3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
82 if eval test \"\${${r}}\" = \"\ \"
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
120 case "${invalid_p}" in
122 if test -n "${predefault}"
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
131 predicate="gdbarch->${function} != NULL"
135 echo "Predicate function ${function} with invalid_p." 1>&2
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
149 if [ -n "${postdefault}" ]
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
154 fallbackdefault="${predefault}"
159 #NOT YET: See gdbarch.log for basic verification of
174 fallback_default_p ()
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
180 class_is_variable_p ()
188 class_is_function_p ()
191 *f* | *F* | *m* | *M* ) true ;;
196 class_is_multiarch_p ()
204 class_is_predicate_p ()
207 *F* | *V* | *M* ) true ;;
221 # dump out/verify the doco
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
252 # The name of the MACRO that this method is to be accessed by.
256 # For functions, the return type; for variables, the data type
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
289 # If STATICDEFAULT is empty, zero is used.
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
298 # If PREDEFAULT is empty, zero is used.
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
304 # A zero PREDEFAULT function will force the fallback to call
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
316 # If POSTDEFAULT is empty, no post update is performed.
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
348 # See also PREDEFAULT and POSTDEFAULT.
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
356 # If FMT is empty, ``%ld'' is used.
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
363 # If PRINT is empty, ``(long)'' is used.
367 # An optional indicator for any predicte to wrap around the
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
374 # If PRINT_P is empty, ``1'' is always used.
381 echo "Bad field ${field}"
389 # See below (DOCO) for description of each field
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
541 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
542 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
543 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
544 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
545 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
546 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
548 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
549 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
550 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
551 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
552 # MAP a GDB RAW register number onto a simulator register number. See
553 # also include/...-sim.h.
554 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
555 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
556 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
557 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
558 # setjmp/longjmp support.
559 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
560 # NOTE: cagney/2002-11-24: This function with predicate has a valid
561 # (callable) initial value. As a consequence, even when the predicate
562 # is false, the corresponding function works. This simplifies the
563 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
564 # doesn't need to be modified.
565 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
566 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
567 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
569 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
570 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
571 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
573 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
574 # For raw <-> cooked register conversions, replaced by pseudo registers.
575 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
576 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
577 # For raw <-> cooked register conversions, replaced by pseudo registers.
578 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
583 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
584 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
585 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
587 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
588 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
589 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
591 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
592 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
593 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
595 # It has been suggested that this, well actually its predecessor,
596 # should take the type/value of the function to be called and not the
597 # return type. This is left as an exercise for the reader.
599 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
601 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
602 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
605 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
606 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
607 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
608 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
609 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
610 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
612 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
613 # ABI suitable for the implementation of a robust extract
614 # struct-convention return-value address method (the sparc saves the
615 # address in the callers frame). All the other cases so far examined,
616 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
617 # erreneous - the code was incorrectly assuming that the return-value
618 # address, stored in a register, was preserved across the entire
621 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
622 # the ABIs that are still to be analyzed - perhaps this should simply
623 # be deleted. The commented out extract_returned_value_address method
624 # is provided as a starting point for the 32-bit SPARC. It, or
625 # something like it, along with changes to both infcmd.c and stack.c
626 # will be needed for that case to work. NB: It is passed the callers
627 # frame since it is only after the callee has returned that this
630 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
631 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
633 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
634 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
636 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
637 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
638 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
639 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
640 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
641 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
642 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
643 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
645 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
647 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
648 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
649 # frame code works regardless of the type of frame - frameless,
650 # stackless, or normal.
651 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
652 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
653 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
654 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
655 # note, per UNWIND_PC's doco, that while the two have similar
656 # interfaces they have very different underlying implementations.
657 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
658 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
659 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
660 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
661 # frame-base. Enable frame-base before frame-unwind.
662 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
663 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
664 # frame-base. Enable frame-base before frame-unwind.
665 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
667 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
669 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
670 # to frame_align and the requirement that methods such as
671 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
673 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
674 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
675 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
676 # stabs_argument_has_addr.
677 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
678 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
679 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
680 v:2:PARM_BOUNDARY:int:parm_boundary
682 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
683 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
684 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
685 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
686 # On some machines there are bits in addresses which are not really
687 # part of the address, but are used by the kernel, the hardware, etc.
688 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
689 # we get a "real" address such as one would find in a symbol table.
690 # This is used only for addresses of instructions, and even then I'm
691 # not sure it's used in all contexts. It exists to deal with there
692 # being a few stray bits in the PC which would mislead us, not as some
693 # sort of generic thing to handle alignment or segmentation (it's
694 # possible it should be in TARGET_READ_PC instead).
695 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
696 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
698 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
699 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
700 # the target needs software single step. An ISA method to implement it.
702 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
703 # using the breakpoint system instead of blatting memory directly (as with rs6000).
705 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
706 # single step. If not, then implement single step using breakpoints.
707 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
708 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
709 # disassembler. Perhaphs objdump can handle it?
710 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
711 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
714 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
715 # evaluates non-zero, this is the address where the debugger will place
716 # a step-resume breakpoint to get us past the dynamic linker.
717 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
718 # For SVR4 shared libraries, each call goes through a small piece of
719 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
720 # to nonzero if we are currently stopped in one of these.
721 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
723 # Some systems also have trampoline code for returning from shared libs.
724 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
726 # Sigtramp is a routine that the kernel calls (which then calls the
727 # signal handler). On most machines it is a library routine that is
728 # linked into the executable.
730 # This macro, given a program counter value and the name of the
731 # function in which that PC resides (which can be null if the name is
732 # not known), returns nonzero if the PC and name show that we are in
735 # On most machines just see if the name is sigtramp (and if we have
736 # no name, assume we are not in sigtramp).
738 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
739 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
740 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
741 # own local NAME lookup.
743 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
744 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
746 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
747 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
748 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
749 # A target might have problems with watchpoints as soon as the stack
750 # frame of the current function has been destroyed. This mostly happens
751 # as the first action in a funtion's epilogue. in_function_epilogue_p()
752 # is defined to return a non-zero value if either the given addr is one
753 # instruction after the stack destroying instruction up to the trailing
754 # return instruction or if we can figure out that the stack frame has
755 # already been invalidated regardless of the value of addr. Targets
756 # which don't suffer from that problem could just let this functionality
758 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
759 # Given a vector of command-line arguments, return a newly allocated
760 # string which, when passed to the create_inferior function, will be
761 # parsed (on Unix systems, by the shell) to yield the same vector.
762 # This function should call error() if the argument vector is not
763 # representable for this target or if this target does not support
764 # command-line arguments.
765 # ARGC is the number of elements in the vector.
766 # ARGV is an array of strings, one per argument.
767 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
768 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
769 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
770 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
771 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
772 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
773 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
774 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
775 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
776 # Is a register in a group
777 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
778 # Fetch the pointer to the ith function argument.
779 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
781 # Return the appropriate register set for a core file section with
782 # name SECT_NAME and size SECT_SIZE.
783 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
790 exec > new-gdbarch.log
791 function_list | while do_read
794 ${class} ${macro}(${actual})
795 ${returntype} ${function} ($formal)${attrib}
799 eval echo \"\ \ \ \ ${r}=\${${r}}\"
801 if class_is_predicate_p && fallback_default_p
803 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
807 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
809 echo "Error: postdefault is useless when invalid_p=0" 1>&2
813 if class_is_multiarch_p
815 if class_is_predicate_p ; then :
816 elif test "x${predefault}" = "x"
818 echo "Error: pure multi-arch function must have a predefault" 1>&2
827 compare_new gdbarch.log
833 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
835 /* Dynamic architecture support for GDB, the GNU debugger.
837 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
838 Software Foundation, Inc.
840 This file is part of GDB.
842 This program is free software; you can redistribute it and/or modify
843 it under the terms of the GNU General Public License as published by
844 the Free Software Foundation; either version 2 of the License, or
845 (at your option) any later version.
847 This program is distributed in the hope that it will be useful,
848 but WITHOUT ANY WARRANTY; without even the implied warranty of
849 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
850 GNU General Public License for more details.
852 You should have received a copy of the GNU General Public License
853 along with this program; if not, write to the Free Software
854 Foundation, Inc., 59 Temple Place - Suite 330,
855 Boston, MA 02111-1307, USA. */
857 /* This file was created with the aid of \`\`gdbarch.sh''.
859 The Bourne shell script \`\`gdbarch.sh'' creates the files
860 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
861 against the existing \`\`gdbarch.[hc]''. Any differences found
864 If editing this file, please also run gdbarch.sh and merge any
865 changes into that script. Conversely, when making sweeping changes
866 to this file, modifying gdbarch.sh and using its output may prove
887 struct minimal_symbol;
891 struct disassemble_info;
895 extern struct gdbarch *current_gdbarch;
898 /* If any of the following are defined, the target wasn't correctly
901 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
902 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
909 printf "/* The following are pre-initialized by GDBARCH. */\n"
910 function_list | while do_read
915 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
916 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
920 printf "#if !defined (${macro})\n"
921 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
929 printf "/* The following are initialized by the target dependent code. */\n"
930 function_list | while do_read
932 if [ -n "${comment}" ]
934 echo "${comment}" | sed \
939 if class_is_multiarch_p
941 if class_is_predicate_p
944 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
947 if class_is_predicate_p
950 printf "#if defined (${macro})\n"
951 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
952 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
953 printf "#if !defined (${macro}_P)\n"
954 printf "#define ${macro}_P() (1)\n"
958 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
959 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
960 printf "#error \"Non multi-arch definition of ${macro}\"\n"
962 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
963 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
967 if class_is_variable_p
970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
971 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
972 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
973 printf "#error \"Non multi-arch definition of ${macro}\"\n"
975 printf "#if !defined (${macro})\n"
976 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
979 if class_is_function_p
982 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
984 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
985 elif class_is_multiarch_p
987 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
989 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
991 if [ "x${formal}" = "xvoid" ]
993 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
995 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
997 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
998 if class_is_multiarch_p ; then :
1000 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
1001 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1003 if [ "x${actual}" = "x" ]
1005 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1006 elif [ "x${actual}" = "x-" ]
1008 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1010 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1012 printf "#if !defined (${macro})\n"
1013 if [ "x${actual}" = "x" ]
1015 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1016 elif [ "x${actual}" = "x-" ]
1018 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1020 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1030 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1033 /* Mechanism for co-ordinating the selection of a specific
1036 GDB targets (*-tdep.c) can register an interest in a specific
1037 architecture. Other GDB components can register a need to maintain
1038 per-architecture data.
1040 The mechanisms below ensures that there is only a loose connection
1041 between the set-architecture command and the various GDB
1042 components. Each component can independently register their need
1043 to maintain architecture specific data with gdbarch.
1047 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1050 The more traditional mega-struct containing architecture specific
1051 data for all the various GDB components was also considered. Since
1052 GDB is built from a variable number of (fairly independent)
1053 components it was determined that the global aproach was not
1057 /* Register a new architectural family with GDB.
1059 Register support for the specified ARCHITECTURE with GDB. When
1060 gdbarch determines that the specified architecture has been
1061 selected, the corresponding INIT function is called.
1065 The INIT function takes two parameters: INFO which contains the
1066 information available to gdbarch about the (possibly new)
1067 architecture; ARCHES which is a list of the previously created
1068 \`\`struct gdbarch'' for this architecture.
1070 The INFO parameter is, as far as possible, be pre-initialized with
1071 information obtained from INFO.ABFD or the previously selected
1074 The ARCHES parameter is a linked list (sorted most recently used)
1075 of all the previously created architures for this architecture
1076 family. The (possibly NULL) ARCHES->gdbarch can used to access
1077 values from the previously selected architecture for this
1078 architecture family. The global \`\`current_gdbarch'' shall not be
1081 The INIT function shall return any of: NULL - indicating that it
1082 doesn't recognize the selected architecture; an existing \`\`struct
1083 gdbarch'' from the ARCHES list - indicating that the new
1084 architecture is just a synonym for an earlier architecture (see
1085 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1086 - that describes the selected architecture (see gdbarch_alloc()).
1088 The DUMP_TDEP function shall print out all target specific values.
1089 Care should be taken to ensure that the function works in both the
1090 multi-arch and non- multi-arch cases. */
1094 struct gdbarch *gdbarch;
1095 struct gdbarch_list *next;
1100 /* Use default: NULL (ZERO). */
1101 const struct bfd_arch_info *bfd_arch_info;
1103 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1106 /* Use default: NULL (ZERO). */
1109 /* Use default: NULL (ZERO). */
1110 struct gdbarch_tdep_info *tdep_info;
1112 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1113 enum gdb_osabi osabi;
1116 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1117 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1119 /* DEPRECATED - use gdbarch_register() */
1120 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1122 extern void gdbarch_register (enum bfd_architecture architecture,
1123 gdbarch_init_ftype *,
1124 gdbarch_dump_tdep_ftype *);
1127 /* Return a freshly allocated, NULL terminated, array of the valid
1128 architecture names. Since architectures are registered during the
1129 _initialize phase this function only returns useful information
1130 once initialization has been completed. */
1132 extern const char **gdbarch_printable_names (void);
1135 /* Helper function. Search the list of ARCHES for a GDBARCH that
1136 matches the information provided by INFO. */
1138 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1141 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1142 basic initialization using values obtained from the INFO andTDEP
1143 parameters. set_gdbarch_*() functions are called to complete the
1144 initialization of the object. */
1146 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1149 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1150 It is assumed that the caller freeds the \`\`struct
1153 extern void gdbarch_free (struct gdbarch *);
1156 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1157 obstack. The memory is freed when the corresponding architecture
1160 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1161 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1162 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1165 /* Helper function. Force an update of the current architecture.
1167 The actual architecture selected is determined by INFO, \`\`(gdb) set
1168 architecture'' et.al., the existing architecture and BFD's default
1169 architecture. INFO should be initialized to zero and then selected
1170 fields should be updated.
1172 Returns non-zero if the update succeeds */
1174 extern int gdbarch_update_p (struct gdbarch_info info);
1177 /* Helper function. Find an architecture matching info.
1179 INFO should be initialized using gdbarch_info_init, relevant fields
1180 set, and then finished using gdbarch_info_fill.
1182 Returns the corresponding architecture, or NULL if no matching
1183 architecture was found. "current_gdbarch" is not updated. */
1185 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1188 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1190 FIXME: kettenis/20031124: Of the functions that follow, only
1191 gdbarch_from_bfd is supposed to survive. The others will
1192 dissappear since in the future GDB will (hopefully) be truly
1193 multi-arch. However, for now we're still stuck with the concept of
1194 a single active architecture. */
1196 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1199 /* Register per-architecture data-pointer.
1201 Reserve space for a per-architecture data-pointer. An identifier
1202 for the reserved data-pointer is returned. That identifer should
1203 be saved in a local static variable.
1205 Memory for the per-architecture data shall be allocated using
1206 gdbarch_obstack_zalloc. That memory will be deleted when the
1207 corresponding architecture object is deleted.
1209 When a previously created architecture is re-selected, the
1210 per-architecture data-pointer for that previous architecture is
1211 restored. INIT() is not re-called.
1213 Multiple registrarants for any architecture are allowed (and
1214 strongly encouraged). */
1216 struct gdbarch_data;
1218 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1219 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1220 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1221 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1222 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1223 struct gdbarch_data *data,
1226 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1230 /* Register per-architecture memory region.
1232 Provide a memory-region swap mechanism. Per-architecture memory
1233 region are created. These memory regions are swapped whenever the
1234 architecture is changed. For a new architecture, the memory region
1235 is initialized with zero (0) and the INIT function is called.
1237 Memory regions are swapped / initialized in the order that they are
1238 registered. NULL DATA and/or INIT values can be specified.
1240 New code should use gdbarch_data_register_*(). */
1242 typedef void (gdbarch_swap_ftype) (void);
1243 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1244 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1248 /* Set the dynamic target-system-dependent parameters (architecture,
1249 byte-order, ...) using information found in the BFD */
1251 extern void set_gdbarch_from_file (bfd *);
1254 /* Initialize the current architecture to the "first" one we find on
1257 extern void initialize_current_architecture (void);
1259 /* gdbarch trace variable */
1260 extern int gdbarch_debug;
1262 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1267 #../move-if-change new-gdbarch.h gdbarch.h
1268 compare_new gdbarch.h
1275 exec > new-gdbarch.c
1280 #include "arch-utils.h"
1283 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1286 #include "floatformat.h"
1288 #include "gdb_assert.h"
1289 #include "gdb_string.h"
1290 #include "gdb-events.h"
1291 #include "reggroups.h"
1293 #include "gdb_obstack.h"
1295 /* Static function declarations */
1297 static void alloc_gdbarch_data (struct gdbarch *);
1299 /* Non-zero if we want to trace architecture code. */
1301 #ifndef GDBARCH_DEBUG
1302 #define GDBARCH_DEBUG 0
1304 int gdbarch_debug = GDBARCH_DEBUG;
1308 # gdbarch open the gdbarch object
1310 printf "/* Maintain the struct gdbarch object */\n"
1312 printf "struct gdbarch\n"
1314 printf " /* Has this architecture been fully initialized? */\n"
1315 printf " int initialized_p;\n"
1317 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1318 printf " struct obstack *obstack;\n"
1320 printf " /* basic architectural information */\n"
1321 function_list | while do_read
1325 printf " ${returntype} ${function};\n"
1329 printf " /* target specific vector. */\n"
1330 printf " struct gdbarch_tdep *tdep;\n"
1331 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1333 printf " /* per-architecture data-pointers */\n"
1334 printf " unsigned nr_data;\n"
1335 printf " void **data;\n"
1337 printf " /* per-architecture swap-regions */\n"
1338 printf " struct gdbarch_swap *swap;\n"
1341 /* Multi-arch values.
1343 When extending this structure you must:
1345 Add the field below.
1347 Declare set/get functions and define the corresponding
1350 gdbarch_alloc(): If zero/NULL is not a suitable default,
1351 initialize the new field.
1353 verify_gdbarch(): Confirm that the target updated the field
1356 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1359 \`\`startup_gdbarch()'': Append an initial value to the static
1360 variable (base values on the host's c-type system).
1362 get_gdbarch(): Implement the set/get functions (probably using
1363 the macro's as shortcuts).
1368 function_list | while do_read
1370 if class_is_variable_p
1372 printf " ${returntype} ${function};\n"
1373 elif class_is_function_p
1375 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1380 # A pre-initialized vector
1384 /* The default architecture uses host values (for want of a better
1388 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1390 printf "struct gdbarch startup_gdbarch =\n"
1392 printf " 1, /* Always initialized. */\n"
1393 printf " NULL, /* The obstack. */\n"
1394 printf " /* basic architecture information */\n"
1395 function_list | while do_read
1399 printf " ${staticdefault}, /* ${function} */\n"
1403 /* target specific vector and its dump routine */
1405 /*per-architecture data-pointers and swap regions */
1407 /* Multi-arch values */
1409 function_list | while do_read
1411 if class_is_function_p || class_is_variable_p
1413 printf " ${staticdefault}, /* ${function} */\n"
1417 /* startup_gdbarch() */
1420 struct gdbarch *current_gdbarch = &startup_gdbarch;
1423 # Create a new gdbarch struct
1426 /* Create a new \`\`struct gdbarch'' based on information provided by
1427 \`\`struct gdbarch_info''. */
1432 gdbarch_alloc (const struct gdbarch_info *info,
1433 struct gdbarch_tdep *tdep)
1435 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1436 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1437 the current local architecture and not the previous global
1438 architecture. This ensures that the new architectures initial
1439 values are not influenced by the previous architecture. Once
1440 everything is parameterised with gdbarch, this will go away. */
1441 struct gdbarch *current_gdbarch;
1443 /* Create an obstack for allocating all the per-architecture memory,
1444 then use that to allocate the architecture vector. */
1445 struct obstack *obstack = XMALLOC (struct obstack);
1446 obstack_init (obstack);
1447 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1448 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1449 current_gdbarch->obstack = obstack;
1451 alloc_gdbarch_data (current_gdbarch);
1453 current_gdbarch->tdep = tdep;
1456 function_list | while do_read
1460 printf " current_gdbarch->${function} = info->${function};\n"
1464 printf " /* Force the explicit initialization of these. */\n"
1465 function_list | while do_read
1467 if class_is_function_p || class_is_variable_p
1469 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1471 printf " current_gdbarch->${function} = ${predefault};\n"
1476 /* gdbarch_alloc() */
1478 return current_gdbarch;
1482 # Free a gdbarch struct.
1486 /* Allocate extra space using the per-architecture obstack. */
1489 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1491 void *data = obstack_alloc (arch->obstack, size);
1492 memset (data, 0, size);
1497 /* Free a gdbarch struct. This should never happen in normal
1498 operation --- once you've created a gdbarch, you keep it around.
1499 However, if an architecture's init function encounters an error
1500 building the structure, it may need to clean up a partially
1501 constructed gdbarch. */
1504 gdbarch_free (struct gdbarch *arch)
1506 struct obstack *obstack;
1507 gdb_assert (arch != NULL);
1508 gdb_assert (!arch->initialized_p);
1509 obstack = arch->obstack;
1510 obstack_free (obstack, 0); /* Includes the ARCH. */
1515 # verify a new architecture
1519 /* Ensure that all values in a GDBARCH are reasonable. */
1521 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1522 just happens to match the global variable \`\`current_gdbarch''. That
1523 way macros refering to that variable get the local and not the global
1524 version - ulgh. Once everything is parameterised with gdbarch, this
1528 verify_gdbarch (struct gdbarch *current_gdbarch)
1530 struct ui_file *log;
1531 struct cleanup *cleanups;
1534 log = mem_fileopen ();
1535 cleanups = make_cleanup_ui_file_delete (log);
1537 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1538 fprintf_unfiltered (log, "\n\tbyte-order");
1539 if (current_gdbarch->bfd_arch_info == NULL)
1540 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1541 /* Check those that need to be defined for the given multi-arch level. */
1543 function_list | while do_read
1545 if class_is_function_p || class_is_variable_p
1547 if [ "x${invalid_p}" = "x0" ]
1549 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1550 elif class_is_predicate_p
1552 printf " /* Skip verify of ${function}, has predicate */\n"
1553 # FIXME: See do_read for potential simplification
1554 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1556 printf " if (${invalid_p})\n"
1557 printf " current_gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1560 printf " if (current_gdbarch->${function} == ${predefault})\n"
1561 printf " current_gdbarch->${function} = ${postdefault};\n"
1562 elif [ -n "${postdefault}" ]
1564 printf " if (current_gdbarch->${function} == 0)\n"
1565 printf " current_gdbarch->${function} = ${postdefault};\n"
1566 elif [ -n "${invalid_p}" ]
1568 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1569 printf " && (${invalid_p}))\n"
1570 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1571 elif [ -n "${predefault}" ]
1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1574 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1580 buf = ui_file_xstrdup (log, &dummy);
1581 make_cleanup (xfree, buf);
1582 if (strlen (buf) > 0)
1583 internal_error (__FILE__, __LINE__,
1584 "verify_gdbarch: the following are invalid ...%s",
1586 do_cleanups (cleanups);
1590 # dump the structure
1594 /* Print out the details of the current architecture. */
1596 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1597 just happens to match the global variable \`\`current_gdbarch''. That
1598 way macros refering to that variable get the local and not the global
1599 version - ulgh. Once everything is parameterised with gdbarch, this
1603 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1605 fprintf_unfiltered (file,
1606 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1609 function_list | sort -t: -k 3 | while do_read
1611 # First the predicate
1612 if class_is_predicate_p
1614 if class_is_multiarch_p
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1618 printf " gdbarch_${function}_p (current_gdbarch));\n"
1620 printf "#ifdef ${macro}_P\n"
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1623 printf " \"${macro}_P()\",\n"
1624 printf " XSTRING (${macro}_P ()));\n"
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1627 printf " ${macro}_P ());\n"
1631 # multiarch functions don't have macros.
1632 if class_is_multiarch_p
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1636 printf " (long) current_gdbarch->${function});\n"
1639 # Print the macro definition.
1640 printf "#ifdef ${macro}\n"
1641 if class_is_function_p
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1645 printf " \"${macro}(${actual})\",\n"
1646 printf " XSTRING (${macro} (${actual})));\n"
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1650 printf " XSTRING (${macro}));\n"
1652 if [ "x${print_p}" = "x()" ]
1654 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1655 elif [ "x${print_p}" = "x0" ]
1657 printf " /* skip print of ${macro}, print_p == 0. */\n"
1658 elif [ -n "${print_p}" ]
1660 printf " if (${print_p})\n"
1661 printf " fprintf_unfiltered (file,\n"
1662 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1663 printf " ${print});\n"
1664 elif class_is_function_p
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1668 printf " (long) current_gdbarch->${function}\n"
1669 printf " /*${macro} ()*/);\n"
1671 printf " fprintf_unfiltered (file,\n"
1672 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1673 printf " ${print});\n"
1678 if (current_gdbarch->dump_tdep != NULL)
1679 current_gdbarch->dump_tdep (current_gdbarch, file);
1687 struct gdbarch_tdep *
1688 gdbarch_tdep (struct gdbarch *gdbarch)
1690 if (gdbarch_debug >= 2)
1691 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1692 return gdbarch->tdep;
1696 function_list | while do_read
1698 if class_is_predicate_p
1702 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1704 printf " gdb_assert (gdbarch != NULL);\n"
1705 printf " return ${predicate};\n"
1708 if class_is_function_p
1711 printf "${returntype}\n"
1712 if [ "x${formal}" = "xvoid" ]
1714 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1716 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1719 printf " gdb_assert (gdbarch != NULL);\n"
1720 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1721 if class_is_predicate_p && test -n "${predefault}"
1723 # Allow a call to a function with a predicate.
1724 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1726 printf " if (gdbarch_debug >= 2)\n"
1727 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1728 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1730 if class_is_multiarch_p
1737 if class_is_multiarch_p
1739 params="gdbarch, ${actual}"
1744 if [ "x${returntype}" = "xvoid" ]
1746 printf " gdbarch->${function} (${params});\n"
1748 printf " return gdbarch->${function} (${params});\n"
1753 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1754 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1756 printf " gdbarch->${function} = ${function};\n"
1758 elif class_is_variable_p
1761 printf "${returntype}\n"
1762 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1764 printf " gdb_assert (gdbarch != NULL);\n"
1765 if [ "x${invalid_p}" = "x0" ]
1767 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1768 elif [ -n "${invalid_p}" ]
1770 printf " /* Check variable is valid. */\n"
1771 printf " gdb_assert (!(${invalid_p}));\n"
1772 elif [ -n "${predefault}" ]
1774 printf " /* Check variable changed from pre-default. */\n"
1775 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1777 printf " if (gdbarch_debug >= 2)\n"
1778 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1779 printf " return gdbarch->${function};\n"
1783 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1784 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1786 printf " gdbarch->${function} = ${function};\n"
1788 elif class_is_info_p
1791 printf "${returntype}\n"
1792 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1794 printf " gdb_assert (gdbarch != NULL);\n"
1795 printf " if (gdbarch_debug >= 2)\n"
1796 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1797 printf " return gdbarch->${function};\n"
1802 # All the trailing guff
1806 /* Keep a registry of per-architecture data-pointers required by GDB
1813 gdbarch_data_pre_init_ftype *pre_init;
1814 gdbarch_data_post_init_ftype *post_init;
1817 struct gdbarch_data_registration
1819 struct gdbarch_data *data;
1820 struct gdbarch_data_registration *next;
1823 struct gdbarch_data_registry
1826 struct gdbarch_data_registration *registrations;
1829 struct gdbarch_data_registry gdbarch_data_registry =
1834 static struct gdbarch_data *
1835 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1836 gdbarch_data_post_init_ftype *post_init)
1838 struct gdbarch_data_registration **curr;
1839 /* Append the new registraration. */
1840 for (curr = &gdbarch_data_registry.registrations;
1842 curr = &(*curr)->next);
1843 (*curr) = XMALLOC (struct gdbarch_data_registration);
1844 (*curr)->next = NULL;
1845 (*curr)->data = XMALLOC (struct gdbarch_data);
1846 (*curr)->data->index = gdbarch_data_registry.nr++;
1847 (*curr)->data->pre_init = pre_init;
1848 (*curr)->data->post_init = post_init;
1849 (*curr)->data->init_p = 1;
1850 return (*curr)->data;
1853 struct gdbarch_data *
1854 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1856 return gdbarch_data_register (pre_init, NULL);
1859 struct gdbarch_data *
1860 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1862 return gdbarch_data_register (NULL, post_init);
1865 /* Create/delete the gdbarch data vector. */
1868 alloc_gdbarch_data (struct gdbarch *gdbarch)
1870 gdb_assert (gdbarch->data == NULL);
1871 gdbarch->nr_data = gdbarch_data_registry.nr;
1872 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1875 /* Initialize the current value of the specified per-architecture
1879 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1880 struct gdbarch_data *data,
1883 gdb_assert (data->index < gdbarch->nr_data);
1884 gdb_assert (gdbarch->data[data->index] == NULL);
1885 gdb_assert (data->pre_init == NULL);
1886 gdbarch->data[data->index] = pointer;
1889 /* Return the current value of the specified per-architecture
1893 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1895 gdb_assert (data->index < gdbarch->nr_data);
1896 if (gdbarch->data[data->index] == NULL)
1898 /* The data-pointer isn't initialized, call init() to get a
1900 if (data->pre_init != NULL)
1901 /* Mid architecture creation: pass just the obstack, and not
1902 the entire architecture, as that way it isn't possible for
1903 pre-init code to refer to undefined architecture
1905 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1906 else if (gdbarch->initialized_p
1907 && data->post_init != NULL)
1908 /* Post architecture creation: pass the entire architecture
1909 (as all fields are valid), but be careful to also detect
1910 recursive references. */
1912 gdb_assert (data->init_p);
1914 gdbarch->data[data->index] = data->post_init (gdbarch);
1918 /* The architecture initialization hasn't completed - punt -
1919 hope that the caller knows what they are doing. Once
1920 deprecated_set_gdbarch_data has been initialized, this can be
1921 changed to an internal error. */
1923 gdb_assert (gdbarch->data[data->index] != NULL);
1925 return gdbarch->data[data->index];
1930 /* Keep a registry of swapped data required by GDB modules. */
1935 struct gdbarch_swap_registration *source;
1936 struct gdbarch_swap *next;
1939 struct gdbarch_swap_registration
1942 unsigned long sizeof_data;
1943 gdbarch_swap_ftype *init;
1944 struct gdbarch_swap_registration *next;
1947 struct gdbarch_swap_registry
1950 struct gdbarch_swap_registration *registrations;
1953 struct gdbarch_swap_registry gdbarch_swap_registry =
1959 deprecated_register_gdbarch_swap (void *data,
1960 unsigned long sizeof_data,
1961 gdbarch_swap_ftype *init)
1963 struct gdbarch_swap_registration **rego;
1964 for (rego = &gdbarch_swap_registry.registrations;
1966 rego = &(*rego)->next);
1967 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1968 (*rego)->next = NULL;
1969 (*rego)->init = init;
1970 (*rego)->data = data;
1971 (*rego)->sizeof_data = sizeof_data;
1975 current_gdbarch_swap_init_hack (void)
1977 struct gdbarch_swap_registration *rego;
1978 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1979 for (rego = gdbarch_swap_registry.registrations;
1983 if (rego->data != NULL)
1985 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1986 struct gdbarch_swap);
1987 (*curr)->source = rego;
1988 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1990 (*curr)->next = NULL;
1991 curr = &(*curr)->next;
1993 if (rego->init != NULL)
1998 static struct gdbarch *
1999 current_gdbarch_swap_out_hack (void)
2001 struct gdbarch *old_gdbarch = current_gdbarch;
2002 struct gdbarch_swap *curr;
2004 gdb_assert (old_gdbarch != NULL);
2005 for (curr = old_gdbarch->swap;
2009 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2010 memset (curr->source->data, 0, curr->source->sizeof_data);
2012 current_gdbarch = NULL;
2017 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
2019 struct gdbarch_swap *curr;
2021 gdb_assert (current_gdbarch == NULL);
2022 for (curr = new_gdbarch->swap;
2025 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2026 current_gdbarch = new_gdbarch;
2030 /* Keep a registry of the architectures known by GDB. */
2032 struct gdbarch_registration
2034 enum bfd_architecture bfd_architecture;
2035 gdbarch_init_ftype *init;
2036 gdbarch_dump_tdep_ftype *dump_tdep;
2037 struct gdbarch_list *arches;
2038 struct gdbarch_registration *next;
2041 static struct gdbarch_registration *gdbarch_registry = NULL;
2044 append_name (const char ***buf, int *nr, const char *name)
2046 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2052 gdbarch_printable_names (void)
2054 /* Accumulate a list of names based on the registed list of
2056 enum bfd_architecture a;
2058 const char **arches = NULL;
2059 struct gdbarch_registration *rego;
2060 for (rego = gdbarch_registry;
2064 const struct bfd_arch_info *ap;
2065 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2067 internal_error (__FILE__, __LINE__,
2068 "gdbarch_architecture_names: multi-arch unknown");
2071 append_name (&arches, &nr_arches, ap->printable_name);
2076 append_name (&arches, &nr_arches, NULL);
2082 gdbarch_register (enum bfd_architecture bfd_architecture,
2083 gdbarch_init_ftype *init,
2084 gdbarch_dump_tdep_ftype *dump_tdep)
2086 struct gdbarch_registration **curr;
2087 const struct bfd_arch_info *bfd_arch_info;
2088 /* Check that BFD recognizes this architecture */
2089 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2090 if (bfd_arch_info == NULL)
2092 internal_error (__FILE__, __LINE__,
2093 "gdbarch: Attempt to register unknown architecture (%d)",
2096 /* Check that we haven't seen this architecture before */
2097 for (curr = &gdbarch_registry;
2099 curr = &(*curr)->next)
2101 if (bfd_architecture == (*curr)->bfd_architecture)
2102 internal_error (__FILE__, __LINE__,
2103 "gdbarch: Duplicate registraration of architecture (%s)",
2104 bfd_arch_info->printable_name);
2108 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2109 bfd_arch_info->printable_name,
2112 (*curr) = XMALLOC (struct gdbarch_registration);
2113 (*curr)->bfd_architecture = bfd_architecture;
2114 (*curr)->init = init;
2115 (*curr)->dump_tdep = dump_tdep;
2116 (*curr)->arches = NULL;
2117 (*curr)->next = NULL;
2121 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2122 gdbarch_init_ftype *init)
2124 gdbarch_register (bfd_architecture, init, NULL);
2128 /* Look for an architecture using gdbarch_info. Base search on only
2129 BFD_ARCH_INFO and BYTE_ORDER. */
2131 struct gdbarch_list *
2132 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2133 const struct gdbarch_info *info)
2135 for (; arches != NULL; arches = arches->next)
2137 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2139 if (info->byte_order != arches->gdbarch->byte_order)
2141 if (info->osabi != arches->gdbarch->osabi)
2149 /* Find an architecture that matches the specified INFO. Create a new
2150 architecture if needed. Return that new architecture. Assumes
2151 that there is no current architecture. */
2153 static struct gdbarch *
2154 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2156 struct gdbarch *new_gdbarch;
2157 struct gdbarch_registration *rego;
2159 /* The existing architecture has been swapped out - all this code
2160 works from a clean slate. */
2161 gdb_assert (current_gdbarch == NULL);
2163 /* Fill in missing parts of the INFO struct using a number of
2164 sources: "set ..."; INFOabfd supplied; and the existing
2166 gdbarch_info_fill (old_gdbarch, &info);
2168 /* Must have found some sort of architecture. */
2169 gdb_assert (info.bfd_arch_info != NULL);
2173 fprintf_unfiltered (gdb_stdlog,
2174 "find_arch_by_info: info.bfd_arch_info %s\n",
2175 (info.bfd_arch_info != NULL
2176 ? info.bfd_arch_info->printable_name
2178 fprintf_unfiltered (gdb_stdlog,
2179 "find_arch_by_info: info.byte_order %d (%s)\n",
2181 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2182 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2184 fprintf_unfiltered (gdb_stdlog,
2185 "find_arch_by_info: info.osabi %d (%s)\n",
2186 info.osabi, gdbarch_osabi_name (info.osabi));
2187 fprintf_unfiltered (gdb_stdlog,
2188 "find_arch_by_info: info.abfd 0x%lx\n",
2190 fprintf_unfiltered (gdb_stdlog,
2191 "find_arch_by_info: info.tdep_info 0x%lx\n",
2192 (long) info.tdep_info);
2195 /* Find the tdep code that knows about this architecture. */
2196 for (rego = gdbarch_registry;
2199 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2204 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2205 "No matching architecture\n");
2209 /* Ask the tdep code for an architecture that matches "info". */
2210 new_gdbarch = rego->init (info, rego->arches);
2212 /* Did the tdep code like it? No. Reject the change and revert to
2213 the old architecture. */
2214 if (new_gdbarch == NULL)
2217 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2218 "Target rejected architecture\n");
2222 /* Is this a pre-existing architecture (as determined by already
2223 being initialized)? Move it to the front of the architecture
2224 list (keeping the list sorted Most Recently Used). */
2225 if (new_gdbarch->initialized_p)
2227 struct gdbarch_list **list;
2228 struct gdbarch_list *this;
2230 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2231 "Previous architecture 0x%08lx (%s) selected\n",
2233 new_gdbarch->bfd_arch_info->printable_name);
2234 /* Find the existing arch in the list. */
2235 for (list = ®o->arches;
2236 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2237 list = &(*list)->next);
2238 /* It had better be in the list of architectures. */
2239 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2242 (*list) = this->next;
2243 /* Insert THIS at the front. */
2244 this->next = rego->arches;
2245 rego->arches = this;
2250 /* It's a new architecture. */
2252 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2253 "New architecture 0x%08lx (%s) selected\n",
2255 new_gdbarch->bfd_arch_info->printable_name);
2257 /* Insert the new architecture into the front of the architecture
2258 list (keep the list sorted Most Recently Used). */
2260 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2261 this->next = rego->arches;
2262 this->gdbarch = new_gdbarch;
2263 rego->arches = this;
2266 /* Check that the newly installed architecture is valid. Plug in
2267 any post init values. */
2268 new_gdbarch->dump_tdep = rego->dump_tdep;
2269 verify_gdbarch (new_gdbarch);
2270 new_gdbarch->initialized_p = 1;
2272 /* Initialize any per-architecture swap areas. This phase requires
2273 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2274 swap the entire architecture out. */
2275 current_gdbarch = new_gdbarch;
2276 current_gdbarch_swap_init_hack ();
2277 current_gdbarch_swap_out_hack ();
2280 gdbarch_dump (new_gdbarch, gdb_stdlog);
2286 gdbarch_find_by_info (struct gdbarch_info info)
2288 /* Save the previously selected architecture, setting the global to
2289 NULL. This stops things like gdbarch->init() trying to use the
2290 previous architecture's configuration. The previous architecture
2291 may not even be of the same architecture family. The most recent
2292 architecture of the same family is found at the head of the
2293 rego->arches list. */
2294 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2296 /* Find the specified architecture. */
2297 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2299 /* Restore the existing architecture. */
2300 gdb_assert (current_gdbarch == NULL);
2301 current_gdbarch_swap_in_hack (old_gdbarch);
2306 /* Make the specified architecture current, swapping the existing one
2310 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2312 gdb_assert (new_gdbarch != NULL);
2313 gdb_assert (current_gdbarch != NULL);
2314 gdb_assert (new_gdbarch->initialized_p);
2315 current_gdbarch_swap_out_hack ();
2316 current_gdbarch_swap_in_hack (new_gdbarch);
2317 architecture_changed_event ();
2320 extern void _initialize_gdbarch (void);
2323 _initialize_gdbarch (void)
2325 struct cmd_list_element *c;
2327 add_show_from_set (add_set_cmd ("arch",
2330 (char *)&gdbarch_debug,
2331 "Set architecture debugging.\\n\\
2332 When non-zero, architecture debugging is enabled.", &setdebuglist),
2334 c = add_set_cmd ("archdebug",
2337 (char *)&gdbarch_debug,
2338 "Set architecture debugging.\\n\\
2339 When non-zero, architecture debugging is enabled.", &setlist);
2341 deprecate_cmd (c, "set debug arch");
2342 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2348 #../move-if-change new-gdbarch.c gdbarch.c
2349 compare_new gdbarch.c