]>
Commit | Line | Data |
---|---|---|
8afe83be KR |
1 | /* ELF linker support. |
2 | Copyright 1995 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
943fbd5b | 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
452a5efb | 19 | |
ede4eed4 KR |
20 | /* ELF linker code. */ |
21 | ||
22 | static boolean elf_link_add_object_symbols | |
23 | PARAMS ((bfd *, struct bfd_link_info *)); | |
24 | static boolean elf_link_add_archive_symbols | |
25 | PARAMS ((bfd *, struct bfd_link_info *)); | |
26 | static Elf_Internal_Rela *elf_link_read_relocs | |
27 | PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean)); | |
28 | static boolean elf_export_symbol | |
29 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
30 | static boolean elf_adjust_dynamic_symbol | |
31 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
32 | ||
33 | /* This struct is used to pass information to routines called via | |
34 | elf_link_hash_traverse which must return failure. */ | |
35 | ||
36 | struct elf_info_failed | |
37 | { | |
38 | boolean failed; | |
39 | struct bfd_link_info *info; | |
40 | }; | |
41 | ||
42 | /* Given an ELF BFD, add symbols to the global hash table as | |
43 | appropriate. */ | |
44 | ||
45 | boolean | |
46 | elf_bfd_link_add_symbols (abfd, info) | |
47 | bfd *abfd; | |
48 | struct bfd_link_info *info; | |
49 | { | |
ede4eed4 KR |
50 | switch (bfd_get_format (abfd)) |
51 | { | |
52 | case bfd_object: | |
53 | return elf_link_add_object_symbols (abfd, info); | |
54 | case bfd_archive: | |
ede4eed4 KR |
55 | return elf_link_add_archive_symbols (abfd, info); |
56 | default: | |
57 | bfd_set_error (bfd_error_wrong_format); | |
58 | return false; | |
59 | } | |
60 | } | |
61 | ||
62 | /* Add symbols from an ELF archive file to the linker hash table. We | |
63 | don't use _bfd_generic_link_add_archive_symbols because of a | |
64 | problem which arises on UnixWare. The UnixWare libc.so is an | |
65 | archive which includes an entry libc.so.1 which defines a bunch of | |
66 | symbols. The libc.so archive also includes a number of other | |
67 | object files, which also define symbols, some of which are the same | |
68 | as those defined in libc.so.1. Correct linking requires that we | |
69 | consider each object file in turn, and include it if it defines any | |
70 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
71 | this; it looks through the list of undefined symbols, and includes | |
72 | any object file which defines them. When this algorithm is used on | |
73 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
74 | bunch of symbols. This means that some of the other objects in the | |
75 | archive are not included in the link, which is incorrect since they | |
76 | precede libc.so.1 in the archive. | |
77 | ||
78 | Fortunately, ELF archive handling is simpler than that done by | |
79 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
80 | oddities. In ELF, if we find a symbol in the archive map, and the | |
81 | symbol is currently undefined, we know that we must pull in that | |
82 | object file. | |
83 | ||
84 | Unfortunately, we do have to make multiple passes over the symbol | |
85 | table until nothing further is resolved. */ | |
86 | ||
87 | static boolean | |
88 | elf_link_add_archive_symbols (abfd, info) | |
89 | bfd *abfd; | |
90 | struct bfd_link_info *info; | |
91 | { | |
92 | symindex c; | |
93 | boolean *defined = NULL; | |
94 | boolean *included = NULL; | |
95 | carsym *symdefs; | |
96 | boolean loop; | |
97 | ||
98 | if (! bfd_has_map (abfd)) | |
99 | { | |
100 | /* An empty archive is a special case. */ | |
101 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
102 | return true; | |
103 | bfd_set_error (bfd_error_no_armap); | |
104 | return false; | |
105 | } | |
106 | ||
107 | /* Keep track of all symbols we know to be already defined, and all | |
108 | files we know to be already included. This is to speed up the | |
109 | second and subsequent passes. */ | |
110 | c = bfd_ardata (abfd)->symdef_count; | |
111 | if (c == 0) | |
112 | return true; | |
58142f10 ILT |
113 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); |
114 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
ede4eed4 | 115 | if (defined == (boolean *) NULL || included == (boolean *) NULL) |
58142f10 | 116 | goto error_return; |
ede4eed4 KR |
117 | memset (defined, 0, c * sizeof (boolean)); |
118 | memset (included, 0, c * sizeof (boolean)); | |
119 | ||
120 | symdefs = bfd_ardata (abfd)->symdefs; | |
121 | ||
122 | do | |
123 | { | |
124 | file_ptr last; | |
125 | symindex i; | |
126 | carsym *symdef; | |
127 | carsym *symdefend; | |
128 | ||
129 | loop = false; | |
130 | last = -1; | |
131 | ||
132 | symdef = symdefs; | |
133 | symdefend = symdef + c; | |
134 | for (i = 0; symdef < symdefend; symdef++, i++) | |
135 | { | |
136 | struct elf_link_hash_entry *h; | |
137 | bfd *element; | |
138 | struct bfd_link_hash_entry *undefs_tail; | |
139 | symindex mark; | |
140 | ||
141 | if (defined[i] || included[i]) | |
142 | continue; | |
143 | if (symdef->file_offset == last) | |
144 | { | |
145 | included[i] = true; | |
146 | continue; | |
147 | } | |
148 | ||
149 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
150 | false, false, false); | |
151 | if (h == (struct elf_link_hash_entry *) NULL) | |
152 | continue; | |
153 | if (h->root.type != bfd_link_hash_undefined) | |
154 | { | |
68807a39 ILT |
155 | if (h->root.type != bfd_link_hash_undefweak) |
156 | defined[i] = true; | |
ede4eed4 KR |
157 | continue; |
158 | } | |
159 | ||
160 | /* We need to include this archive member. */ | |
161 | ||
162 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
163 | if (element == (bfd *) NULL) | |
164 | goto error_return; | |
165 | ||
166 | if (! bfd_check_format (element, bfd_object)) | |
167 | goto error_return; | |
168 | ||
169 | /* Doublecheck that we have not included this object | |
170 | already--it should be impossible, but there may be | |
171 | something wrong with the archive. */ | |
172 | if (element->archive_pass != 0) | |
173 | { | |
174 | bfd_set_error (bfd_error_bad_value); | |
175 | goto error_return; | |
176 | } | |
177 | element->archive_pass = 1; | |
178 | ||
179 | undefs_tail = info->hash->undefs_tail; | |
180 | ||
181 | if (! (*info->callbacks->add_archive_element) (info, element, | |
182 | symdef->name)) | |
183 | goto error_return; | |
184 | if (! elf_link_add_object_symbols (element, info)) | |
185 | goto error_return; | |
186 | ||
187 | /* If there are any new undefined symbols, we need to make | |
188 | another pass through the archive in order to see whether | |
189 | they can be defined. FIXME: This isn't perfect, because | |
190 | common symbols wind up on undefs_tail and because an | |
191 | undefined symbol which is defined later on in this pass | |
192 | does not require another pass. This isn't a bug, but it | |
193 | does make the code less efficient than it could be. */ | |
194 | if (undefs_tail != info->hash->undefs_tail) | |
195 | loop = true; | |
196 | ||
197 | /* Look backward to mark all symbols from this object file | |
198 | which we have already seen in this pass. */ | |
199 | mark = i; | |
200 | do | |
201 | { | |
202 | included[mark] = true; | |
203 | if (mark == 0) | |
204 | break; | |
205 | --mark; | |
206 | } | |
207 | while (symdefs[mark].file_offset == symdef->file_offset); | |
208 | ||
209 | /* We mark subsequent symbols from this object file as we go | |
210 | on through the loop. */ | |
211 | last = symdef->file_offset; | |
212 | } | |
213 | } | |
214 | while (loop); | |
215 | ||
216 | free (defined); | |
217 | free (included); | |
218 | ||
219 | return true; | |
220 | ||
221 | error_return: | |
222 | if (defined != (boolean *) NULL) | |
223 | free (defined); | |
224 | if (included != (boolean *) NULL) | |
225 | free (included); | |
226 | return false; | |
227 | } | |
228 | ||
229 | /* Add symbols from an ELF object file to the linker hash table. */ | |
230 | ||
231 | static boolean | |
232 | elf_link_add_object_symbols (abfd, info) | |
233 | bfd *abfd; | |
234 | struct bfd_link_info *info; | |
235 | { | |
236 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
237 | const Elf_Internal_Sym *, | |
238 | const char **, flagword *, | |
239 | asection **, bfd_vma *)); | |
240 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
241 | asection *, const Elf_Internal_Rela *)); | |
242 | boolean collect; | |
243 | Elf_Internal_Shdr *hdr; | |
244 | size_t symcount; | |
245 | size_t extsymcount; | |
246 | size_t extsymoff; | |
247 | Elf_External_Sym *buf = NULL; | |
248 | struct elf_link_hash_entry **sym_hash; | |
249 | boolean dynamic; | |
250 | Elf_External_Dyn *dynbuf = NULL; | |
251 | struct elf_link_hash_entry *weaks; | |
252 | Elf_External_Sym *esym; | |
253 | Elf_External_Sym *esymend; | |
254 | ||
255 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
256 | collect = get_elf_backend_data (abfd)->collect; | |
257 | ||
0cb70568 ILT |
258 | /* As a GNU extension, any input sections which are named |
259 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
260 | symbol. This differs from .gnu.warning sections, which generate | |
261 | warnings when they are included in an output file. */ | |
262 | if (! info->shared) | |
263 | { | |
264 | asection *s; | |
265 | ||
266 | for (s = abfd->sections; s != NULL; s = s->next) | |
267 | { | |
268 | const char *name; | |
269 | ||
270 | name = bfd_get_section_name (abfd, s); | |
271 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
272 | { | |
273 | char *msg; | |
274 | bfd_size_type sz; | |
275 | ||
276 | sz = bfd_section_size (abfd, s); | |
277 | msg = (char *) bfd_alloc (abfd, sz); | |
278 | if (msg == NULL) | |
a9713b91 | 279 | goto error_return; |
0cb70568 ILT |
280 | |
281 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
282 | goto error_return; | |
283 | ||
284 | if (! (_bfd_generic_link_add_one_symbol | |
285 | (info, abfd, | |
286 | name + sizeof ".gnu.warning." - 1, | |
287 | BSF_WARNING, s, (bfd_vma) 0, msg, false, collect, | |
288 | (struct bfd_link_hash_entry **) NULL))) | |
289 | goto error_return; | |
290 | ||
291 | if (! info->relocateable) | |
292 | { | |
293 | /* Clobber the section size so that the warning does | |
294 | not get copied into the output file. */ | |
295 | s->_raw_size = 0; | |
296 | } | |
297 | } | |
298 | } | |
299 | } | |
300 | ||
ede4eed4 KR |
301 | /* A stripped shared library might only have a dynamic symbol table, |
302 | not a regular symbol table. In that case we can still go ahead | |
303 | and link using the dynamic symbol table. */ | |
304 | if (elf_onesymtab (abfd) == 0 | |
305 | && elf_dynsymtab (abfd) != 0) | |
306 | { | |
307 | elf_onesymtab (abfd) = elf_dynsymtab (abfd); | |
308 | elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr; | |
309 | } | |
310 | ||
311 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
312 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
313 | ||
314 | /* The sh_info field of the symtab header tells us where the | |
315 | external symbols start. We don't care about the local symbols at | |
316 | this point. */ | |
317 | if (elf_bad_symtab (abfd)) | |
318 | { | |
319 | extsymcount = symcount; | |
320 | extsymoff = 0; | |
321 | } | |
322 | else | |
323 | { | |
324 | extsymcount = symcount - hdr->sh_info; | |
325 | extsymoff = hdr->sh_info; | |
326 | } | |
327 | ||
58142f10 ILT |
328 | buf = ((Elf_External_Sym *) |
329 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
ede4eed4 | 330 | if (buf == NULL && extsymcount != 0) |
58142f10 | 331 | goto error_return; |
ede4eed4 KR |
332 | |
333 | /* We store a pointer to the hash table entry for each external | |
334 | symbol. */ | |
335 | sym_hash = ((struct elf_link_hash_entry **) | |
336 | bfd_alloc (abfd, | |
337 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
338 | if (sym_hash == NULL) | |
a9713b91 | 339 | goto error_return; |
ede4eed4 KR |
340 | elf_sym_hashes (abfd) = sym_hash; |
341 | ||
342 | if (elf_elfheader (abfd)->e_type != ET_DYN) | |
343 | { | |
344 | dynamic = false; | |
345 | ||
346 | /* If we are creating a shared library, create all the dynamic | |
347 | sections immediately. We need to attach them to something, | |
348 | so we attach them to this BFD, provided it is the right | |
349 | format. FIXME: If there are no input BFD's of the same | |
350 | format as the output, we can't make a shared library. */ | |
351 | if (info->shared | |
352 | && ! elf_hash_table (info)->dynamic_sections_created | |
353 | && abfd->xvec == info->hash->creator) | |
354 | { | |
355 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
356 | goto error_return; | |
357 | } | |
358 | } | |
359 | else | |
360 | { | |
361 | asection *s; | |
362 | boolean add_needed; | |
363 | const char *name; | |
364 | bfd_size_type oldsize; | |
365 | bfd_size_type strindex; | |
366 | ||
367 | dynamic = true; | |
368 | ||
369 | /* You can't use -r against a dynamic object. Also, there's no | |
370 | hope of using a dynamic object which does not exactly match | |
371 | the format of the output file. */ | |
372 | if (info->relocateable | |
373 | || info->hash->creator != abfd->xvec) | |
374 | { | |
375 | bfd_set_error (bfd_error_invalid_operation); | |
376 | goto error_return; | |
377 | } | |
378 | ||
379 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
380 | object. If the object has a DT_SONAME entry, we use it. | |
381 | Otherwise, if the generic linker stuck something in | |
382 | elf_dt_needed_name, we use that. Otherwise, we just use the | |
383 | file name. If the generic linker put a null string into | |
384 | elf_dt_needed_name, we don't make a DT_NEEDED entry at all, | |
385 | even if there is a DT_SONAME entry. */ | |
386 | add_needed = true; | |
387 | name = bfd_get_filename (abfd); | |
388 | if (elf_dt_needed_name (abfd) != NULL) | |
389 | { | |
390 | name = elf_dt_needed_name (abfd); | |
391 | if (*name == '\0') | |
392 | add_needed = false; | |
393 | } | |
394 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
395 | if (s != NULL) | |
396 | { | |
397 | Elf_External_Dyn *extdyn; | |
398 | Elf_External_Dyn *extdynend; | |
399 | int elfsec; | |
400 | unsigned long link; | |
401 | ||
58142f10 | 402 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); |
ede4eed4 | 403 | if (dynbuf == NULL) |
58142f10 | 404 | goto error_return; |
ede4eed4 KR |
405 | |
406 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
407 | (file_ptr) 0, s->_raw_size)) | |
408 | goto error_return; | |
409 | ||
410 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
411 | if (elfsec == -1) | |
412 | goto error_return; | |
413 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
414 | ||
415 | extdyn = dynbuf; | |
416 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
417 | for (; extdyn < extdynend; extdyn++) | |
418 | { | |
419 | Elf_Internal_Dyn dyn; | |
420 | ||
421 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
422 | if (add_needed && dyn.d_tag == DT_SONAME) | |
423 | { | |
424 | name = bfd_elf_string_from_elf_section (abfd, link, | |
425 | dyn.d_un.d_val); | |
426 | if (name == NULL) | |
427 | goto error_return; | |
428 | } | |
429 | if (dyn.d_tag == DT_NEEDED) | |
430 | { | |
54406786 | 431 | struct bfd_link_needed_list *n, **pn; |
ede4eed4 KR |
432 | char *fnm, *anm; |
433 | ||
54406786 ILT |
434 | n = ((struct bfd_link_needed_list *) |
435 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
ede4eed4 KR |
436 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
437 | dyn.d_un.d_val); | |
438 | if (n == NULL || fnm == NULL) | |
439 | goto error_return; | |
440 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
441 | if (anm == NULL) | |
442 | goto error_return; | |
443 | strcpy (anm, fnm); | |
444 | n->name = anm; | |
445 | n->by = abfd; | |
446 | n->next = NULL; | |
447 | for (pn = &elf_hash_table (info)->needed; | |
448 | *pn != NULL; | |
449 | pn = &(*pn)->next) | |
450 | ; | |
451 | *pn = n; | |
452 | } | |
453 | } | |
454 | ||
455 | free (dynbuf); | |
456 | dynbuf = NULL; | |
457 | } | |
458 | ||
459 | /* We do not want to include any of the sections in a dynamic | |
460 | object in the output file. We hack by simply clobbering the | |
461 | list of sections in the BFD. This could be handled more | |
462 | cleanly by, say, a new section flag; the existing | |
463 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
464 | still implies that the section takes up space in the output | |
465 | file. */ | |
466 | abfd->sections = NULL; | |
010d9f2d | 467 | abfd->section_count = 0; |
ede4eed4 KR |
468 | |
469 | /* If this is the first dynamic object found in the link, create | |
470 | the special sections required for dynamic linking. */ | |
471 | if (! elf_hash_table (info)->dynamic_sections_created) | |
472 | { | |
473 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
474 | goto error_return; | |
475 | } | |
476 | ||
477 | if (add_needed) | |
478 | { | |
479 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
480 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
481 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
482 | true, false); | |
483 | if (strindex == (bfd_size_type) -1) | |
484 | goto error_return; | |
485 | ||
486 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
487 | { | |
488 | asection *sdyn; | |
489 | Elf_External_Dyn *dyncon, *dynconend; | |
490 | ||
491 | /* The hash table size did not change, which means that | |
492 | the dynamic object name was already entered. If we | |
493 | have already included this dynamic object in the | |
494 | link, just ignore it. There is no reason to include | |
495 | a particular dynamic object more than once. */ | |
496 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
497 | ".dynamic"); | |
498 | BFD_ASSERT (sdyn != NULL); | |
499 | ||
500 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
501 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
502 | sdyn->_raw_size); | |
503 | for (; dyncon < dynconend; dyncon++) | |
504 | { | |
505 | Elf_Internal_Dyn dyn; | |
506 | ||
507 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
508 | &dyn); | |
509 | if (dyn.d_tag == DT_NEEDED | |
510 | && dyn.d_un.d_val == strindex) | |
511 | { | |
512 | if (buf != NULL) | |
513 | free (buf); | |
514 | return true; | |
515 | } | |
516 | } | |
517 | } | |
518 | ||
519 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
520 | goto error_return; | |
521 | } | |
522 | } | |
523 | ||
524 | if (bfd_seek (abfd, | |
525 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
526 | SEEK_SET) != 0 | |
527 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
528 | != extsymcount * sizeof (Elf_External_Sym))) | |
529 | goto error_return; | |
530 | ||
531 | weaks = NULL; | |
532 | ||
533 | esymend = buf + extsymcount; | |
534 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
535 | { | |
536 | Elf_Internal_Sym sym; | |
537 | int bind; | |
538 | bfd_vma value; | |
539 | asection *sec; | |
540 | flagword flags; | |
541 | const char *name; | |
0cb70568 | 542 | struct elf_link_hash_entry *h; |
ede4eed4 | 543 | boolean definition; |
ee9f09cd | 544 | boolean size_change_ok, type_change_ok; |
452a5efb | 545 | boolean new_weakdef; |
ede4eed4 KR |
546 | |
547 | elf_swap_symbol_in (abfd, esym, &sym); | |
548 | ||
549 | flags = BSF_NO_FLAGS; | |
550 | sec = NULL; | |
551 | value = sym.st_value; | |
552 | *sym_hash = NULL; | |
553 | ||
554 | bind = ELF_ST_BIND (sym.st_info); | |
555 | if (bind == STB_LOCAL) | |
556 | { | |
557 | /* This should be impossible, since ELF requires that all | |
558 | global symbols follow all local symbols, and that sh_info | |
559 | point to the first global symbol. Unfortunatealy, Irix 5 | |
560 | screws this up. */ | |
561 | continue; | |
562 | } | |
563 | else if (bind == STB_GLOBAL) | |
564 | { | |
565 | if (sym.st_shndx != SHN_UNDEF | |
566 | && sym.st_shndx != SHN_COMMON) | |
567 | flags = BSF_GLOBAL; | |
568 | else | |
569 | flags = 0; | |
570 | } | |
571 | else if (bind == STB_WEAK) | |
572 | flags = BSF_WEAK; | |
573 | else | |
574 | { | |
575 | /* Leave it up to the processor backend. */ | |
576 | } | |
577 | ||
578 | if (sym.st_shndx == SHN_UNDEF) | |
579 | sec = bfd_und_section_ptr; | |
580 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
581 | { | |
582 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
583 | if (sec != NULL) | |
584 | value -= sec->vma; | |
585 | else | |
586 | sec = bfd_abs_section_ptr; | |
587 | } | |
588 | else if (sym.st_shndx == SHN_ABS) | |
589 | sec = bfd_abs_section_ptr; | |
590 | else if (sym.st_shndx == SHN_COMMON) | |
591 | { | |
592 | sec = bfd_com_section_ptr; | |
593 | /* What ELF calls the size we call the value. What ELF | |
594 | calls the value we call the alignment. */ | |
595 | value = sym.st_size; | |
596 | } | |
597 | else | |
598 | { | |
599 | /* Leave it up to the processor backend. */ | |
600 | } | |
601 | ||
602 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
603 | if (name == (const char *) NULL) | |
604 | goto error_return; | |
605 | ||
606 | if (add_symbol_hook) | |
607 | { | |
608 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
609 | &value)) | |
610 | goto error_return; | |
611 | ||
612 | /* The hook function sets the name to NULL if this symbol | |
613 | should be skipped for some reason. */ | |
614 | if (name == (const char *) NULL) | |
615 | continue; | |
616 | } | |
617 | ||
618 | /* Sanity check that all possibilities were handled. */ | |
619 | if (sec == (asection *) NULL) | |
620 | { | |
621 | bfd_set_error (bfd_error_bad_value); | |
622 | goto error_return; | |
623 | } | |
624 | ||
625 | if (bfd_is_und_section (sec) | |
626 | || bfd_is_com_section (sec)) | |
627 | definition = false; | |
628 | else | |
629 | definition = true; | |
630 | ||
ee9f09cd ILT |
631 | size_change_ok = false; |
632 | type_change_ok = false; | |
ede4eed4 KR |
633 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
634 | { | |
635 | /* We need to look up the symbol now in order to get some of | |
636 | the dynamic object handling right. We pass the hash | |
637 | table entry in to _bfd_generic_link_add_one_symbol so | |
638 | that it does not have to look it up again. */ | |
639 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
640 | true, false, false); | |
641 | if (h == NULL) | |
642 | goto error_return; | |
643 | *sym_hash = h; | |
644 | ||
0cb70568 ILT |
645 | while (h->root.type == bfd_link_hash_indirect |
646 | || h->root.type == bfd_link_hash_warning) | |
647 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
648 | ||
ee9f09cd ILT |
649 | /* It's OK to change the type if it used to be a weak |
650 | definition. */ | |
651 | type_change_ok = (h->root.type == bfd_link_hash_defweak | |
652 | || h->root.type == bfd_link_hash_undefweak); | |
653 | ||
654 | /* It's OK to change the size if it used to be a weak | |
655 | definition, or if it used to be undefined, or if we will | |
656 | be overriding an old definition. | |
657 | */ | |
658 | size_change_ok = (type_change_ok | |
659 | || h->root.type == bfd_link_hash_undefined); | |
8235c112 | 660 | |
ede4eed4 KR |
661 | /* If we are looking at a dynamic object, and this is a |
662 | definition, we need to see if it has already been defined | |
663 | by some other object. If it has, we want to use the | |
664 | existing definition, and we do not want to report a | |
665 | multiple symbol definition error; we do this by | |
666 | clobbering sec to be bfd_und_section_ptr. */ | |
667 | if (dynamic && definition) | |
668 | { | |
669 | if (h->root.type == bfd_link_hash_defined | |
3d7c42c9 ILT |
670 | || h->root.type == bfd_link_hash_defweak |
671 | || (h->root.type == bfd_link_hash_common | |
672 | && bind == STB_WEAK)) | |
673 | { | |
674 | sec = bfd_und_section_ptr; | |
675 | definition = false; | |
ee9f09cd | 676 | size_change_ok = true; |
3d7c42c9 | 677 | } |
ede4eed4 KR |
678 | } |
679 | ||
680 | /* Similarly, if we are not looking at a dynamic object, and | |
681 | we have a definition, we want to override any definition | |
682 | we may have from a dynamic object. Symbols from regular | |
683 | files always take precedence over symbols from dynamic | |
684 | objects, even if they are defined after the dynamic | |
685 | object in the link. */ | |
686 | if (! dynamic | |
687 | && definition | |
688 | && (h->root.type == bfd_link_hash_defined | |
689 | || h->root.type == bfd_link_hash_defweak) | |
690 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
691 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
692 | == bfd_target_elf_flavour) | |
693 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
694 | == ET_DYN)) | |
695 | { | |
696 | /* Change the hash table entry to undefined, and let | |
697 | _bfd_generic_link_add_one_symbol do the right thing | |
698 | with the new definition. */ | |
699 | h->root.type = bfd_link_hash_undefined; | |
700 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
ee9f09cd | 701 | size_change_ok = true; |
ede4eed4 KR |
702 | } |
703 | } | |
704 | ||
705 | if (! (_bfd_generic_link_add_one_symbol | |
706 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
707 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
708 | goto error_return; | |
709 | ||
0cb70568 ILT |
710 | h = *sym_hash; |
711 | while (h->root.type == bfd_link_hash_indirect | |
712 | || h->root.type == bfd_link_hash_warning) | |
713 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
714 | *sym_hash = h; | |
715 | ||
452a5efb | 716 | new_weakdef = false; |
ede4eed4 KR |
717 | if (dynamic |
718 | && definition | |
719 | && (flags & BSF_WEAK) != 0 | |
720 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
721 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
0cb70568 | 722 | && h->weakdef == NULL) |
ede4eed4 KR |
723 | { |
724 | /* Keep a list of all weak defined non function symbols from | |
725 | a dynamic object, using the weakdef field. Later in this | |
726 | function we will set the weakdef field to the correct | |
727 | value. We only put non-function symbols from dynamic | |
728 | objects on this list, because that happens to be the only | |
729 | time we need to know the normal symbol corresponding to a | |
730 | weak symbol, and the information is time consuming to | |
731 | figure out. If the weakdef field is not already NULL, | |
732 | then this symbol was already defined by some previous | |
733 | dynamic object, and we will be using that previous | |
734 | definition anyhow. */ | |
735 | ||
0cb70568 ILT |
736 | h->weakdef = weaks; |
737 | weaks = h; | |
452a5efb | 738 | new_weakdef = true; |
ede4eed4 KR |
739 | } |
740 | ||
741 | /* Get the alignment of a common symbol. */ | |
742 | if (sym.st_shndx == SHN_COMMON | |
0cb70568 ILT |
743 | && h->root.type == bfd_link_hash_common) |
744 | h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value); | |
ede4eed4 KR |
745 | |
746 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
747 | { | |
748 | int old_flags; | |
749 | boolean dynsym; | |
750 | int new_flag; | |
751 | ||
752 | /* Remember the symbol size and type. */ | |
3d7c42c9 ILT |
753 | if (sym.st_size != 0 |
754 | && (definition || h->size == 0)) | |
ede4eed4 | 755 | { |
ee9f09cd | 756 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) |
3d7c42c9 ILT |
757 | (*_bfd_error_handler) |
758 | ("Warning: size of symbol `%s' changed from %lu to %lu in %s", | |
759 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
760 | bfd_get_filename (abfd)); | |
761 | ||
ede4eed4 KR |
762 | h->size = sym.st_size; |
763 | } | |
3d7c42c9 ILT |
764 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE |
765 | && (definition || h->type == STT_NOTYPE)) | |
ede4eed4 | 766 | { |
3d7c42c9 | 767 | if (h->type != STT_NOTYPE |
8235c112 | 768 | && h->type != ELF_ST_TYPE (sym.st_info) |
ee9f09cd | 769 | && ! type_change_ok) |
3d7c42c9 ILT |
770 | (*_bfd_error_handler) |
771 | ("Warning: type of symbol `%s' changed from %d to %d in %s", | |
772 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
773 | bfd_get_filename (abfd)); | |
774 | ||
ede4eed4 KR |
775 | h->type = ELF_ST_TYPE (sym.st_info); |
776 | } | |
777 | ||
778 | /* Set a flag in the hash table entry indicating the type of | |
779 | reference or definition we just found. Keep a count of | |
780 | the number of dynamic symbols we find. A dynamic symbol | |
781 | is one which is referenced or defined by both a regular | |
782 | object and a shared object, or one which is referenced or | |
783 | defined by more than one shared object. */ | |
784 | old_flags = h->elf_link_hash_flags; | |
785 | dynsym = false; | |
786 | if (! dynamic) | |
787 | { | |
788 | if (! definition) | |
789 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
790 | else | |
791 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
792 | if (info->shared | |
793 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
794 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
795 | dynsym = true; | |
796 | } | |
797 | else | |
798 | { | |
799 | if (! definition) | |
800 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
801 | else | |
802 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
803 | if ((old_flags & new_flag) != 0 | |
804 | || (old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
452a5efb ILT |
805 | | ELF_LINK_HASH_REF_REGULAR)) != 0 |
806 | || (h->weakdef != NULL | |
807 | && (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
808 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0)) | |
ede4eed4 KR |
809 | dynsym = true; |
810 | } | |
811 | ||
812 | h->elf_link_hash_flags |= new_flag; | |
813 | if (dynsym && h->dynindx == -1) | |
814 | { | |
815 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
816 | goto error_return; | |
452a5efb ILT |
817 | if (h->weakdef != NULL |
818 | && ! new_weakdef | |
819 | && h->weakdef->dynindx == -1) | |
820 | { | |
821 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
822 | h->weakdef)) | |
823 | goto error_return; | |
824 | } | |
ede4eed4 KR |
825 | } |
826 | } | |
827 | } | |
828 | ||
829 | /* Now set the weakdefs field correctly for all the weak defined | |
830 | symbols we found. The only way to do this is to search all the | |
831 | symbols. Since we only need the information for non functions in | |
832 | dynamic objects, that's the only time we actually put anything on | |
833 | the list WEAKS. We need this information so that if a regular | |
834 | object refers to a symbol defined weakly in a dynamic object, the | |
835 | real symbol in the dynamic object is also put in the dynamic | |
836 | symbols; we also must arrange for both symbols to point to the | |
837 | same memory location. We could handle the general case of symbol | |
838 | aliasing, but a general symbol alias can only be generated in | |
839 | assembler code, handling it correctly would be very time | |
840 | consuming, and other ELF linkers don't handle general aliasing | |
841 | either. */ | |
842 | while (weaks != NULL) | |
843 | { | |
844 | struct elf_link_hash_entry *hlook; | |
845 | asection *slook; | |
846 | bfd_vma vlook; | |
847 | struct elf_link_hash_entry **hpp; | |
848 | struct elf_link_hash_entry **hppend; | |
849 | ||
850 | hlook = weaks; | |
851 | weaks = hlook->weakdef; | |
852 | hlook->weakdef = NULL; | |
853 | ||
854 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
855 | || hlook->root.type == bfd_link_hash_defweak | |
856 | || hlook->root.type == bfd_link_hash_common | |
857 | || hlook->root.type == bfd_link_hash_indirect); | |
858 | slook = hlook->root.u.def.section; | |
859 | vlook = hlook->root.u.def.value; | |
860 | ||
861 | hpp = elf_sym_hashes (abfd); | |
862 | hppend = hpp + extsymcount; | |
863 | for (; hpp < hppend; hpp++) | |
864 | { | |
865 | struct elf_link_hash_entry *h; | |
866 | ||
867 | h = *hpp; | |
868 | if (h != NULL && h != hlook | |
869 | && (h->root.type == bfd_link_hash_defined | |
870 | || h->root.type == bfd_link_hash_defweak) | |
871 | && h->root.u.def.section == slook | |
872 | && h->root.u.def.value == vlook) | |
873 | { | |
874 | hlook->weakdef = h; | |
875 | ||
876 | /* If the weak definition is in the list of dynamic | |
877 | symbols, make sure the real definition is put there | |
878 | as well. */ | |
879 | if (hlook->dynindx != -1 | |
880 | && h->dynindx == -1) | |
881 | { | |
882 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
883 | goto error_return; | |
884 | } | |
885 | ||
886 | break; | |
887 | } | |
888 | } | |
889 | } | |
890 | ||
891 | if (buf != NULL) | |
892 | { | |
893 | free (buf); | |
894 | buf = NULL; | |
895 | } | |
896 | ||
897 | /* If this object is the same format as the output object, and it is | |
898 | not a shared library, then let the backend look through the | |
899 | relocs. | |
900 | ||
901 | This is required to build global offset table entries and to | |
902 | arrange for dynamic relocs. It is not required for the | |
903 | particular common case of linking non PIC code, even when linking | |
904 | against shared libraries, but unfortunately there is no way of | |
905 | knowing whether an object file has been compiled PIC or not. | |
906 | Looking through the relocs is not particularly time consuming. | |
907 | The problem is that we must either (1) keep the relocs in memory, | |
908 | which causes the linker to require additional runtime memory or | |
909 | (2) read the relocs twice from the input file, which wastes time. | |
910 | This would be a good case for using mmap. | |
911 | ||
912 | I have no idea how to handle linking PIC code into a file of a | |
913 | different format. It probably can't be done. */ | |
914 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
915 | if (! dynamic | |
916 | && abfd->xvec == info->hash->creator | |
917 | && check_relocs != NULL) | |
918 | { | |
919 | asection *o; | |
920 | ||
921 | for (o = abfd->sections; o != NULL; o = o->next) | |
922 | { | |
923 | Elf_Internal_Rela *internal_relocs; | |
924 | boolean ok; | |
925 | ||
926 | if ((o->flags & SEC_RELOC) == 0 | |
927 | || o->reloc_count == 0) | |
928 | continue; | |
929 | ||
930 | /* I believe we can ignore the relocs for any section which | |
931 | does not form part of the final process image, such as a | |
932 | debugging section. */ | |
933 | if ((o->flags & SEC_ALLOC) == 0) | |
934 | continue; | |
935 | ||
936 | internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL, | |
937 | (Elf_Internal_Rela *) NULL, | |
938 | info->keep_memory); | |
939 | if (internal_relocs == NULL) | |
940 | goto error_return; | |
941 | ||
942 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
943 | ||
944 | if (! info->keep_memory) | |
945 | free (internal_relocs); | |
946 | ||
947 | if (! ok) | |
948 | goto error_return; | |
949 | } | |
950 | } | |
951 | ||
952 | return true; | |
953 | ||
954 | error_return: | |
955 | if (buf != NULL) | |
956 | free (buf); | |
957 | if (dynbuf != NULL) | |
958 | free (dynbuf); | |
959 | return false; | |
960 | } | |
961 | ||
962 | /* Create some sections which will be filled in with dynamic linking | |
963 | information. ABFD is an input file which requires dynamic sections | |
964 | to be created. The dynamic sections take up virtual memory space | |
965 | when the final executable is run, so we need to create them before | |
966 | addresses are assigned to the output sections. We work out the | |
967 | actual contents and size of these sections later. */ | |
968 | ||
969 | boolean | |
970 | elf_link_create_dynamic_sections (abfd, info) | |
971 | bfd *abfd; | |
972 | struct bfd_link_info *info; | |
973 | { | |
974 | flagword flags; | |
975 | register asection *s; | |
976 | struct elf_link_hash_entry *h; | |
977 | struct elf_backend_data *bed; | |
978 | ||
979 | if (elf_hash_table (info)->dynamic_sections_created) | |
980 | return true; | |
981 | ||
982 | /* Make sure that all dynamic sections use the same input BFD. */ | |
983 | if (elf_hash_table (info)->dynobj == NULL) | |
984 | elf_hash_table (info)->dynobj = abfd; | |
985 | else | |
986 | abfd = elf_hash_table (info)->dynobj; | |
987 | ||
988 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
989 | sections. */ | |
990 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
991 | ||
992 | /* A dynamically linked executable has a .interp section, but a | |
993 | shared library does not. */ | |
994 | if (! info->shared) | |
995 | { | |
996 | s = bfd_make_section (abfd, ".interp"); | |
997 | if (s == NULL | |
998 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
999 | return false; | |
1000 | } | |
1001 | ||
1002 | s = bfd_make_section (abfd, ".dynsym"); | |
1003 | if (s == NULL | |
1004 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1005 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1006 | return false; | |
1007 | ||
1008 | s = bfd_make_section (abfd, ".dynstr"); | |
1009 | if (s == NULL | |
1010 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1011 | return false; | |
1012 | ||
1013 | /* Create a strtab to hold the dynamic symbol names. */ | |
1014 | if (elf_hash_table (info)->dynstr == NULL) | |
1015 | { | |
1016 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
1017 | if (elf_hash_table (info)->dynstr == NULL) | |
1018 | return false; | |
1019 | } | |
1020 | ||
1021 | s = bfd_make_section (abfd, ".dynamic"); | |
1022 | if (s == NULL | |
1023 | || ! bfd_set_section_flags (abfd, s, flags) | |
1024 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1025 | return false; | |
1026 | ||
1027 | /* The special symbol _DYNAMIC is always set to the start of the | |
1028 | .dynamic section. This call occurs before we have processed the | |
1029 | symbols for any dynamic object, so we don't have to worry about | |
1030 | overriding a dynamic definition. We could set _DYNAMIC in a | |
1031 | linker script, but we only want to define it if we are, in fact, | |
1032 | creating a .dynamic section. We don't want to define it if there | |
1033 | is no .dynamic section, since on some ELF platforms the start up | |
1034 | code examines it to decide how to initialize the process. */ | |
1035 | h = NULL; | |
1036 | if (! (_bfd_generic_link_add_one_symbol | |
1037 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
1038 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
1039 | (struct bfd_link_hash_entry **) &h))) | |
1040 | return false; | |
1041 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1042 | h->type = STT_OBJECT; | |
1043 | ||
1044 | if (info->shared | |
1045 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1046 | return false; | |
1047 | ||
1048 | s = bfd_make_section (abfd, ".hash"); | |
1049 | if (s == NULL | |
1050 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1051 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1052 | return false; | |
1053 | ||
1054 | /* Let the backend create the rest of the sections. This lets the | |
1055 | backend set the right flags. The backend will normally create | |
1056 | the .got and .plt sections. */ | |
1057 | bed = get_elf_backend_data (abfd); | |
1058 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
1059 | return false; | |
1060 | ||
1061 | elf_hash_table (info)->dynamic_sections_created = true; | |
1062 | ||
1063 | return true; | |
1064 | } | |
1065 | ||
1066 | /* Add an entry to the .dynamic table. */ | |
1067 | ||
1068 | boolean | |
1069 | elf_add_dynamic_entry (info, tag, val) | |
1070 | struct bfd_link_info *info; | |
1071 | bfd_vma tag; | |
1072 | bfd_vma val; | |
1073 | { | |
1074 | Elf_Internal_Dyn dyn; | |
1075 | bfd *dynobj; | |
1076 | asection *s; | |
1077 | size_t newsize; | |
1078 | bfd_byte *newcontents; | |
1079 | ||
1080 | dynobj = elf_hash_table (info)->dynobj; | |
1081 | ||
1082 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1083 | BFD_ASSERT (s != NULL); | |
1084 | ||
1085 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
58142f10 | 1086 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
ede4eed4 | 1087 | if (newcontents == NULL) |
58142f10 | 1088 | return false; |
ede4eed4 KR |
1089 | |
1090 | dyn.d_tag = tag; | |
1091 | dyn.d_un.d_val = val; | |
1092 | elf_swap_dyn_out (dynobj, &dyn, | |
1093 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
1094 | ||
1095 | s->_raw_size = newsize; | |
1096 | s->contents = newcontents; | |
1097 | ||
1098 | return true; | |
1099 | } | |
1100 | ||
1101 | /* Read and swap the relocs for a section. They may have been cached. | |
1102 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
1103 | they are used as buffers to read into. They are known to be large | |
1104 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
1105 | value is allocated using either malloc or bfd_alloc, according to | |
1106 | the KEEP_MEMORY argument. */ | |
1107 | ||
1108 | static Elf_Internal_Rela * | |
1109 | elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory) | |
1110 | bfd *abfd; | |
1111 | asection *o; | |
1112 | PTR external_relocs; | |
1113 | Elf_Internal_Rela *internal_relocs; | |
1114 | boolean keep_memory; | |
1115 | { | |
1116 | Elf_Internal_Shdr *rel_hdr; | |
1117 | PTR alloc1 = NULL; | |
1118 | Elf_Internal_Rela *alloc2 = NULL; | |
1119 | ||
1120 | if (elf_section_data (o)->relocs != NULL) | |
1121 | return elf_section_data (o)->relocs; | |
1122 | ||
1123 | if (o->reloc_count == 0) | |
1124 | return NULL; | |
1125 | ||
1126 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1127 | ||
1128 | if (internal_relocs == NULL) | |
1129 | { | |
1130 | size_t size; | |
1131 | ||
1132 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
1133 | if (keep_memory) | |
1134 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
1135 | else | |
58142f10 | 1136 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
ede4eed4 | 1137 | if (internal_relocs == NULL) |
58142f10 | 1138 | goto error_return; |
ede4eed4 KR |
1139 | } |
1140 | ||
1141 | if (external_relocs == NULL) | |
1142 | { | |
58142f10 | 1143 | alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size); |
ede4eed4 | 1144 | if (alloc1 == NULL) |
58142f10 | 1145 | goto error_return; |
ede4eed4 KR |
1146 | external_relocs = alloc1; |
1147 | } | |
1148 | ||
1149 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
1150 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
1151 | != rel_hdr->sh_size)) | |
1152 | goto error_return; | |
1153 | ||
1154 | /* Swap in the relocs. For convenience, we always produce an | |
1155 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
1156 | to 0. */ | |
1157 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
1158 | { | |
1159 | Elf_External_Rel *erel; | |
1160 | Elf_External_Rel *erelend; | |
1161 | Elf_Internal_Rela *irela; | |
1162 | ||
1163 | erel = (Elf_External_Rel *) external_relocs; | |
1164 | erelend = erel + o->reloc_count; | |
1165 | irela = internal_relocs; | |
1166 | for (; erel < erelend; erel++, irela++) | |
1167 | { | |
1168 | Elf_Internal_Rel irel; | |
1169 | ||
1170 | elf_swap_reloc_in (abfd, erel, &irel); | |
1171 | irela->r_offset = irel.r_offset; | |
1172 | irela->r_info = irel.r_info; | |
1173 | irela->r_addend = 0; | |
1174 | } | |
1175 | } | |
1176 | else | |
1177 | { | |
1178 | Elf_External_Rela *erela; | |
1179 | Elf_External_Rela *erelaend; | |
1180 | Elf_Internal_Rela *irela; | |
1181 | ||
1182 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
1183 | ||
1184 | erela = (Elf_External_Rela *) external_relocs; | |
1185 | erelaend = erela + o->reloc_count; | |
1186 | irela = internal_relocs; | |
1187 | for (; erela < erelaend; erela++, irela++) | |
1188 | elf_swap_reloca_in (abfd, erela, irela); | |
1189 | } | |
1190 | ||
1191 | /* Cache the results for next time, if we can. */ | |
1192 | if (keep_memory) | |
1193 | elf_section_data (o)->relocs = internal_relocs; | |
1194 | ||
1195 | if (alloc1 != NULL) | |
1196 | free (alloc1); | |
1197 | ||
1198 | /* Don't free alloc2, since if it was allocated we are passing it | |
1199 | back (under the name of internal_relocs). */ | |
1200 | ||
1201 | return internal_relocs; | |
1202 | ||
1203 | error_return: | |
1204 | if (alloc1 != NULL) | |
1205 | free (alloc1); | |
1206 | if (alloc2 != NULL) | |
1207 | free (alloc2); | |
1208 | return NULL; | |
1209 | } | |
1210 | ||
1211 | /* Record an assignment to a symbol made by a linker script. We need | |
1212 | this in case some dynamic object refers to this symbol. */ | |
1213 | ||
1214 | /*ARGSUSED*/ | |
1215 | boolean | |
1216 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
1217 | bfd *output_bfd; | |
1218 | struct bfd_link_info *info; | |
1219 | const char *name; | |
1220 | boolean provide; | |
1221 | { | |
1222 | struct elf_link_hash_entry *h; | |
1223 | ||
1224 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1225 | return true; | |
1226 | ||
1227 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
1228 | if (h == NULL) | |
1229 | return false; | |
1230 | ||
1231 | /* If this symbol is being provided by the linker script, and it is | |
1232 | currently defined by a dynamic object, but not by a regular | |
1233 | object, then mark it as undefined so that the generic linker will | |
1234 | force the correct value. */ | |
1235 | if (provide | |
1236 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1237 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1238 | h->root.type = bfd_link_hash_undefined; | |
1239 | ||
1240 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1241 | h->type = STT_OBJECT; | |
1242 | ||
1243 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1244 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
1245 | || info->shared) | |
1246 | && h->dynindx == -1) | |
1247 | { | |
1248 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1249 | return false; | |
1250 | ||
1251 | /* If this is a weak defined symbol, and we know a corresponding | |
1252 | real symbol from the same dynamic object, make sure the real | |
1253 | symbol is also made into a dynamic symbol. */ | |
1254 | if (h->weakdef != NULL | |
1255 | && h->weakdef->dynindx == -1) | |
1256 | { | |
1257 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
1258 | return false; | |
1259 | } | |
1260 | } | |
1261 | ||
1262 | return true; | |
1263 | } | |
1264 | ||
1265 | /* Array used to determine the number of hash table buckets to use | |
1266 | based on the number of symbols there are. If there are fewer than | |
1267 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
1268 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
1269 | than 521 buckets. */ | |
1270 | ||
1271 | static const size_t elf_buckets[] = | |
1272 | { | |
1273 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0 | |
1274 | }; | |
1275 | ||
1276 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
1277 | called by the ELF linker emulation before_allocation routine. We | |
1278 | must set the sizes of the sections before the linker sets the | |
1279 | addresses of the various sections. */ | |
1280 | ||
1281 | boolean | |
1282 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
1283 | export_dynamic, info, sinterpptr) | |
1284 | bfd *output_bfd; | |
1285 | const char *soname; | |
1286 | const char *rpath; | |
1287 | boolean export_dynamic; | |
1288 | struct bfd_link_info *info; | |
1289 | asection **sinterpptr; | |
1290 | { | |
1291 | bfd *dynobj; | |
1292 | struct elf_backend_data *bed; | |
1293 | ||
1294 | *sinterpptr = NULL; | |
1295 | ||
1296 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1297 | return true; | |
1298 | ||
1299 | dynobj = elf_hash_table (info)->dynobj; | |
1300 | ||
1301 | /* If there were no dynamic objects in the link, there is nothing to | |
1302 | do here. */ | |
1303 | if (dynobj == NULL) | |
1304 | return true; | |
1305 | ||
1306 | /* If we are supposed to export all symbols into the dynamic symbol | |
1307 | table (this is not the normal case), then do so. */ | |
1308 | if (export_dynamic) | |
1309 | { | |
1310 | struct elf_info_failed eif; | |
1311 | ||
1312 | eif.failed = false; | |
1313 | eif.info = info; | |
1314 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
1315 | (PTR) &eif); | |
1316 | if (eif.failed) | |
1317 | return false; | |
1318 | } | |
1319 | ||
1320 | if (elf_hash_table (info)->dynamic_sections_created) | |
1321 | { | |
1322 | struct elf_info_failed eif; | |
73a68447 | 1323 | struct elf_link_hash_entry *h; |
ede4eed4 KR |
1324 | bfd_size_type strsize; |
1325 | ||
1326 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
1327 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
1328 | ||
1329 | if (soname != NULL) | |
1330 | { | |
1331 | bfd_size_type indx; | |
1332 | ||
1333 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname, | |
1334 | true, true); | |
1335 | if (indx == (bfd_size_type) -1 | |
1336 | || ! elf_add_dynamic_entry (info, DT_SONAME, indx)) | |
1337 | return false; | |
1338 | } | |
1339 | ||
951fe66d ILT |
1340 | if (info->symbolic) |
1341 | { | |
1342 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
1343 | return false; | |
1344 | } | |
1345 | ||
ede4eed4 KR |
1346 | if (rpath != NULL) |
1347 | { | |
1348 | bfd_size_type indx; | |
1349 | ||
1350 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
1351 | true, true); | |
1352 | if (indx == (bfd_size_type) -1 | |
1353 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
1354 | return false; | |
1355 | } | |
1356 | ||
1357 | /* Find all symbols which were defined in a dynamic object and make | |
1358 | the backend pick a reasonable value for them. */ | |
1359 | eif.failed = false; | |
1360 | eif.info = info; | |
1361 | elf_link_hash_traverse (elf_hash_table (info), | |
1362 | elf_adjust_dynamic_symbol, | |
1363 | (PTR) &eif); | |
1364 | if (eif.failed) | |
1365 | return false; | |
1366 | ||
1367 | /* Add some entries to the .dynamic section. We fill in some of the | |
1368 | values later, in elf_bfd_final_link, but we must add the entries | |
1369 | now so that we know the final size of the .dynamic section. */ | |
73a68447 ILT |
1370 | h = elf_link_hash_lookup (elf_hash_table (info), "_init", false, |
1371 | false, false); | |
1372 | if (h != NULL | |
1373 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
1374 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
ede4eed4 KR |
1375 | { |
1376 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
1377 | return false; | |
1378 | } | |
73a68447 ILT |
1379 | h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false, |
1380 | false, false); | |
1381 | if (h != NULL | |
1382 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
1383 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
ede4eed4 KR |
1384 | { |
1385 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
1386 | return false; | |
1387 | } | |
1388 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1389 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
1390 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
1391 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
1392 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
1393 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
1394 | sizeof (Elf_External_Sym))) | |
1395 | return false; | |
1396 | } | |
1397 | ||
1398 | /* The backend must work out the sizes of all the other dynamic | |
1399 | sections. */ | |
1400 | bed = get_elf_backend_data (output_bfd); | |
1401 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
1402 | return false; | |
1403 | ||
1404 | if (elf_hash_table (info)->dynamic_sections_created) | |
1405 | { | |
1406 | size_t dynsymcount; | |
1407 | asection *s; | |
1408 | size_t i; | |
1409 | size_t bucketcount = 0; | |
1410 | Elf_Internal_Sym isym; | |
1411 | ||
1412 | /* Set the size of the .dynsym and .hash sections. We counted | |
1413 | the number of dynamic symbols in elf_link_add_object_symbols. | |
1414 | We will build the contents of .dynsym and .hash when we build | |
1415 | the final symbol table, because until then we do not know the | |
1416 | correct value to give the symbols. We built the .dynstr | |
1417 | section as we went along in elf_link_add_object_symbols. */ | |
1418 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
1419 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1420 | BFD_ASSERT (s != NULL); | |
1421 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
1422 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1423 | if (s->contents == NULL && s->_raw_size != 0) | |
a9713b91 | 1424 | return false; |
ede4eed4 KR |
1425 | |
1426 | /* The first entry in .dynsym is a dummy symbol. */ | |
1427 | isym.st_value = 0; | |
1428 | isym.st_size = 0; | |
1429 | isym.st_name = 0; | |
1430 | isym.st_info = 0; | |
1431 | isym.st_other = 0; | |
1432 | isym.st_shndx = 0; | |
1433 | elf_swap_symbol_out (output_bfd, &isym, | |
cf9fb9f2 | 1434 | (PTR) (Elf_External_Sym *) s->contents); |
ede4eed4 KR |
1435 | |
1436 | for (i = 0; elf_buckets[i] != 0; i++) | |
1437 | { | |
1438 | bucketcount = elf_buckets[i]; | |
1439 | if (dynsymcount < elf_buckets[i + 1]) | |
1440 | break; | |
1441 | } | |
1442 | ||
1443 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1444 | BFD_ASSERT (s != NULL); | |
1445 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
1446 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1447 | if (s->contents == NULL) | |
a9713b91 | 1448 | return false; |
3fe22b98 | 1449 | memset (s->contents, 0, (size_t) s->_raw_size); |
ede4eed4 KR |
1450 | |
1451 | put_word (output_bfd, bucketcount, s->contents); | |
1452 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
1453 | ||
1454 | elf_hash_table (info)->bucketcount = bucketcount; | |
1455 | ||
1456 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1457 | BFD_ASSERT (s != NULL); | |
1458 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1459 | ||
1460 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
1461 | return false; | |
1462 | } | |
1463 | ||
1464 | return true; | |
1465 | } | |
1466 | ||
1467 | /* This routine is used to export all defined symbols into the dynamic | |
1468 | symbol table. It is called via elf_link_hash_traverse. */ | |
1469 | ||
1470 | static boolean | |
1471 | elf_export_symbol (h, data) | |
1472 | struct elf_link_hash_entry *h; | |
1473 | PTR data; | |
1474 | { | |
1475 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1476 | ||
1477 | if (h->dynindx == -1 | |
1478 | && (h->elf_link_hash_flags | |
1479 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
1480 | { | |
1481 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1482 | { | |
1483 | eif->failed = true; | |
1484 | return false; | |
1485 | } | |
1486 | } | |
1487 | ||
1488 | return true; | |
1489 | } | |
1490 | ||
1491 | /* Make the backend pick a good value for a dynamic symbol. This is | |
1492 | called via elf_link_hash_traverse, and also calls itself | |
1493 | recursively. */ | |
1494 | ||
1495 | static boolean | |
1496 | elf_adjust_dynamic_symbol (h, data) | |
1497 | struct elf_link_hash_entry *h; | |
1498 | PTR data; | |
1499 | { | |
1500 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1501 | bfd *dynobj; | |
1502 | struct elf_backend_data *bed; | |
1503 | ||
951fe66d ILT |
1504 | /* If -Bsymbolic was used (which means to bind references to global |
1505 | symbols to the definition within the shared object), and this | |
1506 | symbol was defined in a regular object, then it actually doesn't | |
1507 | need a PLT entry. */ | |
1508 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
1509 | && eif->info->shared | |
1510 | && eif->info->symbolic | |
1511 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1512 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
1513 | ||
ede4eed4 KR |
1514 | /* If this symbol does not require a PLT entry, and it is not |
1515 | defined by a dynamic object, or is not referenced by a regular | |
452a5efb ILT |
1516 | object, ignore it. We do have to handle a weak defined symbol, |
1517 | even if no regular object refers to it, if we decided to add it | |
1518 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
1519 | about symbols which are defined by one dynamic object and | |
1520 | referenced by another one? */ | |
ede4eed4 KR |
1521 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 |
1522 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1523 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
452a5efb ILT |
1524 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 |
1525 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
ede4eed4 KR |
1526 | return true; |
1527 | ||
1528 | /* If we've already adjusted this symbol, don't do it again. This | |
1529 | can happen via a recursive call. */ | |
1530 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
1531 | return true; | |
1532 | ||
1533 | /* Don't look at this symbol again. Note that we must set this | |
1534 | after checking the above conditions, because we may look at a | |
1535 | symbol once, decide not to do anything, and then get called | |
1536 | recursively later after REF_REGULAR is set below. */ | |
1537 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
1538 | ||
1539 | /* If this is a weak definition, and we know a real definition, and | |
1540 | the real symbol is not itself defined by a regular object file, | |
1541 | then get a good value for the real definition. We handle the | |
1542 | real symbol first, for the convenience of the backend routine. | |
1543 | ||
1544 | Note that there is a confusing case here. If the real definition | |
1545 | is defined by a regular object file, we don't get the real symbol | |
1546 | from the dynamic object, but we do get the weak symbol. If the | |
1547 | processor backend uses a COPY reloc, then if some routine in the | |
1548 | dynamic object changes the real symbol, we will not see that | |
1549 | change in the corresponding weak symbol. This is the way other | |
1550 | ELF linkers work as well, and seems to be a result of the shared | |
1551 | library model. | |
1552 | ||
1553 | I will clarify this issue. Most SVR4 shared libraries define the | |
1554 | variable _timezone and define timezone as a weak synonym. The | |
1555 | tzset call changes _timezone. If you write | |
1556 | extern int timezone; | |
1557 | int _timezone = 5; | |
1558 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
1559 | you might expect that, since timezone is a synonym for _timezone, | |
1560 | the same number will print both times. However, if the processor | |
1561 | backend uses a COPY reloc, then actually timezone will be copied | |
1562 | into your process image, and, since you define _timezone | |
1563 | yourself, _timezone will not. Thus timezone and _timezone will | |
1564 | wind up at different memory locations. The tzset call will set | |
1565 | _timezone, leaving timezone unchanged. */ | |
1566 | ||
1567 | if (h->weakdef != NULL) | |
1568 | { | |
1569 | struct elf_link_hash_entry *weakdef; | |
1570 | ||
1571 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
1572 | || h->root.type == bfd_link_hash_defweak); | |
1573 | weakdef = h->weakdef; | |
1574 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
1575 | || weakdef->root.type == bfd_link_hash_defweak); | |
1576 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
1577 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1578 | { | |
1579 | /* This symbol is defined by a regular object file, so we | |
1580 | will not do anything special. Clear weakdef for the | |
1581 | convenience of the processor backend. */ | |
1582 | h->weakdef = NULL; | |
1583 | } | |
1584 | else | |
1585 | { | |
1586 | /* There is an implicit reference by a regular object file | |
1587 | via the weak symbol. */ | |
1588 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1589 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) | |
1590 | return false; | |
1591 | } | |
1592 | } | |
1593 | ||
1594 | dynobj = elf_hash_table (eif->info)->dynobj; | |
1595 | bed = get_elf_backend_data (dynobj); | |
1596 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
1597 | { | |
1598 | eif->failed = true; | |
1599 | return false; | |
1600 | } | |
1601 | ||
1602 | return true; | |
1603 | } | |
1604 | \f | |
1605 | /* Final phase of ELF linker. */ | |
1606 | ||
1607 | /* A structure we use to avoid passing large numbers of arguments. */ | |
1608 | ||
1609 | struct elf_final_link_info | |
1610 | { | |
1611 | /* General link information. */ | |
1612 | struct bfd_link_info *info; | |
1613 | /* Output BFD. */ | |
1614 | bfd *output_bfd; | |
1615 | /* Symbol string table. */ | |
1616 | struct bfd_strtab_hash *symstrtab; | |
1617 | /* .dynsym section. */ | |
1618 | asection *dynsym_sec; | |
1619 | /* .hash section. */ | |
1620 | asection *hash_sec; | |
1621 | /* Buffer large enough to hold contents of any section. */ | |
1622 | bfd_byte *contents; | |
1623 | /* Buffer large enough to hold external relocs of any section. */ | |
1624 | PTR external_relocs; | |
1625 | /* Buffer large enough to hold internal relocs of any section. */ | |
1626 | Elf_Internal_Rela *internal_relocs; | |
1627 | /* Buffer large enough to hold external local symbols of any input | |
1628 | BFD. */ | |
1629 | Elf_External_Sym *external_syms; | |
1630 | /* Buffer large enough to hold internal local symbols of any input | |
1631 | BFD. */ | |
1632 | Elf_Internal_Sym *internal_syms; | |
1633 | /* Array large enough to hold a symbol index for each local symbol | |
1634 | of any input BFD. */ | |
1635 | long *indices; | |
1636 | /* Array large enough to hold a section pointer for each local | |
1637 | symbol of any input BFD. */ | |
1638 | asection **sections; | |
1639 | /* Buffer to hold swapped out symbols. */ | |
1640 | Elf_External_Sym *symbuf; | |
1641 | /* Number of swapped out symbols in buffer. */ | |
1642 | size_t symbuf_count; | |
1643 | /* Number of symbols which fit in symbuf. */ | |
1644 | size_t symbuf_size; | |
1645 | }; | |
1646 | ||
1647 | static boolean elf_link_output_sym | |
1648 | PARAMS ((struct elf_final_link_info *, const char *, | |
1649 | Elf_Internal_Sym *, asection *)); | |
1650 | static boolean elf_link_flush_output_syms | |
1651 | PARAMS ((struct elf_final_link_info *)); | |
1652 | static boolean elf_link_output_extsym | |
1653 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
1654 | static boolean elf_link_input_bfd | |
1655 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
1656 | static boolean elf_reloc_link_order | |
1657 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
1658 | struct bfd_link_order *)); | |
1659 | ||
1660 | /* This struct is used to pass information to routines called via | |
1661 | elf_link_hash_traverse which must return failure. */ | |
1662 | ||
1663 | struct elf_finfo_failed | |
1664 | { | |
1665 | boolean failed; | |
1666 | struct elf_final_link_info *finfo; | |
1667 | }; | |
1668 | ||
1669 | /* Do the final step of an ELF link. */ | |
1670 | ||
1671 | boolean | |
1672 | elf_bfd_final_link (abfd, info) | |
1673 | bfd *abfd; | |
1674 | struct bfd_link_info *info; | |
1675 | { | |
1676 | boolean dynamic; | |
1677 | bfd *dynobj; | |
1678 | struct elf_final_link_info finfo; | |
1679 | register asection *o; | |
1680 | register struct bfd_link_order *p; | |
1681 | register bfd *sub; | |
1682 | size_t max_contents_size; | |
1683 | size_t max_external_reloc_size; | |
1684 | size_t max_internal_reloc_count; | |
1685 | size_t max_sym_count; | |
1686 | file_ptr off; | |
1687 | Elf_Internal_Sym elfsym; | |
1688 | unsigned int i; | |
1689 | Elf_Internal_Shdr *symtab_hdr; | |
1690 | Elf_Internal_Shdr *symstrtab_hdr; | |
1691 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1692 | struct elf_finfo_failed eif; | |
1693 | ||
1694 | if (info->shared) | |
1695 | abfd->flags |= DYNAMIC; | |
1696 | ||
1697 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
1698 | dynobj = elf_hash_table (info)->dynobj; | |
1699 | ||
1700 | finfo.info = info; | |
1701 | finfo.output_bfd = abfd; | |
1702 | finfo.symstrtab = elf_stringtab_init (); | |
1703 | if (finfo.symstrtab == NULL) | |
1704 | return false; | |
1705 | if (! dynamic) | |
1706 | { | |
1707 | finfo.dynsym_sec = NULL; | |
1708 | finfo.hash_sec = NULL; | |
1709 | } | |
1710 | else | |
1711 | { | |
1712 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1713 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
1714 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
1715 | } | |
1716 | finfo.contents = NULL; | |
1717 | finfo.external_relocs = NULL; | |
1718 | finfo.internal_relocs = NULL; | |
1719 | finfo.external_syms = NULL; | |
1720 | finfo.internal_syms = NULL; | |
1721 | finfo.indices = NULL; | |
1722 | finfo.sections = NULL; | |
1723 | finfo.symbuf = NULL; | |
1724 | finfo.symbuf_count = 0; | |
1725 | ||
1726 | /* Count up the number of relocations we will output for each output | |
1727 | section, so that we know the sizes of the reloc sections. We | |
1728 | also figure out some maximum sizes. */ | |
1729 | max_contents_size = 0; | |
1730 | max_external_reloc_size = 0; | |
1731 | max_internal_reloc_count = 0; | |
1732 | max_sym_count = 0; | |
1733 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
1734 | { | |
1735 | o->reloc_count = 0; | |
1736 | ||
1737 | for (p = o->link_order_head; p != NULL; p = p->next) | |
1738 | { | |
1739 | if (p->type == bfd_section_reloc_link_order | |
1740 | || p->type == bfd_symbol_reloc_link_order) | |
1741 | ++o->reloc_count; | |
1742 | else if (p->type == bfd_indirect_link_order) | |
1743 | { | |
1744 | asection *sec; | |
1745 | ||
1746 | sec = p->u.indirect.section; | |
1747 | ||
1748 | if (info->relocateable) | |
1749 | o->reloc_count += sec->reloc_count; | |
1750 | ||
1751 | if (sec->_raw_size > max_contents_size) | |
1752 | max_contents_size = sec->_raw_size; | |
1753 | if (sec->_cooked_size > max_contents_size) | |
1754 | max_contents_size = sec->_cooked_size; | |
1755 | ||
1756 | /* We are interested in just local symbols, not all | |
1757 | symbols. */ | |
1758 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) | |
1759 | { | |
1760 | size_t sym_count; | |
1761 | ||
1762 | if (elf_bad_symtab (sec->owner)) | |
1763 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
1764 | / sizeof (Elf_External_Sym)); | |
1765 | else | |
1766 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
1767 | ||
1768 | if (sym_count > max_sym_count) | |
1769 | max_sym_count = sym_count; | |
1770 | ||
1771 | if ((sec->flags & SEC_RELOC) != 0) | |
1772 | { | |
1773 | size_t ext_size; | |
1774 | ||
1775 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
1776 | if (ext_size > max_external_reloc_size) | |
1777 | max_external_reloc_size = ext_size; | |
1778 | if (sec->reloc_count > max_internal_reloc_count) | |
1779 | max_internal_reloc_count = sec->reloc_count; | |
1780 | } | |
1781 | } | |
1782 | } | |
1783 | } | |
1784 | ||
1785 | if (o->reloc_count > 0) | |
1786 | o->flags |= SEC_RELOC; | |
1787 | else | |
1788 | { | |
1789 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
1790 | set it (this is probably a bug) and if it is set | |
1791 | assign_section_numbers will create a reloc section. */ | |
1792 | o->flags &=~ SEC_RELOC; | |
1793 | } | |
1794 | ||
1795 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
1796 | zero. This is done in elf_fake_sections as well, but forcing | |
1797 | the VMA to 0 here will ensure that relocs against these | |
1798 | sections are handled correctly. */ | |
1799 | if ((o->flags & SEC_ALLOC) == 0) | |
1800 | o->vma = 0; | |
1801 | } | |
1802 | ||
1803 | /* Figure out the file positions for everything but the symbol table | |
1804 | and the relocs. We set symcount to force assign_section_numbers | |
1805 | to create a symbol table. */ | |
1806 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
1807 | BFD_ASSERT (! abfd->output_has_begun); | |
1808 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
1809 | goto error_return; | |
1810 | ||
1811 | /* That created the reloc sections. Set their sizes, and assign | |
1812 | them file positions, and allocate some buffers. */ | |
1813 | for (o = abfd->sections; o != NULL; o = o->next) | |
1814 | { | |
1815 | if ((o->flags & SEC_RELOC) != 0) | |
1816 | { | |
1817 | Elf_Internal_Shdr *rel_hdr; | |
1818 | register struct elf_link_hash_entry **p, **pend; | |
1819 | ||
1820 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1821 | ||
1822 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
1823 | ||
1824 | /* The contents field must last into write_object_contents, | |
1825 | so we allocate it with bfd_alloc rather than malloc. */ | |
1826 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
1827 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
a9713b91 | 1828 | goto error_return; |
ede4eed4 KR |
1829 | |
1830 | p = ((struct elf_link_hash_entry **) | |
58142f10 ILT |
1831 | bfd_malloc (o->reloc_count |
1832 | * sizeof (struct elf_link_hash_entry *))); | |
ede4eed4 | 1833 | if (p == NULL && o->reloc_count != 0) |
58142f10 | 1834 | goto error_return; |
ede4eed4 KR |
1835 | elf_section_data (o)->rel_hashes = p; |
1836 | pend = p + o->reloc_count; | |
1837 | for (; p < pend; p++) | |
1838 | *p = NULL; | |
1839 | ||
1840 | /* Use the reloc_count field as an index when outputting the | |
1841 | relocs. */ | |
1842 | o->reloc_count = 0; | |
1843 | } | |
1844 | } | |
1845 | ||
1846 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
1847 | ||
1848 | /* We have now assigned file positions for all the sections except | |
1849 | .symtab and .strtab. We start the .symtab section at the current | |
1850 | file position, and write directly to it. We build the .strtab | |
ab276dfa | 1851 | section in memory. */ |
ede4eed4 KR |
1852 | abfd->symcount = 0; |
1853 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1854 | /* sh_name is set in prep_headers. */ | |
1855 | symtab_hdr->sh_type = SHT_SYMTAB; | |
1856 | symtab_hdr->sh_flags = 0; | |
1857 | symtab_hdr->sh_addr = 0; | |
1858 | symtab_hdr->sh_size = 0; | |
1859 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
1860 | /* sh_link is set in assign_section_numbers. */ | |
1861 | /* sh_info is set below. */ | |
1862 | /* sh_offset is set just below. */ | |
1863 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
1864 | ||
1865 | off = elf_tdata (abfd)->next_file_pos; | |
1866 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
1867 | ||
1868 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
1869 | incorrect. We do not yet know the size of the .symtab section. | |
1870 | We correct next_file_pos below, after we do know the size. */ | |
1871 | ||
1872 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
1873 | continuously seeking to the right position in the file. */ | |
1874 | if (! info->keep_memory || max_sym_count < 20) | |
1875 | finfo.symbuf_size = 20; | |
1876 | else | |
1877 | finfo.symbuf_size = max_sym_count; | |
1878 | finfo.symbuf = ((Elf_External_Sym *) | |
58142f10 | 1879 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); |
ede4eed4 | 1880 | if (finfo.symbuf == NULL) |
58142f10 | 1881 | goto error_return; |
ede4eed4 KR |
1882 | |
1883 | /* Start writing out the symbol table. The first symbol is always a | |
1884 | dummy symbol. */ | |
1885 | elfsym.st_value = 0; | |
1886 | elfsym.st_size = 0; | |
1887 | elfsym.st_info = 0; | |
1888 | elfsym.st_other = 0; | |
1889 | elfsym.st_shndx = SHN_UNDEF; | |
1890 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
1891 | &elfsym, bfd_und_section_ptr)) | |
1892 | goto error_return; | |
1893 | ||
1894 | #if 0 | |
1895 | /* Some standard ELF linkers do this, but we don't because it causes | |
1896 | bootstrap comparison failures. */ | |
1897 | /* Output a file symbol for the output file as the second symbol. | |
1898 | We output this even if we are discarding local symbols, although | |
1899 | I'm not sure if this is correct. */ | |
1900 | elfsym.st_value = 0; | |
1901 | elfsym.st_size = 0; | |
1902 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
1903 | elfsym.st_other = 0; | |
1904 | elfsym.st_shndx = SHN_ABS; | |
1905 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
1906 | &elfsym, bfd_abs_section_ptr)) | |
1907 | goto error_return; | |
1908 | #endif | |
1909 | ||
1910 | /* Output a symbol for each section. We output these even if we are | |
1911 | discarding local symbols, since they are used for relocs. These | |
1912 | symbols have no names. We store the index of each one in the | |
1913 | index field of the section, so that we can find it again when | |
1914 | outputting relocs. */ | |
1915 | elfsym.st_value = 0; | |
1916 | elfsym.st_size = 0; | |
1917 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
1918 | elfsym.st_other = 0; | |
1919 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
1920 | { | |
1921 | o = section_from_elf_index (abfd, i); | |
1922 | if (o != NULL) | |
1923 | o->target_index = abfd->symcount; | |
1924 | elfsym.st_shndx = i; | |
1925 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
1926 | &elfsym, o)) | |
1927 | goto error_return; | |
1928 | } | |
1929 | ||
1930 | /* Allocate some memory to hold information read in from the input | |
1931 | files. */ | |
58142f10 ILT |
1932 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
1933 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
ede4eed4 | 1934 | finfo.internal_relocs = ((Elf_Internal_Rela *) |
58142f10 ILT |
1935 | bfd_malloc (max_internal_reloc_count |
1936 | * sizeof (Elf_Internal_Rela))); | |
ede4eed4 | 1937 | finfo.external_syms = ((Elf_External_Sym *) |
58142f10 ILT |
1938 | bfd_malloc (max_sym_count |
1939 | * sizeof (Elf_External_Sym))); | |
ede4eed4 | 1940 | finfo.internal_syms = ((Elf_Internal_Sym *) |
58142f10 ILT |
1941 | bfd_malloc (max_sym_count |
1942 | * sizeof (Elf_Internal_Sym))); | |
1943 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); | |
1944 | finfo.sections = ((asection **) | |
1945 | bfd_malloc (max_sym_count * sizeof (asection *))); | |
ede4eed4 KR |
1946 | if ((finfo.contents == NULL && max_contents_size != 0) |
1947 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
1948 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
1949 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
1950 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
1951 | || (finfo.indices == NULL && max_sym_count != 0) | |
1952 | || (finfo.sections == NULL && max_sym_count != 0)) | |
58142f10 | 1953 | goto error_return; |
ede4eed4 KR |
1954 | |
1955 | /* Since ELF permits relocations to be against local symbols, we | |
1956 | must have the local symbols available when we do the relocations. | |
1957 | Since we would rather only read the local symbols once, and we | |
1958 | would rather not keep them in memory, we handle all the | |
1959 | relocations for a single input file at the same time. | |
1960 | ||
1961 | Unfortunately, there is no way to know the total number of local | |
1962 | symbols until we have seen all of them, and the local symbol | |
1963 | indices precede the global symbol indices. This means that when | |
1964 | we are generating relocateable output, and we see a reloc against | |
1965 | a global symbol, we can not know the symbol index until we have | |
1966 | finished examining all the local symbols to see which ones we are | |
1967 | going to output. To deal with this, we keep the relocations in | |
1968 | memory, and don't output them until the end of the link. This is | |
1969 | an unfortunate waste of memory, but I don't see a good way around | |
1970 | it. Fortunately, it only happens when performing a relocateable | |
1971 | link, which is not the common case. FIXME: If keep_memory is set | |
1972 | we could write the relocs out and then read them again; I don't | |
1973 | know how bad the memory loss will be. */ | |
1974 | ||
1975 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
1976 | sub->output_has_begun = false; | |
1977 | for (o = abfd->sections; o != NULL; o = o->next) | |
1978 | { | |
1979 | for (p = o->link_order_head; p != NULL; p = p->next) | |
1980 | { | |
1981 | if (p->type == bfd_indirect_link_order | |
1982 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
1983 | == bfd_target_elf_flavour)) | |
1984 | { | |
1985 | sub = p->u.indirect.section->owner; | |
1986 | if (! sub->output_has_begun) | |
1987 | { | |
1988 | if (! elf_link_input_bfd (&finfo, sub)) | |
1989 | goto error_return; | |
1990 | sub->output_has_begun = true; | |
1991 | } | |
1992 | } | |
1993 | else if (p->type == bfd_section_reloc_link_order | |
1994 | || p->type == bfd_symbol_reloc_link_order) | |
1995 | { | |
1996 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
1997 | goto error_return; | |
1998 | } | |
1999 | else | |
2000 | { | |
2001 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
2002 | goto error_return; | |
2003 | } | |
2004 | } | |
2005 | } | |
2006 | ||
2007 | /* That wrote out all the local symbols. Finish up the symbol table | |
2008 | with the global symbols. */ | |
2009 | ||
2010 | /* The sh_info field records the index of the first non local | |
2011 | symbol. */ | |
2012 | symtab_hdr->sh_info = abfd->symcount; | |
2013 | if (dynamic) | |
2014 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; | |
2015 | ||
2016 | /* We get the global symbols from the hash table. */ | |
2017 | eif.failed = false; | |
2018 | eif.finfo = &finfo; | |
2019 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
2020 | (PTR) &eif); | |
2021 | if (eif.failed) | |
2022 | return false; | |
2023 | ||
2024 | /* Flush all symbols to the file. */ | |
2025 | if (! elf_link_flush_output_syms (&finfo)) | |
2026 | return false; | |
2027 | ||
2028 | /* Now we know the size of the symtab section. */ | |
2029 | off += symtab_hdr->sh_size; | |
2030 | ||
2031 | /* Finish up and write out the symbol string table (.strtab) | |
2032 | section. */ | |
2033 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
2034 | /* sh_name was set in prep_headers. */ | |
2035 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
2036 | symstrtab_hdr->sh_flags = 0; | |
2037 | symstrtab_hdr->sh_addr = 0; | |
2038 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
2039 | symstrtab_hdr->sh_entsize = 0; | |
2040 | symstrtab_hdr->sh_link = 0; | |
2041 | symstrtab_hdr->sh_info = 0; | |
2042 | /* sh_offset is set just below. */ | |
2043 | symstrtab_hdr->sh_addralign = 1; | |
2044 | ||
2045 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
2046 | elf_tdata (abfd)->next_file_pos = off; | |
2047 | ||
2048 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
2049 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
2050 | return false; | |
2051 | ||
2052 | /* Adjust the relocs to have the correct symbol indices. */ | |
2053 | for (o = abfd->sections; o != NULL; o = o->next) | |
2054 | { | |
2055 | struct elf_link_hash_entry **rel_hash; | |
2056 | Elf_Internal_Shdr *rel_hdr; | |
2057 | ||
2058 | if ((o->flags & SEC_RELOC) == 0) | |
2059 | continue; | |
2060 | ||
2061 | rel_hash = elf_section_data (o)->rel_hashes; | |
2062 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2063 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
2064 | { | |
2065 | if (*rel_hash == NULL) | |
2066 | continue; | |
2067 | ||
2068 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
2069 | ||
2070 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2071 | { | |
2072 | Elf_External_Rel *erel; | |
2073 | Elf_Internal_Rel irel; | |
2074 | ||
2075 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
2076 | elf_swap_reloc_in (abfd, erel, &irel); | |
2077 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2078 | ELF_R_TYPE (irel.r_info)); | |
2079 | elf_swap_reloc_out (abfd, &irel, erel); | |
2080 | } | |
2081 | else | |
2082 | { | |
2083 | Elf_External_Rela *erela; | |
2084 | Elf_Internal_Rela irela; | |
2085 | ||
2086 | BFD_ASSERT (rel_hdr->sh_entsize | |
2087 | == sizeof (Elf_External_Rela)); | |
2088 | ||
2089 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
2090 | elf_swap_reloca_in (abfd, erela, &irela); | |
2091 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2092 | ELF_R_TYPE (irela.r_info)); | |
2093 | elf_swap_reloca_out (abfd, &irela, erela); | |
2094 | } | |
2095 | } | |
2096 | ||
2097 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
2098 | trying to swap the relocs out itself. */ | |
2099 | o->reloc_count = 0; | |
2100 | } | |
2101 | ||
2102 | /* If we are linking against a dynamic object, or generating a | |
2103 | shared library, finish up the dynamic linking information. */ | |
2104 | if (dynamic) | |
2105 | { | |
2106 | Elf_External_Dyn *dyncon, *dynconend; | |
2107 | ||
2108 | /* Fix up .dynamic entries. */ | |
2109 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2110 | BFD_ASSERT (o != NULL); | |
2111 | ||
2112 | dyncon = (Elf_External_Dyn *) o->contents; | |
2113 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
2114 | for (; dyncon < dynconend; dyncon++) | |
2115 | { | |
2116 | Elf_Internal_Dyn dyn; | |
2117 | const char *name; | |
2118 | unsigned int type; | |
2119 | ||
2120 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
2121 | ||
2122 | switch (dyn.d_tag) | |
2123 | { | |
2124 | default: | |
2125 | break; | |
2126 | ||
2127 | /* SVR4 linkers seem to set DT_INIT and DT_FINI based on | |
2128 | magic _init and _fini symbols. This is pretty ugly, | |
2129 | but we are compatible. */ | |
2130 | case DT_INIT: | |
2131 | name = "_init"; | |
2132 | goto get_sym; | |
2133 | case DT_FINI: | |
2134 | name = "_fini"; | |
2135 | get_sym: | |
2136 | { | |
2137 | struct elf_link_hash_entry *h; | |
2138 | ||
2139 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
2140 | false, false, true); | |
d6f672b8 ILT |
2141 | if (h != NULL |
2142 | && (h->root.type == bfd_link_hash_defined | |
2143 | || h->root.type == bfd_link_hash_defweak)) | |
ede4eed4 KR |
2144 | { |
2145 | dyn.d_un.d_val = h->root.u.def.value; | |
2146 | o = h->root.u.def.section; | |
2147 | if (o->output_section != NULL) | |
2148 | dyn.d_un.d_val += (o->output_section->vma | |
2149 | + o->output_offset); | |
2150 | else | |
d6f672b8 ILT |
2151 | { |
2152 | /* The symbol is imported from another shared | |
2153 | library and does not apply to this one. */ | |
2154 | dyn.d_un.d_val = 0; | |
2155 | } | |
2156 | ||
2157 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
ede4eed4 | 2158 | } |
ede4eed4 KR |
2159 | } |
2160 | break; | |
2161 | ||
2162 | case DT_HASH: | |
2163 | name = ".hash"; | |
2164 | goto get_vma; | |
2165 | case DT_STRTAB: | |
2166 | name = ".dynstr"; | |
2167 | goto get_vma; | |
2168 | case DT_SYMTAB: | |
2169 | name = ".dynsym"; | |
2170 | get_vma: | |
2171 | o = bfd_get_section_by_name (abfd, name); | |
2172 | BFD_ASSERT (o != NULL); | |
2173 | dyn.d_un.d_ptr = o->vma; | |
2174 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2175 | break; | |
2176 | ||
2177 | case DT_REL: | |
2178 | case DT_RELA: | |
2179 | case DT_RELSZ: | |
2180 | case DT_RELASZ: | |
2181 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
2182 | type = SHT_REL; | |
2183 | else | |
2184 | type = SHT_RELA; | |
2185 | dyn.d_un.d_val = 0; | |
2186 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
2187 | { | |
2188 | Elf_Internal_Shdr *hdr; | |
2189 | ||
2190 | hdr = elf_elfsections (abfd)[i]; | |
2191 | if (hdr->sh_type == type | |
2192 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
2193 | { | |
2194 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
2195 | dyn.d_un.d_val += hdr->sh_size; | |
2196 | else | |
2197 | { | |
2198 | if (dyn.d_un.d_val == 0 | |
2199 | || hdr->sh_addr < dyn.d_un.d_val) | |
2200 | dyn.d_un.d_val = hdr->sh_addr; | |
2201 | } | |
2202 | } | |
2203 | } | |
2204 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2205 | break; | |
2206 | } | |
2207 | } | |
2208 | } | |
2209 | ||
2210 | /* If we have created any dynamic sections, then output them. */ | |
2211 | if (dynobj != NULL) | |
2212 | { | |
2213 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
2214 | goto error_return; | |
2215 | ||
2216 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2217 | { | |
2218 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
2219 | || o->_raw_size == 0) | |
2220 | continue; | |
2221 | if ((o->flags & SEC_IN_MEMORY) == 0) | |
2222 | { | |
2223 | /* At this point, we are only interested in sections | |
2224 | created by elf_link_create_dynamic_sections. FIXME: | |
2225 | This test is fragile. */ | |
2226 | continue; | |
2227 | } | |
2228 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
2229 | != SHT_STRTAB) | |
2230 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
2231 | { | |
2232 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2233 | o->contents, o->output_offset, | |
2234 | o->_raw_size)) | |
2235 | goto error_return; | |
2236 | } | |
2237 | else | |
2238 | { | |
2239 | file_ptr off; | |
2240 | ||
2241 | /* The contents of the .dynstr section are actually in a | |
2242 | stringtab. */ | |
2243 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
2244 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
2245 | || ! _bfd_stringtab_emit (abfd, | |
2246 | elf_hash_table (info)->dynstr)) | |
2247 | goto error_return; | |
2248 | } | |
2249 | } | |
2250 | } | |
2251 | ||
2252 | if (finfo.symstrtab != NULL) | |
2253 | _bfd_stringtab_free (finfo.symstrtab); | |
2254 | if (finfo.contents != NULL) | |
2255 | free (finfo.contents); | |
2256 | if (finfo.external_relocs != NULL) | |
2257 | free (finfo.external_relocs); | |
2258 | if (finfo.internal_relocs != NULL) | |
2259 | free (finfo.internal_relocs); | |
2260 | if (finfo.external_syms != NULL) | |
2261 | free (finfo.external_syms); | |
2262 | if (finfo.internal_syms != NULL) | |
2263 | free (finfo.internal_syms); | |
2264 | if (finfo.indices != NULL) | |
2265 | free (finfo.indices); | |
2266 | if (finfo.sections != NULL) | |
2267 | free (finfo.sections); | |
2268 | if (finfo.symbuf != NULL) | |
2269 | free (finfo.symbuf); | |
2270 | for (o = abfd->sections; o != NULL; o = o->next) | |
2271 | { | |
2272 | if ((o->flags & SEC_RELOC) != 0 | |
2273 | && elf_section_data (o)->rel_hashes != NULL) | |
2274 | free (elf_section_data (o)->rel_hashes); | |
2275 | } | |
2276 | ||
2277 | elf_tdata (abfd)->linker = true; | |
2278 | ||
2279 | return true; | |
2280 | ||
2281 | error_return: | |
2282 | if (finfo.symstrtab != NULL) | |
2283 | _bfd_stringtab_free (finfo.symstrtab); | |
2284 | if (finfo.contents != NULL) | |
2285 | free (finfo.contents); | |
2286 | if (finfo.external_relocs != NULL) | |
2287 | free (finfo.external_relocs); | |
2288 | if (finfo.internal_relocs != NULL) | |
2289 | free (finfo.internal_relocs); | |
2290 | if (finfo.external_syms != NULL) | |
2291 | free (finfo.external_syms); | |
2292 | if (finfo.internal_syms != NULL) | |
2293 | free (finfo.internal_syms); | |
2294 | if (finfo.indices != NULL) | |
2295 | free (finfo.indices); | |
2296 | if (finfo.sections != NULL) | |
2297 | free (finfo.sections); | |
2298 | if (finfo.symbuf != NULL) | |
2299 | free (finfo.symbuf); | |
2300 | for (o = abfd->sections; o != NULL; o = o->next) | |
2301 | { | |
2302 | if ((o->flags & SEC_RELOC) != 0 | |
2303 | && elf_section_data (o)->rel_hashes != NULL) | |
2304 | free (elf_section_data (o)->rel_hashes); | |
2305 | } | |
2306 | ||
2307 | return false; | |
2308 | } | |
2309 | ||
2310 | /* Add a symbol to the output symbol table. */ | |
2311 | ||
2312 | static boolean | |
2313 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
2314 | struct elf_final_link_info *finfo; | |
2315 | const char *name; | |
2316 | Elf_Internal_Sym *elfsym; | |
2317 | asection *input_sec; | |
2318 | { | |
2319 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
2320 | struct bfd_link_info *info, | |
2321 | const char *, | |
2322 | Elf_Internal_Sym *, | |
2323 | asection *)); | |
2324 | ||
2325 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
2326 | elf_backend_link_output_symbol_hook; | |
2327 | if (output_symbol_hook != NULL) | |
2328 | { | |
2329 | if (! ((*output_symbol_hook) | |
2330 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
2331 | return false; | |
2332 | } | |
2333 | ||
2334 | if (name == (const char *) NULL || *name == '\0') | |
2335 | elfsym->st_name = 0; | |
2336 | else | |
2337 | { | |
2338 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
2339 | name, true, | |
2340 | false); | |
2341 | if (elfsym->st_name == (unsigned long) -1) | |
2342 | return false; | |
2343 | } | |
2344 | ||
2345 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
2346 | { | |
2347 | if (! elf_link_flush_output_syms (finfo)) | |
2348 | return false; | |
2349 | } | |
2350 | ||
2351 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
cf9fb9f2 | 2352 | (PTR) (finfo->symbuf + finfo->symbuf_count)); |
ede4eed4 KR |
2353 | ++finfo->symbuf_count; |
2354 | ||
2355 | ++finfo->output_bfd->symcount; | |
2356 | ||
2357 | return true; | |
2358 | } | |
2359 | ||
2360 | /* Flush the output symbols to the file. */ | |
2361 | ||
2362 | static boolean | |
2363 | elf_link_flush_output_syms (finfo) | |
2364 | struct elf_final_link_info *finfo; | |
2365 | { | |
2366 | Elf_Internal_Shdr *symtab; | |
2367 | ||
2368 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
2369 | ||
2370 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
2371 | SEEK_SET) != 0 | |
2372 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
2373 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
2374 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
2375 | return false; | |
2376 | ||
2377 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
2378 | ||
2379 | finfo->symbuf_count = 0; | |
2380 | ||
2381 | return true; | |
2382 | } | |
2383 | ||
2384 | /* Add an external symbol to the symbol table. This is called from | |
2385 | the hash table traversal routine. */ | |
2386 | ||
2387 | static boolean | |
2388 | elf_link_output_extsym (h, data) | |
2389 | struct elf_link_hash_entry *h; | |
2390 | PTR data; | |
2391 | { | |
2392 | struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data; | |
2393 | struct elf_final_link_info *finfo = eif->finfo; | |
2394 | boolean strip; | |
2395 | Elf_Internal_Sym sym; | |
2396 | asection *input_sec; | |
2397 | ||
2398 | /* If we are not creating a shared library, and this symbol is | |
2399 | referenced by a shared library but is not defined anywhere, then | |
2400 | warn that it is undefined. If we do not do this, the runtime | |
2401 | linker will complain that the symbol is undefined when the | |
2402 | program is run. We don't have to worry about symbols that are | |
2403 | referenced by regular files, because we will already have issued | |
2404 | warnings for them. */ | |
2405 | if (! finfo->info->relocateable | |
2406 | && ! finfo->info->shared | |
2407 | && h->root.type == bfd_link_hash_undefined | |
2408 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
2409 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
2410 | { | |
2411 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
2412 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
2413 | (asection *) NULL, 0))) | |
2414 | { | |
2415 | eif->failed = true; | |
2416 | return false; | |
2417 | } | |
2418 | } | |
2419 | ||
2420 | /* We don't want to output symbols that have never been mentioned by | |
2421 | a regular file, or that we have been told to strip. However, if | |
2422 | h->indx is set to -2, the symbol is used by a reloc and we must | |
2423 | output it. */ | |
2424 | if (h->indx == -2) | |
2425 | strip = false; | |
2426 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2427 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
2428 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2429 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
2430 | strip = true; | |
2431 | else if (finfo->info->strip == strip_all | |
2432 | || (finfo->info->strip == strip_some | |
2433 | && bfd_hash_lookup (finfo->info->keep_hash, | |
2434 | h->root.root.string, | |
2435 | false, false) == NULL)) | |
2436 | strip = true; | |
2437 | else | |
2438 | strip = false; | |
2439 | ||
2440 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
2441 | nothing else to do. */ | |
2442 | if (strip && h->dynindx == -1) | |
2443 | return true; | |
2444 | ||
2445 | sym.st_value = 0; | |
2446 | sym.st_size = h->size; | |
2447 | sym.st_other = 0; | |
2448 | if (h->root.type == bfd_link_hash_undefweak | |
2449 | || h->root.type == bfd_link_hash_defweak) | |
2450 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
2451 | else | |
2452 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
2453 | ||
2454 | switch (h->root.type) | |
2455 | { | |
2456 | default: | |
2457 | case bfd_link_hash_new: | |
2458 | abort (); | |
2459 | return false; | |
2460 | ||
2461 | case bfd_link_hash_undefined: | |
2462 | input_sec = bfd_und_section_ptr; | |
2463 | sym.st_shndx = SHN_UNDEF; | |
2464 | break; | |
2465 | ||
2466 | case bfd_link_hash_undefweak: | |
2467 | input_sec = bfd_und_section_ptr; | |
2468 | sym.st_shndx = SHN_UNDEF; | |
2469 | break; | |
2470 | ||
2471 | case bfd_link_hash_defined: | |
2472 | case bfd_link_hash_defweak: | |
2473 | { | |
2474 | input_sec = h->root.u.def.section; | |
2475 | if (input_sec->output_section != NULL) | |
2476 | { | |
2477 | sym.st_shndx = | |
2478 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
2479 | input_sec->output_section); | |
2480 | if (sym.st_shndx == (unsigned short) -1) | |
2481 | { | |
2482 | eif->failed = true; | |
2483 | return false; | |
2484 | } | |
2485 | ||
2486 | /* ELF symbols in relocateable files are section relative, | |
2487 | but in nonrelocateable files they are virtual | |
2488 | addresses. */ | |
2489 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
2490 | if (! finfo->info->relocateable) | |
2491 | sym.st_value += input_sec->output_section->vma; | |
2492 | } | |
2493 | else | |
2494 | { | |
2495 | BFD_ASSERT ((bfd_get_flavour (input_sec->owner) | |
2496 | == bfd_target_elf_flavour) | |
2497 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); | |
2498 | sym.st_shndx = SHN_UNDEF; | |
2499 | input_sec = bfd_und_section_ptr; | |
2500 | } | |
2501 | } | |
2502 | break; | |
2503 | ||
2504 | case bfd_link_hash_common: | |
2505 | input_sec = bfd_com_section_ptr; | |
2506 | sym.st_shndx = SHN_COMMON; | |
2507 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
2508 | break; | |
2509 | ||
2510 | case bfd_link_hash_indirect: | |
2511 | case bfd_link_hash_warning: | |
1f4ae0d6 ILT |
2512 | /* We can't represent these symbols in ELF. A warning symbol |
2513 | may have come from a .gnu.warning.SYMBOL section anyhow. We | |
2514 | just put the target symbol in the hash table. If the target | |
2515 | symbol does not really exist, don't do anything. */ | |
2516 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
2517 | return true; | |
0cb70568 ILT |
2518 | return (elf_link_output_extsym |
2519 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
ede4eed4 KR |
2520 | } |
2521 | ||
2522 | /* If this symbol should be put in the .dynsym section, then put it | |
2523 | there now. We have already know the symbol index. We also fill | |
2524 | in the entry in the .hash section. */ | |
2525 | if (h->dynindx != -1 | |
2526 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
2527 | { | |
2528 | struct elf_backend_data *bed; | |
2529 | size_t bucketcount; | |
2530 | size_t bucket; | |
2531 | bfd_byte *bucketpos; | |
2532 | bfd_vma chain; | |
2533 | ||
2534 | sym.st_name = h->dynstr_index; | |
2535 | ||
2536 | /* Give the processor backend a chance to tweak the symbol | |
2537 | value, and also to finish up anything that needs to be done | |
2538 | for this symbol. */ | |
2539 | bed = get_elf_backend_data (finfo->output_bfd); | |
2540 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
2541 | (finfo->output_bfd, finfo->info, h, &sym))) | |
2542 | { | |
2543 | eif->failed = true; | |
2544 | return false; | |
2545 | } | |
2546 | ||
2547 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
cf9fb9f2 ILT |
2548 | (PTR) (((Elf_External_Sym *) |
2549 | finfo->dynsym_sec->contents) | |
2550 | + h->dynindx)); | |
ede4eed4 KR |
2551 | |
2552 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
2553 | bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string) | |
2554 | % bucketcount); | |
2555 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |
2556 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
2557 | chain = get_word (finfo->output_bfd, bucketpos); | |
2558 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
2559 | put_word (finfo->output_bfd, chain, | |
2560 | ((bfd_byte *) finfo->hash_sec->contents | |
2561 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
2562 | } | |
2563 | ||
2564 | /* If we're stripping it, then it was just a dynamic symbol, and | |
2565 | there's nothing else to do. */ | |
2566 | if (strip) | |
2567 | return true; | |
2568 | ||
2569 | h->indx = finfo->output_bfd->symcount; | |
2570 | ||
2571 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
2572 | { | |
2573 | eif->failed = true; | |
2574 | return false; | |
2575 | } | |
2576 | ||
2577 | return true; | |
2578 | } | |
2579 | ||
2580 | /* Link an input file into the linker output file. This function | |
2581 | handles all the sections and relocations of the input file at once. | |
2582 | This is so that we only have to read the local symbols once, and | |
2583 | don't have to keep them in memory. */ | |
2584 | ||
2585 | static boolean | |
2586 | elf_link_input_bfd (finfo, input_bfd) | |
2587 | struct elf_final_link_info *finfo; | |
2588 | bfd *input_bfd; | |
2589 | { | |
2590 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
2591 | bfd *, asection *, bfd_byte *, | |
2592 | Elf_Internal_Rela *, | |
2593 | Elf_Internal_Sym *, asection **)); | |
2594 | bfd *output_bfd; | |
2595 | Elf_Internal_Shdr *symtab_hdr; | |
2596 | size_t locsymcount; | |
2597 | size_t extsymoff; | |
2598 | Elf_External_Sym *esym; | |
2599 | Elf_External_Sym *esymend; | |
2600 | Elf_Internal_Sym *isym; | |
2601 | long *pindex; | |
2602 | asection **ppsection; | |
2603 | asection *o; | |
2604 | ||
2605 | output_bfd = finfo->output_bfd; | |
2606 | relocate_section = | |
2607 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
2608 | ||
2609 | /* If this is a dynamic object, we don't want to do anything here: | |
2610 | we don't want the local symbols, and we don't want the section | |
2611 | contents. */ | |
2612 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
2613 | return true; | |
2614 | ||
2615 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2616 | if (elf_bad_symtab (input_bfd)) | |
2617 | { | |
2618 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
2619 | extsymoff = 0; | |
2620 | } | |
2621 | else | |
2622 | { | |
2623 | locsymcount = symtab_hdr->sh_info; | |
2624 | extsymoff = symtab_hdr->sh_info; | |
2625 | } | |
2626 | ||
2627 | /* Read the local symbols. */ | |
2628 | if (locsymcount > 0 | |
2629 | && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
2630 | || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym), | |
2631 | locsymcount, input_bfd) | |
2632 | != locsymcount * sizeof (Elf_External_Sym)))) | |
2633 | return false; | |
2634 | ||
2635 | /* Swap in the local symbols and write out the ones which we know | |
2636 | are going into the output file. */ | |
2637 | esym = finfo->external_syms; | |
2638 | esymend = esym + locsymcount; | |
2639 | isym = finfo->internal_syms; | |
2640 | pindex = finfo->indices; | |
2641 | ppsection = finfo->sections; | |
2642 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
2643 | { | |
2644 | asection *isec; | |
2645 | const char *name; | |
2646 | Elf_Internal_Sym osym; | |
2647 | ||
2648 | elf_swap_symbol_in (input_bfd, esym, isym); | |
2649 | *pindex = -1; | |
2650 | ||
2651 | if (elf_bad_symtab (input_bfd)) | |
2652 | { | |
2653 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
2654 | { | |
2655 | *ppsection = NULL; | |
2656 | continue; | |
2657 | } | |
2658 | } | |
2659 | ||
2660 | if (isym->st_shndx == SHN_UNDEF) | |
2661 | isec = bfd_und_section_ptr; | |
2662 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
2663 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
2664 | else if (isym->st_shndx == SHN_ABS) | |
2665 | isec = bfd_abs_section_ptr; | |
2666 | else if (isym->st_shndx == SHN_COMMON) | |
2667 | isec = bfd_com_section_ptr; | |
2668 | else | |
2669 | { | |
2670 | /* Who knows? */ | |
2671 | isec = NULL; | |
2672 | } | |
2673 | ||
2674 | *ppsection = isec; | |
2675 | ||
2676 | /* Don't output the first, undefined, symbol. */ | |
2677 | if (esym == finfo->external_syms) | |
2678 | continue; | |
2679 | ||
2680 | /* If we are stripping all symbols, we don't want to output this | |
2681 | one. */ | |
2682 | if (finfo->info->strip == strip_all) | |
2683 | continue; | |
2684 | ||
2685 | /* We never output section symbols. Instead, we use the section | |
2686 | symbol of the corresponding section in the output file. */ | |
2687 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2688 | continue; | |
2689 | ||
2690 | /* If we are discarding all local symbols, we don't want to | |
2691 | output this one. If we are generating a relocateable output | |
2692 | file, then some of the local symbols may be required by | |
2693 | relocs; we output them below as we discover that they are | |
2694 | needed. */ | |
2695 | if (finfo->info->discard == discard_all) | |
2696 | continue; | |
2697 | ||
2698 | /* Get the name of the symbol. */ | |
2699 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
2700 | isym->st_name); | |
2701 | if (name == NULL) | |
2702 | return false; | |
2703 | ||
2704 | /* See if we are discarding symbols with this name. */ | |
2705 | if ((finfo->info->strip == strip_some | |
2706 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
2707 | == NULL)) | |
2708 | || (finfo->info->discard == discard_l | |
2709 | && strncmp (name, finfo->info->lprefix, | |
2710 | finfo->info->lprefix_len) == 0)) | |
2711 | continue; | |
2712 | ||
2713 | /* If we get here, we are going to output this symbol. */ | |
2714 | ||
2715 | osym = *isym; | |
2716 | ||
2717 | /* Adjust the section index for the output file. */ | |
2718 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
2719 | isec->output_section); | |
2720 | if (osym.st_shndx == (unsigned short) -1) | |
2721 | return false; | |
2722 | ||
2723 | *pindex = output_bfd->symcount; | |
2724 | ||
2725 | /* ELF symbols in relocateable files are section relative, but | |
2726 | in executable files they are virtual addresses. Note that | |
2727 | this code assumes that all ELF sections have an associated | |
2728 | BFD section with a reasonable value for output_offset; below | |
2729 | we assume that they also have a reasonable value for | |
2730 | output_section. Any special sections must be set up to meet | |
2731 | these requirements. */ | |
2732 | osym.st_value += isec->output_offset; | |
2733 | if (! finfo->info->relocateable) | |
2734 | osym.st_value += isec->output_section->vma; | |
2735 | ||
2736 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
2737 | return false; | |
2738 | } | |
2739 | ||
2740 | /* Relocate the contents of each section. */ | |
2741 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
2742 | { | |
2743 | if ((o->flags & SEC_HAS_CONTENTS) == 0) | |
2744 | continue; | |
2745 | ||
2746 | if ((o->flags & SEC_IN_MEMORY) != 0 | |
2747 | && input_bfd == elf_hash_table (finfo->info)->dynobj) | |
2748 | { | |
2749 | /* Section was created by elf_link_create_dynamic_sections. | |
2750 | FIXME: This test is fragile. */ | |
2751 | continue; | |
2752 | } | |
2753 | ||
2754 | /* Read the contents of the section. */ | |
2755 | if (! bfd_get_section_contents (input_bfd, o, finfo->contents, | |
2756 | (file_ptr) 0, o->_raw_size)) | |
2757 | return false; | |
2758 | ||
2759 | if ((o->flags & SEC_RELOC) != 0) | |
2760 | { | |
2761 | Elf_Internal_Rela *internal_relocs; | |
2762 | ||
2763 | /* Get the swapped relocs. */ | |
2764 | internal_relocs = elf_link_read_relocs (input_bfd, o, | |
2765 | finfo->external_relocs, | |
2766 | finfo->internal_relocs, | |
2767 | false); | |
2768 | if (internal_relocs == NULL | |
2769 | && o->reloc_count > 0) | |
2770 | return false; | |
2771 | ||
2772 | /* Relocate the section by invoking a back end routine. | |
2773 | ||
2774 | The back end routine is responsible for adjusting the | |
2775 | section contents as necessary, and (if using Rela relocs | |
2776 | and generating a relocateable output file) adjusting the | |
2777 | reloc addend as necessary. | |
2778 | ||
2779 | The back end routine does not have to worry about setting | |
2780 | the reloc address or the reloc symbol index. | |
2781 | ||
2782 | The back end routine is given a pointer to the swapped in | |
2783 | internal symbols, and can access the hash table entries | |
2784 | for the external symbols via elf_sym_hashes (input_bfd). | |
2785 | ||
2786 | When generating relocateable output, the back end routine | |
2787 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
2788 | output symbol is going to be a section symbol | |
2789 | corresponding to the output section, which will require | |
2790 | the addend to be adjusted. */ | |
2791 | ||
2792 | if (! (*relocate_section) (output_bfd, finfo->info, | |
2793 | input_bfd, o, | |
2794 | finfo->contents, | |
2795 | internal_relocs, | |
2796 | finfo->internal_syms, | |
2797 | finfo->sections)) | |
2798 | return false; | |
2799 | ||
2800 | if (finfo->info->relocateable) | |
2801 | { | |
2802 | Elf_Internal_Rela *irela; | |
2803 | Elf_Internal_Rela *irelaend; | |
2804 | struct elf_link_hash_entry **rel_hash; | |
2805 | Elf_Internal_Shdr *input_rel_hdr; | |
2806 | Elf_Internal_Shdr *output_rel_hdr; | |
2807 | ||
2808 | /* Adjust the reloc addresses and symbol indices. */ | |
2809 | ||
2810 | irela = internal_relocs; | |
2811 | irelaend = irela + o->reloc_count; | |
2812 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
2813 | + o->output_section->reloc_count); | |
2814 | for (; irela < irelaend; irela++, rel_hash++) | |
2815 | { | |
ae115e51 | 2816 | unsigned long r_symndx; |
ede4eed4 KR |
2817 | Elf_Internal_Sym *isym; |
2818 | asection *sec; | |
2819 | ||
2820 | irela->r_offset += o->output_offset; | |
2821 | ||
2822 | r_symndx = ELF_R_SYM (irela->r_info); | |
2823 | ||
2824 | if (r_symndx == 0) | |
2825 | continue; | |
2826 | ||
2827 | if (r_symndx >= locsymcount | |
2828 | || (elf_bad_symtab (input_bfd) | |
2829 | && finfo->sections[r_symndx] == NULL)) | |
2830 | { | |
2831 | long indx; | |
2832 | ||
2833 | /* This is a reloc against a global symbol. We | |
2834 | have not yet output all the local symbols, so | |
2835 | we do not know the symbol index of any global | |
2836 | symbol. We set the rel_hash entry for this | |
2837 | reloc to point to the global hash table entry | |
2838 | for this symbol. The symbol index is then | |
2839 | set at the end of elf_bfd_final_link. */ | |
2840 | indx = r_symndx - extsymoff; | |
2841 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; | |
2842 | ||
2843 | /* Setting the index to -2 tells | |
2844 | elf_link_output_extsym that this symbol is | |
2845 | used by a reloc. */ | |
2846 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
2847 | (*rel_hash)->indx = -2; | |
2848 | ||
2849 | continue; | |
2850 | } | |
2851 | ||
2852 | /* This is a reloc against a local symbol. */ | |
2853 | ||
2854 | *rel_hash = NULL; | |
2855 | isym = finfo->internal_syms + r_symndx; | |
2856 | sec = finfo->sections[r_symndx]; | |
2857 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2858 | { | |
2859 | /* I suppose the backend ought to fill in the | |
2860 | section of any STT_SECTION symbol against a | |
2861 | processor specific section. */ | |
2862 | if (sec != NULL && bfd_is_abs_section (sec)) | |
2863 | r_symndx = 0; | |
2864 | else if (sec == NULL || sec->owner == NULL) | |
2865 | { | |
2866 | bfd_set_error (bfd_error_bad_value); | |
2867 | return false; | |
2868 | } | |
2869 | else | |
2870 | { | |
2871 | r_symndx = sec->output_section->target_index; | |
2872 | BFD_ASSERT (r_symndx != 0); | |
2873 | } | |
2874 | } | |
2875 | else | |
2876 | { | |
2877 | if (finfo->indices[r_symndx] == -1) | |
2878 | { | |
2879 | unsigned long link; | |
2880 | const char *name; | |
2881 | asection *osec; | |
2882 | ||
2883 | if (finfo->info->strip == strip_all) | |
2884 | { | |
2885 | /* You can't do ld -r -s. */ | |
2886 | bfd_set_error (bfd_error_invalid_operation); | |
2887 | return false; | |
2888 | } | |
2889 | ||
2890 | /* This symbol was skipped earlier, but | |
2891 | since it is needed by a reloc, we | |
2892 | must output it now. */ | |
2893 | link = symtab_hdr->sh_link; | |
2894 | name = bfd_elf_string_from_elf_section (input_bfd, | |
2895 | link, | |
2896 | isym->st_name); | |
2897 | if (name == NULL) | |
2898 | return false; | |
2899 | ||
2900 | osec = sec->output_section; | |
2901 | isym->st_shndx = | |
2902 | _bfd_elf_section_from_bfd_section (output_bfd, | |
2903 | osec); | |
2904 | if (isym->st_shndx == (unsigned short) -1) | |
2905 | return false; | |
2906 | ||
2907 | isym->st_value += sec->output_offset; | |
2908 | if (! finfo->info->relocateable) | |
2909 | isym->st_value += osec->vma; | |
2910 | ||
2911 | finfo->indices[r_symndx] = output_bfd->symcount; | |
2912 | ||
2913 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
2914 | return false; | |
2915 | } | |
2916 | ||
2917 | r_symndx = finfo->indices[r_symndx]; | |
2918 | } | |
2919 | ||
2920 | irela->r_info = ELF_R_INFO (r_symndx, | |
2921 | ELF_R_TYPE (irela->r_info)); | |
2922 | } | |
2923 | ||
2924 | /* Swap out the relocs. */ | |
2925 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
2926 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; | |
2927 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
2928 | == input_rel_hdr->sh_entsize); | |
2929 | irela = internal_relocs; | |
2930 | irelaend = irela + o->reloc_count; | |
2931 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2932 | { | |
2933 | Elf_External_Rel *erel; | |
2934 | ||
2935 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
2936 | + o->output_section->reloc_count); | |
2937 | for (; irela < irelaend; irela++, erel++) | |
2938 | { | |
2939 | Elf_Internal_Rel irel; | |
2940 | ||
2941 | irel.r_offset = irela->r_offset; | |
2942 | irel.r_info = irela->r_info; | |
2943 | BFD_ASSERT (irela->r_addend == 0); | |
2944 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
2945 | } | |
2946 | } | |
2947 | else | |
2948 | { | |
2949 | Elf_External_Rela *erela; | |
2950 | ||
2951 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
2952 | == sizeof (Elf_External_Rela)); | |
2953 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
2954 | + o->output_section->reloc_count); | |
2955 | for (; irela < irelaend; irela++, erela++) | |
2956 | elf_swap_reloca_out (output_bfd, irela, erela); | |
2957 | } | |
2958 | ||
2959 | o->output_section->reloc_count += o->reloc_count; | |
2960 | } | |
2961 | } | |
2962 | ||
2963 | /* Write out the modified section contents. */ | |
2964 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
2965 | finfo->contents, o->output_offset, | |
2966 | (o->_cooked_size != 0 | |
2967 | ? o->_cooked_size | |
2968 | : o->_raw_size))) | |
2969 | return false; | |
2970 | } | |
2971 | ||
2972 | return true; | |
2973 | } | |
2974 | ||
2975 | /* Generate a reloc when linking an ELF file. This is a reloc | |
2976 | requested by the linker, and does come from any input file. This | |
2977 | is used to build constructor and destructor tables when linking | |
2978 | with -Ur. */ | |
2979 | ||
2980 | static boolean | |
2981 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
2982 | bfd *output_bfd; | |
2983 | struct bfd_link_info *info; | |
2984 | asection *output_section; | |
2985 | struct bfd_link_order *link_order; | |
2986 | { | |
2987 | reloc_howto_type *howto; | |
2988 | long indx; | |
2989 | bfd_vma offset; | |
2990 | struct elf_link_hash_entry **rel_hash_ptr; | |
2991 | Elf_Internal_Shdr *rel_hdr; | |
2992 | ||
2993 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
2994 | if (howto == NULL) | |
2995 | { | |
2996 | bfd_set_error (bfd_error_bad_value); | |
2997 | return false; | |
2998 | } | |
2999 | ||
3000 | /* If this is an inplace reloc, we must write the addend into the | |
3001 | object file. */ | |
3002 | if (howto->partial_inplace | |
3003 | && link_order->u.reloc.p->addend != 0) | |
3004 | { | |
3005 | bfd_size_type size; | |
3006 | bfd_reloc_status_type rstat; | |
3007 | bfd_byte *buf; | |
3008 | boolean ok; | |
3009 | ||
3010 | size = bfd_get_reloc_size (howto); | |
3011 | buf = (bfd_byte *) bfd_zmalloc (size); | |
3012 | if (buf == (bfd_byte *) NULL) | |
a9713b91 | 3013 | return false; |
ede4eed4 KR |
3014 | rstat = _bfd_relocate_contents (howto, output_bfd, |
3015 | link_order->u.reloc.p->addend, buf); | |
3016 | switch (rstat) | |
3017 | { | |
3018 | case bfd_reloc_ok: | |
3019 | break; | |
3020 | default: | |
3021 | case bfd_reloc_outofrange: | |
3022 | abort (); | |
3023 | case bfd_reloc_overflow: | |
3024 | if (! ((*info->callbacks->reloc_overflow) | |
3025 | (info, | |
3026 | (link_order->type == bfd_section_reloc_link_order | |
3027 | ? bfd_section_name (output_bfd, | |
3028 | link_order->u.reloc.p->u.section) | |
3029 | : link_order->u.reloc.p->u.name), | |
3030 | howto->name, link_order->u.reloc.p->addend, | |
3031 | (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) | |
3032 | { | |
3033 | free (buf); | |
3034 | return false; | |
3035 | } | |
3036 | break; | |
3037 | } | |
3038 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
3039 | (file_ptr) link_order->offset, size); | |
3040 | free (buf); | |
3041 | if (! ok) | |
3042 | return false; | |
3043 | } | |
3044 | ||
3045 | /* Figure out the symbol index. */ | |
3046 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
3047 | + output_section->reloc_count); | |
3048 | if (link_order->type == bfd_section_reloc_link_order) | |
3049 | { | |
3050 | indx = link_order->u.reloc.p->u.section->target_index; | |
3051 | BFD_ASSERT (indx != 0); | |
3052 | *rel_hash_ptr = NULL; | |
3053 | } | |
3054 | else | |
3055 | { | |
3056 | struct elf_link_hash_entry *h; | |
3057 | ||
3058 | h = elf_link_hash_lookup (elf_hash_table (info), | |
3059 | link_order->u.reloc.p->u.name, | |
3060 | false, false, true); | |
3061 | if (h != NULL) | |
3062 | { | |
3063 | /* Setting the index to -2 tells elf_link_output_extsym that | |
3064 | this symbol is used by a reloc. */ | |
3065 | h->indx = -2; | |
3066 | *rel_hash_ptr = h; | |
3067 | indx = 0; | |
3068 | } | |
3069 | else | |
3070 | { | |
3071 | if (! ((*info->callbacks->unattached_reloc) | |
3072 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
3073 | (asection *) NULL, (bfd_vma) 0))) | |
3074 | return false; | |
3075 | indx = 0; | |
3076 | } | |
3077 | } | |
3078 | ||
3079 | /* The address of a reloc is relative to the section in a | |
3080 | relocateable file, and is a virtual address in an executable | |
3081 | file. */ | |
3082 | offset = link_order->offset; | |
3083 | if (! info->relocateable) | |
3084 | offset += output_section->vma; | |
3085 | ||
3086 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
3087 | ||
3088 | if (rel_hdr->sh_type == SHT_REL) | |
3089 | { | |
3090 | Elf_Internal_Rel irel; | |
3091 | Elf_External_Rel *erel; | |
3092 | ||
3093 | irel.r_offset = offset; | |
3094 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
3095 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
3096 | + output_section->reloc_count); | |
3097 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
3098 | } | |
3099 | else | |
3100 | { | |
3101 | Elf_Internal_Rela irela; | |
3102 | Elf_External_Rela *erela; | |
3103 | ||
3104 | irela.r_offset = offset; | |
3105 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
3106 | irela.r_addend = link_order->u.reloc.p->addend; | |
3107 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
3108 | + output_section->reloc_count); | |
3109 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
3110 | } | |
3111 | ||
3112 | ++output_section->reloc_count; | |
3113 | ||
3114 | return true; | |
3115 | } | |
3116 |