1 /* atof_generic.c - turn a string of digits into a Flonum
2 Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
26 #define alloca __builtin_alloca
40 /***********************************************************************\
42 * Given a string of decimal digits , with optional decimal *
43 * mark and optional decimal exponent (place value) of the *
44 * lowest_order decimal digit: produce a floating point *
45 * number. The number is 'generic' floating point: our *
46 * caller will encode it for a specific machine architecture. *
49 * uses base (radix) 2 *
50 * this machine uses 2's complement binary integers *
51 * target flonums use " " " " *
52 * target flonums exponents fit in a long *
54 \***********************************************************************/
60 <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
61 <optional-sign> ::= '+' | '-' | {empty}
62 <decimal-number> ::= <integer>
63 | <integer> <radix-character>
64 | <integer> <radix-character> <integer>
65 | <radix-character> <integer>
67 <optional-exponent> ::= {empty}
68 | <exponent-character> <optional-sign> <integer>
70 <integer> ::= <digit> | <digit> <integer>
71 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
72 <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
73 <radix-character> ::= {one character from "string_of_decimal_marks"}
78 atof_generic (address_of_string_pointer,
79 string_of_decimal_marks,
80 string_of_decimal_exponent_marks,
81 address_of_generic_floating_point_number)
82 /* return pointer to just AFTER number we read. */
83 char **address_of_string_pointer;
84 /* At most one per number. */
85 const char *string_of_decimal_marks;
86 const char *string_of_decimal_exponent_marks;
87 FLONUM_TYPE *address_of_generic_floating_point_number;
89 int return_value; /* 0 means OK. */
91 /* char *last_digit; JF unused */
92 int number_of_digits_before_decimal;
93 int number_of_digits_after_decimal;
94 long decimal_exponent;
95 int number_of_digits_available;
96 char digits_sign_char;
99 * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
100 * It would be simpler to modify the string, but we don't; just to be nice
102 * We need to know how many digits we have, so we can allocate space for
108 int seen_significant_digit;
110 first_digit = *address_of_string_pointer;
113 if (c == '-' || c == '+')
115 digits_sign_char = c;
119 digits_sign_char = '+';
121 if ((first_digit[0] == 'n' || first_digit[0] == 'N')
122 && (first_digit[1] == 'a' || first_digit[1] == 'A')
123 && (first_digit[2] == 'n' || first_digit[2] == 'N'))
125 address_of_generic_floating_point_number->sign = 0;
126 address_of_generic_floating_point_number->exponent = 0;
127 address_of_generic_floating_point_number->leader =
128 address_of_generic_floating_point_number->low;
129 *address_of_string_pointer = first_digit + 3;
133 if ((first_digit[0] == 'i' || first_digit[0] == 'I')
134 && (first_digit[1] == 'n' || first_digit[1] == 'N')
135 && (first_digit[2] == 'f' || first_digit[2] == 'F'))
137 address_of_generic_floating_point_number->sign =
138 digits_sign_char == '+' ? 'P' : 'N';
139 address_of_generic_floating_point_number->exponent = 0;
140 address_of_generic_floating_point_number->leader =
141 address_of_generic_floating_point_number->low;
143 if ((first_digit[3] == 'i'
144 || first_digit[3] == 'I')
145 && (first_digit[4] == 'n'
146 || first_digit[4] == 'N')
147 && (first_digit[5] == 'i'
148 || first_digit[5] == 'I')
149 && (first_digit[6] == 't'
150 || first_digit[6] == 'T')
151 && (first_digit[7] == 'y'
152 || first_digit[7] == 'Y'))
154 *address_of_string_pointer = first_digit + 8;
158 *address_of_string_pointer = first_digit + 3;
163 number_of_digits_before_decimal = 0;
164 number_of_digits_after_decimal = 0;
165 decimal_exponent = 0;
166 seen_significant_digit = 0;
167 for (p = first_digit;
169 && (!c || !strchr (string_of_decimal_marks, c))
170 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
175 if (seen_significant_digit || c > '0')
177 ++number_of_digits_before_decimal;
178 seen_significant_digit = 1;
187 break; /* p -> char after pre-decimal digits. */
189 } /* For each digit before decimal mark. */
191 #ifndef OLD_FLOAT_READS
192 /* Ignore trailing 0's after the decimal point. The original code here
193 * (ifdef'd out) does not do this, and numbers like
194 * 4.29496729600000000000e+09 (2**31)
195 * come out inexact for some reason related to length of the digit
198 if (c && strchr (string_of_decimal_marks, c))
200 int zeros = 0; /* Length of current string of zeros */
202 for (p++; (c = *p) && isdigit (c); p++)
210 number_of_digits_after_decimal += 1 + zeros;
216 if (c && strchr (string_of_decimal_marks, c))
220 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
225 /* This may be retracted below. */
226 number_of_digits_after_decimal++;
228 if ( /* seen_significant_digit || */ c > '0')
230 seen_significant_digit = TRUE;
235 if (!seen_significant_digit)
237 number_of_digits_after_decimal = 0;
241 } /* For each digit after decimal mark. */
244 while (number_of_digits_after_decimal
245 && first_digit[number_of_digits_before_decimal
246 + number_of_digits_after_decimal] == '0')
247 --number_of_digits_after_decimal;
250 if (c && strchr (string_of_decimal_exponent_marks, c))
252 char digits_exponent_sign_char;
255 if (c && strchr ("+-", c))
257 digits_exponent_sign_char = c;
262 digits_exponent_sign_char = '+';
265 for (; (c); c = *++p)
269 decimal_exponent = decimal_exponent * 10 + c - '0';
271 * BUG! If we overflow here, we lose!
280 if (digits_exponent_sign_char == '-')
282 decimal_exponent = -decimal_exponent;
286 *address_of_string_pointer = p;
290 number_of_digits_available =
291 number_of_digits_before_decimal + number_of_digits_after_decimal;
293 if (number_of_digits_available == 0)
295 address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
296 address_of_generic_floating_point_number->leader
297 = -1 + address_of_generic_floating_point_number->low;
298 address_of_generic_floating_point_number->sign = digits_sign_char;
299 /* We have just concocted (+/-)0.0E0 */
304 int count; /* Number of useful digits left to scan. */
306 LITTLENUM_TYPE *digits_binary_low;
307 unsigned int precision;
308 unsigned int maximum_useful_digits;
309 unsigned int number_of_digits_to_use;
310 unsigned int more_than_enough_bits_for_digits;
311 unsigned int more_than_enough_littlenums_for_digits;
312 unsigned int size_of_digits_in_littlenums;
313 unsigned int size_of_digits_in_chars;
314 FLONUM_TYPE power_of_10_flonum;
315 FLONUM_TYPE digits_flonum;
317 precision = (address_of_generic_floating_point_number->high
318 - address_of_generic_floating_point_number->low
319 + 1); /* Number of destination littlenums. */
321 /* Includes guard bits (two littlenums worth) */
322 maximum_useful_digits = (((double) (precision - 2))
323 * ((double) (LITTLENUM_NUMBER_OF_BITS))
324 / (LOG_TO_BASE_2_OF_10))
325 + 2; /* 2 :: guard digits. */
327 if (number_of_digits_available > maximum_useful_digits)
329 number_of_digits_to_use = maximum_useful_digits;
333 number_of_digits_to_use = number_of_digits_available;
336 /* Cast these to SIGNED LONG first, otherwise, on systems with
337 LONG wider than INT (such as Alpha OSF/1), unsignedness may
338 cause unexpected results. */
339 decimal_exponent += ((long) number_of_digits_before_decimal
340 - (long) number_of_digits_to_use);
342 more_than_enough_bits_for_digits
343 = ((((double) number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1);
345 more_than_enough_littlenums_for_digits
346 = (more_than_enough_bits_for_digits
347 / LITTLENUM_NUMBER_OF_BITS)
350 /* Compute (digits) part. In "12.34E56" this is the "1234" part.
351 Arithmetic is exact here. If no digits are supplied then this
352 part is a 0 valued binary integer. Allocate room to build up
353 the binary number as littlenums. We want this memory to
354 disappear when we leave this function. Assume no alignment
355 problems => (room for n objects) == n * (room for 1
358 size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
359 size_of_digits_in_chars = size_of_digits_in_littlenums
360 * sizeof (LITTLENUM_TYPE);
362 digits_binary_low = (LITTLENUM_TYPE *)
363 alloca (size_of_digits_in_chars);
365 memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
367 /* Digits_binary_low[] is allocated and zeroed. */
370 * Parse the decimal digits as if * digits_low was in the units position.
371 * Emit a binary number into digits_binary_low[].
373 * Use a large-precision version of:
374 * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
377 for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
383 * Multiply by 10. Assume can never overflow.
384 * Add this digit to digits_binary_low[].
388 LITTLENUM_TYPE *littlenum_pointer;
389 LITTLENUM_TYPE *littlenum_limit;
391 littlenum_limit = digits_binary_low
392 + more_than_enough_littlenums_for_digits
395 carry = c - '0'; /* char -> binary */
397 for (littlenum_pointer = digits_binary_low;
398 littlenum_pointer <= littlenum_limit;
403 work = carry + 10 * (long) (*littlenum_pointer);
404 *littlenum_pointer = work & LITTLENUM_MASK;
405 carry = work >> LITTLENUM_NUMBER_OF_BITS;
411 * We have a GROSS internal error.
412 * This should never happen.
414 as_fatal ("failed sanity check.");
419 ++count; /* '.' doesn't alter digits used count. */
425 * Digits_binary_low[] properly encodes the value of the digits.
426 * Forget about any high-order littlenums that are 0.
428 while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
429 && size_of_digits_in_littlenums >= 2)
430 size_of_digits_in_littlenums--;
432 digits_flonum.low = digits_binary_low;
433 digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
434 digits_flonum.leader = digits_flonum.high;
435 digits_flonum.exponent = 0;
437 * The value of digits_flonum . sign should not be important.
438 * We have already decided the output's sign.
439 * We trust that the sign won't influence the other parts of the number!
440 * So we give it a value for these reasons:
441 * (1) courtesy to humans reading/debugging
442 * these numbers so they don't get excited about strange values
443 * (2) in future there may be more meaning attached to sign,
445 * harmless noise may become disruptive, ill-conditioned (or worse)
448 digits_flonum.sign = '+';
452 * Compute the mantssa (& exponent) of the power of 10.
453 * If sucessful, then multiply the power of 10 by the digits
454 * giving return_binary_mantissa and return_binary_exponent.
457 LITTLENUM_TYPE *power_binary_low;
458 int decimal_exponent_is_negative;
459 /* This refers to the "-56" in "12.34E-56". */
460 /* FALSE: decimal_exponent is positive (or 0) */
461 /* TRUE: decimal_exponent is negative */
462 FLONUM_TYPE temporary_flonum;
463 LITTLENUM_TYPE *temporary_binary_low;
464 unsigned int size_of_power_in_littlenums;
465 unsigned int size_of_power_in_chars;
467 size_of_power_in_littlenums = precision;
468 /* Precision has a built-in fudge factor so we get a few guard bits. */
470 decimal_exponent_is_negative = decimal_exponent < 0;
471 if (decimal_exponent_is_negative)
473 decimal_exponent = -decimal_exponent;
476 /* From now on: the decimal exponent is > 0. Its sign is seperate. */
478 size_of_power_in_chars = size_of_power_in_littlenums
479 * sizeof (LITTLENUM_TYPE) + 2;
481 power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
482 temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
483 memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
484 *power_binary_low = 1;
485 power_of_10_flonum.exponent = 0;
486 power_of_10_flonum.low = power_binary_low;
487 power_of_10_flonum.leader = power_binary_low;
488 power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
489 power_of_10_flonum.sign = '+';
490 temporary_flonum.low = temporary_binary_low;
491 temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
494 * Space for temporary_flonum allocated.
501 * DO find next bit (with place value)
502 * multiply into power mantissa
506 int place_number_limit;
507 /* Any 10^(2^n) whose "n" exceeds this */
508 /* value will fall off the end of */
509 /* flonum_XXXX_powers_of_ten[]. */
511 const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
513 place_number_limit = table_size_of_flonum_powers_of_ten;
515 multiplicand = (decimal_exponent_is_negative
516 ? flonum_negative_powers_of_ten
517 : flonum_positive_powers_of_ten);
519 for (place_number = 1;/* Place value of this bit of exponent. */
520 decimal_exponent;/* Quit when no more 1 bits in exponent. */
521 decimal_exponent >>= 1, place_number++)
523 if (decimal_exponent & 1)
525 if (place_number > place_number_limit)
527 /* The decimal exponent has a magnitude so great
528 that our tables can't help us fragment it.
529 Although this routine is in error because it
530 can't imagine a number that big, signal an
531 error as if it is the user's fault for
532 presenting such a big number. */
533 return_value = ERROR_EXPONENT_OVERFLOW;
534 /* quit out of loop gracefully */
535 decimal_exponent = 0;
540 printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
543 flonum_print (&power_of_10_flonum);
544 (void) putchar ('\n');
546 flonum_multip (multiplicand + place_number,
547 &power_of_10_flonum, &temporary_flonum);
548 flonum_copy (&temporary_flonum, &power_of_10_flonum);
549 } /* If this bit of decimal_exponent was computable.*/
550 } /* If this bit of decimal_exponent was set. */
551 } /* For each bit of binary representation of exponent */
553 printf (" after computing power_of_10_flonum: ");
554 flonum_print (&power_of_10_flonum);
555 (void) putchar ('\n');
562 * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
563 * It may be the number 1, in which case we don't NEED to multiply.
565 * Multiply (decimal digits) by power_of_10_flonum.
568 flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
569 /* Assert sign of the number we made is '+'. */
570 address_of_generic_floating_point_number->sign = digits_sign_char;
576 /* end of atof_generic.c */