]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger. |
1e698235 | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
b6ba6518 | 3 | Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
615967cb | 23 | #include "doublest.h" |
c906108c | 24 | #include "frame.h" |
d2427a71 RH |
25 | #include "frame-unwind.h" |
26 | #include "frame-base.h" | |
baa490c4 | 27 | #include "dwarf2-frame.h" |
c906108c SS |
28 | #include "inferior.h" |
29 | #include "symtab.h" | |
30 | #include "value.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "gdbcore.h" | |
33 | #include "dis-asm.h" | |
34 | #include "symfile.h" | |
35 | #include "objfiles.h" | |
36 | #include "gdb_string.h" | |
c5f0f3d0 | 37 | #include "linespec.h" |
4e052eda | 38 | #include "regcache.h" |
615967cb | 39 | #include "reggroups.h" |
dc129d82 | 40 | #include "arch-utils.h" |
4be87837 | 41 | #include "osabi.h" |
fe898f56 | 42 | #include "block.h" |
7d9b040b | 43 | #include "infcall.h" |
dc129d82 JT |
44 | |
45 | #include "elf-bfd.h" | |
46 | ||
47 | #include "alpha-tdep.h" | |
48 | ||
c906108c | 49 | \f |
515921d7 JB |
50 | /* Return the name of the REGNO register. |
51 | ||
52 | An empty name corresponds to a register number that used to | |
53 | be used for a virtual register. That virtual register has | |
54 | been removed, but the index is still reserved to maintain | |
55 | compatibility with existing remote alpha targets. */ | |
56 | ||
fa88f677 | 57 | static const char * |
636a6dfc JT |
58 | alpha_register_name (int regno) |
59 | { | |
5ab84872 | 60 | static const char * const register_names[] = |
636a6dfc JT |
61 | { |
62 | "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", | |
63 | "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", | |
64 | "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", | |
65 | "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero", | |
66 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
67 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
68 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
69 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr", | |
44d88583 | 70 | "pc", "", "unique" |
636a6dfc JT |
71 | }; |
72 | ||
73 | if (regno < 0) | |
5ab84872 | 74 | return NULL; |
636a6dfc | 75 | if (regno >= (sizeof(register_names) / sizeof(*register_names))) |
5ab84872 RH |
76 | return NULL; |
77 | return register_names[regno]; | |
636a6dfc | 78 | } |
d734c450 | 79 | |
dc129d82 | 80 | static int |
d734c450 JT |
81 | alpha_cannot_fetch_register (int regno) |
82 | { | |
515921d7 JB |
83 | return (regno == ALPHA_ZERO_REGNUM |
84 | || strlen (alpha_register_name (regno)) == 0); | |
d734c450 JT |
85 | } |
86 | ||
dc129d82 | 87 | static int |
d734c450 JT |
88 | alpha_cannot_store_register (int regno) |
89 | { | |
515921d7 JB |
90 | return (regno == ALPHA_ZERO_REGNUM |
91 | || strlen (alpha_register_name (regno)) == 0); | |
d734c450 JT |
92 | } |
93 | ||
dc129d82 | 94 | static struct type * |
c483c494 | 95 | alpha_register_type (struct gdbarch *gdbarch, int regno) |
0d056799 | 96 | { |
72667056 RH |
97 | if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM) |
98 | return builtin_type_void_data_ptr; | |
99 | if (regno == ALPHA_PC_REGNUM) | |
100 | return builtin_type_void_func_ptr; | |
101 | ||
102 | /* Don't need to worry about little vs big endian until | |
103 | some jerk tries to port to alpha-unicosmk. */ | |
b38b6be2 | 104 | if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31) |
72667056 RH |
105 | return builtin_type_ieee_double_little; |
106 | ||
107 | return builtin_type_int64; | |
0d056799 | 108 | } |
f8453e34 | 109 | |
615967cb RH |
110 | /* Is REGNUM a member of REGGROUP? */ |
111 | ||
112 | static int | |
113 | alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
114 | struct reggroup *group) | |
115 | { | |
116 | /* Filter out any registers eliminated, but whose regnum is | |
117 | reserved for backward compatibility, e.g. the vfp. */ | |
118 | if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0') | |
119 | return 0; | |
120 | ||
df4a182b RH |
121 | if (group == all_reggroup) |
122 | return 1; | |
123 | ||
124 | /* Zero should not be saved or restored. Technically it is a general | |
125 | register (just as $f31 would be a float if we represented it), but | |
126 | there's no point displaying it during "info regs", so leave it out | |
127 | of all groups except for "all". */ | |
128 | if (regnum == ALPHA_ZERO_REGNUM) | |
129 | return 0; | |
130 | ||
131 | /* All other registers are saved and restored. */ | |
132 | if (group == save_reggroup || group == restore_reggroup) | |
615967cb RH |
133 | return 1; |
134 | ||
135 | /* All other groups are non-overlapping. */ | |
136 | ||
137 | /* Since this is really a PALcode memory slot... */ | |
138 | if (regnum == ALPHA_UNIQUE_REGNUM) | |
139 | return group == system_reggroup; | |
140 | ||
141 | /* Force the FPCR to be considered part of the floating point state. */ | |
142 | if (regnum == ALPHA_FPCR_REGNUM) | |
143 | return group == float_reggroup; | |
144 | ||
145 | if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31) | |
146 | return group == float_reggroup; | |
147 | else | |
148 | return group == general_reggroup; | |
149 | } | |
150 | ||
dc129d82 | 151 | static int |
f8453e34 JT |
152 | alpha_register_byte (int regno) |
153 | { | |
154 | return (regno * 8); | |
155 | } | |
156 | ||
c483c494 RH |
157 | /* The following represents exactly the conversion performed by |
158 | the LDS instruction. This applies to both single-precision | |
159 | floating point and 32-bit integers. */ | |
160 | ||
161 | static void | |
162 | alpha_lds (void *out, const void *in) | |
163 | { | |
164 | ULONGEST mem = extract_unsigned_integer (in, 4); | |
165 | ULONGEST frac = (mem >> 0) & 0x7fffff; | |
166 | ULONGEST sign = (mem >> 31) & 1; | |
167 | ULONGEST exp_msb = (mem >> 30) & 1; | |
168 | ULONGEST exp_low = (mem >> 23) & 0x7f; | |
169 | ULONGEST exp, reg; | |
170 | ||
171 | exp = (exp_msb << 10) | exp_low; | |
172 | if (exp_msb) | |
173 | { | |
174 | if (exp_low == 0x7f) | |
175 | exp = 0x7ff; | |
176 | } | |
177 | else | |
178 | { | |
179 | if (exp_low != 0x00) | |
180 | exp |= 0x380; | |
181 | } | |
182 | ||
183 | reg = (sign << 63) | (exp << 52) | (frac << 29); | |
184 | store_unsigned_integer (out, 8, reg); | |
185 | } | |
186 | ||
187 | /* Similarly, this represents exactly the conversion performed by | |
188 | the STS instruction. */ | |
189 | ||
39efb398 | 190 | static void |
c483c494 RH |
191 | alpha_sts (void *out, const void *in) |
192 | { | |
193 | ULONGEST reg, mem; | |
194 | ||
195 | reg = extract_unsigned_integer (in, 8); | |
196 | mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff); | |
197 | store_unsigned_integer (out, 4, mem); | |
198 | } | |
199 | ||
d2427a71 RH |
200 | /* The alpha needs a conversion between register and memory format if the |
201 | register is a floating point register and memory format is float, as the | |
202 | register format must be double or memory format is an integer with 4 | |
203 | bytes or less, as the representation of integers in floating point | |
204 | registers is different. */ | |
205 | ||
c483c494 | 206 | static int |
ff2e87ac | 207 | alpha_convert_register_p (int regno, struct type *type) |
14696584 | 208 | { |
c483c494 | 209 | return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31); |
14696584 RH |
210 | } |
211 | ||
d2427a71 | 212 | static void |
ff2e87ac AC |
213 | alpha_register_to_value (struct frame_info *frame, int regnum, |
214 | struct type *valtype, void *out) | |
5868c862 | 215 | { |
ff2e87ac AC |
216 | char in[MAX_REGISTER_SIZE]; |
217 | frame_register_read (frame, regnum, in); | |
c483c494 | 218 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 219 | { |
c483c494 RH |
220 | case 4: |
221 | alpha_sts (out, in); | |
222 | break; | |
223 | case 8: | |
224 | memcpy (out, in, 8); | |
225 | break; | |
226 | default: | |
323e0a4a | 227 | error (_("Cannot retrieve value from floating point register")); |
d2427a71 | 228 | } |
d2427a71 | 229 | } |
5868c862 | 230 | |
d2427a71 | 231 | static void |
ff2e87ac AC |
232 | alpha_value_to_register (struct frame_info *frame, int regnum, |
233 | struct type *valtype, const void *in) | |
d2427a71 | 234 | { |
ff2e87ac | 235 | char out[MAX_REGISTER_SIZE]; |
c483c494 | 236 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 237 | { |
c483c494 RH |
238 | case 4: |
239 | alpha_lds (out, in); | |
240 | break; | |
241 | case 8: | |
242 | memcpy (out, in, 8); | |
243 | break; | |
244 | default: | |
323e0a4a | 245 | error (_("Cannot store value in floating point register")); |
d2427a71 | 246 | } |
ff2e87ac | 247 | put_frame_register (frame, regnum, out); |
5868c862 JT |
248 | } |
249 | ||
d2427a71 RH |
250 | \f |
251 | /* The alpha passes the first six arguments in the registers, the rest on | |
c88e30c0 RH |
252 | the stack. The register arguments are stored in ARG_REG_BUFFER, and |
253 | then moved into the register file; this simplifies the passing of a | |
254 | large struct which extends from the registers to the stack, plus avoids | |
255 | three ptrace invocations per word. | |
256 | ||
257 | We don't bother tracking which register values should go in integer | |
258 | regs or fp regs; we load the same values into both. | |
259 | ||
d2427a71 RH |
260 | If the called function is returning a structure, the address of the |
261 | structure to be returned is passed as a hidden first argument. */ | |
c906108c | 262 | |
d2427a71 | 263 | static CORE_ADDR |
7d9b040b | 264 | alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
c88e30c0 RH |
265 | struct regcache *regcache, CORE_ADDR bp_addr, |
266 | int nargs, struct value **args, CORE_ADDR sp, | |
267 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 268 | { |
d2427a71 RH |
269 | int i; |
270 | int accumulate_size = struct_return ? 8 : 0; | |
d2427a71 | 271 | struct alpha_arg |
c906108c | 272 | { |
d2427a71 RH |
273 | char *contents; |
274 | int len; | |
275 | int offset; | |
276 | }; | |
c88e30c0 RH |
277 | struct alpha_arg *alpha_args |
278 | = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg)); | |
52f0bd74 | 279 | struct alpha_arg *m_arg; |
c88e30c0 | 280 | char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS]; |
d2427a71 | 281 | int required_arg_regs; |
7d9b040b | 282 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 283 | |
c88e30c0 RH |
284 | /* The ABI places the address of the called function in T12. */ |
285 | regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr); | |
286 | ||
287 | /* Set the return address register to point to the entry point | |
288 | of the program, where a breakpoint lies in wait. */ | |
289 | regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr); | |
290 | ||
291 | /* Lay out the arguments in memory. */ | |
d2427a71 RH |
292 | for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++) |
293 | { | |
294 | struct value *arg = args[i]; | |
4991999e | 295 | struct type *arg_type = check_typedef (value_type (arg)); |
c88e30c0 | 296 | |
d2427a71 RH |
297 | /* Cast argument to long if necessary as the compiler does it too. */ |
298 | switch (TYPE_CODE (arg_type)) | |
c906108c | 299 | { |
d2427a71 RH |
300 | case TYPE_CODE_INT: |
301 | case TYPE_CODE_BOOL: | |
302 | case TYPE_CODE_CHAR: | |
303 | case TYPE_CODE_RANGE: | |
304 | case TYPE_CODE_ENUM: | |
0ede8eca | 305 | if (TYPE_LENGTH (arg_type) == 4) |
d2427a71 | 306 | { |
0ede8eca RH |
307 | /* 32-bit values must be sign-extended to 64 bits |
308 | even if the base data type is unsigned. */ | |
309 | arg_type = builtin_type_int32; | |
310 | arg = value_cast (arg_type, arg); | |
311 | } | |
312 | if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE) | |
313 | { | |
314 | arg_type = builtin_type_int64; | |
d2427a71 RH |
315 | arg = value_cast (arg_type, arg); |
316 | } | |
317 | break; | |
7b5e1cb3 | 318 | |
c88e30c0 RH |
319 | case TYPE_CODE_FLT: |
320 | /* "float" arguments loaded in registers must be passed in | |
321 | register format, aka "double". */ | |
322 | if (accumulate_size < sizeof (arg_reg_buffer) | |
323 | && TYPE_LENGTH (arg_type) == 4) | |
324 | { | |
eb4edb88 | 325 | arg_type = builtin_type_ieee_double_little; |
c88e30c0 RH |
326 | arg = value_cast (arg_type, arg); |
327 | } | |
328 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
329 | invisible reference. No one else uses this data type. */ | |
330 | else if (TYPE_LENGTH (arg_type) == 16) | |
331 | { | |
332 | /* Allocate aligned storage. */ | |
333 | sp = (sp & -16) - 16; | |
334 | ||
335 | /* Write the real data into the stack. */ | |
336 | write_memory (sp, VALUE_CONTENTS (arg), 16); | |
337 | ||
338 | /* Construct the indirection. */ | |
339 | arg_type = lookup_pointer_type (arg_type); | |
340 | arg = value_from_pointer (arg_type, sp); | |
341 | } | |
342 | break; | |
7b5e1cb3 RH |
343 | |
344 | case TYPE_CODE_COMPLEX: | |
345 | /* ??? The ABI says that complex values are passed as two | |
346 | separate scalar values. This distinction only matters | |
347 | for complex float. However, GCC does not implement this. */ | |
348 | ||
349 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
350 | invisible reference. */ | |
351 | if (TYPE_LENGTH (arg_type) == 32) | |
352 | { | |
353 | /* Allocate aligned storage. */ | |
354 | sp = (sp & -16) - 16; | |
355 | ||
356 | /* Write the real data into the stack. */ | |
357 | write_memory (sp, VALUE_CONTENTS (arg), 32); | |
358 | ||
359 | /* Construct the indirection. */ | |
360 | arg_type = lookup_pointer_type (arg_type); | |
361 | arg = value_from_pointer (arg_type, sp); | |
362 | } | |
363 | break; | |
364 | ||
d2427a71 RH |
365 | default: |
366 | break; | |
c906108c | 367 | } |
d2427a71 RH |
368 | m_arg->len = TYPE_LENGTH (arg_type); |
369 | m_arg->offset = accumulate_size; | |
370 | accumulate_size = (accumulate_size + m_arg->len + 7) & ~7; | |
371 | m_arg->contents = VALUE_CONTENTS (arg); | |
c906108c SS |
372 | } |
373 | ||
d2427a71 RH |
374 | /* Determine required argument register loads, loading an argument register |
375 | is expensive as it uses three ptrace calls. */ | |
376 | required_arg_regs = accumulate_size / 8; | |
377 | if (required_arg_regs > ALPHA_NUM_ARG_REGS) | |
378 | required_arg_regs = ALPHA_NUM_ARG_REGS; | |
c906108c | 379 | |
d2427a71 | 380 | /* Make room for the arguments on the stack. */ |
c88e30c0 RH |
381 | if (accumulate_size < sizeof(arg_reg_buffer)) |
382 | accumulate_size = 0; | |
383 | else | |
384 | accumulate_size -= sizeof(arg_reg_buffer); | |
d2427a71 | 385 | sp -= accumulate_size; |
c906108c | 386 | |
c88e30c0 | 387 | /* Keep sp aligned to a multiple of 16 as the ABI requires. */ |
d2427a71 | 388 | sp &= ~15; |
c906108c | 389 | |
d2427a71 RH |
390 | /* `Push' arguments on the stack. */ |
391 | for (i = nargs; m_arg--, --i >= 0;) | |
c906108c | 392 | { |
c88e30c0 RH |
393 | char *contents = m_arg->contents; |
394 | int offset = m_arg->offset; | |
395 | int len = m_arg->len; | |
396 | ||
397 | /* Copy the bytes destined for registers into arg_reg_buffer. */ | |
398 | if (offset < sizeof(arg_reg_buffer)) | |
399 | { | |
400 | if (offset + len <= sizeof(arg_reg_buffer)) | |
401 | { | |
402 | memcpy (arg_reg_buffer + offset, contents, len); | |
403 | continue; | |
404 | } | |
405 | else | |
406 | { | |
407 | int tlen = sizeof(arg_reg_buffer) - offset; | |
408 | memcpy (arg_reg_buffer + offset, contents, tlen); | |
409 | offset += tlen; | |
410 | contents += tlen; | |
411 | len -= tlen; | |
412 | } | |
413 | } | |
414 | ||
415 | /* Everything else goes to the stack. */ | |
416 | write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len); | |
c906108c | 417 | } |
c88e30c0 RH |
418 | if (struct_return) |
419 | store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr); | |
c906108c | 420 | |
d2427a71 RH |
421 | /* Load the argument registers. */ |
422 | for (i = 0; i < required_arg_regs; i++) | |
423 | { | |
09cc52fd RH |
424 | regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i, |
425 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
426 | regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i, | |
427 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
d2427a71 | 428 | } |
c906108c | 429 | |
09cc52fd RH |
430 | /* Finally, update the stack pointer. */ |
431 | regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp); | |
432 | ||
c88e30c0 | 433 | return sp; |
c906108c SS |
434 | } |
435 | ||
5ec2bb99 RH |
436 | /* Extract from REGCACHE the value about to be returned from a function |
437 | and copy it into VALBUF. */ | |
d2427a71 | 438 | |
dc129d82 | 439 | static void |
5ec2bb99 RH |
440 | alpha_extract_return_value (struct type *valtype, struct regcache *regcache, |
441 | void *valbuf) | |
140f9984 | 442 | { |
7b5e1cb3 | 443 | int length = TYPE_LENGTH (valtype); |
5ec2bb99 RH |
444 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
445 | ULONGEST l; | |
446 | ||
447 | switch (TYPE_CODE (valtype)) | |
448 | { | |
449 | case TYPE_CODE_FLT: | |
7b5e1cb3 | 450 | switch (length) |
5ec2bb99 RH |
451 | { |
452 | case 4: | |
453 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer); | |
c483c494 | 454 | alpha_sts (valbuf, raw_buffer); |
5ec2bb99 RH |
455 | break; |
456 | ||
457 | case 8: | |
458 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
459 | break; | |
460 | ||
24064b5c RH |
461 | case 16: |
462 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
463 | read_memory (l, valbuf, 16); | |
464 | break; | |
465 | ||
5ec2bb99 | 466 | default: |
323e0a4a | 467 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
5ec2bb99 RH |
468 | } |
469 | break; | |
470 | ||
7b5e1cb3 RH |
471 | case TYPE_CODE_COMPLEX: |
472 | switch (length) | |
473 | { | |
474 | case 8: | |
475 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
476 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
477 | break; | |
478 | ||
479 | case 16: | |
480 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
481 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1, | |
482 | (char *)valbuf + 8); | |
483 | break; | |
484 | ||
485 | case 32: | |
486 | regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l); | |
487 | read_memory (l, valbuf, 32); | |
488 | break; | |
489 | ||
490 | default: | |
323e0a4a | 491 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
7b5e1cb3 RH |
492 | } |
493 | break; | |
494 | ||
5ec2bb99 RH |
495 | default: |
496 | /* Assume everything else degenerates to an integer. */ | |
497 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
7b5e1cb3 | 498 | store_unsigned_integer (valbuf, length, l); |
5ec2bb99 RH |
499 | break; |
500 | } | |
140f9984 JT |
501 | } |
502 | ||
5ec2bb99 RH |
503 | /* Extract from REGCACHE the address of a structure about to be returned |
504 | from a function. */ | |
505 | ||
506 | static CORE_ADDR | |
507 | alpha_extract_struct_value_address (struct regcache *regcache) | |
508 | { | |
509 | ULONGEST addr; | |
510 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr); | |
511 | return addr; | |
512 | } | |
513 | ||
514 | /* Insert the given value into REGCACHE as if it was being | |
515 | returned by a function. */ | |
0d056799 | 516 | |
d2427a71 | 517 | static void |
5ec2bb99 RH |
518 | alpha_store_return_value (struct type *valtype, struct regcache *regcache, |
519 | const void *valbuf) | |
c906108c | 520 | { |
d2427a71 | 521 | int length = TYPE_LENGTH (valtype); |
5ec2bb99 RH |
522 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
523 | ULONGEST l; | |
d2427a71 | 524 | |
5ec2bb99 | 525 | switch (TYPE_CODE (valtype)) |
c906108c | 526 | { |
5ec2bb99 RH |
527 | case TYPE_CODE_FLT: |
528 | switch (length) | |
529 | { | |
530 | case 4: | |
c483c494 | 531 | alpha_lds (raw_buffer, valbuf); |
f75d70cc RH |
532 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer); |
533 | break; | |
5ec2bb99 RH |
534 | |
535 | case 8: | |
536 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
537 | break; | |
538 | ||
24064b5c RH |
539 | case 16: |
540 | /* FIXME: 128-bit long doubles are returned like structures: | |
541 | by writing into indirect storage provided by the caller | |
542 | as the first argument. */ | |
323e0a4a | 543 | error (_("Cannot set a 128-bit long double return value.")); |
24064b5c | 544 | |
5ec2bb99 | 545 | default: |
323e0a4a | 546 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
5ec2bb99 RH |
547 | } |
548 | break; | |
d2427a71 | 549 | |
7b5e1cb3 RH |
550 | case TYPE_CODE_COMPLEX: |
551 | switch (length) | |
552 | { | |
553 | case 8: | |
554 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
555 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
556 | break; | |
557 | ||
558 | case 16: | |
559 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
560 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1, | |
561 | (const char *)valbuf + 8); | |
562 | break; | |
563 | ||
564 | case 32: | |
565 | /* FIXME: 128-bit long doubles are returned like structures: | |
566 | by writing into indirect storage provided by the caller | |
567 | as the first argument. */ | |
323e0a4a | 568 | error (_("Cannot set a 128-bit long double return value.")); |
7b5e1cb3 RH |
569 | |
570 | default: | |
323e0a4a | 571 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
7b5e1cb3 RH |
572 | } |
573 | break; | |
574 | ||
5ec2bb99 RH |
575 | default: |
576 | /* Assume everything else degenerates to an integer. */ | |
0ede8eca RH |
577 | /* 32-bit values must be sign-extended to 64 bits |
578 | even if the base data type is unsigned. */ | |
579 | if (length == 4) | |
580 | valtype = builtin_type_int32; | |
5ec2bb99 RH |
581 | l = unpack_long (valtype, valbuf); |
582 | regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l); | |
583 | break; | |
584 | } | |
c906108c SS |
585 | } |
586 | ||
d2427a71 RH |
587 | \f |
588 | static const unsigned char * | |
589 | alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
c906108c | 590 | { |
d2427a71 RH |
591 | static const unsigned char alpha_breakpoint[] = |
592 | { 0x80, 0, 0, 0 }; /* call_pal bpt */ | |
c906108c | 593 | |
d2427a71 RH |
594 | *lenptr = sizeof(alpha_breakpoint); |
595 | return (alpha_breakpoint); | |
596 | } | |
c906108c | 597 | |
d2427a71 RH |
598 | \f |
599 | /* This returns the PC of the first insn after the prologue. | |
600 | If we can't find the prologue, then return 0. */ | |
c906108c | 601 | |
d2427a71 RH |
602 | CORE_ADDR |
603 | alpha_after_prologue (CORE_ADDR pc) | |
c906108c | 604 | { |
d2427a71 RH |
605 | struct symtab_and_line sal; |
606 | CORE_ADDR func_addr, func_end; | |
c906108c | 607 | |
d2427a71 | 608 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c5aa993b | 609 | return 0; |
c906108c | 610 | |
d2427a71 RH |
611 | sal = find_pc_line (func_addr, 0); |
612 | if (sal.end < func_end) | |
613 | return sal.end; | |
c5aa993b | 614 | |
d2427a71 RH |
615 | /* The line after the prologue is after the end of the function. In this |
616 | case, tell the caller to find the prologue the hard way. */ | |
617 | return 0; | |
c906108c SS |
618 | } |
619 | ||
d2427a71 RH |
620 | /* Read an instruction from memory at PC, looking through breakpoints. */ |
621 | ||
622 | unsigned int | |
623 | alpha_read_insn (CORE_ADDR pc) | |
c906108c | 624 | { |
d2427a71 RH |
625 | char buf[4]; |
626 | int status; | |
c5aa993b | 627 | |
1f602b35 | 628 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
d2427a71 RH |
629 | if (status) |
630 | memory_error (status, pc); | |
631 | return extract_unsigned_integer (buf, 4); | |
632 | } | |
c5aa993b | 633 | |
d2427a71 RH |
634 | /* To skip prologues, I use this predicate. Returns either PC itself |
635 | if the code at PC does not look like a function prologue; otherwise | |
636 | returns an address that (if we're lucky) follows the prologue. If | |
637 | LENIENT, then we must skip everything which is involved in setting | |
638 | up the frame (it's OK to skip more, just so long as we don't skip | |
639 | anything which might clobber the registers which are being saved. */ | |
c906108c | 640 | |
d2427a71 RH |
641 | static CORE_ADDR |
642 | alpha_skip_prologue (CORE_ADDR pc) | |
643 | { | |
644 | unsigned long inst; | |
645 | int offset; | |
646 | CORE_ADDR post_prologue_pc; | |
647 | char buf[4]; | |
c906108c | 648 | |
d2427a71 RH |
649 | /* Silently return the unaltered pc upon memory errors. |
650 | This could happen on OSF/1 if decode_line_1 tries to skip the | |
651 | prologue for quickstarted shared library functions when the | |
652 | shared library is not yet mapped in. | |
653 | Reading target memory is slow over serial lines, so we perform | |
654 | this check only if the target has shared libraries (which all | |
655 | Alpha targets do). */ | |
656 | if (target_read_memory (pc, buf, 4)) | |
657 | return pc; | |
c906108c | 658 | |
d2427a71 RH |
659 | /* See if we can determine the end of the prologue via the symbol table. |
660 | If so, then return either PC, or the PC after the prologue, whichever | |
661 | is greater. */ | |
c906108c | 662 | |
d2427a71 RH |
663 | post_prologue_pc = alpha_after_prologue (pc); |
664 | if (post_prologue_pc != 0) | |
665 | return max (pc, post_prologue_pc); | |
c906108c | 666 | |
d2427a71 RH |
667 | /* Can't determine prologue from the symbol table, need to examine |
668 | instructions. */ | |
dc1b0db2 | 669 | |
d2427a71 RH |
670 | /* Skip the typical prologue instructions. These are the stack adjustment |
671 | instruction and the instructions that save registers on the stack | |
672 | or in the gcc frame. */ | |
673 | for (offset = 0; offset < 100; offset += 4) | |
674 | { | |
675 | inst = alpha_read_insn (pc + offset); | |
c906108c | 676 | |
d2427a71 RH |
677 | if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ |
678 | continue; | |
679 | if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ | |
680 | continue; | |
681 | if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
682 | continue; | |
683 | if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */ | |
684 | continue; | |
c906108c | 685 | |
d2427a71 RH |
686 | if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */ |
687 | || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */ | |
688 | && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */ | |
689 | continue; | |
c906108c | 690 | |
d2427a71 RH |
691 | if (inst == 0x47de040f) /* bis sp,sp,fp */ |
692 | continue; | |
693 | if (inst == 0x47fe040f) /* bis zero,sp,fp */ | |
694 | continue; | |
c906108c | 695 | |
d2427a71 | 696 | break; |
c906108c | 697 | } |
d2427a71 RH |
698 | return pc + offset; |
699 | } | |
c906108c | 700 | |
d2427a71 RH |
701 | \f |
702 | /* Figure out where the longjmp will land. | |
703 | We expect the first arg to be a pointer to the jmp_buf structure from | |
704 | which we extract the PC (JB_PC) that we will land at. The PC is copied | |
705 | into the "pc". This routine returns true on success. */ | |
c906108c SS |
706 | |
707 | static int | |
d2427a71 | 708 | alpha_get_longjmp_target (CORE_ADDR *pc) |
c906108c | 709 | { |
d2427a71 RH |
710 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
711 | CORE_ADDR jb_addr; | |
5ab84872 | 712 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
c906108c | 713 | |
d2427a71 | 714 | jb_addr = read_register (ALPHA_A0_REGNUM); |
c906108c | 715 | |
d2427a71 RH |
716 | if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size), |
717 | raw_buffer, tdep->jb_elt_size)) | |
c906108c | 718 | return 0; |
d2427a71 | 719 | |
7c0b4a20 | 720 | *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size); |
d2427a71 | 721 | return 1; |
c906108c SS |
722 | } |
723 | ||
d2427a71 RH |
724 | \f |
725 | /* Frame unwinder for signal trampolines. We use alpha tdep bits that | |
726 | describe the location and shape of the sigcontext structure. After | |
727 | that, all registers are in memory, so it's easy. */ | |
728 | /* ??? Shouldn't we be able to do this generically, rather than with | |
729 | OSABI data specific to Alpha? */ | |
730 | ||
731 | struct alpha_sigtramp_unwind_cache | |
c906108c | 732 | { |
d2427a71 RH |
733 | CORE_ADDR sigcontext_addr; |
734 | }; | |
c906108c | 735 | |
d2427a71 RH |
736 | static struct alpha_sigtramp_unwind_cache * |
737 | alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame, | |
738 | void **this_prologue_cache) | |
739 | { | |
740 | struct alpha_sigtramp_unwind_cache *info; | |
741 | struct gdbarch_tdep *tdep; | |
c906108c | 742 | |
d2427a71 RH |
743 | if (*this_prologue_cache) |
744 | return *this_prologue_cache; | |
c906108c | 745 | |
d2427a71 RH |
746 | info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache); |
747 | *this_prologue_cache = info; | |
c906108c | 748 | |
d2427a71 RH |
749 | tdep = gdbarch_tdep (current_gdbarch); |
750 | info->sigcontext_addr = tdep->sigcontext_addr (next_frame); | |
c906108c | 751 | |
d2427a71 | 752 | return info; |
c906108c SS |
753 | } |
754 | ||
138e7be5 MK |
755 | /* Return the address of REGNUM in a sigtramp frame. Since this is |
756 | all arithmetic, it doesn't seem worthwhile to cache it. */ | |
c5aa993b | 757 | |
d2427a71 | 758 | static CORE_ADDR |
138e7be5 | 759 | alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum) |
d2427a71 | 760 | { |
138e7be5 MK |
761 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
762 | ||
763 | if (regnum >= 0 && regnum < 32) | |
764 | return sigcontext_addr + tdep->sc_regs_offset + regnum * 8; | |
765 | else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32) | |
766 | return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8; | |
767 | else if (regnum == ALPHA_PC_REGNUM) | |
768 | return sigcontext_addr + tdep->sc_pc_offset; | |
c5aa993b | 769 | |
d2427a71 | 770 | return 0; |
c906108c SS |
771 | } |
772 | ||
d2427a71 RH |
773 | /* Given a GDB frame, determine the address of the calling function's |
774 | frame. This will be used to create a new GDB frame struct. */ | |
140f9984 | 775 | |
dc129d82 | 776 | static void |
d2427a71 RH |
777 | alpha_sigtramp_frame_this_id (struct frame_info *next_frame, |
778 | void **this_prologue_cache, | |
779 | struct frame_id *this_id) | |
c906108c | 780 | { |
d2427a71 RH |
781 | struct alpha_sigtramp_unwind_cache *info |
782 | = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
783 | struct gdbarch_tdep *tdep; | |
784 | CORE_ADDR stack_addr, code_addr; | |
785 | ||
786 | /* If the OSABI couldn't locate the sigcontext, give up. */ | |
787 | if (info->sigcontext_addr == 0) | |
788 | return; | |
789 | ||
790 | /* If we have dynamic signal trampolines, find their start. | |
791 | If we do not, then we must assume there is a symbol record | |
792 | that can provide the start address. */ | |
793 | tdep = gdbarch_tdep (current_gdbarch); | |
794 | if (tdep->dynamic_sigtramp_offset) | |
c906108c | 795 | { |
d2427a71 RH |
796 | int offset; |
797 | code_addr = frame_pc_unwind (next_frame); | |
798 | offset = tdep->dynamic_sigtramp_offset (code_addr); | |
799 | if (offset >= 0) | |
800 | code_addr -= offset; | |
c906108c | 801 | else |
d2427a71 | 802 | code_addr = 0; |
c906108c | 803 | } |
d2427a71 RH |
804 | else |
805 | code_addr = frame_func_unwind (next_frame); | |
c906108c | 806 | |
d2427a71 RH |
807 | /* The stack address is trivially read from the sigcontext. */ |
808 | stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr, | |
809 | ALPHA_SP_REGNUM); | |
b21fd293 RH |
810 | stack_addr = get_frame_memory_unsigned (next_frame, stack_addr, |
811 | ALPHA_REGISTER_SIZE); | |
c906108c | 812 | |
d2427a71 | 813 | *this_id = frame_id_build (stack_addr, code_addr); |
c906108c SS |
814 | } |
815 | ||
d2427a71 | 816 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
c906108c | 817 | |
d2427a71 RH |
818 | static void |
819 | alpha_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
820 | void **this_prologue_cache, | |
821 | int regnum, int *optimizedp, | |
822 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
823 | int *realnump, void *bufferp) | |
c906108c | 824 | { |
d2427a71 RH |
825 | struct alpha_sigtramp_unwind_cache *info |
826 | = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
827 | CORE_ADDR addr; | |
c906108c | 828 | |
d2427a71 | 829 | if (info->sigcontext_addr != 0) |
c906108c | 830 | { |
d2427a71 RH |
831 | /* All integer and fp registers are stored in memory. */ |
832 | addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum); | |
833 | if (addr != 0) | |
c906108c | 834 | { |
d2427a71 RH |
835 | *optimizedp = 0; |
836 | *lvalp = lval_memory; | |
837 | *addrp = addr; | |
838 | *realnump = -1; | |
839 | if (bufferp != NULL) | |
b21fd293 | 840 | get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE); |
d2427a71 | 841 | return; |
c906108c | 842 | } |
c906108c SS |
843 | } |
844 | ||
d2427a71 RH |
845 | /* This extra register may actually be in the sigcontext, but our |
846 | current description of it in alpha_sigtramp_frame_unwind_cache | |
847 | doesn't include it. Too bad. Fall back on whatever's in the | |
848 | outer frame. */ | |
849 | frame_register (next_frame, regnum, optimizedp, lvalp, addrp, | |
850 | realnump, bufferp); | |
851 | } | |
c906108c | 852 | |
d2427a71 RH |
853 | static const struct frame_unwind alpha_sigtramp_frame_unwind = { |
854 | SIGTRAMP_FRAME, | |
855 | alpha_sigtramp_frame_this_id, | |
856 | alpha_sigtramp_frame_prev_register | |
857 | }; | |
c906108c | 858 | |
d2427a71 | 859 | static const struct frame_unwind * |
336d1bba | 860 | alpha_sigtramp_frame_sniffer (struct frame_info *next_frame) |
d2427a71 | 861 | { |
336d1bba | 862 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
d2427a71 | 863 | char *name; |
c906108c | 864 | |
f2524b93 AC |
865 | /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead |
866 | look at tramp-frame.h and other simplier per-architecture | |
867 | sigtramp unwinders. */ | |
868 | ||
869 | /* We shouldn't even bother to try if the OSABI didn't register a | |
870 | sigcontext_addr handler or pc_in_sigtramp hander. */ | |
871 | if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL) | |
872 | return NULL; | |
873 | if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL) | |
d2427a71 | 874 | return NULL; |
c906108c | 875 | |
d2427a71 RH |
876 | /* Otherwise we should be in a signal frame. */ |
877 | find_pc_partial_function (pc, &name, NULL, NULL); | |
f2524b93 | 878 | if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name)) |
d2427a71 | 879 | return &alpha_sigtramp_frame_unwind; |
c906108c | 880 | |
d2427a71 | 881 | return NULL; |
c906108c | 882 | } |
d2427a71 RH |
883 | \f |
884 | /* Fallback alpha frame unwinder. Uses instruction scanning and knows | |
885 | something about the traditional layout of alpha stack frames. */ | |
c906108c | 886 | |
d2427a71 | 887 | struct alpha_heuristic_unwind_cache |
c906108c | 888 | { |
d2427a71 RH |
889 | CORE_ADDR *saved_regs; |
890 | CORE_ADDR vfp; | |
891 | CORE_ADDR start_pc; | |
892 | int return_reg; | |
893 | }; | |
c906108c | 894 | |
d2427a71 RH |
895 | /* Heuristic_proc_start may hunt through the text section for a long |
896 | time across a 2400 baud serial line. Allows the user to limit this | |
897 | search. */ | |
898 | static unsigned int heuristic_fence_post = 0; | |
c906108c | 899 | |
d2427a71 RH |
900 | /* Attempt to locate the start of the function containing PC. We assume that |
901 | the previous function ends with an about_to_return insn. Not foolproof by | |
902 | any means, since gcc is happy to put the epilogue in the middle of a | |
903 | function. But we're guessing anyway... */ | |
c906108c | 904 | |
d2427a71 RH |
905 | static CORE_ADDR |
906 | alpha_heuristic_proc_start (CORE_ADDR pc) | |
907 | { | |
908 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
909 | CORE_ADDR last_non_nop = pc; | |
910 | CORE_ADDR fence = pc - heuristic_fence_post; | |
911 | CORE_ADDR orig_pc = pc; | |
fbe586ae | 912 | CORE_ADDR func; |
9e0b60a8 | 913 | |
d2427a71 RH |
914 | if (pc == 0) |
915 | return 0; | |
9e0b60a8 | 916 | |
fbe586ae RH |
917 | /* First see if we can find the start of the function from minimal |
918 | symbol information. This can succeed with a binary that doesn't | |
919 | have debug info, but hasn't been stripped. */ | |
920 | func = get_pc_function_start (pc); | |
921 | if (func) | |
922 | return func; | |
923 | ||
d2427a71 RH |
924 | if (heuristic_fence_post == UINT_MAX |
925 | || fence < tdep->vm_min_address) | |
926 | fence = tdep->vm_min_address; | |
c906108c | 927 | |
d2427a71 RH |
928 | /* Search back for previous return; also stop at a 0, which might be |
929 | seen for instance before the start of a code section. Don't include | |
930 | nops, since this usually indicates padding between functions. */ | |
931 | for (pc -= 4; pc >= fence; pc -= 4) | |
c906108c | 932 | { |
d2427a71 RH |
933 | unsigned int insn = alpha_read_insn (pc); |
934 | switch (insn) | |
c906108c | 935 | { |
d2427a71 RH |
936 | case 0: /* invalid insn */ |
937 | case 0x6bfa8001: /* ret $31,($26),1 */ | |
938 | return last_non_nop; | |
939 | ||
940 | case 0x2ffe0000: /* unop: ldq_u $31,0($30) */ | |
941 | case 0x47ff041f: /* nop: bis $31,$31,$31 */ | |
942 | break; | |
943 | ||
944 | default: | |
945 | last_non_nop = pc; | |
946 | break; | |
c906108c | 947 | } |
d2427a71 | 948 | } |
c906108c | 949 | |
d2427a71 RH |
950 | /* It's not clear to me why we reach this point when stopping quietly, |
951 | but with this test, at least we don't print out warnings for every | |
952 | child forked (eg, on decstation). 22apr93 [email protected]. */ | |
953 | if (stop_soon == NO_STOP_QUIETLY) | |
954 | { | |
955 | static int blurb_printed = 0; | |
c906108c | 956 | |
d2427a71 | 957 | if (fence == tdep->vm_min_address) |
323e0a4a AC |
958 | warning (_("Hit beginning of text section without finding \ |
959 | enclosing function for address 0x%s"), paddr_nz (orig_pc)); | |
c906108c | 960 | else |
323e0a4a AC |
961 | warning (_("Hit heuristic-fence-post without finding \ |
962 | enclosing function for address 0x%s"), paddr_nz (orig_pc)); | |
c906108c | 963 | |
d2427a71 RH |
964 | if (!blurb_printed) |
965 | { | |
323e0a4a | 966 | printf_filtered (_("\ |
d2427a71 RH |
967 | This warning occurs if you are debugging a function without any symbols\n\ |
968 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
969 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
970 | \n\ | |
971 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
323e0a4a | 972 | (more likely) you have encountered a bug in GDB.\n")); |
d2427a71 RH |
973 | blurb_printed = 1; |
974 | } | |
975 | } | |
c906108c | 976 | |
d2427a71 RH |
977 | return 0; |
978 | } | |
c906108c | 979 | |
fbe586ae | 980 | static struct alpha_heuristic_unwind_cache * |
d2427a71 RH |
981 | alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame, |
982 | void **this_prologue_cache, | |
983 | CORE_ADDR start_pc) | |
984 | { | |
985 | struct alpha_heuristic_unwind_cache *info; | |
986 | ULONGEST val; | |
987 | CORE_ADDR limit_pc, cur_pc; | |
988 | int frame_reg, frame_size, return_reg, reg; | |
c906108c | 989 | |
d2427a71 RH |
990 | if (*this_prologue_cache) |
991 | return *this_prologue_cache; | |
c906108c | 992 | |
d2427a71 RH |
993 | info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache); |
994 | *this_prologue_cache = info; | |
995 | info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS); | |
c906108c | 996 | |
d2427a71 RH |
997 | limit_pc = frame_pc_unwind (next_frame); |
998 | if (start_pc == 0) | |
999 | start_pc = alpha_heuristic_proc_start (limit_pc); | |
1000 | info->start_pc = start_pc; | |
c906108c | 1001 | |
d2427a71 RH |
1002 | frame_reg = ALPHA_SP_REGNUM; |
1003 | frame_size = 0; | |
1004 | return_reg = -1; | |
c906108c | 1005 | |
d2427a71 RH |
1006 | /* If we've identified a likely place to start, do code scanning. */ |
1007 | if (start_pc != 0) | |
c5aa993b | 1008 | { |
d2427a71 RH |
1009 | /* Limit the forward search to 50 instructions. */ |
1010 | if (start_pc + 200 < limit_pc) | |
1011 | limit_pc = start_pc + 200; | |
c5aa993b | 1012 | |
d2427a71 RH |
1013 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4) |
1014 | { | |
1015 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1016 | |
d2427a71 RH |
1017 | if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ |
1018 | { | |
1019 | if (word & 0x8000) | |
1020 | { | |
1021 | /* Consider only the first stack allocation instruction | |
1022 | to contain the static size of the frame. */ | |
1023 | if (frame_size == 0) | |
1024 | frame_size = (-word) & 0xffff; | |
1025 | } | |
1026 | else | |
1027 | { | |
1028 | /* Exit loop if a positive stack adjustment is found, which | |
1029 | usually means that the stack cleanup code in the function | |
1030 | epilogue is reached. */ | |
1031 | break; | |
1032 | } | |
1033 | } | |
1034 | else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1035 | { | |
1036 | reg = (word & 0x03e00000) >> 21; | |
1037 | ||
d15bfd3a AC |
1038 | /* Ignore this instruction if we have already encountered |
1039 | an instruction saving the same register earlier in the | |
1040 | function code. The current instruction does not tell | |
1041 | us where the original value upon function entry is saved. | |
1042 | All it says is that the function we are scanning reused | |
1043 | that register for some computation of its own, and is now | |
1044 | saving its result. */ | |
1045 | if (info->saved_regs[reg]) | |
1046 | continue; | |
1047 | ||
d2427a71 RH |
1048 | if (reg == 31) |
1049 | continue; | |
1050 | ||
1051 | /* Do not compute the address where the register was saved yet, | |
1052 | because we don't know yet if the offset will need to be | |
1053 | relative to $sp or $fp (we can not compute the address | |
1054 | relative to $sp if $sp is updated during the execution of | |
1055 | the current subroutine, for instance when doing some alloca). | |
1056 | So just store the offset for the moment, and compute the | |
1057 | address later when we know whether this frame has a frame | |
1058 | pointer or not. */ | |
1059 | /* Hack: temporarily add one, so that the offset is non-zero | |
1060 | and we can tell which registers have save offsets below. */ | |
1061 | info->saved_regs[reg] = (word & 0xffff) + 1; | |
1062 | ||
1063 | /* Starting with OSF/1-3.2C, the system libraries are shipped | |
1064 | without local symbols, but they still contain procedure | |
1065 | descriptors without a symbol reference. GDB is currently | |
1066 | unable to find these procedure descriptors and uses | |
1067 | heuristic_proc_desc instead. | |
1068 | As some low level compiler support routines (__div*, __add*) | |
1069 | use a non-standard return address register, we have to | |
1070 | add some heuristics to determine the return address register, | |
1071 | or stepping over these routines will fail. | |
1072 | Usually the return address register is the first register | |
1073 | saved on the stack, but assembler optimization might | |
1074 | rearrange the register saves. | |
1075 | So we recognize only a few registers (t7, t9, ra) within | |
1076 | the procedure prologue as valid return address registers. | |
1077 | If we encounter a return instruction, we extract the | |
1078 | the return address register from it. | |
1079 | ||
1080 | FIXME: Rewriting GDB to access the procedure descriptors, | |
1081 | e.g. via the minimal symbol table, might obviate this hack. */ | |
1082 | if (return_reg == -1 | |
1083 | && cur_pc < (start_pc + 80) | |
1084 | && (reg == ALPHA_T7_REGNUM | |
1085 | || reg == ALPHA_T9_REGNUM | |
1086 | || reg == ALPHA_RA_REGNUM)) | |
1087 | return_reg = reg; | |
1088 | } | |
1089 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1090 | return_reg = (word >> 16) & 0x1f; | |
1091 | else if (word == 0x47de040f) /* bis sp,sp,fp */ | |
1092 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1093 | else if (word == 0x47fe040f) /* bis zero,sp,fp */ | |
1094 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1095 | } | |
c5aa993b | 1096 | |
d2427a71 RH |
1097 | /* If we haven't found a valid return address register yet, keep |
1098 | searching in the procedure prologue. */ | |
1099 | if (return_reg == -1) | |
1100 | { | |
1101 | while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80)) | |
1102 | { | |
1103 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1104 | |
d2427a71 RH |
1105 | if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ |
1106 | { | |
1107 | reg = (word & 0x03e00000) >> 21; | |
1108 | if (reg == ALPHA_T7_REGNUM | |
1109 | || reg == ALPHA_T9_REGNUM | |
1110 | || reg == ALPHA_RA_REGNUM) | |
1111 | { | |
1112 | return_reg = reg; | |
1113 | break; | |
1114 | } | |
1115 | } | |
1116 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1117 | { | |
1118 | return_reg = (word >> 16) & 0x1f; | |
1119 | break; | |
1120 | } | |
85b32d22 RH |
1121 | |
1122 | cur_pc += 4; | |
d2427a71 RH |
1123 | } |
1124 | } | |
c906108c | 1125 | } |
c906108c | 1126 | |
d2427a71 RH |
1127 | /* Failing that, do default to the customary RA. */ |
1128 | if (return_reg == -1) | |
1129 | return_reg = ALPHA_RA_REGNUM; | |
1130 | info->return_reg = return_reg; | |
f8453e34 | 1131 | |
d2427a71 RH |
1132 | frame_unwind_unsigned_register (next_frame, frame_reg, &val); |
1133 | info->vfp = val + frame_size; | |
c906108c | 1134 | |
d2427a71 RH |
1135 | /* Convert offsets to absolute addresses. See above about adding |
1136 | one to the offsets to make all detected offsets non-zero. */ | |
1137 | for (reg = 0; reg < ALPHA_NUM_REGS; ++reg) | |
1138 | if (info->saved_regs[reg]) | |
1139 | info->saved_regs[reg] += val - 1; | |
1140 | ||
1141 | return info; | |
c906108c | 1142 | } |
c906108c | 1143 | |
d2427a71 RH |
1144 | /* Given a GDB frame, determine the address of the calling function's |
1145 | frame. This will be used to create a new GDB frame struct. */ | |
1146 | ||
fbe586ae | 1147 | static void |
d2427a71 RH |
1148 | alpha_heuristic_frame_this_id (struct frame_info *next_frame, |
1149 | void **this_prologue_cache, | |
1150 | struct frame_id *this_id) | |
c906108c | 1151 | { |
d2427a71 RH |
1152 | struct alpha_heuristic_unwind_cache *info |
1153 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
c906108c | 1154 | |
d2427a71 | 1155 | *this_id = frame_id_build (info->vfp, info->start_pc); |
c906108c SS |
1156 | } |
1157 | ||
d2427a71 RH |
1158 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
1159 | ||
fbe586ae | 1160 | static void |
d2427a71 RH |
1161 | alpha_heuristic_frame_prev_register (struct frame_info *next_frame, |
1162 | void **this_prologue_cache, | |
1163 | int regnum, int *optimizedp, | |
1164 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1165 | int *realnump, void *bufferp) | |
c906108c | 1166 | { |
d2427a71 RH |
1167 | struct alpha_heuristic_unwind_cache *info |
1168 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
1169 | ||
1170 | /* The PC of the previous frame is stored in the link register of | |
1171 | the current frame. Frob regnum so that we pull the value from | |
1172 | the correct place. */ | |
1173 | if (regnum == ALPHA_PC_REGNUM) | |
1174 | regnum = info->return_reg; | |
1175 | ||
1176 | /* For all registers known to be saved in the current frame, | |
1177 | do the obvious and pull the value out. */ | |
1178 | if (info->saved_regs[regnum]) | |
c906108c | 1179 | { |
d2427a71 RH |
1180 | *optimizedp = 0; |
1181 | *lvalp = lval_memory; | |
1182 | *addrp = info->saved_regs[regnum]; | |
1183 | *realnump = -1; | |
1184 | if (bufferp != NULL) | |
b21fd293 | 1185 | get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE); |
c906108c SS |
1186 | return; |
1187 | } | |
1188 | ||
d2427a71 RH |
1189 | /* The stack pointer of the previous frame is computed by popping |
1190 | the current stack frame. */ | |
1191 | if (regnum == ALPHA_SP_REGNUM) | |
c906108c | 1192 | { |
d2427a71 RH |
1193 | *optimizedp = 0; |
1194 | *lvalp = not_lval; | |
1195 | *addrp = 0; | |
1196 | *realnump = -1; | |
1197 | if (bufferp != NULL) | |
1198 | store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp); | |
1199 | return; | |
c906108c | 1200 | } |
95b80706 | 1201 | |
d2427a71 | 1202 | /* Otherwise assume the next frame has the same register value. */ |
1cc759c3 JB |
1203 | frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp, |
1204 | realnump, bufferp); | |
95b80706 JT |
1205 | } |
1206 | ||
d2427a71 RH |
1207 | static const struct frame_unwind alpha_heuristic_frame_unwind = { |
1208 | NORMAL_FRAME, | |
1209 | alpha_heuristic_frame_this_id, | |
1210 | alpha_heuristic_frame_prev_register | |
1211 | }; | |
c906108c | 1212 | |
d2427a71 | 1213 | static const struct frame_unwind * |
336d1bba | 1214 | alpha_heuristic_frame_sniffer (struct frame_info *next_frame) |
c906108c | 1215 | { |
d2427a71 | 1216 | return &alpha_heuristic_frame_unwind; |
c906108c SS |
1217 | } |
1218 | ||
fbe586ae | 1219 | static CORE_ADDR |
d2427a71 RH |
1220 | alpha_heuristic_frame_base_address (struct frame_info *next_frame, |
1221 | void **this_prologue_cache) | |
c906108c | 1222 | { |
d2427a71 RH |
1223 | struct alpha_heuristic_unwind_cache *info |
1224 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
c906108c | 1225 | |
d2427a71 | 1226 | return info->vfp; |
c906108c SS |
1227 | } |
1228 | ||
d2427a71 RH |
1229 | static const struct frame_base alpha_heuristic_frame_base = { |
1230 | &alpha_heuristic_frame_unwind, | |
1231 | alpha_heuristic_frame_base_address, | |
1232 | alpha_heuristic_frame_base_address, | |
1233 | alpha_heuristic_frame_base_address | |
1234 | }; | |
1235 | ||
c906108c | 1236 | /* Just like reinit_frame_cache, but with the right arguments to be |
d2427a71 | 1237 | callable as an sfunc. Used by the "set heuristic-fence-post" command. */ |
c906108c SS |
1238 | |
1239 | static void | |
fba45db2 | 1240 | reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c) |
c906108c SS |
1241 | { |
1242 | reinit_frame_cache (); | |
1243 | } | |
1244 | ||
d2427a71 | 1245 | \f |
d2427a71 RH |
1246 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1247 | dummy frame. The frame ID's base needs to match the TOS value | |
1248 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1249 | breakpoint. */ | |
d734c450 | 1250 | |
d2427a71 RH |
1251 | static struct frame_id |
1252 | alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
0d056799 | 1253 | { |
d2427a71 RH |
1254 | ULONGEST base; |
1255 | frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base); | |
1256 | return frame_id_build (base, frame_pc_unwind (next_frame)); | |
0d056799 JT |
1257 | } |
1258 | ||
dc129d82 | 1259 | static CORE_ADDR |
d2427a71 | 1260 | alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
accc6d1f | 1261 | { |
d2427a71 RH |
1262 | ULONGEST pc; |
1263 | frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc); | |
1264 | return pc; | |
accc6d1f JT |
1265 | } |
1266 | ||
98a8e1e5 RH |
1267 | \f |
1268 | /* Helper routines for alpha*-nat.c files to move register sets to and | |
1269 | from core files. The UNIQUE pointer is allowed to be NULL, as most | |
1270 | targets don't supply this value in their core files. */ | |
1271 | ||
1272 | void | |
1273 | alpha_supply_int_regs (int regno, const void *r0_r30, | |
1274 | const void *pc, const void *unique) | |
1275 | { | |
1276 | int i; | |
1277 | ||
1278 | for (i = 0; i < 31; ++i) | |
1279 | if (regno == i || regno == -1) | |
23a6d369 | 1280 | regcache_raw_supply (current_regcache, i, (const char *)r0_r30 + i*8); |
98a8e1e5 RH |
1281 | |
1282 | if (regno == ALPHA_ZERO_REGNUM || regno == -1) | |
23a6d369 | 1283 | regcache_raw_supply (current_regcache, ALPHA_ZERO_REGNUM, NULL); |
98a8e1e5 RH |
1284 | |
1285 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
23a6d369 | 1286 | regcache_raw_supply (current_regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1287 | |
1288 | if (regno == ALPHA_UNIQUE_REGNUM || regno == -1) | |
23a6d369 | 1289 | regcache_raw_supply (current_regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1290 | } |
1291 | ||
1292 | void | |
1293 | alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique) | |
1294 | { | |
1295 | int i; | |
1296 | ||
1297 | for (i = 0; i < 31; ++i) | |
1298 | if (regno == i || regno == -1) | |
822c9732 | 1299 | regcache_raw_collect (current_regcache, i, (char *)r0_r30 + i*8); |
98a8e1e5 RH |
1300 | |
1301 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
822c9732 | 1302 | regcache_raw_collect (current_regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1303 | |
1304 | if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1)) | |
822c9732 | 1305 | regcache_raw_collect (current_regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1306 | } |
1307 | ||
1308 | void | |
1309 | alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr) | |
1310 | { | |
1311 | int i; | |
1312 | ||
1313 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1314 | if (regno == i || regno == -1) | |
23a6d369 AC |
1315 | regcache_raw_supply (current_regcache, i, |
1316 | (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8); | |
98a8e1e5 RH |
1317 | |
1318 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
23a6d369 | 1319 | regcache_raw_supply (current_regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1320 | } |
1321 | ||
1322 | void | |
1323 | alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr) | |
1324 | { | |
1325 | int i; | |
1326 | ||
1327 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1328 | if (regno == i || regno == -1) | |
822c9732 AC |
1329 | regcache_raw_collect (current_regcache, i, |
1330 | (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8); | |
98a8e1e5 RH |
1331 | |
1332 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
822c9732 | 1333 | regcache_raw_collect (current_regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1334 | } |
1335 | ||
d2427a71 | 1336 | \f |
ec32e4be JT |
1337 | /* alpha_software_single_step() is called just before we want to resume |
1338 | the inferior, if we want to single-step it but there is no hardware | |
1339 | or kernel single-step support (NetBSD on Alpha, for example). We find | |
1340 | the target of the coming instruction and breakpoint it. | |
1341 | ||
1342 | single_step is also called just after the inferior stops. If we had | |
1343 | set up a simulated single-step, we undo our damage. */ | |
1344 | ||
1345 | static CORE_ADDR | |
1346 | alpha_next_pc (CORE_ADDR pc) | |
1347 | { | |
1348 | unsigned int insn; | |
1349 | unsigned int op; | |
1350 | int offset; | |
1351 | LONGEST rav; | |
1352 | ||
b21fd293 | 1353 | insn = alpha_read_insn (pc); |
ec32e4be JT |
1354 | |
1355 | /* Opcode is top 6 bits. */ | |
1356 | op = (insn >> 26) & 0x3f; | |
1357 | ||
1358 | if (op == 0x1a) | |
1359 | { | |
1360 | /* Jump format: target PC is: | |
1361 | RB & ~3 */ | |
1362 | return (read_register ((insn >> 16) & 0x1f) & ~3); | |
1363 | } | |
1364 | ||
1365 | if ((op & 0x30) == 0x30) | |
1366 | { | |
1367 | /* Branch format: target PC is: | |
1368 | (new PC) + (4 * sext(displacement)) */ | |
1369 | if (op == 0x30 || /* BR */ | |
1370 | op == 0x34) /* BSR */ | |
1371 | { | |
1372 | branch_taken: | |
1373 | offset = (insn & 0x001fffff); | |
1374 | if (offset & 0x00100000) | |
1375 | offset |= 0xffe00000; | |
1376 | offset *= 4; | |
1377 | return (pc + 4 + offset); | |
1378 | } | |
1379 | ||
1380 | /* Need to determine if branch is taken; read RA. */ | |
1381 | rav = (LONGEST) read_register ((insn >> 21) & 0x1f); | |
1382 | switch (op) | |
1383 | { | |
1384 | case 0x38: /* BLBC */ | |
1385 | if ((rav & 1) == 0) | |
1386 | goto branch_taken; | |
1387 | break; | |
1388 | case 0x3c: /* BLBS */ | |
1389 | if (rav & 1) | |
1390 | goto branch_taken; | |
1391 | break; | |
1392 | case 0x39: /* BEQ */ | |
1393 | if (rav == 0) | |
1394 | goto branch_taken; | |
1395 | break; | |
1396 | case 0x3d: /* BNE */ | |
1397 | if (rav != 0) | |
1398 | goto branch_taken; | |
1399 | break; | |
1400 | case 0x3a: /* BLT */ | |
1401 | if (rav < 0) | |
1402 | goto branch_taken; | |
1403 | break; | |
1404 | case 0x3b: /* BLE */ | |
1405 | if (rav <= 0) | |
1406 | goto branch_taken; | |
1407 | break; | |
1408 | case 0x3f: /* BGT */ | |
1409 | if (rav > 0) | |
1410 | goto branch_taken; | |
1411 | break; | |
1412 | case 0x3e: /* BGE */ | |
1413 | if (rav >= 0) | |
1414 | goto branch_taken; | |
1415 | break; | |
d2427a71 RH |
1416 | |
1417 | /* ??? Missing floating-point branches. */ | |
ec32e4be JT |
1418 | } |
1419 | } | |
1420 | ||
1421 | /* Not a branch or branch not taken; target PC is: | |
1422 | pc + 4 */ | |
1423 | return (pc + 4); | |
1424 | } | |
1425 | ||
1426 | void | |
1427 | alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1428 | { | |
1429 | static CORE_ADDR next_pc; | |
1430 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
1431 | static binsn_quantum break_mem; | |
1432 | CORE_ADDR pc; | |
1433 | ||
1434 | if (insert_breakpoints_p) | |
1435 | { | |
1436 | pc = read_pc (); | |
1437 | next_pc = alpha_next_pc (pc); | |
1438 | ||
1439 | target_insert_breakpoint (next_pc, break_mem); | |
1440 | } | |
1441 | else | |
1442 | { | |
1443 | target_remove_breakpoint (next_pc, break_mem); | |
1444 | write_pc (next_pc); | |
1445 | } | |
c906108c SS |
1446 | } |
1447 | ||
dc129d82 | 1448 | \f |
dc129d82 JT |
1449 | /* Initialize the current architecture based on INFO. If possible, re-use an |
1450 | architecture from ARCHES, which is a list of architectures already created | |
1451 | during this debugging session. | |
1452 | ||
1453 | Called e.g. at program startup, when reading a core file, and when reading | |
1454 | a binary file. */ | |
1455 | ||
1456 | static struct gdbarch * | |
1457 | alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1458 | { | |
1459 | struct gdbarch_tdep *tdep; | |
1460 | struct gdbarch *gdbarch; | |
dc129d82 JT |
1461 | |
1462 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 1463 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
dc129d82 | 1464 | { |
4be87837 DJ |
1465 | /* If it's an ECOFF file, assume it's OSF/1. */ |
1466 | if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour) | |
aff87235 | 1467 | info.osabi = GDB_OSABI_OSF1; |
dc129d82 JT |
1468 | } |
1469 | ||
1470 | /* Find a candidate among extant architectures. */ | |
4be87837 DJ |
1471 | arches = gdbarch_list_lookup_by_info (arches, &info); |
1472 | if (arches != NULL) | |
1473 | return arches->gdbarch; | |
dc129d82 JT |
1474 | |
1475 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
1476 | gdbarch = gdbarch_alloc (&info, tdep); | |
1477 | ||
d2427a71 RH |
1478 | /* Lowest text address. This is used by heuristic_proc_start() |
1479 | to decide when to stop looking. */ | |
594706e6 | 1480 | tdep->vm_min_address = (CORE_ADDR) 0x120000000LL; |
d9b023cc | 1481 | |
36a6271d | 1482 | tdep->dynamic_sigtramp_offset = NULL; |
5868c862 | 1483 | tdep->sigcontext_addr = NULL; |
138e7be5 MK |
1484 | tdep->sc_pc_offset = 2 * 8; |
1485 | tdep->sc_regs_offset = 4 * 8; | |
1486 | tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8; | |
36a6271d | 1487 | |
accc6d1f JT |
1488 | tdep->jb_pc = -1; /* longjmp support not enabled by default */ |
1489 | ||
dc129d82 JT |
1490 | /* Type sizes */ |
1491 | set_gdbarch_short_bit (gdbarch, 16); | |
1492 | set_gdbarch_int_bit (gdbarch, 32); | |
1493 | set_gdbarch_long_bit (gdbarch, 64); | |
1494 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1495 | set_gdbarch_float_bit (gdbarch, 32); | |
1496 | set_gdbarch_double_bit (gdbarch, 64); | |
1497 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1498 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1499 | ||
1500 | /* Register info */ | |
1501 | set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS); | |
1502 | set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM); | |
dc129d82 JT |
1503 | set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM); |
1504 | set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM); | |
1505 | ||
1506 | set_gdbarch_register_name (gdbarch, alpha_register_name); | |
9c04cab7 | 1507 | set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte); |
c483c494 | 1508 | set_gdbarch_register_type (gdbarch, alpha_register_type); |
dc129d82 JT |
1509 | |
1510 | set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register); | |
1511 | set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register); | |
1512 | ||
c483c494 RH |
1513 | set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p); |
1514 | set_gdbarch_register_to_value (gdbarch, alpha_register_to_value); | |
1515 | set_gdbarch_value_to_register (gdbarch, alpha_value_to_register); | |
dc129d82 | 1516 | |
615967cb RH |
1517 | set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p); |
1518 | ||
d2427a71 | 1519 | /* Prologue heuristics. */ |
dc129d82 JT |
1520 | set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue); |
1521 | ||
5ef165c2 RH |
1522 | /* Disassembler. */ |
1523 | set_gdbarch_print_insn (gdbarch, print_insn_alpha); | |
1524 | ||
d2427a71 | 1525 | /* Call info. */ |
dc129d82 | 1526 | |
b5622e8d | 1527 | set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention); |
5ec2bb99 RH |
1528 | set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value); |
1529 | set_gdbarch_store_return_value (gdbarch, alpha_store_return_value); | |
74055713 | 1530 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, alpha_extract_struct_value_address); |
dc129d82 JT |
1531 | |
1532 | /* Settings for calling functions in the inferior. */ | |
c88e30c0 | 1533 | set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call); |
d2427a71 RH |
1534 | |
1535 | /* Methods for saving / extracting a dummy frame's ID. */ | |
1536 | set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id); | |
d2427a71 RH |
1537 | |
1538 | /* Return the unwound PC value. */ | |
1539 | set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc); | |
dc129d82 JT |
1540 | |
1541 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
36a6271d | 1542 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
dc129d82 | 1543 | |
95b80706 | 1544 | set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc); |
dc129d82 | 1545 | set_gdbarch_decr_pc_after_break (gdbarch, 4); |
95b80706 | 1546 | |
44dffaac | 1547 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 1548 | gdbarch_init_osabi (info, gdbarch); |
44dffaac | 1549 | |
accc6d1f JT |
1550 | /* Now that we have tuned the configuration, set a few final things |
1551 | based on what the OS ABI has told us. */ | |
1552 | ||
1553 | if (tdep->jb_pc >= 0) | |
1554 | set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target); | |
1555 | ||
336d1bba AC |
1556 | frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer); |
1557 | frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer); | |
dc129d82 | 1558 | |
d2427a71 | 1559 | frame_base_set_default (gdbarch, &alpha_heuristic_frame_base); |
accc6d1f | 1560 | |
d2427a71 | 1561 | return gdbarch; |
dc129d82 JT |
1562 | } |
1563 | ||
baa490c4 RH |
1564 | void |
1565 | alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1566 | { | |
336d1bba AC |
1567 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); |
1568 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); | |
baa490c4 RH |
1569 | } |
1570 | ||
a78f21af AC |
1571 | extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */ |
1572 | ||
c906108c | 1573 | void |
fba45db2 | 1574 | _initialize_alpha_tdep (void) |
c906108c SS |
1575 | { |
1576 | struct cmd_list_element *c; | |
1577 | ||
d2427a71 | 1578 | gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL); |
c906108c SS |
1579 | |
1580 | /* Let the user set the fence post for heuristic_proc_start. */ | |
1581 | ||
1582 | /* We really would like to have both "0" and "unlimited" work, but | |
1583 | command.c doesn't deal with that. So make it a var_zinteger | |
1584 | because the user can always use "999999" or some such for unlimited. */ | |
edefbb7c AC |
1585 | /* We need to throw away the frame cache when we set this, since it |
1586 | might change our ability to get backtraces. */ | |
1587 | add_setshow_zinteger_cmd ("heuristic-fence-post", class_support, | |
1588 | &heuristic_fence_post, | |
1589 | _("\ | |
1590 | Set the distance searched for the start of a function."), | |
1591 | _("\ | |
1592 | Show the distance searched for the start of a function."), | |
1593 | _("\ | |
c906108c SS |
1594 | If you are debugging a stripped executable, GDB needs to search through the\n\ |
1595 | program for the start of a function. This command sets the distance of the\n\ | |
323e0a4a | 1596 | search. The only need to set it is when debugging a stripped executable."), |
edefbb7c AC |
1597 | _("\ |
1598 | The distance searched for the start of a function is \"%d\"."), | |
1599 | reinit_frame_cache_sfunc, NULL, | |
1600 | &setlist, &showlist); | |
c906108c | 1601 | } |