]> Git Repo - binutils.git/blame - gdb/infrun.c
2011-05-20 Pedro Alves <[email protected]>
[binutils.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
c906108c
SS
57
58/* Prototypes for local functions */
59
96baa820 60static void signals_info (char *, int);
c906108c 61
96baa820 62static void handle_command (char *, int);
c906108c 63
96baa820 64static void sig_print_info (enum target_signal);
c906108c 65
96baa820 66static void sig_print_header (void);
c906108c 67
74b7792f 68static void resume_cleanups (void *);
c906108c 69
96baa820 70static int hook_stop_stub (void *);
c906108c 71
96baa820
JM
72static int restore_selected_frame (void *);
73
4ef3f3be 74static int follow_fork (void);
96baa820
JM
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
b3444185
PA
81static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
a7212384 83
96baa820
JM
84static void xdb_handle_command (char *args, int from_tty);
85
6a6b96b9 86static int prepare_to_proceed (int);
ea67f13b 87
33d62d64
JK
88static void print_exited_reason (int exitstatus);
89
90static void print_signal_exited_reason (enum target_signal siggnal);
91
92static void print_no_history_reason (void);
93
94static void print_signal_received_reason (enum target_signal siggnal);
95
96static void print_end_stepping_range_reason (void);
97
96baa820 98void _initialize_infrun (void);
43ff13b4 99
e58b0e63
PA
100void nullify_last_target_wait_ptid (void);
101
2484c66b
UW
102static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
103
104static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
105
106static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
107 struct symtab_and_line ,
108 struct frame_id);
109
110static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
5fbbeb29
CF
112/* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115int step_stop_if_no_debug = 0;
920d2a44
AC
116static void
117show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121}
5fbbeb29 122
1777feb0 123/* In asynchronous mode, but simulating synchronous execution. */
96baa820 124
43ff13b4
JM
125int sync_execution = 0;
126
c906108c
SS
127/* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
96baa820
JM
129 running in. */
130
39f77062 131static ptid_t previous_inferior_ptid;
7a292a7a 132
6c95b8df
PA
133/* Default behavior is to detach newly forked processes (legacy). */
134int detach_fork = 1;
135
237fc4c9
PA
136int debug_displaced = 0;
137static void
138show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142}
143
628fe4e4 144int debug_infrun = 0;
920d2a44
AC
145static void
146show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150}
527159b7 151
d4f3574e
SS
152/* If the program uses ELF-style shared libraries, then calls to
153 functions in shared libraries go through stubs, which live in a
154 table called the PLT (Procedure Linkage Table). The first time the
155 function is called, the stub sends control to the dynamic linker,
156 which looks up the function's real address, patches the stub so
157 that future calls will go directly to the function, and then passes
158 control to the function.
159
160 If we are stepping at the source level, we don't want to see any of
161 this --- we just want to skip over the stub and the dynamic linker.
162 The simple approach is to single-step until control leaves the
163 dynamic linker.
164
ca557f44
AC
165 However, on some systems (e.g., Red Hat's 5.2 distribution) the
166 dynamic linker calls functions in the shared C library, so you
167 can't tell from the PC alone whether the dynamic linker is still
168 running. In this case, we use a step-resume breakpoint to get us
169 past the dynamic linker, as if we were using "next" to step over a
170 function call.
d4f3574e 171
cfd8ab24 172 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
173 linker code or not. Normally, this means we single-step. However,
174 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
175 address where we can place a step-resume breakpoint to get past the
176 linker's symbol resolution function.
177
cfd8ab24 178 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
179 pretty portable way, by comparing the PC against the address ranges
180 of the dynamic linker's sections.
181
182 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
183 it depends on internal details of the dynamic linker. It's usually
184 not too hard to figure out where to put a breakpoint, but it
185 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
186 sanity checking. If it can't figure things out, returning zero and
187 getting the (possibly confusing) stepping behavior is better than
188 signalling an error, which will obscure the change in the
189 inferior's state. */
c906108c 190
c906108c
SS
191/* This function returns TRUE if pc is the address of an instruction
192 that lies within the dynamic linker (such as the event hook, or the
193 dld itself).
194
195 This function must be used only when a dynamic linker event has
196 been caught, and the inferior is being stepped out of the hook, or
197 undefined results are guaranteed. */
198
199#ifndef SOLIB_IN_DYNAMIC_LINKER
200#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
201#endif
202
d914c394
SS
203/* "Observer mode" is somewhat like a more extreme version of
204 non-stop, in which all GDB operations that might affect the
205 target's execution have been disabled. */
206
207static int non_stop_1 = 0;
208
209int observer_mode = 0;
210static int observer_mode_1 = 0;
211
212static void
213set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215{
216 extern int pagination_enabled;
217
218 if (target_has_execution)
219 {
220 observer_mode_1 = observer_mode;
221 error (_("Cannot change this setting while the inferior is running."));
222 }
223
224 observer_mode = observer_mode_1;
225
226 may_write_registers = !observer_mode;
227 may_write_memory = !observer_mode;
228 may_insert_breakpoints = !observer_mode;
229 may_insert_tracepoints = !observer_mode;
230 /* We can insert fast tracepoints in or out of observer mode,
231 but enable them if we're going into this mode. */
232 if (observer_mode)
233 may_insert_fast_tracepoints = 1;
234 may_stop = !observer_mode;
235 update_target_permissions ();
236
237 /* Going *into* observer mode we must force non-stop, then
238 going out we leave it that way. */
239 if (observer_mode)
240 {
241 target_async_permitted = 1;
242 pagination_enabled = 0;
243 non_stop = non_stop_1 = 1;
244 }
245
246 if (from_tty)
247 printf_filtered (_("Observer mode is now %s.\n"),
248 (observer_mode ? "on" : "off"));
249}
250
251static void
252show_observer_mode (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254{
255 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
256}
257
258/* This updates the value of observer mode based on changes in
259 permissions. Note that we are deliberately ignoring the values of
260 may-write-registers and may-write-memory, since the user may have
261 reason to enable these during a session, for instance to turn on a
262 debugging-related global. */
263
264void
265update_observer_mode (void)
266{
267 int newval;
268
269 newval = (!may_insert_breakpoints
270 && !may_insert_tracepoints
271 && may_insert_fast_tracepoints
272 && !may_stop
273 && non_stop);
274
275 /* Let the user know if things change. */
276 if (newval != observer_mode)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (newval ? "on" : "off"));
279
280 observer_mode = observer_mode_1 = newval;
281}
c2c6d25f 282
c906108c
SS
283/* Tables of how to react to signals; the user sets them. */
284
285static unsigned char *signal_stop;
286static unsigned char *signal_print;
287static unsigned char *signal_program;
288
2455069d
UW
289/* Table of signals that the target may silently handle.
290 This is automatically determined from the flags above,
291 and simply cached here. */
292static unsigned char *signal_pass;
293
c906108c
SS
294#define SET_SIGS(nsigs,sigs,flags) \
295 do { \
296 int signum = (nsigs); \
297 while (signum-- > 0) \
298 if ((sigs)[signum]) \
299 (flags)[signum] = 1; \
300 } while (0)
301
302#define UNSET_SIGS(nsigs,sigs,flags) \
303 do { \
304 int signum = (nsigs); \
305 while (signum-- > 0) \
306 if ((sigs)[signum]) \
307 (flags)[signum] = 0; \
308 } while (0)
309
1777feb0 310/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 311
edb3359d 312#define RESUME_ALL minus_one_ptid
c906108c
SS
313
314/* Command list pointer for the "stop" placeholder. */
315
316static struct cmd_list_element *stop_command;
317
c906108c
SS
318/* Function inferior was in as of last step command. */
319
320static struct symbol *step_start_function;
321
c906108c
SS
322/* Nonzero if we want to give control to the user when we're notified
323 of shared library events by the dynamic linker. */
628fe4e4 324int stop_on_solib_events;
920d2a44
AC
325static void
326show_stop_on_solib_events (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c, const char *value)
328{
329 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
330 value);
331}
c906108c 332
c906108c
SS
333/* Nonzero means expecting a trace trap
334 and should stop the inferior and return silently when it happens. */
335
336int stop_after_trap;
337
642fd101
DE
338/* Save register contents here when executing a "finish" command or are
339 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
340 Thus this contains the return value from the called function (assuming
341 values are returned in a register). */
342
72cec141 343struct regcache *stop_registers;
c906108c 344
c906108c
SS
345/* Nonzero after stop if current stack frame should be printed. */
346
347static int stop_print_frame;
348
e02bc4cc 349/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
350 returned by target_wait()/deprecated_target_wait_hook(). This
351 information is returned by get_last_target_status(). */
39f77062 352static ptid_t target_last_wait_ptid;
e02bc4cc
DS
353static struct target_waitstatus target_last_waitstatus;
354
0d1e5fa7
PA
355static void context_switch (ptid_t ptid);
356
4e1c45ea 357void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
358
359void init_infwait_state (void);
a474d7c2 360
53904c9e
AC
361static const char follow_fork_mode_child[] = "child";
362static const char follow_fork_mode_parent[] = "parent";
363
488f131b 364static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
365 follow_fork_mode_child,
366 follow_fork_mode_parent,
367 NULL
ef346e04 368};
c906108c 369
53904c9e 370static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
371static void
372show_follow_fork_mode_string (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
3e43a32a
MS
375 fprintf_filtered (file,
376 _("Debugger response to a program "
377 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
378 value);
379}
c906108c
SS
380\f
381
e58b0e63
PA
382/* Tell the target to follow the fork we're stopped at. Returns true
383 if the inferior should be resumed; false, if the target for some
384 reason decided it's best not to resume. */
385
6604731b 386static int
4ef3f3be 387follow_fork (void)
c906108c 388{
ea1dd7bc 389 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
390 int should_resume = 1;
391 struct thread_info *tp;
392
393 /* Copy user stepping state to the new inferior thread. FIXME: the
394 followed fork child thread should have a copy of most of the
4e3990f4
DE
395 parent thread structure's run control related fields, not just these.
396 Initialized to avoid "may be used uninitialized" warnings from gcc. */
397 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 398 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
399 CORE_ADDR step_range_start = 0;
400 CORE_ADDR step_range_end = 0;
401 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
402
403 if (!non_stop)
404 {
405 ptid_t wait_ptid;
406 struct target_waitstatus wait_status;
407
408 /* Get the last target status returned by target_wait(). */
409 get_last_target_status (&wait_ptid, &wait_status);
410
411 /* If not stopped at a fork event, then there's nothing else to
412 do. */
413 if (wait_status.kind != TARGET_WAITKIND_FORKED
414 && wait_status.kind != TARGET_WAITKIND_VFORKED)
415 return 1;
416
417 /* Check if we switched over from WAIT_PTID, since the event was
418 reported. */
419 if (!ptid_equal (wait_ptid, minus_one_ptid)
420 && !ptid_equal (inferior_ptid, wait_ptid))
421 {
422 /* We did. Switch back to WAIT_PTID thread, to tell the
423 target to follow it (in either direction). We'll
424 afterwards refuse to resume, and inform the user what
425 happened. */
426 switch_to_thread (wait_ptid);
427 should_resume = 0;
428 }
429 }
430
431 tp = inferior_thread ();
432
433 /* If there were any forks/vforks that were caught and are now to be
434 followed, then do so now. */
435 switch (tp->pending_follow.kind)
436 {
437 case TARGET_WAITKIND_FORKED:
438 case TARGET_WAITKIND_VFORKED:
439 {
440 ptid_t parent, child;
441
442 /* If the user did a next/step, etc, over a fork call,
443 preserve the stepping state in the fork child. */
444 if (follow_child && should_resume)
445 {
8358c15c
JK
446 step_resume_breakpoint = clone_momentary_breakpoint
447 (tp->control.step_resume_breakpoint);
16c381f0
JK
448 step_range_start = tp->control.step_range_start;
449 step_range_end = tp->control.step_range_end;
450 step_frame_id = tp->control.step_frame_id;
186c406b
TT
451 exception_resume_breakpoint
452 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
453
454 /* For now, delete the parent's sr breakpoint, otherwise,
455 parent/child sr breakpoints are considered duplicates,
456 and the child version will not be installed. Remove
457 this when the breakpoints module becomes aware of
458 inferiors and address spaces. */
459 delete_step_resume_breakpoint (tp);
16c381f0
JK
460 tp->control.step_range_start = 0;
461 tp->control.step_range_end = 0;
462 tp->control.step_frame_id = null_frame_id;
186c406b 463 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
464 }
465
466 parent = inferior_ptid;
467 child = tp->pending_follow.value.related_pid;
468
469 /* Tell the target to do whatever is necessary to follow
470 either parent or child. */
471 if (target_follow_fork (follow_child))
472 {
473 /* Target refused to follow, or there's some other reason
474 we shouldn't resume. */
475 should_resume = 0;
476 }
477 else
478 {
479 /* This pending follow fork event is now handled, one way
480 or another. The previous selected thread may be gone
481 from the lists by now, but if it is still around, need
482 to clear the pending follow request. */
e09875d4 483 tp = find_thread_ptid (parent);
e58b0e63
PA
484 if (tp)
485 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
486
487 /* This makes sure we don't try to apply the "Switched
488 over from WAIT_PID" logic above. */
489 nullify_last_target_wait_ptid ();
490
1777feb0 491 /* If we followed the child, switch to it... */
e58b0e63
PA
492 if (follow_child)
493 {
494 switch_to_thread (child);
495
496 /* ... and preserve the stepping state, in case the
497 user was stepping over the fork call. */
498 if (should_resume)
499 {
500 tp = inferior_thread ();
8358c15c
JK
501 tp->control.step_resume_breakpoint
502 = step_resume_breakpoint;
16c381f0
JK
503 tp->control.step_range_start = step_range_start;
504 tp->control.step_range_end = step_range_end;
505 tp->control.step_frame_id = step_frame_id;
186c406b
TT
506 tp->control.exception_resume_breakpoint
507 = exception_resume_breakpoint;
e58b0e63
PA
508 }
509 else
510 {
511 /* If we get here, it was because we're trying to
512 resume from a fork catchpoint, but, the user
513 has switched threads away from the thread that
514 forked. In that case, the resume command
515 issued is most likely not applicable to the
516 child, so just warn, and refuse to resume. */
3e43a32a
MS
517 warning (_("Not resuming: switched threads "
518 "before following fork child.\n"));
e58b0e63
PA
519 }
520
521 /* Reset breakpoints in the child as appropriate. */
522 follow_inferior_reset_breakpoints ();
523 }
524 else
525 switch_to_thread (parent);
526 }
527 }
528 break;
529 case TARGET_WAITKIND_SPURIOUS:
530 /* Nothing to follow. */
531 break;
532 default:
533 internal_error (__FILE__, __LINE__,
534 "Unexpected pending_follow.kind %d\n",
535 tp->pending_follow.kind);
536 break;
537 }
c906108c 538
e58b0e63 539 return should_resume;
c906108c
SS
540}
541
6604731b
DJ
542void
543follow_inferior_reset_breakpoints (void)
c906108c 544{
4e1c45ea
PA
545 struct thread_info *tp = inferior_thread ();
546
6604731b
DJ
547 /* Was there a step_resume breakpoint? (There was if the user
548 did a "next" at the fork() call.) If so, explicitly reset its
549 thread number.
550
551 step_resumes are a form of bp that are made to be per-thread.
552 Since we created the step_resume bp when the parent process
553 was being debugged, and now are switching to the child process,
554 from the breakpoint package's viewpoint, that's a switch of
555 "threads". We must update the bp's notion of which thread
556 it is for, or it'll be ignored when it triggers. */
557
8358c15c
JK
558 if (tp->control.step_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 560
186c406b
TT
561 if (tp->control.exception_resume_breakpoint)
562 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
563
6604731b
DJ
564 /* Reinsert all breakpoints in the child. The user may have set
565 breakpoints after catching the fork, in which case those
566 were never set in the child, but only in the parent. This makes
567 sure the inserted breakpoints match the breakpoint list. */
568
569 breakpoint_re_set ();
570 insert_breakpoints ();
c906108c 571}
c906108c 572
6c95b8df
PA
573/* The child has exited or execed: resume threads of the parent the
574 user wanted to be executing. */
575
576static int
577proceed_after_vfork_done (struct thread_info *thread,
578 void *arg)
579{
580 int pid = * (int *) arg;
581
582 if (ptid_get_pid (thread->ptid) == pid
583 && is_running (thread->ptid)
584 && !is_executing (thread->ptid)
585 && !thread->stop_requested
16c381f0 586 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
587 {
588 if (debug_infrun)
589 fprintf_unfiltered (gdb_stdlog,
590 "infrun: resuming vfork parent thread %s\n",
591 target_pid_to_str (thread->ptid));
592
593 switch_to_thread (thread->ptid);
594 clear_proceed_status ();
595 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
596 }
597
598 return 0;
599}
600
601/* Called whenever we notice an exec or exit event, to handle
602 detaching or resuming a vfork parent. */
603
604static void
605handle_vfork_child_exec_or_exit (int exec)
606{
607 struct inferior *inf = current_inferior ();
608
609 if (inf->vfork_parent)
610 {
611 int resume_parent = -1;
612
613 /* This exec or exit marks the end of the shared memory region
614 between the parent and the child. If the user wanted to
615 detach from the parent, now is the time. */
616
617 if (inf->vfork_parent->pending_detach)
618 {
619 struct thread_info *tp;
620 struct cleanup *old_chain;
621 struct program_space *pspace;
622 struct address_space *aspace;
623
1777feb0 624 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
625
626 old_chain = make_cleanup_restore_current_thread ();
627
628 /* We're letting loose of the parent. */
629 tp = any_live_thread_of_process (inf->vfork_parent->pid);
630 switch_to_thread (tp->ptid);
631
632 /* We're about to detach from the parent, which implicitly
633 removes breakpoints from its address space. There's a
634 catch here: we want to reuse the spaces for the child,
635 but, parent/child are still sharing the pspace at this
636 point, although the exec in reality makes the kernel give
637 the child a fresh set of new pages. The problem here is
638 that the breakpoints module being unaware of this, would
639 likely chose the child process to write to the parent
640 address space. Swapping the child temporarily away from
641 the spaces has the desired effect. Yes, this is "sort
642 of" a hack. */
643
644 pspace = inf->pspace;
645 aspace = inf->aspace;
646 inf->aspace = NULL;
647 inf->pspace = NULL;
648
649 if (debug_infrun || info_verbose)
650 {
651 target_terminal_ours ();
652
653 if (exec)
654 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
655 "Detaching vfork parent process "
656 "%d after child exec.\n",
6c95b8df
PA
657 inf->vfork_parent->pid);
658 else
659 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
660 "Detaching vfork parent process "
661 "%d after child exit.\n",
6c95b8df
PA
662 inf->vfork_parent->pid);
663 }
664
665 target_detach (NULL, 0);
666
667 /* Put it back. */
668 inf->pspace = pspace;
669 inf->aspace = aspace;
670
671 do_cleanups (old_chain);
672 }
673 else if (exec)
674 {
675 /* We're staying attached to the parent, so, really give the
676 child a new address space. */
677 inf->pspace = add_program_space (maybe_new_address_space ());
678 inf->aspace = inf->pspace->aspace;
679 inf->removable = 1;
680 set_current_program_space (inf->pspace);
681
682 resume_parent = inf->vfork_parent->pid;
683
684 /* Break the bonds. */
685 inf->vfork_parent->vfork_child = NULL;
686 }
687 else
688 {
689 struct cleanup *old_chain;
690 struct program_space *pspace;
691
692 /* If this is a vfork child exiting, then the pspace and
693 aspaces were shared with the parent. Since we're
694 reporting the process exit, we'll be mourning all that is
695 found in the address space, and switching to null_ptid,
696 preparing to start a new inferior. But, since we don't
697 want to clobber the parent's address/program spaces, we
698 go ahead and create a new one for this exiting
699 inferior. */
700
701 /* Switch to null_ptid, so that clone_program_space doesn't want
702 to read the selected frame of a dead process. */
703 old_chain = save_inferior_ptid ();
704 inferior_ptid = null_ptid;
705
706 /* This inferior is dead, so avoid giving the breakpoints
707 module the option to write through to it (cloning a
708 program space resets breakpoints). */
709 inf->aspace = NULL;
710 inf->pspace = NULL;
711 pspace = add_program_space (maybe_new_address_space ());
712 set_current_program_space (pspace);
713 inf->removable = 1;
714 clone_program_space (pspace, inf->vfork_parent->pspace);
715 inf->pspace = pspace;
716 inf->aspace = pspace->aspace;
717
718 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 719 inferior. */
6c95b8df
PA
720 do_cleanups (old_chain);
721
722 resume_parent = inf->vfork_parent->pid;
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726
727 inf->vfork_parent = NULL;
728
729 gdb_assert (current_program_space == inf->pspace);
730
731 if (non_stop && resume_parent != -1)
732 {
733 /* If the user wanted the parent to be running, let it go
734 free now. */
735 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
736
737 if (debug_infrun)
3e43a32a
MS
738 fprintf_unfiltered (gdb_stdlog,
739 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
740 resume_parent);
741
742 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
743
744 do_cleanups (old_chain);
745 }
746 }
747}
748
749/* Enum strings for "set|show displaced-stepping". */
750
751static const char follow_exec_mode_new[] = "new";
752static const char follow_exec_mode_same[] = "same";
753static const char *follow_exec_mode_names[] =
754{
755 follow_exec_mode_new,
756 follow_exec_mode_same,
757 NULL,
758};
759
760static const char *follow_exec_mode_string = follow_exec_mode_same;
761static void
762show_follow_exec_mode_string (struct ui_file *file, int from_tty,
763 struct cmd_list_element *c, const char *value)
764{
765 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
766}
767
1777feb0 768/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 769
c906108c 770static void
3a3e9ee3 771follow_exec (ptid_t pid, char *execd_pathname)
c906108c 772{
4e1c45ea 773 struct thread_info *th = inferior_thread ();
6c95b8df 774 struct inferior *inf = current_inferior ();
7a292a7a 775
c906108c
SS
776 /* This is an exec event that we actually wish to pay attention to.
777 Refresh our symbol table to the newly exec'd program, remove any
778 momentary bp's, etc.
779
780 If there are breakpoints, they aren't really inserted now,
781 since the exec() transformed our inferior into a fresh set
782 of instructions.
783
784 We want to preserve symbolic breakpoints on the list, since
785 we have hopes that they can be reset after the new a.out's
786 symbol table is read.
787
788 However, any "raw" breakpoints must be removed from the list
789 (e.g., the solib bp's), since their address is probably invalid
790 now.
791
792 And, we DON'T want to call delete_breakpoints() here, since
793 that may write the bp's "shadow contents" (the instruction
794 value that was overwritten witha TRAP instruction). Since
1777feb0 795 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
796
797 mark_breakpoints_out ();
798
c906108c
SS
799 update_breakpoints_after_exec ();
800
801 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 802 statement through an exec(). */
8358c15c 803 th->control.step_resume_breakpoint = NULL;
186c406b 804 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
805 th->control.step_range_start = 0;
806 th->control.step_range_end = 0;
c906108c 807
a75724bc
PA
808 /* The target reports the exec event to the main thread, even if
809 some other thread does the exec, and even if the main thread was
810 already stopped --- if debugging in non-stop mode, it's possible
811 the user had the main thread held stopped in the previous image
812 --- release it now. This is the same behavior as step-over-exec
813 with scheduler-locking on in all-stop mode. */
814 th->stop_requested = 0;
815
1777feb0 816 /* What is this a.out's name? */
6c95b8df
PA
817 printf_unfiltered (_("%s is executing new program: %s\n"),
818 target_pid_to_str (inferior_ptid),
819 execd_pathname);
c906108c
SS
820
821 /* We've followed the inferior through an exec. Therefore, the
1777feb0 822 inferior has essentially been killed & reborn. */
7a292a7a 823
c906108c 824 gdb_flush (gdb_stdout);
6ca15a4b
PA
825
826 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
827
828 if (gdb_sysroot && *gdb_sysroot)
829 {
830 char *name = alloca (strlen (gdb_sysroot)
831 + strlen (execd_pathname)
832 + 1);
abbb1732 833
e85a822c
DJ
834 strcpy (name, gdb_sysroot);
835 strcat (name, execd_pathname);
836 execd_pathname = name;
837 }
c906108c 838
cce9b6bf
PA
839 /* Reset the shared library package. This ensures that we get a
840 shlib event when the child reaches "_start", at which point the
841 dld will have had a chance to initialize the child. */
842 /* Also, loading a symbol file below may trigger symbol lookups, and
843 we don't want those to be satisfied by the libraries of the
844 previous incarnation of this process. */
845 no_shared_libraries (NULL, 0);
846
6c95b8df
PA
847 if (follow_exec_mode_string == follow_exec_mode_new)
848 {
849 struct program_space *pspace;
6c95b8df
PA
850
851 /* The user wants to keep the old inferior and program spaces
852 around. Create a new fresh one, and switch to it. */
853
854 inf = add_inferior (current_inferior ()->pid);
855 pspace = add_program_space (maybe_new_address_space ());
856 inf->pspace = pspace;
857 inf->aspace = pspace->aspace;
858
859 exit_inferior_num_silent (current_inferior ()->num);
860
861 set_current_inferior (inf);
862 set_current_program_space (pspace);
863 }
864
865 gdb_assert (current_program_space == inf->pspace);
866
1777feb0 867 /* That a.out is now the one to use. */
6c95b8df
PA
868 exec_file_attach (execd_pathname, 0);
869
c1e56572
JK
870 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
871 (Position Independent Executable) main symbol file will get applied by
872 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
873 the breakpoints with the zero displacement. */
874
875 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
876 NULL, 0);
877
878 set_initial_language ();
c906108c 879
7a292a7a 880#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 881 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 882#else
268a4a75 883 solib_create_inferior_hook (0);
7a292a7a 884#endif
c906108c 885
4efc6507
DE
886 jit_inferior_created_hook ();
887
c1e56572
JK
888 breakpoint_re_set ();
889
c906108c
SS
890 /* Reinsert all breakpoints. (Those which were symbolic have
891 been reset to the proper address in the new a.out, thanks
1777feb0 892 to symbol_file_command...). */
c906108c
SS
893 insert_breakpoints ();
894
895 /* The next resume of this inferior should bring it to the shlib
896 startup breakpoints. (If the user had also set bp's on
897 "main" from the old (parent) process, then they'll auto-
1777feb0 898 matically get reset there in the new process.). */
c906108c
SS
899}
900
901/* Non-zero if we just simulating a single-step. This is needed
902 because we cannot remove the breakpoints in the inferior process
903 until after the `wait' in `wait_for_inferior'. */
904static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
905
906/* The thread we inserted single-step breakpoints for. */
907static ptid_t singlestep_ptid;
908
fd48f117
DJ
909/* PC when we started this single-step. */
910static CORE_ADDR singlestep_pc;
911
9f976b41
DJ
912/* If another thread hit the singlestep breakpoint, we save the original
913 thread here so that we can resume single-stepping it later. */
914static ptid_t saved_singlestep_ptid;
915static int stepping_past_singlestep_breakpoint;
6a6b96b9 916
ca67fcb8
VP
917/* If not equal to null_ptid, this means that after stepping over breakpoint
918 is finished, we need to switch to deferred_step_ptid, and step it.
919
920 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 921 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
922 breakpoint in the thread which hit the breakpoint, but then continue
923 stepping the thread user has selected. */
924static ptid_t deferred_step_ptid;
c906108c 925\f
237fc4c9
PA
926/* Displaced stepping. */
927
928/* In non-stop debugging mode, we must take special care to manage
929 breakpoints properly; in particular, the traditional strategy for
930 stepping a thread past a breakpoint it has hit is unsuitable.
931 'Displaced stepping' is a tactic for stepping one thread past a
932 breakpoint it has hit while ensuring that other threads running
933 concurrently will hit the breakpoint as they should.
934
935 The traditional way to step a thread T off a breakpoint in a
936 multi-threaded program in all-stop mode is as follows:
937
938 a0) Initially, all threads are stopped, and breakpoints are not
939 inserted.
940 a1) We single-step T, leaving breakpoints uninserted.
941 a2) We insert breakpoints, and resume all threads.
942
943 In non-stop debugging, however, this strategy is unsuitable: we
944 don't want to have to stop all threads in the system in order to
945 continue or step T past a breakpoint. Instead, we use displaced
946 stepping:
947
948 n0) Initially, T is stopped, other threads are running, and
949 breakpoints are inserted.
950 n1) We copy the instruction "under" the breakpoint to a separate
951 location, outside the main code stream, making any adjustments
952 to the instruction, register, and memory state as directed by
953 T's architecture.
954 n2) We single-step T over the instruction at its new location.
955 n3) We adjust the resulting register and memory state as directed
956 by T's architecture. This includes resetting T's PC to point
957 back into the main instruction stream.
958 n4) We resume T.
959
960 This approach depends on the following gdbarch methods:
961
962 - gdbarch_max_insn_length and gdbarch_displaced_step_location
963 indicate where to copy the instruction, and how much space must
964 be reserved there. We use these in step n1.
965
966 - gdbarch_displaced_step_copy_insn copies a instruction to a new
967 address, and makes any necessary adjustments to the instruction,
968 register contents, and memory. We use this in step n1.
969
970 - gdbarch_displaced_step_fixup adjusts registers and memory after
971 we have successfuly single-stepped the instruction, to yield the
972 same effect the instruction would have had if we had executed it
973 at its original address. We use this in step n3.
974
975 - gdbarch_displaced_step_free_closure provides cleanup.
976
977 The gdbarch_displaced_step_copy_insn and
978 gdbarch_displaced_step_fixup functions must be written so that
979 copying an instruction with gdbarch_displaced_step_copy_insn,
980 single-stepping across the copied instruction, and then applying
981 gdbarch_displaced_insn_fixup should have the same effects on the
982 thread's memory and registers as stepping the instruction in place
983 would have. Exactly which responsibilities fall to the copy and
984 which fall to the fixup is up to the author of those functions.
985
986 See the comments in gdbarch.sh for details.
987
988 Note that displaced stepping and software single-step cannot
989 currently be used in combination, although with some care I think
990 they could be made to. Software single-step works by placing
991 breakpoints on all possible subsequent instructions; if the
992 displaced instruction is a PC-relative jump, those breakpoints
993 could fall in very strange places --- on pages that aren't
994 executable, or at addresses that are not proper instruction
995 boundaries. (We do generally let other threads run while we wait
996 to hit the software single-step breakpoint, and they might
997 encounter such a corrupted instruction.) One way to work around
998 this would be to have gdbarch_displaced_step_copy_insn fully
999 simulate the effect of PC-relative instructions (and return NULL)
1000 on architectures that use software single-stepping.
1001
1002 In non-stop mode, we can have independent and simultaneous step
1003 requests, so more than one thread may need to simultaneously step
1004 over a breakpoint. The current implementation assumes there is
1005 only one scratch space per process. In this case, we have to
1006 serialize access to the scratch space. If thread A wants to step
1007 over a breakpoint, but we are currently waiting for some other
1008 thread to complete a displaced step, we leave thread A stopped and
1009 place it in the displaced_step_request_queue. Whenever a displaced
1010 step finishes, we pick the next thread in the queue and start a new
1011 displaced step operation on it. See displaced_step_prepare and
1012 displaced_step_fixup for details. */
1013
237fc4c9
PA
1014struct displaced_step_request
1015{
1016 ptid_t ptid;
1017 struct displaced_step_request *next;
1018};
1019
fc1cf338
PA
1020/* Per-inferior displaced stepping state. */
1021struct displaced_step_inferior_state
1022{
1023 /* Pointer to next in linked list. */
1024 struct displaced_step_inferior_state *next;
1025
1026 /* The process this displaced step state refers to. */
1027 int pid;
1028
1029 /* A queue of pending displaced stepping requests. One entry per
1030 thread that needs to do a displaced step. */
1031 struct displaced_step_request *step_request_queue;
1032
1033 /* If this is not null_ptid, this is the thread carrying out a
1034 displaced single-step in process PID. This thread's state will
1035 require fixing up once it has completed its step. */
1036 ptid_t step_ptid;
1037
1038 /* The architecture the thread had when we stepped it. */
1039 struct gdbarch *step_gdbarch;
1040
1041 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1042 for post-step cleanup. */
1043 struct displaced_step_closure *step_closure;
1044
1045 /* The address of the original instruction, and the copy we
1046 made. */
1047 CORE_ADDR step_original, step_copy;
1048
1049 /* Saved contents of copy area. */
1050 gdb_byte *step_saved_copy;
1051};
1052
1053/* The list of states of processes involved in displaced stepping
1054 presently. */
1055static struct displaced_step_inferior_state *displaced_step_inferior_states;
1056
1057/* Get the displaced stepping state of process PID. */
1058
1059static struct displaced_step_inferior_state *
1060get_displaced_stepping_state (int pid)
1061{
1062 struct displaced_step_inferior_state *state;
1063
1064 for (state = displaced_step_inferior_states;
1065 state != NULL;
1066 state = state->next)
1067 if (state->pid == pid)
1068 return state;
1069
1070 return NULL;
1071}
1072
1073/* Add a new displaced stepping state for process PID to the displaced
1074 stepping state list, or return a pointer to an already existing
1075 entry, if it already exists. Never returns NULL. */
1076
1077static struct displaced_step_inferior_state *
1078add_displaced_stepping_state (int pid)
1079{
1080 struct displaced_step_inferior_state *state;
1081
1082 for (state = displaced_step_inferior_states;
1083 state != NULL;
1084 state = state->next)
1085 if (state->pid == pid)
1086 return state;
237fc4c9 1087
fc1cf338
PA
1088 state = xcalloc (1, sizeof (*state));
1089 state->pid = pid;
1090 state->next = displaced_step_inferior_states;
1091 displaced_step_inferior_states = state;
237fc4c9 1092
fc1cf338
PA
1093 return state;
1094}
1095
a42244db
YQ
1096/* If inferior is in displaced stepping, and ADDR equals to starting address
1097 of copy area, return corresponding displaced_step_closure. Otherwise,
1098 return NULL. */
1099
1100struct displaced_step_closure*
1101get_displaced_step_closure_by_addr (CORE_ADDR addr)
1102{
1103 struct displaced_step_inferior_state *displaced
1104 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1105
1106 /* If checking the mode of displaced instruction in copy area. */
1107 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1108 && (displaced->step_copy == addr))
1109 return displaced->step_closure;
1110
1111 return NULL;
1112}
1113
fc1cf338 1114/* Remove the displaced stepping state of process PID. */
237fc4c9 1115
fc1cf338
PA
1116static void
1117remove_displaced_stepping_state (int pid)
1118{
1119 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1120
fc1cf338
PA
1121 gdb_assert (pid != 0);
1122
1123 it = displaced_step_inferior_states;
1124 prev_next_p = &displaced_step_inferior_states;
1125 while (it)
1126 {
1127 if (it->pid == pid)
1128 {
1129 *prev_next_p = it->next;
1130 xfree (it);
1131 return;
1132 }
1133
1134 prev_next_p = &it->next;
1135 it = *prev_next_p;
1136 }
1137}
1138
1139static void
1140infrun_inferior_exit (struct inferior *inf)
1141{
1142 remove_displaced_stepping_state (inf->pid);
1143}
237fc4c9 1144
fff08868
HZ
1145/* Enum strings for "set|show displaced-stepping". */
1146
1147static const char can_use_displaced_stepping_auto[] = "auto";
1148static const char can_use_displaced_stepping_on[] = "on";
1149static const char can_use_displaced_stepping_off[] = "off";
1150static const char *can_use_displaced_stepping_enum[] =
1151{
1152 can_use_displaced_stepping_auto,
1153 can_use_displaced_stepping_on,
1154 can_use_displaced_stepping_off,
1155 NULL,
1156};
1157
1158/* If ON, and the architecture supports it, GDB will use displaced
1159 stepping to step over breakpoints. If OFF, or if the architecture
1160 doesn't support it, GDB will instead use the traditional
1161 hold-and-step approach. If AUTO (which is the default), GDB will
1162 decide which technique to use to step over breakpoints depending on
1163 which of all-stop or non-stop mode is active --- displaced stepping
1164 in non-stop mode; hold-and-step in all-stop mode. */
1165
1166static const char *can_use_displaced_stepping =
1167 can_use_displaced_stepping_auto;
1168
237fc4c9
PA
1169static void
1170show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1171 struct cmd_list_element *c,
1172 const char *value)
1173{
fff08868 1174 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1175 fprintf_filtered (file,
1176 _("Debugger's willingness to use displaced stepping "
1177 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1178 value, non_stop ? "on" : "off");
1179 else
3e43a32a
MS
1180 fprintf_filtered (file,
1181 _("Debugger's willingness to use displaced stepping "
1182 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1183}
1184
fff08868
HZ
1185/* Return non-zero if displaced stepping can/should be used to step
1186 over breakpoints. */
1187
237fc4c9
PA
1188static int
1189use_displaced_stepping (struct gdbarch *gdbarch)
1190{
fff08868
HZ
1191 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1192 && non_stop)
1193 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1194 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1195 && !RECORD_IS_USED);
237fc4c9
PA
1196}
1197
1198/* Clean out any stray displaced stepping state. */
1199static void
fc1cf338 1200displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1201{
1202 /* Indicate that there is no cleanup pending. */
fc1cf338 1203 displaced->step_ptid = null_ptid;
237fc4c9 1204
fc1cf338 1205 if (displaced->step_closure)
237fc4c9 1206 {
fc1cf338
PA
1207 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1208 displaced->step_closure);
1209 displaced->step_closure = NULL;
237fc4c9
PA
1210 }
1211}
1212
1213static void
fc1cf338 1214displaced_step_clear_cleanup (void *arg)
237fc4c9 1215{
fc1cf338
PA
1216 struct displaced_step_inferior_state *state = arg;
1217
1218 displaced_step_clear (state);
237fc4c9
PA
1219}
1220
1221/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1222void
1223displaced_step_dump_bytes (struct ui_file *file,
1224 const gdb_byte *buf,
1225 size_t len)
1226{
1227 int i;
1228
1229 for (i = 0; i < len; i++)
1230 fprintf_unfiltered (file, "%02x ", buf[i]);
1231 fputs_unfiltered ("\n", file);
1232}
1233
1234/* Prepare to single-step, using displaced stepping.
1235
1236 Note that we cannot use displaced stepping when we have a signal to
1237 deliver. If we have a signal to deliver and an instruction to step
1238 over, then after the step, there will be no indication from the
1239 target whether the thread entered a signal handler or ignored the
1240 signal and stepped over the instruction successfully --- both cases
1241 result in a simple SIGTRAP. In the first case we mustn't do a
1242 fixup, and in the second case we must --- but we can't tell which.
1243 Comments in the code for 'random signals' in handle_inferior_event
1244 explain how we handle this case instead.
1245
1246 Returns 1 if preparing was successful -- this thread is going to be
1247 stepped now; or 0 if displaced stepping this thread got queued. */
1248static int
1249displaced_step_prepare (ptid_t ptid)
1250{
ad53cd71 1251 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1252 struct regcache *regcache = get_thread_regcache (ptid);
1253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1254 CORE_ADDR original, copy;
1255 ULONGEST len;
1256 struct displaced_step_closure *closure;
fc1cf338 1257 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1258
1259 /* We should never reach this function if the architecture does not
1260 support displaced stepping. */
1261 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1262
fc1cf338
PA
1263 /* We have to displaced step one thread at a time, as we only have
1264 access to a single scratch space per inferior. */
237fc4c9 1265
fc1cf338
PA
1266 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1267
1268 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1269 {
1270 /* Already waiting for a displaced step to finish. Defer this
1271 request and place in queue. */
1272 struct displaced_step_request *req, *new_req;
1273
1274 if (debug_displaced)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "displaced: defering step of %s\n",
1277 target_pid_to_str (ptid));
1278
1279 new_req = xmalloc (sizeof (*new_req));
1280 new_req->ptid = ptid;
1281 new_req->next = NULL;
1282
fc1cf338 1283 if (displaced->step_request_queue)
237fc4c9 1284 {
fc1cf338 1285 for (req = displaced->step_request_queue;
237fc4c9
PA
1286 req && req->next;
1287 req = req->next)
1288 ;
1289 req->next = new_req;
1290 }
1291 else
fc1cf338 1292 displaced->step_request_queue = new_req;
237fc4c9
PA
1293
1294 return 0;
1295 }
1296 else
1297 {
1298 if (debug_displaced)
1299 fprintf_unfiltered (gdb_stdlog,
1300 "displaced: stepping %s now\n",
1301 target_pid_to_str (ptid));
1302 }
1303
fc1cf338 1304 displaced_step_clear (displaced);
237fc4c9 1305
ad53cd71
PA
1306 old_cleanups = save_inferior_ptid ();
1307 inferior_ptid = ptid;
1308
515630c5 1309 original = regcache_read_pc (regcache);
237fc4c9
PA
1310
1311 copy = gdbarch_displaced_step_location (gdbarch);
1312 len = gdbarch_max_insn_length (gdbarch);
1313
1314 /* Save the original contents of the copy area. */
fc1cf338 1315 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1316 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1317 &displaced->step_saved_copy);
1318 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1319 if (debug_displaced)
1320 {
5af949e3
UW
1321 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1322 paddress (gdbarch, copy));
fc1cf338
PA
1323 displaced_step_dump_bytes (gdb_stdlog,
1324 displaced->step_saved_copy,
1325 len);
237fc4c9
PA
1326 };
1327
1328 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1329 original, copy, regcache);
237fc4c9
PA
1330
1331 /* We don't support the fully-simulated case at present. */
1332 gdb_assert (closure);
1333
9f5a595d
UW
1334 /* Save the information we need to fix things up if the step
1335 succeeds. */
fc1cf338
PA
1336 displaced->step_ptid = ptid;
1337 displaced->step_gdbarch = gdbarch;
1338 displaced->step_closure = closure;
1339 displaced->step_original = original;
1340 displaced->step_copy = copy;
9f5a595d 1341
fc1cf338 1342 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1343
1344 /* Resume execution at the copy. */
515630c5 1345 regcache_write_pc (regcache, copy);
237fc4c9 1346
ad53cd71
PA
1347 discard_cleanups (ignore_cleanups);
1348
1349 do_cleanups (old_cleanups);
237fc4c9
PA
1350
1351 if (debug_displaced)
5af949e3
UW
1352 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1353 paddress (gdbarch, copy));
237fc4c9 1354
237fc4c9
PA
1355 return 1;
1356}
1357
237fc4c9 1358static void
3e43a32a
MS
1359write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1360 const gdb_byte *myaddr, int len)
237fc4c9
PA
1361{
1362 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1363
237fc4c9
PA
1364 inferior_ptid = ptid;
1365 write_memory (memaddr, myaddr, len);
1366 do_cleanups (ptid_cleanup);
1367}
1368
1369static void
1370displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1371{
1372 struct cleanup *old_cleanups;
fc1cf338
PA
1373 struct displaced_step_inferior_state *displaced
1374 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1375
1376 /* Was any thread of this process doing a displaced step? */
1377 if (displaced == NULL)
1378 return;
237fc4c9
PA
1379
1380 /* Was this event for the pid we displaced? */
fc1cf338
PA
1381 if (ptid_equal (displaced->step_ptid, null_ptid)
1382 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1383 return;
1384
fc1cf338 1385 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1386
1387 /* Restore the contents of the copy area. */
1388 {
fc1cf338 1389 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1390
fc1cf338
PA
1391 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1392 displaced->step_saved_copy, len);
237fc4c9 1393 if (debug_displaced)
5af949e3 1394 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1395 paddress (displaced->step_gdbarch,
1396 displaced->step_copy));
237fc4c9
PA
1397 }
1398
1399 /* Did the instruction complete successfully? */
1400 if (signal == TARGET_SIGNAL_TRAP)
1401 {
1402 /* Fix up the resulting state. */
fc1cf338
PA
1403 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1404 displaced->step_closure,
1405 displaced->step_original,
1406 displaced->step_copy,
1407 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1408 }
1409 else
1410 {
1411 /* Since the instruction didn't complete, all we can do is
1412 relocate the PC. */
515630c5
UW
1413 struct regcache *regcache = get_thread_regcache (event_ptid);
1414 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1415
fc1cf338 1416 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1417 regcache_write_pc (regcache, pc);
237fc4c9
PA
1418 }
1419
1420 do_cleanups (old_cleanups);
1421
fc1cf338 1422 displaced->step_ptid = null_ptid;
1c5cfe86 1423
237fc4c9 1424 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1425 one now. Leave the state object around, since we're likely to
1426 need it again soon. */
1427 while (displaced->step_request_queue)
237fc4c9
PA
1428 {
1429 struct displaced_step_request *head;
1430 ptid_t ptid;
5af949e3 1431 struct regcache *regcache;
929dfd4f 1432 struct gdbarch *gdbarch;
1c5cfe86 1433 CORE_ADDR actual_pc;
6c95b8df 1434 struct address_space *aspace;
237fc4c9 1435
fc1cf338 1436 head = displaced->step_request_queue;
237fc4c9 1437 ptid = head->ptid;
fc1cf338 1438 displaced->step_request_queue = head->next;
237fc4c9
PA
1439 xfree (head);
1440
ad53cd71
PA
1441 context_switch (ptid);
1442
5af949e3
UW
1443 regcache = get_thread_regcache (ptid);
1444 actual_pc = regcache_read_pc (regcache);
6c95b8df 1445 aspace = get_regcache_aspace (regcache);
1c5cfe86 1446
6c95b8df 1447 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1448 {
1c5cfe86
PA
1449 if (debug_displaced)
1450 fprintf_unfiltered (gdb_stdlog,
1451 "displaced: stepping queued %s now\n",
1452 target_pid_to_str (ptid));
1453
1454 displaced_step_prepare (ptid);
1455
929dfd4f
JB
1456 gdbarch = get_regcache_arch (regcache);
1457
1c5cfe86
PA
1458 if (debug_displaced)
1459 {
929dfd4f 1460 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1461 gdb_byte buf[4];
1462
5af949e3
UW
1463 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1464 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1465 read_memory (actual_pc, buf, sizeof (buf));
1466 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1467 }
1468
fc1cf338
PA
1469 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1470 displaced->step_closure))
929dfd4f 1471 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1472 else
1473 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1474
1475 /* Done, we're stepping a thread. */
1476 break;
ad53cd71 1477 }
1c5cfe86
PA
1478 else
1479 {
1480 int step;
1481 struct thread_info *tp = inferior_thread ();
1482
1483 /* The breakpoint we were sitting under has since been
1484 removed. */
16c381f0 1485 tp->control.trap_expected = 0;
1c5cfe86
PA
1486
1487 /* Go back to what we were trying to do. */
1488 step = currently_stepping (tp);
ad53cd71 1489
1c5cfe86 1490 if (debug_displaced)
3e43a32a
MS
1491 fprintf_unfiltered (gdb_stdlog,
1492 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1493 target_pid_to_str (tp->ptid), step);
1494
1495 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1496 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1497
1498 /* This request was discarded. See if there's any other
1499 thread waiting for its turn. */
1500 }
237fc4c9
PA
1501 }
1502}
1503
5231c1fd
PA
1504/* Update global variables holding ptids to hold NEW_PTID if they were
1505 holding OLD_PTID. */
1506static void
1507infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1508{
1509 struct displaced_step_request *it;
fc1cf338 1510 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1511
1512 if (ptid_equal (inferior_ptid, old_ptid))
1513 inferior_ptid = new_ptid;
1514
1515 if (ptid_equal (singlestep_ptid, old_ptid))
1516 singlestep_ptid = new_ptid;
1517
5231c1fd
PA
1518 if (ptid_equal (deferred_step_ptid, old_ptid))
1519 deferred_step_ptid = new_ptid;
1520
fc1cf338
PA
1521 for (displaced = displaced_step_inferior_states;
1522 displaced;
1523 displaced = displaced->next)
1524 {
1525 if (ptid_equal (displaced->step_ptid, old_ptid))
1526 displaced->step_ptid = new_ptid;
1527
1528 for (it = displaced->step_request_queue; it; it = it->next)
1529 if (ptid_equal (it->ptid, old_ptid))
1530 it->ptid = new_ptid;
1531 }
5231c1fd
PA
1532}
1533
237fc4c9
PA
1534\f
1535/* Resuming. */
c906108c
SS
1536
1537/* Things to clean up if we QUIT out of resume (). */
c906108c 1538static void
74b7792f 1539resume_cleanups (void *ignore)
c906108c
SS
1540{
1541 normal_stop ();
1542}
1543
53904c9e
AC
1544static const char schedlock_off[] = "off";
1545static const char schedlock_on[] = "on";
1546static const char schedlock_step[] = "step";
488f131b 1547static const char *scheduler_enums[] = {
ef346e04
AC
1548 schedlock_off,
1549 schedlock_on,
1550 schedlock_step,
1551 NULL
1552};
920d2a44
AC
1553static const char *scheduler_mode = schedlock_off;
1554static void
1555show_scheduler_mode (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c, const char *value)
1557{
3e43a32a
MS
1558 fprintf_filtered (file,
1559 _("Mode for locking scheduler "
1560 "during execution is \"%s\".\n"),
920d2a44
AC
1561 value);
1562}
c906108c
SS
1563
1564static void
96baa820 1565set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1566{
eefe576e
AC
1567 if (!target_can_lock_scheduler)
1568 {
1569 scheduler_mode = schedlock_off;
1570 error (_("Target '%s' cannot support this command."), target_shortname);
1571 }
c906108c
SS
1572}
1573
d4db2f36
PA
1574/* True if execution commands resume all threads of all processes by
1575 default; otherwise, resume only threads of the current inferior
1576 process. */
1577int sched_multi = 0;
1578
2facfe5c
DD
1579/* Try to setup for software single stepping over the specified location.
1580 Return 1 if target_resume() should use hardware single step.
1581
1582 GDBARCH the current gdbarch.
1583 PC the location to step over. */
1584
1585static int
1586maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1587{
1588 int hw_step = 1;
1589
f02253f1
HZ
1590 if (execution_direction == EXEC_FORWARD
1591 && gdbarch_software_single_step_p (gdbarch)
99e40580 1592 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1593 {
99e40580
UW
1594 hw_step = 0;
1595 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1596 `wait_for_inferior'. */
99e40580
UW
1597 singlestep_breakpoints_inserted_p = 1;
1598 singlestep_ptid = inferior_ptid;
1599 singlestep_pc = pc;
2facfe5c
DD
1600 }
1601 return hw_step;
1602}
c906108c 1603
09cee04b
PA
1604/* Return a ptid representing the set of threads that we will proceed,
1605 in the perspective of the user/frontend. We may actually resume
1606 fewer threads at first, e.g., if a thread is stopped at a
1607 breakpoint that needs stepping-off, but that should be visible to
1608 the user/frontend, and neither should the frontend/user be allowed
1609 to proceed any of the threads that happen to be stopped at for
1610 internal run control handling, if a previous command wanted them
1611 resumed. */
1612
1613ptid_t
1614user_visible_resume_ptid (int step)
1615{
1616 /* By default, resume all threads of all processes. */
1617 ptid_t resume_ptid = RESUME_ALL;
1618
1619 /* Maybe resume only all threads of the current process. */
1620 if (!sched_multi && target_supports_multi_process ())
1621 {
1622 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1623 }
1624
1625 /* Maybe resume a single thread after all. */
1626 if (non_stop)
1627 {
1628 /* With non-stop mode on, threads are always handled
1629 individually. */
1630 resume_ptid = inferior_ptid;
1631 }
1632 else if ((scheduler_mode == schedlock_on)
1633 || (scheduler_mode == schedlock_step
1634 && (step || singlestep_breakpoints_inserted_p)))
1635 {
1636 /* User-settable 'scheduler' mode requires solo thread resume. */
1637 resume_ptid = inferior_ptid;
1638 }
1639
1640 return resume_ptid;
1641}
1642
c906108c
SS
1643/* Resume the inferior, but allow a QUIT. This is useful if the user
1644 wants to interrupt some lengthy single-stepping operation
1645 (for child processes, the SIGINT goes to the inferior, and so
1646 we get a SIGINT random_signal, but for remote debugging and perhaps
1647 other targets, that's not true).
1648
1649 STEP nonzero if we should step (zero to continue instead).
1650 SIG is the signal to give the inferior (zero for none). */
1651void
96baa820 1652resume (int step, enum target_signal sig)
c906108c
SS
1653{
1654 int should_resume = 1;
74b7792f 1655 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1656 struct regcache *regcache = get_current_regcache ();
1657 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1658 struct thread_info *tp = inferior_thread ();
515630c5 1659 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1660 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1661
c906108c
SS
1662 QUIT;
1663
74609e71
YQ
1664 if (current_inferior ()->waiting_for_vfork_done)
1665 {
48f9886d
PA
1666 /* Don't try to single-step a vfork parent that is waiting for
1667 the child to get out of the shared memory region (by exec'ing
1668 or exiting). This is particularly important on software
1669 single-step archs, as the child process would trip on the
1670 software single step breakpoint inserted for the parent
1671 process. Since the parent will not actually execute any
1672 instruction until the child is out of the shared region (such
1673 are vfork's semantics), it is safe to simply continue it.
1674 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1675 the parent, and tell it to `keep_going', which automatically
1676 re-sets it stepping. */
74609e71
YQ
1677 if (debug_infrun)
1678 fprintf_unfiltered (gdb_stdlog,
1679 "infrun: resume : clear step\n");
1680 step = 0;
1681 }
1682
527159b7 1683 if (debug_infrun)
237fc4c9
PA
1684 fprintf_unfiltered (gdb_stdlog,
1685 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1686 "trap_expected=%d, current thread [%s] at %s\n",
1687 step, sig, tp->control.trap_expected,
1688 target_pid_to_str (inferior_ptid),
1689 paddress (gdbarch, pc));
c906108c 1690
c2c6d25f
JM
1691 /* Normally, by the time we reach `resume', the breakpoints are either
1692 removed or inserted, as appropriate. The exception is if we're sitting
1693 at a permanent breakpoint; we need to step over it, but permanent
1694 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1695 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1696 {
515630c5
UW
1697 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1698 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1699 else
ac74f770
MS
1700 error (_("\
1701The program is stopped at a permanent breakpoint, but GDB does not know\n\
1702how to step past a permanent breakpoint on this architecture. Try using\n\
1703a command like `return' or `jump' to continue execution."));
6d350bb5 1704 }
c2c6d25f 1705
237fc4c9
PA
1706 /* If enabled, step over breakpoints by executing a copy of the
1707 instruction at a different address.
1708
1709 We can't use displaced stepping when we have a signal to deliver;
1710 the comments for displaced_step_prepare explain why. The
1711 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1712 signals' explain what we do instead.
1713
1714 We can't use displaced stepping when we are waiting for vfork_done
1715 event, displaced stepping breaks the vfork child similarly as single
1716 step software breakpoint. */
515630c5 1717 if (use_displaced_stepping (gdbarch)
16c381f0 1718 && (tp->control.trap_expected
929dfd4f 1719 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1720 && sig == TARGET_SIGNAL_0
1721 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1722 {
fc1cf338
PA
1723 struct displaced_step_inferior_state *displaced;
1724
237fc4c9 1725 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1726 {
1727 /* Got placed in displaced stepping queue. Will be resumed
1728 later when all the currently queued displaced stepping
7f7efbd9
VP
1729 requests finish. The thread is not executing at this point,
1730 and the call to set_executing will be made later. But we
1731 need to call set_running here, since from frontend point of view,
1732 the thread is running. */
1733 set_running (inferior_ptid, 1);
d56b7306
VP
1734 discard_cleanups (old_cleanups);
1735 return;
1736 }
99e40580 1737
fc1cf338
PA
1738 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1739 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1740 displaced->step_closure);
237fc4c9
PA
1741 }
1742
2facfe5c 1743 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1744 else if (step)
2facfe5c 1745 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1746
30852783
UW
1747 /* Currently, our software single-step implementation leads to different
1748 results than hardware single-stepping in one situation: when stepping
1749 into delivering a signal which has an associated signal handler,
1750 hardware single-step will stop at the first instruction of the handler,
1751 while software single-step will simply skip execution of the handler.
1752
1753 For now, this difference in behavior is accepted since there is no
1754 easy way to actually implement single-stepping into a signal handler
1755 without kernel support.
1756
1757 However, there is one scenario where this difference leads to follow-on
1758 problems: if we're stepping off a breakpoint by removing all breakpoints
1759 and then single-stepping. In this case, the software single-step
1760 behavior means that even if there is a *breakpoint* in the signal
1761 handler, GDB still would not stop.
1762
1763 Fortunately, we can at least fix this particular issue. We detect
1764 here the case where we are about to deliver a signal while software
1765 single-stepping with breakpoints removed. In this situation, we
1766 revert the decisions to remove all breakpoints and insert single-
1767 step breakpoints, and instead we install a step-resume breakpoint
1768 at the current address, deliver the signal without stepping, and
1769 once we arrive back at the step-resume breakpoint, actually step
1770 over the breakpoint we originally wanted to step over. */
1771 if (singlestep_breakpoints_inserted_p
1772 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1773 {
1774 /* If we have nested signals or a pending signal is delivered
1775 immediately after a handler returns, might might already have
1776 a step-resume breakpoint set on the earlier handler. We cannot
1777 set another step-resume breakpoint; just continue on until the
1778 original breakpoint is hit. */
1779 if (tp->control.step_resume_breakpoint == NULL)
1780 {
1781 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1782 tp->step_after_step_resume_breakpoint = 1;
1783 }
1784
1785 remove_single_step_breakpoints ();
1786 singlestep_breakpoints_inserted_p = 0;
1787
1788 insert_breakpoints ();
1789 tp->control.trap_expected = 0;
1790 }
1791
c906108c
SS
1792 if (should_resume)
1793 {
39f77062 1794 ptid_t resume_ptid;
dfcd3bfb 1795
cd76b0b7
VP
1796 /* If STEP is set, it's a request to use hardware stepping
1797 facilities. But in that case, we should never
1798 use singlestep breakpoint. */
1799 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1800
d4db2f36
PA
1801 /* Decide the set of threads to ask the target to resume. Start
1802 by assuming everything will be resumed, than narrow the set
1803 by applying increasingly restricting conditions. */
09cee04b 1804 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1805
1806 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1807 if (singlestep_breakpoints_inserted_p
1808 && stepping_past_singlestep_breakpoint)
c906108c 1809 {
cd76b0b7
VP
1810 /* The situation here is as follows. In thread T1 we wanted to
1811 single-step. Lacking hardware single-stepping we've
1812 set breakpoint at the PC of the next instruction -- call it
1813 P. After resuming, we've hit that breakpoint in thread T2.
1814 Now we've removed original breakpoint, inserted breakpoint
1815 at P+1, and try to step to advance T2 past breakpoint.
1816 We need to step only T2, as if T1 is allowed to freely run,
1817 it can run past P, and if other threads are allowed to run,
1818 they can hit breakpoint at P+1, and nested hits of single-step
1819 breakpoints is not something we'd want -- that's complicated
1820 to support, and has no value. */
1821 resume_ptid = inferior_ptid;
1822 }
d4db2f36 1823 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1824 && tp->control.trap_expected)
cd76b0b7 1825 {
74960c60
VP
1826 /* We're allowing a thread to run past a breakpoint it has
1827 hit, by single-stepping the thread with the breakpoint
1828 removed. In which case, we need to single-step only this
1829 thread, and keep others stopped, as they can miss this
1830 breakpoint if allowed to run.
1831
1832 The current code actually removes all breakpoints when
1833 doing this, not just the one being stepped over, so if we
1834 let other threads run, we can actually miss any
1835 breakpoint, not just the one at PC. */
ef5cf84e 1836 resume_ptid = inferior_ptid;
c906108c 1837 }
ef5cf84e 1838
515630c5 1839 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1840 {
1841 /* Most targets can step a breakpoint instruction, thus
1842 executing it normally. But if this one cannot, just
1843 continue and we will hit it anyway. */
6c95b8df 1844 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1845 step = 0;
1846 }
237fc4c9
PA
1847
1848 if (debug_displaced
515630c5 1849 && use_displaced_stepping (gdbarch)
16c381f0 1850 && tp->control.trap_expected)
237fc4c9 1851 {
515630c5 1852 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1853 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1854 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1855 gdb_byte buf[4];
1856
5af949e3
UW
1857 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1858 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1859 read_memory (actual_pc, buf, sizeof (buf));
1860 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1861 }
1862
e58b0e63
PA
1863 /* Install inferior's terminal modes. */
1864 target_terminal_inferior ();
1865
2020b7ab
PA
1866 /* Avoid confusing the next resume, if the next stop/resume
1867 happens to apply to another thread. */
16c381f0 1868 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1869
2455069d
UW
1870 /* Advise target which signals may be handled silently. If we have
1871 removed breakpoints because we are stepping over one (which can
1872 happen only if we are not using displaced stepping), we need to
1873 receive all signals to avoid accidentally skipping a breakpoint
1874 during execution of a signal handler. */
1875 if ((step || singlestep_breakpoints_inserted_p)
1876 && tp->control.trap_expected
1877 && !use_displaced_stepping (gdbarch))
1878 target_pass_signals (0, NULL);
1879 else
1880 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1881
607cecd2 1882 target_resume (resume_ptid, step, sig);
c906108c
SS
1883 }
1884
1885 discard_cleanups (old_cleanups);
1886}
1887\f
237fc4c9 1888/* Proceeding. */
c906108c
SS
1889
1890/* Clear out all variables saying what to do when inferior is continued.
1891 First do this, then set the ones you want, then call `proceed'. */
1892
a7212384
UW
1893static void
1894clear_proceed_status_thread (struct thread_info *tp)
c906108c 1895{
a7212384
UW
1896 if (debug_infrun)
1897 fprintf_unfiltered (gdb_stdlog,
1898 "infrun: clear_proceed_status_thread (%s)\n",
1899 target_pid_to_str (tp->ptid));
d6b48e9c 1900
16c381f0
JK
1901 tp->control.trap_expected = 0;
1902 tp->control.step_range_start = 0;
1903 tp->control.step_range_end = 0;
1904 tp->control.step_frame_id = null_frame_id;
1905 tp->control.step_stack_frame_id = null_frame_id;
1906 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1907 tp->stop_requested = 0;
4e1c45ea 1908
16c381f0 1909 tp->control.stop_step = 0;
32400beb 1910
16c381f0 1911 tp->control.proceed_to_finish = 0;
414c69f7 1912
a7212384 1913 /* Discard any remaining commands or status from previous stop. */
16c381f0 1914 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1915}
32400beb 1916
a7212384
UW
1917static int
1918clear_proceed_status_callback (struct thread_info *tp, void *data)
1919{
1920 if (is_exited (tp->ptid))
1921 return 0;
d6b48e9c 1922
a7212384
UW
1923 clear_proceed_status_thread (tp);
1924 return 0;
1925}
1926
1927void
1928clear_proceed_status (void)
1929{
6c95b8df
PA
1930 if (!non_stop)
1931 {
1932 /* In all-stop mode, delete the per-thread status of all
1933 threads, even if inferior_ptid is null_ptid, there may be
1934 threads on the list. E.g., we may be launching a new
1935 process, while selecting the executable. */
1936 iterate_over_threads (clear_proceed_status_callback, NULL);
1937 }
1938
a7212384
UW
1939 if (!ptid_equal (inferior_ptid, null_ptid))
1940 {
1941 struct inferior *inferior;
1942
1943 if (non_stop)
1944 {
6c95b8df
PA
1945 /* If in non-stop mode, only delete the per-thread status of
1946 the current thread. */
a7212384
UW
1947 clear_proceed_status_thread (inferior_thread ());
1948 }
6c95b8df 1949
d6b48e9c 1950 inferior = current_inferior ();
16c381f0 1951 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1952 }
1953
c906108c 1954 stop_after_trap = 0;
f3b1572e
PA
1955
1956 observer_notify_about_to_proceed ();
c906108c 1957
d5c31457
UW
1958 if (stop_registers)
1959 {
1960 regcache_xfree (stop_registers);
1961 stop_registers = NULL;
1962 }
c906108c
SS
1963}
1964
5a437975
DE
1965/* Check the current thread against the thread that reported the most recent
1966 event. If a step-over is required return TRUE and set the current thread
1967 to the old thread. Otherwise return FALSE.
1968
1777feb0 1969 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1970
1971static int
6a6b96b9 1972prepare_to_proceed (int step)
ea67f13b
DJ
1973{
1974 ptid_t wait_ptid;
1975 struct target_waitstatus wait_status;
5a437975
DE
1976 int schedlock_enabled;
1977
1978 /* With non-stop mode on, threads are always handled individually. */
1979 gdb_assert (! non_stop);
ea67f13b
DJ
1980
1981 /* Get the last target status returned by target_wait(). */
1982 get_last_target_status (&wait_ptid, &wait_status);
1983
6a6b96b9 1984 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1985 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1986 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1987 && wait_status.value.sig != TARGET_SIGNAL_ILL
1988 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1989 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1990 {
1991 return 0;
1992 }
1993
5a437975
DE
1994 schedlock_enabled = (scheduler_mode == schedlock_on
1995 || (scheduler_mode == schedlock_step
1996 && step));
1997
d4db2f36
PA
1998 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1999 if (schedlock_enabled)
2000 return 0;
2001
2002 /* Don't switch over if we're about to resume some other process
2003 other than WAIT_PTID's, and schedule-multiple is off. */
2004 if (!sched_multi
2005 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2006 return 0;
2007
6a6b96b9 2008 /* Switched over from WAIT_PID. */
ea67f13b 2009 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2010 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2011 {
515630c5
UW
2012 struct regcache *regcache = get_thread_regcache (wait_ptid);
2013
6c95b8df
PA
2014 if (breakpoint_here_p (get_regcache_aspace (regcache),
2015 regcache_read_pc (regcache)))
ea67f13b 2016 {
515630c5
UW
2017 /* If stepping, remember current thread to switch back to. */
2018 if (step)
2019 deferred_step_ptid = inferior_ptid;
ea67f13b 2020
515630c5
UW
2021 /* Switch back to WAIT_PID thread. */
2022 switch_to_thread (wait_ptid);
6a6b96b9 2023
0d9a9a5f
PA
2024 if (debug_infrun)
2025 fprintf_unfiltered (gdb_stdlog,
2026 "infrun: prepare_to_proceed (step=%d), "
2027 "switched to [%s]\n",
2028 step, target_pid_to_str (inferior_ptid));
2029
515630c5
UW
2030 /* We return 1 to indicate that there is a breakpoint here,
2031 so we need to step over it before continuing to avoid
1777feb0 2032 hitting it straight away. */
515630c5
UW
2033 return 1;
2034 }
ea67f13b
DJ
2035 }
2036
2037 return 0;
ea67f13b 2038}
e4846b08 2039
c906108c
SS
2040/* Basic routine for continuing the program in various fashions.
2041
2042 ADDR is the address to resume at, or -1 for resume where stopped.
2043 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2044 or -1 for act according to how it stopped.
c906108c 2045 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2046 -1 means return after that and print nothing.
2047 You should probably set various step_... variables
2048 before calling here, if you are stepping.
c906108c
SS
2049
2050 You should call clear_proceed_status before calling proceed. */
2051
2052void
96baa820 2053proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2054{
e58b0e63
PA
2055 struct regcache *regcache;
2056 struct gdbarch *gdbarch;
4e1c45ea 2057 struct thread_info *tp;
e58b0e63 2058 CORE_ADDR pc;
6c95b8df 2059 struct address_space *aspace;
c906108c
SS
2060 int oneproc = 0;
2061
e58b0e63
PA
2062 /* If we're stopped at a fork/vfork, follow the branch set by the
2063 "set follow-fork-mode" command; otherwise, we'll just proceed
2064 resuming the current thread. */
2065 if (!follow_fork ())
2066 {
2067 /* The target for some reason decided not to resume. */
2068 normal_stop ();
f148b27e
PA
2069 if (target_can_async_p ())
2070 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2071 return;
2072 }
2073
2074 regcache = get_current_regcache ();
2075 gdbarch = get_regcache_arch (regcache);
6c95b8df 2076 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2077 pc = regcache_read_pc (regcache);
2078
c906108c 2079 if (step > 0)
515630c5 2080 step_start_function = find_pc_function (pc);
c906108c
SS
2081 if (step < 0)
2082 stop_after_trap = 1;
2083
2acceee2 2084 if (addr == (CORE_ADDR) -1)
c906108c 2085 {
6c95b8df 2086 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2087 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2088 /* There is a breakpoint at the address we will resume at,
2089 step one instruction before inserting breakpoints so that
2090 we do not stop right away (and report a second hit at this
b2175913
MS
2091 breakpoint).
2092
2093 Note, we don't do this in reverse, because we won't
2094 actually be executing the breakpoint insn anyway.
2095 We'll be (un-)executing the previous instruction. */
2096
c906108c 2097 oneproc = 1;
515630c5
UW
2098 else if (gdbarch_single_step_through_delay_p (gdbarch)
2099 && gdbarch_single_step_through_delay (gdbarch,
2100 get_current_frame ()))
3352ef37
AC
2101 /* We stepped onto an instruction that needs to be stepped
2102 again before re-inserting the breakpoint, do so. */
c906108c
SS
2103 oneproc = 1;
2104 }
2105 else
2106 {
515630c5 2107 regcache_write_pc (regcache, addr);
c906108c
SS
2108 }
2109
527159b7 2110 if (debug_infrun)
8a9de0e4 2111 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2112 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2113 paddress (gdbarch, addr), siggnal, step);
527159b7 2114
94cc34af
PA
2115 if (non_stop)
2116 /* In non-stop, each thread is handled individually. The context
2117 must already be set to the right thread here. */
2118 ;
2119 else
2120 {
2121 /* In a multi-threaded task we may select another thread and
2122 then continue or step.
c906108c 2123
94cc34af
PA
2124 But if the old thread was stopped at a breakpoint, it will
2125 immediately cause another breakpoint stop without any
2126 execution (i.e. it will report a breakpoint hit incorrectly).
2127 So we must step over it first.
c906108c 2128
94cc34af
PA
2129 prepare_to_proceed checks the current thread against the
2130 thread that reported the most recent event. If a step-over
2131 is required it returns TRUE and sets the current thread to
1777feb0 2132 the old thread. */
94cc34af
PA
2133 if (prepare_to_proceed (step))
2134 oneproc = 1;
2135 }
c906108c 2136
4e1c45ea
PA
2137 /* prepare_to_proceed may change the current thread. */
2138 tp = inferior_thread ();
2139
30852783
UW
2140 if (oneproc)
2141 {
2142 tp->control.trap_expected = 1;
2143 /* If displaced stepping is enabled, we can step over the
2144 breakpoint without hitting it, so leave all breakpoints
2145 inserted. Otherwise we need to disable all breakpoints, step
2146 one instruction, and then re-add them when that step is
2147 finished. */
2148 if (!use_displaced_stepping (gdbarch))
2149 remove_breakpoints ();
2150 }
2151
2152 /* We can insert breakpoints if we're not trying to step over one,
2153 or if we are stepping over one but we're using displaced stepping
2154 to do so. */
2155 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2156 insert_breakpoints ();
2157
2020b7ab
PA
2158 if (!non_stop)
2159 {
2160 /* Pass the last stop signal to the thread we're resuming,
2161 irrespective of whether the current thread is the thread that
2162 got the last event or not. This was historically GDB's
2163 behaviour before keeping a stop_signal per thread. */
2164
2165 struct thread_info *last_thread;
2166 ptid_t last_ptid;
2167 struct target_waitstatus last_status;
2168
2169 get_last_target_status (&last_ptid, &last_status);
2170 if (!ptid_equal (inferior_ptid, last_ptid)
2171 && !ptid_equal (last_ptid, null_ptid)
2172 && !ptid_equal (last_ptid, minus_one_ptid))
2173 {
e09875d4 2174 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2175 if (last_thread)
2176 {
16c381f0
JK
2177 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2178 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2179 }
2180 }
2181 }
2182
c906108c 2183 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2184 tp->suspend.stop_signal = siggnal;
c906108c
SS
2185 /* If this signal should not be seen by program,
2186 give it zero. Used for debugging signals. */
16c381f0
JK
2187 else if (!signal_program[tp->suspend.stop_signal])
2188 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2189
2190 annotate_starting ();
2191
2192 /* Make sure that output from GDB appears before output from the
2193 inferior. */
2194 gdb_flush (gdb_stdout);
2195
e4846b08
JJ
2196 /* Refresh prev_pc value just prior to resuming. This used to be
2197 done in stop_stepping, however, setting prev_pc there did not handle
2198 scenarios such as inferior function calls or returning from
2199 a function via the return command. In those cases, the prev_pc
2200 value was not set properly for subsequent commands. The prev_pc value
2201 is used to initialize the starting line number in the ecs. With an
2202 invalid value, the gdb next command ends up stopping at the position
2203 represented by the next line table entry past our start position.
2204 On platforms that generate one line table entry per line, this
2205 is not a problem. However, on the ia64, the compiler generates
2206 extraneous line table entries that do not increase the line number.
2207 When we issue the gdb next command on the ia64 after an inferior call
2208 or a return command, we often end up a few instructions forward, still
2209 within the original line we started.
2210
d5cd6034
JB
2211 An attempt was made to refresh the prev_pc at the same time the
2212 execution_control_state is initialized (for instance, just before
2213 waiting for an inferior event). But this approach did not work
2214 because of platforms that use ptrace, where the pc register cannot
2215 be read unless the inferior is stopped. At that point, we are not
2216 guaranteed the inferior is stopped and so the regcache_read_pc() call
2217 can fail. Setting the prev_pc value here ensures the value is updated
2218 correctly when the inferior is stopped. */
4e1c45ea 2219 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2220
59f0d5d9 2221 /* Fill in with reasonable starting values. */
4e1c45ea 2222 init_thread_stepping_state (tp);
59f0d5d9 2223
59f0d5d9
PA
2224 /* Reset to normal state. */
2225 init_infwait_state ();
2226
c906108c 2227 /* Resume inferior. */
16c381f0 2228 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2229
2230 /* Wait for it to stop (if not standalone)
2231 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2232 /* Do this only if we are not using the event loop, or if the target
1777feb0 2233 does not support asynchronous execution. */
362646f5 2234 if (!target_can_async_p ())
43ff13b4 2235 {
e4c8541f 2236 wait_for_inferior ();
43ff13b4
JM
2237 normal_stop ();
2238 }
c906108c 2239}
c906108c
SS
2240\f
2241
2242/* Start remote-debugging of a machine over a serial link. */
96baa820 2243
c906108c 2244void
8621d6a9 2245start_remote (int from_tty)
c906108c 2246{
d6b48e9c 2247 struct inferior *inferior;
d6b48e9c 2248
abbb1732 2249 init_wait_for_inferior ();
d6b48e9c 2250 inferior = current_inferior ();
16c381f0 2251 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2252
1777feb0 2253 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2254 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2255 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2256 nothing is returned (instead of just blocking). Because of this,
2257 targets expecting an immediate response need to, internally, set
2258 things up so that the target_wait() is forced to eventually
1777feb0 2259 timeout. */
6426a772
JM
2260 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2261 differentiate to its caller what the state of the target is after
2262 the initial open has been performed. Here we're assuming that
2263 the target has stopped. It should be possible to eventually have
2264 target_open() return to the caller an indication that the target
2265 is currently running and GDB state should be set to the same as
1777feb0 2266 for an async run. */
e4c8541f 2267 wait_for_inferior ();
8621d6a9
DJ
2268
2269 /* Now that the inferior has stopped, do any bookkeeping like
2270 loading shared libraries. We want to do this before normal_stop,
2271 so that the displayed frame is up to date. */
2272 post_create_inferior (&current_target, from_tty);
2273
6426a772 2274 normal_stop ();
c906108c
SS
2275}
2276
2277/* Initialize static vars when a new inferior begins. */
2278
2279void
96baa820 2280init_wait_for_inferior (void)
c906108c
SS
2281{
2282 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2283
c906108c
SS
2284 breakpoint_init_inferior (inf_starting);
2285
c906108c 2286 clear_proceed_status ();
9f976b41
DJ
2287
2288 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2289 deferred_step_ptid = null_ptid;
ca005067
DJ
2290
2291 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2292
0d1e5fa7
PA
2293 previous_inferior_ptid = null_ptid;
2294 init_infwait_state ();
2295
edb3359d
DJ
2296 /* Discard any skipped inlined frames. */
2297 clear_inline_frame_state (minus_one_ptid);
c906108c 2298}
237fc4c9 2299
c906108c 2300\f
b83266a0
SS
2301/* This enum encodes possible reasons for doing a target_wait, so that
2302 wfi can call target_wait in one place. (Ultimately the call will be
2303 moved out of the infinite loop entirely.) */
2304
c5aa993b
JM
2305enum infwait_states
2306{
cd0fc7c3
SS
2307 infwait_normal_state,
2308 infwait_thread_hop_state,
d983da9c 2309 infwait_step_watch_state,
cd0fc7c3 2310 infwait_nonstep_watch_state
b83266a0
SS
2311};
2312
0d1e5fa7
PA
2313/* The PTID we'll do a target_wait on.*/
2314ptid_t waiton_ptid;
2315
2316/* Current inferior wait state. */
2317enum infwait_states infwait_state;
cd0fc7c3 2318
0d1e5fa7
PA
2319/* Data to be passed around while handling an event. This data is
2320 discarded between events. */
c5aa993b 2321struct execution_control_state
488f131b 2322{
0d1e5fa7 2323 ptid_t ptid;
4e1c45ea
PA
2324 /* The thread that got the event, if this was a thread event; NULL
2325 otherwise. */
2326 struct thread_info *event_thread;
2327
488f131b 2328 struct target_waitstatus ws;
488f131b
JB
2329 int random_signal;
2330 CORE_ADDR stop_func_start;
2331 CORE_ADDR stop_func_end;
2332 char *stop_func_name;
488f131b 2333 int new_thread_event;
488f131b
JB
2334 int wait_some_more;
2335};
2336
ec9499be 2337static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2338
568d6575
UW
2339static void handle_step_into_function (struct gdbarch *gdbarch,
2340 struct execution_control_state *ecs);
2341static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2342 struct execution_control_state *ecs);
186c406b
TT
2343static void check_exception_resume (struct execution_control_state *,
2344 struct frame_info *, struct symbol *);
611c83ae 2345
104c1213
JM
2346static void stop_stepping (struct execution_control_state *ecs);
2347static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2348static void keep_going (struct execution_control_state *ecs);
104c1213 2349
252fbfc8
PA
2350/* Callback for iterate over threads. If the thread is stopped, but
2351 the user/frontend doesn't know about that yet, go through
2352 normal_stop, as if the thread had just stopped now. ARG points at
2353 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2354 ptid_is_pid(PTID) is true, applies to all threads of the process
2355 pointed at by PTID. Otherwise, apply only to the thread pointed by
2356 PTID. */
2357
2358static int
2359infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2360{
2361 ptid_t ptid = * (ptid_t *) arg;
2362
2363 if ((ptid_equal (info->ptid, ptid)
2364 || ptid_equal (minus_one_ptid, ptid)
2365 || (ptid_is_pid (ptid)
2366 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2367 && is_running (info->ptid)
2368 && !is_executing (info->ptid))
2369 {
2370 struct cleanup *old_chain;
2371 struct execution_control_state ecss;
2372 struct execution_control_state *ecs = &ecss;
2373
2374 memset (ecs, 0, sizeof (*ecs));
2375
2376 old_chain = make_cleanup_restore_current_thread ();
2377
2378 switch_to_thread (info->ptid);
2379
2380 /* Go through handle_inferior_event/normal_stop, so we always
2381 have consistent output as if the stop event had been
2382 reported. */
2383 ecs->ptid = info->ptid;
e09875d4 2384 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2385 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2386 ecs->ws.value.sig = TARGET_SIGNAL_0;
2387
2388 handle_inferior_event (ecs);
2389
2390 if (!ecs->wait_some_more)
2391 {
2392 struct thread_info *tp;
2393
2394 normal_stop ();
2395
2396 /* Finish off the continuations. The continations
2397 themselves are responsible for realising the thread
2398 didn't finish what it was supposed to do. */
2399 tp = inferior_thread ();
2400 do_all_intermediate_continuations_thread (tp);
2401 do_all_continuations_thread (tp);
2402 }
2403
2404 do_cleanups (old_chain);
2405 }
2406
2407 return 0;
2408}
2409
2410/* This function is attached as a "thread_stop_requested" observer.
2411 Cleanup local state that assumed the PTID was to be resumed, and
2412 report the stop to the frontend. */
2413
2c0b251b 2414static void
252fbfc8
PA
2415infrun_thread_stop_requested (ptid_t ptid)
2416{
fc1cf338 2417 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2418
2419 /* PTID was requested to stop. Remove it from the displaced
2420 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2421
2422 for (displaced = displaced_step_inferior_states;
2423 displaced;
2424 displaced = displaced->next)
252fbfc8 2425 {
fc1cf338 2426 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2427
fc1cf338
PA
2428 it = displaced->step_request_queue;
2429 prev_next_p = &displaced->step_request_queue;
2430 while (it)
252fbfc8 2431 {
fc1cf338
PA
2432 if (ptid_match (it->ptid, ptid))
2433 {
2434 *prev_next_p = it->next;
2435 it->next = NULL;
2436 xfree (it);
2437 }
252fbfc8 2438 else
fc1cf338
PA
2439 {
2440 prev_next_p = &it->next;
2441 }
252fbfc8 2442
fc1cf338 2443 it = *prev_next_p;
252fbfc8 2444 }
252fbfc8
PA
2445 }
2446
2447 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2448}
2449
a07daef3
PA
2450static void
2451infrun_thread_thread_exit (struct thread_info *tp, int silent)
2452{
2453 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2454 nullify_last_target_wait_ptid ();
2455}
2456
4e1c45ea
PA
2457/* Callback for iterate_over_threads. */
2458
2459static int
2460delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2461{
2462 if (is_exited (info->ptid))
2463 return 0;
2464
2465 delete_step_resume_breakpoint (info);
186c406b 2466 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2467 return 0;
2468}
2469
2470/* In all-stop, delete the step resume breakpoint of any thread that
2471 had one. In non-stop, delete the step resume breakpoint of the
2472 thread that just stopped. */
2473
2474static void
2475delete_step_thread_step_resume_breakpoint (void)
2476{
2477 if (!target_has_execution
2478 || ptid_equal (inferior_ptid, null_ptid))
2479 /* If the inferior has exited, we have already deleted the step
2480 resume breakpoints out of GDB's lists. */
2481 return;
2482
2483 if (non_stop)
2484 {
2485 /* If in non-stop mode, only delete the step-resume or
2486 longjmp-resume breakpoint of the thread that just stopped
2487 stepping. */
2488 struct thread_info *tp = inferior_thread ();
abbb1732 2489
4e1c45ea 2490 delete_step_resume_breakpoint (tp);
186c406b 2491 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2492 }
2493 else
2494 /* In all-stop mode, delete all step-resume and longjmp-resume
2495 breakpoints of any thread that had them. */
2496 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2497}
2498
1777feb0 2499/* A cleanup wrapper. */
4e1c45ea
PA
2500
2501static void
2502delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2503{
2504 delete_step_thread_step_resume_breakpoint ();
2505}
2506
223698f8
DE
2507/* Pretty print the results of target_wait, for debugging purposes. */
2508
2509static void
2510print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2511 const struct target_waitstatus *ws)
2512{
2513 char *status_string = target_waitstatus_to_string (ws);
2514 struct ui_file *tmp_stream = mem_fileopen ();
2515 char *text;
223698f8
DE
2516
2517 /* The text is split over several lines because it was getting too long.
2518 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2519 output as a unit; we want only one timestamp printed if debug_timestamp
2520 is set. */
2521
2522 fprintf_unfiltered (tmp_stream,
2523 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2524 if (PIDGET (waiton_ptid) != -1)
2525 fprintf_unfiltered (tmp_stream,
2526 " [%s]", target_pid_to_str (waiton_ptid));
2527 fprintf_unfiltered (tmp_stream, ", status) =\n");
2528 fprintf_unfiltered (tmp_stream,
2529 "infrun: %d [%s],\n",
2530 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2531 fprintf_unfiltered (tmp_stream,
2532 "infrun: %s\n",
2533 status_string);
2534
759ef836 2535 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2536
2537 /* This uses %s in part to handle %'s in the text, but also to avoid
2538 a gcc error: the format attribute requires a string literal. */
2539 fprintf_unfiltered (gdb_stdlog, "%s", text);
2540
2541 xfree (status_string);
2542 xfree (text);
2543 ui_file_delete (tmp_stream);
2544}
2545
24291992
PA
2546/* Prepare and stabilize the inferior for detaching it. E.g.,
2547 detaching while a thread is displaced stepping is a recipe for
2548 crashing it, as nothing would readjust the PC out of the scratch
2549 pad. */
2550
2551void
2552prepare_for_detach (void)
2553{
2554 struct inferior *inf = current_inferior ();
2555 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2556 struct cleanup *old_chain_1;
2557 struct displaced_step_inferior_state *displaced;
2558
2559 displaced = get_displaced_stepping_state (inf->pid);
2560
2561 /* Is any thread of this process displaced stepping? If not,
2562 there's nothing else to do. */
2563 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2564 return;
2565
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "displaced-stepping in-process while detaching");
2569
2570 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2571 inf->detaching = 1;
2572
2573 while (!ptid_equal (displaced->step_ptid, null_ptid))
2574 {
2575 struct cleanup *old_chain_2;
2576 struct execution_control_state ecss;
2577 struct execution_control_state *ecs;
2578
2579 ecs = &ecss;
2580 memset (ecs, 0, sizeof (*ecs));
2581
2582 overlay_cache_invalid = 1;
2583
2584 /* We have to invalidate the registers BEFORE calling
2585 target_wait because they can be loaded from the target while
2586 in target_wait. This makes remote debugging a bit more
2587 efficient for those targets that provide critical registers
1777feb0 2588 as part of their normal status mechanism. */
24291992
PA
2589
2590 registers_changed ();
2591
2592 if (deprecated_target_wait_hook)
2593 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2594 else
2595 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2596
2597 if (debug_infrun)
2598 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2599
2600 /* If an error happens while handling the event, propagate GDB's
2601 knowledge of the executing state to the frontend/user running
2602 state. */
3e43a32a
MS
2603 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2604 &minus_one_ptid);
24291992 2605
4d533103
PA
2606 /* In non-stop mode, each thread is handled individually.
2607 Switch early, so the global state is set correctly for this
2608 thread. */
2609 if (non_stop
2610 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2611 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2612 context_switch (ecs->ptid);
2613
24291992
PA
2614 /* Now figure out what to do with the result of the result. */
2615 handle_inferior_event (ecs);
2616
2617 /* No error, don't finish the state yet. */
2618 discard_cleanups (old_chain_2);
2619
2620 /* Breakpoints and watchpoints are not installed on the target
2621 at this point, and signals are passed directly to the
2622 inferior, so this must mean the process is gone. */
2623 if (!ecs->wait_some_more)
2624 {
2625 discard_cleanups (old_chain_1);
2626 error (_("Program exited while detaching"));
2627 }
2628 }
2629
2630 discard_cleanups (old_chain_1);
2631}
2632
cd0fc7c3 2633/* Wait for control to return from inferior to debugger.
ae123ec6 2634
cd0fc7c3
SS
2635 If inferior gets a signal, we may decide to start it up again
2636 instead of returning. That is why there is a loop in this function.
2637 When this function actually returns it means the inferior
2638 should be left stopped and GDB should read more commands. */
2639
2640void
e4c8541f 2641wait_for_inferior (void)
cd0fc7c3
SS
2642{
2643 struct cleanup *old_cleanups;
0d1e5fa7 2644 struct execution_control_state ecss;
cd0fc7c3 2645 struct execution_control_state *ecs;
c906108c 2646
527159b7 2647 if (debug_infrun)
ae123ec6 2648 fprintf_unfiltered
e4c8541f 2649 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2650
4e1c45ea
PA
2651 old_cleanups =
2652 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2653
cd0fc7c3 2654 ecs = &ecss;
0d1e5fa7
PA
2655 memset (ecs, 0, sizeof (*ecs));
2656
e0bb1c1c
PA
2657 /* We'll update this if & when we switch to a new thread. */
2658 previous_inferior_ptid = inferior_ptid;
2659
c906108c
SS
2660 while (1)
2661 {
29f49a6a
PA
2662 struct cleanup *old_chain;
2663
ec9499be
UW
2664 /* We have to invalidate the registers BEFORE calling target_wait
2665 because they can be loaded from the target while in target_wait.
2666 This makes remote debugging a bit more efficient for those
2667 targets that provide critical registers as part of their normal
1777feb0 2668 status mechanism. */
ec9499be
UW
2669
2670 overlay_cache_invalid = 1;
2671 registers_changed ();
2672
9a4105ab 2673 if (deprecated_target_wait_hook)
47608cb1 2674 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2675 else
47608cb1 2676 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2677
f00150c9 2678 if (debug_infrun)
223698f8 2679 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2680
29f49a6a
PA
2681 /* If an error happens while handling the event, propagate GDB's
2682 knowledge of the executing state to the frontend/user running
2683 state. */
2684 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2685
a96d9b2e
SDJ
2686 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2687 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2688 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2689
cd0fc7c3
SS
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
c906108c 2692
29f49a6a
PA
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain);
2695
cd0fc7c3
SS
2696 if (!ecs->wait_some_more)
2697 break;
2698 }
4e1c45ea 2699
cd0fc7c3
SS
2700 do_cleanups (old_cleanups);
2701}
c906108c 2702
1777feb0 2703/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2704 event loop whenever a change of state is detected on the file
1777feb0
MS
2705 descriptor corresponding to the target. It can be called more than
2706 once to complete a single execution command. In such cases we need
2707 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2708 that this function is called for a single execution command, then
2709 report to the user that the inferior has stopped, and do the
1777feb0 2710 necessary cleanups. */
43ff13b4
JM
2711
2712void
fba45db2 2713fetch_inferior_event (void *client_data)
43ff13b4 2714{
0d1e5fa7 2715 struct execution_control_state ecss;
a474d7c2 2716 struct execution_control_state *ecs = &ecss;
4f8d22e3 2717 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2718 struct cleanup *ts_old_chain;
4f8d22e3 2719 int was_sync = sync_execution;
43ff13b4 2720
0d1e5fa7
PA
2721 memset (ecs, 0, sizeof (*ecs));
2722
ec9499be
UW
2723 /* We'll update this if & when we switch to a new thread. */
2724 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2725
c5187ac6
PA
2726 /* We're handling a live event, so make sure we're doing live
2727 debugging. If we're looking at traceframes while the target is
2728 running, we're going to need to get back to that mode after
2729 handling the event. */
2730 if (non_stop)
2731 {
2732 make_cleanup_restore_current_traceframe ();
e6e4e701 2733 set_current_traceframe (-1);
c5187ac6
PA
2734 }
2735
4f8d22e3
PA
2736 if (non_stop)
2737 /* In non-stop mode, the user/frontend should not notice a thread
2738 switch due to internal events. Make sure we reverse to the
2739 user selected thread and frame after handling the event and
2740 running any breakpoint commands. */
2741 make_cleanup_restore_current_thread ();
2742
59f0d5d9
PA
2743 /* We have to invalidate the registers BEFORE calling target_wait
2744 because they can be loaded from the target while in target_wait.
2745 This makes remote debugging a bit more efficient for those
2746 targets that provide critical registers as part of their normal
1777feb0 2747 status mechanism. */
43ff13b4 2748
ec9499be 2749 overlay_cache_invalid = 1;
59f0d5d9 2750 registers_changed ();
43ff13b4 2751
9a4105ab 2752 if (deprecated_target_wait_hook)
a474d7c2 2753 ecs->ptid =
47608cb1 2754 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2755 else
47608cb1 2756 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2757
f00150c9 2758 if (debug_infrun)
223698f8 2759 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2760
94cc34af
PA
2761 if (non_stop
2762 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2763 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2764 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2765 /* In non-stop mode, each thread is handled individually. Switch
2766 early, so the global state is set correctly for this
2767 thread. */
2768 context_switch (ecs->ptid);
2769
29f49a6a
PA
2770 /* If an error happens while handling the event, propagate GDB's
2771 knowledge of the executing state to the frontend/user running
2772 state. */
2773 if (!non_stop)
2774 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2775 else
2776 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2777
43ff13b4 2778 /* Now figure out what to do with the result of the result. */
a474d7c2 2779 handle_inferior_event (ecs);
43ff13b4 2780
a474d7c2 2781 if (!ecs->wait_some_more)
43ff13b4 2782 {
d6b48e9c
PA
2783 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2784
4e1c45ea 2785 delete_step_thread_step_resume_breakpoint ();
f107f563 2786
d6b48e9c 2787 /* We may not find an inferior if this was a process exit. */
16c381f0 2788 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2789 normal_stop ();
2790
af679fd0
PA
2791 if (target_has_execution
2792 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2793 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2794 && ecs->event_thread->step_multi
16c381f0 2795 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2796 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2797 else
2798 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2799 }
4f8d22e3 2800
29f49a6a
PA
2801 /* No error, don't finish the thread states yet. */
2802 discard_cleanups (ts_old_chain);
2803
4f8d22e3
PA
2804 /* Revert thread and frame. */
2805 do_cleanups (old_chain);
2806
2807 /* If the inferior was in sync execution mode, and now isn't,
2808 restore the prompt. */
2809 if (was_sync && !sync_execution)
2810 display_gdb_prompt (0);
43ff13b4
JM
2811}
2812
edb3359d
DJ
2813/* Record the frame and location we're currently stepping through. */
2814void
2815set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2816{
2817 struct thread_info *tp = inferior_thread ();
2818
16c381f0
JK
2819 tp->control.step_frame_id = get_frame_id (frame);
2820 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2821
2822 tp->current_symtab = sal.symtab;
2823 tp->current_line = sal.line;
2824}
2825
0d1e5fa7
PA
2826/* Clear context switchable stepping state. */
2827
2828void
4e1c45ea 2829init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2830{
2831 tss->stepping_over_breakpoint = 0;
2832 tss->step_after_step_resume_breakpoint = 0;
2833 tss->stepping_through_solib_after_catch = 0;
2834 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2835}
2836
e02bc4cc 2837/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2838 target_wait()/deprecated_target_wait_hook(). The data is actually
2839 cached by handle_inferior_event(), which gets called immediately
2840 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2841
2842void
488f131b 2843get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2844{
39f77062 2845 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2846 *status = target_last_waitstatus;
2847}
2848
ac264b3b
MS
2849void
2850nullify_last_target_wait_ptid (void)
2851{
2852 target_last_wait_ptid = minus_one_ptid;
2853}
2854
dcf4fbde 2855/* Switch thread contexts. */
dd80620e
MS
2856
2857static void
0d1e5fa7 2858context_switch (ptid_t ptid)
dd80620e 2859{
fd48f117
DJ
2860 if (debug_infrun)
2861 {
2862 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2863 target_pid_to_str (inferior_ptid));
2864 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2865 target_pid_to_str (ptid));
fd48f117
DJ
2866 }
2867
0d1e5fa7 2868 switch_to_thread (ptid);
dd80620e
MS
2869}
2870
4fa8626c
DJ
2871static void
2872adjust_pc_after_break (struct execution_control_state *ecs)
2873{
24a73cce
UW
2874 struct regcache *regcache;
2875 struct gdbarch *gdbarch;
6c95b8df 2876 struct address_space *aspace;
8aad930b 2877 CORE_ADDR breakpoint_pc;
4fa8626c 2878
4fa8626c
DJ
2879 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2880 we aren't, just return.
9709f61c
DJ
2881
2882 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2883 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2884 implemented by software breakpoints should be handled through the normal
2885 breakpoint layer.
8fb3e588 2886
4fa8626c
DJ
2887 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2888 different signals (SIGILL or SIGEMT for instance), but it is less
2889 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2890 gdbarch_decr_pc_after_break. I don't know any specific target that
2891 generates these signals at breakpoints (the code has been in GDB since at
2892 least 1992) so I can not guess how to handle them here.
8fb3e588 2893
e6cf7916
UW
2894 In earlier versions of GDB, a target with
2895 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2896 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2897 target with both of these set in GDB history, and it seems unlikely to be
2898 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2899
2900 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2901 return;
2902
2903 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2904 return;
2905
4058b839
PA
2906 /* In reverse execution, when a breakpoint is hit, the instruction
2907 under it has already been de-executed. The reported PC always
2908 points at the breakpoint address, so adjusting it further would
2909 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2910 architecture:
2911
2912 B1 0x08000000 : INSN1
2913 B2 0x08000001 : INSN2
2914 0x08000002 : INSN3
2915 PC -> 0x08000003 : INSN4
2916
2917 Say you're stopped at 0x08000003 as above. Reverse continuing
2918 from that point should hit B2 as below. Reading the PC when the
2919 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2920 been de-executed already.
2921
2922 B1 0x08000000 : INSN1
2923 B2 PC -> 0x08000001 : INSN2
2924 0x08000002 : INSN3
2925 0x08000003 : INSN4
2926
2927 We can't apply the same logic as for forward execution, because
2928 we would wrongly adjust the PC to 0x08000000, since there's a
2929 breakpoint at PC - 1. We'd then report a hit on B1, although
2930 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2931 behaviour. */
2932 if (execution_direction == EXEC_REVERSE)
2933 return;
2934
24a73cce
UW
2935 /* If this target does not decrement the PC after breakpoints, then
2936 we have nothing to do. */
2937 regcache = get_thread_regcache (ecs->ptid);
2938 gdbarch = get_regcache_arch (regcache);
2939 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2940 return;
2941
6c95b8df
PA
2942 aspace = get_regcache_aspace (regcache);
2943
8aad930b
AC
2944 /* Find the location where (if we've hit a breakpoint) the
2945 breakpoint would be. */
515630c5
UW
2946 breakpoint_pc = regcache_read_pc (regcache)
2947 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2948
1c5cfe86
PA
2949 /* Check whether there actually is a software breakpoint inserted at
2950 that location.
2951
2952 If in non-stop mode, a race condition is possible where we've
2953 removed a breakpoint, but stop events for that breakpoint were
2954 already queued and arrive later. To suppress those spurious
2955 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2956 and retire them after a number of stop events are reported. */
6c95b8df
PA
2957 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2958 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2959 {
96429cc8 2960 struct cleanup *old_cleanups = NULL;
abbb1732 2961
96429cc8
HZ
2962 if (RECORD_IS_USED)
2963 old_cleanups = record_gdb_operation_disable_set ();
2964
1c0fdd0e
UW
2965 /* When using hardware single-step, a SIGTRAP is reported for both
2966 a completed single-step and a software breakpoint. Need to
2967 differentiate between the two, as the latter needs adjusting
2968 but the former does not.
2969
2970 The SIGTRAP can be due to a completed hardware single-step only if
2971 - we didn't insert software single-step breakpoints
2972 - the thread to be examined is still the current thread
2973 - this thread is currently being stepped
2974
2975 If any of these events did not occur, we must have stopped due
2976 to hitting a software breakpoint, and have to back up to the
2977 breakpoint address.
2978
2979 As a special case, we could have hardware single-stepped a
2980 software breakpoint. In this case (prev_pc == breakpoint_pc),
2981 we also need to back up to the breakpoint address. */
2982
2983 if (singlestep_breakpoints_inserted_p
2984 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2985 || !currently_stepping (ecs->event_thread)
2986 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2987 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2988
2989 if (RECORD_IS_USED)
2990 do_cleanups (old_cleanups);
8aad930b 2991 }
4fa8626c
DJ
2992}
2993
0d1e5fa7
PA
2994void
2995init_infwait_state (void)
2996{
2997 waiton_ptid = pid_to_ptid (-1);
2998 infwait_state = infwait_normal_state;
2999}
3000
94cc34af
PA
3001void
3002error_is_running (void)
3003{
3e43a32a
MS
3004 error (_("Cannot execute this command while "
3005 "the selected thread is running."));
94cc34af
PA
3006}
3007
3008void
3009ensure_not_running (void)
3010{
3011 if (is_running (inferior_ptid))
3012 error_is_running ();
3013}
3014
edb3359d
DJ
3015static int
3016stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3017{
3018 for (frame = get_prev_frame (frame);
3019 frame != NULL;
3020 frame = get_prev_frame (frame))
3021 {
3022 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3023 return 1;
3024 if (get_frame_type (frame) != INLINE_FRAME)
3025 break;
3026 }
3027
3028 return 0;
3029}
3030
a96d9b2e
SDJ
3031/* Auxiliary function that handles syscall entry/return events.
3032 It returns 1 if the inferior should keep going (and GDB
3033 should ignore the event), or 0 if the event deserves to be
3034 processed. */
ca2163eb 3035
a96d9b2e 3036static int
ca2163eb 3037handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3038{
ca2163eb
PA
3039 struct regcache *regcache;
3040 struct gdbarch *gdbarch;
3041 int syscall_number;
3042
3043 if (!ptid_equal (ecs->ptid, inferior_ptid))
3044 context_switch (ecs->ptid);
3045
3046 regcache = get_thread_regcache (ecs->ptid);
3047 gdbarch = get_regcache_arch (regcache);
3048 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3049 stop_pc = regcache_read_pc (regcache);
3050
a96d9b2e
SDJ
3051 target_last_waitstatus.value.syscall_number = syscall_number;
3052
3053 if (catch_syscall_enabled () > 0
3054 && catching_syscall_number (syscall_number) > 0)
3055 {
3056 if (debug_infrun)
3057 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3058 syscall_number);
a96d9b2e 3059
16c381f0 3060 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3061 = bpstat_stop_status (get_regcache_aspace (regcache),
3062 stop_pc, ecs->ptid);
16c381f0
JK
3063 ecs->random_signal
3064 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3065
ca2163eb
PA
3066 if (!ecs->random_signal)
3067 {
3068 /* Catchpoint hit. */
16c381f0 3069 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3070 return 0;
3071 }
a96d9b2e 3072 }
ca2163eb
PA
3073
3074 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3075 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3076 keep_going (ecs);
3077 return 1;
a96d9b2e
SDJ
3078}
3079
cd0fc7c3
SS
3080/* Given an execution control state that has been freshly filled in
3081 by an event from the inferior, figure out what it means and take
3082 appropriate action. */
c906108c 3083
ec9499be 3084static void
96baa820 3085handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3086{
568d6575
UW
3087 struct frame_info *frame;
3088 struct gdbarch *gdbarch;
c8edd8b4 3089 int sw_single_step_trap_p = 0;
d983da9c
DJ
3090 int stopped_by_watchpoint;
3091 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3092 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3093 enum stop_kind stop_soon;
3094
28736962
PA
3095 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3096 {
3097 /* We had an event in the inferior, but we are not interested in
3098 handling it at this level. The lower layers have already
3099 done what needs to be done, if anything.
3100
3101 One of the possible circumstances for this is when the
3102 inferior produces output for the console. The inferior has
3103 not stopped, and we are ignoring the event. Another possible
3104 circumstance is any event which the lower level knows will be
3105 reported multiple times without an intervening resume. */
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3108 prepare_to_wait (ecs);
3109 return;
3110 }
3111
d6b48e9c 3112 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3113 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3114 {
3115 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3116
d6b48e9c 3117 gdb_assert (inf);
16c381f0 3118 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3119 }
3120 else
3121 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3122
1777feb0 3123 /* Cache the last pid/waitstatus. */
39f77062 3124 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3125 target_last_waitstatus = ecs->ws;
e02bc4cc 3126
ca005067 3127 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3128 stop_stack_dummy = STOP_NONE;
ca005067 3129
1777feb0 3130 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3131
3132 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3133 && !ptid_equal (ecs->ptid, minus_one_ptid)
3134 && !in_thread_list (ecs->ptid));
3135
3136 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3137 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3138 add_thread (ecs->ptid);
3139
e09875d4 3140 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3141
3142 /* Dependent on valid ECS->EVENT_THREAD. */
3143 adjust_pc_after_break (ecs);
3144
3145 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3146 reinit_frame_cache ();
3147
28736962
PA
3148 breakpoint_retire_moribund ();
3149
2b009048
DJ
3150 /* First, distinguish signals caused by the debugger from signals
3151 that have to do with the program's own actions. Note that
3152 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3153 on the operating system version. Here we detect when a SIGILL or
3154 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3155 something similar for SIGSEGV, since a SIGSEGV will be generated
3156 when we're trying to execute a breakpoint instruction on a
3157 non-executable stack. This happens for call dummy breakpoints
3158 for architectures like SPARC that place call dummies on the
3159 stack. */
2b009048
DJ
3160 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3161 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3162 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3163 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3164 {
de0a0249
UW
3165 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3166
3167 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3168 regcache_read_pc (regcache)))
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: Treating signal as SIGTRAP\n");
3173 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3174 }
2b009048
DJ
3175 }
3176
28736962
PA
3177 /* Mark the non-executing threads accordingly. In all-stop, all
3178 threads of all processes are stopped when we get any event
3179 reported. In non-stop mode, only the event thread stops. If
3180 we're handling a process exit in non-stop mode, there's nothing
3181 to do, as threads of the dead process are gone, and threads of
3182 any other process were left running. */
3183 if (!non_stop)
3184 set_executing (minus_one_ptid, 0);
3185 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3186 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3187 set_executing (inferior_ptid, 0);
8c90c137 3188
0d1e5fa7 3189 switch (infwait_state)
488f131b
JB
3190 {
3191 case infwait_thread_hop_state:
527159b7 3192 if (debug_infrun)
8a9de0e4 3193 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3194 break;
b83266a0 3195
488f131b 3196 case infwait_normal_state:
527159b7 3197 if (debug_infrun)
8a9de0e4 3198 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3199 break;
3200
3201 case infwait_step_watch_state:
3202 if (debug_infrun)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "infrun: infwait_step_watch_state\n");
3205
3206 stepped_after_stopped_by_watchpoint = 1;
488f131b 3207 break;
b83266a0 3208
488f131b 3209 case infwait_nonstep_watch_state:
527159b7 3210 if (debug_infrun)
8a9de0e4
AC
3211 fprintf_unfiltered (gdb_stdlog,
3212 "infrun: infwait_nonstep_watch_state\n");
488f131b 3213 insert_breakpoints ();
c906108c 3214
488f131b
JB
3215 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3216 handle things like signals arriving and other things happening
3217 in combination correctly? */
3218 stepped_after_stopped_by_watchpoint = 1;
3219 break;
65e82032
AC
3220
3221 default:
e2e0b3e5 3222 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3223 }
ec9499be 3224
0d1e5fa7 3225 infwait_state = infwait_normal_state;
ec9499be 3226 waiton_ptid = pid_to_ptid (-1);
c906108c 3227
488f131b
JB
3228 switch (ecs->ws.kind)
3229 {
3230 case TARGET_WAITKIND_LOADED:
527159b7 3231 if (debug_infrun)
8a9de0e4 3232 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3233 /* Ignore gracefully during startup of the inferior, as it might
3234 be the shell which has just loaded some objects, otherwise
3235 add the symbols for the newly loaded objects. Also ignore at
3236 the beginning of an attach or remote session; we will query
3237 the full list of libraries once the connection is
3238 established. */
c0236d92 3239 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3240 {
488f131b
JB
3241 /* Check for any newly added shared libraries if we're
3242 supposed to be adding them automatically. Switch
3243 terminal for any messages produced by
3244 breakpoint_re_set. */
3245 target_terminal_ours_for_output ();
aff6338a 3246 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3247 stack's section table is kept up-to-date. Architectures,
3248 (e.g., PPC64), use the section table to perform
3249 operations such as address => section name and hence
3250 require the table to contain all sections (including
3251 those found in shared libraries). */
b0f4b84b 3252#ifdef SOLIB_ADD
aff6338a 3253 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3254#else
3255 solib_add (NULL, 0, &current_target, auto_solib_add);
3256#endif
488f131b
JB
3257 target_terminal_inferior ();
3258
b0f4b84b
DJ
3259 /* If requested, stop when the dynamic linker notifies
3260 gdb of events. This allows the user to get control
3261 and place breakpoints in initializer routines for
3262 dynamically loaded objects (among other things). */
3263 if (stop_on_solib_events)
3264 {
55409f9d
DJ
3265 /* Make sure we print "Stopped due to solib-event" in
3266 normal_stop. */
3267 stop_print_frame = 1;
3268
b0f4b84b
DJ
3269 stop_stepping (ecs);
3270 return;
3271 }
3272
3273 /* NOTE drow/2007-05-11: This might be a good place to check
3274 for "catch load". */
488f131b 3275 }
b0f4b84b
DJ
3276
3277 /* If we are skipping through a shell, or through shared library
3278 loading that we aren't interested in, resume the program. If
3279 we're running the program normally, also resume. But stop if
3280 we're attaching or setting up a remote connection. */
3281 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3282 {
74960c60
VP
3283 /* Loading of shared libraries might have changed breakpoint
3284 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3285 if (stop_soon == NO_STOP_QUIETLY
3286 && !breakpoints_always_inserted_mode ())
74960c60 3287 insert_breakpoints ();
b0f4b84b
DJ
3288 resume (0, TARGET_SIGNAL_0);
3289 prepare_to_wait (ecs);
3290 return;
3291 }
3292
3293 break;
c5aa993b 3294
488f131b 3295 case TARGET_WAITKIND_SPURIOUS:
527159b7 3296 if (debug_infrun)
8a9de0e4 3297 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3298 resume (0, TARGET_SIGNAL_0);
3299 prepare_to_wait (ecs);
3300 return;
c5aa993b 3301
488f131b 3302 case TARGET_WAITKIND_EXITED:
527159b7 3303 if (debug_infrun)
8a9de0e4 3304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3305 inferior_ptid = ecs->ptid;
6c95b8df
PA
3306 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3307 set_current_program_space (current_inferior ()->pspace);
3308 handle_vfork_child_exec_or_exit (0);
1777feb0 3309 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3310 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3311
3312 /* Record the exit code in the convenience variable $_exitcode, so
3313 that the user can inspect this again later. */
4fa62494
UW
3314 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3315 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3316 gdb_flush (gdb_stdout);
3317 target_mourn_inferior ();
1c0fdd0e 3318 singlestep_breakpoints_inserted_p = 0;
d03285ec 3319 cancel_single_step_breakpoints ();
488f131b
JB
3320 stop_print_frame = 0;
3321 stop_stepping (ecs);
3322 return;
c5aa993b 3323
488f131b 3324 case TARGET_WAITKIND_SIGNALLED:
527159b7 3325 if (debug_infrun)
8a9de0e4 3326 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3327 inferior_ptid = ecs->ptid;
6c95b8df
PA
3328 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3329 set_current_program_space (current_inferior ()->pspace);
3330 handle_vfork_child_exec_or_exit (0);
488f131b 3331 stop_print_frame = 0;
1777feb0 3332 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3333
488f131b
JB
3334 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3335 reach here unless the inferior is dead. However, for years
3336 target_kill() was called here, which hints that fatal signals aren't
3337 really fatal on some systems. If that's true, then some changes
1777feb0 3338 may be needed. */
488f131b 3339 target_mourn_inferior ();
c906108c 3340
33d62d64 3341 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3342 singlestep_breakpoints_inserted_p = 0;
d03285ec 3343 cancel_single_step_breakpoints ();
488f131b
JB
3344 stop_stepping (ecs);
3345 return;
c906108c 3346
488f131b 3347 /* The following are the only cases in which we keep going;
1777feb0 3348 the above cases end in a continue or goto. */
488f131b 3349 case TARGET_WAITKIND_FORKED:
deb3b17b 3350 case TARGET_WAITKIND_VFORKED:
527159b7 3351 if (debug_infrun)
8a9de0e4 3352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3353
5a2901d9
DJ
3354 if (!ptid_equal (ecs->ptid, inferior_ptid))
3355 {
0d1e5fa7 3356 context_switch (ecs->ptid);
35f196d9 3357 reinit_frame_cache ();
5a2901d9
DJ
3358 }
3359
b242c3c2
PA
3360 /* Immediately detach breakpoints from the child before there's
3361 any chance of letting the user delete breakpoints from the
3362 breakpoint lists. If we don't do this early, it's easy to
3363 leave left over traps in the child, vis: "break foo; catch
3364 fork; c; <fork>; del; c; <child calls foo>". We only follow
3365 the fork on the last `continue', and by that time the
3366 breakpoint at "foo" is long gone from the breakpoint table.
3367 If we vforked, then we don't need to unpatch here, since both
3368 parent and child are sharing the same memory pages; we'll
3369 need to unpatch at follow/detach time instead to be certain
3370 that new breakpoints added between catchpoint hit time and
3371 vfork follow are detached. */
3372 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3373 {
3374 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3375
3376 /* This won't actually modify the breakpoint list, but will
3377 physically remove the breakpoints from the child. */
3378 detach_breakpoints (child_pid);
3379 }
3380
d03285ec
UW
3381 if (singlestep_breakpoints_inserted_p)
3382 {
1777feb0 3383 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3384 remove_single_step_breakpoints ();
3385 singlestep_breakpoints_inserted_p = 0;
3386 }
3387
e58b0e63
PA
3388 /* In case the event is caught by a catchpoint, remember that
3389 the event is to be followed at the next resume of the thread,
3390 and not immediately. */
3391 ecs->event_thread->pending_follow = ecs->ws;
3392
fb14de7b 3393 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3394
16c381f0 3395 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3396 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3397 stop_pc, ecs->ptid);
675bf4cb 3398
67822962
PA
3399 /* Note that we're interested in knowing the bpstat actually
3400 causes a stop, not just if it may explain the signal.
3401 Software watchpoints, for example, always appear in the
3402 bpstat. */
16c381f0
JK
3403 ecs->random_signal
3404 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3405
3406 /* If no catchpoint triggered for this, then keep going. */
3407 if (ecs->random_signal)
3408 {
6c95b8df
PA
3409 ptid_t parent;
3410 ptid_t child;
e58b0e63 3411 int should_resume;
3e43a32a
MS
3412 int follow_child
3413 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3414
16c381f0 3415 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3416
3417 should_resume = follow_fork ();
3418
6c95b8df
PA
3419 parent = ecs->ptid;
3420 child = ecs->ws.value.related_pid;
3421
3422 /* In non-stop mode, also resume the other branch. */
3423 if (non_stop && !detach_fork)
3424 {
3425 if (follow_child)
3426 switch_to_thread (parent);
3427 else
3428 switch_to_thread (child);
3429
3430 ecs->event_thread = inferior_thread ();
3431 ecs->ptid = inferior_ptid;
3432 keep_going (ecs);
3433 }
3434
3435 if (follow_child)
3436 switch_to_thread (child);
3437 else
3438 switch_to_thread (parent);
3439
e58b0e63
PA
3440 ecs->event_thread = inferior_thread ();
3441 ecs->ptid = inferior_ptid;
3442
3443 if (should_resume)
3444 keep_going (ecs);
3445 else
3446 stop_stepping (ecs);
04e68871
DJ
3447 return;
3448 }
16c381f0 3449 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3450 goto process_event_stop_test;
3451
6c95b8df
PA
3452 case TARGET_WAITKIND_VFORK_DONE:
3453 /* Done with the shared memory region. Re-insert breakpoints in
3454 the parent, and keep going. */
3455
3456 if (debug_infrun)
3e43a32a
MS
3457 fprintf_unfiltered (gdb_stdlog,
3458 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3459
3460 if (!ptid_equal (ecs->ptid, inferior_ptid))
3461 context_switch (ecs->ptid);
3462
3463 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3464 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3465 /* This also takes care of reinserting breakpoints in the
3466 previously locked inferior. */
3467 keep_going (ecs);
3468 return;
3469
488f131b 3470 case TARGET_WAITKIND_EXECD:
527159b7 3471 if (debug_infrun)
fc5261f2 3472 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3473
5a2901d9
DJ
3474 if (!ptid_equal (ecs->ptid, inferior_ptid))
3475 {
0d1e5fa7 3476 context_switch (ecs->ptid);
35f196d9 3477 reinit_frame_cache ();
5a2901d9
DJ
3478 }
3479
d03285ec
UW
3480 singlestep_breakpoints_inserted_p = 0;
3481 cancel_single_step_breakpoints ();
3482
fb14de7b 3483 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3484
6c95b8df
PA
3485 /* Do whatever is necessary to the parent branch of the vfork. */
3486 handle_vfork_child_exec_or_exit (1);
3487
795e548f
PA
3488 /* This causes the eventpoints and symbol table to be reset.
3489 Must do this now, before trying to determine whether to
3490 stop. */
71b43ef8 3491 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3492
16c381f0 3493 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3494 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3495 stop_pc, ecs->ptid);
16c381f0
JK
3496 ecs->random_signal
3497 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3498
71b43ef8
PA
3499 /* Note that this may be referenced from inside
3500 bpstat_stop_status above, through inferior_has_execd. */
3501 xfree (ecs->ws.value.execd_pathname);
3502 ecs->ws.value.execd_pathname = NULL;
3503
04e68871
DJ
3504 /* If no catchpoint triggered for this, then keep going. */
3505 if (ecs->random_signal)
3506 {
16c381f0 3507 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3508 keep_going (ecs);
3509 return;
3510 }
16c381f0 3511 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3512 goto process_event_stop_test;
3513
b4dc5ffa
MK
3514 /* Be careful not to try to gather much state about a thread
3515 that's in a syscall. It's frequently a losing proposition. */
488f131b 3516 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3517 if (debug_infrun)
3e43a32a
MS
3518 fprintf_unfiltered (gdb_stdlog,
3519 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3520 /* Getting the current syscall number. */
ca2163eb 3521 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3522 return;
3523 goto process_event_stop_test;
c906108c 3524
488f131b
JB
3525 /* Before examining the threads further, step this thread to
3526 get it entirely out of the syscall. (We get notice of the
3527 event when the thread is just on the verge of exiting a
3528 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3529 into user code.) */
488f131b 3530 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3531 if (debug_infrun)
3e43a32a
MS
3532 fprintf_unfiltered (gdb_stdlog,
3533 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3534 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3535 return;
3536 goto process_event_stop_test;
c906108c 3537
488f131b 3538 case TARGET_WAITKIND_STOPPED:
527159b7 3539 if (debug_infrun)
8a9de0e4 3540 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3541 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3542 break;
c906108c 3543
b2175913
MS
3544 case TARGET_WAITKIND_NO_HISTORY:
3545 /* Reverse execution: target ran out of history info. */
fb14de7b 3546 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3547 print_no_history_reason ();
b2175913
MS
3548 stop_stepping (ecs);
3549 return;
488f131b 3550 }
c906108c 3551
488f131b
JB
3552 if (ecs->new_thread_event)
3553 {
94cc34af
PA
3554 if (non_stop)
3555 /* Non-stop assumes that the target handles adding new threads
3556 to the thread list. */
3e43a32a
MS
3557 internal_error (__FILE__, __LINE__,
3558 "targets should add new threads to the thread "
3559 "list themselves in non-stop mode.");
94cc34af
PA
3560
3561 /* We may want to consider not doing a resume here in order to
3562 give the user a chance to play with the new thread. It might
3563 be good to make that a user-settable option. */
3564
3565 /* At this point, all threads are stopped (happens automatically
3566 in either the OS or the native code). Therefore we need to
3567 continue all threads in order to make progress. */
3568
173853dc
PA
3569 if (!ptid_equal (ecs->ptid, inferior_ptid))
3570 context_switch (ecs->ptid);
488f131b
JB
3571 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3572 prepare_to_wait (ecs);
3573 return;
3574 }
c906108c 3575
2020b7ab 3576 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3577 {
3578 /* Do we need to clean up the state of a thread that has
3579 completed a displaced single-step? (Doing so usually affects
3580 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3581 displaced_step_fixup (ecs->ptid,
3582 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3583
3584 /* If we either finished a single-step or hit a breakpoint, but
3585 the user wanted this thread to be stopped, pretend we got a
3586 SIG0 (generic unsignaled stop). */
3587
3588 if (ecs->event_thread->stop_requested
16c381f0
JK
3589 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3590 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3591 }
237fc4c9 3592
515630c5 3593 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3594
527159b7 3595 if (debug_infrun)
237fc4c9 3596 {
5af949e3
UW
3597 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3598 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3599 struct cleanup *old_chain = save_inferior_ptid ();
3600
3601 inferior_ptid = ecs->ptid;
5af949e3
UW
3602
3603 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3604 paddress (gdbarch, stop_pc));
d92524f1 3605 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3606 {
3607 CORE_ADDR addr;
abbb1732 3608
237fc4c9
PA
3609 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3610
3611 if (target_stopped_data_address (&current_target, &addr))
3612 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3613 "infrun: stopped data address = %s\n",
3614 paddress (gdbarch, addr));
237fc4c9
PA
3615 else
3616 fprintf_unfiltered (gdb_stdlog,
3617 "infrun: (no data address available)\n");
3618 }
7f82dfc7
JK
3619
3620 do_cleanups (old_chain);
237fc4c9 3621 }
527159b7 3622
9f976b41
DJ
3623 if (stepping_past_singlestep_breakpoint)
3624 {
1c0fdd0e 3625 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3626 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3627 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3628
3629 stepping_past_singlestep_breakpoint = 0;
3630
3631 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3632 breakpoint, or stopped for some other reason. It would be nice if
3633 we could tell, but we can't reliably. */
16c381f0 3634 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3635 {
527159b7 3636 if (debug_infrun)
3e43a32a
MS
3637 fprintf_unfiltered (gdb_stdlog,
3638 "infrun: stepping_past_"
3639 "singlestep_breakpoint\n");
9f976b41 3640 /* Pull the single step breakpoints out of the target. */
e0cd558a 3641 remove_single_step_breakpoints ();
9f976b41
DJ
3642 singlestep_breakpoints_inserted_p = 0;
3643
3644 ecs->random_signal = 0;
16c381f0 3645 ecs->event_thread->control.trap_expected = 0;
9f976b41 3646
0d1e5fa7 3647 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3648 if (deprecated_context_hook)
3649 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3650
3651 resume (1, TARGET_SIGNAL_0);
3652 prepare_to_wait (ecs);
3653 return;
3654 }
3655 }
3656
ca67fcb8 3657 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3658 {
94cc34af
PA
3659 /* In non-stop mode, there's never a deferred_step_ptid set. */
3660 gdb_assert (!non_stop);
3661
6a6b96b9
UW
3662 /* If we stopped for some other reason than single-stepping, ignore
3663 the fact that we were supposed to switch back. */
16c381f0 3664 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3665 {
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3668 "infrun: handling deferred step\n");
6a6b96b9
UW
3669
3670 /* Pull the single step breakpoints out of the target. */
3671 if (singlestep_breakpoints_inserted_p)
3672 {
3673 remove_single_step_breakpoints ();
3674 singlestep_breakpoints_inserted_p = 0;
3675 }
3676
cd3da28e
PA
3677 ecs->event_thread->control.trap_expected = 0;
3678
6a6b96b9
UW
3679 /* Note: We do not call context_switch at this point, as the
3680 context is already set up for stepping the original thread. */
ca67fcb8
VP
3681 switch_to_thread (deferred_step_ptid);
3682 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3683 /* Suppress spurious "Switching to ..." message. */
3684 previous_inferior_ptid = inferior_ptid;
3685
3686 resume (1, TARGET_SIGNAL_0);
3687 prepare_to_wait (ecs);
3688 return;
3689 }
ca67fcb8
VP
3690
3691 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3692 }
3693
488f131b
JB
3694 /* See if a thread hit a thread-specific breakpoint that was meant for
3695 another thread. If so, then step that thread past the breakpoint,
3696 and continue it. */
3697
16c381f0 3698 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3699 {
9f976b41 3700 int thread_hop_needed = 0;
cf00dfa7
VP
3701 struct address_space *aspace =
3702 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3703
f8d40ec8 3704 /* Check if a regular breakpoint has been hit before checking
1777feb0 3705 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3706 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3707 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3708 {
c5aa993b 3709 ecs->random_signal = 0;
6c95b8df 3710 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3711 thread_hop_needed = 1;
3712 }
1c0fdd0e 3713 else if (singlestep_breakpoints_inserted_p)
9f976b41 3714 {
fd48f117
DJ
3715 /* We have not context switched yet, so this should be true
3716 no matter which thread hit the singlestep breakpoint. */
3717 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3718 if (debug_infrun)
3719 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3720 "trap for %s\n",
3721 target_pid_to_str (ecs->ptid));
3722
9f976b41
DJ
3723 ecs->random_signal = 0;
3724 /* The call to in_thread_list is necessary because PTIDs sometimes
3725 change when we go from single-threaded to multi-threaded. If
3726 the singlestep_ptid is still in the list, assume that it is
3727 really different from ecs->ptid. */
3728 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3729 && in_thread_list (singlestep_ptid))
3730 {
fd48f117
DJ
3731 /* If the PC of the thread we were trying to single-step
3732 has changed, discard this event (which we were going
3733 to ignore anyway), and pretend we saw that thread
3734 trap. This prevents us continuously moving the
3735 single-step breakpoint forward, one instruction at a
3736 time. If the PC has changed, then the thread we were
3737 trying to single-step has trapped or been signalled,
3738 but the event has not been reported to GDB yet.
3739
3740 There might be some cases where this loses signal
3741 information, if a signal has arrived at exactly the
3742 same time that the PC changed, but this is the best
3743 we can do with the information available. Perhaps we
3744 should arrange to report all events for all threads
3745 when they stop, or to re-poll the remote looking for
3746 this particular thread (i.e. temporarily enable
3747 schedlock). */
515630c5
UW
3748
3749 CORE_ADDR new_singlestep_pc
3750 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3751
3752 if (new_singlestep_pc != singlestep_pc)
fd48f117 3753 {
2020b7ab
PA
3754 enum target_signal stop_signal;
3755
fd48f117
DJ
3756 if (debug_infrun)
3757 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3758 " but expected thread advanced also\n");
3759
3760 /* The current context still belongs to
3761 singlestep_ptid. Don't swap here, since that's
3762 the context we want to use. Just fudge our
3763 state and continue. */
16c381f0
JK
3764 stop_signal = ecs->event_thread->suspend.stop_signal;
3765 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3766 ecs->ptid = singlestep_ptid;
e09875d4 3767 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3768 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3769 stop_pc = new_singlestep_pc;
fd48f117
DJ
3770 }
3771 else
3772 {
3773 if (debug_infrun)
3774 fprintf_unfiltered (gdb_stdlog,
3775 "infrun: unexpected thread\n");
3776
3777 thread_hop_needed = 1;
3778 stepping_past_singlestep_breakpoint = 1;
3779 saved_singlestep_ptid = singlestep_ptid;
3780 }
9f976b41
DJ
3781 }
3782 }
3783
3784 if (thread_hop_needed)
8fb3e588 3785 {
9f5a595d 3786 struct regcache *thread_regcache;
237fc4c9 3787 int remove_status = 0;
8fb3e588 3788
527159b7 3789 if (debug_infrun)
8a9de0e4 3790 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3791
b3444185
PA
3792 /* Switch context before touching inferior memory, the
3793 previous thread may have exited. */
3794 if (!ptid_equal (inferior_ptid, ecs->ptid))
3795 context_switch (ecs->ptid);
3796
8fb3e588 3797 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3798 Just continue. */
8fb3e588 3799
1c0fdd0e 3800 if (singlestep_breakpoints_inserted_p)
488f131b 3801 {
1777feb0 3802 /* Pull the single step breakpoints out of the target. */
e0cd558a 3803 remove_single_step_breakpoints ();
8fb3e588
AC
3804 singlestep_breakpoints_inserted_p = 0;
3805 }
3806
237fc4c9
PA
3807 /* If the arch can displace step, don't remove the
3808 breakpoints. */
9f5a595d
UW
3809 thread_regcache = get_thread_regcache (ecs->ptid);
3810 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3811 remove_status = remove_breakpoints ();
3812
8fb3e588
AC
3813 /* Did we fail to remove breakpoints? If so, try
3814 to set the PC past the bp. (There's at least
3815 one situation in which we can fail to remove
3816 the bp's: On HP-UX's that use ttrace, we can't
3817 change the address space of a vforking child
3818 process until the child exits (well, okay, not
1777feb0 3819 then either :-) or execs. */
8fb3e588 3820 if (remove_status != 0)
9d9cd7ac 3821 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3822 else
3823 { /* Single step */
94cc34af
PA
3824 if (!non_stop)
3825 {
3826 /* Only need to require the next event from this
3827 thread in all-stop mode. */
3828 waiton_ptid = ecs->ptid;
3829 infwait_state = infwait_thread_hop_state;
3830 }
8fb3e588 3831
4e1c45ea 3832 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3833 keep_going (ecs);
8fb3e588
AC
3834 return;
3835 }
488f131b 3836 }
1c0fdd0e 3837 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3838 {
3839 sw_single_step_trap_p = 1;
3840 ecs->random_signal = 0;
3841 }
488f131b
JB
3842 }
3843 else
3844 ecs->random_signal = 1;
c906108c 3845
488f131b 3846 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3847 so, then switch to that thread. */
3848 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3849 {
527159b7 3850 if (debug_infrun)
8a9de0e4 3851 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3852
0d1e5fa7 3853 context_switch (ecs->ptid);
c5aa993b 3854
9a4105ab
AC
3855 if (deprecated_context_hook)
3856 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3857 }
c906108c 3858
568d6575
UW
3859 /* At this point, get hold of the now-current thread's frame. */
3860 frame = get_current_frame ();
3861 gdbarch = get_frame_arch (frame);
3862
1c0fdd0e 3863 if (singlestep_breakpoints_inserted_p)
488f131b 3864 {
1777feb0 3865 /* Pull the single step breakpoints out of the target. */
e0cd558a 3866 remove_single_step_breakpoints ();
488f131b
JB
3867 singlestep_breakpoints_inserted_p = 0;
3868 }
c906108c 3869
d983da9c
DJ
3870 if (stepped_after_stopped_by_watchpoint)
3871 stopped_by_watchpoint = 0;
3872 else
3873 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3874
3875 /* If necessary, step over this watchpoint. We'll be back to display
3876 it in a moment. */
3877 if (stopped_by_watchpoint
d92524f1 3878 && (target_have_steppable_watchpoint
568d6575 3879 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3880 {
488f131b
JB
3881 /* At this point, we are stopped at an instruction which has
3882 attempted to write to a piece of memory under control of
3883 a watchpoint. The instruction hasn't actually executed
3884 yet. If we were to evaluate the watchpoint expression
3885 now, we would get the old value, and therefore no change
3886 would seem to have occurred.
3887
3888 In order to make watchpoints work `right', we really need
3889 to complete the memory write, and then evaluate the
d983da9c
DJ
3890 watchpoint expression. We do this by single-stepping the
3891 target.
3892
3893 It may not be necessary to disable the watchpoint to stop over
3894 it. For example, the PA can (with some kernel cooperation)
3895 single step over a watchpoint without disabling the watchpoint.
3896
3897 It is far more common to need to disable a watchpoint to step
3898 the inferior over it. If we have non-steppable watchpoints,
3899 we must disable the current watchpoint; it's simplest to
3900 disable all watchpoints and breakpoints. */
2facfe5c
DD
3901 int hw_step = 1;
3902
d92524f1 3903 if (!target_have_steppable_watchpoint)
2455069d
UW
3904 {
3905 remove_breakpoints ();
3906 /* See comment in resume why we need to stop bypassing signals
3907 while breakpoints have been removed. */
3908 target_pass_signals (0, NULL);
3909 }
2facfe5c 3910 /* Single step */
568d6575 3911 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3912 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3913 waiton_ptid = ecs->ptid;
d92524f1 3914 if (target_have_steppable_watchpoint)
0d1e5fa7 3915 infwait_state = infwait_step_watch_state;
d983da9c 3916 else
0d1e5fa7 3917 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3918 prepare_to_wait (ecs);
3919 return;
3920 }
3921
488f131b
JB
3922 ecs->stop_func_start = 0;
3923 ecs->stop_func_end = 0;
3924 ecs->stop_func_name = 0;
3925 /* Don't care about return value; stop_func_start and stop_func_name
3926 will both be 0 if it doesn't work. */
3927 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3928 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3929 ecs->stop_func_start
568d6575 3930 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3931 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3932 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3933 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3934 stop_print_frame = 1;
3935 ecs->random_signal = 0;
3936 stopped_by_random_signal = 0;
488f131b 3937
edb3359d
DJ
3938 /* Hide inlined functions starting here, unless we just performed stepi or
3939 nexti. After stepi and nexti, always show the innermost frame (not any
3940 inline function call sites). */
16c381f0 3941 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3942 skip_inline_frames (ecs->ptid);
3943
16c381f0
JK
3944 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3945 && ecs->event_thread->control.trap_expected
568d6575 3946 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3947 && currently_stepping (ecs->event_thread))
3352ef37 3948 {
b50d7442 3949 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 3950 also on an instruction that needs to be stepped multiple
1777feb0 3951 times before it's been fully executing. E.g., architectures
3352ef37
AC
3952 with a delay slot. It needs to be stepped twice, once for
3953 the instruction and once for the delay slot. */
3954 int step_through_delay
568d6575 3955 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3956
527159b7 3957 if (debug_infrun && step_through_delay)
8a9de0e4 3958 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3959 if (ecs->event_thread->control.step_range_end == 0
3960 && step_through_delay)
3352ef37
AC
3961 {
3962 /* The user issued a continue when stopped at a breakpoint.
3963 Set up for another trap and get out of here. */
4e1c45ea 3964 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3965 keep_going (ecs);
3966 return;
3967 }
3968 else if (step_through_delay)
3969 {
3970 /* The user issued a step when stopped at a breakpoint.
3971 Maybe we should stop, maybe we should not - the delay
3972 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3973 case, don't decide that here, just set
3974 ecs->stepping_over_breakpoint, making sure we
3975 single-step again before breakpoints are re-inserted. */
4e1c45ea 3976 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3977 }
3978 }
3979
488f131b
JB
3980 /* Look at the cause of the stop, and decide what to do.
3981 The alternatives are:
0d1e5fa7
PA
3982 1) stop_stepping and return; to really stop and return to the debugger,
3983 2) keep_going and return to start up again
4e1c45ea 3984 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3985 3) set ecs->random_signal to 1, and the decision between 1 and 2
3986 will be made according to the signal handling tables. */
3987
16c381f0 3988 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3989 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3990 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3991 {
16c381f0
JK
3992 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3993 && stop_after_trap)
488f131b 3994 {
527159b7 3995 if (debug_infrun)
8a9de0e4 3996 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3997 stop_print_frame = 0;
3998 stop_stepping (ecs);
3999 return;
4000 }
c54cfec8
EZ
4001
4002 /* This is originated from start_remote(), start_inferior() and
4003 shared libraries hook functions. */
b0f4b84b 4004 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4005 {
527159b7 4006 if (debug_infrun)
8a9de0e4 4007 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4008 stop_stepping (ecs);
4009 return;
4010 }
4011
c54cfec8 4012 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4013 the stop_signal here, because some kernels don't ignore a
4014 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4015 See more comments in inferior.h. On the other hand, if we
a0ef4274 4016 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4017 will handle the SIGSTOP if it should show up later.
4018
4019 Also consider that the attach is complete when we see a
4020 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4021 target extended-remote report it instead of a SIGSTOP
4022 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4023 signal, so this is no exception.
4024
4025 Also consider that the attach is complete when we see a
4026 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4027 the target to stop all threads of the inferior, in case the
4028 low level attach operation doesn't stop them implicitly. If
4029 they weren't stopped implicitly, then the stub will report a
4030 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4031 other than GDB's request. */
a0ef4274 4032 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4033 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4034 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4035 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4036 {
4037 stop_stepping (ecs);
16c381f0 4038 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4039 return;
4040 }
4041
fba57f8f 4042 /* See if there is a breakpoint at the current PC. */
16c381f0 4043 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4044 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4045 stop_pc, ecs->ptid);
4046
fba57f8f
VP
4047 /* Following in case break condition called a
4048 function. */
4049 stop_print_frame = 1;
488f131b 4050
db82e815
PA
4051 /* This is where we handle "moribund" watchpoints. Unlike
4052 software breakpoints traps, hardware watchpoint traps are
4053 always distinguishable from random traps. If no high-level
4054 watchpoint is associated with the reported stop data address
4055 anymore, then the bpstat does not explain the signal ---
4056 simply make sure to ignore it if `stopped_by_watchpoint' is
4057 set. */
4058
4059 if (debug_infrun
16c381f0
JK
4060 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4061 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4062 && stopped_by_watchpoint)
3e43a32a
MS
4063 fprintf_unfiltered (gdb_stdlog,
4064 "infrun: no user watchpoint explains "
4065 "watchpoint SIGTRAP, ignoring\n");
db82e815 4066
73dd234f 4067 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4068 at one stage in the past included checks for an inferior
4069 function call's call dummy's return breakpoint. The original
4070 comment, that went with the test, read:
73dd234f 4071
8fb3e588
AC
4072 ``End of a stack dummy. Some systems (e.g. Sony news) give
4073 another signal besides SIGTRAP, so check here as well as
4074 above.''
73dd234f 4075
8002d778 4076 If someone ever tries to get call dummys on a
73dd234f 4077 non-executable stack to work (where the target would stop
03cebad2
MK
4078 with something like a SIGSEGV), then those tests might need
4079 to be re-instated. Given, however, that the tests were only
73dd234f 4080 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4081 suspect that it won't be the case.
4082
8fb3e588
AC
4083 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4084 be necessary for call dummies on a non-executable stack on
4085 SPARC. */
73dd234f 4086
16c381f0 4087 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4088 ecs->random_signal
16c381f0 4089 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4090 || stopped_by_watchpoint
16c381f0
JK
4091 || ecs->event_thread->control.trap_expected
4092 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4093 && (ecs->event_thread->control.step_resume_breakpoint
4094 == NULL)));
488f131b
JB
4095 else
4096 {
16c381f0
JK
4097 ecs->random_signal = !bpstat_explains_signal
4098 (ecs->event_thread->control.stop_bpstat);
488f131b 4099 if (!ecs->random_signal)
16c381f0 4100 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4101 }
4102 }
4103
4104 /* When we reach this point, we've pretty much decided
4105 that the reason for stopping must've been a random
1777feb0 4106 (unexpected) signal. */
488f131b
JB
4107
4108 else
4109 ecs->random_signal = 1;
488f131b 4110
04e68871 4111process_event_stop_test:
568d6575
UW
4112
4113 /* Re-fetch current thread's frame in case we did a
4114 "goto process_event_stop_test" above. */
4115 frame = get_current_frame ();
4116 gdbarch = get_frame_arch (frame);
4117
488f131b
JB
4118 /* For the program's own signals, act according to
4119 the signal handling tables. */
4120
4121 if (ecs->random_signal)
4122 {
4123 /* Signal not for debugging purposes. */
4124 int printed = 0;
24291992 4125 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4126
527159b7 4127 if (debug_infrun)
2020b7ab 4128 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4129 ecs->event_thread->suspend.stop_signal);
527159b7 4130
488f131b
JB
4131 stopped_by_random_signal = 1;
4132
16c381f0 4133 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4134 {
4135 printed = 1;
4136 target_terminal_ours_for_output ();
16c381f0
JK
4137 print_signal_received_reason
4138 (ecs->event_thread->suspend.stop_signal);
488f131b 4139 }
252fbfc8
PA
4140 /* Always stop on signals if we're either just gaining control
4141 of the program, or the user explicitly requested this thread
4142 to remain stopped. */
d6b48e9c 4143 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4144 || ecs->event_thread->stop_requested
24291992 4145 || (!inf->detaching
16c381f0 4146 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4147 {
4148 stop_stepping (ecs);
4149 return;
4150 }
4151 /* If not going to stop, give terminal back
4152 if we took it away. */
4153 else if (printed)
4154 target_terminal_inferior ();
4155
4156 /* Clear the signal if it should not be passed. */
16c381f0
JK
4157 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4158 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4159
fb14de7b 4160 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4161 && ecs->event_thread->control.trap_expected
8358c15c 4162 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4163 {
4164 /* We were just starting a new sequence, attempting to
4165 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4166 Instead this signal arrives. This signal will take us out
68f53502
AC
4167 of the stepping range so GDB needs to remember to, when
4168 the signal handler returns, resume stepping off that
4169 breakpoint. */
4170 /* To simplify things, "continue" is forced to use the same
4171 code paths as single-step - set a breakpoint at the
4172 signal return address and then, once hit, step off that
4173 breakpoint. */
237fc4c9
PA
4174 if (debug_infrun)
4175 fprintf_unfiltered (gdb_stdlog,
4176 "infrun: signal arrived while stepping over "
4177 "breakpoint\n");
d3169d93 4178
568d6575 4179 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4180 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4181 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4182 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4183 keep_going (ecs);
4184 return;
68f53502 4185 }
9d799f85 4186
16c381f0
JK
4187 if (ecs->event_thread->control.step_range_end != 0
4188 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4189 && (ecs->event_thread->control.step_range_start <= stop_pc
4190 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4191 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4192 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4193 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4194 {
4195 /* The inferior is about to take a signal that will take it
4196 out of the single step range. Set a breakpoint at the
4197 current PC (which is presumably where the signal handler
4198 will eventually return) and then allow the inferior to
4199 run free.
4200
4201 Note that this is only needed for a signal delivered
4202 while in the single-step range. Nested signals aren't a
4203 problem as they eventually all return. */
237fc4c9
PA
4204 if (debug_infrun)
4205 fprintf_unfiltered (gdb_stdlog,
4206 "infrun: signal may take us out of "
4207 "single-step range\n");
4208
568d6575 4209 insert_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4210 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4211 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4212 keep_going (ecs);
4213 return;
d303a6c7 4214 }
9d799f85
AC
4215
4216 /* Note: step_resume_breakpoint may be non-NULL. This occures
4217 when either there's a nested signal, or when there's a
4218 pending signal enabled just as the signal handler returns
4219 (leaving the inferior at the step-resume-breakpoint without
4220 actually executing it). Either way continue until the
4221 breakpoint is really hit. */
488f131b
JB
4222 keep_going (ecs);
4223 return;
4224 }
4225
4226 /* Handle cases caused by hitting a breakpoint. */
4227 {
4228 CORE_ADDR jmp_buf_pc;
4229 struct bpstat_what what;
4230
16c381f0 4231 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4232
4233 if (what.call_dummy)
4234 {
aa7d318d 4235 stop_stack_dummy = what.call_dummy;
c5aa993b 4236 }
c906108c 4237
628fe4e4
JK
4238 /* If we hit an internal event that triggers symbol changes, the
4239 current frame will be invalidated within bpstat_what (e.g., if
4240 we hit an internal solib event). Re-fetch it. */
4241 frame = get_current_frame ();
4242 gdbarch = get_frame_arch (frame);
4243
488f131b 4244 switch (what.main_action)
c5aa993b 4245 {
488f131b 4246 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4247 /* If we hit the breakpoint at longjmp while stepping, we
4248 install a momentary breakpoint at the target of the
4249 jmp_buf. */
4250
4251 if (debug_infrun)
4252 fprintf_unfiltered (gdb_stdlog,
4253 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4254
4e1c45ea 4255 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4256
186c406b 4257 if (what.is_longjmp)
c5aa993b 4258 {
186c406b
TT
4259 if (!gdbarch_get_longjmp_target_p (gdbarch)
4260 || !gdbarch_get_longjmp_target (gdbarch,
4261 frame, &jmp_buf_pc))
4262 {
4263 if (debug_infrun)
3e43a32a
MS
4264 fprintf_unfiltered (gdb_stdlog,
4265 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4266 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4267 keep_going (ecs);
4268 return;
4269 }
488f131b 4270
186c406b
TT
4271 /* We're going to replace the current step-resume breakpoint
4272 with a longjmp-resume breakpoint. */
4273 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4274
186c406b
TT
4275 /* Insert a breakpoint at resume address. */
4276 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4277 }
4278 else
4279 {
4280 struct symbol *func = get_frame_function (frame);
c906108c 4281
186c406b
TT
4282 if (func)
4283 check_exception_resume (ecs, frame, func);
4284 }
488f131b
JB
4285 keep_going (ecs);
4286 return;
c906108c 4287
488f131b 4288 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4289 if (debug_infrun)
611c83ae
PA
4290 fprintf_unfiltered (gdb_stdlog,
4291 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4292
186c406b
TT
4293 if (what.is_longjmp)
4294 {
4295 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4296 != NULL);
4297 delete_step_resume_breakpoint (ecs->event_thread);
4298 }
4299 else
4300 {
4301 /* There are several cases to consider.
4302
4303 1. The initiating frame no longer exists. In this case
4304 we must stop, because the exception has gone too far.
4305
4306 2. The initiating frame exists, and is the same as the
4307 current frame. We stop, because the exception has been
4308 caught.
4309
4310 3. The initiating frame exists and is different from
4311 the current frame. This means the exception has been
4312 caught beneath the initiating frame, so keep going. */
4313 struct frame_info *init_frame
4314 = frame_find_by_id (ecs->event_thread->initiating_frame);
4315
4316 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4317 != NULL);
4318 delete_exception_resume_breakpoint (ecs->event_thread);
4319
4320 if (init_frame)
4321 {
4322 struct frame_id current_id
4323 = get_frame_id (get_current_frame ());
4324 if (frame_id_eq (current_id,
4325 ecs->event_thread->initiating_frame))
4326 {
4327 /* Case 2. Fall through. */
4328 }
4329 else
4330 {
4331 /* Case 3. */
4332 keep_going (ecs);
4333 return;
4334 }
4335 }
4336
4337 /* For Cases 1 and 2, remove the step-resume breakpoint,
4338 if it exists. */
4339 delete_step_resume_breakpoint (ecs->event_thread);
4340 }
611c83ae 4341
16c381f0 4342 ecs->event_thread->control.stop_step = 1;
33d62d64 4343 print_end_stepping_range_reason ();
611c83ae
PA
4344 stop_stepping (ecs);
4345 return;
488f131b
JB
4346
4347 case BPSTAT_WHAT_SINGLE:
527159b7 4348 if (debug_infrun)
8802d8ed 4349 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4350 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4351 /* Still need to check other stuff, at least the case
4352 where we are stepping and step out of the right range. */
4353 break;
c906108c 4354
488f131b 4355 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4356 if (debug_infrun)
8802d8ed 4357 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4358 stop_print_frame = 1;
c906108c 4359
d303a6c7
AC
4360 /* We are about to nuke the step_resume_breakpointt via the
4361 cleanup chain, so no need to worry about it here. */
c5aa993b 4362
488f131b
JB
4363 stop_stepping (ecs);
4364 return;
c5aa993b 4365
488f131b 4366 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4367 if (debug_infrun)
8802d8ed 4368 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4369 stop_print_frame = 0;
c5aa993b 4370
d303a6c7
AC
4371 /* We are about to nuke the step_resume_breakpoin via the
4372 cleanup chain, so no need to worry about it here. */
c5aa993b 4373
488f131b 4374 stop_stepping (ecs);
e441088d 4375 return;
c5aa993b 4376
488f131b 4377 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4378 if (debug_infrun)
8802d8ed 4379 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4380
4e1c45ea
PA
4381 delete_step_resume_breakpoint (ecs->event_thread);
4382 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4383 {
4384 /* Back when the step-resume breakpoint was inserted, we
4385 were trying to single-step off a breakpoint. Go back
4386 to doing that. */
4e1c45ea
PA
4387 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4388 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4389 keep_going (ecs);
4390 return;
4391 }
b2175913
MS
4392 if (stop_pc == ecs->stop_func_start
4393 && execution_direction == EXEC_REVERSE)
4394 {
4395 /* We are stepping over a function call in reverse, and
4396 just hit the step-resume breakpoint at the start
4397 address of the function. Go back to single-stepping,
4398 which should take us back to the function call. */
4399 ecs->event_thread->stepping_over_breakpoint = 1;
4400 keep_going (ecs);
4401 return;
4402 }
488f131b
JB
4403 break;
4404
488f131b
JB
4405 case BPSTAT_WHAT_KEEP_CHECKING:
4406 break;
4407 }
4408 }
c906108c 4409
488f131b
JB
4410 /* We come here if we hit a breakpoint but should not
4411 stop for it. Possibly we also were stepping
4412 and should stop for that. So fall through and
4413 test for stepping. But, if not stepping,
4414 do not stop. */
c906108c 4415
a7212384
UW
4416 /* In all-stop mode, if we're currently stepping but have stopped in
4417 some other thread, we need to switch back to the stepped thread. */
4418 if (!non_stop)
4419 {
4420 struct thread_info *tp;
abbb1732 4421
b3444185 4422 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4423 ecs->event_thread);
4424 if (tp)
4425 {
4426 /* However, if the current thread is blocked on some internal
4427 breakpoint, and we simply need to step over that breakpoint
4428 to get it going again, do that first. */
16c381f0
JK
4429 if ((ecs->event_thread->control.trap_expected
4430 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4431 || ecs->event_thread->stepping_over_breakpoint)
4432 {
4433 keep_going (ecs);
4434 return;
4435 }
4436
66852e9c
PA
4437 /* If the stepping thread exited, then don't try to switch
4438 back and resume it, which could fail in several different
4439 ways depending on the target. Instead, just keep going.
4440
4441 We can find a stepping dead thread in the thread list in
4442 two cases:
4443
4444 - The target supports thread exit events, and when the
4445 target tries to delete the thread from the thread list,
4446 inferior_ptid pointed at the exiting thread. In such
4447 case, calling delete_thread does not really remove the
4448 thread from the list; instead, the thread is left listed,
4449 with 'exited' state.
4450
4451 - The target's debug interface does not support thread
4452 exit events, and so we have no idea whatsoever if the
4453 previously stepping thread is still alive. For that
4454 reason, we need to synchronously query the target
4455 now. */
b3444185
PA
4456 if (is_exited (tp->ptid)
4457 || !target_thread_alive (tp->ptid))
4458 {
4459 if (debug_infrun)
3e43a32a
MS
4460 fprintf_unfiltered (gdb_stdlog,
4461 "infrun: not switching back to "
4462 "stepped thread, it has vanished\n");
b3444185
PA
4463
4464 delete_thread (tp->ptid);
4465 keep_going (ecs);
4466 return;
4467 }
4468
a7212384
UW
4469 /* Otherwise, we no longer expect a trap in the current thread.
4470 Clear the trap_expected flag before switching back -- this is
4471 what keep_going would do as well, if we called it. */
16c381f0 4472 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4473
4474 if (debug_infrun)
4475 fprintf_unfiltered (gdb_stdlog,
4476 "infrun: switching back to stepped thread\n");
4477
4478 ecs->event_thread = tp;
4479 ecs->ptid = tp->ptid;
4480 context_switch (ecs->ptid);
4481 keep_going (ecs);
4482 return;
4483 }
4484 }
4485
9d1ff73f
MS
4486 /* Are we stepping to get the inferior out of the dynamic linker's
4487 hook (and possibly the dld itself) after catching a shlib
4488 event? */
4e1c45ea 4489 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4490 {
4491#if defined(SOLIB_ADD)
1777feb0 4492 /* Have we reached our destination? If not, keep going. */
488f131b
JB
4493 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4494 {
527159b7 4495 if (debug_infrun)
3e43a32a
MS
4496 fprintf_unfiltered (gdb_stdlog,
4497 "infrun: stepping in dynamic linker\n");
4e1c45ea 4498 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4499 keep_going (ecs);
104c1213 4500 return;
488f131b
JB
4501 }
4502#endif
527159b7 4503 if (debug_infrun)
8a9de0e4 4504 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b 4505 /* Else, stop and report the catchpoint(s) whose triggering
1777feb0 4506 caused us to begin stepping. */
4e1c45ea 4507 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4508 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4509 ecs->event_thread->control.stop_bpstat
347bddb7 4510 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4511 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4512 stop_print_frame = 1;
4513 stop_stepping (ecs);
4514 return;
4515 }
c906108c 4516
8358c15c 4517 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4518 {
527159b7 4519 if (debug_infrun)
d3169d93
DJ
4520 fprintf_unfiltered (gdb_stdlog,
4521 "infrun: step-resume breakpoint is inserted\n");
527159b7 4522
488f131b
JB
4523 /* Having a step-resume breakpoint overrides anything
4524 else having to do with stepping commands until
4525 that breakpoint is reached. */
488f131b
JB
4526 keep_going (ecs);
4527 return;
4528 }
c5aa993b 4529
16c381f0 4530 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4531 {
527159b7 4532 if (debug_infrun)
8a9de0e4 4533 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4534 /* Likewise if we aren't even stepping. */
488f131b
JB
4535 keep_going (ecs);
4536 return;
4537 }
c5aa993b 4538
4b7703ad
JB
4539 /* Re-fetch current thread's frame in case the code above caused
4540 the frame cache to be re-initialized, making our FRAME variable
4541 a dangling pointer. */
4542 frame = get_current_frame ();
628fe4e4 4543 gdbarch = get_frame_arch (frame);
4b7703ad 4544
488f131b 4545 /* If stepping through a line, keep going if still within it.
c906108c 4546
488f131b
JB
4547 Note that step_range_end is the address of the first instruction
4548 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4549 within it!
4550
4551 Note also that during reverse execution, we may be stepping
4552 through a function epilogue and therefore must detect when
4553 the current-frame changes in the middle of a line. */
4554
16c381f0
JK
4555 if (stop_pc >= ecs->event_thread->control.step_range_start
4556 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4557 && (execution_direction != EXEC_REVERSE
388a8562 4558 || frame_id_eq (get_frame_id (frame),
16c381f0 4559 ecs->event_thread->control.step_frame_id)))
488f131b 4560 {
527159b7 4561 if (debug_infrun)
5af949e3
UW
4562 fprintf_unfiltered
4563 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4564 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4565 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4566
4567 /* When stepping backward, stop at beginning of line range
4568 (unless it's the function entry point, in which case
4569 keep going back to the call point). */
16c381f0 4570 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4571 && stop_pc != ecs->stop_func_start
4572 && execution_direction == EXEC_REVERSE)
4573 {
16c381f0 4574 ecs->event_thread->control.stop_step = 1;
33d62d64 4575 print_end_stepping_range_reason ();
b2175913
MS
4576 stop_stepping (ecs);
4577 }
4578 else
4579 keep_going (ecs);
4580
488f131b
JB
4581 return;
4582 }
c5aa993b 4583
488f131b 4584 /* We stepped out of the stepping range. */
c906108c 4585
488f131b 4586 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4587 loader dynamic symbol resolution code...
4588
4589 EXEC_FORWARD: we keep on single stepping until we exit the run
4590 time loader code and reach the callee's address.
4591
4592 EXEC_REVERSE: we've already executed the callee (backward), and
4593 the runtime loader code is handled just like any other
4594 undebuggable function call. Now we need only keep stepping
4595 backward through the trampoline code, and that's handled further
4596 down, so there is nothing for us to do here. */
4597
4598 if (execution_direction != EXEC_REVERSE
16c381f0 4599 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4600 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4601 {
4c8c40e6 4602 CORE_ADDR pc_after_resolver =
568d6575 4603 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4604
527159b7 4605 if (debug_infrun)
3e43a32a
MS
4606 fprintf_unfiltered (gdb_stdlog,
4607 "infrun: stepped into dynsym resolve code\n");
527159b7 4608
488f131b
JB
4609 if (pc_after_resolver)
4610 {
4611 /* Set up a step-resume breakpoint at the address
4612 indicated by SKIP_SOLIB_RESOLVER. */
4613 struct symtab_and_line sr_sal;
abbb1732 4614
fe39c653 4615 init_sal (&sr_sal);
488f131b 4616 sr_sal.pc = pc_after_resolver;
6c95b8df 4617 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4618
a6d9a66e
UW
4619 insert_step_resume_breakpoint_at_sal (gdbarch,
4620 sr_sal, null_frame_id);
c5aa993b 4621 }
c906108c 4622
488f131b
JB
4623 keep_going (ecs);
4624 return;
4625 }
c906108c 4626
16c381f0
JK
4627 if (ecs->event_thread->control.step_range_end != 1
4628 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4629 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4630 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4631 {
527159b7 4632 if (debug_infrun)
3e43a32a
MS
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: stepped into signal trampoline\n");
42edda50 4635 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4636 a signal trampoline (either by a signal being delivered or by
4637 the signal handler returning). Just single-step until the
4638 inferior leaves the trampoline (either by calling the handler
4639 or returning). */
488f131b
JB
4640 keep_going (ecs);
4641 return;
4642 }
c906108c 4643
c17eaafe
DJ
4644 /* Check for subroutine calls. The check for the current frame
4645 equalling the step ID is not necessary - the check of the
4646 previous frame's ID is sufficient - but it is a common case and
4647 cheaper than checking the previous frame's ID.
14e60db5
DJ
4648
4649 NOTE: frame_id_eq will never report two invalid frame IDs as
4650 being equal, so to get into this block, both the current and
4651 previous frame must have valid frame IDs. */
005ca36a
JB
4652 /* The outer_frame_id check is a heuristic to detect stepping
4653 through startup code. If we step over an instruction which
4654 sets the stack pointer from an invalid value to a valid value,
4655 we may detect that as a subroutine call from the mythical
4656 "outermost" function. This could be fixed by marking
4657 outermost frames as !stack_p,code_p,special_p. Then the
4658 initial outermost frame, before sp was valid, would
ce6cca6d 4659 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4660 for more. */
edb3359d 4661 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4662 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4663 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4664 ecs->event_thread->control.step_stack_frame_id)
4665 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4666 outer_frame_id)
4667 || step_start_function != find_pc_function (stop_pc))))
488f131b 4668 {
95918acb 4669 CORE_ADDR real_stop_pc;
8fb3e588 4670
527159b7 4671 if (debug_infrun)
8a9de0e4 4672 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4673
16c381f0
JK
4674 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4675 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4676 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4677 ecs->stop_func_start)))
95918acb
AC
4678 {
4679 /* I presume that step_over_calls is only 0 when we're
4680 supposed to be stepping at the assembly language level
4681 ("stepi"). Just stop. */
4682 /* Also, maybe we just did a "nexti" inside a prolog, so we
4683 thought it was a subroutine call but it was not. Stop as
4684 well. FENN */
388a8562 4685 /* And this works the same backward as frontward. MVS */
16c381f0 4686 ecs->event_thread->control.stop_step = 1;
33d62d64 4687 print_end_stepping_range_reason ();
95918acb
AC
4688 stop_stepping (ecs);
4689 return;
4690 }
8fb3e588 4691
388a8562
MS
4692 /* Reverse stepping through solib trampolines. */
4693
4694 if (execution_direction == EXEC_REVERSE
16c381f0 4695 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4696 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4697 || (ecs->stop_func_start == 0
4698 && in_solib_dynsym_resolve_code (stop_pc))))
4699 {
4700 /* Any solib trampoline code can be handled in reverse
4701 by simply continuing to single-step. We have already
4702 executed the solib function (backwards), and a few
4703 steps will take us back through the trampoline to the
4704 caller. */
4705 keep_going (ecs);
4706 return;
4707 }
4708
16c381f0 4709 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4710 {
b2175913
MS
4711 /* We're doing a "next".
4712
4713 Normal (forward) execution: set a breakpoint at the
4714 callee's return address (the address at which the caller
4715 will resume).
4716
4717 Reverse (backward) execution. set the step-resume
4718 breakpoint at the start of the function that we just
4719 stepped into (backwards), and continue to there. When we
6130d0b7 4720 get there, we'll need to single-step back to the caller. */
b2175913
MS
4721
4722 if (execution_direction == EXEC_REVERSE)
4723 {
4724 struct symtab_and_line sr_sal;
3067f6e5 4725
388a8562
MS
4726 /* Normal function call return (static or dynamic). */
4727 init_sal (&sr_sal);
4728 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4729 sr_sal.pspace = get_frame_program_space (frame);
4730 insert_step_resume_breakpoint_at_sal (gdbarch,
4731 sr_sal, null_frame_id);
b2175913
MS
4732 }
4733 else
568d6575 4734 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4735
8567c30f
AC
4736 keep_going (ecs);
4737 return;
4738 }
a53c66de 4739
95918acb 4740 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4741 calling routine and the real function), locate the real
4742 function. That's what tells us (a) whether we want to step
4743 into it at all, and (b) what prologue we want to run to the
4744 end of, if we do step into it. */
568d6575 4745 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4746 if (real_stop_pc == 0)
568d6575 4747 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4748 if (real_stop_pc != 0)
4749 ecs->stop_func_start = real_stop_pc;
8fb3e588 4750
db5f024e 4751 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4752 {
4753 struct symtab_and_line sr_sal;
abbb1732 4754
1b2bfbb9
RC
4755 init_sal (&sr_sal);
4756 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4757 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4758
a6d9a66e
UW
4759 insert_step_resume_breakpoint_at_sal (gdbarch,
4760 sr_sal, null_frame_id);
8fb3e588
AC
4761 keep_going (ecs);
4762 return;
1b2bfbb9
RC
4763 }
4764
95918acb 4765 /* If we have line number information for the function we are
8fb3e588 4766 thinking of stepping into, step into it.
95918acb 4767
8fb3e588
AC
4768 If there are several symtabs at that PC (e.g. with include
4769 files), just want to know whether *any* of them have line
4770 numbers. find_pc_line handles this. */
95918acb
AC
4771 {
4772 struct symtab_and_line tmp_sal;
8fb3e588 4773
95918acb
AC
4774 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4775 if (tmp_sal.line != 0)
4776 {
b2175913 4777 if (execution_direction == EXEC_REVERSE)
568d6575 4778 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4779 else
568d6575 4780 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4781 return;
4782 }
4783 }
4784
4785 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4786 set, we stop the step so that the user has a chance to switch
4787 in assembly mode. */
16c381f0 4788 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4789 && step_stop_if_no_debug)
95918acb 4790 {
16c381f0 4791 ecs->event_thread->control.stop_step = 1;
33d62d64 4792 print_end_stepping_range_reason ();
95918acb
AC
4793 stop_stepping (ecs);
4794 return;
4795 }
4796
b2175913
MS
4797 if (execution_direction == EXEC_REVERSE)
4798 {
4799 /* Set a breakpoint at callee's start address.
4800 From there we can step once and be back in the caller. */
4801 struct symtab_and_line sr_sal;
abbb1732 4802
b2175913
MS
4803 init_sal (&sr_sal);
4804 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4805 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4806 insert_step_resume_breakpoint_at_sal (gdbarch,
4807 sr_sal, null_frame_id);
b2175913
MS
4808 }
4809 else
4810 /* Set a breakpoint at callee's return address (the address
4811 at which the caller will resume). */
568d6575 4812 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4813
95918acb 4814 keep_going (ecs);
488f131b 4815 return;
488f131b 4816 }
c906108c 4817
fdd654f3
MS
4818 /* Reverse stepping through solib trampolines. */
4819
4820 if (execution_direction == EXEC_REVERSE
16c381f0 4821 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4822 {
4823 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4824 || (ecs->stop_func_start == 0
4825 && in_solib_dynsym_resolve_code (stop_pc)))
4826 {
4827 /* Any solib trampoline code can be handled in reverse
4828 by simply continuing to single-step. We have already
4829 executed the solib function (backwards), and a few
4830 steps will take us back through the trampoline to the
4831 caller. */
4832 keep_going (ecs);
4833 return;
4834 }
4835 else if (in_solib_dynsym_resolve_code (stop_pc))
4836 {
4837 /* Stepped backward into the solib dynsym resolver.
4838 Set a breakpoint at its start and continue, then
4839 one more step will take us out. */
4840 struct symtab_and_line sr_sal;
abbb1732 4841
fdd654f3
MS
4842 init_sal (&sr_sal);
4843 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4844 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4845 insert_step_resume_breakpoint_at_sal (gdbarch,
4846 sr_sal, null_frame_id);
4847 keep_going (ecs);
4848 return;
4849 }
4850 }
4851
488f131b
JB
4852 /* If we're in the return path from a shared library trampoline,
4853 we want to proceed through the trampoline when stepping. */
568d6575 4854 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4855 stop_pc, ecs->stop_func_name))
488f131b 4856 {
488f131b 4857 /* Determine where this trampoline returns. */
52f729a7 4858 CORE_ADDR real_stop_pc;
abbb1732 4859
568d6575 4860 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4861
527159b7 4862 if (debug_infrun)
3e43a32a
MS
4863 fprintf_unfiltered (gdb_stdlog,
4864 "infrun: stepped into solib return tramp\n");
527159b7 4865
488f131b 4866 /* Only proceed through if we know where it's going. */
d764a824 4867 if (real_stop_pc)
488f131b 4868 {
1777feb0 4869 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4870 struct symtab_and_line sr_sal;
4871
fe39c653 4872 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4873 sr_sal.pc = real_stop_pc;
488f131b 4874 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4875 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4876
4877 /* Do not specify what the fp should be when we stop since
4878 on some machines the prologue is where the new fp value
4879 is established. */
a6d9a66e
UW
4880 insert_step_resume_breakpoint_at_sal (gdbarch,
4881 sr_sal, null_frame_id);
c906108c 4882
488f131b
JB
4883 /* Restart without fiddling with the step ranges or
4884 other state. */
4885 keep_going (ecs);
4886 return;
4887 }
4888 }
c906108c 4889
2afb61aa 4890 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4891
1b2bfbb9
RC
4892 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4893 the trampoline processing logic, however, there are some trampolines
4894 that have no names, so we should do trampoline handling first. */
16c381f0 4895 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4896 && ecs->stop_func_name == NULL
2afb61aa 4897 && stop_pc_sal.line == 0)
1b2bfbb9 4898 {
527159b7 4899 if (debug_infrun)
3e43a32a
MS
4900 fprintf_unfiltered (gdb_stdlog,
4901 "infrun: stepped into undebuggable function\n");
527159b7 4902
1b2bfbb9 4903 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4904 undebuggable function (where there is no debugging information
4905 and no line number corresponding to the address where the
1b2bfbb9
RC
4906 inferior stopped). Since we want to skip this kind of code,
4907 we keep going until the inferior returns from this
14e60db5
DJ
4908 function - unless the user has asked us not to (via
4909 set step-mode) or we no longer know how to get back
4910 to the call site. */
4911 if (step_stop_if_no_debug
c7ce8faa 4912 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4913 {
4914 /* If we have no line number and the step-stop-if-no-debug
4915 is set, we stop the step so that the user has a chance to
4916 switch in assembly mode. */
16c381f0 4917 ecs->event_thread->control.stop_step = 1;
33d62d64 4918 print_end_stepping_range_reason ();
1b2bfbb9
RC
4919 stop_stepping (ecs);
4920 return;
4921 }
4922 else
4923 {
4924 /* Set a breakpoint at callee's return address (the address
4925 at which the caller will resume). */
568d6575 4926 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4927 keep_going (ecs);
4928 return;
4929 }
4930 }
4931
16c381f0 4932 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4933 {
4934 /* It is stepi or nexti. We always want to stop stepping after
4935 one instruction. */
527159b7 4936 if (debug_infrun)
8a9de0e4 4937 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4938 ecs->event_thread->control.stop_step = 1;
33d62d64 4939 print_end_stepping_range_reason ();
1b2bfbb9
RC
4940 stop_stepping (ecs);
4941 return;
4942 }
4943
2afb61aa 4944 if (stop_pc_sal.line == 0)
488f131b
JB
4945 {
4946 /* We have no line number information. That means to stop
4947 stepping (does this always happen right after one instruction,
4948 when we do "s" in a function with no line numbers,
4949 or can this happen as a result of a return or longjmp?). */
527159b7 4950 if (debug_infrun)
8a9de0e4 4951 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 4952 ecs->event_thread->control.stop_step = 1;
33d62d64 4953 print_end_stepping_range_reason ();
488f131b
JB
4954 stop_stepping (ecs);
4955 return;
4956 }
c906108c 4957
edb3359d
DJ
4958 /* Look for "calls" to inlined functions, part one. If the inline
4959 frame machinery detected some skipped call sites, we have entered
4960 a new inline function. */
4961
4962 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4963 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
4964 && inline_skipped_frames (ecs->ptid))
4965 {
4966 struct symtab_and_line call_sal;
4967
4968 if (debug_infrun)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "infrun: stepped into inlined function\n");
4971
4972 find_frame_sal (get_current_frame (), &call_sal);
4973
16c381f0 4974 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
4975 {
4976 /* For "step", we're going to stop. But if the call site
4977 for this inlined function is on the same source line as
4978 we were previously stepping, go down into the function
4979 first. Otherwise stop at the call site. */
4980
4981 if (call_sal.line == ecs->event_thread->current_line
4982 && call_sal.symtab == ecs->event_thread->current_symtab)
4983 step_into_inline_frame (ecs->ptid);
4984
16c381f0 4985 ecs->event_thread->control.stop_step = 1;
33d62d64 4986 print_end_stepping_range_reason ();
edb3359d
DJ
4987 stop_stepping (ecs);
4988 return;
4989 }
4990 else
4991 {
4992 /* For "next", we should stop at the call site if it is on a
4993 different source line. Otherwise continue through the
4994 inlined function. */
4995 if (call_sal.line == ecs->event_thread->current_line
4996 && call_sal.symtab == ecs->event_thread->current_symtab)
4997 keep_going (ecs);
4998 else
4999 {
16c381f0 5000 ecs->event_thread->control.stop_step = 1;
33d62d64 5001 print_end_stepping_range_reason ();
edb3359d
DJ
5002 stop_stepping (ecs);
5003 }
5004 return;
5005 }
5006 }
5007
5008 /* Look for "calls" to inlined functions, part two. If we are still
5009 in the same real function we were stepping through, but we have
5010 to go further up to find the exact frame ID, we are stepping
5011 through a more inlined call beyond its call site. */
5012
5013 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5014 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5015 ecs->event_thread->control.step_frame_id)
edb3359d 5016 && stepped_in_from (get_current_frame (),
16c381f0 5017 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5018 {
5019 if (debug_infrun)
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: stepping through inlined function\n");
5022
16c381f0 5023 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5024 keep_going (ecs);
5025 else
5026 {
16c381f0 5027 ecs->event_thread->control.stop_step = 1;
33d62d64 5028 print_end_stepping_range_reason ();
edb3359d
DJ
5029 stop_stepping (ecs);
5030 }
5031 return;
5032 }
5033
2afb61aa 5034 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5035 && (ecs->event_thread->current_line != stop_pc_sal.line
5036 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5037 {
5038 /* We are at the start of a different line. So stop. Note that
5039 we don't stop if we step into the middle of a different line.
5040 That is said to make things like for (;;) statements work
5041 better. */
527159b7 5042 if (debug_infrun)
3e43a32a
MS
5043 fprintf_unfiltered (gdb_stdlog,
5044 "infrun: stepped to a different line\n");
16c381f0 5045 ecs->event_thread->control.stop_step = 1;
33d62d64 5046 print_end_stepping_range_reason ();
488f131b
JB
5047 stop_stepping (ecs);
5048 return;
5049 }
c906108c 5050
488f131b 5051 /* We aren't done stepping.
c906108c 5052
488f131b
JB
5053 Optimize by setting the stepping range to the line.
5054 (We might not be in the original line, but if we entered a
5055 new line in mid-statement, we continue stepping. This makes
5056 things like for(;;) statements work better.) */
c906108c 5057
16c381f0
JK
5058 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5059 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5060 set_step_info (frame, stop_pc_sal);
488f131b 5061
527159b7 5062 if (debug_infrun)
8a9de0e4 5063 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5064 keep_going (ecs);
104c1213
JM
5065}
5066
b3444185 5067/* Is thread TP in the middle of single-stepping? */
104c1213 5068
a289b8f6 5069static int
b3444185 5070currently_stepping (struct thread_info *tp)
a7212384 5071{
8358c15c
JK
5072 return ((tp->control.step_range_end
5073 && tp->control.step_resume_breakpoint == NULL)
5074 || tp->control.trap_expected
5075 || tp->stepping_through_solib_after_catch
5076 || bpstat_should_step ());
a7212384
UW
5077}
5078
b3444185
PA
5079/* Returns true if any thread *but* the one passed in "data" is in the
5080 middle of stepping or of handling a "next". */
a7212384 5081
104c1213 5082static int
b3444185 5083currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5084{
b3444185
PA
5085 if (tp == data)
5086 return 0;
5087
16c381f0
JK
5088 return (tp->control.step_range_end
5089 || tp->control.trap_expected
b3444185 5090 || tp->stepping_through_solib_after_catch);
104c1213 5091}
c906108c 5092
b2175913
MS
5093/* Inferior has stepped into a subroutine call with source code that
5094 we should not step over. Do step to the first line of code in
5095 it. */
c2c6d25f
JM
5096
5097static void
568d6575
UW
5098handle_step_into_function (struct gdbarch *gdbarch,
5099 struct execution_control_state *ecs)
c2c6d25f
JM
5100{
5101 struct symtab *s;
2afb61aa 5102 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
5103
5104 s = find_pc_symtab (stop_pc);
5105 if (s && s->language != language_asm)
568d6575 5106 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5107 ecs->stop_func_start);
c2c6d25f 5108
2afb61aa 5109 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5110 /* Use the step_resume_break to step until the end of the prologue,
5111 even if that involves jumps (as it seems to on the vax under
5112 4.2). */
5113 /* If the prologue ends in the middle of a source line, continue to
5114 the end of that source line (if it is still within the function).
5115 Otherwise, just go to end of prologue. */
2afb61aa
PA
5116 if (stop_func_sal.end
5117 && stop_func_sal.pc != ecs->stop_func_start
5118 && stop_func_sal.end < ecs->stop_func_end)
5119 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5120
2dbd5e30
KB
5121 /* Architectures which require breakpoint adjustment might not be able
5122 to place a breakpoint at the computed address. If so, the test
5123 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5124 ecs->stop_func_start to an address at which a breakpoint may be
5125 legitimately placed.
8fb3e588 5126
2dbd5e30
KB
5127 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5128 made, GDB will enter an infinite loop when stepping through
5129 optimized code consisting of VLIW instructions which contain
5130 subinstructions corresponding to different source lines. On
5131 FR-V, it's not permitted to place a breakpoint on any but the
5132 first subinstruction of a VLIW instruction. When a breakpoint is
5133 set, GDB will adjust the breakpoint address to the beginning of
5134 the VLIW instruction. Thus, we need to make the corresponding
5135 adjustment here when computing the stop address. */
8fb3e588 5136
568d6575 5137 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5138 {
5139 ecs->stop_func_start
568d6575 5140 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5141 ecs->stop_func_start);
2dbd5e30
KB
5142 }
5143
c2c6d25f
JM
5144 if (ecs->stop_func_start == stop_pc)
5145 {
5146 /* We are already there: stop now. */
16c381f0 5147 ecs->event_thread->control.stop_step = 1;
33d62d64 5148 print_end_stepping_range_reason ();
c2c6d25f
JM
5149 stop_stepping (ecs);
5150 return;
5151 }
5152 else
5153 {
5154 /* Put the step-breakpoint there and go until there. */
fe39c653 5155 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5156 sr_sal.pc = ecs->stop_func_start;
5157 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5158 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5159
c2c6d25f 5160 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5161 some machines the prologue is where the new fp value is
5162 established. */
a6d9a66e 5163 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5164
5165 /* And make sure stepping stops right away then. */
16c381f0
JK
5166 ecs->event_thread->control.step_range_end
5167 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5168 }
5169 keep_going (ecs);
5170}
d4f3574e 5171
b2175913
MS
5172/* Inferior has stepped backward into a subroutine call with source
5173 code that we should not step over. Do step to the beginning of the
5174 last line of code in it. */
5175
5176static void
568d6575
UW
5177handle_step_into_function_backward (struct gdbarch *gdbarch,
5178 struct execution_control_state *ecs)
b2175913
MS
5179{
5180 struct symtab *s;
167e4384 5181 struct symtab_and_line stop_func_sal;
b2175913
MS
5182
5183 s = find_pc_symtab (stop_pc);
5184 if (s && s->language != language_asm)
568d6575 5185 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5186 ecs->stop_func_start);
5187
5188 stop_func_sal = find_pc_line (stop_pc, 0);
5189
5190 /* OK, we're just going to keep stepping here. */
5191 if (stop_func_sal.pc == stop_pc)
5192 {
5193 /* We're there already. Just stop stepping now. */
16c381f0 5194 ecs->event_thread->control.stop_step = 1;
33d62d64 5195 print_end_stepping_range_reason ();
b2175913
MS
5196 stop_stepping (ecs);
5197 }
5198 else
5199 {
5200 /* Else just reset the step range and keep going.
5201 No step-resume breakpoint, they don't work for
5202 epilogues, which can have multiple entry paths. */
16c381f0
JK
5203 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5204 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5205 keep_going (ecs);
5206 }
5207 return;
5208}
5209
d3169d93 5210/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5211 This is used to both functions and to skip over code. */
5212
5213static void
a6d9a66e
UW
5214insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5215 struct symtab_and_line sr_sal,
44cbf7b5
AC
5216 struct frame_id sr_id)
5217{
611c83ae
PA
5218 /* There should never be more than one step-resume or longjmp-resume
5219 breakpoint per thread, so we should never be setting a new
44cbf7b5 5220 step_resume_breakpoint when one is already active. */
8358c15c 5221 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
d3169d93
DJ
5222
5223 if (debug_infrun)
5224 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5225 "infrun: inserting step-resume breakpoint at %s\n",
5226 paddress (gdbarch, sr_sal.pc));
d3169d93 5227
8358c15c 5228 inferior_thread ()->control.step_resume_breakpoint
a6d9a66e 5229 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 5230}
7ce450bd 5231
d3169d93 5232/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 5233 to skip a potential signal handler.
7ce450bd 5234
14e60db5
DJ
5235 This is called with the interrupted function's frame. The signal
5236 handler, when it returns, will resume the interrupted function at
5237 RETURN_FRAME.pc. */
d303a6c7
AC
5238
5239static void
44cbf7b5 5240insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5241{
5242 struct symtab_and_line sr_sal;
a6d9a66e 5243 struct gdbarch *gdbarch;
d303a6c7 5244
f4c1edd8 5245 gdb_assert (return_frame != NULL);
d303a6c7
AC
5246 init_sal (&sr_sal); /* initialize to zeros */
5247
a6d9a66e 5248 gdbarch = get_frame_arch (return_frame);
568d6575 5249 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5250 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5251 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5252
a6d9a66e
UW
5253 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5254 get_stack_frame_id (return_frame));
d303a6c7
AC
5255}
5256
14e60db5
DJ
5257/* Similar to insert_step_resume_breakpoint_at_frame, except
5258 but a breakpoint at the previous frame's PC. This is used to
5259 skip a function after stepping into it (for "next" or if the called
5260 function has no debugging information).
5261
5262 The current function has almost always been reached by single
5263 stepping a call or return instruction. NEXT_FRAME belongs to the
5264 current function, and the breakpoint will be set at the caller's
5265 resume address.
5266
5267 This is a separate function rather than reusing
5268 insert_step_resume_breakpoint_at_frame in order to avoid
5269 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5270 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5271
5272static void
5273insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5274{
5275 struct symtab_and_line sr_sal;
a6d9a66e 5276 struct gdbarch *gdbarch;
14e60db5
DJ
5277
5278 /* We shouldn't have gotten here if we don't know where the call site
5279 is. */
c7ce8faa 5280 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5281
5282 init_sal (&sr_sal); /* initialize to zeros */
5283
a6d9a66e 5284 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5285 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5286 frame_unwind_caller_pc (next_frame));
14e60db5 5287 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5288 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5289
a6d9a66e 5290 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5291 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5292}
5293
611c83ae
PA
5294/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5295 new breakpoint at the target of a jmp_buf. The handling of
5296 longjmp-resume uses the same mechanisms used for handling
5297 "step-resume" breakpoints. */
5298
5299static void
a6d9a66e 5300insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5301{
5302 /* There should never be more than one step-resume or longjmp-resume
5303 breakpoint per thread, so we should never be setting a new
5304 longjmp_resume_breakpoint when one is already active. */
8358c15c 5305 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5306
5307 if (debug_infrun)
5308 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5309 "infrun: inserting longjmp-resume breakpoint at %s\n",
5310 paddress (gdbarch, pc));
611c83ae 5311
8358c15c 5312 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5313 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5314}
5315
186c406b
TT
5316/* Insert an exception resume breakpoint. TP is the thread throwing
5317 the exception. The block B is the block of the unwinder debug hook
5318 function. FRAME is the frame corresponding to the call to this
5319 function. SYM is the symbol of the function argument holding the
5320 target PC of the exception. */
5321
5322static void
5323insert_exception_resume_breakpoint (struct thread_info *tp,
5324 struct block *b,
5325 struct frame_info *frame,
5326 struct symbol *sym)
5327{
5328 struct gdb_exception e;
5329
5330 /* We want to ignore errors here. */
5331 TRY_CATCH (e, RETURN_MASK_ERROR)
5332 {
5333 struct symbol *vsym;
5334 struct value *value;
5335 CORE_ADDR handler;
5336 struct breakpoint *bp;
5337
5338 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5339 value = read_var_value (vsym, frame);
5340 /* If the value was optimized out, revert to the old behavior. */
5341 if (! value_optimized_out (value))
5342 {
5343 handler = value_as_address (value);
5344
5345 if (debug_infrun)
5346 fprintf_unfiltered (gdb_stdlog,
5347 "infrun: exception resume at %lx\n",
5348 (unsigned long) handler);
5349
5350 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5351 handler, bp_exception_resume);
5352 bp->thread = tp->num;
5353 inferior_thread ()->control.exception_resume_breakpoint = bp;
5354 }
5355 }
5356}
5357
5358/* This is called when an exception has been intercepted. Check to
5359 see whether the exception's destination is of interest, and if so,
5360 set an exception resume breakpoint there. */
5361
5362static void
5363check_exception_resume (struct execution_control_state *ecs,
5364 struct frame_info *frame, struct symbol *func)
5365{
5366 struct gdb_exception e;
5367
5368 TRY_CATCH (e, RETURN_MASK_ERROR)
5369 {
5370 struct block *b;
5371 struct dict_iterator iter;
5372 struct symbol *sym;
5373 int argno = 0;
5374
5375 /* The exception breakpoint is a thread-specific breakpoint on
5376 the unwinder's debug hook, declared as:
5377
5378 void _Unwind_DebugHook (void *cfa, void *handler);
5379
5380 The CFA argument indicates the frame to which control is
5381 about to be transferred. HANDLER is the destination PC.
5382
5383 We ignore the CFA and set a temporary breakpoint at HANDLER.
5384 This is not extremely efficient but it avoids issues in gdb
5385 with computing the DWARF CFA, and it also works even in weird
5386 cases such as throwing an exception from inside a signal
5387 handler. */
5388
5389 b = SYMBOL_BLOCK_VALUE (func);
5390 ALL_BLOCK_SYMBOLS (b, iter, sym)
5391 {
5392 if (!SYMBOL_IS_ARGUMENT (sym))
5393 continue;
5394
5395 if (argno == 0)
5396 ++argno;
5397 else
5398 {
5399 insert_exception_resume_breakpoint (ecs->event_thread,
5400 b, frame, sym);
5401 break;
5402 }
5403 }
5404 }
5405}
5406
104c1213
JM
5407static void
5408stop_stepping (struct execution_control_state *ecs)
5409{
527159b7 5410 if (debug_infrun)
8a9de0e4 5411 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5412
cd0fc7c3
SS
5413 /* Let callers know we don't want to wait for the inferior anymore. */
5414 ecs->wait_some_more = 0;
5415}
5416
d4f3574e
SS
5417/* This function handles various cases where we need to continue
5418 waiting for the inferior. */
1777feb0 5419/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5420
5421static void
5422keep_going (struct execution_control_state *ecs)
5423{
c4dbc9af
PA
5424 /* Make sure normal_stop is called if we get a QUIT handled before
5425 reaching resume. */
5426 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5427
d4f3574e 5428 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5429 ecs->event_thread->prev_pc
5430 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5431
d4f3574e
SS
5432 /* If we did not do break;, it means we should keep running the
5433 inferior and not return to debugger. */
5434
16c381f0
JK
5435 if (ecs->event_thread->control.trap_expected
5436 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5437 {
5438 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5439 the inferior, else we'd not get here) and we haven't yet
5440 gotten our trap. Simply continue. */
c4dbc9af
PA
5441
5442 discard_cleanups (old_cleanups);
2020b7ab 5443 resume (currently_stepping (ecs->event_thread),
16c381f0 5444 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5445 }
5446 else
5447 {
5448 /* Either the trap was not expected, but we are continuing
488f131b
JB
5449 anyway (the user asked that this signal be passed to the
5450 child)
5451 -- or --
5452 The signal was SIGTRAP, e.g. it was our signal, but we
5453 decided we should resume from it.
d4f3574e 5454
c36b740a 5455 We're going to run this baby now!
d4f3574e 5456
c36b740a
VP
5457 Note that insert_breakpoints won't try to re-insert
5458 already inserted breakpoints. Therefore, we don't
5459 care if breakpoints were already inserted, or not. */
5460
4e1c45ea 5461 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5462 {
9f5a595d 5463 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5464
9f5a595d 5465 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5466 /* Since we can't do a displaced step, we have to remove
5467 the breakpoint while we step it. To keep things
5468 simple, we remove them all. */
5469 remove_breakpoints ();
45e8c884
VP
5470 }
5471 else
d4f3574e 5472 {
e236ba44 5473 struct gdb_exception e;
abbb1732 5474
569631c6
UW
5475 /* Stop stepping when inserting breakpoints
5476 has failed. */
e236ba44
VP
5477 TRY_CATCH (e, RETURN_MASK_ERROR)
5478 {
5479 insert_breakpoints ();
5480 }
5481 if (e.reason < 0)
d4f3574e 5482 {
97bd5475 5483 exception_print (gdb_stderr, e);
d4f3574e
SS
5484 stop_stepping (ecs);
5485 return;
5486 }
d4f3574e
SS
5487 }
5488
16c381f0
JK
5489 ecs->event_thread->control.trap_expected
5490 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5491
5492 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5493 specifies that such a signal should be delivered to the
5494 target program).
5495
5496 Typically, this would occure when a user is debugging a
5497 target monitor on a simulator: the target monitor sets a
5498 breakpoint; the simulator encounters this break-point and
5499 halts the simulation handing control to GDB; GDB, noteing
5500 that the break-point isn't valid, returns control back to the
5501 simulator; the simulator then delivers the hardware
1777feb0 5502 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5503
16c381f0
JK
5504 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5505 && !signal_program[ecs->event_thread->suspend.stop_signal])
5506 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5507
c4dbc9af 5508 discard_cleanups (old_cleanups);
2020b7ab 5509 resume (currently_stepping (ecs->event_thread),
16c381f0 5510 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5511 }
5512
488f131b 5513 prepare_to_wait (ecs);
d4f3574e
SS
5514}
5515
104c1213
JM
5516/* This function normally comes after a resume, before
5517 handle_inferior_event exits. It takes care of any last bits of
5518 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5519
104c1213
JM
5520static void
5521prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5522{
527159b7 5523 if (debug_infrun)
8a9de0e4 5524 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5525
104c1213
JM
5526 /* This is the old end of the while loop. Let everybody know we
5527 want to wait for the inferior some more and get called again
5528 soon. */
5529 ecs->wait_some_more = 1;
c906108c 5530}
11cf8741 5531
33d62d64
JK
5532/* Several print_*_reason functions to print why the inferior has stopped.
5533 We always print something when the inferior exits, or receives a signal.
5534 The rest of the cases are dealt with later on in normal_stop and
5535 print_it_typical. Ideally there should be a call to one of these
5536 print_*_reason functions functions from handle_inferior_event each time
5537 stop_stepping is called. */
5538
5539/* Print why the inferior has stopped.
5540 We are done with a step/next/si/ni command, print why the inferior has
5541 stopped. For now print nothing. Print a message only if not in the middle
5542 of doing a "step n" operation for n > 1. */
5543
5544static void
5545print_end_stepping_range_reason (void)
5546{
16c381f0
JK
5547 if ((!inferior_thread ()->step_multi
5548 || !inferior_thread ()->control.stop_step)
33d62d64
JK
5549 && ui_out_is_mi_like_p (uiout))
5550 ui_out_field_string (uiout, "reason",
5551 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5552}
5553
5554/* The inferior was terminated by a signal, print why it stopped. */
5555
11cf8741 5556static void
33d62d64 5557print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5558{
33d62d64
JK
5559 annotate_signalled ();
5560 if (ui_out_is_mi_like_p (uiout))
5561 ui_out_field_string
5562 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5563 ui_out_text (uiout, "\nProgram terminated with signal ");
5564 annotate_signal_name ();
5565 ui_out_field_string (uiout, "signal-name",
5566 target_signal_to_name (siggnal));
5567 annotate_signal_name_end ();
5568 ui_out_text (uiout, ", ");
5569 annotate_signal_string ();
5570 ui_out_field_string (uiout, "signal-meaning",
5571 target_signal_to_string (siggnal));
5572 annotate_signal_string_end ();
5573 ui_out_text (uiout, ".\n");
5574 ui_out_text (uiout, "The program no longer exists.\n");
5575}
5576
5577/* The inferior program is finished, print why it stopped. */
5578
5579static void
5580print_exited_reason (int exitstatus)
5581{
fda326dd
TT
5582 struct inferior *inf = current_inferior ();
5583 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5584
33d62d64
JK
5585 annotate_exited (exitstatus);
5586 if (exitstatus)
5587 {
5588 if (ui_out_is_mi_like_p (uiout))
5589 ui_out_field_string (uiout, "reason",
5590 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5591 ui_out_text (uiout, "[Inferior ");
5592 ui_out_text (uiout, plongest (inf->num));
5593 ui_out_text (uiout, " (");
5594 ui_out_text (uiout, pidstr);
5595 ui_out_text (uiout, ") exited with code ");
33d62d64 5596 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5597 ui_out_text (uiout, "]\n");
33d62d64
JK
5598 }
5599 else
11cf8741 5600 {
9dc5e2a9 5601 if (ui_out_is_mi_like_p (uiout))
034dad6f 5602 ui_out_field_string
33d62d64 5603 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5604 ui_out_text (uiout, "[Inferior ");
5605 ui_out_text (uiout, plongest (inf->num));
5606 ui_out_text (uiout, " (");
5607 ui_out_text (uiout, pidstr);
5608 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5609 }
5610 /* Support the --return-child-result option. */
5611 return_child_result_value = exitstatus;
5612}
5613
5614/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5615 tells us to print about it. */
33d62d64
JK
5616
5617static void
5618print_signal_received_reason (enum target_signal siggnal)
5619{
5620 annotate_signal ();
5621
5622 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5623 {
5624 struct thread_info *t = inferior_thread ();
5625
5626 ui_out_text (uiout, "\n[");
5627 ui_out_field_string (uiout, "thread-name",
5628 target_pid_to_str (t->ptid));
5629 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5630 ui_out_text (uiout, " stopped");
5631 }
5632 else
5633 {
5634 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5635 annotate_signal_name ();
33d62d64
JK
5636 if (ui_out_is_mi_like_p (uiout))
5637 ui_out_field_string
5638 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5639 ui_out_field_string (uiout, "signal-name",
33d62d64 5640 target_signal_to_name (siggnal));
8b93c638
JM
5641 annotate_signal_name_end ();
5642 ui_out_text (uiout, ", ");
5643 annotate_signal_string ();
488f131b 5644 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5645 target_signal_to_string (siggnal));
8b93c638 5646 annotate_signal_string_end ();
33d62d64
JK
5647 }
5648 ui_out_text (uiout, ".\n");
5649}
252fbfc8 5650
33d62d64
JK
5651/* Reverse execution: target ran out of history info, print why the inferior
5652 has stopped. */
252fbfc8 5653
33d62d64
JK
5654static void
5655print_no_history_reason (void)
5656{
5657 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5658}
43ff13b4 5659
c906108c
SS
5660/* Here to return control to GDB when the inferior stops for real.
5661 Print appropriate messages, remove breakpoints, give terminal our modes.
5662
5663 STOP_PRINT_FRAME nonzero means print the executing frame
5664 (pc, function, args, file, line number and line text).
5665 BREAKPOINTS_FAILED nonzero means stop was due to error
5666 attempting to insert breakpoints. */
5667
5668void
96baa820 5669normal_stop (void)
c906108c 5670{
73b65bb0
DJ
5671 struct target_waitstatus last;
5672 ptid_t last_ptid;
29f49a6a 5673 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5674
5675 get_last_target_status (&last_ptid, &last);
5676
29f49a6a
PA
5677 /* If an exception is thrown from this point on, make sure to
5678 propagate GDB's knowledge of the executing state to the
5679 frontend/user running state. A QUIT is an easy exception to see
5680 here, so do this before any filtered output. */
c35b1492
PA
5681 if (!non_stop)
5682 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5683 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5684 && last.kind != TARGET_WAITKIND_EXITED)
5685 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5686
4f8d22e3
PA
5687 /* In non-stop mode, we don't want GDB to switch threads behind the
5688 user's back, to avoid races where the user is typing a command to
5689 apply to thread x, but GDB switches to thread y before the user
5690 finishes entering the command. */
5691
c906108c
SS
5692 /* As with the notification of thread events, we want to delay
5693 notifying the user that we've switched thread context until
5694 the inferior actually stops.
5695
73b65bb0
DJ
5696 There's no point in saying anything if the inferior has exited.
5697 Note that SIGNALLED here means "exited with a signal", not
5698 "received a signal". */
4f8d22e3
PA
5699 if (!non_stop
5700 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5701 && target_has_execution
5702 && last.kind != TARGET_WAITKIND_SIGNALLED
5703 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5704 {
5705 target_terminal_ours_for_output ();
a3f17187 5706 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5707 target_pid_to_str (inferior_ptid));
b8fa951a 5708 annotate_thread_changed ();
39f77062 5709 previous_inferior_ptid = inferior_ptid;
c906108c 5710 }
c906108c 5711
74960c60 5712 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5713 {
5714 if (remove_breakpoints ())
5715 {
5716 target_terminal_ours_for_output ();
3e43a32a
MS
5717 printf_filtered (_("Cannot remove breakpoints because "
5718 "program is no longer writable.\nFurther "
5719 "execution is probably impossible.\n"));
c906108c
SS
5720 }
5721 }
c906108c 5722
c906108c
SS
5723 /* If an auto-display called a function and that got a signal,
5724 delete that auto-display to avoid an infinite recursion. */
5725
5726 if (stopped_by_random_signal)
5727 disable_current_display ();
5728
5729 /* Don't print a message if in the middle of doing a "step n"
5730 operation for n > 1 */
af679fd0
PA
5731 if (target_has_execution
5732 && last.kind != TARGET_WAITKIND_SIGNALLED
5733 && last.kind != TARGET_WAITKIND_EXITED
5734 && inferior_thread ()->step_multi
16c381f0 5735 && inferior_thread ()->control.stop_step)
c906108c
SS
5736 goto done;
5737
5738 target_terminal_ours ();
5739
7abfe014
DJ
5740 /* Set the current source location. This will also happen if we
5741 display the frame below, but the current SAL will be incorrect
5742 during a user hook-stop function. */
d729566a 5743 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5744 set_current_sal_from_frame (get_current_frame (), 1);
5745
dd7e2d2b
PA
5746 /* Let the user/frontend see the threads as stopped. */
5747 do_cleanups (old_chain);
5748
5749 /* Look up the hook_stop and run it (CLI internally handles problem
5750 of stop_command's pre-hook not existing). */
5751 if (stop_command)
5752 catch_errors (hook_stop_stub, stop_command,
5753 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5754
d729566a 5755 if (!has_stack_frames ())
d51fd4c8 5756 goto done;
c906108c 5757
32400beb
PA
5758 if (last.kind == TARGET_WAITKIND_SIGNALLED
5759 || last.kind == TARGET_WAITKIND_EXITED)
5760 goto done;
5761
c906108c
SS
5762 /* Select innermost stack frame - i.e., current frame is frame 0,
5763 and current location is based on that.
5764 Don't do this on return from a stack dummy routine,
1777feb0 5765 or if the program has exited. */
c906108c
SS
5766
5767 if (!stop_stack_dummy)
5768 {
0f7d239c 5769 select_frame (get_current_frame ());
c906108c
SS
5770
5771 /* Print current location without a level number, if
c5aa993b
JM
5772 we have changed functions or hit a breakpoint.
5773 Print source line if we have one.
5774 bpstat_print() contains the logic deciding in detail
1777feb0 5775 what to print, based on the event(s) that just occurred. */
c906108c 5776
d01a8610
AS
5777 /* If --batch-silent is enabled then there's no need to print the current
5778 source location, and to try risks causing an error message about
5779 missing source files. */
5780 if (stop_print_frame && !batch_silent)
c906108c
SS
5781 {
5782 int bpstat_ret;
5783 int source_flag;
917317f4 5784 int do_frame_printing = 1;
347bddb7 5785 struct thread_info *tp = inferior_thread ();
c906108c 5786
16c381f0 5787 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5788 switch (bpstat_ret)
5789 {
5790 case PRINT_UNKNOWN:
b0f4b84b
DJ
5791 /* If we had hit a shared library event breakpoint,
5792 bpstat_print would print out this message. If we hit
5793 an OS-level shared library event, do the same
5794 thing. */
5795 if (last.kind == TARGET_WAITKIND_LOADED)
5796 {
5797 printf_filtered (_("Stopped due to shared library event\n"));
5798 source_flag = SRC_LINE; /* something bogus */
5799 do_frame_printing = 0;
5800 break;
5801 }
5802
aa0cd9c1 5803 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5804 (or should) carry around the function and does (or
5805 should) use that when doing a frame comparison. */
16c381f0
JK
5806 if (tp->control.stop_step
5807 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5808 get_frame_id (get_current_frame ()))
917317f4 5809 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5810 source_flag = SRC_LINE; /* Finished step, just
5811 print source line. */
917317f4 5812 else
1777feb0
MS
5813 source_flag = SRC_AND_LOC; /* Print location and
5814 source line. */
917317f4
JM
5815 break;
5816 case PRINT_SRC_AND_LOC:
1777feb0
MS
5817 source_flag = SRC_AND_LOC; /* Print location and
5818 source line. */
917317f4
JM
5819 break;
5820 case PRINT_SRC_ONLY:
c5394b80 5821 source_flag = SRC_LINE;
917317f4
JM
5822 break;
5823 case PRINT_NOTHING:
488f131b 5824 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5825 do_frame_printing = 0;
5826 break;
5827 default:
e2e0b3e5 5828 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5829 }
c906108c
SS
5830
5831 /* The behavior of this routine with respect to the source
5832 flag is:
c5394b80
JM
5833 SRC_LINE: Print only source line
5834 LOCATION: Print only location
1777feb0 5835 SRC_AND_LOC: Print location and source line. */
917317f4 5836 if (do_frame_printing)
b04f3ab4 5837 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5838
5839 /* Display the auto-display expressions. */
5840 do_displays ();
5841 }
5842 }
5843
5844 /* Save the function value return registers, if we care.
5845 We might be about to restore their previous contents. */
16c381f0 5846 if (inferior_thread ()->control.proceed_to_finish)
d5c31457
UW
5847 {
5848 /* This should not be necessary. */
5849 if (stop_registers)
5850 regcache_xfree (stop_registers);
5851
5852 /* NB: The copy goes through to the target picking up the value of
5853 all the registers. */
5854 stop_registers = regcache_dup (get_current_regcache ());
5855 }
c906108c 5856
aa7d318d 5857 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5858 {
b89667eb
DE
5859 /* Pop the empty frame that contains the stack dummy.
5860 This also restores inferior state prior to the call
16c381f0 5861 (struct infcall_suspend_state). */
b89667eb 5862 struct frame_info *frame = get_current_frame ();
abbb1732 5863
b89667eb
DE
5864 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5865 frame_pop (frame);
3e43a32a
MS
5866 /* frame_pop() calls reinit_frame_cache as the last thing it
5867 does which means there's currently no selected frame. We
5868 don't need to re-establish a selected frame if the dummy call
5869 returns normally, that will be done by
5870 restore_infcall_control_state. However, we do have to handle
5871 the case where the dummy call is returning after being
5872 stopped (e.g. the dummy call previously hit a breakpoint).
5873 We can't know which case we have so just always re-establish
5874 a selected frame here. */
0f7d239c 5875 select_frame (get_current_frame ());
c906108c
SS
5876 }
5877
c906108c
SS
5878done:
5879 annotate_stopped ();
41d2bdb4
PA
5880
5881 /* Suppress the stop observer if we're in the middle of:
5882
5883 - a step n (n > 1), as there still more steps to be done.
5884
5885 - a "finish" command, as the observer will be called in
5886 finish_command_continuation, so it can include the inferior
5887 function's return value.
5888
5889 - calling an inferior function, as we pretend we inferior didn't
5890 run at all. The return value of the call is handled by the
5891 expression evaluator, through call_function_by_hand. */
5892
5893 if (!target_has_execution
5894 || last.kind == TARGET_WAITKIND_SIGNALLED
5895 || last.kind == TARGET_WAITKIND_EXITED
5896 || (!inferior_thread ()->step_multi
16c381f0
JK
5897 && !(inferior_thread ()->control.stop_bpstat
5898 && inferior_thread ()->control.proceed_to_finish)
5899 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5900 {
5901 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5902 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5903 stop_print_frame);
347bddb7 5904 else
1d33d6ba 5905 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5906 }
347bddb7 5907
48844aa6
PA
5908 if (target_has_execution)
5909 {
5910 if (last.kind != TARGET_WAITKIND_SIGNALLED
5911 && last.kind != TARGET_WAITKIND_EXITED)
5912 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5913 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5914 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5915 }
6c95b8df
PA
5916
5917 /* Try to get rid of automatically added inferiors that are no
5918 longer needed. Keeping those around slows down things linearly.
5919 Note that this never removes the current inferior. */
5920 prune_inferiors ();
c906108c
SS
5921}
5922
5923static int
96baa820 5924hook_stop_stub (void *cmd)
c906108c 5925{
5913bcb0 5926 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5927 return (0);
5928}
5929\f
c5aa993b 5930int
96baa820 5931signal_stop_state (int signo)
c906108c 5932{
d6b48e9c 5933 return signal_stop[signo];
c906108c
SS
5934}
5935
c5aa993b 5936int
96baa820 5937signal_print_state (int signo)
c906108c
SS
5938{
5939 return signal_print[signo];
5940}
5941
c5aa993b 5942int
96baa820 5943signal_pass_state (int signo)
c906108c
SS
5944{
5945 return signal_program[signo];
5946}
5947
2455069d
UW
5948static void
5949signal_cache_update (int signo)
5950{
5951 if (signo == -1)
5952 {
5953 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5954 signal_cache_update (signo);
5955
5956 return;
5957 }
5958
5959 signal_pass[signo] = (signal_stop[signo] == 0
5960 && signal_print[signo] == 0
5961 && signal_program[signo] == 1);
5962}
5963
488f131b 5964int
7bda5e4a 5965signal_stop_update (int signo, int state)
d4f3574e
SS
5966{
5967 int ret = signal_stop[signo];
abbb1732 5968
d4f3574e 5969 signal_stop[signo] = state;
2455069d 5970 signal_cache_update (signo);
d4f3574e
SS
5971 return ret;
5972}
5973
488f131b 5974int
7bda5e4a 5975signal_print_update (int signo, int state)
d4f3574e
SS
5976{
5977 int ret = signal_print[signo];
abbb1732 5978
d4f3574e 5979 signal_print[signo] = state;
2455069d 5980 signal_cache_update (signo);
d4f3574e
SS
5981 return ret;
5982}
5983
488f131b 5984int
7bda5e4a 5985signal_pass_update (int signo, int state)
d4f3574e
SS
5986{
5987 int ret = signal_program[signo];
abbb1732 5988
d4f3574e 5989 signal_program[signo] = state;
2455069d 5990 signal_cache_update (signo);
d4f3574e
SS
5991 return ret;
5992}
5993
c906108c 5994static void
96baa820 5995sig_print_header (void)
c906108c 5996{
3e43a32a
MS
5997 printf_filtered (_("Signal Stop\tPrint\tPass "
5998 "to program\tDescription\n"));
c906108c
SS
5999}
6000
6001static void
96baa820 6002sig_print_info (enum target_signal oursig)
c906108c 6003{
54363045 6004 const char *name = target_signal_to_name (oursig);
c906108c 6005 int name_padding = 13 - strlen (name);
96baa820 6006
c906108c
SS
6007 if (name_padding <= 0)
6008 name_padding = 0;
6009
6010 printf_filtered ("%s", name);
488f131b 6011 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6012 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6013 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6014 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6015 printf_filtered ("%s\n", target_signal_to_string (oursig));
6016}
6017
6018/* Specify how various signals in the inferior should be handled. */
6019
6020static void
96baa820 6021handle_command (char *args, int from_tty)
c906108c
SS
6022{
6023 char **argv;
6024 int digits, wordlen;
6025 int sigfirst, signum, siglast;
6026 enum target_signal oursig;
6027 int allsigs;
6028 int nsigs;
6029 unsigned char *sigs;
6030 struct cleanup *old_chain;
6031
6032 if (args == NULL)
6033 {
e2e0b3e5 6034 error_no_arg (_("signal to handle"));
c906108c
SS
6035 }
6036
1777feb0 6037 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6038
6039 nsigs = (int) TARGET_SIGNAL_LAST;
6040 sigs = (unsigned char *) alloca (nsigs);
6041 memset (sigs, 0, nsigs);
6042
1777feb0 6043 /* Break the command line up into args. */
c906108c 6044
d1a41061 6045 argv = gdb_buildargv (args);
7a292a7a 6046 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6047
6048 /* Walk through the args, looking for signal oursigs, signal names, and
6049 actions. Signal numbers and signal names may be interspersed with
6050 actions, with the actions being performed for all signals cumulatively
1777feb0 6051 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6052
6053 while (*argv != NULL)
6054 {
6055 wordlen = strlen (*argv);
6056 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6057 {;
6058 }
6059 allsigs = 0;
6060 sigfirst = siglast = -1;
6061
6062 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6063 {
6064 /* Apply action to all signals except those used by the
1777feb0 6065 debugger. Silently skip those. */
c906108c
SS
6066 allsigs = 1;
6067 sigfirst = 0;
6068 siglast = nsigs - 1;
6069 }
6070 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6071 {
6072 SET_SIGS (nsigs, sigs, signal_stop);
6073 SET_SIGS (nsigs, sigs, signal_print);
6074 }
6075 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6076 {
6077 UNSET_SIGS (nsigs, sigs, signal_program);
6078 }
6079 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6080 {
6081 SET_SIGS (nsigs, sigs, signal_print);
6082 }
6083 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6084 {
6085 SET_SIGS (nsigs, sigs, signal_program);
6086 }
6087 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6088 {
6089 UNSET_SIGS (nsigs, sigs, signal_stop);
6090 }
6091 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6092 {
6093 SET_SIGS (nsigs, sigs, signal_program);
6094 }
6095 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6096 {
6097 UNSET_SIGS (nsigs, sigs, signal_print);
6098 UNSET_SIGS (nsigs, sigs, signal_stop);
6099 }
6100 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6101 {
6102 UNSET_SIGS (nsigs, sigs, signal_program);
6103 }
6104 else if (digits > 0)
6105 {
6106 /* It is numeric. The numeric signal refers to our own
6107 internal signal numbering from target.h, not to host/target
6108 signal number. This is a feature; users really should be
6109 using symbolic names anyway, and the common ones like
6110 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6111
6112 sigfirst = siglast = (int)
6113 target_signal_from_command (atoi (*argv));
6114 if ((*argv)[digits] == '-')
6115 {
6116 siglast = (int)
6117 target_signal_from_command (atoi ((*argv) + digits + 1));
6118 }
6119 if (sigfirst > siglast)
6120 {
1777feb0 6121 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6122 signum = sigfirst;
6123 sigfirst = siglast;
6124 siglast = signum;
6125 }
6126 }
6127 else
6128 {
6129 oursig = target_signal_from_name (*argv);
6130 if (oursig != TARGET_SIGNAL_UNKNOWN)
6131 {
6132 sigfirst = siglast = (int) oursig;
6133 }
6134 else
6135 {
6136 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6137 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6138 }
6139 }
6140
6141 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6142 which signals to apply actions to. */
c906108c
SS
6143
6144 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6145 {
6146 switch ((enum target_signal) signum)
6147 {
6148 case TARGET_SIGNAL_TRAP:
6149 case TARGET_SIGNAL_INT:
6150 if (!allsigs && !sigs[signum])
6151 {
9e2f0ad4 6152 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6153Are you sure you want to change it? "),
6154 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6155 {
6156 sigs[signum] = 1;
6157 }
6158 else
6159 {
a3f17187 6160 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6161 gdb_flush (gdb_stdout);
6162 }
6163 }
6164 break;
6165 case TARGET_SIGNAL_0:
6166 case TARGET_SIGNAL_DEFAULT:
6167 case TARGET_SIGNAL_UNKNOWN:
6168 /* Make sure that "all" doesn't print these. */
6169 break;
6170 default:
6171 sigs[signum] = 1;
6172 break;
6173 }
6174 }
6175
6176 argv++;
6177 }
6178
3a031f65
PA
6179 for (signum = 0; signum < nsigs; signum++)
6180 if (sigs[signum])
6181 {
2455069d
UW
6182 signal_cache_update (-1);
6183 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6184
3a031f65
PA
6185 if (from_tty)
6186 {
6187 /* Show the results. */
6188 sig_print_header ();
6189 for (; signum < nsigs; signum++)
6190 if (sigs[signum])
6191 sig_print_info (signum);
6192 }
6193
6194 break;
6195 }
c906108c
SS
6196
6197 do_cleanups (old_chain);
6198}
6199
6200static void
96baa820 6201xdb_handle_command (char *args, int from_tty)
c906108c
SS
6202{
6203 char **argv;
6204 struct cleanup *old_chain;
6205
d1a41061
PP
6206 if (args == NULL)
6207 error_no_arg (_("xdb command"));
6208
1777feb0 6209 /* Break the command line up into args. */
c906108c 6210
d1a41061 6211 argv = gdb_buildargv (args);
7a292a7a 6212 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6213 if (argv[1] != (char *) NULL)
6214 {
6215 char *argBuf;
6216 int bufLen;
6217
6218 bufLen = strlen (argv[0]) + 20;
6219 argBuf = (char *) xmalloc (bufLen);
6220 if (argBuf)
6221 {
6222 int validFlag = 1;
6223 enum target_signal oursig;
6224
6225 oursig = target_signal_from_name (argv[0]);
6226 memset (argBuf, 0, bufLen);
6227 if (strcmp (argv[1], "Q") == 0)
6228 sprintf (argBuf, "%s %s", argv[0], "noprint");
6229 else
6230 {
6231 if (strcmp (argv[1], "s") == 0)
6232 {
6233 if (!signal_stop[oursig])
6234 sprintf (argBuf, "%s %s", argv[0], "stop");
6235 else
6236 sprintf (argBuf, "%s %s", argv[0], "nostop");
6237 }
6238 else if (strcmp (argv[1], "i") == 0)
6239 {
6240 if (!signal_program[oursig])
6241 sprintf (argBuf, "%s %s", argv[0], "pass");
6242 else
6243 sprintf (argBuf, "%s %s", argv[0], "nopass");
6244 }
6245 else if (strcmp (argv[1], "r") == 0)
6246 {
6247 if (!signal_print[oursig])
6248 sprintf (argBuf, "%s %s", argv[0], "print");
6249 else
6250 sprintf (argBuf, "%s %s", argv[0], "noprint");
6251 }
6252 else
6253 validFlag = 0;
6254 }
6255 if (validFlag)
6256 handle_command (argBuf, from_tty);
6257 else
a3f17187 6258 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6259 if (argBuf)
b8c9b27d 6260 xfree (argBuf);
c906108c
SS
6261 }
6262 }
6263 do_cleanups (old_chain);
6264}
6265
6266/* Print current contents of the tables set by the handle command.
6267 It is possible we should just be printing signals actually used
6268 by the current target (but for things to work right when switching
6269 targets, all signals should be in the signal tables). */
6270
6271static void
96baa820 6272signals_info (char *signum_exp, int from_tty)
c906108c
SS
6273{
6274 enum target_signal oursig;
abbb1732 6275
c906108c
SS
6276 sig_print_header ();
6277
6278 if (signum_exp)
6279 {
6280 /* First see if this is a symbol name. */
6281 oursig = target_signal_from_name (signum_exp);
6282 if (oursig == TARGET_SIGNAL_UNKNOWN)
6283 {
6284 /* No, try numeric. */
6285 oursig =
bb518678 6286 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6287 }
6288 sig_print_info (oursig);
6289 return;
6290 }
6291
6292 printf_filtered ("\n");
6293 /* These ugly casts brought to you by the native VAX compiler. */
6294 for (oursig = TARGET_SIGNAL_FIRST;
6295 (int) oursig < (int) TARGET_SIGNAL_LAST;
6296 oursig = (enum target_signal) ((int) oursig + 1))
6297 {
6298 QUIT;
6299
6300 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6301 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6302 sig_print_info (oursig);
6303 }
6304
3e43a32a
MS
6305 printf_filtered (_("\nUse the \"handle\" command "
6306 "to change these tables.\n"));
c906108c 6307}
4aa995e1
PA
6308
6309/* The $_siginfo convenience variable is a bit special. We don't know
6310 for sure the type of the value until we actually have a chance to
7a9dd1b2 6311 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6312 also dependent on which thread you have selected.
6313
6314 1. making $_siginfo be an internalvar that creates a new value on
6315 access.
6316
6317 2. making the value of $_siginfo be an lval_computed value. */
6318
6319/* This function implements the lval_computed support for reading a
6320 $_siginfo value. */
6321
6322static void
6323siginfo_value_read (struct value *v)
6324{
6325 LONGEST transferred;
6326
6327 transferred =
6328 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6329 NULL,
6330 value_contents_all_raw (v),
6331 value_offset (v),
6332 TYPE_LENGTH (value_type (v)));
6333
6334 if (transferred != TYPE_LENGTH (value_type (v)))
6335 error (_("Unable to read siginfo"));
6336}
6337
6338/* This function implements the lval_computed support for writing a
6339 $_siginfo value. */
6340
6341static void
6342siginfo_value_write (struct value *v, struct value *fromval)
6343{
6344 LONGEST transferred;
6345
6346 transferred = target_write (&current_target,
6347 TARGET_OBJECT_SIGNAL_INFO,
6348 NULL,
6349 value_contents_all_raw (fromval),
6350 value_offset (v),
6351 TYPE_LENGTH (value_type (fromval)));
6352
6353 if (transferred != TYPE_LENGTH (value_type (fromval)))
6354 error (_("Unable to write siginfo"));
6355}
6356
6357static struct lval_funcs siginfo_value_funcs =
6358 {
6359 siginfo_value_read,
6360 siginfo_value_write
6361 };
6362
6363/* Return a new value with the correct type for the siginfo object of
78267919
UW
6364 the current thread using architecture GDBARCH. Return a void value
6365 if there's no object available. */
4aa995e1 6366
2c0b251b 6367static struct value *
78267919 6368siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6369{
4aa995e1 6370 if (target_has_stack
78267919
UW
6371 && !ptid_equal (inferior_ptid, null_ptid)
6372 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6373 {
78267919 6374 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6375
78267919 6376 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6377 }
6378
78267919 6379 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6380}
6381
c906108c 6382\f
16c381f0
JK
6383/* infcall_suspend_state contains state about the program itself like its
6384 registers and any signal it received when it last stopped.
6385 This state must be restored regardless of how the inferior function call
6386 ends (either successfully, or after it hits a breakpoint or signal)
6387 if the program is to properly continue where it left off. */
6388
6389struct infcall_suspend_state
7a292a7a 6390{
16c381f0
JK
6391 struct thread_suspend_state thread_suspend;
6392 struct inferior_suspend_state inferior_suspend;
6393
6394 /* Other fields: */
7a292a7a 6395 CORE_ADDR stop_pc;
b89667eb 6396 struct regcache *registers;
1736ad11 6397
35515841 6398 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6399 struct gdbarch *siginfo_gdbarch;
6400
6401 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6402 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6403 content would be invalid. */
6404 gdb_byte *siginfo_data;
b89667eb
DE
6405};
6406
16c381f0
JK
6407struct infcall_suspend_state *
6408save_infcall_suspend_state (void)
b89667eb 6409{
16c381f0 6410 struct infcall_suspend_state *inf_state;
b89667eb 6411 struct thread_info *tp = inferior_thread ();
16c381f0 6412 struct inferior *inf = current_inferior ();
1736ad11
JK
6413 struct regcache *regcache = get_current_regcache ();
6414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6415 gdb_byte *siginfo_data = NULL;
6416
6417 if (gdbarch_get_siginfo_type_p (gdbarch))
6418 {
6419 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6420 size_t len = TYPE_LENGTH (type);
6421 struct cleanup *back_to;
6422
6423 siginfo_data = xmalloc (len);
6424 back_to = make_cleanup (xfree, siginfo_data);
6425
6426 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6427 siginfo_data, 0, len) == len)
6428 discard_cleanups (back_to);
6429 else
6430 {
6431 /* Errors ignored. */
6432 do_cleanups (back_to);
6433 siginfo_data = NULL;
6434 }
6435 }
6436
16c381f0 6437 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6438
6439 if (siginfo_data)
6440 {
6441 inf_state->siginfo_gdbarch = gdbarch;
6442 inf_state->siginfo_data = siginfo_data;
6443 }
b89667eb 6444
16c381f0
JK
6445 inf_state->thread_suspend = tp->suspend;
6446 inf_state->inferior_suspend = inf->suspend;
6447
35515841
JK
6448 /* run_inferior_call will not use the signal due to its `proceed' call with
6449 TARGET_SIGNAL_0 anyway. */
16c381f0 6450 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6451
b89667eb
DE
6452 inf_state->stop_pc = stop_pc;
6453
1736ad11 6454 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6455
6456 return inf_state;
6457}
6458
6459/* Restore inferior session state to INF_STATE. */
6460
6461void
16c381f0 6462restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6463{
6464 struct thread_info *tp = inferior_thread ();
16c381f0 6465 struct inferior *inf = current_inferior ();
1736ad11
JK
6466 struct regcache *regcache = get_current_regcache ();
6467 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6468
16c381f0
JK
6469 tp->suspend = inf_state->thread_suspend;
6470 inf->suspend = inf_state->inferior_suspend;
6471
b89667eb
DE
6472 stop_pc = inf_state->stop_pc;
6473
1736ad11
JK
6474 if (inf_state->siginfo_gdbarch == gdbarch)
6475 {
6476 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6477 size_t len = TYPE_LENGTH (type);
6478
6479 /* Errors ignored. */
6480 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6481 inf_state->siginfo_data, 0, len);
6482 }
6483
b89667eb
DE
6484 /* The inferior can be gone if the user types "print exit(0)"
6485 (and perhaps other times). */
6486 if (target_has_execution)
6487 /* NB: The register write goes through to the target. */
1736ad11 6488 regcache_cpy (regcache, inf_state->registers);
803b5f95 6489
16c381f0 6490 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6491}
6492
6493static void
16c381f0 6494do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6495{
16c381f0 6496 restore_infcall_suspend_state (state);
b89667eb
DE
6497}
6498
6499struct cleanup *
16c381f0
JK
6500make_cleanup_restore_infcall_suspend_state
6501 (struct infcall_suspend_state *inf_state)
b89667eb 6502{
16c381f0 6503 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6504}
6505
6506void
16c381f0 6507discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6508{
6509 regcache_xfree (inf_state->registers);
803b5f95 6510 xfree (inf_state->siginfo_data);
b89667eb
DE
6511 xfree (inf_state);
6512}
6513
6514struct regcache *
16c381f0 6515get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6516{
6517 return inf_state->registers;
6518}
6519
16c381f0
JK
6520/* infcall_control_state contains state regarding gdb's control of the
6521 inferior itself like stepping control. It also contains session state like
6522 the user's currently selected frame. */
b89667eb 6523
16c381f0 6524struct infcall_control_state
b89667eb 6525{
16c381f0
JK
6526 struct thread_control_state thread_control;
6527 struct inferior_control_state inferior_control;
d82142e2
JK
6528
6529 /* Other fields: */
6530 enum stop_stack_kind stop_stack_dummy;
6531 int stopped_by_random_signal;
7a292a7a 6532 int stop_after_trap;
7a292a7a 6533
b89667eb 6534 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6535 struct frame_id selected_frame_id;
7a292a7a
SS
6536};
6537
c906108c 6538/* Save all of the information associated with the inferior<==>gdb
b89667eb 6539 connection. */
c906108c 6540
16c381f0
JK
6541struct infcall_control_state *
6542save_infcall_control_state (void)
c906108c 6543{
16c381f0 6544 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6545 struct thread_info *tp = inferior_thread ();
d6b48e9c 6546 struct inferior *inf = current_inferior ();
7a292a7a 6547
16c381f0
JK
6548 inf_status->thread_control = tp->control;
6549 inf_status->inferior_control = inf->control;
d82142e2 6550
8358c15c 6551 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6552 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6553
16c381f0
JK
6554 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6555 chain. If caller's caller is walking the chain, they'll be happier if we
6556 hand them back the original chain when restore_infcall_control_state is
6557 called. */
6558 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6559
6560 /* Other fields: */
6561 inf_status->stop_stack_dummy = stop_stack_dummy;
6562 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6563 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6564
206415a3 6565 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6566
7a292a7a 6567 return inf_status;
c906108c
SS
6568}
6569
c906108c 6570static int
96baa820 6571restore_selected_frame (void *args)
c906108c 6572{
488f131b 6573 struct frame_id *fid = (struct frame_id *) args;
c906108c 6574 struct frame_info *frame;
c906108c 6575
101dcfbe 6576 frame = frame_find_by_id (*fid);
c906108c 6577
aa0cd9c1
AC
6578 /* If inf_status->selected_frame_id is NULL, there was no previously
6579 selected frame. */
101dcfbe 6580 if (frame == NULL)
c906108c 6581 {
8a3fe4f8 6582 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6583 return 0;
6584 }
6585
0f7d239c 6586 select_frame (frame);
c906108c
SS
6587
6588 return (1);
6589}
6590
b89667eb
DE
6591/* Restore inferior session state to INF_STATUS. */
6592
c906108c 6593void
16c381f0 6594restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6595{
4e1c45ea 6596 struct thread_info *tp = inferior_thread ();
d6b48e9c 6597 struct inferior *inf = current_inferior ();
4e1c45ea 6598
8358c15c
JK
6599 if (tp->control.step_resume_breakpoint)
6600 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6601
5b79abe7
TT
6602 if (tp->control.exception_resume_breakpoint)
6603 tp->control.exception_resume_breakpoint->disposition
6604 = disp_del_at_next_stop;
6605
d82142e2 6606 /* Handle the bpstat_copy of the chain. */
16c381f0 6607 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6608
16c381f0
JK
6609 tp->control = inf_status->thread_control;
6610 inf->control = inf_status->inferior_control;
d82142e2
JK
6611
6612 /* Other fields: */
6613 stop_stack_dummy = inf_status->stop_stack_dummy;
6614 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6615 stop_after_trap = inf_status->stop_after_trap;
c906108c 6616
b89667eb 6617 if (target_has_stack)
c906108c 6618 {
c906108c 6619 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6620 walking the stack might encounter a garbage pointer and
6621 error() trying to dereference it. */
488f131b
JB
6622 if (catch_errors
6623 (restore_selected_frame, &inf_status->selected_frame_id,
6624 "Unable to restore previously selected frame:\n",
6625 RETURN_MASK_ERROR) == 0)
c906108c
SS
6626 /* Error in restoring the selected frame. Select the innermost
6627 frame. */
0f7d239c 6628 select_frame (get_current_frame ());
c906108c 6629 }
c906108c 6630
72cec141 6631 xfree (inf_status);
7a292a7a 6632}
c906108c 6633
74b7792f 6634static void
16c381f0 6635do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6636{
16c381f0 6637 restore_infcall_control_state (sts);
74b7792f
AC
6638}
6639
6640struct cleanup *
16c381f0
JK
6641make_cleanup_restore_infcall_control_state
6642 (struct infcall_control_state *inf_status)
74b7792f 6643{
16c381f0 6644 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6645}
6646
c906108c 6647void
16c381f0 6648discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6649{
8358c15c
JK
6650 if (inf_status->thread_control.step_resume_breakpoint)
6651 inf_status->thread_control.step_resume_breakpoint->disposition
6652 = disp_del_at_next_stop;
6653
5b79abe7
TT
6654 if (inf_status->thread_control.exception_resume_breakpoint)
6655 inf_status->thread_control.exception_resume_breakpoint->disposition
6656 = disp_del_at_next_stop;
6657
1777feb0 6658 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6659 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6660
72cec141 6661 xfree (inf_status);
7a292a7a 6662}
b89667eb 6663\f
47932f85 6664int
3a3e9ee3 6665inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6666{
6667 struct target_waitstatus last;
6668 ptid_t last_ptid;
6669
6670 get_last_target_status (&last_ptid, &last);
6671
6672 if (last.kind != TARGET_WAITKIND_FORKED)
6673 return 0;
6674
3a3e9ee3 6675 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6676 return 0;
6677
6678 *child_pid = last.value.related_pid;
6679 return 1;
6680}
6681
6682int
3a3e9ee3 6683inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6684{
6685 struct target_waitstatus last;
6686 ptid_t last_ptid;
6687
6688 get_last_target_status (&last_ptid, &last);
6689
6690 if (last.kind != TARGET_WAITKIND_VFORKED)
6691 return 0;
6692
3a3e9ee3 6693 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6694 return 0;
6695
6696 *child_pid = last.value.related_pid;
6697 return 1;
6698}
6699
6700int
3a3e9ee3 6701inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6702{
6703 struct target_waitstatus last;
6704 ptid_t last_ptid;
6705
6706 get_last_target_status (&last_ptid, &last);
6707
6708 if (last.kind != TARGET_WAITKIND_EXECD)
6709 return 0;
6710
3a3e9ee3 6711 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6712 return 0;
6713
6714 *execd_pathname = xstrdup (last.value.execd_pathname);
6715 return 1;
6716}
6717
a96d9b2e
SDJ
6718int
6719inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6720{
6721 struct target_waitstatus last;
6722 ptid_t last_ptid;
6723
6724 get_last_target_status (&last_ptid, &last);
6725
6726 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6727 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6728 return 0;
6729
6730 if (!ptid_equal (last_ptid, pid))
6731 return 0;
6732
6733 *syscall_number = last.value.syscall_number;
6734 return 1;
6735}
6736
ca6724c1
KB
6737/* Oft used ptids */
6738ptid_t null_ptid;
6739ptid_t minus_one_ptid;
6740
6741/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6742
ca6724c1
KB
6743ptid_t
6744ptid_build (int pid, long lwp, long tid)
6745{
6746 ptid_t ptid;
6747
6748 ptid.pid = pid;
6749 ptid.lwp = lwp;
6750 ptid.tid = tid;
6751 return ptid;
6752}
6753
6754/* Create a ptid from just a pid. */
6755
6756ptid_t
6757pid_to_ptid (int pid)
6758{
6759 return ptid_build (pid, 0, 0);
6760}
6761
6762/* Fetch the pid (process id) component from a ptid. */
6763
6764int
6765ptid_get_pid (ptid_t ptid)
6766{
6767 return ptid.pid;
6768}
6769
6770/* Fetch the lwp (lightweight process) component from a ptid. */
6771
6772long
6773ptid_get_lwp (ptid_t ptid)
6774{
6775 return ptid.lwp;
6776}
6777
6778/* Fetch the tid (thread id) component from a ptid. */
6779
6780long
6781ptid_get_tid (ptid_t ptid)
6782{
6783 return ptid.tid;
6784}
6785
6786/* ptid_equal() is used to test equality of two ptids. */
6787
6788int
6789ptid_equal (ptid_t ptid1, ptid_t ptid2)
6790{
6791 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6792 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6793}
6794
252fbfc8
PA
6795/* Returns true if PTID represents a process. */
6796
6797int
6798ptid_is_pid (ptid_t ptid)
6799{
6800 if (ptid_equal (minus_one_ptid, ptid))
6801 return 0;
6802 if (ptid_equal (null_ptid, ptid))
6803 return 0;
6804
6805 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6806}
6807
0723dbf5
PA
6808int
6809ptid_match (ptid_t ptid, ptid_t filter)
6810{
0723dbf5
PA
6811 if (ptid_equal (filter, minus_one_ptid))
6812 return 1;
6813 if (ptid_is_pid (filter)
6814 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6815 return 1;
6816 else if (ptid_equal (ptid, filter))
6817 return 1;
6818
6819 return 0;
6820}
6821
ca6724c1
KB
6822/* restore_inferior_ptid() will be used by the cleanup machinery
6823 to restore the inferior_ptid value saved in a call to
6824 save_inferior_ptid(). */
ce696e05
KB
6825
6826static void
6827restore_inferior_ptid (void *arg)
6828{
6829 ptid_t *saved_ptid_ptr = arg;
abbb1732 6830
ce696e05
KB
6831 inferior_ptid = *saved_ptid_ptr;
6832 xfree (arg);
6833}
6834
6835/* Save the value of inferior_ptid so that it may be restored by a
6836 later call to do_cleanups(). Returns the struct cleanup pointer
6837 needed for later doing the cleanup. */
6838
6839struct cleanup *
6840save_inferior_ptid (void)
6841{
6842 ptid_t *saved_ptid_ptr;
6843
6844 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6845 *saved_ptid_ptr = inferior_ptid;
6846 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6847}
c5aa993b 6848\f
488f131b 6849
b2175913
MS
6850/* User interface for reverse debugging:
6851 Set exec-direction / show exec-direction commands
6852 (returns error unless target implements to_set_exec_direction method). */
6853
6854enum exec_direction_kind execution_direction = EXEC_FORWARD;
6855static const char exec_forward[] = "forward";
6856static const char exec_reverse[] = "reverse";
6857static const char *exec_direction = exec_forward;
6858static const char *exec_direction_names[] = {
6859 exec_forward,
6860 exec_reverse,
6861 NULL
6862};
6863
6864static void
6865set_exec_direction_func (char *args, int from_tty,
6866 struct cmd_list_element *cmd)
6867{
6868 if (target_can_execute_reverse)
6869 {
6870 if (!strcmp (exec_direction, exec_forward))
6871 execution_direction = EXEC_FORWARD;
6872 else if (!strcmp (exec_direction, exec_reverse))
6873 execution_direction = EXEC_REVERSE;
6874 }
8bbed405
MS
6875 else
6876 {
6877 exec_direction = exec_forward;
6878 error (_("Target does not support this operation."));
6879 }
b2175913
MS
6880}
6881
6882static void
6883show_exec_direction_func (struct ui_file *out, int from_tty,
6884 struct cmd_list_element *cmd, const char *value)
6885{
6886 switch (execution_direction) {
6887 case EXEC_FORWARD:
6888 fprintf_filtered (out, _("Forward.\n"));
6889 break;
6890 case EXEC_REVERSE:
6891 fprintf_filtered (out, _("Reverse.\n"));
6892 break;
6893 case EXEC_ERROR:
6894 default:
3e43a32a
MS
6895 fprintf_filtered (out, _("Forward (target `%s' does not "
6896 "support exec-direction).\n"),
b2175913
MS
6897 target_shortname);
6898 break;
6899 }
6900}
6901
6902/* User interface for non-stop mode. */
6903
ad52ddc6 6904int non_stop = 0;
ad52ddc6
PA
6905
6906static void
6907set_non_stop (char *args, int from_tty,
6908 struct cmd_list_element *c)
6909{
6910 if (target_has_execution)
6911 {
6912 non_stop_1 = non_stop;
6913 error (_("Cannot change this setting while the inferior is running."));
6914 }
6915
6916 non_stop = non_stop_1;
6917}
6918
6919static void
6920show_non_stop (struct ui_file *file, int from_tty,
6921 struct cmd_list_element *c, const char *value)
6922{
6923 fprintf_filtered (file,
6924 _("Controlling the inferior in non-stop mode is %s.\n"),
6925 value);
6926}
6927
d4db2f36
PA
6928static void
6929show_schedule_multiple (struct ui_file *file, int from_tty,
6930 struct cmd_list_element *c, const char *value)
6931{
3e43a32a
MS
6932 fprintf_filtered (file, _("Resuming the execution of threads "
6933 "of all processes is %s.\n"), value);
d4db2f36 6934}
ad52ddc6 6935
c906108c 6936void
96baa820 6937_initialize_infrun (void)
c906108c 6938{
52f0bd74
AC
6939 int i;
6940 int numsigs;
c906108c 6941
1bedd215
AC
6942 add_info ("signals", signals_info, _("\
6943What debugger does when program gets various signals.\n\
6944Specify a signal as argument to print info on that signal only."));
c906108c
SS
6945 add_info_alias ("handle", "signals", 0);
6946
1bedd215
AC
6947 add_com ("handle", class_run, handle_command, _("\
6948Specify how to handle a signal.\n\
c906108c
SS
6949Args are signals and actions to apply to those signals.\n\
6950Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6951from 1-15 are allowed for compatibility with old versions of GDB.\n\
6952Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6953The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6954used by the debugger, typically SIGTRAP and SIGINT.\n\
6955Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6956\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6957Stop means reenter debugger if this signal happens (implies print).\n\
6958Print means print a message if this signal happens.\n\
6959Pass means let program see this signal; otherwise program doesn't know.\n\
6960Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6961Pass and Stop may be combined."));
c906108c
SS
6962 if (xdb_commands)
6963 {
1bedd215
AC
6964 add_com ("lz", class_info, signals_info, _("\
6965What debugger does when program gets various signals.\n\
6966Specify a signal as argument to print info on that signal only."));
6967 add_com ("z", class_run, xdb_handle_command, _("\
6968Specify how to handle a signal.\n\
c906108c
SS
6969Args are signals and actions to apply to those signals.\n\
6970Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6971from 1-15 are allowed for compatibility with old versions of GDB.\n\
6972Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6973The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6974used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6975Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6976\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6977nopass), \"Q\" (noprint)\n\
6978Stop means reenter debugger if this signal happens (implies print).\n\
6979Print means print a message if this signal happens.\n\
6980Pass means let program see this signal; otherwise program doesn't know.\n\
6981Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6982Pass and Stop may be combined."));
c906108c
SS
6983 }
6984
6985 if (!dbx_commands)
1a966eab
AC
6986 stop_command = add_cmd ("stop", class_obscure,
6987 not_just_help_class_command, _("\
6988There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6989This allows you to set a list of commands to be run each time execution\n\
1a966eab 6990of the program stops."), &cmdlist);
c906108c 6991
85c07804
AC
6992 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6993Set inferior debugging."), _("\
6994Show inferior debugging."), _("\
6995When non-zero, inferior specific debugging is enabled."),
6996 NULL,
920d2a44 6997 show_debug_infrun,
85c07804 6998 &setdebuglist, &showdebuglist);
527159b7 6999
3e43a32a
MS
7000 add_setshow_boolean_cmd ("displaced", class_maintenance,
7001 &debug_displaced, _("\
237fc4c9
PA
7002Set displaced stepping debugging."), _("\
7003Show displaced stepping debugging."), _("\
7004When non-zero, displaced stepping specific debugging is enabled."),
7005 NULL,
7006 show_debug_displaced,
7007 &setdebuglist, &showdebuglist);
7008
ad52ddc6
PA
7009 add_setshow_boolean_cmd ("non-stop", no_class,
7010 &non_stop_1, _("\
7011Set whether gdb controls the inferior in non-stop mode."), _("\
7012Show whether gdb controls the inferior in non-stop mode."), _("\
7013When debugging a multi-threaded program and this setting is\n\
7014off (the default, also called all-stop mode), when one thread stops\n\
7015(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7016all other threads in the program while you interact with the thread of\n\
7017interest. When you continue or step a thread, you can allow the other\n\
7018threads to run, or have them remain stopped, but while you inspect any\n\
7019thread's state, all threads stop.\n\
7020\n\
7021In non-stop mode, when one thread stops, other threads can continue\n\
7022to run freely. You'll be able to step each thread independently,\n\
7023leave it stopped or free to run as needed."),
7024 set_non_stop,
7025 show_non_stop,
7026 &setlist,
7027 &showlist);
7028
c906108c 7029 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7030 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7031 signal_print = (unsigned char *)
7032 xmalloc (sizeof (signal_print[0]) * numsigs);
7033 signal_program = (unsigned char *)
7034 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7035 signal_pass = (unsigned char *)
7036 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7037 for (i = 0; i < numsigs; i++)
7038 {
7039 signal_stop[i] = 1;
7040 signal_print[i] = 1;
7041 signal_program[i] = 1;
7042 }
7043
7044 /* Signals caused by debugger's own actions
7045 should not be given to the program afterwards. */
7046 signal_program[TARGET_SIGNAL_TRAP] = 0;
7047 signal_program[TARGET_SIGNAL_INT] = 0;
7048
7049 /* Signals that are not errors should not normally enter the debugger. */
7050 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7051 signal_print[TARGET_SIGNAL_ALRM] = 0;
7052 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7053 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7054 signal_stop[TARGET_SIGNAL_PROF] = 0;
7055 signal_print[TARGET_SIGNAL_PROF] = 0;
7056 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7057 signal_print[TARGET_SIGNAL_CHLD] = 0;
7058 signal_stop[TARGET_SIGNAL_IO] = 0;
7059 signal_print[TARGET_SIGNAL_IO] = 0;
7060 signal_stop[TARGET_SIGNAL_POLL] = 0;
7061 signal_print[TARGET_SIGNAL_POLL] = 0;
7062 signal_stop[TARGET_SIGNAL_URG] = 0;
7063 signal_print[TARGET_SIGNAL_URG] = 0;
7064 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7065 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7066 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7067 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7068
cd0fc7c3
SS
7069 /* These signals are used internally by user-level thread
7070 implementations. (See signal(5) on Solaris.) Like the above
7071 signals, a healthy program receives and handles them as part of
7072 its normal operation. */
7073 signal_stop[TARGET_SIGNAL_LWP] = 0;
7074 signal_print[TARGET_SIGNAL_LWP] = 0;
7075 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7076 signal_print[TARGET_SIGNAL_WAITING] = 0;
7077 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7078 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7079
2455069d
UW
7080 /* Update cached state. */
7081 signal_cache_update (-1);
7082
85c07804
AC
7083 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7084 &stop_on_solib_events, _("\
7085Set stopping for shared library events."), _("\
7086Show stopping for shared library events."), _("\
c906108c
SS
7087If nonzero, gdb will give control to the user when the dynamic linker\n\
7088notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7089to the user would be loading/unloading of a new library."),
7090 NULL,
920d2a44 7091 show_stop_on_solib_events,
85c07804 7092 &setlist, &showlist);
c906108c 7093
7ab04401
AC
7094 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7095 follow_fork_mode_kind_names,
7096 &follow_fork_mode_string, _("\
7097Set debugger response to a program call of fork or vfork."), _("\
7098Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7099A fork or vfork creates a new process. follow-fork-mode can be:\n\
7100 parent - the original process is debugged after a fork\n\
7101 child - the new process is debugged after a fork\n\
ea1dd7bc 7102The unfollowed process will continue to run.\n\
7ab04401
AC
7103By default, the debugger will follow the parent process."),
7104 NULL,
920d2a44 7105 show_follow_fork_mode_string,
7ab04401
AC
7106 &setlist, &showlist);
7107
6c95b8df
PA
7108 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7109 follow_exec_mode_names,
7110 &follow_exec_mode_string, _("\
7111Set debugger response to a program call of exec."), _("\
7112Show debugger response to a program call of exec."), _("\
7113An exec call replaces the program image of a process.\n\
7114\n\
7115follow-exec-mode can be:\n\
7116\n\
cce7e648 7117 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7118to this new inferior. The program the process was running before\n\
7119the exec call can be restarted afterwards by restarting the original\n\
7120inferior.\n\
7121\n\
7122 same - the debugger keeps the process bound to the same inferior.\n\
7123The new executable image replaces the previous executable loaded in\n\
7124the inferior. Restarting the inferior after the exec call restarts\n\
7125the executable the process was running after the exec call.\n\
7126\n\
7127By default, the debugger will use the same inferior."),
7128 NULL,
7129 show_follow_exec_mode_string,
7130 &setlist, &showlist);
7131
7ab04401
AC
7132 add_setshow_enum_cmd ("scheduler-locking", class_run,
7133 scheduler_enums, &scheduler_mode, _("\
7134Set mode for locking scheduler during execution."), _("\
7135Show mode for locking scheduler during execution."), _("\
c906108c
SS
7136off == no locking (threads may preempt at any time)\n\
7137on == full locking (no thread except the current thread may run)\n\
7138step == scheduler locked during every single-step operation.\n\
7139 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7140 Other threads may run while stepping over a function call ('next')."),
7141 set_schedlock_func, /* traps on target vector */
920d2a44 7142 show_scheduler_mode,
7ab04401 7143 &setlist, &showlist);
5fbbeb29 7144
d4db2f36
PA
7145 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7146Set mode for resuming threads of all processes."), _("\
7147Show mode for resuming threads of all processes."), _("\
7148When on, execution commands (such as 'continue' or 'next') resume all\n\
7149threads of all processes. When off (which is the default), execution\n\
7150commands only resume the threads of the current process. The set of\n\
7151threads that are resumed is further refined by the scheduler-locking\n\
7152mode (see help set scheduler-locking)."),
7153 NULL,
7154 show_schedule_multiple,
7155 &setlist, &showlist);
7156
5bf193a2
AC
7157 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7158Set mode of the step operation."), _("\
7159Show mode of the step operation."), _("\
7160When set, doing a step over a function without debug line information\n\
7161will stop at the first instruction of that function. Otherwise, the\n\
7162function is skipped and the step command stops at a different source line."),
7163 NULL,
920d2a44 7164 show_step_stop_if_no_debug,
5bf193a2 7165 &setlist, &showlist);
ca6724c1 7166
fff08868
HZ
7167 add_setshow_enum_cmd ("displaced-stepping", class_run,
7168 can_use_displaced_stepping_enum,
7169 &can_use_displaced_stepping, _("\
237fc4c9
PA
7170Set debugger's willingness to use displaced stepping."), _("\
7171Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7172If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7173supported by the target architecture. If off, gdb will not use displaced\n\
7174stepping to step over breakpoints, even if such is supported by the target\n\
7175architecture. If auto (which is the default), gdb will use displaced stepping\n\
7176if the target architecture supports it and non-stop mode is active, but will not\n\
7177use it in all-stop mode (see help set non-stop)."),
7178 NULL,
7179 show_can_use_displaced_stepping,
7180 &setlist, &showlist);
237fc4c9 7181
b2175913
MS
7182 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7183 &exec_direction, _("Set direction of execution.\n\
7184Options are 'forward' or 'reverse'."),
7185 _("Show direction of execution (forward/reverse)."),
7186 _("Tells gdb whether to execute forward or backward."),
7187 set_exec_direction_func, show_exec_direction_func,
7188 &setlist, &showlist);
7189
6c95b8df
PA
7190 /* Set/show detach-on-fork: user-settable mode. */
7191
7192 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7193Set whether gdb will detach the child of a fork."), _("\
7194Show whether gdb will detach the child of a fork."), _("\
7195Tells gdb whether to detach the child of a fork."),
7196 NULL, NULL, &setlist, &showlist);
7197
ca6724c1
KB
7198 /* ptid initializations */
7199 null_ptid = ptid_build (0, 0, 0);
7200 minus_one_ptid = ptid_build (-1, 0, 0);
7201 inferior_ptid = null_ptid;
7202 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7203
7204 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7205 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7206 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7207 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7208
7209 /* Explicitly create without lookup, since that tries to create a
7210 value with a void typed value, and when we get here, gdbarch
7211 isn't initialized yet. At this point, we're quite sure there
7212 isn't another convenience variable of the same name. */
7213 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7214
7215 add_setshow_boolean_cmd ("observer", no_class,
7216 &observer_mode_1, _("\
7217Set whether gdb controls the inferior in observer mode."), _("\
7218Show whether gdb controls the inferior in observer mode."), _("\
7219In observer mode, GDB can get data from the inferior, but not\n\
7220affect its execution. Registers and memory may not be changed,\n\
7221breakpoints may not be set, and the program cannot be interrupted\n\
7222or signalled."),
7223 set_observer_mode,
7224 show_observer_mode,
7225 &setlist,
7226 &showlist);
c906108c 7227}
This page took 3.270826 seconds and 4 git commands to generate.