]>
Commit | Line | Data |
---|---|---|
d16aafd8 | 1 | /* Floating point routines for GDB, the GNU debugger. |
f1908289 | 2 | |
0b302171 JB |
3 | Copyright (C) 1986, 1988-2001, 2003-2005, 2007-2012 Free Software |
4 | Foundation, Inc. | |
d16aafd8 AC |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
d16aafd8 AC |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
d16aafd8 AC |
20 | |
21 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
22 | ||
23 | /* XXX - This code should really be in libiberty/floatformat.c, | |
24 | however configuration issues with libiberty made this very | |
25 | difficult to do in the available time. */ | |
26 | ||
27 | #include "defs.h" | |
28 | #include "doublest.h" | |
29 | #include "floatformat.h" | |
30 | #include "gdb_assert.h" | |
31 | #include "gdb_string.h" | |
96d2f608 | 32 | #include "gdbtypes.h" |
d16aafd8 AC |
33 | #include <math.h> /* ldexp */ |
34 | ||
35 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
36 | going to bother with trying to muck around with whether it is defined in | |
37 | a system header, what we do if not, etc. */ | |
38 | #define FLOATFORMAT_CHAR_BIT 8 | |
39 | ||
fcab3fb5 RE |
40 | /* The number of bytes that the largest floating-point type that we |
41 | can convert to doublest will need. */ | |
42 | #define FLOATFORMAT_LARGEST_BYTES 16 | |
43 | ||
d16aafd8 AC |
44 | /* Extract a field which starts at START and is LEN bytes long. DATA and |
45 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
46 | static unsigned long | |
108d6ead | 47 | get_field (const bfd_byte *data, enum floatformat_byteorders order, |
d16aafd8 AC |
48 | unsigned int total_len, unsigned int start, unsigned int len) |
49 | { | |
50 | unsigned long result; | |
51 | unsigned int cur_byte; | |
52 | int cur_bitshift; | |
53 | ||
fcab3fb5 RE |
54 | /* Caller must byte-swap words before calling this routine. */ |
55 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
56 | ||
d16aafd8 | 57 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 58 | if (order == floatformat_little) |
d16aafd8 AC |
59 | { |
60 | /* We start counting from the other end (i.e, from the high bytes | |
61 | rather than the low bytes). As such, we need to be concerned | |
0963b4bd | 62 | with what happens if bit 0 doesn't start on a byte boundary. |
d16aafd8 AC |
63 | I.e, we need to properly handle the case where total_len is |
64 | not evenly divisible by 8. So we compute ``excess'' which | |
65 | represents the number of bits from the end of our starting | |
0963b4bd | 66 | byte needed to get to bit 0. */ |
d16aafd8 | 67 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); |
9a619af0 | 68 | |
d16aafd8 AC |
69 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) |
70 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
71 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
72 | - FLOATFORMAT_CHAR_BIT; | |
73 | } | |
74 | else | |
75 | { | |
76 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
77 | cur_bitshift = | |
78 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
79 | } | |
80 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
81 | result = *(data + cur_byte) >> (-cur_bitshift); | |
82 | else | |
83 | result = 0; | |
84 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 85 | if (order == floatformat_little) |
d16aafd8 AC |
86 | ++cur_byte; |
87 | else | |
88 | --cur_byte; | |
89 | ||
90 | /* Move towards the most significant part of the field. */ | |
91 | while (cur_bitshift < len) | |
92 | { | |
93 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; | |
94 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
c35f4ffc AC |
95 | switch (order) |
96 | { | |
97 | case floatformat_little: | |
98 | ++cur_byte; | |
99 | break; | |
100 | case floatformat_big: | |
101 | --cur_byte; | |
102 | break; | |
c35f4ffc | 103 | } |
d16aafd8 AC |
104 | } |
105 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) | |
0963b4bd | 106 | /* Mask out bits which are not part of the field. */ |
d16aafd8 AC |
107 | result &= ((1UL << len) - 1); |
108 | return result; | |
109 | } | |
110 | ||
0a3e99f6 MK |
111 | /* Normalize the byte order of FROM into TO. If no normalization is |
112 | needed then FMT->byteorder is returned and TO is not changed; | |
113 | otherwise the format of the normalized form in TO is returned. */ | |
114 | ||
fcab3fb5 RE |
115 | static enum floatformat_byteorders |
116 | floatformat_normalize_byteorder (const struct floatformat *fmt, | |
117 | const void *from, void *to) | |
118 | { | |
119 | const unsigned char *swapin; | |
120 | unsigned char *swapout; | |
121 | int words; | |
122 | ||
123 | if (fmt->byteorder == floatformat_little | |
124 | || fmt->byteorder == floatformat_big) | |
125 | return fmt->byteorder; | |
126 | ||
fcab3fb5 RE |
127 | words = fmt->totalsize / FLOATFORMAT_CHAR_BIT; |
128 | words >>= 2; | |
129 | ||
130 | swapout = (unsigned char *)to; | |
131 | swapin = (const unsigned char *)from; | |
132 | ||
0a3e99f6 MK |
133 | if (fmt->byteorder == floatformat_vax) |
134 | { | |
135 | while (words-- > 0) | |
136 | { | |
137 | *swapout++ = swapin[1]; | |
138 | *swapout++ = swapin[0]; | |
139 | *swapout++ = swapin[3]; | |
140 | *swapout++ = swapin[2]; | |
141 | swapin += 4; | |
142 | } | |
143 | /* This may look weird, since VAX is little-endian, but it is | |
144 | easier to translate to big-endian than to little-endian. */ | |
145 | return floatformat_big; | |
146 | } | |
147 | else | |
fcab3fb5 | 148 | { |
0a3e99f6 MK |
149 | gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword); |
150 | ||
151 | while (words-- > 0) | |
152 | { | |
153 | *swapout++ = swapin[3]; | |
154 | *swapout++ = swapin[2]; | |
155 | *swapout++ = swapin[1]; | |
156 | *swapout++ = swapin[0]; | |
157 | swapin += 4; | |
158 | } | |
159 | return floatformat_big; | |
fcab3fb5 | 160 | } |
fcab3fb5 RE |
161 | } |
162 | ||
d16aafd8 AC |
163 | /* Convert from FMT to a DOUBLEST. |
164 | FROM is the address of the extended float. | |
165 | Store the DOUBLEST in *TO. */ | |
166 | ||
c422e771 AC |
167 | static void |
168 | convert_floatformat_to_doublest (const struct floatformat *fmt, | |
169 | const void *from, | |
170 | DOUBLEST *to) | |
d16aafd8 AC |
171 | { |
172 | unsigned char *ufrom = (unsigned char *) from; | |
173 | DOUBLEST dto; | |
174 | long exponent; | |
175 | unsigned long mant; | |
176 | unsigned int mant_bits, mant_off; | |
177 | int mant_bits_left; | |
0963b4bd | 178 | int special_exponent; /* It's a NaN, denorm or zero. */ |
fcab3fb5 RE |
179 | enum floatformat_byteorders order; |
180 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 181 | enum float_kind kind; |
fcab3fb5 RE |
182 | |
183 | gdb_assert (fmt->totalsize | |
184 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
d16aafd8 | 185 | |
20389057 DJ |
186 | /* For non-numbers, reuse libiberty's logic to find the correct |
187 | format. We do not lose any precision in this case by passing | |
188 | through a double. */ | |
189 | kind = floatformat_classify (fmt, from); | |
190 | if (kind == float_infinite || kind == float_nan) | |
191 | { | |
192 | double dto; | |
9a619af0 | 193 | |
20389057 DJ |
194 | floatformat_to_double (fmt, from, &dto); |
195 | *to = (DOUBLEST) dto; | |
196 | return; | |
197 | } | |
198 | ||
fcab3fb5 | 199 | order = floatformat_normalize_byteorder (fmt, ufrom, newfrom); |
d16aafd8 | 200 | |
fcab3fb5 RE |
201 | if (order != fmt->byteorder) |
202 | ufrom = newfrom; | |
d16aafd8 | 203 | |
b14d30e1 JM |
204 | if (fmt->split_half) |
205 | { | |
542a88d0 | 206 | DOUBLEST dtop, dbot; |
9a619af0 | 207 | |
542a88d0 | 208 | floatformat_to_doublest (fmt->split_half, ufrom, &dtop); |
b14d30e1 JM |
209 | /* Preserve the sign of 0, which is the sign of the top |
210 | half. */ | |
211 | if (dtop == 0.0) | |
212 | { | |
542a88d0 | 213 | *to = dtop; |
b14d30e1 JM |
214 | return; |
215 | } | |
542a88d0 | 216 | floatformat_to_doublest (fmt->split_half, |
b14d30e1 JM |
217 | ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, |
218 | &dbot); | |
542a88d0 | 219 | *to = dtop + dbot; |
b14d30e1 JM |
220 | return; |
221 | } | |
222 | ||
fcab3fb5 RE |
223 | exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start, |
224 | fmt->exp_len); | |
d16aafd8 AC |
225 | /* Note that if exponent indicates a NaN, we can't really do anything useful |
226 | (not knowing if the host has NaN's, or how to build one). So it will | |
227 | end up as an infinity or something close; that is OK. */ | |
228 | ||
229 | mant_bits_left = fmt->man_len; | |
230 | mant_off = fmt->man_start; | |
231 | dto = 0.0; | |
232 | ||
233 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
234 | ||
0963b4bd MS |
235 | /* Don't bias NaNs. Use minimum exponent for denorms. For |
236 | simplicity, we don't check for zero as the exponent doesn't matter. | |
237 | Note the cast to int; exp_bias is unsigned, so it's important to | |
238 | make sure the operation is done in signed arithmetic. */ | |
d16aafd8 AC |
239 | if (!special_exponent) |
240 | exponent -= fmt->exp_bias; | |
241 | else if (exponent == 0) | |
1c704f11 | 242 | exponent = 1 - fmt->exp_bias; |
d16aafd8 AC |
243 | |
244 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
0963b4bd | 245 | who cares. */ |
d16aafd8 AC |
246 | |
247 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
248 | increment the exponent by one to account for the integer bit. */ | |
249 | ||
250 | if (!special_exponent) | |
251 | { | |
252 | if (fmt->intbit == floatformat_intbit_no) | |
253 | dto = ldexp (1.0, exponent); | |
254 | else | |
255 | exponent++; | |
256 | } | |
257 | ||
258 | while (mant_bits_left > 0) | |
259 | { | |
260 | mant_bits = min (mant_bits_left, 32); | |
261 | ||
fcab3fb5 | 262 | mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
263 | |
264 | dto += ldexp ((double) mant, exponent - mant_bits); | |
265 | exponent -= mant_bits; | |
266 | mant_off += mant_bits; | |
267 | mant_bits_left -= mant_bits; | |
268 | } | |
269 | ||
270 | /* Negate it if negative. */ | |
fcab3fb5 | 271 | if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1)) |
d16aafd8 AC |
272 | dto = -dto; |
273 | *to = dto; | |
274 | } | |
275 | \f | |
d16aafd8 AC |
276 | /* Set a field which starts at START and is LEN bytes long. DATA and |
277 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
278 | static void | |
279 | put_field (unsigned char *data, enum floatformat_byteorders order, | |
280 | unsigned int total_len, unsigned int start, unsigned int len, | |
281 | unsigned long stuff_to_put) | |
282 | { | |
283 | unsigned int cur_byte; | |
284 | int cur_bitshift; | |
285 | ||
fcab3fb5 RE |
286 | /* Caller must byte-swap words before calling this routine. */ |
287 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
288 | ||
d16aafd8 | 289 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 290 | if (order == floatformat_little) |
d16aafd8 AC |
291 | { |
292 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
9a619af0 | 293 | |
d16aafd8 AC |
294 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) |
295 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
296 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
297 | - FLOATFORMAT_CHAR_BIT; | |
298 | } | |
299 | else | |
300 | { | |
301 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
302 | cur_bitshift = | |
303 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
304 | } | |
305 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
306 | { | |
307 | *(data + cur_byte) &= | |
308 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
309 | << (-cur_bitshift)); | |
310 | *(data + cur_byte) |= | |
311 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
312 | } | |
313 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 314 | if (order == floatformat_little) |
d16aafd8 AC |
315 | ++cur_byte; |
316 | else | |
317 | --cur_byte; | |
318 | ||
319 | /* Move towards the most significant part of the field. */ | |
320 | while (cur_bitshift < len) | |
321 | { | |
322 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
323 | { | |
324 | /* This is the last byte. */ | |
325 | *(data + cur_byte) &= | |
326 | ~((1 << (len - cur_bitshift)) - 1); | |
327 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
328 | } | |
329 | else | |
330 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
331 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
332 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 333 | if (order == floatformat_little) |
d16aafd8 AC |
334 | ++cur_byte; |
335 | else | |
336 | --cur_byte; | |
337 | } | |
338 | } | |
339 | ||
340 | #ifdef HAVE_LONG_DOUBLE | |
341 | /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. | |
342 | The range of the returned value is >= 0.5 and < 1.0. This is equivalent to | |
343 | frexp, but operates on the long double data type. */ | |
344 | ||
345 | static long double ldfrexp (long double value, int *eptr); | |
346 | ||
347 | static long double | |
348 | ldfrexp (long double value, int *eptr) | |
349 | { | |
350 | long double tmp; | |
351 | int exp; | |
352 | ||
3e43a32a MS |
353 | /* Unfortunately, there are no portable functions for extracting the |
354 | exponent of a long double, so we have to do it iteratively by | |
355 | multiplying or dividing by two until the fraction is between 0.5 | |
356 | and 1.0. */ | |
d16aafd8 AC |
357 | |
358 | if (value < 0.0l) | |
359 | value = -value; | |
360 | ||
361 | tmp = 1.0l; | |
362 | exp = 0; | |
363 | ||
364 | if (value >= tmp) /* Value >= 1.0 */ | |
365 | while (value >= tmp) | |
366 | { | |
367 | tmp *= 2.0l; | |
368 | exp++; | |
369 | } | |
370 | else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ | |
371 | { | |
372 | while (value < tmp) | |
373 | { | |
374 | tmp /= 2.0l; | |
375 | exp--; | |
376 | } | |
377 | tmp *= 2.0l; | |
378 | exp++; | |
379 | } | |
380 | ||
381 | *eptr = exp; | |
382 | return value / tmp; | |
383 | } | |
384 | #endif /* HAVE_LONG_DOUBLE */ | |
385 | ||
386 | ||
0a3e99f6 MK |
387 | /* The converse: convert the DOUBLEST *FROM to an extended float and |
388 | store where TO points. Neither FROM nor TO have any alignment | |
d16aafd8 AC |
389 | restrictions. */ |
390 | ||
c422e771 AC |
391 | static void |
392 | convert_doublest_to_floatformat (CONST struct floatformat *fmt, | |
0a3e99f6 | 393 | const DOUBLEST *from, void *to) |
d16aafd8 AC |
394 | { |
395 | DOUBLEST dfrom; | |
396 | int exponent; | |
397 | DOUBLEST mant; | |
398 | unsigned int mant_bits, mant_off; | |
399 | int mant_bits_left; | |
400 | unsigned char *uto = (unsigned char *) to; | |
fcab3fb5 | 401 | enum floatformat_byteorders order = fmt->byteorder; |
0a3e99f6 | 402 | unsigned char newto[FLOATFORMAT_LARGEST_BYTES]; |
fcab3fb5 | 403 | |
0a3e99f6 | 404 | if (order != floatformat_little) |
fcab3fb5 | 405 | order = floatformat_big; |
d16aafd8 | 406 | |
0a3e99f6 MK |
407 | if (order != fmt->byteorder) |
408 | uto = newto; | |
409 | ||
d16aafd8 AC |
410 | memcpy (&dfrom, from, sizeof (dfrom)); |
411 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) | |
412 | / FLOATFORMAT_CHAR_BIT); | |
b14d30e1 JM |
413 | |
414 | if (fmt->split_half) | |
415 | { | |
416 | /* Use static volatile to ensure that any excess precision is | |
417 | removed via storing in memory, and so the top half really is | |
418 | the result of converting to double. */ | |
419 | static volatile double dtop, dbot; | |
542a88d0 | 420 | DOUBLEST dtopnv, dbotnv; |
9a619af0 | 421 | |
b14d30e1 JM |
422 | dtop = (double) dfrom; |
423 | /* If the rounded top half is Inf, the bottom must be 0 not NaN | |
424 | or Inf. */ | |
425 | if (dtop + dtop == dtop && dtop != 0.0) | |
426 | dbot = 0.0; | |
427 | else | |
428 | dbot = (double) (dfrom - (DOUBLEST) dtop); | |
429 | dtopnv = dtop; | |
430 | dbotnv = dbot; | |
542a88d0 LM |
431 | floatformat_from_doublest (fmt->split_half, &dtopnv, uto); |
432 | floatformat_from_doublest (fmt->split_half, &dbotnv, | |
b14d30e1 JM |
433 | (uto |
434 | + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2)); | |
435 | return; | |
436 | } | |
437 | ||
d16aafd8 AC |
438 | if (dfrom == 0) |
439 | return; /* Result is zero */ | |
440 | if (dfrom != dfrom) /* Result is NaN */ | |
441 | { | |
442 | /* From is NaN */ | |
fcab3fb5 | 443 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 | 444 | fmt->exp_len, fmt->exp_nan); |
0963b4bd | 445 | /* Be sure it's not infinity, but NaN value is irrel. */ |
fcab3fb5 | 446 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
fbe12357 | 447 | fmt->man_len, 1); |
fcab3fb5 | 448 | goto finalize_byteorder; |
d16aafd8 AC |
449 | } |
450 | ||
451 | /* If negative, set the sign bit. */ | |
452 | if (dfrom < 0) | |
453 | { | |
fcab3fb5 | 454 | put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1); |
d16aafd8 AC |
455 | dfrom = -dfrom; |
456 | } | |
457 | ||
0963b4bd | 458 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */ |
d16aafd8 AC |
459 | { |
460 | /* Infinity exponent is same as NaN's. */ | |
fcab3fb5 | 461 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 AC |
462 | fmt->exp_len, fmt->exp_nan); |
463 | /* Infinity mantissa is all zeroes. */ | |
fcab3fb5 | 464 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
d16aafd8 | 465 | fmt->man_len, 0); |
fcab3fb5 | 466 | goto finalize_byteorder; |
d16aafd8 AC |
467 | } |
468 | ||
469 | #ifdef HAVE_LONG_DOUBLE | |
470 | mant = ldfrexp (dfrom, &exponent); | |
471 | #else | |
472 | mant = frexp (dfrom, &exponent); | |
473 | #endif | |
474 | ||
33d7655b JB |
475 | if (exponent + fmt->exp_bias <= 0) |
476 | { | |
477 | /* The value is too small to be expressed in the destination | |
478 | type (not enough bits in the exponent. Treat as 0. */ | |
479 | put_field (uto, order, fmt->totalsize, fmt->exp_start, | |
480 | fmt->exp_len, 0); | |
481 | put_field (uto, order, fmt->totalsize, fmt->man_start, | |
482 | fmt->man_len, 0); | |
483 | goto finalize_byteorder; | |
484 | } | |
485 | ||
486 | if (exponent + fmt->exp_bias >= (1 << fmt->exp_len) - 1) | |
487 | { | |
488 | /* The value is too large to fit into the destination. | |
489 | Treat as infinity. */ | |
490 | put_field (uto, order, fmt->totalsize, fmt->exp_start, | |
491 | fmt->exp_len, fmt->exp_nan); | |
492 | put_field (uto, order, fmt->totalsize, fmt->man_start, | |
493 | fmt->man_len, 0); | |
494 | goto finalize_byteorder; | |
495 | } | |
496 | ||
fcab3fb5 | 497 | put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len, |
d16aafd8 AC |
498 | exponent + fmt->exp_bias - 1); |
499 | ||
500 | mant_bits_left = fmt->man_len; | |
501 | mant_off = fmt->man_start; | |
502 | while (mant_bits_left > 0) | |
503 | { | |
504 | unsigned long mant_long; | |
9a619af0 | 505 | |
d16aafd8 AC |
506 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; |
507 | ||
508 | mant *= 4294967296.0; | |
509 | mant_long = ((unsigned long) mant) & 0xffffffffL; | |
510 | mant -= mant_long; | |
511 | ||
512 | /* If the integer bit is implicit, then we need to discard it. | |
513 | If we are discarding a zero, we should be (but are not) creating | |
514 | a denormalized number which means adjusting the exponent | |
515 | (I think). */ | |
516 | if (mant_bits_left == fmt->man_len | |
517 | && fmt->intbit == floatformat_intbit_no) | |
518 | { | |
519 | mant_long <<= 1; | |
520 | mant_long &= 0xffffffffL; | |
06194148 JJ |
521 | /* If we are processing the top 32 mantissa bits of a doublest |
522 | so as to convert to a float value with implied integer bit, | |
523 | we will only be putting 31 of those 32 bits into the | |
524 | final value due to the discarding of the top bit. In the | |
525 | case of a small float value where the number of mantissa | |
526 | bits is less than 32, discarding the top bit does not alter | |
527 | the number of bits we will be adding to the result. */ | |
528 | if (mant_bits == 32) | |
529 | mant_bits -= 1; | |
d16aafd8 AC |
530 | } |
531 | ||
532 | if (mant_bits < 32) | |
533 | { | |
534 | /* The bits we want are in the most significant MANT_BITS bits of | |
535 | mant_long. Move them to the least significant. */ | |
536 | mant_long >>= 32 - mant_bits; | |
537 | } | |
538 | ||
fcab3fb5 | 539 | put_field (uto, order, fmt->totalsize, |
d16aafd8 AC |
540 | mant_off, mant_bits, mant_long); |
541 | mant_off += mant_bits; | |
542 | mant_bits_left -= mant_bits; | |
543 | } | |
fcab3fb5 RE |
544 | |
545 | finalize_byteorder: | |
546 | /* Do we need to byte-swap the words in the result? */ | |
547 | if (order != fmt->byteorder) | |
0a3e99f6 | 548 | floatformat_normalize_byteorder (fmt, newto, to); |
d16aafd8 AC |
549 | } |
550 | ||
551 | /* Check if VAL (which is assumed to be a floating point number whose | |
552 | format is described by FMT) is negative. */ | |
553 | ||
554 | int | |
108d6ead AC |
555 | floatformat_is_negative (const struct floatformat *fmt, |
556 | const bfd_byte *uval) | |
d16aafd8 | 557 | { |
fcab3fb5 RE |
558 | enum floatformat_byteorders order; |
559 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
560 | ||
069e84fd | 561 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
562 | gdb_assert (fmt->totalsize |
563 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
564 | ||
565 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
566 | ||
567 | if (order != fmt->byteorder) | |
568 | uval = newfrom; | |
569 | ||
570 | return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1); | |
d16aafd8 AC |
571 | } |
572 | ||
573 | /* Check if VAL is "not a number" (NaN) for FMT. */ | |
574 | ||
20389057 DJ |
575 | enum float_kind |
576 | floatformat_classify (const struct floatformat *fmt, | |
577 | const bfd_byte *uval) | |
d16aafd8 | 578 | { |
d16aafd8 AC |
579 | long exponent; |
580 | unsigned long mant; | |
581 | unsigned int mant_bits, mant_off; | |
582 | int mant_bits_left; | |
fcab3fb5 RE |
583 | enum floatformat_byteorders order; |
584 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 585 | int mant_zero; |
fcab3fb5 | 586 | |
069e84fd | 587 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
588 | gdb_assert (fmt->totalsize |
589 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
590 | ||
591 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
592 | ||
593 | if (order != fmt->byteorder) | |
594 | uval = newfrom; | |
069e84fd | 595 | |
fcab3fb5 RE |
596 | exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start, |
597 | fmt->exp_len); | |
d16aafd8 | 598 | |
d16aafd8 AC |
599 | mant_bits_left = fmt->man_len; |
600 | mant_off = fmt->man_start; | |
601 | ||
20389057 | 602 | mant_zero = 1; |
d16aafd8 AC |
603 | while (mant_bits_left > 0) |
604 | { | |
605 | mant_bits = min (mant_bits_left, 32); | |
606 | ||
fcab3fb5 | 607 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
608 | |
609 | /* If there is an explicit integer bit, mask it off. */ | |
610 | if (mant_off == fmt->man_start | |
611 | && fmt->intbit == floatformat_intbit_yes) | |
612 | mant &= ~(1 << (mant_bits - 1)); | |
613 | ||
614 | if (mant) | |
20389057 DJ |
615 | { |
616 | mant_zero = 0; | |
617 | break; | |
618 | } | |
d16aafd8 AC |
619 | |
620 | mant_off += mant_bits; | |
621 | mant_bits_left -= mant_bits; | |
622 | } | |
623 | ||
20389057 DJ |
624 | /* If exp_nan is not set, assume that inf, NaN, and subnormals are not |
625 | supported. */ | |
626 | if (! fmt->exp_nan) | |
627 | { | |
628 | if (mant_zero) | |
629 | return float_zero; | |
630 | else | |
631 | return float_normal; | |
632 | } | |
633 | ||
634 | if (exponent == 0 && !mant_zero) | |
635 | return float_subnormal; | |
636 | ||
637 | if (exponent == fmt->exp_nan) | |
638 | { | |
639 | if (mant_zero) | |
640 | return float_infinite; | |
641 | else | |
642 | return float_nan; | |
643 | } | |
644 | ||
645 | if (mant_zero) | |
646 | return float_zero; | |
647 | ||
648 | return float_normal; | |
d16aafd8 AC |
649 | } |
650 | ||
651 | /* Convert the mantissa of VAL (which is assumed to be a floating | |
652 | point number whose format is described by FMT) into a hexadecimal | |
653 | and store it in a static string. Return a pointer to that string. */ | |
654 | ||
108d6ead AC |
655 | const char * |
656 | floatformat_mantissa (const struct floatformat *fmt, | |
657 | const bfd_byte *val) | |
d16aafd8 AC |
658 | { |
659 | unsigned char *uval = (unsigned char *) val; | |
660 | unsigned long mant; | |
661 | unsigned int mant_bits, mant_off; | |
662 | int mant_bits_left; | |
663 | static char res[50]; | |
664 | char buf[9]; | |
27df76f3 | 665 | int len; |
fcab3fb5 RE |
666 | enum floatformat_byteorders order; |
667 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
668 | ||
669 | gdb_assert (fmt != NULL); | |
670 | gdb_assert (fmt->totalsize | |
671 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
672 | ||
673 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
674 | ||
675 | if (order != fmt->byteorder) | |
676 | uval = newfrom; | |
677 | ||
678 | if (! fmt->exp_nan) | |
679 | return 0; | |
d16aafd8 AC |
680 | |
681 | /* Make sure we have enough room to store the mantissa. */ | |
682 | gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); | |
683 | ||
684 | mant_off = fmt->man_start; | |
685 | mant_bits_left = fmt->man_len; | |
686 | mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; | |
687 | ||
fcab3fb5 | 688 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 | 689 | |
27df76f3 | 690 | len = xsnprintf (res, sizeof res, "%lx", mant); |
d16aafd8 AC |
691 | |
692 | mant_off += mant_bits; | |
693 | mant_bits_left -= mant_bits; | |
27df76f3 | 694 | |
d16aafd8 AC |
695 | while (mant_bits_left > 0) |
696 | { | |
fcab3fb5 | 697 | mant = get_field (uval, order, fmt->totalsize, mant_off, 32); |
d16aafd8 | 698 | |
27df76f3 MK |
699 | xsnprintf (buf, sizeof buf, "%08lx", mant); |
700 | gdb_assert (len + strlen (buf) <= sizeof res); | |
d16aafd8 AC |
701 | strcat (res, buf); |
702 | ||
703 | mant_off += 32; | |
704 | mant_bits_left -= 32; | |
705 | } | |
706 | ||
707 | return res; | |
708 | } | |
709 | ||
d16aafd8 | 710 | \f |
c422e771 AC |
711 | /* Convert TO/FROM target to the hosts DOUBLEST floating-point format. |
712 | ||
713 | If the host and target formats agree, we just copy the raw data | |
714 | into the appropriate type of variable and return, letting the host | |
715 | increase precision as necessary. Otherwise, we call the conversion | |
716 | routine and let it do the dirty work. */ | |
717 | ||
c35f4ffc AC |
718 | static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT; |
719 | static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT; | |
3e43a32a MS |
720 | static const struct floatformat *host_long_double_format |
721 | = GDB_HOST_LONG_DOUBLE_FORMAT; | |
c422e771 AC |
722 | |
723 | void | |
724 | floatformat_to_doublest (const struct floatformat *fmt, | |
725 | const void *in, DOUBLEST *out) | |
726 | { | |
727 | gdb_assert (fmt != NULL); | |
728 | if (fmt == host_float_format) | |
729 | { | |
730 | float val; | |
9a619af0 | 731 | |
c422e771 AC |
732 | memcpy (&val, in, sizeof (val)); |
733 | *out = val; | |
734 | } | |
735 | else if (fmt == host_double_format) | |
736 | { | |
737 | double val; | |
9a619af0 | 738 | |
c422e771 AC |
739 | memcpy (&val, in, sizeof (val)); |
740 | *out = val; | |
741 | } | |
742 | else if (fmt == host_long_double_format) | |
743 | { | |
744 | long double val; | |
9a619af0 | 745 | |
c422e771 AC |
746 | memcpy (&val, in, sizeof (val)); |
747 | *out = val; | |
748 | } | |
749 | else | |
750 | convert_floatformat_to_doublest (fmt, in, out); | |
751 | } | |
752 | ||
753 | void | |
754 | floatformat_from_doublest (const struct floatformat *fmt, | |
755 | const DOUBLEST *in, void *out) | |
756 | { | |
757 | gdb_assert (fmt != NULL); | |
758 | if (fmt == host_float_format) | |
759 | { | |
760 | float val = *in; | |
9a619af0 | 761 | |
c422e771 AC |
762 | memcpy (out, &val, sizeof (val)); |
763 | } | |
764 | else if (fmt == host_double_format) | |
765 | { | |
766 | double val = *in; | |
9a619af0 | 767 | |
c422e771 AC |
768 | memcpy (out, &val, sizeof (val)); |
769 | } | |
770 | else if (fmt == host_long_double_format) | |
771 | { | |
772 | long double val = *in; | |
9a619af0 | 773 | |
c422e771 AC |
774 | memcpy (out, &val, sizeof (val)); |
775 | } | |
776 | else | |
777 | convert_doublest_to_floatformat (fmt, in, out); | |
778 | } | |
d16aafd8 | 779 | |
c422e771 | 780 | \f |
87ffba60 | 781 | /* Return a floating-point format for a floating-point variable of |
47b3f456 AC |
782 | length LEN. If no suitable floating-point format is found, an |
783 | error is thrown. | |
d16aafd8 | 784 | |
87ffba60 MK |
785 | We need this functionality since information about the |
786 | floating-point format of a type is not always available to GDB; the | |
787 | debug information typically only tells us the size of a | |
788 | floating-point type. | |
789 | ||
790 | FIXME: kettenis/2001-10-28: In many places, particularly in | |
791 | target-dependent code, the format of floating-point types is known, | |
792 | but not passed on by GDB. This should be fixed. */ | |
793 | ||
b9362cc7 | 794 | static const struct floatformat * |
50810684 | 795 | floatformat_from_length (struct gdbarch *gdbarch, int len) |
d16aafd8 | 796 | { |
47b3f456 | 797 | const struct floatformat *format; |
9a619af0 | 798 | |
f9e9243a UW |
799 | if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch)) |
800 | format = gdbarch_half_format (gdbarch) | |
801 | [gdbarch_byte_order (gdbarch)]; | |
802 | else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch)) | |
50810684 UW |
803 | format = gdbarch_float_format (gdbarch) |
804 | [gdbarch_byte_order (gdbarch)]; | |
805 | else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch)) | |
806 | format = gdbarch_double_format (gdbarch) | |
807 | [gdbarch_byte_order (gdbarch)]; | |
808 | else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch)) | |
809 | format = gdbarch_long_double_format (gdbarch) | |
810 | [gdbarch_byte_order (gdbarch)]; | |
ddbfdd06 PM |
811 | /* On i386 the 'long double' type takes 96 bits, |
812 | while the real number of used bits is only 80, | |
0963b4bd | 813 | both in processor and in memory. |
ddbfdd06 | 814 | The code below accepts the real bit size. */ |
50810684 | 815 | else if ((gdbarch_long_double_format (gdbarch) != NULL) |
905e0470 PM |
816 | && (len * TARGET_CHAR_BIT |
817 | == gdbarch_long_double_format (gdbarch)[0]->totalsize)) | |
50810684 UW |
818 | format = gdbarch_long_double_format (gdbarch) |
819 | [gdbarch_byte_order (gdbarch)]; | |
47b3f456 AC |
820 | else |
821 | format = NULL; | |
822 | if (format == NULL) | |
8a3fe4f8 | 823 | error (_("Unrecognized %d-bit floating-point type."), |
9b0dea39 | 824 | len * TARGET_CHAR_BIT); |
47b3f456 | 825 | return format; |
87ffba60 MK |
826 | } |
827 | ||
c2f05ac9 AC |
828 | const struct floatformat * |
829 | floatformat_from_type (const struct type *type) | |
830 | { | |
50810684 | 831 | struct gdbarch *gdbarch = get_type_arch (type); |
9a619af0 | 832 | |
c2f05ac9 AC |
833 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
834 | if (TYPE_FLOATFORMAT (type) != NULL) | |
50810684 | 835 | return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)]; |
c2f05ac9 | 836 | else |
50810684 | 837 | return floatformat_from_length (gdbarch, TYPE_LENGTH (type)); |
c2f05ac9 AC |
838 | } |
839 | ||
87ffba60 MK |
840 | /* Extract a floating-point number of type TYPE from a target-order |
841 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
96d2f608 AC |
842 | |
843 | DOUBLEST | |
844 | extract_typed_floating (const void *addr, const struct type *type) | |
845 | { | |
e035e373 | 846 | const struct floatformat *fmt = floatformat_from_type (type); |
96d2f608 | 847 | DOUBLEST retval; |
87ffba60 | 848 | |
e035e373 | 849 | floatformat_to_doublest (fmt, addr, &retval); |
96d2f608 AC |
850 | return retval; |
851 | } | |
852 | ||
87ffba60 MK |
853 | /* Store VAL as a floating-point number of type TYPE to a target-order |
854 | byte-stream at ADDR. */ | |
855 | ||
96d2f608 AC |
856 | void |
857 | store_typed_floating (void *addr, const struct type *type, DOUBLEST val) | |
858 | { | |
e035e373 | 859 | const struct floatformat *fmt = floatformat_from_type (type); |
87ffba60 MK |
860 | |
861 | /* FIXME: kettenis/2001-10-28: It is debatable whether we should | |
862 | zero out any remaining bytes in the target buffer when TYPE is | |
863 | longer than the actual underlying floating-point format. Perhaps | |
864 | we should store a fixed bitpattern in those remaining bytes, | |
865 | instead of zero, or perhaps we shouldn't touch those remaining | |
866 | bytes at all. | |
867 | ||
868 | NOTE: cagney/2001-10-28: With the way things currently work, it | |
869 | isn't a good idea to leave the end bits undefined. This is | |
870 | because GDB writes out the entire sizeof(<floating>) bits of the | |
871 | floating-point type even though the value might only be stored | |
872 | in, and the target processor may only refer to, the first N < | |
873 | TYPE_LENGTH (type) bits. If the end of the buffer wasn't | |
874 | initialized, GDB would write undefined data to the target. An | |
875 | errant program, refering to that undefined data, would then | |
43686d64 MK |
876 | become non-deterministic. |
877 | ||
878 | See also the function convert_typed_floating below. */ | |
96d2f608 | 879 | memset (addr, 0, TYPE_LENGTH (type)); |
87ffba60 | 880 | |
e035e373 | 881 | floatformat_from_doublest (fmt, &val, addr); |
96d2f608 | 882 | } |
43686d64 MK |
883 | |
884 | /* Convert a floating-point number of type FROM_TYPE from a | |
885 | target-order byte-stream at FROM to a floating-point number of type | |
886 | TO_TYPE, and store it to a target-order byte-stream at TO. */ | |
887 | ||
888 | void | |
889 | convert_typed_floating (const void *from, const struct type *from_type, | |
890 | void *to, const struct type *to_type) | |
891 | { | |
c2f05ac9 AC |
892 | const struct floatformat *from_fmt = floatformat_from_type (from_type); |
893 | const struct floatformat *to_fmt = floatformat_from_type (to_type); | |
43686d64 | 894 | |
43686d64 MK |
895 | if (from_fmt == NULL || to_fmt == NULL) |
896 | { | |
897 | /* If we don't know the floating-point format of FROM_TYPE or | |
898 | TO_TYPE, there's not much we can do. We might make the | |
899 | assumption that if the length of FROM_TYPE and TO_TYPE match, | |
900 | their floating-point format would match too, but that | |
901 | assumption might be wrong on targets that support | |
902 | floating-point types that only differ in endianness for | |
903 | example. So we warn instead, and zero out the target buffer. */ | |
8a3fe4f8 | 904 | warning (_("Can't convert floating-point number to desired type.")); |
43686d64 MK |
905 | memset (to, 0, TYPE_LENGTH (to_type)); |
906 | } | |
907 | else if (from_fmt == to_fmt) | |
908 | { | |
909 | /* We're in business. The floating-point format of FROM_TYPE | |
910 | and TO_TYPE match. However, even though the floating-point | |
911 | format matches, the length of the type might still be | |
912 | different. Make sure we don't overrun any buffers. See | |
913 | comment in store_typed_floating for a discussion about | |
914 | zeroing out remaining bytes in the target buffer. */ | |
915 | memset (to, 0, TYPE_LENGTH (to_type)); | |
916 | memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type))); | |
917 | } | |
918 | else | |
919 | { | |
920 | /* The floating-point types don't match. The best we can do | |
938f5214 | 921 | (apart from simulating the target FPU) is converting to the |
43686d64 MK |
922 | widest floating-point type supported by the host, and then |
923 | again to the desired type. */ | |
924 | DOUBLEST d; | |
925 | ||
926 | floatformat_to_doublest (from_fmt, from, &d); | |
927 | floatformat_from_doublest (to_fmt, &d, to); | |
928 | } | |
929 | } | |
5ef2d0aa AC |
930 | |
931 | const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN]; | |
932 | const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN]; | |
49c54768 | 933 | const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN]; |
5ef2d0aa AC |
934 | const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN]; |
935 | const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN]; | |
5ef2d0aa AC |
936 | |
937 | extern void _initialize_doublest (void); | |
938 | ||
939 | extern void | |
940 | _initialize_doublest (void) | |
941 | { | |
942 | floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little; | |
943 | floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big; | |
944 | floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little; | |
945 | floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big; | |
3e43a32a MS |
946 | floatformat_arm_ext[BFD_ENDIAN_LITTLE] |
947 | = &floatformat_arm_ext_littlebyte_bigword; | |
5ef2d0aa AC |
948 | floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big; |
949 | floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little; | |
950 | floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big; | |
49c54768 AC |
951 | floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little; |
952 | floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big; | |
5ef2d0aa | 953 | } |