1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
38 #include "breakpoint.h"
40 #include "complaints.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
54 #include "parser-defs.h"
57 #include <sys/types.h>
59 #include "gdb_string.h"
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76 static void clear_symtab_users_cleanup (void *ignore);
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
81 /* External variables and functions referenced. */
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
85 /* Functions this file defines */
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
92 static void set_initial_language (void);
94 static void load_command (char *, int);
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98 static void add_symbol_file_command (char *, int);
100 static void add_shared_symbol_files_command (char *, int);
102 static void reread_separate_symbols (struct objfile *objfile);
104 static void cashier_psymtab (struct partial_symtab *);
106 bfd *symfile_bfd_open (char *);
108 int get_section_index (struct objfile *, char *);
110 static void find_sym_fns (struct objfile *);
112 static void decrement_reading_symtab (void *);
114 static void overlay_invalidate_all (void);
116 static int overlay_is_mapped (struct obj_section *);
118 void list_overlays_command (char *, int);
120 void map_overlay_command (char *, int);
122 void unmap_overlay_command (char *, int);
124 static void overlay_auto_command (char *, int);
126 static void overlay_manual_command (char *, int);
128 static void overlay_off_command (char *, int);
130 static void overlay_load_command (char *, int);
132 static void overlay_command (char *, int);
134 static void simple_free_overlay_table (void);
136 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138 static int simple_read_overlay_table (void);
140 static int simple_overlay_update_1 (struct obj_section *);
142 static void add_filename_language (char *ext, enum language lang);
144 static void info_ext_lang_command (char *args, int from_tty);
146 static char *find_separate_debug_file (struct objfile *objfile);
148 static void init_filename_language_table (void);
150 void _initialize_symfile (void);
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
156 static struct sym_fns *symtab_fns = NULL;
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 int symbol_reloading = 0;
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
186 int auto_solib_add = 1;
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
196 int auto_solib_limit;
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
203 compare_psymbols (const void *s1p, const void *s2p)
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
213 sort_pst_symbols (struct partial_symtab *pst)
215 /* Sort the global list; don't sort the static list */
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
235 const char *p1 = ptr;
237 const char *end = ptr + size;
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
260 /* True if we are nested inside psymtab_to_symtab. */
262 int currently_reading_symtab = 0;
265 decrement_reading_symtab (void *dummy)
267 currently_reading_symtab--;
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 psymtab_to_symtab (struct partial_symtab *pst)
278 /* If it's been looked up before, return it. */
282 /* If it has not yet been read in, read it. */
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 asection **lowest = (asection **) obj;
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
325 struct section_addr_info *sap;
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
370 struct section_addr_info *sap;
371 const struct section_table *stp;
374 sap = alloc_section_addr_info (end - start);
376 for (stp = start, oidx = 0; stp != end; stp++)
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
397 free_section_addr_info (struct section_addr_info *sap)
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
408 /* Initialize OBJFILE's sect_index_* members. */
410 init_objfile_sect_indices (struct objfile *objfile)
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 objfile->sect_index_text = sect->index;
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 objfile->sect_index_data = sect->index;
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 objfile->sect_index_bss = sect->index;
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 objfile->sect_index_rodata = sect->index;
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
441 for (i = 0; i < objfile->num_sections; i++)
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
448 if (i == objfile->num_sections)
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
461 /* The arguments to place_section. */
463 struct place_section_arg
465 struct section_offsets *offsets;
469 /* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
473 place_section (bfd *abfd, asection *sect, void *obj)
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
480 /* We are only interested in allocated sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
488 /* Otherwise, let's try to find a place for the section. */
489 start_addr = (arg->lowest + align - 1) & -align;
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
501 /* We don't need to compare against ourself. */
505 /* We can only conflict with allocated sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
509 /* If the section offset is 0, either the section has not been placed
510 yet, or it was the lowest section placed (in which case LOWEST
511 will be past its end). */
512 if (offsets[indx] == 0)
515 /* If this section would overlap us, then we must move up. */
516 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
517 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
519 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
520 start_addr = (start_addr + align - 1) & -align;
525 /* Otherwise, we appear to be OK. So far. */
530 offsets[sect->index] = start_addr;
531 arg->lowest = start_addr + bfd_get_section_size (sect);
533 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
536 /* Parse the user's idea of an offset for dynamic linking, into our idea
537 of how to represent it for fast symbol reading. This is the default
538 version of the sym_fns.sym_offsets function for symbol readers that
539 don't need to do anything special. It allocates a section_offsets table
540 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
543 default_symfile_offsets (struct objfile *objfile,
544 struct section_addr_info *addrs)
548 objfile->num_sections = bfd_count_sections (objfile->obfd);
549 objfile->section_offsets = (struct section_offsets *)
550 obstack_alloc (&objfile->objfile_obstack,
551 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
552 memset (objfile->section_offsets, 0,
553 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 /* Now calculate offsets for section that were specified by the
557 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
559 struct other_sections *osp ;
561 osp = &addrs->other[i] ;
565 /* Record all sections in offsets */
566 /* The section_offsets in the objfile are here filled in using
568 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
571 /* For relocatable files, all loadable sections will start at zero.
572 The zero is meaningless, so try to pick arbitrary addresses such
573 that no loadable sections overlap. This algorithm is quadratic,
574 but the number of sections in a single object file is generally
576 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
578 struct place_section_arg arg;
579 bfd *abfd = objfile->obfd;
581 CORE_ADDR lowest = 0;
583 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
584 /* We do not expect this to happen; just skip this step if the
585 relocatable file has a section with an assigned VMA. */
586 if (bfd_section_vma (abfd, cur_sec) != 0)
591 CORE_ADDR *offsets = objfile->section_offsets->offsets;
593 /* Pick non-overlapping offsets for sections the user did not
595 arg.offsets = objfile->section_offsets;
597 bfd_map_over_sections (objfile->obfd, place_section, &arg);
599 /* Correctly filling in the section offsets is not quite
600 enough. Relocatable files have two properties that
601 (most) shared objects do not:
603 - Their debug information will contain relocations. Some
604 shared libraries do also, but many do not, so this can not
607 - If there are multiple code sections they will be loaded
608 at different relative addresses in memory than they are
609 in the objfile, since all sections in the file will start
612 Because GDB has very limited ability to map from an
613 address in debug info to the correct code section,
614 it relies on adding SECT_OFF_TEXT to things which might be
615 code. If we clear all the section offsets, and set the
616 section VMAs instead, then symfile_relocate_debug_section
617 will return meaningful debug information pointing at the
620 GDB has too many different data structures for section
621 addresses - a bfd, objfile, and so_list all have section
622 tables, as does exec_ops. Some of these could probably
625 for (cur_sec = abfd->sections; cur_sec != NULL;
626 cur_sec = cur_sec->next)
628 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
631 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
632 offsets[cur_sec->index] = 0;
637 /* Remember the bfd indexes for the .text, .data, .bss and
639 init_objfile_sect_indices (objfile);
643 /* Process a symbol file, as either the main file or as a dynamically
646 OBJFILE is where the symbols are to be read from.
648 ADDRS is the list of section load addresses. If the user has given
649 an 'add-symbol-file' command, then this is the list of offsets and
650 addresses he or she provided as arguments to the command; or, if
651 we're handling a shared library, these are the actual addresses the
652 sections are loaded at, according to the inferior's dynamic linker
653 (as gleaned by GDB's shared library code). We convert each address
654 into an offset from the section VMA's as it appears in the object
655 file, and then call the file's sym_offsets function to convert this
656 into a format-specific offset table --- a `struct section_offsets'.
657 If ADDRS is non-zero, OFFSETS must be zero.
659 OFFSETS is a table of section offsets already in the right
660 format-specific representation. NUM_OFFSETS is the number of
661 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
662 assume this is the proper table the call to sym_offsets described
663 above would produce. Instead of calling sym_offsets, we just dump
664 it right into objfile->section_offsets. (When we're re-reading
665 symbols from an objfile, we don't have the original load address
666 list any more; all we have is the section offset table.) If
667 OFFSETS is non-zero, ADDRS must be zero.
669 MAINLINE is nonzero if this is the main symbol file, or zero if
670 it's an extra symbol file such as dynamically loaded code.
672 VERBO is nonzero if the caller has printed a verbose message about
673 the symbol reading (and complaints can be more terse about it). */
676 syms_from_objfile (struct objfile *objfile,
677 struct section_addr_info *addrs,
678 struct section_offsets *offsets,
683 struct section_addr_info *local_addr = NULL;
684 struct cleanup *old_chain;
686 gdb_assert (! (addrs && offsets));
688 init_entry_point_info (objfile);
689 find_sym_fns (objfile);
691 if (objfile->sf == NULL)
692 return; /* No symbols. */
694 /* Make sure that partially constructed symbol tables will be cleaned up
695 if an error occurs during symbol reading. */
696 old_chain = make_cleanup_free_objfile (objfile);
698 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
699 list. We now establish the convention that an addr of zero means
700 no load address was specified. */
701 if (! addrs && ! offsets)
704 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
705 make_cleanup (xfree, local_addr);
709 /* Now either addrs or offsets is non-zero. */
713 /* We will modify the main symbol table, make sure that all its users
714 will be cleaned up if an error occurs during symbol reading. */
715 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
717 /* Since no error yet, throw away the old symbol table. */
719 if (symfile_objfile != NULL)
721 free_objfile (symfile_objfile);
722 symfile_objfile = NULL;
725 /* Currently we keep symbols from the add-symbol-file command.
726 If the user wants to get rid of them, they should do "symbol-file"
727 without arguments first. Not sure this is the best behavior
730 (*objfile->sf->sym_new_init) (objfile);
733 /* Convert addr into an offset rather than an absolute address.
734 We find the lowest address of a loaded segment in the objfile,
735 and assume that <addr> is where that got loaded.
737 We no longer warn if the lowest section is not a text segment (as
738 happens for the PA64 port. */
739 if (!mainline && addrs && addrs->other[0].name)
741 asection *lower_sect;
743 CORE_ADDR lower_offset;
746 /* Find lowest loadable section to be used as starting point for
747 continguous sections. FIXME!! won't work without call to find
748 .text first, but this assumes text is lowest section. */
749 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
750 if (lower_sect == NULL)
751 bfd_map_over_sections (objfile->obfd, find_lowest_section,
753 if (lower_sect == NULL)
754 warning (_("no loadable sections found in added symbol-file %s"),
757 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
758 warning (_("Lowest section in %s is %s at %s"),
760 bfd_section_name (objfile->obfd, lower_sect),
761 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
762 if (lower_sect != NULL)
763 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
767 /* Calculate offsets for the loadable sections.
768 FIXME! Sections must be in order of increasing loadable section
769 so that contiguous sections can use the lower-offset!!!
771 Adjust offsets if the segments are not contiguous.
772 If the section is contiguous, its offset should be set to
773 the offset of the highest loadable section lower than it
774 (the loadable section directly below it in memory).
775 this_offset = lower_offset = lower_addr - lower_orig_addr */
777 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
779 if (addrs->other[i].addr != 0)
781 sect = bfd_get_section_by_name (objfile->obfd,
782 addrs->other[i].name);
786 -= bfd_section_vma (objfile->obfd, sect);
787 lower_offset = addrs->other[i].addr;
788 /* This is the index used by BFD. */
789 addrs->other[i].sectindex = sect->index ;
793 warning (_("section %s not found in %s"),
794 addrs->other[i].name,
796 addrs->other[i].addr = 0;
800 addrs->other[i].addr = lower_offset;
804 /* Initialize symbol reading routines for this objfile, allow complaints to
805 appear for this new file, and record how verbose to be, then do the
806 initial symbol reading for this file. */
808 (*objfile->sf->sym_init) (objfile);
809 clear_complaints (&symfile_complaints, 1, verbo);
812 (*objfile->sf->sym_offsets) (objfile, addrs);
815 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
817 /* Just copy in the offset table directly as given to us. */
818 objfile->num_sections = num_offsets;
819 objfile->section_offsets
820 = ((struct section_offsets *)
821 obstack_alloc (&objfile->objfile_obstack, size));
822 memcpy (objfile->section_offsets, offsets, size);
824 init_objfile_sect_indices (objfile);
827 #ifndef DEPRECATED_IBM6000_TARGET
828 /* This is a SVR4/SunOS specific hack, I think. In any event, it
829 screws RS/6000. sym_offsets should be doing this sort of thing,
830 because it knows the mapping between bfd sections and
832 /* This is a hack. As far as I can tell, section offsets are not
833 target dependent. They are all set to addr with a couple of
834 exceptions. The exceptions are sysvr4 shared libraries, whose
835 offsets are kept in solib structures anyway and rs6000 xcoff
836 which handles shared libraries in a completely unique way.
838 Section offsets are built similarly, except that they are built
839 by adding addr in all cases because there is no clear mapping
840 from section_offsets into actual sections. Note that solib.c
841 has a different algorithm for finding section offsets.
843 These should probably all be collapsed into some target
844 independent form of shared library support. FIXME. */
848 struct obj_section *s;
850 /* Map section offsets in "addr" back to the object's
851 sections by comparing the section names with bfd's
852 section names. Then adjust the section address by
853 the offset. */ /* for gdb/13815 */
855 ALL_OBJFILE_OSECTIONS (objfile, s)
857 CORE_ADDR s_addr = 0;
861 !s_addr && i < addrs->num_sections && addrs->other[i].name;
863 if (strcmp (bfd_section_name (s->objfile->obfd,
865 addrs->other[i].name) == 0)
866 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
868 s->addr -= s->offset;
870 s->endaddr -= s->offset;
871 s->endaddr += s_addr;
875 #endif /* not DEPRECATED_IBM6000_TARGET */
877 (*objfile->sf->sym_read) (objfile, mainline);
879 /* Don't allow char * to have a typename (else would get caddr_t).
880 Ditto void *. FIXME: Check whether this is now done by all the
881 symbol readers themselves (many of them now do), and if so remove
884 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
885 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
887 /* Mark the objfile has having had initial symbol read attempted. Note
888 that this does not mean we found any symbols... */
890 objfile->flags |= OBJF_SYMS;
892 /* Discard cleanups as symbol reading was successful. */
894 discard_cleanups (old_chain);
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
902 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
913 clear_symtab_users ();
917 breakpoint_re_set ();
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, verbo);
924 /* Process a symbol file, as either the main file or as a dynamically
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
930 FROM_TTY says how verbose to be.
932 MAINLINE specifies whether this is the main symbol file, or whether
933 it's an extra symbol file such as dynamically loaded code.
935 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
936 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
939 Upon success, returns a pointer to the objfile that was added.
940 Upon failure, jumps back to command level (never returns). */
941 static struct objfile *
942 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
946 int mainline, int flags)
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
955 my_cleanups = make_cleanup_bfd_close (abfd);
957 /* Give user a chance to burp if we'd be
958 interactively wiping out any existing symbols. */
960 if ((have_full_symbols () || have_partial_symbols ())
963 && !query ("Load new symbol table from \"%s\"? ", name))
964 error (_("Not confirmed."));
966 objfile = allocate_objfile (abfd, flags);
967 discard_cleanups (my_cleanups);
971 orig_addrs = copy_section_addr_info (addrs);
972 make_cleanup_free_section_addr_info (orig_addrs);
975 /* We either created a new mapped symbol table, mapped an existing
976 symbol table file which has not had initial symbol reading
977 performed, or need to read an unmapped symbol table. */
978 if (from_tty || info_verbose)
980 if (deprecated_pre_add_symbol_hook)
981 deprecated_pre_add_symbol_hook (name);
984 printf_unfiltered (_("Reading symbols from %s..."), name);
986 gdb_flush (gdb_stdout);
989 syms_from_objfile (objfile, addrs, offsets, num_offsets,
992 /* We now have at least a partial symbol table. Check to see if the
993 user requested that all symbols be read on initial access via either
994 the gdb startup command line or on a per symbol file basis. Expand
995 all partial symbol tables for this objfile if so. */
997 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 if (from_tty || info_verbose)
1001 printf_unfiltered (_("expanding to full symbols..."));
1003 gdb_flush (gdb_stdout);
1006 for (psymtab = objfile->psymtabs;
1008 psymtab = psymtab->next)
1010 psymtab_to_symtab (psymtab);
1014 debugfile = find_separate_debug_file (objfile);
1019 objfile->separate_debug_objfile
1020 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1027 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1030 /* Put the separate debug object before the normal one, this is so that
1031 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1032 put_objfile_before (objfile->separate_debug_objfile, objfile);
1037 if (!have_partial_symbols () && !have_full_symbols ())
1040 printf_filtered (_("(no debugging symbols found)"));
1041 if (from_tty || info_verbose)
1042 printf_filtered ("...");
1044 printf_filtered ("\n");
1048 if (from_tty || info_verbose)
1050 if (deprecated_post_add_symbol_hook)
1051 deprecated_post_add_symbol_hook ();
1054 printf_unfiltered (_("done.\n"));
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1061 gdb_flush (gdb_stdout);
1063 do_cleanups (my_cleanups);
1065 if (objfile->sf == NULL)
1066 return objfile; /* No symbols. */
1068 new_symfile_objfile (objfile, mainline, from_tty);
1070 if (deprecated_target_new_objfile_hook)
1071 deprecated_target_new_objfile_hook (objfile);
1073 bfd_cache_close_all ();
1078 /* Process the symbol file ABFD, as either the main file or as a
1079 dynamically loaded file.
1081 See symbol_file_add_with_addrs_or_offsets's comments for
1084 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1085 struct section_addr_info *addrs,
1086 int mainline, int flags)
1088 return symbol_file_add_with_addrs_or_offsets (abfd,
1089 from_tty, addrs, 0, 0,
1094 /* Process a symbol file, as either the main file or as a dynamically
1095 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1098 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1099 int mainline, int flags)
1101 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1102 addrs, mainline, flags);
1106 /* Call symbol_file_add() with default values and update whatever is
1107 affected by the loading of a new main().
1108 Used when the file is supplied in the gdb command line
1109 and by some targets with special loading requirements.
1110 The auxiliary function, symbol_file_add_main_1(), has the flags
1111 argument for the switches that can only be specified in the symbol_file
1115 symbol_file_add_main (char *args, int from_tty)
1117 symbol_file_add_main_1 (args, from_tty, 0);
1121 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123 symbol_file_add (args, from_tty, NULL, 1, flags);
1125 /* Getting new symbols may change our opinion about
1126 what is frameless. */
1127 reinit_frame_cache ();
1129 set_initial_language ();
1133 symbol_file_clear (int from_tty)
1135 if ((have_full_symbols () || have_partial_symbols ())
1138 ? !query (_("Discard symbol table from `%s'? "),
1139 symfile_objfile->name)
1140 : !query (_("Discard symbol table? "))))
1141 error (_("Not confirmed."));
1142 free_all_objfiles ();
1144 /* solib descriptors may have handles to objfiles. Since their
1145 storage has just been released, we'd better wipe the solib
1146 descriptors as well.
1148 #if defined(SOLIB_RESTART)
1152 symfile_objfile = NULL;
1154 printf_unfiltered (_("No symbol file now.\n"));
1158 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1161 bfd_size_type debuglink_size;
1162 unsigned long crc32;
1167 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1172 debuglink_size = bfd_section_size (objfile->obfd, sect);
1174 contents = xmalloc (debuglink_size);
1175 bfd_get_section_contents (objfile->obfd, sect, contents,
1176 (file_ptr)0, (bfd_size_type)debuglink_size);
1178 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1179 crc_offset = strlen (contents) + 1;
1180 crc_offset = (crc_offset + 3) & ~3;
1182 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1189 separate_debug_file_exists (const char *name, unsigned long crc)
1191 unsigned long file_crc = 0;
1193 gdb_byte buffer[8*1024];
1196 fd = open (name, O_RDONLY | O_BINARY);
1200 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1201 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1205 return crc == file_crc;
1208 char *debug_file_directory = NULL;
1210 show_debug_file_directory (struct ui_file *file, int from_tty,
1211 struct cmd_list_element *c, const char *value)
1213 fprintf_filtered (file, _("\
1214 The directory where separate debug symbols are searched for is \"%s\".\n"),
1218 #if ! defined (DEBUG_SUBDIRECTORY)
1219 #define DEBUG_SUBDIRECTORY ".debug"
1223 find_separate_debug_file (struct objfile *objfile)
1231 bfd_size_type debuglink_size;
1232 unsigned long crc32;
1235 basename = get_debug_link_info (objfile, &crc32);
1237 if (basename == NULL)
1240 dir = xstrdup (objfile->name);
1242 /* Strip off the final filename part, leaving the directory name,
1243 followed by a slash. Objfile names should always be absolute and
1244 tilde-expanded, so there should always be a slash in there
1246 for (i = strlen(dir) - 1; i >= 0; i--)
1248 if (IS_DIR_SEPARATOR (dir[i]))
1251 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1254 debugfile = alloca (strlen (debug_file_directory) + 1
1256 + strlen (DEBUG_SUBDIRECTORY)
1261 /* First try in the same directory as the original file. */
1262 strcpy (debugfile, dir);
1263 strcat (debugfile, basename);
1265 if (separate_debug_file_exists (debugfile, crc32))
1269 return xstrdup (debugfile);
1272 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1273 strcpy (debugfile, dir);
1274 strcat (debugfile, DEBUG_SUBDIRECTORY);
1275 strcat (debugfile, "/");
1276 strcat (debugfile, basename);
1278 if (separate_debug_file_exists (debugfile, crc32))
1282 return xstrdup (debugfile);
1285 /* Then try in the global debugfile directory. */
1286 strcpy (debugfile, debug_file_directory);
1287 strcat (debugfile, "/");
1288 strcat (debugfile, dir);
1289 strcat (debugfile, basename);
1291 if (separate_debug_file_exists (debugfile, crc32))
1295 return xstrdup (debugfile);
1298 /* If the file is in the sysroot, try using its base path in the
1299 global debugfile directory. */
1300 canon_name = lrealpath (dir);
1302 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1303 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1305 strcpy (debugfile, debug_file_directory);
1306 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1307 strcat (debugfile, "/");
1308 strcat (debugfile, basename);
1310 if (separate_debug_file_exists (debugfile, crc32))
1315 return xstrdup (debugfile);
1328 /* This is the symbol-file command. Read the file, analyze its
1329 symbols, and add a struct symtab to a symtab list. The syntax of
1330 the command is rather bizarre:
1332 1. The function buildargv implements various quoting conventions
1333 which are undocumented and have little or nothing in common with
1334 the way things are quoted (or not quoted) elsewhere in GDB.
1336 2. Options are used, which are not generally used in GDB (perhaps
1337 "set mapped on", "set readnow on" would be better)
1339 3. The order of options matters, which is contrary to GNU
1340 conventions (because it is confusing and inconvenient). */
1343 symbol_file_command (char *args, int from_tty)
1349 symbol_file_clear (from_tty);
1353 char **argv = buildargv (args);
1354 int flags = OBJF_USERLOADED;
1355 struct cleanup *cleanups;
1361 cleanups = make_cleanup_freeargv (argv);
1362 while (*argv != NULL)
1364 if (strcmp (*argv, "-readnow") == 0)
1365 flags |= OBJF_READNOW;
1366 else if (**argv == '-')
1367 error (_("unknown option `%s'"), *argv);
1370 symbol_file_add_main_1 (*argv, from_tty, flags);
1378 error (_("no symbol file name was specified"));
1380 do_cleanups (cleanups);
1384 /* Set the initial language.
1386 FIXME: A better solution would be to record the language in the
1387 psymtab when reading partial symbols, and then use it (if known) to
1388 set the language. This would be a win for formats that encode the
1389 language in an easily discoverable place, such as DWARF. For
1390 stabs, we can jump through hoops looking for specially named
1391 symbols or try to intuit the language from the specific type of
1392 stabs we find, but we can't do that until later when we read in
1396 set_initial_language (void)
1398 struct partial_symtab *pst;
1399 enum language lang = language_unknown;
1401 pst = find_main_psymtab ();
1404 if (pst->filename != NULL)
1405 lang = deduce_language_from_filename (pst->filename);
1407 if (lang == language_unknown)
1409 /* Make C the default language */
1413 set_language (lang);
1414 expected_language = current_language; /* Don't warn the user. */
1418 /* Open the file specified by NAME and hand it off to BFD for
1419 preliminary analysis. Return a newly initialized bfd *, which
1420 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1421 absolute). In case of trouble, error() is called. */
1424 symfile_bfd_open (char *name)
1428 char *absolute_name;
1430 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1432 /* Look down path for it, allocate 2nd new malloc'd copy. */
1433 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1434 O_RDONLY | O_BINARY, 0, &absolute_name);
1435 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1438 char *exename = alloca (strlen (name) + 5);
1439 strcat (strcpy (exename, name), ".exe");
1440 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1441 O_RDONLY | O_BINARY, 0, &absolute_name);
1446 make_cleanup (xfree, name);
1447 perror_with_name (name);
1450 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1451 bfd. It'll be freed in free_objfile(). */
1453 name = absolute_name;
1455 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1459 make_cleanup (xfree, name);
1460 error (_("\"%s\": can't open to read symbols: %s."), name,
1461 bfd_errmsg (bfd_get_error ()));
1463 bfd_set_cacheable (sym_bfd, 1);
1465 if (!bfd_check_format (sym_bfd, bfd_object))
1467 /* FIXME: should be checking for errors from bfd_close (for one
1468 thing, on error it does not free all the storage associated
1470 bfd_close (sym_bfd); /* This also closes desc. */
1471 make_cleanup (xfree, name);
1472 error (_("\"%s\": can't read symbols: %s."), name,
1473 bfd_errmsg (bfd_get_error ()));
1479 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1480 the section was not found. */
1483 get_section_index (struct objfile *objfile, char *section_name)
1485 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1493 /* Link SF into the global symtab_fns list. Called on startup by the
1494 _initialize routine in each object file format reader, to register
1495 information about each format the the reader is prepared to
1499 add_symtab_fns (struct sym_fns *sf)
1501 sf->next = symtab_fns;
1505 /* Initialize OBJFILE to read symbols from its associated BFD. It
1506 either returns or calls error(). The result is an initialized
1507 struct sym_fns in the objfile structure, that contains cached
1508 information about the symbol file. */
1511 find_sym_fns (struct objfile *objfile)
1514 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1515 char *our_target = bfd_get_target (objfile->obfd);
1517 if (our_flavour == bfd_target_srec_flavour
1518 || our_flavour == bfd_target_ihex_flavour
1519 || our_flavour == bfd_target_tekhex_flavour)
1520 return; /* No symbols. */
1522 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1524 if (our_flavour == sf->sym_flavour)
1531 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1532 bfd_get_target (objfile->obfd));
1536 /* This function runs the load command of our current target. */
1539 load_command (char *arg, int from_tty)
1546 parg = arg = get_exec_file (1);
1548 /* Count how many \ " ' tab space there are in the name. */
1549 while ((parg = strpbrk (parg, "\\\"'\t ")))
1557 /* We need to quote this string so buildargv can pull it apart. */
1558 char *temp = xmalloc (strlen (arg) + count + 1 );
1562 make_cleanup (xfree, temp);
1565 while ((parg = strpbrk (parg, "\\\"'\t ")))
1567 strncpy (ptemp, prev, parg - prev);
1568 ptemp += parg - prev;
1572 strcpy (ptemp, prev);
1578 /* The user might be reloading because the binary has changed. Take
1579 this opportunity to check. */
1580 reopen_exec_file ();
1583 target_load (arg, from_tty);
1585 /* After re-loading the executable, we don't really know which
1586 overlays are mapped any more. */
1587 overlay_cache_invalid = 1;
1590 /* This version of "load" should be usable for any target. Currently
1591 it is just used for remote targets, not inftarg.c or core files,
1592 on the theory that only in that case is it useful.
1594 Avoiding xmodem and the like seems like a win (a) because we don't have
1595 to worry about finding it, and (b) On VMS, fork() is very slow and so
1596 we don't want to run a subprocess. On the other hand, I'm not sure how
1597 performance compares. */
1599 static int validate_download = 0;
1601 /* Callback service function for generic_load (bfd_map_over_sections). */
1604 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1606 bfd_size_type *sum = data;
1608 *sum += bfd_get_section_size (asec);
1611 /* Opaque data for load_section_callback. */
1612 struct load_section_data {
1613 unsigned long load_offset;
1614 struct load_progress_data *progress_data;
1615 VEC(memory_write_request_s) *requests;
1618 /* Opaque data for load_progress. */
1619 struct load_progress_data {
1620 /* Cumulative data. */
1621 unsigned long write_count;
1622 unsigned long data_count;
1623 bfd_size_type total_size;
1626 /* Opaque data for load_progress for a single section. */
1627 struct load_progress_section_data {
1628 struct load_progress_data *cumulative;
1630 /* Per-section data. */
1631 const char *section_name;
1632 ULONGEST section_sent;
1633 ULONGEST section_size;
1638 /* Target write callback routine for progress reporting. */
1641 load_progress (ULONGEST bytes, void *untyped_arg)
1643 struct load_progress_section_data *args = untyped_arg;
1644 struct load_progress_data *totals;
1647 /* Writing padding data. No easy way to get at the cumulative
1648 stats, so just ignore this. */
1651 totals = args->cumulative;
1653 if (bytes == 0 && args->section_sent == 0)
1655 /* The write is just starting. Let the user know we've started
1657 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1658 args->section_name, paddr_nz (args->section_size),
1659 paddr_nz (args->lma));
1663 if (validate_download)
1665 /* Broken memories and broken monitors manifest themselves here
1666 when bring new computers to life. This doubles already slow
1668 /* NOTE: cagney/1999-10-18: A more efficient implementation
1669 might add a verify_memory() method to the target vector and
1670 then use that. remote.c could implement that method using
1671 the ``qCRC'' packet. */
1672 gdb_byte *check = xmalloc (bytes);
1673 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1675 if (target_read_memory (args->lma, check, bytes) != 0)
1676 error (_("Download verify read failed at 0x%s"),
1678 if (memcmp (args->buffer, check, bytes) != 0)
1679 error (_("Download verify compare failed at 0x%s"),
1681 do_cleanups (verify_cleanups);
1683 totals->data_count += bytes;
1685 args->buffer += bytes;
1686 totals->write_count += 1;
1687 args->section_sent += bytes;
1689 || (deprecated_ui_load_progress_hook != NULL
1690 && deprecated_ui_load_progress_hook (args->section_name,
1691 args->section_sent)))
1692 error (_("Canceled the download"));
1694 if (deprecated_show_load_progress != NULL)
1695 deprecated_show_load_progress (args->section_name,
1699 totals->total_size);
1702 /* Callback service function for generic_load (bfd_map_over_sections). */
1705 load_section_callback (bfd *abfd, asection *asec, void *data)
1707 struct memory_write_request *new_request;
1708 struct load_section_data *args = data;
1709 struct load_progress_section_data *section_data;
1710 bfd_size_type size = bfd_get_section_size (asec);
1712 const char *sect_name = bfd_get_section_name (abfd, asec);
1714 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1720 new_request = VEC_safe_push (memory_write_request_s,
1721 args->requests, NULL);
1722 memset (new_request, 0, sizeof (struct memory_write_request));
1723 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1724 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1725 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1726 new_request->data = xmalloc (size);
1727 new_request->baton = section_data;
1729 buffer = new_request->data;
1731 section_data->cumulative = args->progress_data;
1732 section_data->section_name = sect_name;
1733 section_data->section_size = size;
1734 section_data->lma = new_request->begin;
1735 section_data->buffer = buffer;
1737 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1740 /* Clean up an entire memory request vector, including load
1741 data and progress records. */
1744 clear_memory_write_data (void *arg)
1746 VEC(memory_write_request_s) **vec_p = arg;
1747 VEC(memory_write_request_s) *vec = *vec_p;
1749 struct memory_write_request *mr;
1751 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1756 VEC_free (memory_write_request_s, vec);
1760 generic_load (char *args, int from_tty)
1763 struct timeval start_time, end_time;
1765 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1766 struct load_section_data cbdata;
1767 struct load_progress_data total_progress;
1772 memset (&cbdata, 0, sizeof (cbdata));
1773 memset (&total_progress, 0, sizeof (total_progress));
1774 cbdata.progress_data = &total_progress;
1776 make_cleanup (clear_memory_write_data, &cbdata.requests);
1778 argv = buildargv (args);
1783 make_cleanup_freeargv (argv);
1785 filename = tilde_expand (argv[0]);
1786 make_cleanup (xfree, filename);
1788 if (argv[1] != NULL)
1792 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1794 /* If the last word was not a valid number then
1795 treat it as a file name with spaces in. */
1796 if (argv[1] == endptr)
1797 error (_("Invalid download offset:%s."), argv[1]);
1799 if (argv[2] != NULL)
1800 error (_("Too many parameters."));
1803 /* Open the file for loading. */
1804 loadfile_bfd = bfd_openr (filename, gnutarget);
1805 if (loadfile_bfd == NULL)
1807 perror_with_name (filename);
1811 /* FIXME: should be checking for errors from bfd_close (for one thing,
1812 on error it does not free all the storage associated with the
1814 make_cleanup_bfd_close (loadfile_bfd);
1816 if (!bfd_check_format (loadfile_bfd, bfd_object))
1818 error (_("\"%s\" is not an object file: %s"), filename,
1819 bfd_errmsg (bfd_get_error ()));
1822 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1823 (void *) &total_progress.total_size);
1825 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1827 gettimeofday (&start_time, NULL);
1829 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1830 load_progress) != 0)
1831 error (_("Load failed"));
1833 gettimeofday (&end_time, NULL);
1835 entry = bfd_get_start_address (loadfile_bfd);
1836 ui_out_text (uiout, "Start address ");
1837 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1838 ui_out_text (uiout, ", load size ");
1839 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1840 ui_out_text (uiout, "\n");
1841 /* We were doing this in remote-mips.c, I suspect it is right
1842 for other targets too. */
1845 /* FIXME: are we supposed to call symbol_file_add or not? According
1846 to a comment from remote-mips.c (where a call to symbol_file_add
1847 was commented out), making the call confuses GDB if more than one
1848 file is loaded in. Some targets do (e.g., remote-vx.c) but
1849 others don't (or didn't - perhaps they have all been deleted). */
1851 print_transfer_performance (gdb_stdout, total_progress.data_count,
1852 total_progress.write_count,
1853 &start_time, &end_time);
1855 do_cleanups (old_cleanups);
1858 /* Report how fast the transfer went. */
1860 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1861 replaced by print_transfer_performance (with a very different
1862 function signature). */
1865 report_transfer_performance (unsigned long data_count, time_t start_time,
1868 struct timeval start, end;
1870 start.tv_sec = start_time;
1872 end.tv_sec = end_time;
1875 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1879 print_transfer_performance (struct ui_file *stream,
1880 unsigned long data_count,
1881 unsigned long write_count,
1882 const struct timeval *start_time,
1883 const struct timeval *end_time)
1885 unsigned long time_count;
1887 /* Compute the elapsed time in milliseconds, as a tradeoff between
1888 accuracy and overflow. */
1889 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1890 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1892 ui_out_text (uiout, "Transfer rate: ");
1895 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1896 1000 * (data_count * 8) / time_count);
1897 ui_out_text (uiout, " bits/sec");
1901 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1902 ui_out_text (uiout, " bits in <1 sec");
1904 if (write_count > 0)
1906 ui_out_text (uiout, ", ");
1907 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1908 ui_out_text (uiout, " bytes/write");
1910 ui_out_text (uiout, ".\n");
1913 /* This function allows the addition of incrementally linked object files.
1914 It does not modify any state in the target, only in the debugger. */
1915 /* Note: ezannoni 2000-04-13 This function/command used to have a
1916 special case syntax for the rombug target (Rombug is the boot
1917 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1918 rombug case, the user doesn't need to supply a text address,
1919 instead a call to target_link() (in target.c) would supply the
1920 value to use. We are now discontinuing this type of ad hoc syntax. */
1923 add_symbol_file_command (char *args, int from_tty)
1925 char *filename = NULL;
1926 int flags = OBJF_USERLOADED;
1928 int expecting_option = 0;
1929 int section_index = 0;
1933 int expecting_sec_name = 0;
1934 int expecting_sec_addr = 0;
1943 struct section_addr_info *section_addrs;
1944 struct sect_opt *sect_opts = NULL;
1945 size_t num_sect_opts = 0;
1946 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1949 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1950 * sizeof (struct sect_opt));
1955 error (_("add-symbol-file takes a file name and an address"));
1957 argv = buildargv (args);
1958 make_cleanup_freeargv (argv);
1963 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1965 /* Process the argument. */
1968 /* The first argument is the file name. */
1969 filename = tilde_expand (arg);
1970 make_cleanup (xfree, filename);
1975 /* The second argument is always the text address at which
1976 to load the program. */
1977 sect_opts[section_index].name = ".text";
1978 sect_opts[section_index].value = arg;
1979 if (++section_index >= num_sect_opts)
1982 sect_opts = ((struct sect_opt *)
1983 xrealloc (sect_opts,
1985 * sizeof (struct sect_opt)));
1990 /* It's an option (starting with '-') or it's an argument
1995 if (strcmp (arg, "-readnow") == 0)
1996 flags |= OBJF_READNOW;
1997 else if (strcmp (arg, "-s") == 0)
1999 expecting_sec_name = 1;
2000 expecting_sec_addr = 1;
2005 if (expecting_sec_name)
2007 sect_opts[section_index].name = arg;
2008 expecting_sec_name = 0;
2011 if (expecting_sec_addr)
2013 sect_opts[section_index].value = arg;
2014 expecting_sec_addr = 0;
2015 if (++section_index >= num_sect_opts)
2018 sect_opts = ((struct sect_opt *)
2019 xrealloc (sect_opts,
2021 * sizeof (struct sect_opt)));
2025 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2030 /* This command takes at least two arguments. The first one is a
2031 filename, and the second is the address where this file has been
2032 loaded. Abort now if this address hasn't been provided by the
2034 if (section_index < 1)
2035 error (_("The address where %s has been loaded is missing"), filename);
2037 /* Print the prompt for the query below. And save the arguments into
2038 a sect_addr_info structure to be passed around to other
2039 functions. We have to split this up into separate print
2040 statements because hex_string returns a local static
2043 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2044 section_addrs = alloc_section_addr_info (section_index);
2045 make_cleanup (xfree, section_addrs);
2046 for (i = 0; i < section_index; i++)
2049 char *val = sect_opts[i].value;
2050 char *sec = sect_opts[i].name;
2052 addr = parse_and_eval_address (val);
2054 /* Here we store the section offsets in the order they were
2055 entered on the command line. */
2056 section_addrs->other[sec_num].name = sec;
2057 section_addrs->other[sec_num].addr = addr;
2058 printf_unfiltered ("\t%s_addr = %s\n",
2059 sec, hex_string ((unsigned long)addr));
2062 /* The object's sections are initialized when a
2063 call is made to build_objfile_section_table (objfile).
2064 This happens in reread_symbols.
2065 At this point, we don't know what file type this is,
2066 so we can't determine what section names are valid. */
2069 if (from_tty && (!query ("%s", "")))
2070 error (_("Not confirmed."));
2072 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2074 /* Getting new symbols may change our opinion about what is
2076 reinit_frame_cache ();
2077 do_cleanups (my_cleanups);
2081 add_shared_symbol_files_command (char *args, int from_tty)
2083 #ifdef ADD_SHARED_SYMBOL_FILES
2084 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2086 error (_("This command is not available in this configuration of GDB."));
2090 /* Re-read symbols if a symbol-file has changed. */
2092 reread_symbols (void)
2094 struct objfile *objfile;
2097 struct stat new_statbuf;
2100 /* With the addition of shared libraries, this should be modified,
2101 the load time should be saved in the partial symbol tables, since
2102 different tables may come from different source files. FIXME.
2103 This routine should then walk down each partial symbol table
2104 and see if the symbol table that it originates from has been changed */
2106 for (objfile = object_files; objfile; objfile = objfile->next)
2110 #ifdef DEPRECATED_IBM6000_TARGET
2111 /* If this object is from a shared library, then you should
2112 stat on the library name, not member name. */
2114 if (objfile->obfd->my_archive)
2115 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2118 res = stat (objfile->name, &new_statbuf);
2121 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2122 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2126 new_modtime = new_statbuf.st_mtime;
2127 if (new_modtime != objfile->mtime)
2129 struct cleanup *old_cleanups;
2130 struct section_offsets *offsets;
2132 char *obfd_filename;
2134 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2137 /* There are various functions like symbol_file_add,
2138 symfile_bfd_open, syms_from_objfile, etc., which might
2139 appear to do what we want. But they have various other
2140 effects which we *don't* want. So we just do stuff
2141 ourselves. We don't worry about mapped files (for one thing,
2142 any mapped file will be out of date). */
2144 /* If we get an error, blow away this objfile (not sure if
2145 that is the correct response for things like shared
2147 old_cleanups = make_cleanup_free_objfile (objfile);
2148 /* We need to do this whenever any symbols go away. */
2149 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2151 /* Clean up any state BFD has sitting around. We don't need
2152 to close the descriptor but BFD lacks a way of closing the
2153 BFD without closing the descriptor. */
2154 obfd_filename = bfd_get_filename (objfile->obfd);
2155 if (!bfd_close (objfile->obfd))
2156 error (_("Can't close BFD for %s: %s"), objfile->name,
2157 bfd_errmsg (bfd_get_error ()));
2158 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2159 if (objfile->obfd == NULL)
2160 error (_("Can't open %s to read symbols."), objfile->name);
2161 /* bfd_openr sets cacheable to true, which is what we want. */
2162 if (!bfd_check_format (objfile->obfd, bfd_object))
2163 error (_("Can't read symbols from %s: %s."), objfile->name,
2164 bfd_errmsg (bfd_get_error ()));
2166 /* Save the offsets, we will nuke them with the rest of the
2168 num_offsets = objfile->num_sections;
2169 offsets = ((struct section_offsets *)
2170 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2171 memcpy (offsets, objfile->section_offsets,
2172 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2174 /* Remove any references to this objfile in the global
2176 preserve_values (objfile);
2178 /* Nuke all the state that we will re-read. Much of the following
2179 code which sets things to NULL really is necessary to tell
2180 other parts of GDB that there is nothing currently there. */
2182 /* FIXME: Do we have to free a whole linked list, or is this
2184 if (objfile->global_psymbols.list)
2185 xfree (objfile->global_psymbols.list);
2186 memset (&objfile->global_psymbols, 0,
2187 sizeof (objfile->global_psymbols));
2188 if (objfile->static_psymbols.list)
2189 xfree (objfile->static_psymbols.list);
2190 memset (&objfile->static_psymbols, 0,
2191 sizeof (objfile->static_psymbols));
2193 /* Free the obstacks for non-reusable objfiles */
2194 bcache_xfree (objfile->psymbol_cache);
2195 objfile->psymbol_cache = bcache_xmalloc ();
2196 bcache_xfree (objfile->macro_cache);
2197 objfile->macro_cache = bcache_xmalloc ();
2198 if (objfile->demangled_names_hash != NULL)
2200 htab_delete (objfile->demangled_names_hash);
2201 objfile->demangled_names_hash = NULL;
2203 obstack_free (&objfile->objfile_obstack, 0);
2204 objfile->sections = NULL;
2205 objfile->symtabs = NULL;
2206 objfile->psymtabs = NULL;
2207 objfile->free_psymtabs = NULL;
2208 objfile->cp_namespace_symtab = NULL;
2209 objfile->msymbols = NULL;
2210 objfile->deprecated_sym_private = NULL;
2211 objfile->minimal_symbol_count = 0;
2212 memset (&objfile->msymbol_hash, 0,
2213 sizeof (objfile->msymbol_hash));
2214 memset (&objfile->msymbol_demangled_hash, 0,
2215 sizeof (objfile->msymbol_demangled_hash));
2216 objfile->fundamental_types = NULL;
2217 clear_objfile_data (objfile);
2218 if (objfile->sf != NULL)
2220 (*objfile->sf->sym_finish) (objfile);
2223 /* We never make this a mapped file. */
2225 objfile->psymbol_cache = bcache_xmalloc ();
2226 objfile->macro_cache = bcache_xmalloc ();
2227 /* obstack_init also initializes the obstack so it is
2228 empty. We could use obstack_specify_allocation but
2229 gdb_obstack.h specifies the alloc/dealloc
2231 obstack_init (&objfile->objfile_obstack);
2232 if (build_objfile_section_table (objfile))
2234 error (_("Can't find the file sections in `%s': %s"),
2235 objfile->name, bfd_errmsg (bfd_get_error ()));
2237 terminate_minimal_symbol_table (objfile);
2239 /* We use the same section offsets as from last time. I'm not
2240 sure whether that is always correct for shared libraries. */
2241 objfile->section_offsets = (struct section_offsets *)
2242 obstack_alloc (&objfile->objfile_obstack,
2243 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2244 memcpy (objfile->section_offsets, offsets,
2245 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2246 objfile->num_sections = num_offsets;
2248 /* What the hell is sym_new_init for, anyway? The concept of
2249 distinguishing between the main file and additional files
2250 in this way seems rather dubious. */
2251 if (objfile == symfile_objfile)
2253 (*objfile->sf->sym_new_init) (objfile);
2256 (*objfile->sf->sym_init) (objfile);
2257 clear_complaints (&symfile_complaints, 1, 1);
2258 /* The "mainline" parameter is a hideous hack; I think leaving it
2259 zero is OK since dbxread.c also does what it needs to do if
2260 objfile->global_psymbols.size is 0. */
2261 (*objfile->sf->sym_read) (objfile, 0);
2262 if (!have_partial_symbols () && !have_full_symbols ())
2265 printf_unfiltered (_("(no debugging symbols found)\n"));
2268 objfile->flags |= OBJF_SYMS;
2270 /* We're done reading the symbol file; finish off complaints. */
2271 clear_complaints (&symfile_complaints, 0, 1);
2273 /* Getting new symbols may change our opinion about what is
2276 reinit_frame_cache ();
2278 /* Discard cleanups as symbol reading was successful. */
2279 discard_cleanups (old_cleanups);
2281 /* If the mtime has changed between the time we set new_modtime
2282 and now, we *want* this to be out of date, so don't call stat
2284 objfile->mtime = new_modtime;
2286 reread_separate_symbols (objfile);
2293 clear_symtab_users ();
2294 /* At least one objfile has changed, so we can consider that
2295 the executable we're debugging has changed too. */
2296 observer_notify_executable_changed (NULL);
2302 /* Handle separate debug info for OBJFILE, which has just been
2304 - If we had separate debug info before, but now we don't, get rid
2305 of the separated objfile.
2306 - If we didn't have separated debug info before, but now we do,
2307 read in the new separated debug info file.
2308 - If the debug link points to a different file, toss the old one
2309 and read the new one.
2310 This function does *not* handle the case where objfile is still
2311 using the same separate debug info file, but that file's timestamp
2312 has changed. That case should be handled by the loop in
2313 reread_symbols already. */
2315 reread_separate_symbols (struct objfile *objfile)
2318 unsigned long crc32;
2320 /* Does the updated objfile's debug info live in a
2322 debug_file = find_separate_debug_file (objfile);
2324 if (objfile->separate_debug_objfile)
2326 /* There are two cases where we need to get rid of
2327 the old separated debug info objfile:
2328 - if the new primary objfile doesn't have
2329 separated debug info, or
2330 - if the new primary objfile has separate debug
2331 info, but it's under a different filename.
2333 If the old and new objfiles both have separate
2334 debug info, under the same filename, then we're
2335 okay --- if the separated file's contents have
2336 changed, we will have caught that when we
2337 visited it in this function's outermost
2340 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2341 free_objfile (objfile->separate_debug_objfile);
2344 /* If the new objfile has separate debug info, and we
2345 haven't loaded it already, do so now. */
2347 && ! objfile->separate_debug_objfile)
2349 /* Use the same section offset table as objfile itself.
2350 Preserve the flags from objfile that make sense. */
2351 objfile->separate_debug_objfile
2352 = (symbol_file_add_with_addrs_or_offsets
2353 (symfile_bfd_open (debug_file),
2354 info_verbose, /* from_tty: Don't override the default. */
2355 0, /* No addr table. */
2356 objfile->section_offsets, objfile->num_sections,
2357 0, /* Not mainline. See comments about this above. */
2358 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2359 | OBJF_USERLOADED)));
2360 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2376 static filename_language *filename_language_table;
2377 static int fl_table_size, fl_table_next;
2380 add_filename_language (char *ext, enum language lang)
2382 if (fl_table_next >= fl_table_size)
2384 fl_table_size += 10;
2385 filename_language_table =
2386 xrealloc (filename_language_table,
2387 fl_table_size * sizeof (*filename_language_table));
2390 filename_language_table[fl_table_next].ext = xstrdup (ext);
2391 filename_language_table[fl_table_next].lang = lang;
2395 static char *ext_args;
2397 show_ext_args (struct ui_file *file, int from_tty,
2398 struct cmd_list_element *c, const char *value)
2400 fprintf_filtered (file, _("\
2401 Mapping between filename extension and source language is \"%s\".\n"),
2406 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2409 char *cp = ext_args;
2412 /* First arg is filename extension, starting with '.' */
2414 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2416 /* Find end of first arg. */
2417 while (*cp && !isspace (*cp))
2421 error (_("'%s': two arguments required -- filename extension and language"),
2424 /* Null-terminate first arg */
2427 /* Find beginning of second arg, which should be a source language. */
2428 while (*cp && isspace (*cp))
2432 error (_("'%s': two arguments required -- filename extension and language"),
2435 /* Lookup the language from among those we know. */
2436 lang = language_enum (cp);
2438 /* Now lookup the filename extension: do we already know it? */
2439 for (i = 0; i < fl_table_next; i++)
2440 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2443 if (i >= fl_table_next)
2445 /* new file extension */
2446 add_filename_language (ext_args, lang);
2450 /* redefining a previously known filename extension */
2453 /* query ("Really make files of type %s '%s'?", */
2454 /* ext_args, language_str (lang)); */
2456 xfree (filename_language_table[i].ext);
2457 filename_language_table[i].ext = xstrdup (ext_args);
2458 filename_language_table[i].lang = lang;
2463 info_ext_lang_command (char *args, int from_tty)
2467 printf_filtered (_("Filename extensions and the languages they represent:"));
2468 printf_filtered ("\n\n");
2469 for (i = 0; i < fl_table_next; i++)
2470 printf_filtered ("\t%s\t- %s\n",
2471 filename_language_table[i].ext,
2472 language_str (filename_language_table[i].lang));
2476 init_filename_language_table (void)
2478 if (fl_table_size == 0) /* protect against repetition */
2482 filename_language_table =
2483 xmalloc (fl_table_size * sizeof (*filename_language_table));
2484 add_filename_language (".c", language_c);
2485 add_filename_language (".C", language_cplus);
2486 add_filename_language (".cc", language_cplus);
2487 add_filename_language (".cp", language_cplus);
2488 add_filename_language (".cpp", language_cplus);
2489 add_filename_language (".cxx", language_cplus);
2490 add_filename_language (".c++", language_cplus);
2491 add_filename_language (".java", language_java);
2492 add_filename_language (".class", language_java);
2493 add_filename_language (".m", language_objc);
2494 add_filename_language (".f", language_fortran);
2495 add_filename_language (".F", language_fortran);
2496 add_filename_language (".s", language_asm);
2497 add_filename_language (".S", language_asm);
2498 add_filename_language (".pas", language_pascal);
2499 add_filename_language (".p", language_pascal);
2500 add_filename_language (".pp", language_pascal);
2501 add_filename_language (".adb", language_ada);
2502 add_filename_language (".ads", language_ada);
2503 add_filename_language (".a", language_ada);
2504 add_filename_language (".ada", language_ada);
2509 deduce_language_from_filename (char *filename)
2514 if (filename != NULL)
2515 if ((cp = strrchr (filename, '.')) != NULL)
2516 for (i = 0; i < fl_table_next; i++)
2517 if (strcmp (cp, filename_language_table[i].ext) == 0)
2518 return filename_language_table[i].lang;
2520 return language_unknown;
2525 Allocate and partly initialize a new symbol table. Return a pointer
2526 to it. error() if no space.
2528 Caller must set these fields:
2534 possibly free_named_symtabs (symtab->filename);
2538 allocate_symtab (char *filename, struct objfile *objfile)
2540 struct symtab *symtab;
2542 symtab = (struct symtab *)
2543 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2544 memset (symtab, 0, sizeof (*symtab));
2545 symtab->filename = obsavestring (filename, strlen (filename),
2546 &objfile->objfile_obstack);
2547 symtab->fullname = NULL;
2548 symtab->language = deduce_language_from_filename (filename);
2549 symtab->debugformat = obsavestring ("unknown", 7,
2550 &objfile->objfile_obstack);
2552 /* Hook it to the objfile it comes from */
2554 symtab->objfile = objfile;
2555 symtab->next = objfile->symtabs;
2556 objfile->symtabs = symtab;
2561 struct partial_symtab *
2562 allocate_psymtab (char *filename, struct objfile *objfile)
2564 struct partial_symtab *psymtab;
2566 if (objfile->free_psymtabs)
2568 psymtab = objfile->free_psymtabs;
2569 objfile->free_psymtabs = psymtab->next;
2572 psymtab = (struct partial_symtab *)
2573 obstack_alloc (&objfile->objfile_obstack,
2574 sizeof (struct partial_symtab));
2576 memset (psymtab, 0, sizeof (struct partial_symtab));
2577 psymtab->filename = obsavestring (filename, strlen (filename),
2578 &objfile->objfile_obstack);
2579 psymtab->symtab = NULL;
2581 /* Prepend it to the psymtab list for the objfile it belongs to.
2582 Psymtabs are searched in most recent inserted -> least recent
2585 psymtab->objfile = objfile;
2586 psymtab->next = objfile->psymtabs;
2587 objfile->psymtabs = psymtab;
2590 struct partial_symtab **prev_pst;
2591 psymtab->objfile = objfile;
2592 psymtab->next = NULL;
2593 prev_pst = &(objfile->psymtabs);
2594 while ((*prev_pst) != NULL)
2595 prev_pst = &((*prev_pst)->next);
2596 (*prev_pst) = psymtab;
2604 discard_psymtab (struct partial_symtab *pst)
2606 struct partial_symtab **prev_pst;
2609 Empty psymtabs happen as a result of header files which don't
2610 have any symbols in them. There can be a lot of them. But this
2611 check is wrong, in that a psymtab with N_SLINE entries but
2612 nothing else is not empty, but we don't realize that. Fixing
2613 that without slowing things down might be tricky. */
2615 /* First, snip it out of the psymtab chain */
2617 prev_pst = &(pst->objfile->psymtabs);
2618 while ((*prev_pst) != pst)
2619 prev_pst = &((*prev_pst)->next);
2620 (*prev_pst) = pst->next;
2622 /* Next, put it on a free list for recycling */
2624 pst->next = pst->objfile->free_psymtabs;
2625 pst->objfile->free_psymtabs = pst;
2629 /* Reset all data structures in gdb which may contain references to symbol
2633 clear_symtab_users (void)
2635 /* Someday, we should do better than this, by only blowing away
2636 the things that really need to be blown. */
2638 /* Clear the "current" symtab first, because it is no longer valid.
2639 breakpoint_re_set may try to access the current symtab. */
2640 clear_current_source_symtab_and_line ();
2643 breakpoint_re_set ();
2644 set_default_breakpoint (0, 0, 0, 0);
2645 clear_pc_function_cache ();
2646 if (deprecated_target_new_objfile_hook)
2647 deprecated_target_new_objfile_hook (NULL);
2649 /* Clear globals which might have pointed into a removed objfile.
2650 FIXME: It's not clear which of these are supposed to persist
2651 between expressions and which ought to be reset each time. */
2652 expression_context_block = NULL;
2653 innermost_block = NULL;
2655 /* Varobj may refer to old symbols, perform a cleanup. */
2656 varobj_invalidate ();
2661 clear_symtab_users_cleanup (void *ignore)
2663 clear_symtab_users ();
2666 /* clear_symtab_users_once:
2668 This function is run after symbol reading, or from a cleanup.
2669 If an old symbol table was obsoleted, the old symbol table
2670 has been blown away, but the other GDB data structures that may
2671 reference it have not yet been cleared or re-directed. (The old
2672 symtab was zapped, and the cleanup queued, in free_named_symtab()
2675 This function can be queued N times as a cleanup, or called
2676 directly; it will do all the work the first time, and then will be a
2677 no-op until the next time it is queued. This works by bumping a
2678 counter at queueing time. Much later when the cleanup is run, or at
2679 the end of symbol processing (in case the cleanup is discarded), if
2680 the queued count is greater than the "done-count", we do the work
2681 and set the done-count to the queued count. If the queued count is
2682 less than or equal to the done-count, we just ignore the call. This
2683 is needed because reading a single .o file will often replace many
2684 symtabs (one per .h file, for example), and we don't want to reset
2685 the breakpoints N times in the user's face.
2687 The reason we both queue a cleanup, and call it directly after symbol
2688 reading, is because the cleanup protects us in case of errors, but is
2689 discarded if symbol reading is successful. */
2692 /* FIXME: As free_named_symtabs is currently a big noop this function
2693 is no longer needed. */
2694 static void clear_symtab_users_once (void);
2696 static int clear_symtab_users_queued;
2697 static int clear_symtab_users_done;
2700 clear_symtab_users_once (void)
2702 /* Enforce once-per-`do_cleanups'-semantics */
2703 if (clear_symtab_users_queued <= clear_symtab_users_done)
2705 clear_symtab_users_done = clear_symtab_users_queued;
2707 clear_symtab_users ();
2711 /* Delete the specified psymtab, and any others that reference it. */
2714 cashier_psymtab (struct partial_symtab *pst)
2716 struct partial_symtab *ps, *pprev = NULL;
2719 /* Find its previous psymtab in the chain */
2720 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2729 /* Unhook it from the chain. */
2730 if (ps == pst->objfile->psymtabs)
2731 pst->objfile->psymtabs = ps->next;
2733 pprev->next = ps->next;
2735 /* FIXME, we can't conveniently deallocate the entries in the
2736 partial_symbol lists (global_psymbols/static_psymbols) that
2737 this psymtab points to. These just take up space until all
2738 the psymtabs are reclaimed. Ditto the dependencies list and
2739 filename, which are all in the objfile_obstack. */
2741 /* We need to cashier any psymtab that has this one as a dependency... */
2743 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2745 for (i = 0; i < ps->number_of_dependencies; i++)
2747 if (ps->dependencies[i] == pst)
2749 cashier_psymtab (ps);
2750 goto again; /* Must restart, chain has been munged. */
2757 /* If a symtab or psymtab for filename NAME is found, free it along
2758 with any dependent breakpoints, displays, etc.
2759 Used when loading new versions of object modules with the "add-file"
2760 command. This is only called on the top-level symtab or psymtab's name;
2761 it is not called for subsidiary files such as .h files.
2763 Return value is 1 if we blew away the environment, 0 if not.
2764 FIXME. The return value appears to never be used.
2766 FIXME. I think this is not the best way to do this. We should
2767 work on being gentler to the environment while still cleaning up
2768 all stray pointers into the freed symtab. */
2771 free_named_symtabs (char *name)
2774 /* FIXME: With the new method of each objfile having it's own
2775 psymtab list, this function needs serious rethinking. In particular,
2776 why was it ever necessary to toss psymtabs with specific compilation
2777 unit filenames, as opposed to all psymtabs from a particular symbol
2779 Well, the answer is that some systems permit reloading of particular
2780 compilation units. We want to blow away any old info about these
2781 compilation units, regardless of which objfiles they arrived in. --gnu. */
2784 struct symtab *prev;
2785 struct partial_symtab *ps;
2786 struct blockvector *bv;
2789 /* We only wack things if the symbol-reload switch is set. */
2790 if (!symbol_reloading)
2793 /* Some symbol formats have trouble providing file names... */
2794 if (name == 0 || *name == '\0')
2797 /* Look for a psymtab with the specified name. */
2800 for (ps = partial_symtab_list; ps; ps = ps->next)
2802 if (strcmp (name, ps->filename) == 0)
2804 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2805 goto again2; /* Must restart, chain has been munged */
2809 /* Look for a symtab with the specified name. */
2811 for (s = symtab_list; s; s = s->next)
2813 if (strcmp (name, s->filename) == 0)
2820 if (s == symtab_list)
2821 symtab_list = s->next;
2823 prev->next = s->next;
2825 /* For now, queue a delete for all breakpoints, displays, etc., whether
2826 or not they depend on the symtab being freed. This should be
2827 changed so that only those data structures affected are deleted. */
2829 /* But don't delete anything if the symtab is empty.
2830 This test is necessary due to a bug in "dbxread.c" that
2831 causes empty symtabs to be created for N_SO symbols that
2832 contain the pathname of the object file. (This problem
2833 has been fixed in GDB 3.9x). */
2835 bv = BLOCKVECTOR (s);
2836 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2837 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2838 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2840 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2842 clear_symtab_users_queued++;
2843 make_cleanup (clear_symtab_users_once, 0);
2847 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2854 /* It is still possible that some breakpoints will be affected
2855 even though no symtab was found, since the file might have
2856 been compiled without debugging, and hence not be associated
2857 with a symtab. In order to handle this correctly, we would need
2858 to keep a list of text address ranges for undebuggable files.
2859 For now, we do nothing, since this is a fairly obscure case. */
2863 /* FIXME, what about the minimal symbol table? */
2870 /* Allocate and partially fill a partial symtab. It will be
2871 completely filled at the end of the symbol list.
2873 FILENAME is the name of the symbol-file we are reading from. */
2875 struct partial_symtab *
2876 start_psymtab_common (struct objfile *objfile,
2877 struct section_offsets *section_offsets, char *filename,
2878 CORE_ADDR textlow, struct partial_symbol **global_syms,
2879 struct partial_symbol **static_syms)
2881 struct partial_symtab *psymtab;
2883 psymtab = allocate_psymtab (filename, objfile);
2884 psymtab->section_offsets = section_offsets;
2885 psymtab->textlow = textlow;
2886 psymtab->texthigh = psymtab->textlow; /* default */
2887 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2888 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2892 /* Add a symbol with a long value to a psymtab.
2893 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2894 Return the partial symbol that has been added. */
2896 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2897 symbol is so that callers can get access to the symbol's demangled
2898 name, which they don't have any cheap way to determine otherwise.
2899 (Currenly, dwarf2read.c is the only file who uses that information,
2900 though it's possible that other readers might in the future.)
2901 Elena wasn't thrilled about that, and I don't blame her, but we
2902 couldn't come up with a better way to get that information. If
2903 it's needed in other situations, we could consider breaking up
2904 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2907 const struct partial_symbol *
2908 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2909 enum address_class class,
2910 struct psymbol_allocation_list *list, long val, /* Value as a long */
2911 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2912 enum language language, struct objfile *objfile)
2914 struct partial_symbol *psym;
2915 char *buf = alloca (namelength + 1);
2916 /* psymbol is static so that there will be no uninitialized gaps in the
2917 structure which might contain random data, causing cache misses in
2919 static struct partial_symbol psymbol;
2921 /* Create local copy of the partial symbol */
2922 memcpy (buf, name, namelength);
2923 buf[namelength] = '\0';
2924 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2927 SYMBOL_VALUE (&psymbol) = val;
2931 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2933 SYMBOL_SECTION (&psymbol) = 0;
2934 SYMBOL_LANGUAGE (&psymbol) = language;
2935 PSYMBOL_DOMAIN (&psymbol) = domain;
2936 PSYMBOL_CLASS (&psymbol) = class;
2938 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2940 /* Stash the partial symbol away in the cache */
2941 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2942 objfile->psymbol_cache);
2944 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2945 if (list->next >= list->list + list->size)
2947 extend_psymbol_list (list, objfile);
2949 *list->next++ = psym;
2950 OBJSTAT (objfile, n_psyms++);
2955 /* Initialize storage for partial symbols. */
2958 init_psymbol_list (struct objfile *objfile, int total_symbols)
2960 /* Free any previously allocated psymbol lists. */
2962 if (objfile->global_psymbols.list)
2964 xfree (objfile->global_psymbols.list);
2966 if (objfile->static_psymbols.list)
2968 xfree (objfile->static_psymbols.list);
2971 /* Current best guess is that approximately a twentieth
2972 of the total symbols (in a debugging file) are global or static
2975 objfile->global_psymbols.size = total_symbols / 10;
2976 objfile->static_psymbols.size = total_symbols / 10;
2978 if (objfile->global_psymbols.size > 0)
2980 objfile->global_psymbols.next =
2981 objfile->global_psymbols.list = (struct partial_symbol **)
2982 xmalloc ((objfile->global_psymbols.size
2983 * sizeof (struct partial_symbol *)));
2985 if (objfile->static_psymbols.size > 0)
2987 objfile->static_psymbols.next =
2988 objfile->static_psymbols.list = (struct partial_symbol **)
2989 xmalloc ((objfile->static_psymbols.size
2990 * sizeof (struct partial_symbol *)));
2995 The following code implements an abstraction for debugging overlay sections.
2997 The target model is as follows:
2998 1) The gnu linker will permit multiple sections to be mapped into the
2999 same VMA, each with its own unique LMA (or load address).
3000 2) It is assumed that some runtime mechanism exists for mapping the
3001 sections, one by one, from the load address into the VMA address.
3002 3) This code provides a mechanism for gdb to keep track of which
3003 sections should be considered to be mapped from the VMA to the LMA.
3004 This information is used for symbol lookup, and memory read/write.
3005 For instance, if a section has been mapped then its contents
3006 should be read from the VMA, otherwise from the LMA.
3008 Two levels of debugger support for overlays are available. One is
3009 "manual", in which the debugger relies on the user to tell it which
3010 overlays are currently mapped. This level of support is
3011 implemented entirely in the core debugger, and the information about
3012 whether a section is mapped is kept in the objfile->obj_section table.
3014 The second level of support is "automatic", and is only available if
3015 the target-specific code provides functionality to read the target's
3016 overlay mapping table, and translate its contents for the debugger
3017 (by updating the mapped state information in the obj_section tables).
3019 The interface is as follows:
3021 overlay map <name> -- tell gdb to consider this section mapped
3022 overlay unmap <name> -- tell gdb to consider this section unmapped
3023 overlay list -- list the sections that GDB thinks are mapped
3024 overlay read-target -- get the target's state of what's mapped
3025 overlay off/manual/auto -- set overlay debugging state
3026 Functional interface:
3027 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3028 section, return that section.
3029 find_pc_overlay(pc): find any overlay section that contains
3030 the pc, either in its VMA or its LMA
3031 overlay_is_mapped(sect): true if overlay is marked as mapped
3032 section_is_overlay(sect): true if section's VMA != LMA
3033 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3034 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3035 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3036 overlay_mapped_address(...): map an address from section's LMA to VMA
3037 overlay_unmapped_address(...): map an address from section's VMA to LMA
3038 symbol_overlayed_address(...): Return a "current" address for symbol:
3039 either in VMA or LMA depending on whether
3040 the symbol's section is currently mapped
3043 /* Overlay debugging state: */
3045 enum overlay_debugging_state overlay_debugging = ovly_off;
3046 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3048 /* Target vector for refreshing overlay mapped state */
3049 static void simple_overlay_update (struct obj_section *);
3050 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3052 /* Function: section_is_overlay (SECTION)
3053 Returns true if SECTION has VMA not equal to LMA, ie.
3054 SECTION is loaded at an address different from where it will "run". */
3057 section_is_overlay (asection *section)
3059 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3061 if (overlay_debugging)
3062 if (section && section->lma != 0 &&
3063 section->vma != section->lma)
3069 /* Function: overlay_invalidate_all (void)
3070 Invalidate the mapped state of all overlay sections (mark it as stale). */
3073 overlay_invalidate_all (void)
3075 struct objfile *objfile;
3076 struct obj_section *sect;
3078 ALL_OBJSECTIONS (objfile, sect)
3079 if (section_is_overlay (sect->the_bfd_section))
3080 sect->ovly_mapped = -1;
3083 /* Function: overlay_is_mapped (SECTION)
3084 Returns true if section is an overlay, and is currently mapped.
3085 Private: public access is thru function section_is_mapped.
3087 Access to the ovly_mapped flag is restricted to this function, so
3088 that we can do automatic update. If the global flag
3089 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3090 overlay_invalidate_all. If the mapped state of the particular
3091 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3094 overlay_is_mapped (struct obj_section *osect)
3096 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3099 switch (overlay_debugging)
3103 return 0; /* overlay debugging off */
3104 case ovly_auto: /* overlay debugging automatic */
3105 /* Unles there is a target_overlay_update function,
3106 there's really nothing useful to do here (can't really go auto) */
3107 if (target_overlay_update)
3109 if (overlay_cache_invalid)
3111 overlay_invalidate_all ();
3112 overlay_cache_invalid = 0;
3114 if (osect->ovly_mapped == -1)
3115 (*target_overlay_update) (osect);
3117 /* fall thru to manual case */
3118 case ovly_on: /* overlay debugging manual */
3119 return osect->ovly_mapped == 1;
3123 /* Function: section_is_mapped
3124 Returns true if section is an overlay, and is currently mapped. */
3127 section_is_mapped (asection *section)
3129 struct objfile *objfile;
3130 struct obj_section *osect;
3132 if (overlay_debugging)
3133 if (section && section_is_overlay (section))
3134 ALL_OBJSECTIONS (objfile, osect)
3135 if (osect->the_bfd_section == section)
3136 return overlay_is_mapped (osect);
3141 /* Function: pc_in_unmapped_range
3142 If PC falls into the lma range of SECTION, return true, else false. */
3145 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3147 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3151 if (overlay_debugging)
3152 if (section && section_is_overlay (section))
3154 size = bfd_get_section_size (section);
3155 if (section->lma <= pc && pc < section->lma + size)
3161 /* Function: pc_in_mapped_range
3162 If PC falls into the vma range of SECTION, return true, else false. */
3165 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3167 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3171 if (overlay_debugging)
3172 if (section && section_is_overlay (section))
3174 size = bfd_get_section_size (section);
3175 if (section->vma <= pc && pc < section->vma + size)
3182 /* Return true if the mapped ranges of sections A and B overlap, false
3185 sections_overlap (asection *a, asection *b)
3187 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3189 CORE_ADDR a_start = a->vma;
3190 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3191 CORE_ADDR b_start = b->vma;
3192 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3194 return (a_start < b_end && b_start < a_end);
3197 /* Function: overlay_unmapped_address (PC, SECTION)
3198 Returns the address corresponding to PC in the unmapped (load) range.
3199 May be the same as PC. */
3202 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3204 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3206 if (overlay_debugging)
3207 if (section && section_is_overlay (section) &&
3208 pc_in_mapped_range (pc, section))
3209 return pc + section->lma - section->vma;
3214 /* Function: overlay_mapped_address (PC, SECTION)
3215 Returns the address corresponding to PC in the mapped (runtime) range.
3216 May be the same as PC. */
3219 overlay_mapped_address (CORE_ADDR pc, asection *section)
3221 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3223 if (overlay_debugging)
3224 if (section && section_is_overlay (section) &&
3225 pc_in_unmapped_range (pc, section))
3226 return pc + section->vma - section->lma;
3232 /* Function: symbol_overlayed_address
3233 Return one of two addresses (relative to the VMA or to the LMA),
3234 depending on whether the section is mapped or not. */
3237 symbol_overlayed_address (CORE_ADDR address, asection *section)
3239 if (overlay_debugging)
3241 /* If the symbol has no section, just return its regular address. */
3244 /* If the symbol's section is not an overlay, just return its address */
3245 if (!section_is_overlay (section))
3247 /* If the symbol's section is mapped, just return its address */
3248 if (section_is_mapped (section))
3251 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3252 * then return its LOADED address rather than its vma address!!
3254 return overlay_unmapped_address (address, section);
3259 /* Function: find_pc_overlay (PC)
3260 Return the best-match overlay section for PC:
3261 If PC matches a mapped overlay section's VMA, return that section.
3262 Else if PC matches an unmapped section's VMA, return that section.
3263 Else if PC matches an unmapped section's LMA, return that section. */
3266 find_pc_overlay (CORE_ADDR pc)
3268 struct objfile *objfile;
3269 struct obj_section *osect, *best_match = NULL;
3271 if (overlay_debugging)
3272 ALL_OBJSECTIONS (objfile, osect)
3273 if (section_is_overlay (osect->the_bfd_section))
3275 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3277 if (overlay_is_mapped (osect))
3278 return osect->the_bfd_section;
3282 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3285 return best_match ? best_match->the_bfd_section : NULL;
3288 /* Function: find_pc_mapped_section (PC)
3289 If PC falls into the VMA address range of an overlay section that is
3290 currently marked as MAPPED, return that section. Else return NULL. */
3293 find_pc_mapped_section (CORE_ADDR pc)
3295 struct objfile *objfile;
3296 struct obj_section *osect;
3298 if (overlay_debugging)
3299 ALL_OBJSECTIONS (objfile, osect)
3300 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3301 overlay_is_mapped (osect))
3302 return osect->the_bfd_section;
3307 /* Function: list_overlays_command
3308 Print a list of mapped sections and their PC ranges */
3311 list_overlays_command (char *args, int from_tty)
3314 struct objfile *objfile;
3315 struct obj_section *osect;
3317 if (overlay_debugging)
3318 ALL_OBJSECTIONS (objfile, osect)
3319 if (overlay_is_mapped (osect))
3325 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3326 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3327 size = bfd_get_section_size (osect->the_bfd_section);
3328 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3330 printf_filtered ("Section %s, loaded at ", name);
3331 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3332 puts_filtered (" - ");
3333 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3334 printf_filtered (", mapped at ");
3335 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3336 puts_filtered (" - ");
3337 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3338 puts_filtered ("\n");
3343 printf_filtered (_("No sections are mapped.\n"));
3346 /* Function: map_overlay_command
3347 Mark the named section as mapped (ie. residing at its VMA address). */
3350 map_overlay_command (char *args, int from_tty)
3352 struct objfile *objfile, *objfile2;
3353 struct obj_section *sec, *sec2;
3356 if (!overlay_debugging)
3358 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3359 the 'overlay manual' command."));
3361 if (args == 0 || *args == 0)
3362 error (_("Argument required: name of an overlay section"));
3364 /* First, find a section matching the user supplied argument */
3365 ALL_OBJSECTIONS (objfile, sec)
3366 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3368 /* Now, check to see if the section is an overlay. */
3369 bfdsec = sec->the_bfd_section;
3370 if (!section_is_overlay (bfdsec))
3371 continue; /* not an overlay section */
3373 /* Mark the overlay as "mapped" */
3374 sec->ovly_mapped = 1;
3376 /* Next, make a pass and unmap any sections that are
3377 overlapped by this new section: */
3378 ALL_OBJSECTIONS (objfile2, sec2)
3379 if (sec2->ovly_mapped
3381 && sec->the_bfd_section != sec2->the_bfd_section
3382 && sections_overlap (sec->the_bfd_section,
3383 sec2->the_bfd_section))
3386 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3387 bfd_section_name (objfile->obfd,
3388 sec2->the_bfd_section));
3389 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3393 error (_("No overlay section called %s"), args);
3396 /* Function: unmap_overlay_command
3397 Mark the overlay section as unmapped
3398 (ie. resident in its LMA address range, rather than the VMA range). */
3401 unmap_overlay_command (char *args, int from_tty)
3403 struct objfile *objfile;
3404 struct obj_section *sec;
3406 if (!overlay_debugging)
3408 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3409 the 'overlay manual' command."));
3411 if (args == 0 || *args == 0)
3412 error (_("Argument required: name of an overlay section"));
3414 /* First, find a section matching the user supplied argument */
3415 ALL_OBJSECTIONS (objfile, sec)
3416 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3418 if (!sec->ovly_mapped)
3419 error (_("Section %s is not mapped"), args);
3420 sec->ovly_mapped = 0;
3423 error (_("No overlay section called %s"), args);
3426 /* Function: overlay_auto_command
3427 A utility command to turn on overlay debugging.
3428 Possibly this should be done via a set/show command. */
3431 overlay_auto_command (char *args, int from_tty)
3433 overlay_debugging = ovly_auto;
3434 enable_overlay_breakpoints ();
3436 printf_unfiltered (_("Automatic overlay debugging enabled."));
3439 /* Function: overlay_manual_command
3440 A utility command to turn on overlay debugging.
3441 Possibly this should be done via a set/show command. */
3444 overlay_manual_command (char *args, int from_tty)
3446 overlay_debugging = ovly_on;
3447 disable_overlay_breakpoints ();
3449 printf_unfiltered (_("Overlay debugging enabled."));
3452 /* Function: overlay_off_command
3453 A utility command to turn on overlay debugging.
3454 Possibly this should be done via a set/show command. */
3457 overlay_off_command (char *args, int from_tty)
3459 overlay_debugging = ovly_off;
3460 disable_overlay_breakpoints ();
3462 printf_unfiltered (_("Overlay debugging disabled."));
3466 overlay_load_command (char *args, int from_tty)
3468 if (target_overlay_update)
3469 (*target_overlay_update) (NULL);
3471 error (_("This target does not know how to read its overlay state."));
3474 /* Function: overlay_command
3475 A place-holder for a mis-typed command */
3477 /* Command list chain containing all defined "overlay" subcommands. */
3478 struct cmd_list_element *overlaylist;
3481 overlay_command (char *args, int from_tty)
3484 ("\"overlay\" must be followed by the name of an overlay command.\n");
3485 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3489 /* Target Overlays for the "Simplest" overlay manager:
3491 This is GDB's default target overlay layer. It works with the
3492 minimal overlay manager supplied as an example by Cygnus. The
3493 entry point is via a function pointer "target_overlay_update",
3494 so targets that use a different runtime overlay manager can
3495 substitute their own overlay_update function and take over the
3498 The overlay_update function pokes around in the target's data structures
3499 to see what overlays are mapped, and updates GDB's overlay mapping with
3502 In this simple implementation, the target data structures are as follows:
3503 unsigned _novlys; /# number of overlay sections #/
3504 unsigned _ovly_table[_novlys][4] = {
3505 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3506 {..., ..., ..., ...},
3508 unsigned _novly_regions; /# number of overlay regions #/
3509 unsigned _ovly_region_table[_novly_regions][3] = {
3510 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3513 These functions will attempt to update GDB's mappedness state in the
3514 symbol section table, based on the target's mappedness state.
3516 To do this, we keep a cached copy of the target's _ovly_table, and
3517 attempt to detect when the cached copy is invalidated. The main
3518 entry point is "simple_overlay_update(SECT), which looks up SECT in
3519 the cached table and re-reads only the entry for that section from
3520 the target (whenever possible).
3523 /* Cached, dynamically allocated copies of the target data structures: */
3524 static unsigned (*cache_ovly_table)[4] = 0;
3526 static unsigned (*cache_ovly_region_table)[3] = 0;
3528 static unsigned cache_novlys = 0;
3530 static unsigned cache_novly_regions = 0;
3532 static CORE_ADDR cache_ovly_table_base = 0;
3534 static CORE_ADDR cache_ovly_region_table_base = 0;
3538 VMA, SIZE, LMA, MAPPED
3540 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3542 /* Throw away the cached copy of _ovly_table */
3544 simple_free_overlay_table (void)
3546 if (cache_ovly_table)
3547 xfree (cache_ovly_table);
3549 cache_ovly_table = NULL;
3550 cache_ovly_table_base = 0;
3554 /* Throw away the cached copy of _ovly_region_table */
3556 simple_free_overlay_region_table (void)
3558 if (cache_ovly_region_table)
3559 xfree (cache_ovly_region_table);
3560 cache_novly_regions = 0;
3561 cache_ovly_region_table = NULL;
3562 cache_ovly_region_table_base = 0;
3566 /* Read an array of ints from the target into a local buffer.
3567 Convert to host order. int LEN is number of ints */
3569 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3571 /* FIXME (alloca): Not safe if array is very large. */
3572 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3575 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3576 for (i = 0; i < len; i++)
3577 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3581 /* Find and grab a copy of the target _ovly_table
3582 (and _novlys, which is needed for the table's size) */
3584 simple_read_overlay_table (void)
3586 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3588 simple_free_overlay_table ();
3589 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3592 error (_("Error reading inferior's overlay table: "
3593 "couldn't find `_novlys' variable\n"
3594 "in inferior. Use `overlay manual' mode."));
3598 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3599 if (! ovly_table_msym)
3601 error (_("Error reading inferior's overlay table: couldn't find "
3602 "`_ovly_table' array\n"
3603 "in inferior. Use `overlay manual' mode."));
3607 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3609 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3610 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3611 read_target_long_array (cache_ovly_table_base,
3612 (unsigned int *) cache_ovly_table,
3615 return 1; /* SUCCESS */
3619 /* Find and grab a copy of the target _ovly_region_table
3620 (and _novly_regions, which is needed for the table's size) */
3622 simple_read_overlay_region_table (void)
3624 struct minimal_symbol *msym;
3626 simple_free_overlay_region_table ();
3627 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3629 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3631 return 0; /* failure */
3632 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3633 if (cache_ovly_region_table != NULL)
3635 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3638 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3639 read_target_long_array (cache_ovly_region_table_base,
3640 (unsigned int *) cache_ovly_region_table,
3641 cache_novly_regions * 3);
3644 return 0; /* failure */
3647 return 0; /* failure */
3648 return 1; /* SUCCESS */
3652 /* Function: simple_overlay_update_1
3653 A helper function for simple_overlay_update. Assuming a cached copy
3654 of _ovly_table exists, look through it to find an entry whose vma,
3655 lma and size match those of OSECT. Re-read the entry and make sure
3656 it still matches OSECT (else the table may no longer be valid).
3657 Set OSECT's mapped state to match the entry. Return: 1 for
3658 success, 0 for failure. */
3661 simple_overlay_update_1 (struct obj_section *osect)
3664 bfd *obfd = osect->objfile->obfd;
3665 asection *bsect = osect->the_bfd_section;
3667 size = bfd_get_section_size (osect->the_bfd_section);
3668 for (i = 0; i < cache_novlys; i++)
3669 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3670 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3671 /* && cache_ovly_table[i][SIZE] == size */ )
3673 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3674 (unsigned int *) cache_ovly_table[i], 4);
3675 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3676 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3677 /* && cache_ovly_table[i][SIZE] == size */ )
3679 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3682 else /* Warning! Warning! Target's ovly table has changed! */
3688 /* Function: simple_overlay_update
3689 If OSECT is NULL, then update all sections' mapped state
3690 (after re-reading the entire target _ovly_table).
3691 If OSECT is non-NULL, then try to find a matching entry in the
3692 cached ovly_table and update only OSECT's mapped state.
3693 If a cached entry can't be found or the cache isn't valid, then
3694 re-read the entire cache, and go ahead and update all sections. */
3697 simple_overlay_update (struct obj_section *osect)
3699 struct objfile *objfile;
3701 /* Were we given an osect to look up? NULL means do all of them. */
3703 /* Have we got a cached copy of the target's overlay table? */
3704 if (cache_ovly_table != NULL)
3705 /* Does its cached location match what's currently in the symtab? */
3706 if (cache_ovly_table_base ==
3707 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3708 /* Then go ahead and try to look up this single section in the cache */
3709 if (simple_overlay_update_1 (osect))
3710 /* Found it! We're done. */
3713 /* Cached table no good: need to read the entire table anew.
3714 Or else we want all the sections, in which case it's actually
3715 more efficient to read the whole table in one block anyway. */
3717 if (! simple_read_overlay_table ())
3720 /* Now may as well update all sections, even if only one was requested. */
3721 ALL_OBJSECTIONS (objfile, osect)
3722 if (section_is_overlay (osect->the_bfd_section))
3725 bfd *obfd = osect->objfile->obfd;
3726 asection *bsect = osect->the_bfd_section;
3728 size = bfd_get_section_size (bsect);
3729 for (i = 0; i < cache_novlys; i++)
3730 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3731 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3732 /* && cache_ovly_table[i][SIZE] == size */ )
3733 { /* obj_section matches i'th entry in ovly_table */
3734 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3735 break; /* finished with inner for loop: break out */
3740 /* Set the output sections and output offsets for section SECTP in
3741 ABFD. The relocation code in BFD will read these offsets, so we
3742 need to be sure they're initialized. We map each section to itself,
3743 with no offset; this means that SECTP->vma will be honored. */
3746 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3748 sectp->output_section = sectp;
3749 sectp->output_offset = 0;
3752 /* Relocate the contents of a debug section SECTP in ABFD. The
3753 contents are stored in BUF if it is non-NULL, or returned in a
3754 malloc'd buffer otherwise.
3756 For some platforms and debug info formats, shared libraries contain
3757 relocations against the debug sections (particularly for DWARF-2;
3758 one affected platform is PowerPC GNU/Linux, although it depends on
3759 the version of the linker in use). Also, ELF object files naturally
3760 have unresolved relocations for their debug sections. We need to apply
3761 the relocations in order to get the locations of symbols correct. */
3764 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3766 /* We're only interested in debugging sections with relocation
3768 if ((sectp->flags & SEC_RELOC) == 0)
3770 if ((sectp->flags & SEC_DEBUGGING) == 0)
3773 /* We will handle section offsets properly elsewhere, so relocate as if
3774 all sections begin at 0. */
3775 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3777 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3781 _initialize_symfile (void)
3783 struct cmd_list_element *c;
3785 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3786 Load symbol table from executable file FILE.\n\
3787 The `file' command can also load symbol tables, as well as setting the file\n\
3788 to execute."), &cmdlist);
3789 set_cmd_completer (c, filename_completer);
3791 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3792 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3793 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3794 ADDR is the starting address of the file's text.\n\
3795 The optional arguments are section-name section-address pairs and\n\
3796 should be specified if the data and bss segments are not contiguous\n\
3797 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3799 set_cmd_completer (c, filename_completer);
3801 c = add_cmd ("add-shared-symbol-files", class_files,
3802 add_shared_symbol_files_command, _("\
3803 Load the symbols from shared objects in the dynamic linker's link map."),
3805 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3808 c = add_cmd ("load", class_files, load_command, _("\
3809 Dynamically load FILE into the running program, and record its symbols\n\
3810 for access from GDB.\n\
3811 A load OFFSET may also be given."), &cmdlist);
3812 set_cmd_completer (c, filename_completer);
3814 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3815 &symbol_reloading, _("\
3816 Set dynamic symbol table reloading multiple times in one run."), _("\
3817 Show dynamic symbol table reloading multiple times in one run."), NULL,
3819 show_symbol_reloading,
3820 &setlist, &showlist);
3822 add_prefix_cmd ("overlay", class_support, overlay_command,
3823 _("Commands for debugging overlays."), &overlaylist,
3824 "overlay ", 0, &cmdlist);
3826 add_com_alias ("ovly", "overlay", class_alias, 1);
3827 add_com_alias ("ov", "overlay", class_alias, 1);
3829 add_cmd ("map-overlay", class_support, map_overlay_command,
3830 _("Assert that an overlay section is mapped."), &overlaylist);
3832 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3833 _("Assert that an overlay section is unmapped."), &overlaylist);
3835 add_cmd ("list-overlays", class_support, list_overlays_command,
3836 _("List mappings of overlay sections."), &overlaylist);
3838 add_cmd ("manual", class_support, overlay_manual_command,
3839 _("Enable overlay debugging."), &overlaylist);
3840 add_cmd ("off", class_support, overlay_off_command,
3841 _("Disable overlay debugging."), &overlaylist);
3842 add_cmd ("auto", class_support, overlay_auto_command,
3843 _("Enable automatic overlay debugging."), &overlaylist);
3844 add_cmd ("load-target", class_support, overlay_load_command,
3845 _("Read the overlay mapping state from the target."), &overlaylist);
3847 /* Filename extension to source language lookup table: */
3848 init_filename_language_table ();
3849 add_setshow_string_noescape_cmd ("extension-language", class_files,
3851 Set mapping between filename extension and source language."), _("\
3852 Show mapping between filename extension and source language."), _("\
3853 Usage: set extension-language .foo bar"),
3854 set_ext_lang_command,
3856 &setlist, &showlist);
3858 add_info ("extensions", info_ext_lang_command,
3859 _("All filename extensions associated with a source language."));
3861 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3862 &debug_file_directory, _("\
3863 Set the directory where separate debug symbols are searched for."), _("\
3864 Show the directory where separate debug symbols are searched for."), _("\
3865 Separate debug symbols are first searched for in the same\n\
3866 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3867 and lastly at the path of the directory of the binary with\n\
3868 the global debug-file directory prepended."),
3870 show_debug_file_directory,
3871 &setlist, &showlist);