]>
Commit | Line | Data |
---|---|---|
66a1aa07 SG |
1 | /* Machine-dependent code which would otherwise be in inflow.c and core.c, |
2 | for GDB, the GNU debugger. This code is for the HP PA-RISC cpu. | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. | |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
37 | #include <sys/dir.h> | |
38 | #include <signal.h> | |
39 | #include <sys/ioctl.h> | |
40 | ||
41 | #ifdef COFF_ENCAPSULATE | |
42 | #include "a.out.encap.h" | |
43 | #else | |
44 | #include <a.out.h> | |
45 | #endif | |
46 | #ifndef N_SET_MAGIC | |
47 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
48 | #endif | |
49 | ||
50 | /*#include <sys/user.h> After a.out.h */ | |
51 | #include <sys/file.h> | |
52 | #include <sys/stat.h> | |
53 | #include <machine/psl.h> | |
54 | #include "wait.h" | |
55 | ||
56 | #include "gdbcore.h" | |
57 | #include "gdbcmd.h" | |
58 | #include "target.h" | |
59 | #include "symfile.h" | |
60 | #include "objfiles.h" | |
61 | ||
62 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr)); | |
63 | static int hppa_alignof PARAMS ((struct type *arg)); | |
8966221d JK |
64 | static FRAME_ADDR dig_fp_from_stack PARAMS ((FRAME frame, |
65 | struct unwind_table_entry *u)); | |
8fa74880 | 66 | CORE_ADDR frame_saved_pc PARAMS ((FRAME frame)); |
66a1aa07 SG |
67 | |
68 | \f | |
69 | /* Routines to extract various sized constants out of hppa | |
70 | instructions. */ | |
71 | ||
72 | /* This assumes that no garbage lies outside of the lower bits of | |
73 | value. */ | |
74 | ||
75 | int | |
76 | sign_extend (val, bits) | |
77 | unsigned val, bits; | |
78 | { | |
79 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
80 | } | |
81 | ||
82 | /* For many immediate values the sign bit is the low bit! */ | |
83 | ||
84 | int | |
85 | low_sign_extend (val, bits) | |
86 | unsigned val, bits; | |
87 | { | |
88 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
89 | } | |
90 | /* extract the immediate field from a ld{bhw}s instruction */ | |
91 | ||
92 | unsigned | |
93 | get_field (val, from, to) | |
94 | unsigned val, from, to; | |
95 | { | |
96 | val = val >> 31 - to; | |
97 | return val & ((1 << 32 - from) - 1); | |
98 | } | |
99 | ||
100 | unsigned | |
101 | set_field (val, from, to, new_val) | |
102 | unsigned *val, from, to; | |
103 | { | |
104 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
105 | return *val = *val & mask | (new_val << (31 - from)); | |
106 | } | |
107 | ||
108 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
109 | ||
110 | extract_3 (word) | |
111 | unsigned word; | |
112 | { | |
113 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
114 | } | |
115 | ||
116 | extract_5_load (word) | |
117 | unsigned word; | |
118 | { | |
119 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
120 | } | |
121 | ||
122 | /* extract the immediate field from a st{bhw}s instruction */ | |
123 | ||
124 | int | |
125 | extract_5_store (word) | |
126 | unsigned word; | |
127 | { | |
128 | return low_sign_extend (word & MASK_5, 5); | |
129 | } | |
130 | ||
68c8d698 SG |
131 | /* extract the immediate field from a break instruction */ |
132 | ||
133 | unsigned | |
134 | extract_5r_store (word) | |
135 | unsigned word; | |
136 | { | |
137 | return (word & MASK_5); | |
138 | } | |
139 | ||
140 | /* extract the immediate field from a {sr}sm instruction */ | |
141 | ||
142 | unsigned | |
143 | extract_5R_store (word) | |
144 | unsigned word; | |
145 | { | |
146 | return (word >> 16 & MASK_5); | |
147 | } | |
148 | ||
66a1aa07 SG |
149 | /* extract an 11 bit immediate field */ |
150 | ||
151 | int | |
152 | extract_11 (word) | |
153 | unsigned word; | |
154 | { | |
155 | return low_sign_extend (word & MASK_11, 11); | |
156 | } | |
157 | ||
158 | /* extract a 14 bit immediate field */ | |
159 | ||
160 | int | |
161 | extract_14 (word) | |
162 | unsigned word; | |
163 | { | |
164 | return low_sign_extend (word & MASK_14, 14); | |
165 | } | |
166 | ||
167 | /* deposit a 14 bit constant in a word */ | |
168 | ||
169 | unsigned | |
170 | deposit_14 (opnd, word) | |
171 | int opnd; | |
172 | unsigned word; | |
173 | { | |
174 | unsigned sign = (opnd < 0 ? 1 : 0); | |
175 | ||
176 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
177 | } | |
178 | ||
179 | /* extract a 21 bit constant */ | |
180 | ||
181 | int | |
182 | extract_21 (word) | |
183 | unsigned word; | |
184 | { | |
185 | int val; | |
186 | ||
187 | word &= MASK_21; | |
188 | word <<= 11; | |
189 | val = GET_FIELD (word, 20, 20); | |
190 | val <<= 11; | |
191 | val |= GET_FIELD (word, 9, 19); | |
192 | val <<= 2; | |
193 | val |= GET_FIELD (word, 5, 6); | |
194 | val <<= 5; | |
195 | val |= GET_FIELD (word, 0, 4); | |
196 | val <<= 2; | |
197 | val |= GET_FIELD (word, 7, 8); | |
198 | return sign_extend (val, 21) << 11; | |
199 | } | |
200 | ||
201 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
202 | usually the top 21 bits of a 32 bit constant, we assume that only | |
203 | the low 21 bits of opnd are relevant */ | |
204 | ||
205 | unsigned | |
206 | deposit_21 (opnd, word) | |
207 | unsigned opnd, word; | |
208 | { | |
209 | unsigned val = 0; | |
210 | ||
211 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
212 | val <<= 2; | |
213 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
214 | val <<= 2; | |
215 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
216 | val <<= 11; | |
217 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
218 | val <<= 1; | |
219 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
220 | return word | val; | |
221 | } | |
222 | ||
223 | /* extract a 12 bit constant from branch instructions */ | |
224 | ||
225 | int | |
226 | extract_12 (word) | |
227 | unsigned word; | |
228 | { | |
229 | return sign_extend (GET_FIELD (word, 19, 28) | | |
230 | GET_FIELD (word, 29, 29) << 10 | | |
231 | (word & 0x1) << 11, 12) << 2; | |
232 | } | |
233 | ||
234 | /* extract a 17 bit constant from branch instructions, returning the | |
235 | 19 bit signed value. */ | |
236 | ||
237 | int | |
238 | extract_17 (word) | |
239 | unsigned word; | |
240 | { | |
241 | return sign_extend (GET_FIELD (word, 19, 28) | | |
242 | GET_FIELD (word, 29, 29) << 10 | | |
243 | GET_FIELD (word, 11, 15) << 11 | | |
244 | (word & 0x1) << 16, 17) << 2; | |
245 | } | |
246 | \f | |
66a1aa07 SG |
247 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
248 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
249 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
250 | search of the unwind tables, we depend upon them to be sorted. */ | |
251 | ||
252 | static struct unwind_table_entry * | |
253 | find_unwind_entry(pc) | |
254 | CORE_ADDR pc; | |
255 | { | |
256 | int first, middle, last; | |
257 | struct objfile *objfile; | |
258 | ||
259 | ALL_OBJFILES (objfile) | |
260 | { | |
261 | struct obj_unwind_info *ui; | |
262 | ||
263 | ui = OBJ_UNWIND_INFO (objfile); | |
264 | ||
265 | if (!ui) | |
266 | continue; | |
267 | ||
268 | /* First, check the cache */ | |
269 | ||
270 | if (ui->cache | |
271 | && pc >= ui->cache->region_start | |
272 | && pc <= ui->cache->region_end) | |
273 | return ui->cache; | |
274 | ||
275 | /* Not in the cache, do a binary search */ | |
276 | ||
277 | first = 0; | |
278 | last = ui->last; | |
279 | ||
280 | while (first <= last) | |
281 | { | |
282 | middle = (first + last) / 2; | |
283 | if (pc >= ui->table[middle].region_start | |
284 | && pc <= ui->table[middle].region_end) | |
285 | { | |
286 | ui->cache = &ui->table[middle]; | |
287 | return &ui->table[middle]; | |
288 | } | |
289 | ||
290 | if (pc < ui->table[middle].region_start) | |
291 | last = middle - 1; | |
292 | else | |
293 | first = middle + 1; | |
294 | } | |
295 | } /* ALL_OBJFILES() */ | |
296 | return NULL; | |
297 | } | |
298 | ||
5ac7f56e JK |
299 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
300 | appears that PC is in a linker stub. */ | |
301 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); | |
302 | ||
303 | static int | |
304 | pc_in_linker_stub (pc) | |
305 | CORE_ADDR pc; | |
306 | { | |
5ac7f56e JK |
307 | int found_magic_instruction = 0; |
308 | int i; | |
08ecd8f3 JK |
309 | char buf[4]; |
310 | ||
311 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
312 | if (target_read_memory (pc, buf, 4) != 0) | |
313 | return 0; | |
5ac7f56e | 314 | |
d08c6f4c JK |
315 | /* We are looking for something like |
316 | ||
317 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
318 | ; before calling the "call stub" | |
319 | ldw -18(sp),rp | |
320 | ||
321 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
322 | mtsp r1,sp ; Move it into space register 0 | |
323 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
324 | */ | |
325 | ||
5ac7f56e JK |
326 | /* Maximum known linker stub size is 4 instructions. Search forward |
327 | from the given PC, then backward. */ | |
328 | for (i = 0; i < 4; i++) | |
329 | { | |
6e35b037 | 330 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
331 | |
332 | if (find_unwind_entry (pc + i * 4) != 0) | |
333 | break; | |
334 | ||
335 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
336 | return from a cross-space function call. */ | |
337 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
338 | { | |
339 | found_magic_instruction = 1; | |
340 | break; | |
341 | } | |
342 | /* Add code to handle long call/branch and argument relocation stubs | |
343 | here. */ | |
344 | } | |
345 | ||
346 | if (found_magic_instruction != 0) | |
347 | return 1; | |
348 | ||
349 | /* Now look backward. */ | |
350 | for (i = 0; i < 4; i++) | |
351 | { | |
6e35b037 | 352 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
353 | |
354 | if (find_unwind_entry (pc - i * 4) != 0) | |
355 | break; | |
356 | ||
357 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
358 | return from a cross-space function call. */ | |
359 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
360 | { | |
361 | found_magic_instruction = 1; | |
362 | break; | |
363 | } | |
364 | /* Add code to handle long call/branch and argument relocation stubs | |
365 | here. */ | |
366 | } | |
367 | return found_magic_instruction; | |
368 | } | |
369 | ||
66a1aa07 SG |
370 | static int |
371 | find_return_regnum(pc) | |
372 | CORE_ADDR pc; | |
373 | { | |
374 | struct unwind_table_entry *u; | |
375 | ||
376 | u = find_unwind_entry (pc); | |
377 | ||
378 | if (!u) | |
379 | return RP_REGNUM; | |
380 | ||
381 | if (u->Millicode) | |
382 | return 31; | |
383 | ||
384 | return RP_REGNUM; | |
385 | } | |
386 | ||
5ac7f56e | 387 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
66a1aa07 SG |
388 | int |
389 | find_proc_framesize(pc) | |
390 | CORE_ADDR pc; | |
391 | { | |
392 | struct unwind_table_entry *u; | |
393 | ||
66a1aa07 SG |
394 | u = find_unwind_entry (pc); |
395 | ||
396 | if (!u) | |
5ac7f56e JK |
397 | { |
398 | if (pc_in_linker_stub (pc)) | |
399 | /* Linker stubs have a zero size frame. */ | |
400 | return 0; | |
401 | else | |
402 | return -1; | |
403 | } | |
66a1aa07 | 404 | |
eabbe766 JK |
405 | if (u->Save_SP) |
406 | /* If this bit is set, it means there is a frame pointer and we should | |
407 | use it. */ | |
408 | return -1; | |
409 | ||
66a1aa07 SG |
410 | return u->Total_frame_size << 3; |
411 | } | |
412 | ||
5ac7f56e JK |
413 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
414 | static int rp_saved PARAMS ((CORE_ADDR)); | |
415 | ||
416 | static int | |
417 | rp_saved (pc) | |
418 | CORE_ADDR pc; | |
66a1aa07 SG |
419 | { |
420 | struct unwind_table_entry *u; | |
421 | ||
422 | u = find_unwind_entry (pc); | |
423 | ||
424 | if (!u) | |
5ac7f56e JK |
425 | { |
426 | if (pc_in_linker_stub (pc)) | |
427 | /* This is the so-called RP'. */ | |
428 | return -24; | |
429 | else | |
430 | return 0; | |
431 | } | |
66a1aa07 SG |
432 | |
433 | if (u->Save_RP) | |
5ac7f56e | 434 | return -20; |
66a1aa07 SG |
435 | else |
436 | return 0; | |
437 | } | |
438 | \f | |
8fa74880 SG |
439 | int |
440 | frameless_function_invocation (frame) | |
441 | FRAME frame; | |
442 | { | |
b8ec9a79 | 443 | struct unwind_table_entry *u; |
8fa74880 | 444 | |
b8ec9a79 | 445 | u = find_unwind_entry (frame->pc); |
8fa74880 | 446 | |
b8ec9a79 | 447 | if (u == 0) |
8fa74880 | 448 | return frameless_look_for_prologue (frame); |
b8ec9a79 JK |
449 | |
450 | return (u->Total_frame_size == 0); | |
8fa74880 SG |
451 | } |
452 | ||
66a1aa07 SG |
453 | CORE_ADDR |
454 | saved_pc_after_call (frame) | |
455 | FRAME frame; | |
456 | { | |
457 | int ret_regnum; | |
458 | ||
459 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
460 | ||
461 | return read_register (ret_regnum) & ~0x3; | |
462 | } | |
463 | \f | |
464 | CORE_ADDR | |
465 | frame_saved_pc (frame) | |
466 | FRAME frame; | |
467 | { | |
468 | CORE_ADDR pc = get_frame_pc (frame); | |
469 | ||
8fa74880 | 470 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
471 | { |
472 | int ret_regnum; | |
473 | ||
474 | ret_regnum = find_return_regnum (pc); | |
475 | ||
476 | return read_register (ret_regnum) & ~0x3; | |
477 | } | |
66a1aa07 | 478 | else |
5ac7f56e JK |
479 | { |
480 | int rp_offset = rp_saved (pc); | |
481 | ||
482 | if (rp_offset == 0) | |
483 | return read_register (RP_REGNUM) & ~0x3; | |
484 | else | |
28403b8e | 485 | return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 486 | } |
66a1aa07 SG |
487 | } |
488 | \f | |
489 | /* We need to correct the PC and the FP for the outermost frame when we are | |
490 | in a system call. */ | |
491 | ||
492 | void | |
493 | init_extra_frame_info (fromleaf, frame) | |
494 | int fromleaf; | |
495 | struct frame_info *frame; | |
496 | { | |
497 | int flags; | |
498 | int framesize; | |
499 | ||
192c3eeb | 500 | if (frame->next && !fromleaf) |
66a1aa07 SG |
501 | return; |
502 | ||
192c3eeb JL |
503 | /* If the next frame represents a frameless function invocation |
504 | then we have to do some adjustments that are normally done by | |
505 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
506 | if (fromleaf) | |
507 | { | |
508 | /* Find the framesize of *this* frame without peeking at the PC | |
509 | in the current frame structure (it isn't set yet). */ | |
510 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
511 | ||
512 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
513 | use it, else subtract the size of this frame from the current | |
514 | frame. (we always want frame->frame to point at the lowest address | |
515 | in the frame). */ | |
516 | if (framesize == -1) | |
517 | frame->frame = read_register (FP_REGNUM); | |
518 | else | |
519 | frame->frame -= framesize; | |
520 | return; | |
521 | } | |
522 | ||
66a1aa07 SG |
523 | flags = read_register (FLAGS_REGNUM); |
524 | if (flags & 2) /* In system call? */ | |
525 | frame->pc = read_register (31) & ~0x3; | |
526 | ||
192c3eeb JL |
527 | /* The outermost frame is always derived from PC-framesize |
528 | ||
529 | One might think frameless innermost frames should have | |
530 | a frame->frame that is the same as the parent's frame->frame. | |
531 | That is wrong; frame->frame in that case should be the *high* | |
532 | address of the parent's frame. It's complicated as hell to | |
533 | explain, but the parent *always* creates some stack space for | |
534 | the child. So the child actually does have a frame of some | |
535 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
536 | framesize = find_proc_framesize(frame->pc); |
537 | if (framesize == -1) | |
538 | frame->frame = read_register (FP_REGNUM); | |
539 | else | |
540 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
541 | } |
542 | \f | |
8966221d JK |
543 | /* Given a GDB frame, determine the address of the calling function's frame. |
544 | This will be used to create a new GDB frame struct, and then | |
545 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
546 | ||
547 | This may involve searching through prologues for several functions | |
548 | at boundaries where GCC calls HP C code, or where code which has | |
549 | a frame pointer calls code without a frame pointer. */ | |
550 | ||
551 | ||
66a1aa07 SG |
552 | FRAME_ADDR |
553 | frame_chain (frame) | |
554 | struct frame_info *frame; | |
555 | { | |
8966221d JK |
556 | int my_framesize, caller_framesize; |
557 | struct unwind_table_entry *u; | |
66a1aa07 | 558 | |
8966221d JK |
559 | /* Get frame sizes for the current frame and the frame of the |
560 | caller. */ | |
561 | my_framesize = find_proc_framesize (frame->pc); | |
562 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 563 | |
8966221d JK |
564 | /* If caller does not have a frame pointer, then its frame |
565 | can be found at current_frame - caller_framesize. */ | |
566 | if (caller_framesize != -1) | |
567 | return frame->frame - caller_framesize; | |
568 | ||
569 | /* Both caller and callee have frame pointers and are GCC compiled | |
570 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
571 | The previous frame pointer is found at the top of the current frame. */ | |
572 | if (caller_framesize == -1 && my_framesize == -1) | |
573 | return read_memory_integer (frame->frame, 4); | |
574 | ||
575 | /* Caller has a frame pointer, but callee does not. This is a little | |
576 | more difficult as GCC and HP C lay out locals and callee register save | |
577 | areas very differently. | |
578 | ||
579 | The previous frame pointer could be in a register, or in one of | |
580 | several areas on the stack. | |
581 | ||
582 | Walk from the current frame to the innermost frame examining | |
583 | unwind descriptors to determine if %r4 ever gets saved into the | |
584 | stack. If so return whatever value got saved into the stack. | |
585 | If it was never saved in the stack, then the value in %r4 is still | |
586 | valid, so use it. | |
587 | ||
588 | We use information from unwind descriptors to determine if %r4 | |
589 | is saved into the stack (Entry_GR field has this information). */ | |
590 | ||
591 | while (frame) | |
592 | { | |
593 | u = find_unwind_entry (frame->pc); | |
594 | ||
595 | if (!u) | |
596 | { | |
01a03545 JK |
597 | /* We could find this information by examining prologues. I don't |
598 | think anyone has actually written any tools (not even "strip") | |
599 | which leave them out of an executable, so maybe this is a moot | |
600 | point. */ | |
8966221d JK |
601 | warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); |
602 | return 0; | |
603 | } | |
604 | ||
605 | /* Entry_GR specifies the number of callee-saved general registers | |
606 | saved in the stack. It starts at %r3, so %r4 would be 2. */ | |
607 | if (u->Entry_GR >= 2 || u->Save_SP) | |
608 | break; | |
609 | else | |
610 | frame = frame->next; | |
611 | } | |
612 | ||
613 | if (frame) | |
614 | { | |
615 | /* We may have walked down the chain into a function with a frame | |
616 | pointer. */ | |
617 | if (u->Save_SP) | |
618 | return read_memory_integer (frame->frame, 4); | |
619 | /* %r4 was saved somewhere in the stack. Dig it out. */ | |
620 | else | |
621 | return dig_fp_from_stack (frame, u); | |
622 | } | |
623 | else | |
624 | { | |
625 | /* The value in %r4 was never saved into the stack (thus %r4 still | |
626 | holds the value of the previous frame pointer). */ | |
627 | return read_register (4); | |
628 | } | |
629 | } | |
66a1aa07 | 630 | |
8966221d JK |
631 | /* Given a frame and an unwind descriptor return the value for %fr (aka fp) |
632 | which was saved into the stack. FIXME: Why can't we just use the standard | |
633 | saved_regs stuff? */ | |
634 | ||
635 | static FRAME_ADDR | |
636 | dig_fp_from_stack (frame, u) | |
637 | FRAME frame; | |
638 | struct unwind_table_entry *u; | |
639 | { | |
640 | CORE_ADDR pc = u->region_start; | |
641 | ||
642 | /* Search the function for the save of %r4. */ | |
643 | while (pc != u->region_end) | |
644 | { | |
645 | char buf[4]; | |
646 | unsigned long inst; | |
647 | int status; | |
648 | ||
649 | /* We need only look for the standard stw %r4,X(%sp) instruction, | |
650 | the other variants (eg stwm) are only used on the first register | |
651 | save (eg %r3). */ | |
652 | status = target_read_memory (pc, buf, 4); | |
653 | inst = extract_unsigned_integer (buf, 4); | |
654 | ||
655 | if (status != 0) | |
656 | memory_error (status, pc); | |
657 | ||
658 | /* Check for stw %r4,X(%sp). */ | |
659 | if ((inst & 0xffffc000) == 0x6bc40000) | |
660 | { | |
661 | /* Found the instruction which saves %r4. The offset (relative | |
662 | to this frame) is framesize + immed14 (derived from the | |
663 | store instruction). */ | |
664 | int offset = (u->Total_frame_size << 3) + extract_14 (inst); | |
665 | ||
666 | return read_memory_integer (frame->frame + offset, 4); | |
667 | } | |
668 | ||
669 | /* Keep looking. */ | |
670 | pc += 4; | |
671 | } | |
672 | ||
673 | warning ("Unable to find %%r4 in stack.\n"); | |
674 | return 0; | |
66a1aa07 | 675 | } |
8966221d | 676 | |
66a1aa07 SG |
677 | \f |
678 | /* To see if a frame chain is valid, see if the caller looks like it | |
679 | was compiled with gcc. */ | |
680 | ||
681 | int | |
682 | frame_chain_valid (chain, thisframe) | |
683 | FRAME_ADDR chain; | |
684 | FRAME thisframe; | |
685 | { | |
247145e6 JK |
686 | struct minimal_symbol *msym_us; |
687 | struct minimal_symbol *msym_start; | |
4432b9f9 | 688 | struct unwind_table_entry *u; |
66a1aa07 SG |
689 | |
690 | if (!chain) | |
691 | return 0; | |
692 | ||
b8ec9a79 | 693 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 694 | |
247145e6 JK |
695 | /* We can't just check that the same of msym_us is "_start", because |
696 | someone idiotically decided that they were going to make a Ltext_end | |
697 | symbol with the same address. This Ltext_end symbol is totally | |
698 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
699 | which is (legitimately, since it is in the user's namespace) | |
700 | named Ltext_end, so we can't just ignore it. */ | |
701 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
702 | msym_start = lookup_minimal_symbol ("_start", NULL); | |
703 | if (msym_us | |
704 | && msym_start | |
705 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 706 | return 0; |
5ac7f56e | 707 | |
b8ec9a79 JK |
708 | if (u == NULL) |
709 | return 1; | |
5ac7f56e | 710 | |
b8ec9a79 JK |
711 | if (u->Save_SP || u->Total_frame_size) |
712 | return 1; | |
5ac7f56e | 713 | |
b8ec9a79 JK |
714 | if (pc_in_linker_stub (thisframe->pc)) |
715 | return 1; | |
4b01383b | 716 | |
b8ec9a79 | 717 | return 0; |
66a1aa07 SG |
718 | } |
719 | ||
66a1aa07 SG |
720 | /* |
721 | * These functions deal with saving and restoring register state | |
722 | * around a function call in the inferior. They keep the stack | |
723 | * double-word aligned; eventually, on an hp700, the stack will have | |
724 | * to be aligned to a 64-byte boundary. | |
725 | */ | |
726 | ||
727 | int | |
728 | push_dummy_frame () | |
729 | { | |
730 | register CORE_ADDR sp; | |
731 | register int regnum; | |
732 | int int_buffer; | |
733 | double freg_buffer; | |
734 | ||
735 | /* Space for "arguments"; the RP goes in here. */ | |
736 | sp = read_register (SP_REGNUM) + 48; | |
737 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
738 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
739 | ||
740 | int_buffer = read_register (FP_REGNUM); | |
741 | write_memory (sp, (char *)&int_buffer, 4); | |
742 | ||
743 | write_register (FP_REGNUM, sp); | |
744 | ||
745 | sp += 8; | |
746 | ||
747 | for (regnum = 1; regnum < 32; regnum++) | |
748 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
749 | sp = push_word (sp, read_register (regnum)); | |
750 | ||
751 | sp += 4; | |
752 | ||
753 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
754 | { | |
755 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
756 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
757 | } | |
758 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
759 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
760 | sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); | |
761 | sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); | |
762 | sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); | |
763 | sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); | |
764 | write_register (SP_REGNUM, sp); | |
765 | } | |
766 | ||
767 | find_dummy_frame_regs (frame, frame_saved_regs) | |
768 | struct frame_info *frame; | |
769 | struct frame_saved_regs *frame_saved_regs; | |
770 | { | |
771 | CORE_ADDR fp = frame->frame; | |
772 | int i; | |
773 | ||
774 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
775 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
776 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 777 | |
b227992a SG |
778 | for (fp += 12, i = 3; i < 32; i++) |
779 | { | |
780 | if (i != FP_REGNUM) | |
781 | { | |
782 | frame_saved_regs->regs[i] = fp; | |
783 | fp += 4; | |
784 | } | |
785 | } | |
66a1aa07 SG |
786 | |
787 | fp += 4; | |
788 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
789 | frame_saved_regs->regs[i] = fp; | |
790 | ||
791 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
792 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
793 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
794 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
795 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
796 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
797 | } |
798 | ||
799 | int | |
800 | hppa_pop_frame () | |
801 | { | |
802 | register FRAME frame = get_current_frame (); | |
803 | register CORE_ADDR fp; | |
804 | register int regnum; | |
805 | struct frame_saved_regs fsr; | |
806 | struct frame_info *fi; | |
807 | double freg_buffer; | |
808 | ||
809 | fi = get_frame_info (frame); | |
810 | fp = fi->frame; | |
811 | get_frame_saved_regs (fi, &fsr); | |
812 | ||
813 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ | |
814 | restore_pc_queue (&fsr); | |
815 | ||
816 | for (regnum = 31; regnum > 0; regnum--) | |
817 | if (fsr.regs[regnum]) | |
818 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
819 | ||
820 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
821 | if (fsr.regs[regnum]) | |
822 | { | |
823 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
824 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
825 | } | |
826 | ||
827 | if (fsr.regs[IPSW_REGNUM]) | |
828 | write_register (IPSW_REGNUM, | |
829 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
830 | ||
831 | if (fsr.regs[SAR_REGNUM]) | |
832 | write_register (SAR_REGNUM, | |
833 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
834 | ||
ed1a07ad | 835 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 SG |
836 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
837 | write_register (PCOQ_TAIL_REGNUM, | |
838 | read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); | |
839 | ||
ed1a07ad JK |
840 | /* Else use the value in %rp to set the new PC. */ |
841 | else | |
842 | target_write_pc (read_register (RP_REGNUM)); | |
843 | ||
66a1aa07 SG |
844 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
845 | ||
846 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
847 | write_register (SP_REGNUM, fp - 48); | |
848 | else | |
849 | write_register (SP_REGNUM, fp); | |
850 | ||
851 | flush_cached_frames (); | |
852 | set_current_frame (create_new_frame (read_register (FP_REGNUM), | |
853 | read_pc ())); | |
854 | } | |
855 | ||
856 | /* | |
857 | * After returning to a dummy on the stack, restore the instruction | |
858 | * queue space registers. */ | |
859 | ||
860 | static int | |
861 | restore_pc_queue (fsr) | |
862 | struct frame_saved_regs *fsr; | |
863 | { | |
864 | CORE_ADDR pc = read_pc (); | |
865 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
866 | int pid; | |
867 | WAITTYPE w; | |
868 | int insn_count; | |
869 | ||
870 | /* Advance past break instruction in the call dummy. */ | |
871 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
872 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
873 | ||
874 | /* | |
875 | * HPUX doesn't let us set the space registers or the space | |
876 | * registers of the PC queue through ptrace. Boo, hiss. | |
877 | * Conveniently, the call dummy has this sequence of instructions | |
878 | * after the break: | |
879 | * mtsp r21, sr0 | |
880 | * ble,n 0(sr0, r22) | |
881 | * | |
882 | * So, load up the registers and single step until we are in the | |
883 | * right place. | |
884 | */ | |
885 | ||
886 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
887 | write_register (22, new_pc); | |
888 | ||
889 | for (insn_count = 0; insn_count < 3; insn_count++) | |
890 | { | |
8c5e0021 JK |
891 | /* FIXME: What if the inferior gets a signal right now? Want to |
892 | merge this into wait_for_inferior (as a special kind of | |
893 | watchpoint? By setting a breakpoint at the end? Is there | |
894 | any other choice? Is there *any* way to do this stuff with | |
895 | ptrace() or some equivalent?). */ | |
66a1aa07 | 896 | resume (1, 0); |
de43d7d0 | 897 | target_wait(inferior_pid, &w); |
66a1aa07 SG |
898 | |
899 | if (!WIFSTOPPED (w)) | |
900 | { | |
901 | stop_signal = WTERMSIG (w); | |
902 | terminal_ours_for_output (); | |
199b2450 | 903 | printf_unfiltered ("\nProgram terminated with signal %d, %s\n", |
66a1aa07 | 904 | stop_signal, safe_strsignal (stop_signal)); |
199b2450 | 905 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
906 | return 0; |
907 | } | |
908 | } | |
8c5e0021 | 909 | target_terminal_ours (); |
66a1aa07 SG |
910 | fetch_inferior_registers (-1); |
911 | return 1; | |
912 | } | |
913 | ||
914 | CORE_ADDR | |
915 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
916 | int nargs; | |
917 | value *args; | |
918 | CORE_ADDR sp; | |
919 | int struct_return; | |
920 | CORE_ADDR struct_addr; | |
921 | { | |
922 | /* array of arguments' offsets */ | |
1edc5cd2 | 923 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
924 | int cum = 0; |
925 | int i, alignment; | |
926 | ||
927 | for (i = 0; i < nargs; i++) | |
928 | { | |
929 | /* Coerce chars to int & float to double if necessary */ | |
930 | args[i] = value_arg_coerce (args[i]); | |
931 | ||
932 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
933 | ||
934 | /* value must go at proper alignment. Assume alignment is a | |
935 | power of two.*/ | |
936 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
937 | if (cum % alignment) | |
938 | cum = (cum + alignment) & -alignment; | |
939 | offset[i] = -cum; | |
940 | } | |
558f4183 | 941 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
942 | |
943 | for (i = 0; i < nargs; i++) | |
944 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
945 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
946 | ||
947 | if (struct_return) | |
948 | write_register (28, struct_addr); | |
949 | return sp + 32; | |
950 | } | |
951 | ||
952 | /* | |
953 | * Insert the specified number of args and function address | |
954 | * into a call sequence of the above form stored at DUMMYNAME. | |
955 | * | |
956 | * On the hppa we need to call the stack dummy through $$dyncall. | |
957 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
958 | * real_pc, which is the location where gdb should start up the | |
959 | * inferior to do the function call. | |
960 | */ | |
961 | ||
962 | CORE_ADDR | |
963 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 964 | char *dummy; |
66a1aa07 SG |
965 | CORE_ADDR pc; |
966 | CORE_ADDR fun; | |
967 | int nargs; | |
968 | value *args; | |
969 | struct type *type; | |
970 | int gcc_p; | |
971 | { | |
972 | CORE_ADDR dyncall_addr, sr4export_addr; | |
973 | struct minimal_symbol *msymbol; | |
6cfec929 | 974 | int flags = read_register (FLAGS_REGNUM); |
66a1aa07 SG |
975 | |
976 | msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); | |
977 | if (msymbol == NULL) | |
978 | error ("Can't find an address for $$dyncall trampoline"); | |
979 | ||
980 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
981 | ||
982 | msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); | |
983 | if (msymbol == NULL) | |
984 | error ("Can't find an address for _sr4export trampoline"); | |
985 | ||
986 | sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
987 | ||
f4f0d174 JK |
988 | store_unsigned_integer |
989 | (&dummy[9*REGISTER_SIZE], | |
990 | REGISTER_SIZE, | |
991 | deposit_21 (fun >> 11, | |
992 | extract_unsigned_integer (&dummy[9*REGISTER_SIZE], | |
993 | REGISTER_SIZE))); | |
994 | store_unsigned_integer | |
995 | (&dummy[10*REGISTER_SIZE], | |
996 | REGISTER_SIZE, | |
997 | deposit_14 (fun & MASK_11, | |
998 | extract_unsigned_integer (&dummy[10*REGISTER_SIZE], | |
999 | REGISTER_SIZE))); | |
1000 | store_unsigned_integer | |
1001 | (&dummy[12*REGISTER_SIZE], | |
1002 | REGISTER_SIZE, | |
1003 | deposit_21 (sr4export_addr >> 11, | |
1004 | extract_unsigned_integer (&dummy[12*REGISTER_SIZE], | |
1005 | REGISTER_SIZE))); | |
1006 | store_unsigned_integer | |
1007 | (&dummy[13*REGISTER_SIZE], | |
1008 | REGISTER_SIZE, | |
1009 | deposit_14 (sr4export_addr & MASK_11, | |
1010 | extract_unsigned_integer (&dummy[13*REGISTER_SIZE], | |
1011 | REGISTER_SIZE))); | |
66a1aa07 SG |
1012 | |
1013 | write_register (22, pc); | |
1014 | ||
6cfec929 JK |
1015 | /* If we are in a syscall, then we should call the stack dummy |
1016 | directly. $$dyncall is not needed as the kernel sets up the | |
1017 | space id registers properly based on the value in %r31. In | |
1018 | fact calling $$dyncall will not work because the value in %r22 | |
1019 | will be clobbered on the syscall exit path. */ | |
1020 | if (flags & 2) | |
1021 | return pc; | |
1022 | else | |
1023 | return dyncall_addr; | |
1024 | ||
66a1aa07 SG |
1025 | } |
1026 | ||
d3862cae JK |
1027 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1028 | bits. */ | |
1029 | CORE_ADDR | |
1030 | target_read_pc () | |
1031 | { | |
1032 | int flags = read_register (FLAGS_REGNUM); | |
1033 | ||
1034 | if (flags & 2) | |
1035 | return read_register (31) & ~0x3; | |
1036 | return read_register (PC_REGNUM) & ~0x3; | |
1037 | } | |
1038 | ||
6cfec929 JK |
1039 | /* Write out the PC. If currently in a syscall, then also write the new |
1040 | PC value into %r31. */ | |
1041 | void | |
1042 | target_write_pc (v) | |
1043 | CORE_ADDR v; | |
1044 | { | |
1045 | int flags = read_register (FLAGS_REGNUM); | |
1046 | ||
1047 | /* If in a syscall, then set %r31. Also make sure to get the | |
1048 | privilege bits set correctly. */ | |
1049 | if (flags & 2) | |
1050 | write_register (31, (long) (v | 0x3)); | |
1051 | ||
1052 | write_register (PC_REGNUM, (long) v); | |
1053 | write_register (NPC_REGNUM, (long) v + 4); | |
1054 | } | |
1055 | ||
66a1aa07 SG |
1056 | /* return the alignment of a type in bytes. Structures have the maximum |
1057 | alignment required by their fields. */ | |
1058 | ||
1059 | static int | |
1060 | hppa_alignof (arg) | |
1061 | struct type *arg; | |
1062 | { | |
1063 | int max_align, align, i; | |
1064 | switch (TYPE_CODE (arg)) | |
1065 | { | |
1066 | case TYPE_CODE_PTR: | |
1067 | case TYPE_CODE_INT: | |
1068 | case TYPE_CODE_FLT: | |
1069 | return TYPE_LENGTH (arg); | |
1070 | case TYPE_CODE_ARRAY: | |
1071 | return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); | |
1072 | case TYPE_CODE_STRUCT: | |
1073 | case TYPE_CODE_UNION: | |
1074 | max_align = 2; | |
1075 | for (i = 0; i < TYPE_NFIELDS (arg); i++) | |
1076 | { | |
1077 | /* Bit fields have no real alignment. */ | |
1078 | if (!TYPE_FIELD_BITPOS (arg, i)) | |
1079 | { | |
1080 | align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); | |
1081 | max_align = max (max_align, align); | |
1082 | } | |
1083 | } | |
1084 | return max_align; | |
1085 | default: | |
1086 | return 4; | |
1087 | } | |
1088 | } | |
1089 | ||
1090 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1091 | ||
1092 | pa_do_registers_info (regnum, fpregs) | |
1093 | int regnum; | |
1094 | int fpregs; | |
1095 | { | |
1096 | char raw_regs [REGISTER_BYTES]; | |
1097 | int i; | |
1098 | ||
1099 | for (i = 0; i < NUM_REGS; i++) | |
1100 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1101 | if (regnum == -1) | |
1102 | pa_print_registers (raw_regs, regnum, fpregs); | |
1103 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1104 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1105 | REGISTER_BYTE (regnum))); |
1106 | else | |
1107 | pa_print_fp_reg (regnum); | |
1108 | } | |
1109 | ||
1110 | pa_print_registers (raw_regs, regnum, fpregs) | |
1111 | char *raw_regs; | |
1112 | int regnum; | |
1113 | int fpregs; | |
1114 | { | |
1115 | int i; | |
1116 | ||
1117 | for (i = 0; i < 18; i++) | |
199b2450 | 1118 | printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", |
66a1aa07 SG |
1119 | reg_names[i], |
1120 | *(int *)(raw_regs + REGISTER_BYTE (i)), | |
1121 | reg_names[i + 18], | |
1122 | *(int *)(raw_regs + REGISTER_BYTE (i + 18)), | |
1123 | reg_names[i + 36], | |
1124 | *(int *)(raw_regs + REGISTER_BYTE (i + 36)), | |
1125 | reg_names[i + 54], | |
1126 | *(int *)(raw_regs + REGISTER_BYTE (i + 54))); | |
1127 | ||
1128 | if (fpregs) | |
1129 | for (i = 72; i < NUM_REGS; i++) | |
1130 | pa_print_fp_reg (i); | |
1131 | } | |
1132 | ||
1133 | pa_print_fp_reg (i) | |
1134 | int i; | |
1135 | { | |
1136 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1137 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1138 | |
ad09cb2b | 1139 | /* Get the data in raw format. */ |
66a1aa07 | 1140 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b PS |
1141 | |
1142 | /* Convert raw data to virtual format if necessary. */ | |
1143 | #ifdef REGISTER_CONVERTIBLE | |
1144 | if (REGISTER_CONVERTIBLE (i)) | |
1145 | { | |
1146 | REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i), | |
1147 | raw_buffer, virtual_buffer); | |
1148 | } | |
1149 | else | |
1150 | #endif | |
1151 | memcpy (virtual_buffer, raw_buffer, | |
1152 | REGISTER_VIRTUAL_SIZE (i)); | |
66a1aa07 | 1153 | |
199b2450 TL |
1154 | fputs_filtered (reg_names[i], gdb_stdout); |
1155 | print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout); | |
66a1aa07 | 1156 | |
199b2450 | 1157 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1158 | 1, 0, Val_pretty_default); |
1159 | printf_filtered ("\n"); | |
1160 | } | |
1161 | ||
1162 | /* Function calls that pass into a new compilation unit must pass through a | |
1163 | small piece of code that does long format (`external' in HPPA parlance) | |
1164 | jumps. We figure out where the trampoline is going to end up, and return | |
1165 | the PC of the final destination. If we aren't in a trampoline, we just | |
1166 | return NULL. | |
1167 | ||
1168 | For computed calls, we just extract the new PC from r22. */ | |
1169 | ||
1170 | CORE_ADDR | |
1171 | skip_trampoline_code (pc, name) | |
1172 | CORE_ADDR pc; | |
1173 | char *name; | |
1174 | { | |
1175 | long inst0, inst1; | |
1176 | static CORE_ADDR dyncall = 0; | |
1177 | struct minimal_symbol *msym; | |
1178 | ||
1179 | /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */ | |
1180 | ||
1181 | if (!dyncall) | |
1182 | { | |
1183 | msym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1184 | if (msym) | |
1185 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
1186 | else | |
1187 | dyncall = -1; | |
1188 | } | |
1189 | ||
1190 | if (pc == dyncall) | |
1191 | return (CORE_ADDR)(read_register (22) & ~0x3); | |
1192 | ||
1193 | inst0 = read_memory_integer (pc, 4); | |
1194 | inst1 = read_memory_integer (pc+4, 4); | |
1195 | ||
1196 | if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */ | |
1197 | && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */ | |
1198 | pc = extract_21 (inst0) + extract_17 (inst1); | |
1199 | else | |
1200 | pc = (CORE_ADDR)NULL; | |
1201 | ||
1202 | return pc; | |
1203 | } | |
1204 | ||
1205 | /* Advance PC across any function entry prologue instructions | |
1206 | to reach some "real" code. */ | |
1207 | ||
1208 | /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp) | |
1209 | for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */ | |
1210 | ||
1211 | CORE_ADDR | |
1212 | skip_prologue(pc) | |
1213 | CORE_ADDR pc; | |
1214 | { | |
34df79fc JK |
1215 | char buf[4]; |
1216 | unsigned long inst; | |
66a1aa07 SG |
1217 | int status; |
1218 | ||
34df79fc JK |
1219 | status = target_read_memory (pc, buf, 4); |
1220 | inst = extract_unsigned_integer (buf, 4); | |
66a1aa07 SG |
1221 | if (status != 0) |
1222 | return pc; | |
1223 | ||
1224 | if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */ | |
1225 | { | |
1226 | if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */ | |
1227 | pc += 16; | |
1228 | else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */ | |
1229 | pc += 8; | |
1230 | } | |
1231 | else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */ | |
1232 | pc += 12; | |
1233 | else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */ | |
1234 | pc += 4; | |
1235 | ||
1236 | return pc; | |
1237 | } | |
1238 | ||
63757ecd JK |
1239 | #ifdef MAINTENANCE_CMDS |
1240 | ||
66a1aa07 SG |
1241 | static void |
1242 | unwind_command (exp, from_tty) | |
1243 | char *exp; | |
1244 | int from_tty; | |
1245 | { | |
1246 | CORE_ADDR address; | |
1247 | union | |
1248 | { | |
1249 | int *foo; | |
1250 | struct unwind_table_entry *u; | |
1251 | } xxx; | |
1252 | ||
1253 | /* If we have an expression, evaluate it and use it as the address. */ | |
1254 | ||
1255 | if (exp != 0 && *exp != 0) | |
1256 | address = parse_and_eval_address (exp); | |
1257 | else | |
1258 | return; | |
1259 | ||
1260 | xxx.u = find_unwind_entry (address); | |
1261 | ||
1262 | if (!xxx.u) | |
1263 | { | |
199b2450 | 1264 | printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); |
66a1aa07 SG |
1265 | return; |
1266 | } | |
1267 | ||
199b2450 | 1268 | printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], |
66a1aa07 SG |
1269 | xxx.foo[3]); |
1270 | } | |
976bb0be | 1271 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
1272 | |
1273 | void | |
1274 | _initialize_hppa_tdep () | |
1275 | { | |
976bb0be | 1276 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
1277 | add_cmd ("unwind", class_maintenance, unwind_command, |
1278 | "Print unwind table entry at given address.", | |
1279 | &maintenanceprintlist); | |
63757ecd | 1280 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 1281 | } |