1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
36 #include "gdbthread.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* Non-zero if we want to see trace of varobj level stuff. */
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
56 /* String representations of gdb's format codes. */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
60 /* String representations of gdb's known languages. */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
67 varobj_enable_pretty_printing (void)
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
82 /* Block for which this expression is valid. */
83 struct block *valid_block;
85 /* The frame for this expression. This field is set iff valid_block is
87 struct frame_id frame;
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame. */
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
105 /* Language info for this variable and its children. */
106 struct language_specific *lang;
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
111 /* Next root variable */
112 struct varobj_root *next;
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
121 /* Alloc'd name of the variable for this object. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
135 /* Index of this variable in its parent or -1. */
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
149 /* The number of (immediate) children this variable has. */
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
155 /* Children of this object. */
156 VEC (varobj_p) *children;
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
162 int children_requested;
164 /* Description of the root variable. Points to root variable for
166 struct varobj_root *root;
168 /* The format of the output for this object. */
169 enum varobj_display_formats format;
171 /* Was this variable updated via a varobj_set_value operation. */
174 /* Last print value. */
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
202 /* The iterator returned by the printer's 'children' method, or NULL
204 PyObject *child_iter;
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
217 struct cpstack *next;
220 /* A list of varobjs */
228 /* Private function prototypes */
230 /* Helper functions for the above subcommands. */
232 static int delete_variable (struct cpstack **, struct varobj *, int);
234 static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
237 static int install_variable (struct varobj *);
239 static void uninstall_variable (struct varobj *);
241 static struct varobj *create_child (struct varobj *, int, char *);
243 static struct varobj *
244 create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
247 /* Utility routines */
249 static struct varobj *new_variable (void);
251 static struct varobj *new_root_variable (void);
253 static void free_variable (struct varobj *var);
255 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
257 static struct type *get_type (struct varobj *var);
259 static struct type *get_value_type (struct varobj *var);
261 static struct type *get_target_type (struct type *);
263 static enum varobj_display_formats variable_default_display (struct varobj *);
265 static void cppush (struct cpstack **pstack, char *name);
267 static char *cppop (struct cpstack **pstack);
269 static int install_new_value (struct varobj *var, struct value *value,
272 /* Language-specific routines. */
274 static enum varobj_languages variable_language (struct varobj *var);
276 static int number_of_children (struct varobj *);
278 static char *name_of_variable (struct varobj *);
280 static char *name_of_child (struct varobj *, int);
282 static struct value *value_of_root (struct varobj **var_handle, int *);
284 static struct value *value_of_child (struct varobj *parent, int index);
286 static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
289 static char *value_get_print_value (struct value *value,
290 enum varobj_display_formats format,
293 static int varobj_value_is_changeable_p (struct varobj *var);
295 static int is_root_p (struct varobj *var);
299 static struct varobj *varobj_add_child (struct varobj *var,
301 struct value *value);
303 #endif /* HAVE_PYTHON */
305 /* C implementation */
307 static int c_number_of_children (struct varobj *var);
309 static char *c_name_of_variable (struct varobj *parent);
311 static char *c_name_of_child (struct varobj *parent, int index);
313 static char *c_path_expr_of_child (struct varobj *child);
315 static struct value *c_value_of_root (struct varobj **var_handle);
317 static struct value *c_value_of_child (struct varobj *parent, int index);
319 static struct type *c_type_of_child (struct varobj *parent, int index);
321 static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
324 /* C++ implementation */
326 static int cplus_number_of_children (struct varobj *var);
328 static void cplus_class_num_children (struct type *type, int children[3]);
330 static char *cplus_name_of_variable (struct varobj *parent);
332 static char *cplus_name_of_child (struct varobj *parent, int index);
334 static char *cplus_path_expr_of_child (struct varobj *child);
336 static struct value *cplus_value_of_root (struct varobj **var_handle);
338 static struct value *cplus_value_of_child (struct varobj *parent, int index);
340 static struct type *cplus_type_of_child (struct varobj *parent, int index);
342 static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
345 /* Java implementation */
347 static int java_number_of_children (struct varobj *var);
349 static char *java_name_of_variable (struct varobj *parent);
351 static char *java_name_of_child (struct varobj *parent, int index);
353 static char *java_path_expr_of_child (struct varobj *child);
355 static struct value *java_value_of_root (struct varobj **var_handle);
357 static struct value *java_value_of_child (struct varobj *parent, int index);
359 static struct type *java_type_of_child (struct varobj *parent, int index);
361 static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
364 /* The language specific vector */
366 struct language_specific
369 /* The language of this variable. */
370 enum varobj_languages language;
372 /* The number of children of PARENT. */
373 int (*number_of_children) (struct varobj * parent);
375 /* The name (expression) of a root varobj. */
376 char *(*name_of_variable) (struct varobj * parent);
378 /* The name of the INDEX'th child of PARENT. */
379 char *(*name_of_child) (struct varobj * parent, int index);
381 /* Returns the rooted expression of CHILD, which is a variable
382 obtain that has some parent. */
383 char *(*path_expr_of_child) (struct varobj * child);
385 /* The ``struct value *'' of the root variable ROOT. */
386 struct value *(*value_of_root) (struct varobj ** root_handle);
388 /* The ``struct value *'' of the INDEX'th child of PARENT. */
389 struct value *(*value_of_child) (struct varobj * parent, int index);
391 /* The type of the INDEX'th child of PARENT. */
392 struct type *(*type_of_child) (struct varobj * parent, int index);
394 /* The current value of VAR. */
395 char *(*value_of_variable) (struct varobj * var,
396 enum varobj_display_formats format);
399 /* Array of known source language routines. */
400 static struct language_specific languages[vlang_end] = {
401 /* Unknown (try treating as C). */
404 c_number_of_children,
407 c_path_expr_of_child,
416 c_number_of_children,
419 c_path_expr_of_child,
428 cplus_number_of_children,
429 cplus_name_of_variable,
431 cplus_path_expr_of_child,
433 cplus_value_of_child,
435 cplus_value_of_variable}
440 java_number_of_children,
441 java_name_of_variable,
443 java_path_expr_of_child,
447 java_value_of_variable}
450 /* A little convenience enum for dealing with C++/Java. */
453 v_public = 0, v_private, v_protected
458 /* Mappings of varobj_display_formats enums to gdb's format codes. */
459 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
461 /* Header of the list of root variable objects. */
462 static struct varobj_root *rootlist;
464 /* Prime number indicating the number of buckets in the hash table. */
465 /* A prime large enough to avoid too many colisions. */
466 #define VAROBJ_TABLE_SIZE 227
468 /* Pointer to the varobj hash table (built at run time). */
469 static struct vlist **varobj_table;
471 /* Is the variable X one of our "fake" children? */
472 #define CPLUS_FAKE_CHILD(x) \
473 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
476 /* API Implementation */
478 is_root_p (struct varobj *var)
480 return (var->root->rootvar == var);
484 /* Helper function to install a Python environment suitable for
485 use during operations on VAR. */
487 varobj_ensure_python_env (struct varobj *var)
489 return ensure_python_env (var->root->exp->gdbarch,
490 var->root->exp->language_defn);
494 /* Creates a varobj (not its children). */
496 /* Return the full FRAME which corresponds to the given CORE_ADDR
497 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
499 static struct frame_info *
500 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
502 struct frame_info *frame = NULL;
504 if (frame_addr == (CORE_ADDR) 0)
507 for (frame = get_current_frame ();
509 frame = get_prev_frame (frame))
511 /* The CORE_ADDR we get as argument was parsed from a string GDB
512 output as $fp. This output got truncated to gdbarch_addr_bit.
513 Truncate the frame base address in the same manner before
514 comparing it against our argument. */
515 CORE_ADDR frame_base = get_frame_base_address (frame);
516 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
518 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
519 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
521 if (frame_base == frame_addr)
529 varobj_create (char *objname,
530 char *expression, CORE_ADDR frame, enum varobj_type type)
533 struct cleanup *old_chain;
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
539 if (expression != NULL)
541 struct frame_info *fi;
542 struct frame_id old_id = null_frame_id;
545 enum varobj_languages lang;
546 struct value *value = NULL;
548 /* Parse and evaluate the expression, filling in as much of the
549 variable's data as possible. */
551 if (has_stack_frames ())
553 /* Allow creator to specify context of variable. */
554 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
555 fi = get_selected_frame (NULL);
557 /* FIXME: cagney/2002-11-23: This code should be doing a
558 lookup using the frame ID and not just the frame's
559 ``address''. This, of course, means an interface
560 change. However, with out that interface change ISAs,
561 such as the ia64 with its two stacks, won't work.
562 Similar goes for the case where there is a frameless
564 fi = find_frame_addr_in_frame_chain (frame);
569 /* frame = -2 means always use selected frame. */
570 if (type == USE_SELECTED_FRAME)
571 var->root->floating = 1;
575 block = get_frame_block (fi, 0);
578 innermost_block = NULL;
579 /* Wrap the call to parse expression, so we can
580 return a sensible error. */
581 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
586 /* Don't allow variables to be created for types. */
587 if (var->root->exp->elts[0].opcode == OP_TYPE)
589 do_cleanups (old_chain);
590 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
591 " as an expression.\n");
595 var->format = variable_default_display (var);
596 var->root->valid_block = innermost_block;
597 var->name = xstrdup (expression);
598 /* For a root var, the name and the expr are the same. */
599 var->path_expr = xstrdup (expression);
601 /* When the frame is different from the current frame,
602 we must select the appropriate frame before parsing
603 the expression, otherwise the value will not be current.
604 Since select_frame is so benign, just call it for all cases. */
607 /* User could specify explicit FRAME-ADDR which was not found but
608 EXPRESSION is frame specific and we would not be able to evaluate
609 it correctly next time. With VALID_BLOCK set we must also set
610 FRAME and THREAD_ID. */
612 error (_("Failed to find the specified frame"));
614 var->root->frame = get_frame_id (fi);
615 var->root->thread_id = pid_to_thread_id (inferior_ptid);
616 old_id = get_frame_id (get_selected_frame (NULL));
620 /* We definitely need to catch errors here.
621 If evaluate_expression succeeds we got the value we wanted.
622 But if it fails, we still go on with a call to evaluate_type(). */
623 if (!gdb_evaluate_expression (var->root->exp, &value))
625 /* Error getting the value. Try to at least get the
627 struct value *type_only_value = evaluate_type (var->root->exp);
629 var->type = value_type (type_only_value);
632 var->type = value_type (value);
634 install_new_value (var, value, 1 /* Initial assignment */);
636 /* Set language info */
637 lang = variable_language (var);
638 var->root->lang = &languages[lang];
640 /* Set ourselves as our root. */
641 var->root->rootvar = var;
643 /* Reset the selected frame. */
644 if (frame_id_p (old_id))
645 select_frame (frame_find_by_id (old_id));
648 /* If the variable object name is null, that means this
649 is a temporary variable, so don't install it. */
651 if ((var != NULL) && (objname != NULL))
653 var->obj_name = xstrdup (objname);
655 /* If a varobj name is duplicated, the install will fail so
657 if (!install_variable (var))
659 do_cleanups (old_chain);
664 discard_cleanups (old_chain);
668 /* Generates an unique name that can be used for a varobj. */
671 varobj_gen_name (void)
676 /* Generate a name for this object. */
678 obj_name = xstrprintf ("var%d", id);
683 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
684 error if OBJNAME cannot be found. */
687 varobj_get_handle (char *objname)
691 unsigned int index = 0;
694 for (chp = objname; *chp; chp++)
696 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
699 cv = *(varobj_table + index);
700 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
704 error (_("Variable object not found"));
709 /* Given the handle, return the name of the object. */
712 varobj_get_objname (struct varobj *var)
714 return var->obj_name;
717 /* Given the handle, return the expression represented by the object. */
720 varobj_get_expression (struct varobj *var)
722 return name_of_variable (var);
725 /* Deletes a varobj and all its children if only_children == 0,
726 otherwise deletes only the children; returns a malloc'ed list of
727 all the (malloc'ed) names of the variables that have been deleted
728 (NULL terminated). */
731 varobj_delete (struct varobj *var, char ***dellist, int only_children)
735 struct cpstack *result = NULL;
738 /* Initialize a stack for temporary results. */
739 cppush (&result, NULL);
742 /* Delete only the variable children. */
743 delcount = delete_variable (&result, var, 1 /* only the children */ );
745 /* Delete the variable and all its children. */
746 delcount = delete_variable (&result, var, 0 /* parent+children */ );
748 /* We may have been asked to return a list of what has been deleted. */
751 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
755 *cp = cppop (&result);
756 while ((*cp != NULL) && (mycount > 0))
760 *cp = cppop (&result);
763 if (mycount || (*cp != NULL))
764 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
773 /* Convenience function for varobj_set_visualizer. Instantiate a
774 pretty-printer for a given value. */
776 instantiate_pretty_printer (PyObject *constructor, struct value *value)
778 PyObject *val_obj = NULL;
781 val_obj = value_to_value_object (value);
785 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
792 /* Set/Get variable object display format. */
794 enum varobj_display_formats
795 varobj_set_display_format (struct varobj *var,
796 enum varobj_display_formats format)
803 case FORMAT_HEXADECIMAL:
805 var->format = format;
809 var->format = variable_default_display (var);
812 if (varobj_value_is_changeable_p (var)
813 && var->value && !value_lazy (var->value))
815 xfree (var->print_value);
816 var->print_value = value_get_print_value (var->value, var->format, var);
822 enum varobj_display_formats
823 varobj_get_display_format (struct varobj *var)
829 varobj_get_display_hint (struct varobj *var)
834 struct cleanup *back_to = varobj_ensure_python_env (var);
836 if (var->pretty_printer)
837 result = gdbpy_get_display_hint (var->pretty_printer);
839 do_cleanups (back_to);
845 /* Return true if the varobj has items after TO, false otherwise. */
848 varobj_has_more (struct varobj *var, int to)
850 if (VEC_length (varobj_p, var->children) > to)
852 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
853 && var->saved_item != NULL);
856 /* If the variable object is bound to a specific thread, that
857 is its evaluation can always be done in context of a frame
858 inside that thread, returns GDB id of the thread -- which
859 is always positive. Otherwise, returns -1. */
861 varobj_get_thread_id (struct varobj *var)
863 if (var->root->valid_block && var->root->thread_id > 0)
864 return var->root->thread_id;
870 varobj_set_frozen (struct varobj *var, int frozen)
872 /* When a variable is unfrozen, we don't fetch its value.
873 The 'not_fetched' flag remains set, so next -var-update
876 We don't fetch the value, because for structures the client
877 should do -var-update anyway. It would be bad to have different
878 client-size logic for structure and other types. */
879 var->frozen = frozen;
883 varobj_get_frozen (struct varobj *var)
888 /* A helper function that restricts a range to what is actually
889 available in a VEC. This follows the usual rules for the meaning
890 of FROM and TO -- if either is negative, the entire range is
894 restrict_range (VEC (varobj_p) *children, int *from, int *to)
896 if (*from < 0 || *to < 0)
899 *to = VEC_length (varobj_p, children);
903 if (*from > VEC_length (varobj_p, children))
904 *from = VEC_length (varobj_p, children);
905 if (*to > VEC_length (varobj_p, children))
906 *to = VEC_length (varobj_p, children);
914 /* A helper for update_dynamic_varobj_children that installs a new
915 child when needed. */
918 install_dynamic_child (struct varobj *var,
919 VEC (varobj_p) **changed,
920 VEC (varobj_p) **new,
921 VEC (varobj_p) **unchanged,
927 if (VEC_length (varobj_p, var->children) < index + 1)
929 /* There's no child yet. */
930 struct varobj *child = varobj_add_child (var, name, value);
934 VEC_safe_push (varobj_p, *new, child);
940 varobj_p existing = VEC_index (varobj_p, var->children, index);
942 if (install_new_value (existing, value, 0))
945 VEC_safe_push (varobj_p, *changed, existing);
948 VEC_safe_push (varobj_p, *unchanged, existing);
953 dynamic_varobj_has_child_method (struct varobj *var)
955 struct cleanup *back_to;
956 PyObject *printer = var->pretty_printer;
959 back_to = varobj_ensure_python_env (var);
960 result = PyObject_HasAttr (printer, gdbpy_children_cst);
961 do_cleanups (back_to);
968 update_dynamic_varobj_children (struct varobj *var,
969 VEC (varobj_p) **changed,
970 VEC (varobj_p) **new,
971 VEC (varobj_p) **unchanged,
978 struct cleanup *back_to;
981 PyObject *printer = var->pretty_printer;
983 back_to = varobj_ensure_python_env (var);
986 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
988 do_cleanups (back_to);
992 if (update_children || !var->child_iter)
994 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
999 gdbpy_print_stack ();
1000 error (_("Null value returned for children"));
1003 make_cleanup_py_decref (children);
1005 if (!PyIter_Check (children))
1006 error (_("Returned value is not iterable"));
1008 Py_XDECREF (var->child_iter);
1009 var->child_iter = PyObject_GetIter (children);
1010 if (!var->child_iter)
1012 gdbpy_print_stack ();
1013 error (_("Could not get children iterator"));
1016 Py_XDECREF (var->saved_item);
1017 var->saved_item = NULL;
1022 i = VEC_length (varobj_p, var->children);
1024 /* We ask for one extra child, so that MI can report whether there
1025 are more children. */
1026 for (; to < 0 || i < to + 1; ++i)
1031 /* See if there was a leftover from last time. */
1032 if (var->saved_item)
1034 item = var->saved_item;
1035 var->saved_item = NULL;
1038 item = PyIter_Next (var->child_iter);
1042 /* Normal end of iteration. */
1043 if (!PyErr_Occurred ())
1046 /* If we got a memory error, just use the text as the
1048 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1050 PyObject *type, *value, *trace;
1051 char *name_str, *value_str;
1053 PyErr_Fetch (&type, &value, &trace);
1054 value_str = gdbpy_exception_to_string (type, value);
1060 gdbpy_print_stack ();
1064 name_str = xstrprintf ("<error at %d>", i);
1065 item = Py_BuildValue ("(ss)", name_str, value_str);
1070 gdbpy_print_stack ();
1078 /* Any other kind of error. */
1079 gdbpy_print_stack ();
1084 /* We don't want to push the extra child on any report list. */
1085 if (to < 0 || i < to)
1090 struct cleanup *inner;
1091 int can_mention = from < 0 || i >= from;
1093 inner = make_cleanup_py_decref (item);
1095 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1097 gdbpy_print_stack ();
1098 error (_("Invalid item from the child list"));
1101 v = convert_value_from_python (py_v);
1103 gdbpy_print_stack ();
1104 install_dynamic_child (var, can_mention ? changed : NULL,
1105 can_mention ? new : NULL,
1106 can_mention ? unchanged : NULL,
1107 can_mention ? cchanged : NULL, i, name, v);
1108 do_cleanups (inner);
1112 Py_XDECREF (var->saved_item);
1113 var->saved_item = item;
1115 /* We want to truncate the child list just before this
1124 if (i < VEC_length (varobj_p, var->children))
1129 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1130 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1131 VEC_truncate (varobj_p, var->children, i);
1134 /* If there are fewer children than requested, note that the list of
1135 children changed. */
1136 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1139 var->num_children = VEC_length (varobj_p, var->children);
1141 do_cleanups (back_to);
1145 gdb_assert (0 && "should never be called if Python is not enabled");
1150 varobj_get_num_children (struct varobj *var)
1152 if (var->num_children == -1)
1154 if (var->pretty_printer)
1158 /* If we have a dynamic varobj, don't report -1 children.
1159 So, try to fetch some children first. */
1160 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1164 var->num_children = number_of_children (var);
1167 return var->num_children >= 0 ? var->num_children : 0;
1170 /* Creates a list of the immediate children of a variable object;
1171 the return code is the number of such children or -1 on error. */
1174 varobj_list_children (struct varobj *var, int *from, int *to)
1177 int i, children_changed;
1179 var->children_requested = 1;
1181 if (var->pretty_printer)
1183 /* This, in theory, can result in the number of children changing without
1184 frontend noticing. But well, calling -var-list-children on the same
1185 varobj twice is not something a sane frontend would do. */
1186 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1188 restrict_range (var->children, from, to);
1189 return var->children;
1192 if (var->num_children == -1)
1193 var->num_children = number_of_children (var);
1195 /* If that failed, give up. */
1196 if (var->num_children == -1)
1197 return var->children;
1199 /* If we're called when the list of children is not yet initialized,
1200 allocate enough elements in it. */
1201 while (VEC_length (varobj_p, var->children) < var->num_children)
1202 VEC_safe_push (varobj_p, var->children, NULL);
1204 for (i = 0; i < var->num_children; i++)
1206 varobj_p existing = VEC_index (varobj_p, var->children, i);
1208 if (existing == NULL)
1210 /* Either it's the first call to varobj_list_children for
1211 this variable object, and the child was never created,
1212 or it was explicitly deleted by the client. */
1213 name = name_of_child (var, i);
1214 existing = create_child (var, i, name);
1215 VEC_replace (varobj_p, var->children, i, existing);
1219 restrict_range (var->children, from, to);
1220 return var->children;
1225 static struct varobj *
1226 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1228 varobj_p v = create_child_with_value (var,
1229 VEC_length (varobj_p, var->children),
1232 VEC_safe_push (varobj_p, var->children, v);
1236 #endif /* HAVE_PYTHON */
1238 /* Obtain the type of an object Variable as a string similar to the one gdb
1239 prints on the console. */
1242 varobj_get_type (struct varobj *var)
1244 /* For the "fake" variables, do not return a type. (It's type is
1246 Do not return a type for invalid variables as well. */
1247 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1250 return type_to_string (var->type);
1253 /* Obtain the type of an object variable. */
1256 varobj_get_gdb_type (struct varobj *var)
1261 /* Return a pointer to the full rooted expression of varobj VAR.
1262 If it has not been computed yet, compute it. */
1264 varobj_get_path_expr (struct varobj *var)
1266 if (var->path_expr != NULL)
1267 return var->path_expr;
1270 /* For root varobjs, we initialize path_expr
1271 when creating varobj, so here it should be
1273 gdb_assert (!is_root_p (var));
1274 return (*var->root->lang->path_expr_of_child) (var);
1278 enum varobj_languages
1279 varobj_get_language (struct varobj *var)
1281 return variable_language (var);
1285 varobj_get_attributes (struct varobj *var)
1289 if (varobj_editable_p (var))
1290 /* FIXME: define masks for attributes. */
1291 attributes |= 0x00000001; /* Editable */
1297 varobj_pretty_printed_p (struct varobj *var)
1299 return var->pretty_printer != NULL;
1303 varobj_get_formatted_value (struct varobj *var,
1304 enum varobj_display_formats format)
1306 return my_value_of_variable (var, format);
1310 varobj_get_value (struct varobj *var)
1312 return my_value_of_variable (var, var->format);
1315 /* Set the value of an object variable (if it is editable) to the
1316 value of the given expression. */
1317 /* Note: Invokes functions that can call error(). */
1320 varobj_set_value (struct varobj *var, char *expression)
1324 /* The argument "expression" contains the variable's new value.
1325 We need to first construct a legal expression for this -- ugh! */
1326 /* Does this cover all the bases? */
1327 struct expression *exp;
1328 struct value *value;
1329 int saved_input_radix = input_radix;
1330 char *s = expression;
1332 gdb_assert (varobj_editable_p (var));
1334 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1335 exp = parse_exp_1 (&s, 0, 0);
1336 if (!gdb_evaluate_expression (exp, &value))
1338 /* We cannot proceed without a valid expression. */
1343 /* All types that are editable must also be changeable. */
1344 gdb_assert (varobj_value_is_changeable_p (var));
1346 /* The value of a changeable variable object must not be lazy. */
1347 gdb_assert (!value_lazy (var->value));
1349 /* Need to coerce the input. We want to check if the
1350 value of the variable object will be different
1351 after assignment, and the first thing value_assign
1352 does is coerce the input.
1353 For example, if we are assigning an array to a pointer variable we
1354 should compare the pointer with the array's address, not with the
1356 value = coerce_array (value);
1358 /* The new value may be lazy. gdb_value_assign, or
1359 rather value_contents, will take care of this.
1360 If fetching of the new value will fail, gdb_value_assign
1361 with catch the exception. */
1362 if (!gdb_value_assign (var->value, value, &val))
1365 /* If the value has changed, record it, so that next -var-update can
1366 report this change. If a variable had a value of '1', we've set it
1367 to '333' and then set again to '1', when -var-update will report this
1368 variable as changed -- because the first assignment has set the
1369 'updated' flag. There's no need to optimize that, because return value
1370 of -var-update should be considered an approximation. */
1371 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1372 input_radix = saved_input_radix;
1378 /* A helper function to install a constructor function and visualizer
1382 install_visualizer (struct varobj *var, PyObject *constructor,
1383 PyObject *visualizer)
1385 Py_XDECREF (var->constructor);
1386 var->constructor = constructor;
1388 Py_XDECREF (var->pretty_printer);
1389 var->pretty_printer = visualizer;
1391 Py_XDECREF (var->child_iter);
1392 var->child_iter = NULL;
1395 /* Install the default visualizer for VAR. */
1398 install_default_visualizer (struct varobj *var)
1400 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1401 if (CPLUS_FAKE_CHILD (var))
1404 if (pretty_printing)
1406 PyObject *pretty_printer = NULL;
1410 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1411 if (! pretty_printer)
1413 gdbpy_print_stack ();
1414 error (_("Cannot instantiate printer for default visualizer"));
1418 if (pretty_printer == Py_None)
1420 Py_DECREF (pretty_printer);
1421 pretty_printer = NULL;
1424 install_visualizer (var, NULL, pretty_printer);
1428 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1429 make a new object. */
1432 construct_visualizer (struct varobj *var, PyObject *constructor)
1434 PyObject *pretty_printer;
1436 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1437 if (CPLUS_FAKE_CHILD (var))
1440 Py_INCREF (constructor);
1441 if (constructor == Py_None)
1442 pretty_printer = NULL;
1445 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1446 if (! pretty_printer)
1448 gdbpy_print_stack ();
1449 Py_DECREF (constructor);
1450 constructor = Py_None;
1451 Py_INCREF (constructor);
1454 if (pretty_printer == Py_None)
1456 Py_DECREF (pretty_printer);
1457 pretty_printer = NULL;
1461 install_visualizer (var, constructor, pretty_printer);
1464 #endif /* HAVE_PYTHON */
1466 /* A helper function for install_new_value. This creates and installs
1467 a visualizer for VAR, if appropriate. */
1470 install_new_value_visualizer (struct varobj *var)
1473 /* If the constructor is None, then we want the raw value. If VAR
1474 does not have a value, just skip this. */
1475 if (var->constructor != Py_None && var->value)
1477 struct cleanup *cleanup;
1479 cleanup = varobj_ensure_python_env (var);
1481 if (!var->constructor)
1482 install_default_visualizer (var);
1484 construct_visualizer (var, var->constructor);
1486 do_cleanups (cleanup);
1493 /* Assign a new value to a variable object. If INITIAL is non-zero,
1494 this is the first assignement after the variable object was just
1495 created, or changed type. In that case, just assign the value
1497 Otherwise, assign the new value, and return 1 if the value is
1498 different from the current one, 0 otherwise. The comparison is
1499 done on textual representation of value. Therefore, some types
1500 need not be compared. E.g. for structures the reported value is
1501 always "{...}", so no comparison is necessary here. If the old
1502 value was NULL and new one is not, or vice versa, we always return 1.
1504 The VALUE parameter should not be released -- the function will
1505 take care of releasing it when needed. */
1507 install_new_value (struct varobj *var, struct value *value, int initial)
1512 int intentionally_not_fetched = 0;
1513 char *print_value = NULL;
1515 /* We need to know the varobj's type to decide if the value should
1516 be fetched or not. C++ fake children (public/protected/private)
1517 don't have a type. */
1518 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1519 changeable = varobj_value_is_changeable_p (var);
1521 /* If the type has custom visualizer, we consider it to be always
1522 changeable. FIXME: need to make sure this behaviour will not
1523 mess up read-sensitive values. */
1524 if (var->pretty_printer)
1527 need_to_fetch = changeable;
1529 /* We are not interested in the address of references, and given
1530 that in C++ a reference is not rebindable, it cannot
1531 meaningfully change. So, get hold of the real value. */
1533 value = coerce_ref (value);
1535 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1536 /* For unions, we need to fetch the value implicitly because
1537 of implementation of union member fetch. When gdb
1538 creates a value for a field and the value of the enclosing
1539 structure is not lazy, it immediately copies the necessary
1540 bytes from the enclosing values. If the enclosing value is
1541 lazy, the call to value_fetch_lazy on the field will read
1542 the data from memory. For unions, that means we'll read the
1543 same memory more than once, which is not desirable. So
1547 /* The new value might be lazy. If the type is changeable,
1548 that is we'll be comparing values of this type, fetch the
1549 value now. Otherwise, on the next update the old value
1550 will be lazy, which means we've lost that old value. */
1551 if (need_to_fetch && value && value_lazy (value))
1553 struct varobj *parent = var->parent;
1554 int frozen = var->frozen;
1556 for (; !frozen && parent; parent = parent->parent)
1557 frozen |= parent->frozen;
1559 if (frozen && initial)
1561 /* For variables that are frozen, or are children of frozen
1562 variables, we don't do fetch on initial assignment.
1563 For non-initial assignemnt we do the fetch, since it means we're
1564 explicitly asked to compare the new value with the old one. */
1565 intentionally_not_fetched = 1;
1567 else if (!gdb_value_fetch_lazy (value))
1569 /* Set the value to NULL, so that for the next -var-update,
1570 we don't try to compare the new value with this value,
1571 that we couldn't even read. */
1577 /* Below, we'll be comparing string rendering of old and new
1578 values. Don't get string rendering if the value is
1579 lazy -- if it is, the code above has decided that the value
1580 should not be fetched. */
1581 if (value && !value_lazy (value) && !var->pretty_printer)
1582 print_value = value_get_print_value (value, var->format, var);
1584 /* If the type is changeable, compare the old and the new values.
1585 If this is the initial assignment, we don't have any old value
1587 if (!initial && changeable)
1589 /* If the value of the varobj was changed by -var-set-value,
1590 then the value in the varobj and in the target is the same.
1591 However, that value is different from the value that the
1592 varobj had after the previous -var-update. So need to the
1593 varobj as changed. */
1598 else if (! var->pretty_printer)
1600 /* Try to compare the values. That requires that both
1601 values are non-lazy. */
1602 if (var->not_fetched && value_lazy (var->value))
1604 /* This is a frozen varobj and the value was never read.
1605 Presumably, UI shows some "never read" indicator.
1606 Now that we've fetched the real value, we need to report
1607 this varobj as changed so that UI can show the real
1611 else if (var->value == NULL && value == NULL)
1614 else if (var->value == NULL || value == NULL)
1620 gdb_assert (!value_lazy (var->value));
1621 gdb_assert (!value_lazy (value));
1623 gdb_assert (var->print_value != NULL && print_value != NULL);
1624 if (strcmp (var->print_value, print_value) != 0)
1630 if (!initial && !changeable)
1632 /* For values that are not changeable, we don't compare the values.
1633 However, we want to notice if a value was not NULL and now is NULL,
1634 or vise versa, so that we report when top-level varobjs come in scope
1635 and leave the scope. */
1636 changed = (var->value != NULL) != (value != NULL);
1639 /* We must always keep the new value, since children depend on it. */
1640 if (var->value != NULL && var->value != value)
1641 value_free (var->value);
1644 value_incref (value);
1645 if (value && value_lazy (value) && intentionally_not_fetched)
1646 var->not_fetched = 1;
1648 var->not_fetched = 0;
1651 install_new_value_visualizer (var);
1653 /* If we installed a pretty-printer, re-compare the printed version
1654 to see if the variable changed. */
1655 if (var->pretty_printer)
1657 xfree (print_value);
1658 print_value = value_get_print_value (var->value, var->format, var);
1659 if ((var->print_value == NULL && print_value != NULL)
1660 || (var->print_value != NULL && print_value == NULL)
1661 || (var->print_value != NULL && print_value != NULL
1662 && strcmp (var->print_value, print_value) != 0))
1665 if (var->print_value)
1666 xfree (var->print_value);
1667 var->print_value = print_value;
1669 gdb_assert (!var->value || value_type (var->value));
1674 /* Return the requested range for a varobj. VAR is the varobj. FROM
1675 and TO are out parameters; *FROM and *TO will be set to the
1676 selected sub-range of VAR. If no range was selected using
1677 -var-set-update-range, then both will be -1. */
1679 varobj_get_child_range (struct varobj *var, int *from, int *to)
1685 /* Set the selected sub-range of children of VAR to start at index
1686 FROM and end at index TO. If either FROM or TO is less than zero,
1687 this is interpreted as a request for all children. */
1689 varobj_set_child_range (struct varobj *var, int from, int to)
1696 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1699 PyObject *mainmod, *globals, *constructor;
1700 struct cleanup *back_to;
1702 back_to = varobj_ensure_python_env (var);
1704 mainmod = PyImport_AddModule ("__main__");
1705 globals = PyModule_GetDict (mainmod);
1706 Py_INCREF (globals);
1707 make_cleanup_py_decref (globals);
1709 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1713 gdbpy_print_stack ();
1714 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1717 construct_visualizer (var, constructor);
1718 Py_XDECREF (constructor);
1720 /* If there are any children now, wipe them. */
1721 varobj_delete (var, NULL, 1 /* children only */);
1722 var->num_children = -1;
1724 do_cleanups (back_to);
1726 error (_("Python support required"));
1730 /* Update the values for a variable and its children. This is a
1731 two-pronged attack. First, re-parse the value for the root's
1732 expression to see if it's changed. Then go all the way
1733 through its children, reconstructing them and noting if they've
1736 The EXPLICIT parameter specifies if this call is result
1737 of MI request to update this specific variable, or
1738 result of implicit -var-update *. For implicit request, we don't
1739 update frozen variables.
1741 NOTE: This function may delete the caller's varobj. If it
1742 returns TYPE_CHANGED, then it has done this and VARP will be modified
1743 to point to the new varobj. */
1745 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1748 int type_changed = 0;
1751 VEC (varobj_update_result) *stack = NULL;
1752 VEC (varobj_update_result) *result = NULL;
1754 /* Frozen means frozen -- we don't check for any change in
1755 this varobj, including its going out of scope, or
1756 changing type. One use case for frozen varobjs is
1757 retaining previously evaluated expressions, and we don't
1758 want them to be reevaluated at all. */
1759 if (!explicit && (*varp)->frozen)
1762 if (!(*varp)->root->is_valid)
1764 varobj_update_result r = {0};
1767 r.status = VAROBJ_INVALID;
1768 VEC_safe_push (varobj_update_result, result, &r);
1772 if ((*varp)->root->rootvar == *varp)
1774 varobj_update_result r = {0};
1777 r.status = VAROBJ_IN_SCOPE;
1779 /* Update the root variable. value_of_root can return NULL
1780 if the variable is no longer around, i.e. we stepped out of
1781 the frame in which a local existed. We are letting the
1782 value_of_root variable dispose of the varobj if the type
1784 new = value_of_root (varp, &type_changed);
1787 r.type_changed = type_changed;
1788 if (install_new_value ((*varp), new, type_changed))
1792 r.status = VAROBJ_NOT_IN_SCOPE;
1793 r.value_installed = 1;
1795 if (r.status == VAROBJ_NOT_IN_SCOPE)
1797 if (r.type_changed || r.changed)
1798 VEC_safe_push (varobj_update_result, result, &r);
1802 VEC_safe_push (varobj_update_result, stack, &r);
1806 varobj_update_result r = {0};
1809 VEC_safe_push (varobj_update_result, stack, &r);
1812 /* Walk through the children, reconstructing them all. */
1813 while (!VEC_empty (varobj_update_result, stack))
1815 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1816 struct varobj *v = r.varobj;
1818 VEC_pop (varobj_update_result, stack);
1820 /* Update this variable, unless it's a root, which is already
1822 if (!r.value_installed)
1824 new = value_of_child (v->parent, v->index);
1825 if (install_new_value (v, new, 0 /* type not changed */))
1832 /* We probably should not get children of a varobj that has a
1833 pretty-printer, but for which -var-list-children was never
1835 if (v->pretty_printer)
1837 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1838 int i, children_changed = 0;
1843 if (!v->children_requested)
1847 /* If we initially did not have potential children, but
1848 now we do, consider the varobj as changed.
1849 Otherwise, if children were never requested, consider
1850 it as unchanged -- presumably, such varobj is not yet
1851 expanded in the UI, so we need not bother getting
1853 if (!varobj_has_more (v, 0))
1855 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1857 if (varobj_has_more (v, 0))
1862 VEC_safe_push (varobj_update_result, result, &r);
1867 /* If update_dynamic_varobj_children returns 0, then we have
1868 a non-conforming pretty-printer, so we skip it. */
1869 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1870 &children_changed, 1,
1873 if (children_changed || new)
1875 r.children_changed = 1;
1878 /* Push in reverse order so that the first child is
1879 popped from the work stack first, and so will be
1880 added to result first. This does not affect
1881 correctness, just "nicer". */
1882 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1884 varobj_p tmp = VEC_index (varobj_p, changed, i);
1885 varobj_update_result r = {0};
1889 r.value_installed = 1;
1890 VEC_safe_push (varobj_update_result, stack, &r);
1892 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1894 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1898 varobj_update_result r = {0};
1901 r.value_installed = 1;
1902 VEC_safe_push (varobj_update_result, stack, &r);
1905 if (r.changed || r.children_changed)
1906 VEC_safe_push (varobj_update_result, result, &r);
1908 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1909 has been put into the result vector. */
1910 VEC_free (varobj_p, changed);
1911 VEC_free (varobj_p, unchanged);
1917 /* Push any children. Use reverse order so that the first
1918 child is popped from the work stack first, and so
1919 will be added to result first. This does not
1920 affect correctness, just "nicer". */
1921 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1923 varobj_p c = VEC_index (varobj_p, v->children, i);
1925 /* Child may be NULL if explicitly deleted by -var-delete. */
1926 if (c != NULL && !c->frozen)
1928 varobj_update_result r = {0};
1931 VEC_safe_push (varobj_update_result, stack, &r);
1935 if (r.changed || r.type_changed)
1936 VEC_safe_push (varobj_update_result, result, &r);
1939 VEC_free (varobj_update_result, stack);
1945 /* Helper functions */
1948 * Variable object construction/destruction
1952 delete_variable (struct cpstack **resultp, struct varobj *var,
1953 int only_children_p)
1957 delete_variable_1 (resultp, &delcount, var,
1958 only_children_p, 1 /* remove_from_parent_p */ );
1963 /* Delete the variable object VAR and its children. */
1964 /* IMPORTANT NOTE: If we delete a variable which is a child
1965 and the parent is not removed we dump core. It must be always
1966 initially called with remove_from_parent_p set. */
1968 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1969 struct varobj *var, int only_children_p,
1970 int remove_from_parent_p)
1974 /* Delete any children of this variable, too. */
1975 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1977 varobj_p child = VEC_index (varobj_p, var->children, i);
1981 if (!remove_from_parent_p)
1982 child->parent = NULL;
1983 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1985 VEC_free (varobj_p, var->children);
1987 /* if we were called to delete only the children we are done here. */
1988 if (only_children_p)
1991 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1992 /* If the name is null, this is a temporary variable, that has not
1993 yet been installed, don't report it, it belongs to the caller... */
1994 if (var->obj_name != NULL)
1996 cppush (resultp, xstrdup (var->obj_name));
1997 *delcountp = *delcountp + 1;
2000 /* If this variable has a parent, remove it from its parent's list. */
2001 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2002 (as indicated by remove_from_parent_p) we don't bother doing an
2003 expensive list search to find the element to remove when we are
2004 discarding the list afterwards. */
2005 if ((remove_from_parent_p) && (var->parent != NULL))
2007 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2010 if (var->obj_name != NULL)
2011 uninstall_variable (var);
2013 /* Free memory associated with this variable. */
2014 free_variable (var);
2017 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2019 install_variable (struct varobj *var)
2022 struct vlist *newvl;
2024 unsigned int index = 0;
2027 for (chp = var->obj_name; *chp; chp++)
2029 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2032 cv = *(varobj_table + index);
2033 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2037 error (_("Duplicate variable object name"));
2039 /* Add varobj to hash table. */
2040 newvl = xmalloc (sizeof (struct vlist));
2041 newvl->next = *(varobj_table + index);
2043 *(varobj_table + index) = newvl;
2045 /* If root, add varobj to root list. */
2046 if (is_root_p (var))
2048 /* Add to list of root variables. */
2049 if (rootlist == NULL)
2050 var->root->next = NULL;
2052 var->root->next = rootlist;
2053 rootlist = var->root;
2059 /* Unistall the object VAR. */
2061 uninstall_variable (struct varobj *var)
2065 struct varobj_root *cr;
2066 struct varobj_root *prer;
2068 unsigned int index = 0;
2071 /* Remove varobj from hash table. */
2072 for (chp = var->obj_name; *chp; chp++)
2074 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2077 cv = *(varobj_table + index);
2079 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2086 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2091 ("Assertion failed: Could not find variable object \"%s\" to delete",
2097 *(varobj_table + index) = cv->next;
2099 prev->next = cv->next;
2103 /* If root, remove varobj from root list. */
2104 if (is_root_p (var))
2106 /* Remove from list of root variables. */
2107 if (rootlist == var->root)
2108 rootlist = var->root->next;
2113 while ((cr != NULL) && (cr->rootvar != var))
2120 warning (_("Assertion failed: Could not find "
2121 "varobj \"%s\" in root list"),
2128 prer->next = cr->next;
2134 /* Create and install a child of the parent of the given name. */
2135 static struct varobj *
2136 create_child (struct varobj *parent, int index, char *name)
2138 return create_child_with_value (parent, index, name,
2139 value_of_child (parent, index));
2142 static struct varobj *
2143 create_child_with_value (struct varobj *parent, int index, const char *name,
2144 struct value *value)
2146 struct varobj *child;
2149 child = new_variable ();
2151 /* Name is allocated by name_of_child. */
2152 /* FIXME: xstrdup should not be here. */
2153 child->name = xstrdup (name);
2154 child->index = index;
2155 child->parent = parent;
2156 child->root = parent->root;
2157 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2158 child->obj_name = childs_name;
2159 install_variable (child);
2161 /* Compute the type of the child. Must do this before
2162 calling install_new_value. */
2164 /* If the child had no evaluation errors, var->value
2165 will be non-NULL and contain a valid type. */
2166 child->type = value_type (value);
2168 /* Otherwise, we must compute the type. */
2169 child->type = (*child->root->lang->type_of_child) (child->parent,
2171 install_new_value (child, value, 1);
2178 * Miscellaneous utility functions.
2181 /* Allocate memory and initialize a new variable. */
2182 static struct varobj *
2187 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2189 var->path_expr = NULL;
2190 var->obj_name = NULL;
2194 var->num_children = -1;
2196 var->children = NULL;
2200 var->print_value = NULL;
2202 var->not_fetched = 0;
2203 var->children_requested = 0;
2206 var->constructor = 0;
2207 var->pretty_printer = 0;
2208 var->child_iter = 0;
2209 var->saved_item = 0;
2214 /* Allocate memory and initialize a new root variable. */
2215 static struct varobj *
2216 new_root_variable (void)
2218 struct varobj *var = new_variable ();
2220 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2221 var->root->lang = NULL;
2222 var->root->exp = NULL;
2223 var->root->valid_block = NULL;
2224 var->root->frame = null_frame_id;
2225 var->root->floating = 0;
2226 var->root->rootvar = NULL;
2227 var->root->is_valid = 1;
2232 /* Free any allocated memory associated with VAR. */
2234 free_variable (struct varobj *var)
2237 if (var->pretty_printer)
2239 struct cleanup *cleanup = varobj_ensure_python_env (var);
2240 Py_XDECREF (var->constructor);
2241 Py_XDECREF (var->pretty_printer);
2242 Py_XDECREF (var->child_iter);
2243 Py_XDECREF (var->saved_item);
2244 do_cleanups (cleanup);
2248 value_free (var->value);
2250 /* Free the expression if this is a root variable. */
2251 if (is_root_p (var))
2253 xfree (var->root->exp);
2258 xfree (var->obj_name);
2259 xfree (var->print_value);
2260 xfree (var->path_expr);
2265 do_free_variable_cleanup (void *var)
2267 free_variable (var);
2270 static struct cleanup *
2271 make_cleanup_free_variable (struct varobj *var)
2273 return make_cleanup (do_free_variable_cleanup, var);
2276 /* This returns the type of the variable. It also skips past typedefs
2277 to return the real type of the variable.
2279 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2280 except within get_target_type and get_type. */
2281 static struct type *
2282 get_type (struct varobj *var)
2288 type = check_typedef (type);
2293 /* Return the type of the value that's stored in VAR,
2294 or that would have being stored there if the
2295 value were accessible.
2297 This differs from VAR->type in that VAR->type is always
2298 the true type of the expession in the source language.
2299 The return value of this function is the type we're
2300 actually storing in varobj, and using for displaying
2301 the values and for comparing previous and new values.
2303 For example, top-level references are always stripped. */
2304 static struct type *
2305 get_value_type (struct varobj *var)
2310 type = value_type (var->value);
2314 type = check_typedef (type);
2316 if (TYPE_CODE (type) == TYPE_CODE_REF)
2317 type = get_target_type (type);
2319 type = check_typedef (type);
2324 /* This returns the target type (or NULL) of TYPE, also skipping
2325 past typedefs, just like get_type ().
2327 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2328 except within get_target_type and get_type. */
2329 static struct type *
2330 get_target_type (struct type *type)
2334 type = TYPE_TARGET_TYPE (type);
2336 type = check_typedef (type);
2342 /* What is the default display for this variable? We assume that
2343 everything is "natural". Any exceptions? */
2344 static enum varobj_display_formats
2345 variable_default_display (struct varobj *var)
2347 return FORMAT_NATURAL;
2350 /* FIXME: The following should be generic for any pointer. */
2352 cppush (struct cpstack **pstack, char *name)
2356 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2362 /* FIXME: The following should be generic for any pointer. */
2364 cppop (struct cpstack **pstack)
2369 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2374 *pstack = (*pstack)->next;
2381 * Language-dependencies
2384 /* Common entry points */
2386 /* Get the language of variable VAR. */
2387 static enum varobj_languages
2388 variable_language (struct varobj *var)
2390 enum varobj_languages lang;
2392 switch (var->root->exp->language_defn->la_language)
2398 case language_cplus:
2409 /* Return the number of children for a given variable.
2410 The result of this function is defined by the language
2411 implementation. The number of children returned by this function
2412 is the number of children that the user will see in the variable
2415 number_of_children (struct varobj *var)
2417 return (*var->root->lang->number_of_children) (var);
2420 /* What is the expression for the root varobj VAR? Returns a malloc'd
2423 name_of_variable (struct varobj *var)
2425 return (*var->root->lang->name_of_variable) (var);
2428 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2431 name_of_child (struct varobj *var, int index)
2433 return (*var->root->lang->name_of_child) (var, index);
2436 /* What is the ``struct value *'' of the root variable VAR?
2437 For floating variable object, evaluation can get us a value
2438 of different type from what is stored in varobj already. In
2440 - *type_changed will be set to 1
2441 - old varobj will be freed, and new one will be
2442 created, with the same name.
2443 - *var_handle will be set to the new varobj
2444 Otherwise, *type_changed will be set to 0. */
2445 static struct value *
2446 value_of_root (struct varobj **var_handle, int *type_changed)
2450 if (var_handle == NULL)
2455 /* This should really be an exception, since this should
2456 only get called with a root variable. */
2458 if (!is_root_p (var))
2461 if (var->root->floating)
2463 struct varobj *tmp_var;
2464 char *old_type, *new_type;
2466 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2467 USE_SELECTED_FRAME);
2468 if (tmp_var == NULL)
2472 old_type = varobj_get_type (var);
2473 new_type = varobj_get_type (tmp_var);
2474 if (strcmp (old_type, new_type) == 0)
2476 /* The expression presently stored inside var->root->exp
2477 remembers the locations of local variables relatively to
2478 the frame where the expression was created (in DWARF location
2479 button, for example). Naturally, those locations are not
2480 correct in other frames, so update the expression. */
2482 struct expression *tmp_exp = var->root->exp;
2484 var->root->exp = tmp_var->root->exp;
2485 tmp_var->root->exp = tmp_exp;
2487 varobj_delete (tmp_var, NULL, 0);
2492 tmp_var->obj_name = xstrdup (var->obj_name);
2493 tmp_var->from = var->from;
2494 tmp_var->to = var->to;
2495 varobj_delete (var, NULL, 0);
2497 install_variable (tmp_var);
2498 *var_handle = tmp_var;
2510 return (*var->root->lang->value_of_root) (var_handle);
2513 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2514 static struct value *
2515 value_of_child (struct varobj *parent, int index)
2517 struct value *value;
2519 value = (*parent->root->lang->value_of_child) (parent, index);
2524 /* GDB already has a command called "value_of_variable". Sigh. */
2526 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2528 if (var->root->is_valid)
2530 if (var->pretty_printer)
2531 return value_get_print_value (var->value, var->format, var);
2532 return (*var->root->lang->value_of_variable) (var, format);
2539 value_get_print_value (struct value *value, enum varobj_display_formats format,
2542 struct ui_file *stb;
2543 struct cleanup *old_chain;
2544 gdb_byte *thevalue = NULL;
2545 struct value_print_options opts;
2546 struct type *type = NULL;
2548 char *encoding = NULL;
2549 struct gdbarch *gdbarch = NULL;
2550 /* Initialize it just to avoid a GCC false warning. */
2551 CORE_ADDR str_addr = 0;
2552 int string_print = 0;
2557 stb = mem_fileopen ();
2558 old_chain = make_cleanup_ui_file_delete (stb);
2560 gdbarch = get_type_arch (value_type (value));
2563 PyObject *value_formatter = var->pretty_printer;
2565 varobj_ensure_python_env (var);
2567 if (value_formatter)
2569 /* First check to see if we have any children at all. If so,
2570 we simply return {...}. */
2571 if (dynamic_varobj_has_child_method (var))
2573 do_cleanups (old_chain);
2574 return xstrdup ("{...}");
2577 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2580 struct value *replacement;
2581 PyObject *output = NULL;
2583 hint = gdbpy_get_display_hint (value_formatter);
2586 if (!strcmp (hint, "string"))
2591 output = apply_varobj_pretty_printer (value_formatter,
2596 make_cleanup_py_decref (output);
2598 if (gdbpy_is_lazy_string (output))
2600 gdbpy_extract_lazy_string (output, &str_addr, &type,
2602 make_cleanup (free_current_contents, &encoding);
2608 = python_string_to_target_python_string (output);
2612 char *s = PyString_AsString (py_str);
2614 len = PyString_Size (py_str);
2615 thevalue = xmemdup (s, len + 1, len + 1);
2616 type = builtin_type (gdbarch)->builtin_char;
2621 do_cleanups (old_chain);
2625 make_cleanup (xfree, thevalue);
2628 gdbpy_print_stack ();
2632 value = replacement;
2638 get_formatted_print_options (&opts, format_code[(int) format]);
2642 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2643 else if (string_print)
2644 val_print_string (type, encoding, str_addr, len, stb, &opts);
2646 common_val_print (value, stb, 0, &opts, current_language);
2647 thevalue = ui_file_xstrdup (stb, NULL);
2649 do_cleanups (old_chain);
2654 varobj_editable_p (struct varobj *var)
2658 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2661 type = get_value_type (var);
2663 switch (TYPE_CODE (type))
2665 case TYPE_CODE_STRUCT:
2666 case TYPE_CODE_UNION:
2667 case TYPE_CODE_ARRAY:
2668 case TYPE_CODE_FUNC:
2669 case TYPE_CODE_METHOD:
2679 /* Return non-zero if changes in value of VAR
2680 must be detected and reported by -var-update.
2681 Return zero is -var-update should never report
2682 changes of such values. This makes sense for structures
2683 (since the changes in children values will be reported separately),
2684 or for artifical objects (like 'public' pseudo-field in C++).
2686 Return value of 0 means that gdb need not call value_fetch_lazy
2687 for the value of this variable object. */
2689 varobj_value_is_changeable_p (struct varobj *var)
2694 if (CPLUS_FAKE_CHILD (var))
2697 type = get_value_type (var);
2699 switch (TYPE_CODE (type))
2701 case TYPE_CODE_STRUCT:
2702 case TYPE_CODE_UNION:
2703 case TYPE_CODE_ARRAY:
2714 /* Return 1 if that varobj is floating, that is is always evaluated in the
2715 selected frame, and not bound to thread/frame. Such variable objects
2716 are created using '@' as frame specifier to -var-create. */
2718 varobj_floating_p (struct varobj *var)
2720 return var->root->floating;
2723 /* Given the value and the type of a variable object,
2724 adjust the value and type to those necessary
2725 for getting children of the variable object.
2726 This includes dereferencing top-level references
2727 to all types and dereferencing pointers to
2730 Both TYPE and *TYPE should be non-null. VALUE
2731 can be null if we want to only translate type.
2732 *VALUE can be null as well -- if the parent
2735 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2736 depending on whether pointer was dereferenced
2737 in this function. */
2739 adjust_value_for_child_access (struct value **value,
2743 gdb_assert (type && *type);
2748 *type = check_typedef (*type);
2750 /* The type of value stored in varobj, that is passed
2751 to us, is already supposed to be
2752 reference-stripped. */
2754 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2756 /* Pointers to structures are treated just like
2757 structures when accessing children. Don't
2758 dererences pointers to other types. */
2759 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2761 struct type *target_type = get_target_type (*type);
2762 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2763 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2765 if (value && *value)
2767 int success = gdb_value_ind (*value, value);
2772 *type = target_type;
2778 /* The 'get_target_type' function calls check_typedef on
2779 result, so we can immediately check type code. No
2780 need to call check_typedef here. */
2785 c_number_of_children (struct varobj *var)
2787 struct type *type = get_value_type (var);
2789 struct type *target;
2791 adjust_value_for_child_access (NULL, &type, NULL);
2792 target = get_target_type (type);
2794 switch (TYPE_CODE (type))
2796 case TYPE_CODE_ARRAY:
2797 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2798 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2799 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2801 /* If we don't know how many elements there are, don't display
2806 case TYPE_CODE_STRUCT:
2807 case TYPE_CODE_UNION:
2808 children = TYPE_NFIELDS (type);
2812 /* The type here is a pointer to non-struct. Typically, pointers
2813 have one child, except for function ptrs, which have no children,
2814 and except for void*, as we don't know what to show.
2816 We can show char* so we allow it to be dereferenced. If you decide
2817 to test for it, please mind that a little magic is necessary to
2818 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2819 TYPE_NAME == "char". */
2820 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2821 || TYPE_CODE (target) == TYPE_CODE_VOID)
2828 /* Other types have no children. */
2836 c_name_of_variable (struct varobj *parent)
2838 return xstrdup (parent->name);
2841 /* Return the value of element TYPE_INDEX of a structure
2842 value VALUE. VALUE's type should be a structure,
2843 or union, or a typedef to struct/union.
2845 Returns NULL if getting the value fails. Never throws. */
2846 static struct value *
2847 value_struct_element_index (struct value *value, int type_index)
2849 struct value *result = NULL;
2850 volatile struct gdb_exception e;
2851 struct type *type = value_type (value);
2853 type = check_typedef (type);
2855 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2856 || TYPE_CODE (type) == TYPE_CODE_UNION);
2858 TRY_CATCH (e, RETURN_MASK_ERROR)
2860 if (field_is_static (&TYPE_FIELD (type, type_index)))
2861 result = value_static_field (type, type_index);
2863 result = value_primitive_field (value, 0, type_index, type);
2875 /* Obtain the information about child INDEX of the variable
2877 If CNAME is not null, sets *CNAME to the name of the child relative
2879 If CVALUE is not null, sets *CVALUE to the value of the child.
2880 If CTYPE is not null, sets *CTYPE to the type of the child.
2882 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2883 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2886 c_describe_child (struct varobj *parent, int index,
2887 char **cname, struct value **cvalue, struct type **ctype,
2888 char **cfull_expression)
2890 struct value *value = parent->value;
2891 struct type *type = get_value_type (parent);
2892 char *parent_expression = NULL;
2901 if (cfull_expression)
2903 *cfull_expression = NULL;
2904 parent_expression = varobj_get_path_expr (parent);
2906 adjust_value_for_child_access (&value, &type, &was_ptr);
2908 switch (TYPE_CODE (type))
2910 case TYPE_CODE_ARRAY:
2913 = xstrdup (int_string (index
2914 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2917 if (cvalue && value)
2919 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2921 gdb_value_subscript (value, real_index, cvalue);
2925 *ctype = get_target_type (type);
2927 if (cfull_expression)
2929 xstrprintf ("(%s)[%s]", parent_expression,
2931 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2937 case TYPE_CODE_STRUCT:
2938 case TYPE_CODE_UNION:
2940 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2942 if (cvalue && value)
2944 /* For C, varobj index is the same as type index. */
2945 *cvalue = value_struct_element_index (value, index);
2949 *ctype = TYPE_FIELD_TYPE (type, index);
2951 if (cfull_expression)
2953 char *join = was_ptr ? "->" : ".";
2955 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2956 TYPE_FIELD_NAME (type, index));
2963 *cname = xstrprintf ("*%s", parent->name);
2965 if (cvalue && value)
2967 int success = gdb_value_ind (value, cvalue);
2973 /* Don't use get_target_type because it calls
2974 check_typedef and here, we want to show the true
2975 declared type of the variable. */
2977 *ctype = TYPE_TARGET_TYPE (type);
2979 if (cfull_expression)
2980 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2985 /* This should not happen. */
2987 *cname = xstrdup ("???");
2988 if (cfull_expression)
2989 *cfull_expression = xstrdup ("???");
2990 /* Don't set value and type, we don't know then. */
2995 c_name_of_child (struct varobj *parent, int index)
2999 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3004 c_path_expr_of_child (struct varobj *child)
3006 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3008 return child->path_expr;
3011 /* If frame associated with VAR can be found, switch
3012 to it and return 1. Otherwise, return 0. */
3014 check_scope (struct varobj *var)
3016 struct frame_info *fi;
3019 fi = frame_find_by_id (var->root->frame);
3024 CORE_ADDR pc = get_frame_pc (fi);
3026 if (pc < BLOCK_START (var->root->valid_block) ||
3027 pc >= BLOCK_END (var->root->valid_block))
3035 static struct value *
3036 c_value_of_root (struct varobj **var_handle)
3038 struct value *new_val = NULL;
3039 struct varobj *var = *var_handle;
3040 int within_scope = 0;
3041 struct cleanup *back_to;
3043 /* Only root variables can be updated... */
3044 if (!is_root_p (var))
3045 /* Not a root var. */
3048 back_to = make_cleanup_restore_current_thread ();
3050 /* Determine whether the variable is still around. */
3051 if (var->root->valid_block == NULL || var->root->floating)
3053 else if (var->root->thread_id == 0)
3055 /* The program was single-threaded when the variable object was
3056 created. Technically, it's possible that the program became
3057 multi-threaded since then, but we don't support such
3059 within_scope = check_scope (var);
3063 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3064 if (in_thread_list (ptid))
3066 switch_to_thread (ptid);
3067 within_scope = check_scope (var);
3073 /* We need to catch errors here, because if evaluate
3074 expression fails we want to just return NULL. */
3075 gdb_evaluate_expression (var->root->exp, &new_val);
3079 do_cleanups (back_to);
3084 static struct value *
3085 c_value_of_child (struct varobj *parent, int index)
3087 struct value *value = NULL;
3089 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3093 static struct type *
3094 c_type_of_child (struct varobj *parent, int index)
3096 struct type *type = NULL;
3098 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3103 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3105 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3106 it will print out its children instead of "{...}". So we need to
3107 catch that case explicitly. */
3108 struct type *type = get_type (var);
3110 /* If we have a custom formatter, return whatever string it has
3112 if (var->pretty_printer && var->print_value)
3113 return xstrdup (var->print_value);
3115 /* Strip top-level references. */
3116 while (TYPE_CODE (type) == TYPE_CODE_REF)
3117 type = check_typedef (TYPE_TARGET_TYPE (type));
3119 switch (TYPE_CODE (type))
3121 case TYPE_CODE_STRUCT:
3122 case TYPE_CODE_UNION:
3123 return xstrdup ("{...}");
3126 case TYPE_CODE_ARRAY:
3130 number = xstrprintf ("[%d]", var->num_children);
3137 if (var->value == NULL)
3139 /* This can happen if we attempt to get the value of a struct
3140 member when the parent is an invalid pointer. This is an
3141 error condition, so we should tell the caller. */
3146 if (var->not_fetched && value_lazy (var->value))
3147 /* Frozen variable and no value yet. We don't
3148 implicitly fetch the value. MI response will
3149 use empty string for the value, which is OK. */
3152 gdb_assert (varobj_value_is_changeable_p (var));
3153 gdb_assert (!value_lazy (var->value));
3155 /* If the specified format is the current one,
3156 we can reuse print_value. */
3157 if (format == var->format)
3158 return xstrdup (var->print_value);
3160 return value_get_print_value (var->value, format, var);
3170 cplus_number_of_children (struct varobj *var)
3173 int children, dont_know;
3178 if (!CPLUS_FAKE_CHILD (var))
3180 type = get_value_type (var);
3181 adjust_value_for_child_access (NULL, &type, NULL);
3183 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3184 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3188 cplus_class_num_children (type, kids);
3189 if (kids[v_public] != 0)
3191 if (kids[v_private] != 0)
3193 if (kids[v_protected] != 0)
3196 /* Add any baseclasses. */
3197 children += TYPE_N_BASECLASSES (type);
3200 /* FIXME: save children in var. */
3207 type = get_value_type (var->parent);
3208 adjust_value_for_child_access (NULL, &type, NULL);
3210 cplus_class_num_children (type, kids);
3211 if (strcmp (var->name, "public") == 0)
3212 children = kids[v_public];
3213 else if (strcmp (var->name, "private") == 0)
3214 children = kids[v_private];
3216 children = kids[v_protected];
3221 children = c_number_of_children (var);
3226 /* Compute # of public, private, and protected variables in this class.
3227 That means we need to descend into all baseclasses and find out
3228 how many are there, too. */
3230 cplus_class_num_children (struct type *type, int children[3])
3232 int i, vptr_fieldno;
3233 struct type *basetype = NULL;
3235 children[v_public] = 0;
3236 children[v_private] = 0;
3237 children[v_protected] = 0;
3239 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3240 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3242 /* If we have a virtual table pointer, omit it. Even if virtual
3243 table pointers are not specifically marked in the debug info,
3244 they should be artificial. */
3245 if ((type == basetype && i == vptr_fieldno)
3246 || TYPE_FIELD_ARTIFICIAL (type, i))
3249 if (TYPE_FIELD_PROTECTED (type, i))
3250 children[v_protected]++;
3251 else if (TYPE_FIELD_PRIVATE (type, i))
3252 children[v_private]++;
3254 children[v_public]++;
3259 cplus_name_of_variable (struct varobj *parent)
3261 return c_name_of_variable (parent);
3264 enum accessibility { private_field, protected_field, public_field };
3266 /* Check if field INDEX of TYPE has the specified accessibility.
3267 Return 0 if so and 1 otherwise. */
3269 match_accessibility (struct type *type, int index, enum accessibility acc)
3271 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3273 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3275 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3276 && !TYPE_FIELD_PROTECTED (type, index))
3283 cplus_describe_child (struct varobj *parent, int index,
3284 char **cname, struct value **cvalue, struct type **ctype,
3285 char **cfull_expression)
3287 struct value *value;
3290 char *parent_expression = NULL;
3298 if (cfull_expression)
3299 *cfull_expression = NULL;
3301 if (CPLUS_FAKE_CHILD (parent))
3303 value = parent->parent->value;
3304 type = get_value_type (parent->parent);
3305 if (cfull_expression)
3306 parent_expression = varobj_get_path_expr (parent->parent);
3310 value = parent->value;
3311 type = get_value_type (parent);
3312 if (cfull_expression)
3313 parent_expression = varobj_get_path_expr (parent);
3316 adjust_value_for_child_access (&value, &type, &was_ptr);
3318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3319 || TYPE_CODE (type) == TYPE_CODE_UNION)
3321 char *join = was_ptr ? "->" : ".";
3323 if (CPLUS_FAKE_CHILD (parent))
3325 /* The fields of the class type are ordered as they
3326 appear in the class. We are given an index for a
3327 particular access control type ("public","protected",
3328 or "private"). We must skip over fields that don't
3329 have the access control we are looking for to properly
3330 find the indexed field. */
3331 int type_index = TYPE_N_BASECLASSES (type);
3332 enum accessibility acc = public_field;
3334 struct type *basetype = NULL;
3336 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3337 if (strcmp (parent->name, "private") == 0)
3338 acc = private_field;
3339 else if (strcmp (parent->name, "protected") == 0)
3340 acc = protected_field;
3344 if ((type == basetype && type_index == vptr_fieldno)
3345 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3347 else if (match_accessibility (type, type_index, acc))
3354 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3356 if (cvalue && value)
3357 *cvalue = value_struct_element_index (value, type_index);
3360 *ctype = TYPE_FIELD_TYPE (type, type_index);
3362 if (cfull_expression)
3364 = xstrprintf ("((%s)%s%s)", parent_expression,
3366 TYPE_FIELD_NAME (type, type_index));
3368 else if (index < TYPE_N_BASECLASSES (type))
3370 /* This is a baseclass. */
3372 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3374 if (cvalue && value)
3375 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3379 *ctype = TYPE_FIELD_TYPE (type, index);
3382 if (cfull_expression)
3384 char *ptr = was_ptr ? "*" : "";
3386 /* Cast the parent to the base' type. Note that in gdb,
3389 will create an lvalue, for all appearences, so we don't
3390 need to use more fancy:
3393 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3395 TYPE_FIELD_NAME (type, index),
3402 char *access = NULL;
3405 cplus_class_num_children (type, children);
3407 /* Everything beyond the baseclasses can
3408 only be "public", "private", or "protected"
3410 The special "fake" children are always output by varobj in
3411 this order. So if INDEX == 2, it MUST be "protected". */
3412 index -= TYPE_N_BASECLASSES (type);
3416 if (children[v_public] > 0)
3418 else if (children[v_private] > 0)
3421 access = "protected";
3424 if (children[v_public] > 0)
3426 if (children[v_private] > 0)
3429 access = "protected";
3431 else if (children[v_private] > 0)
3432 access = "protected";
3435 /* Must be protected. */
3436 access = "protected";
3443 gdb_assert (access);
3445 *cname = xstrdup (access);
3447 /* Value and type and full expression are null here. */
3452 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3457 cplus_name_of_child (struct varobj *parent, int index)
3461 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3466 cplus_path_expr_of_child (struct varobj *child)
3468 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3470 return child->path_expr;
3473 static struct value *
3474 cplus_value_of_root (struct varobj **var_handle)
3476 return c_value_of_root (var_handle);
3479 static struct value *
3480 cplus_value_of_child (struct varobj *parent, int index)
3482 struct value *value = NULL;
3484 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3488 static struct type *
3489 cplus_type_of_child (struct varobj *parent, int index)
3491 struct type *type = NULL;
3493 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3498 cplus_value_of_variable (struct varobj *var,
3499 enum varobj_display_formats format)
3502 /* If we have one of our special types, don't print out
3504 if (CPLUS_FAKE_CHILD (var))
3505 return xstrdup ("");
3507 return c_value_of_variable (var, format);
3513 java_number_of_children (struct varobj *var)
3515 return cplus_number_of_children (var);
3519 java_name_of_variable (struct varobj *parent)
3523 name = cplus_name_of_variable (parent);
3524 /* If the name has "-" in it, it is because we
3525 needed to escape periods in the name... */
3528 while (*p != '\000')
3539 java_name_of_child (struct varobj *parent, int index)
3543 name = cplus_name_of_child (parent, index);
3544 /* Escape any periods in the name... */
3547 while (*p != '\000')
3558 java_path_expr_of_child (struct varobj *child)
3563 static struct value *
3564 java_value_of_root (struct varobj **var_handle)
3566 return cplus_value_of_root (var_handle);
3569 static struct value *
3570 java_value_of_child (struct varobj *parent, int index)
3572 return cplus_value_of_child (parent, index);
3575 static struct type *
3576 java_type_of_child (struct varobj *parent, int index)
3578 return cplus_type_of_child (parent, index);
3582 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3584 return cplus_value_of_variable (var, format);
3587 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3588 with an arbitrary caller supplied DATA pointer. */
3591 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3593 struct varobj_root *var_root, *var_root_next;
3595 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3597 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3599 var_root_next = var_root->next;
3601 (*func) (var_root->rootvar, data);
3605 extern void _initialize_varobj (void);
3607 _initialize_varobj (void)
3609 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3611 varobj_table = xmalloc (sizeof_table);
3612 memset (varobj_table, 0, sizeof_table);
3614 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3616 _("Set varobj debugging."),
3617 _("Show varobj debugging."),
3618 _("When non-zero, varobj debugging is enabled."),
3619 NULL, show_varobjdebug,
3620 &setlist, &showlist);
3623 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3624 defined on globals. It is a helper for varobj_invalidate. */
3627 varobj_invalidate_iter (struct varobj *var, void *unused)
3629 /* Floating varobjs are reparsed on each stop, so we don't care if the
3630 presently parsed expression refers to something that's gone. */
3631 if (var->root->floating)
3634 /* global var must be re-evaluated. */
3635 if (var->root->valid_block == NULL)
3637 struct varobj *tmp_var;
3639 /* Try to create a varobj with same expression. If we succeed
3640 replace the old varobj, otherwise invalidate it. */
3641 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3643 if (tmp_var != NULL)
3645 tmp_var->obj_name = xstrdup (var->obj_name);
3646 varobj_delete (var, NULL, 0);
3647 install_variable (tmp_var);
3650 var->root->is_valid = 0;
3652 else /* locals must be invalidated. */
3653 var->root->is_valid = 0;
3656 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3657 are defined on globals.
3658 Invalidated varobjs will be always printed in_scope="invalid". */
3661 varobj_invalidate (void)
3663 all_root_varobjs (varobj_invalidate_iter, NULL);