394 case INTERNALVAR_VALUE:
1395 value_free (var->u.value);
1398 case INTERNALVAR_STRING:
1399 xfree (var->u.string);
1406 /* Reset to void kind. */
1407 var->kind = INTERNALVAR_VOID;
1411 internalvar_name (struct internalvar *var)
1416 static struct internal_function *
1417 create_internal_function (const char *name,
1418 internal_function_fn handler, void *cookie)
1420 struct internal_function *ifn = XNEW (struct internal_function);
1422 ifn->name = xstrdup (name);
1423 ifn->handler = handler;
1424 ifn->cookie = cookie;
1429 value_internal_function_name (struct value *val)
1431 struct internal_function *ifn;
1434 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1435 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1436 gdb_assert (result);
1442 call_internal_function (struct gdbarch *gdbarch,
1443 const struct language_defn *language,
1444 struct value *func, int argc, struct value **argv)
1446 struct internal_function *ifn;
1449 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1450 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1451 gdb_assert (result);
1453 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1456 /* The 'function' command. This does nothing -- it is just a
1457 placeholder to let "help function NAME" work. This is also used as
1458 the implementation of the sub-command that is created when
1459 registering an internal function. */
1461 function_command (char *command, int from_tty)
1466 /* Clean up if an internal function's command is destroyed. */
1468 function_destroyer (struct cmd_list_element *self, void *ignore)
1474 /* Add a new internal function. NAME is the name of the function; DOC
1475 is a documentation string describing the function. HANDLER is
1476 called when the function is invoked. COOKIE is an arbitrary
1477 pointer which is passed to HANDLER and is intended for "user
1480 add_internal_function (const char *name, const char *doc,
1481 internal_function_fn handler, void *cookie)
1483 struct cmd_list_element *cmd;
1484 struct internal_function *ifn;
1485 struct internalvar *var = lookup_internalvar (name);
1487 ifn = create_internal_function (name, handler, cookie);
1488 set_internalvar_function (var, ifn);
1490 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1492 cmd->destroyer = function_destroyer;
1495 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1496 prevent cycles / duplicates. */
1499 preserve_one_value (struct value *value, struct objfile *objfile,
1500 htab_t copied_types)
1502 if (TYPE_OBJFILE (value->type) == objfile)
1503 value->type = copy_type_recursive (objfile, value->type, copied_types);
1505 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1506 value->enclosing_type = copy_type_recursive (objfile,
1507 value->enclosing_type,
1511 /* Likewise for internal variable VAR. */
1514 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1515 htab_t copied_types)
1519 case INTERNALVAR_INTEGER:
1520 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1522 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1525 case INTERNALVAR_POINTER:
1526 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1528 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1531 case INTERNALVAR_VALUE:
1532 preserve_one_value (var->u.value, objfile, copied_types);
1537 /* Update the internal variables and value history when OBJFILE is
1538 discarded; we must copy the types out of the objfile. New global types
1539 will be created for every convenience variable which currently points to
1540 this objfile's types, and the convenience variables will be adjusted to
1541 use the new global types. */
1544 preserve_values (struct objfile *objfile)
1546 htab_t copied_types;
1547 struct value_history_chunk *cur;
1548 struct internalvar *var;
1551 /* Create the hash table. We allocate on the objfile's obstack, since
1552 it is soon to be deleted. */
1553 copied_types = create_copied_types_hash (objfile);
1555 for (cur = value_history_chain; cur; cur = cur->next)
1556 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1558 preserve_one_value (cur->values[i], objfile, copied_types);
1560 for (var = internalvars; var; var = var->next)
1561 preserve_one_internalvar (var, objfile, copied_types);
1563 preserve_python_values (objfile, copied_types);
1565 htab_delete (copied_types);
1569 show_convenience (char *ignore, int from_tty)
1571 struct gdbarch *gdbarch = get_current_arch ();
1572 struct internalvar *var;
1574 struct value_print_options opts;
1576 get_user_print_options (&opts);
1577 for (var = internalvars; var; var = var->next)
1583 printf_filtered (("$%s = "), var->name);
1584 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1586 printf_filtered (("\n"));
1589 printf_unfiltered (_("\
1590 No debugger convenience variables now defined.\n\
1591 Convenience variables have names starting with \"$\";\n\
1592 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1595 /* Extract a value as a C number (either long or double).
1596 Knows how to convert fixed values to double, or
1597 floating values to long.
1598 Does not deallocate the value. */
1601 value_as_long (struct value *val)
1603 /* This coerces arrays and functions, which is necessary (e.g.
1604 in disassemble_command). It also dereferences references, which
1605 I suspect is the most logical thing to do. */
1606 val = coerce_array (val);
1607 return unpack_long (value_type (val), value_contents (val));
1611 value_as_double (struct value *val)
1616 foo = unpack_double (value_type (val), value_contents (val), &inv);
1618 error (_("Invalid floating value found in program."));
1622 /* Extract a value as a C pointer. Does not deallocate the value.
1623 Note that val's type may not actually be a pointer; value_as_long
1624 handles all the cases. */
1626 value_as_address (struct value *val)
1628 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1630 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1631 whether we want this to be true eventually. */
1633 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1634 non-address (e.g. argument to "signal", "info break", etc.), or
1635 for pointers to char, in which the low bits *are* significant. */
1636 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1639 /* There are several targets (IA-64, PowerPC, and others) which
1640 don't represent pointers to functions as simply the address of
1641 the function's entry point. For example, on the IA-64, a
1642 function pointer points to a two-word descriptor, generated by
1643 the linker, which contains the function's entry point, and the
1644 value the IA-64 "global pointer" register should have --- to
1645 support position-independent code. The linker generates
1646 descriptors only for those functions whose addresses are taken.
1648 On such targets, it's difficult for GDB to convert an arbitrary
1649 function address into a function pointer; it has to either find
1650 an existing descriptor for that function, or call malloc and
1651 build its own. On some targets, it is impossible for GDB to
1652 build a descriptor at all: the descriptor must contain a jump
1653 instruction; data memory cannot be executed; and code memory
1656 Upon entry to this function, if VAL is a value of type `function'
1657 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1658 value_address (val) is the address of the function. This is what
1659 you'll get if you evaluate an expression like `main'. The call
1660 to COERCE_ARRAY below actually does all the usual unary
1661 conversions, which includes converting values of type `function'
1662 to `pointer to function'. This is the challenging conversion
1663 discussed above. Then, `unpack_long' will convert that pointer
1664 back into an address.
1666 So, suppose the user types `disassemble foo' on an architecture
1667 with a strange function pointer representation, on which GDB
1668 cannot build its own descriptors, and suppose further that `foo'
1669 has no linker-built descriptor. The address->pointer conversion
1670 will signal an error and prevent the command from running, even
1671 though the next step would have been to convert the pointer
1672 directly back into the same address.
1674 The following shortcut avoids this whole mess. If VAL is a
1675 function, just return its address directly. */
1676 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1677 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1678 return value_address (val);
1680 val = coerce_array (val);
1682 /* Some architectures (e.g. Harvard), map instruction and data
1683 addresses onto a single large unified address space. For
1684 instance: An architecture may consider a large integer in the
1685 range 0x10000000 .. 0x1000ffff to already represent a data
1686 addresses (hence not need a pointer to address conversion) while
1687 a small integer would still need to be converted integer to
1688 pointer to address. Just assume such architectures handle all
1689 integer conversions in a single function. */
1693 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1694 must admonish GDB hackers to make sure its behavior matches the
1695 compiler's, whenever possible.
1697 In general, I think GDB should evaluate expressions the same way
1698 the compiler does. When the user copies an expression out of
1699 their source code and hands it to a `print' command, they should
1700 get the same value the compiler would have computed. Any
1701 deviation from this rule can cause major confusion and annoyance,
1702 and needs to be justified carefully. In other words, GDB doesn't
1703 really have the freedom to do these conversions in clever and
1706 AndrewC pointed out that users aren't complaining about how GDB
1707 casts integers to pointers; they are complaining that they can't
1708 take an address from a disassembly listing and give it to `x/i'.
1709 This is certainly important.
1711 Adding an architecture method like integer_to_address() certainly
1712 makes it possible for GDB to "get it right" in all circumstances
1713 --- the target has complete control over how things get done, so
1714 people can Do The Right Thing for their target without breaking
1715 anyone else. The standard doesn't specify how integers get
1716 converted to pointers; usually, the ABI doesn't either, but
1717 ABI-specific code is a more reasonable place to handle it. */
1719 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1720 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1721 && gdbarch_integer_to_address_p (gdbarch))
1722 return gdbarch_integer_to_address (gdbarch, value_type (val),
1723 value_contents (val));
1725 return unpack_long (value_type (val), value_contents (val));
1729 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1730 as a long, or as a double, assuming the raw data is described
1731 by type TYPE. Knows how to convert different sizes of values
1732 and can convert between fixed and floating point. We don't assume
1733 any alignment for the raw data. Return value is in host byte order.
1735 If you want functions and arrays to be coerced to pointers, and
1736 references to be dereferenced, call value_as_long() instead.
1738 C++: It is assumed that the front-end has taken care of
1739 all matters concerning pointers to members. A pointer
1740 to member which reaches here is considered to be equivalent
1741 to an INT (or some size). After all, it is only an offset. */
1744 unpack_long (struct type *type, const gdb_byte *valaddr)
1746 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1747 enum type_code code = TYPE_CODE (type);
1748 int len = TYPE_LENGTH (type);
1749 int nosign = TYPE_UNSIGNED (type);
1753 case TYPE_CODE_TYPEDEF:
1754 return unpack_long (check_typedef (type), valaddr);
1755 case TYPE_CODE_ENUM:
1756 case TYPE_CODE_FLAGS:
1757 case TYPE_CODE_BOOL:
1759 case TYPE_CODE_CHAR:
1760 case TYPE_CODE_RANGE:
1761 case TYPE_CODE_MEMBERPTR:
1763 return extract_unsigned_integer (valaddr, len, byte_order);
1765 return extract_signed_integer (valaddr, len, byte_order);
1768 return extract_typed_floating (valaddr, type);
1770 case TYPE_CODE_DECFLOAT:
1771 /* libdecnumber has a function to convert from decimal to integer, but
1772 it doesn't work when the decimal number has a fractional part. */
1773 return decimal_to_doublest (valaddr, len, byte_order);
1777 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1778 whether we want this to be true eventually. */
1779 return extract_typed_address (valaddr, type);
1782 error (_("Value can't be converted to integer."));
1784 return 0; /* Placate lint. */
1787 /* Return a double value from the specified type and address.
1788 INVP points to an int which is set to 0 for valid value,
1789 1 for invalid value (bad float format). In either case,
1790 the returned double is OK to use. Argument is in target
1791 format, result is in host format. */
1794 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1796 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1797 enum type_code code;
1801 *invp = 0; /* Assume valid. */
1802 CHECK_TYPEDEF (type);
1803 code = TYPE_CODE (type);
1804 len = TYPE_LENGTH (type);
1805 nosign = TYPE_UNSIGNED (type);
1806 if (code == TYPE_CODE_FLT)
1808 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1809 floating-point value was valid (using the macro
1810 INVALID_FLOAT). That test/macro have been removed.
1812 It turns out that only the VAX defined this macro and then
1813 only in a non-portable way. Fixing the portability problem
1814 wouldn't help since the VAX floating-point code is also badly
1815 bit-rotten. The target needs to add definitions for the
1816 methods gdbarch_float_format and gdbarch_double_format - these
1817 exactly describe the target floating-point format. The
1818 problem here is that the corresponding floatformat_vax_f and
1819 floatformat_vax_d values these methods should be set to are
1820 also not defined either. Oops!
1822 Hopefully someone will add both the missing floatformat
1823 definitions and the new cases for floatformat_is_valid (). */
1825 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1831 return extract_typed_floating (valaddr, type);
1833 else if (code == TYPE_CODE_DECFLOAT)
1834 return decimal_to_doublest (valaddr, len, byte_order);
1837 /* Unsigned -- be sure we compensate for signed LONGEST. */
1838 return (ULONGEST) unpack_long (type, valaddr);
1842 /* Signed -- we are OK with unpack_long. */
1843 return unpack_long (type, valaddr);
1847 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1848 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1849 We don't assume any alignment for the raw data. Return value is in
1852 If you want functions and arrays to be coerced to pointers, and
1853 references to be dereferenced, call value_as_address() instead.
1855 C++: It is assumed that the front-end has taken care of
1856 all matters concerning pointers to members. A pointer
1857 to member which reaches here is considered to be equivalent
1858 to an INT (or some size). After all, it is only an offset. */
1861 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1863 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1864 whether we want this to be true eventually. */
1865 return unpack_long (type, valaddr);
1869 /* Get the value of the FIELDNO'th field (which must be static) of
1870 TYPE. Return NULL if the field doesn't exist or has been
1874 value_static_field (struct type *type, int fieldno)
1876 struct value *retval;
1878 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1880 case FIELD_LOC_KIND_PHYSADDR:
1881 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1882 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1884 case FIELD_LOC_KIND_PHYSNAME:
1886 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1887 /*TYPE_FIELD_NAME (type, fieldno);*/
1888 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1892 /* With some compilers, e.g. HP aCC, static data members are
1893 reported as non-debuggable symbols */
1894 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1901 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1902 SYMBOL_VALUE_ADDRESS (msym));
1907 /* SYM should never have a SYMBOL_CLASS which will require
1908 read_var_value to use the FRAME parameter. */
1909 if (symbol_read_needs_frame (sym))
1910 warning (_("static field's value depends on the current "
1911 "frame - bad debug info?"));
1912 retval = read_var_value (sym, NULL);
1914 if (retval && VALUE_LVAL (retval) == lval_memory)
1915 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1916 value_address (retval));
1926 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1927 You have to be careful here, since the size of the data area for the value
1928 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1929 than the old enclosing type, you have to allocate more space for the data.
1930 The return value is a pointer to the new version of this value structure. */
1933 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1935 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1937 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1939 val->enclosing_type = new_encl_type;
1943 /* Given a value ARG1 (offset by OFFSET bytes)
1944 of a struct or union type ARG_TYPE,
1945 extract and return the value of one of its (non-static) fields.
1946 FIELDNO says which field. */
1949 value_primitive_field (struct value *arg1, int offset,
1950 int fieldno, struct type *arg_type)
1955 CHECK_TYPEDEF (arg_type);
1956 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1958 /* Call check_typedef on our type to make sure that, if TYPE
1959 is a TYPE_CODE_TYPEDEF, its length is set to the length
1960 of the target type instead of zero. However, we do not
1961 replace the typedef type by the target type, because we want
1962 to keep the typedef in order to be able to print the type
1963 description correctly. */
1964 check_typedef (type);
1966 /* Handle packed fields */
1968 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1970 /* Create a new value for the bitfield, with bitpos and bitsize
1971 set. If possible, arrange offset and bitpos so that we can
1972 do a single aligned read of the size of the containing type.
1973 Otherwise, adjust offset to the byte containing the first
1974 bit. Assume that the address, offset, and embedded offset
1975 are sufficiently aligned. */
1976 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1977 int container_bitsize = TYPE_LENGTH (type) * 8;
1979 v = allocate_value_lazy (type);
1980 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1981 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1982 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1983 v->bitpos = bitpos % container_bitsize;
1985 v->bitpos = bitpos % 8;
1986 v->offset = value_embedded_offset (arg1)
1987 + (bitpos - v->bitpos) / 8;
1989 value_incref (v->parent);
1990 if (!value_lazy (arg1))
1991 value_fetch_lazy (v);
1993 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1995 /* This field is actually a base subobject, so preserve the
1996 entire object's contents for later references to virtual
1999 /* Lazy register values with offsets are not supported. */
2000 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2001 value_fetch_lazy (arg1);
2003 if (value_lazy (arg1))
2004 v = allocate_value_lazy (value_enclosing_type (arg1));
2007 v = allocate_value (value_enclosing_type (arg1));
2008 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2009 TYPE_LENGTH (value_enclosing_type (arg1)));
2012 v->offset = value_offset (arg1);
2013 v->embedded_offset = (offset + value_embedded_offset (arg1)
2014 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2018 /* Plain old data member */
2019 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2021 /* Lazy register values with offsets are not supported. */
2022 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2023 value_fetch_lazy (arg1);
2025 if (value_lazy (arg1))
2026 v = allocate_value_lazy (type);
2029 v = allocate_value (type);
2030 memcpy (value_contents_raw (v),
2031 value_contents_raw (arg1) + offset,
2032 TYPE_LENGTH (type));
2034 v->offset = (value_offset (arg1) + offset
2035 + value_embedded_offset (arg1));
2037 set_value_component_location (v, arg1);
2038 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2039 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2043 /* Given a value ARG1 of a struct or union type,
2044 extract and return the value of one of its (non-static) fields.
2045 FIELDNO says which field. */
2048 value_field (struct value *arg1, int fieldno)
2050 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2053 /* Return a non-virtual function as a value.
2054 F is the list of member functions which contains the desired method.
2055 J is an index into F which provides the desired method.
2057 We only use the symbol for its address, so be happy with either a
2058 full symbol or a minimal symbol.
2062 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
2066 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2067 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2069 struct minimal_symbol *msym;
2071 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2078 gdb_assert (sym == NULL);
2079 msym = lookup_minimal_symbol (physname, NULL, NULL);
2084 v = allocate_value (ftype);
2087 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2091 /* The minimal symbol might point to a function descriptor;
2092 resolve it to the actual code address instead. */
2093 struct objfile *objfile = msymbol_objfile (msym);
2094 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2096 set_value_address (v,
2097 gdbarch_convert_from_func_ptr_addr
2098 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target));
2103 if (type != value_type (*arg1p))
2104 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2105 value_addr (*arg1p)));
2107 /* Move the `this' pointer according to the offset.
2108 VALUE_OFFSET (*arg1p) += offset;
2116 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2117 object at VALADDR. The bitfield starts at BITPOS bits and contains
2120 Extracting bits depends on endianness of the machine. Compute the
2121 number of least significant bits to discard. For big endian machines,
2122 we compute the total number of bits in the anonymous object, subtract
2123 off the bit count from the MSB of the object to the MSB of the
2124 bitfield, then the size of the bitfield, which leaves the LSB discard
2125 count. For little endian machines, the discard count is simply the
2126 number of bits from the LSB of the anonymous object to the LSB of the
2129 If the field is signed, we also do sign extension. */
2132 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2133 int bitpos, int bitsize)
2135 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2141 /* Read the minimum number of bytes required; there may not be
2142 enough bytes to read an entire ULONGEST. */
2143 CHECK_TYPEDEF (field_type);
2145 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2147 bytes_read = TYPE_LENGTH (field_type);
2149 val = extract_unsigned_integer (valaddr + bitpos / 8,
2150 bytes_read, byte_order);
2152 /* Extract bits. See comment above. */
2154 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2155 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2157 lsbcount = (bitpos % 8);
2160 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2161 If the field is signed, and is negative, then sign extend. */
2163 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2165 valmask = (((ULONGEST) 1) << bitsize) - 1;
2167 if (!TYPE_UNSIGNED (field_type))
2169 if (val & (valmask ^ (valmask >> 1)))
2178 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2179 VALADDR. See unpack_bits_as_long for more details. */
2182 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2191 /* Modify the value of a bitfield. ADDR points to a block of memory in
2192 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2193 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2194 indicate which bits (in target bit order) comprise the bitfield.
2195 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2196 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2199 modify_field (struct type *type, gdb_byte *addr,
2200 LONGEST fieldval, int bitpos, int bitsize)
2202 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2204 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2206 /* If a negative fieldval fits in the field in question, chop
2207 off the sign extension bits. */
2208 if ((~fieldval & ~(mask >> 1)) == 0)
2211 /* Warn if value is too big to fit in the field in question. */
2212 if (0 != (fieldval & ~mask))
2214 /* FIXME: would like to include fieldval in the message, but
2215 we don't have a sprintf_longest. */
2216 warning (_("Value does not fit in %d bits."), bitsize);
2218 /* Truncate it, otherwise adjoining fields may be corrupted. */
2222 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2224 /* Shifting for bit field depends on endianness of the target machine. */
2225 if (gdbarch_bits_big_endian (get_type_arch (type)))
2226 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2228 oword &= ~(mask << bitpos);
2229 oword |= fieldval << bitpos;
2231 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2234 /* Pack NUM into BUF using a target format of TYPE. */
2237 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2239 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2242 type = check_typedef (type);
2243 len = TYPE_LENGTH (type);
2245 switch (TYPE_CODE (type))
2248 case TYPE_CODE_CHAR:
2249 case TYPE_CODE_ENUM:
2250 case TYPE_CODE_FLAGS:
2251 case TYPE_CODE_BOOL:
2252 case TYPE_CODE_RANGE:
2253 case TYPE_CODE_MEMBERPTR:
2254 store_signed_integer (buf, len, byte_order, num);
2259 store_typed_address (buf, type, (CORE_ADDR) num);
2263 error (_("Unexpected type (%d) encountered for integer constant."),
2269 /* Pack NUM into BUF using a target format of TYPE. */
2272 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2275 enum bfd_endian byte_order;
2277 type = check_typedef (type);
2278 len = TYPE_LENGTH (type);
2279 byte_order = gdbarch_byte_order (get_type_arch (type));
2281 switch (TYPE_CODE (type))
2284 case TYPE_CODE_CHAR:
2285 case TYPE_CODE_ENUM:
2286 case TYPE_CODE_FLAGS:
2287 case TYPE_CODE_BOOL:
2288 case TYPE_CODE_RANGE:
2289 case TYPE_CODE_MEMBERPTR:
2290 store_unsigned_integer (buf, len, byte_order, num);
2295 store_typed_address (buf, type, (CORE_ADDR) num);
2300 Unexpected type (%d) encountered for unsigned integer constant."),
2306 /* Convert C numbers into newly allocated values. */
2309 value_from_longest (struct type *type, LONGEST num)
2311 struct value *val = allocate_value (type);
2313 pack_long (value_contents_raw (val), type, num);
2318 /* Convert C unsigned numbers into newly allocated values. */
2321 value_from_ulongest (struct type *type, ULONGEST num)
2323 struct value *val = allocate_value (type);
2325 pack_unsigned_long (value_contents_raw (val), type, num);
2331 /* Create a value representing a pointer of type TYPE to the address
2334 value_from_pointer (struct type *type, CORE_ADDR addr)
2336 struct value *val = allocate_value (type);
2338 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2343 /* Create a value of type TYPE whose contents come from VALADDR, if it
2344 is non-null, and whose memory address (in the inferior) is
2348 value_from_contents_and_address (struct type *type,
2349 const gdb_byte *valaddr,
2352 struct value *v = allocate_value (type);
2354 if (valaddr == NULL)
2355 set_value_lazy (v, 1);
2357 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2358 set_value_address (v, address);
2359 VALUE_LVAL (v) = lval_memory;
2364 value_from_double (struct type *type, DOUBLEST num)
2366 struct value *val = allocate_value (type);
2367 struct type *base_type = check_typedef (type);
2368 enum type_code code = TYPE_CODE (base_type);
2370 if (code == TYPE_CODE_FLT)
2372 store_typed_floating (value_contents_raw (val), base_type, num);
2375 error (_("Unexpected type encountered for floating constant."));
2381 value_from_decfloat (struct type *type, const gdb_byte *dec)
2383 struct value *val = allocate_value (type);
2385 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2390 coerce_ref (struct value *arg)
2392 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2394 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2395 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2396 unpack_pointer (value_type (arg),
2397 value_contents (arg)));
2402 coerce_array (struct value *arg)
2406 arg = coerce_ref (arg);
2407 type = check_typedef (value_type (arg));
2409 switch (TYPE_CODE (type))
2411 case TYPE_CODE_ARRAY:
2412 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2413 arg = value_coerce_array (arg);
2415 case TYPE_CODE_FUNC:
2416 arg = value_coerce_function (arg);
2423 /* Return true if the function returning the specified type is using
2424 the convention of returning structures in memory (passing in the
2425 address as a hidden first parameter). */
2428 using_struct_return (struct gdbarch *gdbarch,
2429 struct type *func_type, struct type *value_type)
2431 enum type_code code = TYPE_CODE (value_type);
2433 if (code == TYPE_CODE_ERROR)
2434 error (_("Function return type unknown."));
2436 if (code == TYPE_CODE_VOID)
2437 /* A void return value is never in memory. See also corresponding
2438 code in "print_return_value". */
2441 /* Probe the architecture for the return-value convention. */
2442 return (gdbarch_return_value (gdbarch, func_type, value_type,
2444 != RETURN_VALUE_REGISTER_CONVENTION);
2447 /* Set the initialized field in a value struct. */
2450 set_value_initialized (struct value *val, int status)
2452 val->initialized = status;
2455 /* Return the initialized field in a value struct. */
2458 value_initialized (struct value *val)
2460 return val->initialized;
2464 _initialize_values (void)
2466 add_cmd ("convenience", no_class, show_convenience, _("\
2467 Debugger convenience (\"$foo\") variables.\n\
2468 These variables are created when you assign them values;\n\
2469 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2471 A few convenience variables are given values automatically:\n\
2472 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2473 \"$__\" holds the contents of the last address examined with \"x\"."),
2476 add_cmd ("values", no_class, show_values,
2477 _("Elements of value history around item number IDX (or last ten)."),
2480 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2481 Initialize a convenience variable if necessary.\n\
2482 init-if-undefined VARIABLE = EXPRESSION\n\
2483 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2484 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2485 VARIABLE is already initialized."));
2487 add_prefix_cmd ("function", no_class, function_command, _("\
2488 Placeholder command for showing help on convenience functions."),
2489 &functionlist, "function ", 0, &cmdlist);