]>
Commit | Line | Data |
---|---|---|
d16aafd8 | 1 | /* Floating point routines for GDB, the GNU debugger. |
f1908289 | 2 | |
32d0add0 | 3 | Copyright (C) 1986-2015 Free Software Foundation, Inc. |
d16aafd8 AC |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
d16aafd8 AC |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
d16aafd8 AC |
19 | |
20 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
21 | ||
22 | /* XXX - This code should really be in libiberty/floatformat.c, | |
23 | however configuration issues with libiberty made this very | |
24 | difficult to do in the available time. */ | |
25 | ||
26 | #include "defs.h" | |
27 | #include "doublest.h" | |
28 | #include "floatformat.h" | |
96d2f608 | 29 | #include "gdbtypes.h" |
d16aafd8 AC |
30 | #include <math.h> /* ldexp */ |
31 | ||
32 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
33 | going to bother with trying to muck around with whether it is defined in | |
34 | a system header, what we do if not, etc. */ | |
35 | #define FLOATFORMAT_CHAR_BIT 8 | |
36 | ||
fcab3fb5 RE |
37 | /* The number of bytes that the largest floating-point type that we |
38 | can convert to doublest will need. */ | |
39 | #define FLOATFORMAT_LARGEST_BYTES 16 | |
40 | ||
d16aafd8 AC |
41 | /* Extract a field which starts at START and is LEN bytes long. DATA and |
42 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
43 | static unsigned long | |
108d6ead | 44 | get_field (const bfd_byte *data, enum floatformat_byteorders order, |
d16aafd8 AC |
45 | unsigned int total_len, unsigned int start, unsigned int len) |
46 | { | |
47 | unsigned long result; | |
48 | unsigned int cur_byte; | |
49 | int cur_bitshift; | |
50 | ||
fcab3fb5 RE |
51 | /* Caller must byte-swap words before calling this routine. */ |
52 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
53 | ||
d16aafd8 | 54 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 55 | if (order == floatformat_little) |
d16aafd8 AC |
56 | { |
57 | /* We start counting from the other end (i.e, from the high bytes | |
58 | rather than the low bytes). As such, we need to be concerned | |
0963b4bd | 59 | with what happens if bit 0 doesn't start on a byte boundary. |
d16aafd8 AC |
60 | I.e, we need to properly handle the case where total_len is |
61 | not evenly divisible by 8. So we compute ``excess'' which | |
62 | represents the number of bits from the end of our starting | |
0963b4bd | 63 | byte needed to get to bit 0. */ |
d16aafd8 | 64 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); |
9a619af0 | 65 | |
d16aafd8 AC |
66 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) |
67 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
68 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
69 | - FLOATFORMAT_CHAR_BIT; | |
70 | } | |
71 | else | |
72 | { | |
73 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
74 | cur_bitshift = | |
75 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
76 | } | |
77 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
78 | result = *(data + cur_byte) >> (-cur_bitshift); | |
79 | else | |
80 | result = 0; | |
81 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 82 | if (order == floatformat_little) |
d16aafd8 AC |
83 | ++cur_byte; |
84 | else | |
85 | --cur_byte; | |
86 | ||
87 | /* Move towards the most significant part of the field. */ | |
88 | while (cur_bitshift < len) | |
89 | { | |
90 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; | |
91 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
c35f4ffc AC |
92 | switch (order) |
93 | { | |
94 | case floatformat_little: | |
95 | ++cur_byte; | |
96 | break; | |
97 | case floatformat_big: | |
98 | --cur_byte; | |
99 | break; | |
c35f4ffc | 100 | } |
d16aafd8 AC |
101 | } |
102 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) | |
0963b4bd | 103 | /* Mask out bits which are not part of the field. */ |
d16aafd8 AC |
104 | result &= ((1UL << len) - 1); |
105 | return result; | |
106 | } | |
107 | ||
0a3e99f6 MK |
108 | /* Normalize the byte order of FROM into TO. If no normalization is |
109 | needed then FMT->byteorder is returned and TO is not changed; | |
110 | otherwise the format of the normalized form in TO is returned. */ | |
111 | ||
fcab3fb5 RE |
112 | static enum floatformat_byteorders |
113 | floatformat_normalize_byteorder (const struct floatformat *fmt, | |
114 | const void *from, void *to) | |
115 | { | |
116 | const unsigned char *swapin; | |
117 | unsigned char *swapout; | |
118 | int words; | |
119 | ||
120 | if (fmt->byteorder == floatformat_little | |
121 | || fmt->byteorder == floatformat_big) | |
122 | return fmt->byteorder; | |
123 | ||
fcab3fb5 RE |
124 | words = fmt->totalsize / FLOATFORMAT_CHAR_BIT; |
125 | words >>= 2; | |
126 | ||
127 | swapout = (unsigned char *)to; | |
128 | swapin = (const unsigned char *)from; | |
129 | ||
0a3e99f6 MK |
130 | if (fmt->byteorder == floatformat_vax) |
131 | { | |
132 | while (words-- > 0) | |
133 | { | |
134 | *swapout++ = swapin[1]; | |
135 | *swapout++ = swapin[0]; | |
136 | *swapout++ = swapin[3]; | |
137 | *swapout++ = swapin[2]; | |
138 | swapin += 4; | |
139 | } | |
140 | /* This may look weird, since VAX is little-endian, but it is | |
141 | easier to translate to big-endian than to little-endian. */ | |
142 | return floatformat_big; | |
143 | } | |
144 | else | |
fcab3fb5 | 145 | { |
0a3e99f6 MK |
146 | gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword); |
147 | ||
148 | while (words-- > 0) | |
149 | { | |
150 | *swapout++ = swapin[3]; | |
151 | *swapout++ = swapin[2]; | |
152 | *swapout++ = swapin[1]; | |
153 | *swapout++ = swapin[0]; | |
154 | swapin += 4; | |
155 | } | |
156 | return floatformat_big; | |
fcab3fb5 | 157 | } |
fcab3fb5 RE |
158 | } |
159 | ||
d16aafd8 AC |
160 | /* Convert from FMT to a DOUBLEST. |
161 | FROM is the address of the extended float. | |
162 | Store the DOUBLEST in *TO. */ | |
163 | ||
c422e771 AC |
164 | static void |
165 | convert_floatformat_to_doublest (const struct floatformat *fmt, | |
166 | const void *from, | |
167 | DOUBLEST *to) | |
d16aafd8 AC |
168 | { |
169 | unsigned char *ufrom = (unsigned char *) from; | |
170 | DOUBLEST dto; | |
171 | long exponent; | |
172 | unsigned long mant; | |
173 | unsigned int mant_bits, mant_off; | |
174 | int mant_bits_left; | |
0963b4bd | 175 | int special_exponent; /* It's a NaN, denorm or zero. */ |
fcab3fb5 RE |
176 | enum floatformat_byteorders order; |
177 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 178 | enum float_kind kind; |
fcab3fb5 RE |
179 | |
180 | gdb_assert (fmt->totalsize | |
181 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
d16aafd8 | 182 | |
20389057 DJ |
183 | /* For non-numbers, reuse libiberty's logic to find the correct |
184 | format. We do not lose any precision in this case by passing | |
185 | through a double. */ | |
186 | kind = floatformat_classify (fmt, from); | |
187 | if (kind == float_infinite || kind == float_nan) | |
188 | { | |
189 | double dto; | |
9a619af0 | 190 | |
f5aee5ee AM |
191 | floatformat_to_double (fmt->split_half ? fmt->split_half : fmt, |
192 | from, &dto); | |
20389057 DJ |
193 | *to = (DOUBLEST) dto; |
194 | return; | |
195 | } | |
196 | ||
fcab3fb5 | 197 | order = floatformat_normalize_byteorder (fmt, ufrom, newfrom); |
d16aafd8 | 198 | |
fcab3fb5 RE |
199 | if (order != fmt->byteorder) |
200 | ufrom = newfrom; | |
d16aafd8 | 201 | |
b14d30e1 JM |
202 | if (fmt->split_half) |
203 | { | |
542a88d0 | 204 | DOUBLEST dtop, dbot; |
9a619af0 | 205 | |
542a88d0 | 206 | floatformat_to_doublest (fmt->split_half, ufrom, &dtop); |
b14d30e1 JM |
207 | /* Preserve the sign of 0, which is the sign of the top |
208 | half. */ | |
209 | if (dtop == 0.0) | |
210 | { | |
542a88d0 | 211 | *to = dtop; |
b14d30e1 JM |
212 | return; |
213 | } | |
542a88d0 | 214 | floatformat_to_doublest (fmt->split_half, |
b14d30e1 JM |
215 | ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, |
216 | &dbot); | |
542a88d0 | 217 | *to = dtop + dbot; |
b14d30e1 JM |
218 | return; |
219 | } | |
220 | ||
fcab3fb5 RE |
221 | exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start, |
222 | fmt->exp_len); | |
d16aafd8 AC |
223 | /* Note that if exponent indicates a NaN, we can't really do anything useful |
224 | (not knowing if the host has NaN's, or how to build one). So it will | |
225 | end up as an infinity or something close; that is OK. */ | |
226 | ||
227 | mant_bits_left = fmt->man_len; | |
228 | mant_off = fmt->man_start; | |
229 | dto = 0.0; | |
230 | ||
231 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
232 | ||
0963b4bd MS |
233 | /* Don't bias NaNs. Use minimum exponent for denorms. For |
234 | simplicity, we don't check for zero as the exponent doesn't matter. | |
235 | Note the cast to int; exp_bias is unsigned, so it's important to | |
236 | make sure the operation is done in signed arithmetic. */ | |
d16aafd8 AC |
237 | if (!special_exponent) |
238 | exponent -= fmt->exp_bias; | |
239 | else if (exponent == 0) | |
1c704f11 | 240 | exponent = 1 - fmt->exp_bias; |
d16aafd8 AC |
241 | |
242 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
0963b4bd | 243 | who cares. */ |
d16aafd8 AC |
244 | |
245 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
246 | increment the exponent by one to account for the integer bit. */ | |
247 | ||
248 | if (!special_exponent) | |
249 | { | |
250 | if (fmt->intbit == floatformat_intbit_no) | |
251 | dto = ldexp (1.0, exponent); | |
252 | else | |
253 | exponent++; | |
254 | } | |
255 | ||
256 | while (mant_bits_left > 0) | |
257 | { | |
258 | mant_bits = min (mant_bits_left, 32); | |
259 | ||
fcab3fb5 | 260 | mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
261 | |
262 | dto += ldexp ((double) mant, exponent - mant_bits); | |
263 | exponent -= mant_bits; | |
264 | mant_off += mant_bits; | |
265 | mant_bits_left -= mant_bits; | |
266 | } | |
267 | ||
268 | /* Negate it if negative. */ | |
fcab3fb5 | 269 | if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1)) |
d16aafd8 AC |
270 | dto = -dto; |
271 | *to = dto; | |
272 | } | |
273 | \f | |
d16aafd8 AC |
274 | /* Set a field which starts at START and is LEN bytes long. DATA and |
275 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
276 | static void | |
277 | put_field (unsigned char *data, enum floatformat_byteorders order, | |
278 | unsigned int total_len, unsigned int start, unsigned int len, | |
279 | unsigned long stuff_to_put) | |
280 | { | |
281 | unsigned int cur_byte; | |
282 | int cur_bitshift; | |
283 | ||
fcab3fb5 RE |
284 | /* Caller must byte-swap words before calling this routine. */ |
285 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
286 | ||
d16aafd8 | 287 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 288 | if (order == floatformat_little) |
d16aafd8 AC |
289 | { |
290 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
9a619af0 | 291 | |
d16aafd8 AC |
292 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) |
293 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
294 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
295 | - FLOATFORMAT_CHAR_BIT; | |
296 | } | |
297 | else | |
298 | { | |
299 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
300 | cur_bitshift = | |
301 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
302 | } | |
303 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
304 | { | |
305 | *(data + cur_byte) &= | |
306 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
307 | << (-cur_bitshift)); | |
308 | *(data + cur_byte) |= | |
309 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
310 | } | |
311 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 312 | if (order == floatformat_little) |
d16aafd8 AC |
313 | ++cur_byte; |
314 | else | |
315 | --cur_byte; | |
316 | ||
317 | /* Move towards the most significant part of the field. */ | |
318 | while (cur_bitshift < len) | |
319 | { | |
320 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
321 | { | |
322 | /* This is the last byte. */ | |
323 | *(data + cur_byte) &= | |
324 | ~((1 << (len - cur_bitshift)) - 1); | |
325 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
326 | } | |
327 | else | |
328 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
329 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
330 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 331 | if (order == floatformat_little) |
d16aafd8 AC |
332 | ++cur_byte; |
333 | else | |
334 | --cur_byte; | |
335 | } | |
336 | } | |
337 | ||
0a3e99f6 MK |
338 | /* The converse: convert the DOUBLEST *FROM to an extended float and |
339 | store where TO points. Neither FROM nor TO have any alignment | |
d16aafd8 AC |
340 | restrictions. */ |
341 | ||
c422e771 | 342 | static void |
cc2f3c35 | 343 | convert_doublest_to_floatformat (const struct floatformat *fmt, |
0a3e99f6 | 344 | const DOUBLEST *from, void *to) |
d16aafd8 AC |
345 | { |
346 | DOUBLEST dfrom; | |
347 | int exponent; | |
348 | DOUBLEST mant; | |
349 | unsigned int mant_bits, mant_off; | |
350 | int mant_bits_left; | |
351 | unsigned char *uto = (unsigned char *) to; | |
fcab3fb5 | 352 | enum floatformat_byteorders order = fmt->byteorder; |
0a3e99f6 | 353 | unsigned char newto[FLOATFORMAT_LARGEST_BYTES]; |
fcab3fb5 | 354 | |
0a3e99f6 | 355 | if (order != floatformat_little) |
fcab3fb5 | 356 | order = floatformat_big; |
d16aafd8 | 357 | |
0a3e99f6 MK |
358 | if (order != fmt->byteorder) |
359 | uto = newto; | |
360 | ||
d16aafd8 AC |
361 | memcpy (&dfrom, from, sizeof (dfrom)); |
362 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) | |
363 | / FLOATFORMAT_CHAR_BIT); | |
b14d30e1 JM |
364 | |
365 | if (fmt->split_half) | |
366 | { | |
367 | /* Use static volatile to ensure that any excess precision is | |
368 | removed via storing in memory, and so the top half really is | |
369 | the result of converting to double. */ | |
370 | static volatile double dtop, dbot; | |
542a88d0 | 371 | DOUBLEST dtopnv, dbotnv; |
9a619af0 | 372 | |
b14d30e1 JM |
373 | dtop = (double) dfrom; |
374 | /* If the rounded top half is Inf, the bottom must be 0 not NaN | |
375 | or Inf. */ | |
376 | if (dtop + dtop == dtop && dtop != 0.0) | |
377 | dbot = 0.0; | |
378 | else | |
379 | dbot = (double) (dfrom - (DOUBLEST) dtop); | |
380 | dtopnv = dtop; | |
381 | dbotnv = dbot; | |
542a88d0 LM |
382 | floatformat_from_doublest (fmt->split_half, &dtopnv, uto); |
383 | floatformat_from_doublest (fmt->split_half, &dbotnv, | |
b14d30e1 JM |
384 | (uto |
385 | + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2)); | |
386 | return; | |
387 | } | |
388 | ||
d16aafd8 AC |
389 | if (dfrom == 0) |
390 | return; /* Result is zero */ | |
391 | if (dfrom != dfrom) /* Result is NaN */ | |
392 | { | |
393 | /* From is NaN */ | |
fcab3fb5 | 394 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 | 395 | fmt->exp_len, fmt->exp_nan); |
0963b4bd | 396 | /* Be sure it's not infinity, but NaN value is irrel. */ |
fcab3fb5 | 397 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
fbe12357 | 398 | fmt->man_len, 1); |
fcab3fb5 | 399 | goto finalize_byteorder; |
d16aafd8 AC |
400 | } |
401 | ||
402 | /* If negative, set the sign bit. */ | |
403 | if (dfrom < 0) | |
404 | { | |
fcab3fb5 | 405 | put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1); |
d16aafd8 AC |
406 | dfrom = -dfrom; |
407 | } | |
408 | ||
0963b4bd | 409 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */ |
d16aafd8 AC |
410 | { |
411 | /* Infinity exponent is same as NaN's. */ | |
fcab3fb5 | 412 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 AC |
413 | fmt->exp_len, fmt->exp_nan); |
414 | /* Infinity mantissa is all zeroes. */ | |
fcab3fb5 | 415 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
d16aafd8 | 416 | fmt->man_len, 0); |
fcab3fb5 | 417 | goto finalize_byteorder; |
d16aafd8 AC |
418 | } |
419 | ||
420 | #ifdef HAVE_LONG_DOUBLE | |
85d3b769 | 421 | mant = frexpl (dfrom, &exponent); |
d16aafd8 AC |
422 | #else |
423 | mant = frexp (dfrom, &exponent); | |
424 | #endif | |
425 | ||
33d7655b JB |
426 | if (exponent + fmt->exp_bias <= 0) |
427 | { | |
428 | /* The value is too small to be expressed in the destination | |
429 | type (not enough bits in the exponent. Treat as 0. */ | |
430 | put_field (uto, order, fmt->totalsize, fmt->exp_start, | |
431 | fmt->exp_len, 0); | |
432 | put_field (uto, order, fmt->totalsize, fmt->man_start, | |
433 | fmt->man_len, 0); | |
434 | goto finalize_byteorder; | |
435 | } | |
436 | ||
32560274 | 437 | if (exponent + fmt->exp_bias >= (1 << fmt->exp_len)) |
33d7655b JB |
438 | { |
439 | /* The value is too large to fit into the destination. | |
440 | Treat as infinity. */ | |
441 | put_field (uto, order, fmt->totalsize, fmt->exp_start, | |
442 | fmt->exp_len, fmt->exp_nan); | |
443 | put_field (uto, order, fmt->totalsize, fmt->man_start, | |
444 | fmt->man_len, 0); | |
445 | goto finalize_byteorder; | |
446 | } | |
447 | ||
fcab3fb5 | 448 | put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len, |
d16aafd8 AC |
449 | exponent + fmt->exp_bias - 1); |
450 | ||
451 | mant_bits_left = fmt->man_len; | |
452 | mant_off = fmt->man_start; | |
453 | while (mant_bits_left > 0) | |
454 | { | |
455 | unsigned long mant_long; | |
9a619af0 | 456 | |
d16aafd8 AC |
457 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; |
458 | ||
459 | mant *= 4294967296.0; | |
460 | mant_long = ((unsigned long) mant) & 0xffffffffL; | |
461 | mant -= mant_long; | |
462 | ||
463 | /* If the integer bit is implicit, then we need to discard it. | |
464 | If we are discarding a zero, we should be (but are not) creating | |
465 | a denormalized number which means adjusting the exponent | |
466 | (I think). */ | |
467 | if (mant_bits_left == fmt->man_len | |
468 | && fmt->intbit == floatformat_intbit_no) | |
469 | { | |
470 | mant_long <<= 1; | |
471 | mant_long &= 0xffffffffL; | |
06194148 JJ |
472 | /* If we are processing the top 32 mantissa bits of a doublest |
473 | so as to convert to a float value with implied integer bit, | |
474 | we will only be putting 31 of those 32 bits into the | |
475 | final value due to the discarding of the top bit. In the | |
476 | case of a small float value where the number of mantissa | |
477 | bits is less than 32, discarding the top bit does not alter | |
478 | the number of bits we will be adding to the result. */ | |
479 | if (mant_bits == 32) | |
480 | mant_bits -= 1; | |
d16aafd8 AC |
481 | } |
482 | ||
483 | if (mant_bits < 32) | |
484 | { | |
485 | /* The bits we want are in the most significant MANT_BITS bits of | |
486 | mant_long. Move them to the least significant. */ | |
487 | mant_long >>= 32 - mant_bits; | |
488 | } | |
489 | ||
fcab3fb5 | 490 | put_field (uto, order, fmt->totalsize, |
d16aafd8 AC |
491 | mant_off, mant_bits, mant_long); |
492 | mant_off += mant_bits; | |
493 | mant_bits_left -= mant_bits; | |
494 | } | |
fcab3fb5 RE |
495 | |
496 | finalize_byteorder: | |
497 | /* Do we need to byte-swap the words in the result? */ | |
498 | if (order != fmt->byteorder) | |
0a3e99f6 | 499 | floatformat_normalize_byteorder (fmt, newto, to); |
d16aafd8 AC |
500 | } |
501 | ||
502 | /* Check if VAL (which is assumed to be a floating point number whose | |
503 | format is described by FMT) is negative. */ | |
504 | ||
505 | int | |
108d6ead AC |
506 | floatformat_is_negative (const struct floatformat *fmt, |
507 | const bfd_byte *uval) | |
d16aafd8 | 508 | { |
fcab3fb5 RE |
509 | enum floatformat_byteorders order; |
510 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
511 | ||
069e84fd | 512 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
513 | gdb_assert (fmt->totalsize |
514 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
515 | ||
f5aee5ee AM |
516 | /* An IBM long double (a two element array of double) always takes the |
517 | sign of the first double. */ | |
518 | if (fmt->split_half) | |
519 | fmt = fmt->split_half; | |
520 | ||
fcab3fb5 RE |
521 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); |
522 | ||
523 | if (order != fmt->byteorder) | |
524 | uval = newfrom; | |
525 | ||
526 | return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1); | |
d16aafd8 AC |
527 | } |
528 | ||
529 | /* Check if VAL is "not a number" (NaN) for FMT. */ | |
530 | ||
20389057 DJ |
531 | enum float_kind |
532 | floatformat_classify (const struct floatformat *fmt, | |
533 | const bfd_byte *uval) | |
d16aafd8 | 534 | { |
d16aafd8 AC |
535 | long exponent; |
536 | unsigned long mant; | |
537 | unsigned int mant_bits, mant_off; | |
538 | int mant_bits_left; | |
fcab3fb5 RE |
539 | enum floatformat_byteorders order; |
540 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 541 | int mant_zero; |
fcab3fb5 | 542 | |
069e84fd | 543 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
544 | gdb_assert (fmt->totalsize |
545 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
546 | ||
f5aee5ee AM |
547 | /* An IBM long double (a two element array of double) can be classified |
548 | by looking at the first double. inf and nan are specified as | |
549 | ignoring the second double. zero and subnormal will always have | |
550 | the second double 0.0 if the long double is correctly rounded. */ | |
551 | if (fmt->split_half) | |
552 | fmt = fmt->split_half; | |
553 | ||
fcab3fb5 RE |
554 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); |
555 | ||
556 | if (order != fmt->byteorder) | |
557 | uval = newfrom; | |
069e84fd | 558 | |
fcab3fb5 RE |
559 | exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start, |
560 | fmt->exp_len); | |
d16aafd8 | 561 | |
d16aafd8 AC |
562 | mant_bits_left = fmt->man_len; |
563 | mant_off = fmt->man_start; | |
564 | ||
20389057 | 565 | mant_zero = 1; |
d16aafd8 AC |
566 | while (mant_bits_left > 0) |
567 | { | |
568 | mant_bits = min (mant_bits_left, 32); | |
569 | ||
fcab3fb5 | 570 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
571 | |
572 | /* If there is an explicit integer bit, mask it off. */ | |
573 | if (mant_off == fmt->man_start | |
574 | && fmt->intbit == floatformat_intbit_yes) | |
575 | mant &= ~(1 << (mant_bits - 1)); | |
576 | ||
577 | if (mant) | |
20389057 DJ |
578 | { |
579 | mant_zero = 0; | |
580 | break; | |
581 | } | |
d16aafd8 AC |
582 | |
583 | mant_off += mant_bits; | |
584 | mant_bits_left -= mant_bits; | |
585 | } | |
586 | ||
20389057 DJ |
587 | /* If exp_nan is not set, assume that inf, NaN, and subnormals are not |
588 | supported. */ | |
589 | if (! fmt->exp_nan) | |
590 | { | |
591 | if (mant_zero) | |
592 | return float_zero; | |
593 | else | |
594 | return float_normal; | |
595 | } | |
596 | ||
597 | if (exponent == 0 && !mant_zero) | |
598 | return float_subnormal; | |
599 | ||
600 | if (exponent == fmt->exp_nan) | |
601 | { | |
602 | if (mant_zero) | |
603 | return float_infinite; | |
604 | else | |
605 | return float_nan; | |
606 | } | |
607 | ||
608 | if (mant_zero) | |
609 | return float_zero; | |
610 | ||
611 | return float_normal; | |
d16aafd8 AC |
612 | } |
613 | ||
614 | /* Convert the mantissa of VAL (which is assumed to be a floating | |
615 | point number whose format is described by FMT) into a hexadecimal | |
616 | and store it in a static string. Return a pointer to that string. */ | |
617 | ||
108d6ead AC |
618 | const char * |
619 | floatformat_mantissa (const struct floatformat *fmt, | |
620 | const bfd_byte *val) | |
d16aafd8 AC |
621 | { |
622 | unsigned char *uval = (unsigned char *) val; | |
623 | unsigned long mant; | |
624 | unsigned int mant_bits, mant_off; | |
625 | int mant_bits_left; | |
626 | static char res[50]; | |
627 | char buf[9]; | |
27df76f3 | 628 | int len; |
fcab3fb5 RE |
629 | enum floatformat_byteorders order; |
630 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
631 | ||
632 | gdb_assert (fmt != NULL); | |
633 | gdb_assert (fmt->totalsize | |
634 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
635 | ||
f5aee5ee AM |
636 | /* For IBM long double (a two element array of double), return the |
637 | mantissa of the first double. The problem with returning the | |
638 | actual mantissa from both doubles is that there can be an | |
639 | arbitrary number of implied 0's or 1's between the mantissas | |
640 | of the first and second double. In any case, this function | |
641 | is only used for dumping out nans, and a nan is specified to | |
642 | ignore the value in the second double. */ | |
643 | if (fmt->split_half) | |
644 | fmt = fmt->split_half; | |
645 | ||
fcab3fb5 RE |
646 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); |
647 | ||
648 | if (order != fmt->byteorder) | |
649 | uval = newfrom; | |
650 | ||
651 | if (! fmt->exp_nan) | |
652 | return 0; | |
d16aafd8 AC |
653 | |
654 | /* Make sure we have enough room to store the mantissa. */ | |
655 | gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); | |
656 | ||
657 | mant_off = fmt->man_start; | |
658 | mant_bits_left = fmt->man_len; | |
659 | mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; | |
660 | ||
fcab3fb5 | 661 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 | 662 | |
27df76f3 | 663 | len = xsnprintf (res, sizeof res, "%lx", mant); |
d16aafd8 AC |
664 | |
665 | mant_off += mant_bits; | |
666 | mant_bits_left -= mant_bits; | |
27df76f3 | 667 | |
d16aafd8 AC |
668 | while (mant_bits_left > 0) |
669 | { | |
fcab3fb5 | 670 | mant = get_field (uval, order, fmt->totalsize, mant_off, 32); |
d16aafd8 | 671 | |
27df76f3 MK |
672 | xsnprintf (buf, sizeof buf, "%08lx", mant); |
673 | gdb_assert (len + strlen (buf) <= sizeof res); | |
d16aafd8 AC |
674 | strcat (res, buf); |
675 | ||
676 | mant_off += 32; | |
677 | mant_bits_left -= 32; | |
678 | } | |
679 | ||
680 | return res; | |
681 | } | |
682 | ||
d16aafd8 | 683 | \f |
c422e771 AC |
684 | /* Convert TO/FROM target to the hosts DOUBLEST floating-point format. |
685 | ||
686 | If the host and target formats agree, we just copy the raw data | |
687 | into the appropriate type of variable and return, letting the host | |
688 | increase precision as necessary. Otherwise, we call the conversion | |
689 | routine and let it do the dirty work. */ | |
690 | ||
c35f4ffc AC |
691 | static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT; |
692 | static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT; | |
3e43a32a MS |
693 | static const struct floatformat *host_long_double_format |
694 | = GDB_HOST_LONG_DOUBLE_FORMAT; | |
c422e771 AC |
695 | |
696 | void | |
697 | floatformat_to_doublest (const struct floatformat *fmt, | |
698 | const void *in, DOUBLEST *out) | |
699 | { | |
700 | gdb_assert (fmt != NULL); | |
701 | if (fmt == host_float_format) | |
702 | { | |
703 | float val; | |
9a619af0 | 704 | |
c422e771 AC |
705 | memcpy (&val, in, sizeof (val)); |
706 | *out = val; | |
707 | } | |
708 | else if (fmt == host_double_format) | |
709 | { | |
710 | double val; | |
9a619af0 | 711 | |
c422e771 AC |
712 | memcpy (&val, in, sizeof (val)); |
713 | *out = val; | |
714 | } | |
715 | else if (fmt == host_long_double_format) | |
716 | { | |
717 | long double val; | |
9a619af0 | 718 | |
c422e771 AC |
719 | memcpy (&val, in, sizeof (val)); |
720 | *out = val; | |
721 | } | |
722 | else | |
723 | convert_floatformat_to_doublest (fmt, in, out); | |
724 | } | |
725 | ||
726 | void | |
727 | floatformat_from_doublest (const struct floatformat *fmt, | |
728 | const DOUBLEST *in, void *out) | |
729 | { | |
730 | gdb_assert (fmt != NULL); | |
731 | if (fmt == host_float_format) | |
732 | { | |
733 | float val = *in; | |
9a619af0 | 734 | |
c422e771 AC |
735 | memcpy (out, &val, sizeof (val)); |
736 | } | |
737 | else if (fmt == host_double_format) | |
738 | { | |
739 | double val = *in; | |
9a619af0 | 740 | |
c422e771 AC |
741 | memcpy (out, &val, sizeof (val)); |
742 | } | |
743 | else if (fmt == host_long_double_format) | |
744 | { | |
745 | long double val = *in; | |
9a619af0 | 746 | |
c422e771 AC |
747 | memcpy (out, &val, sizeof (val)); |
748 | } | |
749 | else | |
750 | convert_doublest_to_floatformat (fmt, in, out); | |
751 | } | |
d16aafd8 | 752 | |
c422e771 | 753 | \f |
87ffba60 | 754 | /* Return a floating-point format for a floating-point variable of |
47b3f456 AC |
755 | length LEN. If no suitable floating-point format is found, an |
756 | error is thrown. | |
d16aafd8 | 757 | |
87ffba60 MK |
758 | We need this functionality since information about the |
759 | floating-point format of a type is not always available to GDB; the | |
760 | debug information typically only tells us the size of a | |
761 | floating-point type. | |
762 | ||
763 | FIXME: kettenis/2001-10-28: In many places, particularly in | |
764 | target-dependent code, the format of floating-point types is known, | |
765 | but not passed on by GDB. This should be fixed. */ | |
766 | ||
b9362cc7 | 767 | static const struct floatformat * |
50810684 | 768 | floatformat_from_length (struct gdbarch *gdbarch, int len) |
d16aafd8 | 769 | { |
47b3f456 | 770 | const struct floatformat *format; |
9a619af0 | 771 | |
f9e9243a UW |
772 | if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch)) |
773 | format = gdbarch_half_format (gdbarch) | |
774 | [gdbarch_byte_order (gdbarch)]; | |
775 | else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch)) | |
50810684 UW |
776 | format = gdbarch_float_format (gdbarch) |
777 | [gdbarch_byte_order (gdbarch)]; | |
778 | else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch)) | |
779 | format = gdbarch_double_format (gdbarch) | |
780 | [gdbarch_byte_order (gdbarch)]; | |
781 | else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch)) | |
782 | format = gdbarch_long_double_format (gdbarch) | |
783 | [gdbarch_byte_order (gdbarch)]; | |
ddbfdd06 PM |
784 | /* On i386 the 'long double' type takes 96 bits, |
785 | while the real number of used bits is only 80, | |
0963b4bd | 786 | both in processor and in memory. |
ddbfdd06 | 787 | The code below accepts the real bit size. */ |
50810684 | 788 | else if ((gdbarch_long_double_format (gdbarch) != NULL) |
905e0470 PM |
789 | && (len * TARGET_CHAR_BIT |
790 | == gdbarch_long_double_format (gdbarch)[0]->totalsize)) | |
50810684 UW |
791 | format = gdbarch_long_double_format (gdbarch) |
792 | [gdbarch_byte_order (gdbarch)]; | |
47b3f456 AC |
793 | else |
794 | format = NULL; | |
795 | if (format == NULL) | |
8a3fe4f8 | 796 | error (_("Unrecognized %d-bit floating-point type."), |
9b0dea39 | 797 | len * TARGET_CHAR_BIT); |
47b3f456 | 798 | return format; |
87ffba60 MK |
799 | } |
800 | ||
c2f05ac9 AC |
801 | const struct floatformat * |
802 | floatformat_from_type (const struct type *type) | |
803 | { | |
50810684 | 804 | struct gdbarch *gdbarch = get_type_arch (type); |
9a619af0 | 805 | |
c2f05ac9 AC |
806 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
807 | if (TYPE_FLOATFORMAT (type) != NULL) | |
50810684 | 808 | return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)]; |
c2f05ac9 | 809 | else |
50810684 | 810 | return floatformat_from_length (gdbarch, TYPE_LENGTH (type)); |
c2f05ac9 AC |
811 | } |
812 | ||
87ffba60 MK |
813 | /* Extract a floating-point number of type TYPE from a target-order |
814 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
96d2f608 AC |
815 | |
816 | DOUBLEST | |
817 | extract_typed_floating (const void *addr, const struct type *type) | |
818 | { | |
e035e373 | 819 | const struct floatformat *fmt = floatformat_from_type (type); |
96d2f608 | 820 | DOUBLEST retval; |
87ffba60 | 821 | |
e035e373 | 822 | floatformat_to_doublest (fmt, addr, &retval); |
96d2f608 AC |
823 | return retval; |
824 | } | |
825 | ||
87ffba60 MK |
826 | /* Store VAL as a floating-point number of type TYPE to a target-order |
827 | byte-stream at ADDR. */ | |
828 | ||
96d2f608 AC |
829 | void |
830 | store_typed_floating (void *addr, const struct type *type, DOUBLEST val) | |
831 | { | |
e035e373 | 832 | const struct floatformat *fmt = floatformat_from_type (type); |
87ffba60 MK |
833 | |
834 | /* FIXME: kettenis/2001-10-28: It is debatable whether we should | |
835 | zero out any remaining bytes in the target buffer when TYPE is | |
836 | longer than the actual underlying floating-point format. Perhaps | |
837 | we should store a fixed bitpattern in those remaining bytes, | |
838 | instead of zero, or perhaps we shouldn't touch those remaining | |
839 | bytes at all. | |
840 | ||
841 | NOTE: cagney/2001-10-28: With the way things currently work, it | |
842 | isn't a good idea to leave the end bits undefined. This is | |
843 | because GDB writes out the entire sizeof(<floating>) bits of the | |
844 | floating-point type even though the value might only be stored | |
845 | in, and the target processor may only refer to, the first N < | |
846 | TYPE_LENGTH (type) bits. If the end of the buffer wasn't | |
847 | initialized, GDB would write undefined data to the target. An | |
848 | errant program, refering to that undefined data, would then | |
43686d64 MK |
849 | become non-deterministic. |
850 | ||
851 | See also the function convert_typed_floating below. */ | |
96d2f608 | 852 | memset (addr, 0, TYPE_LENGTH (type)); |
87ffba60 | 853 | |
e035e373 | 854 | floatformat_from_doublest (fmt, &val, addr); |
96d2f608 | 855 | } |
43686d64 MK |
856 | |
857 | /* Convert a floating-point number of type FROM_TYPE from a | |
858 | target-order byte-stream at FROM to a floating-point number of type | |
859 | TO_TYPE, and store it to a target-order byte-stream at TO. */ | |
860 | ||
861 | void | |
862 | convert_typed_floating (const void *from, const struct type *from_type, | |
863 | void *to, const struct type *to_type) | |
864 | { | |
c2f05ac9 AC |
865 | const struct floatformat *from_fmt = floatformat_from_type (from_type); |
866 | const struct floatformat *to_fmt = floatformat_from_type (to_type); | |
43686d64 | 867 | |
43686d64 MK |
868 | if (from_fmt == NULL || to_fmt == NULL) |
869 | { | |
870 | /* If we don't know the floating-point format of FROM_TYPE or | |
871 | TO_TYPE, there's not much we can do. We might make the | |
872 | assumption that if the length of FROM_TYPE and TO_TYPE match, | |
873 | their floating-point format would match too, but that | |
874 | assumption might be wrong on targets that support | |
875 | floating-point types that only differ in endianness for | |
876 | example. So we warn instead, and zero out the target buffer. */ | |
8a3fe4f8 | 877 | warning (_("Can't convert floating-point number to desired type.")); |
43686d64 MK |
878 | memset (to, 0, TYPE_LENGTH (to_type)); |
879 | } | |
880 | else if (from_fmt == to_fmt) | |
881 | { | |
882 | /* We're in business. The floating-point format of FROM_TYPE | |
883 | and TO_TYPE match. However, even though the floating-point | |
884 | format matches, the length of the type might still be | |
885 | different. Make sure we don't overrun any buffers. See | |
886 | comment in store_typed_floating for a discussion about | |
887 | zeroing out remaining bytes in the target buffer. */ | |
888 | memset (to, 0, TYPE_LENGTH (to_type)); | |
889 | memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type))); | |
890 | } | |
891 | else | |
892 | { | |
893 | /* The floating-point types don't match. The best we can do | |
938f5214 | 894 | (apart from simulating the target FPU) is converting to the |
43686d64 MK |
895 | widest floating-point type supported by the host, and then |
896 | again to the desired type. */ | |
897 | DOUBLEST d; | |
898 | ||
899 | floatformat_to_doublest (from_fmt, from, &d); | |
900 | floatformat_from_doublest (to_fmt, &d, to); | |
901 | } | |
902 | } |