]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger. |
1e698235 | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
b6ba6518 | 3 | Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
615967cb | 23 | #include "doublest.h" |
c906108c | 24 | #include "frame.h" |
d2427a71 RH |
25 | #include "frame-unwind.h" |
26 | #include "frame-base.h" | |
c906108c SS |
27 | #include "inferior.h" |
28 | #include "symtab.h" | |
29 | #include "value.h" | |
30 | #include "gdbcmd.h" | |
31 | #include "gdbcore.h" | |
32 | #include "dis-asm.h" | |
33 | #include "symfile.h" | |
34 | #include "objfiles.h" | |
35 | #include "gdb_string.h" | |
c5f0f3d0 | 36 | #include "linespec.h" |
4e052eda | 37 | #include "regcache.h" |
615967cb | 38 | #include "reggroups.h" |
dc129d82 | 39 | #include "arch-utils.h" |
4be87837 | 40 | #include "osabi.h" |
fe898f56 | 41 | #include "block.h" |
dc129d82 JT |
42 | |
43 | #include "elf-bfd.h" | |
44 | ||
45 | #include "alpha-tdep.h" | |
46 | ||
c906108c | 47 | \f |
fa88f677 | 48 | static const char * |
636a6dfc JT |
49 | alpha_register_name (int regno) |
50 | { | |
5ab84872 | 51 | static const char * const register_names[] = |
636a6dfc JT |
52 | { |
53 | "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", | |
54 | "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", | |
55 | "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", | |
56 | "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero", | |
57 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
58 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
59 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
60 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr", | |
44d88583 | 61 | "pc", "", "unique" |
636a6dfc JT |
62 | }; |
63 | ||
64 | if (regno < 0) | |
5ab84872 | 65 | return NULL; |
636a6dfc | 66 | if (regno >= (sizeof(register_names) / sizeof(*register_names))) |
5ab84872 RH |
67 | return NULL; |
68 | return register_names[regno]; | |
636a6dfc | 69 | } |
d734c450 | 70 | |
dc129d82 | 71 | static int |
d734c450 JT |
72 | alpha_cannot_fetch_register (int regno) |
73 | { | |
44d88583 | 74 | return regno == ALPHA_ZERO_REGNUM; |
d734c450 JT |
75 | } |
76 | ||
dc129d82 | 77 | static int |
d734c450 JT |
78 | alpha_cannot_store_register (int regno) |
79 | { | |
44d88583 | 80 | return regno == ALPHA_ZERO_REGNUM; |
d734c450 JT |
81 | } |
82 | ||
dc129d82 | 83 | static int |
d734c450 JT |
84 | alpha_register_convertible (int regno) |
85 | { | |
86 | return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31); | |
87 | } | |
0d056799 | 88 | |
dc129d82 | 89 | static struct type * |
0d056799 JT |
90 | alpha_register_virtual_type (int regno) |
91 | { | |
72667056 RH |
92 | if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM) |
93 | return builtin_type_void_data_ptr; | |
94 | if (regno == ALPHA_PC_REGNUM) | |
95 | return builtin_type_void_func_ptr; | |
96 | ||
97 | /* Don't need to worry about little vs big endian until | |
98 | some jerk tries to port to alpha-unicosmk. */ | |
99 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 31) | |
100 | return builtin_type_ieee_double_little; | |
101 | ||
102 | return builtin_type_int64; | |
0d056799 | 103 | } |
f8453e34 | 104 | |
615967cb RH |
105 | /* Is REGNUM a member of REGGROUP? */ |
106 | ||
107 | static int | |
108 | alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
109 | struct reggroup *group) | |
110 | { | |
111 | /* Filter out any registers eliminated, but whose regnum is | |
112 | reserved for backward compatibility, e.g. the vfp. */ | |
113 | if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0') | |
114 | return 0; | |
115 | ||
116 | /* Since we implement no pseudo registers, save/restore is equal to all. */ | |
117 | if (group == all_reggroup | |
118 | || group == save_reggroup | |
119 | || group == restore_reggroup) | |
120 | return 1; | |
121 | ||
122 | /* All other groups are non-overlapping. */ | |
123 | ||
124 | /* Since this is really a PALcode memory slot... */ | |
125 | if (regnum == ALPHA_UNIQUE_REGNUM) | |
126 | return group == system_reggroup; | |
127 | ||
128 | /* Force the FPCR to be considered part of the floating point state. */ | |
129 | if (regnum == ALPHA_FPCR_REGNUM) | |
130 | return group == float_reggroup; | |
131 | ||
132 | if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31) | |
133 | return group == float_reggroup; | |
134 | else | |
135 | return group == general_reggroup; | |
136 | } | |
137 | ||
dc129d82 | 138 | static int |
f8453e34 JT |
139 | alpha_register_byte (int regno) |
140 | { | |
141 | return (regno * 8); | |
142 | } | |
143 | ||
dc129d82 | 144 | static int |
f8453e34 JT |
145 | alpha_register_raw_size (int regno) |
146 | { | |
147 | return 8; | |
148 | } | |
149 | ||
dc129d82 | 150 | static int |
f8453e34 JT |
151 | alpha_register_virtual_size (int regno) |
152 | { | |
153 | return 8; | |
154 | } | |
636a6dfc | 155 | |
d2427a71 RH |
156 | /* The alpha needs a conversion between register and memory format if the |
157 | register is a floating point register and memory format is float, as the | |
158 | register format must be double or memory format is an integer with 4 | |
159 | bytes or less, as the representation of integers in floating point | |
160 | registers is different. */ | |
161 | ||
14696584 RH |
162 | static void |
163 | alpha_convert_flt_dbl (void *out, const void *in) | |
164 | { | |
165 | DOUBLEST d = extract_typed_floating (in, builtin_type_ieee_single_little); | |
166 | store_typed_floating (out, builtin_type_ieee_double_little, d); | |
167 | } | |
168 | ||
169 | static void | |
170 | alpha_convert_dbl_flt (void *out, const void *in) | |
171 | { | |
172 | DOUBLEST d = extract_typed_floating (in, builtin_type_ieee_double_little); | |
173 | store_typed_floating (out, builtin_type_ieee_single_little, d); | |
174 | } | |
175 | ||
d2427a71 RH |
176 | static void |
177 | alpha_register_convert_to_virtual (int regnum, struct type *valtype, | |
178 | char *raw_buffer, char *virtual_buffer) | |
5868c862 | 179 | { |
14696584 | 180 | if (TYPE_LENGTH (valtype) >= ALPHA_REGISTER_SIZE) |
d2427a71 | 181 | { |
14696584 | 182 | memcpy (virtual_buffer, raw_buffer, ALPHA_REGISTER_SIZE); |
d2427a71 RH |
183 | return; |
184 | } | |
185 | ||
14696584 RH |
186 | /* Note that everything below is less than 8 bytes long. */ |
187 | ||
d2427a71 | 188 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
14696584 RH |
189 | alpha_convert_dbl_flt (virtual_buffer, raw_buffer); |
190 | else if (TYPE_CODE (valtype) == TYPE_CODE_INT) | |
d2427a71 RH |
191 | { |
192 | ULONGEST l; | |
14696584 | 193 | l = extract_unsigned_integer (raw_buffer, ALPHA_REGISTER_SIZE); |
d2427a71 RH |
194 | l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff); |
195 | store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l); | |
196 | } | |
197 | else | |
198 | error ("Cannot retrieve value from floating point register"); | |
199 | } | |
5868c862 | 200 | |
d2427a71 RH |
201 | static void |
202 | alpha_register_convert_to_raw (struct type *valtype, int regnum, | |
203 | char *virtual_buffer, char *raw_buffer) | |
204 | { | |
14696584 | 205 | if (TYPE_LENGTH (valtype) >= ALPHA_REGISTER_SIZE) |
d2427a71 | 206 | { |
14696584 | 207 | memcpy (raw_buffer, virtual_buffer, ALPHA_REGISTER_SIZE); |
d2427a71 RH |
208 | return; |
209 | } | |
5868c862 | 210 | |
14696584 RH |
211 | /* Note that everything below is less than 8 bytes long. */ |
212 | ||
d2427a71 | 213 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
14696584 RH |
214 | alpha_convert_flt_dbl (raw_buffer, virtual_buffer); |
215 | else if (TYPE_CODE (valtype) == TYPE_CODE_INT) | |
d2427a71 | 216 | { |
14696584 | 217 | ULONGEST l = unpack_long (valtype, virtual_buffer); |
d2427a71 | 218 | l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29); |
14696584 | 219 | store_unsigned_integer (raw_buffer, ALPHA_REGISTER_SIZE, l); |
d2427a71 RH |
220 | } |
221 | else | |
222 | error ("Cannot store value in floating point register"); | |
5868c862 JT |
223 | } |
224 | ||
d2427a71 RH |
225 | \f |
226 | /* The alpha passes the first six arguments in the registers, the rest on | |
c88e30c0 RH |
227 | the stack. The register arguments are stored in ARG_REG_BUFFER, and |
228 | then moved into the register file; this simplifies the passing of a | |
229 | large struct which extends from the registers to the stack, plus avoids | |
230 | three ptrace invocations per word. | |
231 | ||
232 | We don't bother tracking which register values should go in integer | |
233 | regs or fp regs; we load the same values into both. | |
234 | ||
d2427a71 RH |
235 | If the called function is returning a structure, the address of the |
236 | structure to be returned is passed as a hidden first argument. */ | |
c906108c | 237 | |
d2427a71 | 238 | static CORE_ADDR |
c88e30c0 RH |
239 | alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
240 | struct regcache *regcache, CORE_ADDR bp_addr, | |
241 | int nargs, struct value **args, CORE_ADDR sp, | |
242 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 243 | { |
d2427a71 RH |
244 | int i; |
245 | int accumulate_size = struct_return ? 8 : 0; | |
d2427a71 | 246 | struct alpha_arg |
c906108c | 247 | { |
d2427a71 RH |
248 | char *contents; |
249 | int len; | |
250 | int offset; | |
251 | }; | |
c88e30c0 RH |
252 | struct alpha_arg *alpha_args |
253 | = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg)); | |
d2427a71 | 254 | register struct alpha_arg *m_arg; |
c88e30c0 | 255 | char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS]; |
d2427a71 | 256 | int required_arg_regs; |
c906108c | 257 | |
c88e30c0 RH |
258 | /* The ABI places the address of the called function in T12. */ |
259 | regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr); | |
260 | ||
261 | /* Set the return address register to point to the entry point | |
262 | of the program, where a breakpoint lies in wait. */ | |
263 | regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr); | |
264 | ||
265 | /* Lay out the arguments in memory. */ | |
d2427a71 RH |
266 | for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++) |
267 | { | |
268 | struct value *arg = args[i]; | |
269 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
c88e30c0 | 270 | |
d2427a71 RH |
271 | /* Cast argument to long if necessary as the compiler does it too. */ |
272 | switch (TYPE_CODE (arg_type)) | |
c906108c | 273 | { |
d2427a71 RH |
274 | case TYPE_CODE_INT: |
275 | case TYPE_CODE_BOOL: | |
276 | case TYPE_CODE_CHAR: | |
277 | case TYPE_CODE_RANGE: | |
278 | case TYPE_CODE_ENUM: | |
0ede8eca | 279 | if (TYPE_LENGTH (arg_type) == 4) |
d2427a71 | 280 | { |
0ede8eca RH |
281 | /* 32-bit values must be sign-extended to 64 bits |
282 | even if the base data type is unsigned. */ | |
283 | arg_type = builtin_type_int32; | |
284 | arg = value_cast (arg_type, arg); | |
285 | } | |
286 | if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE) | |
287 | { | |
288 | arg_type = builtin_type_int64; | |
d2427a71 RH |
289 | arg = value_cast (arg_type, arg); |
290 | } | |
291 | break; | |
7b5e1cb3 | 292 | |
c88e30c0 RH |
293 | case TYPE_CODE_FLT: |
294 | /* "float" arguments loaded in registers must be passed in | |
295 | register format, aka "double". */ | |
296 | if (accumulate_size < sizeof (arg_reg_buffer) | |
297 | && TYPE_LENGTH (arg_type) == 4) | |
298 | { | |
eb4edb88 | 299 | arg_type = builtin_type_ieee_double_little; |
c88e30c0 RH |
300 | arg = value_cast (arg_type, arg); |
301 | } | |
302 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
303 | invisible reference. No one else uses this data type. */ | |
304 | else if (TYPE_LENGTH (arg_type) == 16) | |
305 | { | |
306 | /* Allocate aligned storage. */ | |
307 | sp = (sp & -16) - 16; | |
308 | ||
309 | /* Write the real data into the stack. */ | |
310 | write_memory (sp, VALUE_CONTENTS (arg), 16); | |
311 | ||
312 | /* Construct the indirection. */ | |
313 | arg_type = lookup_pointer_type (arg_type); | |
314 | arg = value_from_pointer (arg_type, sp); | |
315 | } | |
316 | break; | |
7b5e1cb3 RH |
317 | |
318 | case TYPE_CODE_COMPLEX: | |
319 | /* ??? The ABI says that complex values are passed as two | |
320 | separate scalar values. This distinction only matters | |
321 | for complex float. However, GCC does not implement this. */ | |
322 | ||
323 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
324 | invisible reference. */ | |
325 | if (TYPE_LENGTH (arg_type) == 32) | |
326 | { | |
327 | /* Allocate aligned storage. */ | |
328 | sp = (sp & -16) - 16; | |
329 | ||
330 | /* Write the real data into the stack. */ | |
331 | write_memory (sp, VALUE_CONTENTS (arg), 32); | |
332 | ||
333 | /* Construct the indirection. */ | |
334 | arg_type = lookup_pointer_type (arg_type); | |
335 | arg = value_from_pointer (arg_type, sp); | |
336 | } | |
337 | break; | |
338 | ||
d2427a71 RH |
339 | default: |
340 | break; | |
c906108c | 341 | } |
d2427a71 RH |
342 | m_arg->len = TYPE_LENGTH (arg_type); |
343 | m_arg->offset = accumulate_size; | |
344 | accumulate_size = (accumulate_size + m_arg->len + 7) & ~7; | |
345 | m_arg->contents = VALUE_CONTENTS (arg); | |
c906108c SS |
346 | } |
347 | ||
d2427a71 RH |
348 | /* Determine required argument register loads, loading an argument register |
349 | is expensive as it uses three ptrace calls. */ | |
350 | required_arg_regs = accumulate_size / 8; | |
351 | if (required_arg_regs > ALPHA_NUM_ARG_REGS) | |
352 | required_arg_regs = ALPHA_NUM_ARG_REGS; | |
c906108c | 353 | |
d2427a71 | 354 | /* Make room for the arguments on the stack. */ |
c88e30c0 RH |
355 | if (accumulate_size < sizeof(arg_reg_buffer)) |
356 | accumulate_size = 0; | |
357 | else | |
358 | accumulate_size -= sizeof(arg_reg_buffer); | |
d2427a71 | 359 | sp -= accumulate_size; |
c906108c | 360 | |
c88e30c0 | 361 | /* Keep sp aligned to a multiple of 16 as the ABI requires. */ |
d2427a71 | 362 | sp &= ~15; |
c906108c | 363 | |
d2427a71 RH |
364 | /* `Push' arguments on the stack. */ |
365 | for (i = nargs; m_arg--, --i >= 0;) | |
c906108c | 366 | { |
c88e30c0 RH |
367 | char *contents = m_arg->contents; |
368 | int offset = m_arg->offset; | |
369 | int len = m_arg->len; | |
370 | ||
371 | /* Copy the bytes destined for registers into arg_reg_buffer. */ | |
372 | if (offset < sizeof(arg_reg_buffer)) | |
373 | { | |
374 | if (offset + len <= sizeof(arg_reg_buffer)) | |
375 | { | |
376 | memcpy (arg_reg_buffer + offset, contents, len); | |
377 | continue; | |
378 | } | |
379 | else | |
380 | { | |
381 | int tlen = sizeof(arg_reg_buffer) - offset; | |
382 | memcpy (arg_reg_buffer + offset, contents, tlen); | |
383 | offset += tlen; | |
384 | contents += tlen; | |
385 | len -= tlen; | |
386 | } | |
387 | } | |
388 | ||
389 | /* Everything else goes to the stack. */ | |
390 | write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len); | |
c906108c | 391 | } |
c88e30c0 RH |
392 | if (struct_return) |
393 | store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr); | |
c906108c | 394 | |
d2427a71 RH |
395 | /* Load the argument registers. */ |
396 | for (i = 0; i < required_arg_regs; i++) | |
397 | { | |
09cc52fd RH |
398 | regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i, |
399 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
400 | regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i, | |
401 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
d2427a71 | 402 | } |
c906108c | 403 | |
09cc52fd RH |
404 | /* Finally, update the stack pointer. */ |
405 | regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp); | |
406 | ||
c88e30c0 | 407 | return sp; |
c906108c SS |
408 | } |
409 | ||
5ec2bb99 RH |
410 | /* Extract from REGCACHE the value about to be returned from a function |
411 | and copy it into VALBUF. */ | |
d2427a71 | 412 | |
dc129d82 | 413 | static void |
5ec2bb99 RH |
414 | alpha_extract_return_value (struct type *valtype, struct regcache *regcache, |
415 | void *valbuf) | |
140f9984 | 416 | { |
7b5e1cb3 | 417 | int length = TYPE_LENGTH (valtype); |
5ec2bb99 RH |
418 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
419 | ULONGEST l; | |
420 | ||
421 | switch (TYPE_CODE (valtype)) | |
422 | { | |
423 | case TYPE_CODE_FLT: | |
7b5e1cb3 | 424 | switch (length) |
5ec2bb99 RH |
425 | { |
426 | case 4: | |
427 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer); | |
428 | alpha_convert_dbl_flt (valbuf, raw_buffer); | |
429 | break; | |
430 | ||
431 | case 8: | |
432 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
433 | break; | |
434 | ||
24064b5c RH |
435 | case 16: |
436 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
437 | read_memory (l, valbuf, 16); | |
438 | break; | |
439 | ||
5ec2bb99 | 440 | default: |
67dfac52 | 441 | internal_error (__FILE__, __LINE__, "unknown floating point width"); |
5ec2bb99 RH |
442 | } |
443 | break; | |
444 | ||
7b5e1cb3 RH |
445 | case TYPE_CODE_COMPLEX: |
446 | switch (length) | |
447 | { | |
448 | case 8: | |
449 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
450 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
451 | break; | |
452 | ||
453 | case 16: | |
454 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
455 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1, | |
456 | (char *)valbuf + 8); | |
457 | break; | |
458 | ||
459 | case 32: | |
460 | regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l); | |
461 | read_memory (l, valbuf, 32); | |
462 | break; | |
463 | ||
464 | default: | |
67dfac52 | 465 | internal_error (__FILE__, __LINE__, "unknown floating point width"); |
7b5e1cb3 RH |
466 | } |
467 | break; | |
468 | ||
5ec2bb99 RH |
469 | default: |
470 | /* Assume everything else degenerates to an integer. */ | |
471 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
7b5e1cb3 | 472 | store_unsigned_integer (valbuf, length, l); |
5ec2bb99 RH |
473 | break; |
474 | } | |
140f9984 JT |
475 | } |
476 | ||
5ec2bb99 RH |
477 | /* Extract from REGCACHE the address of a structure about to be returned |
478 | from a function. */ | |
479 | ||
480 | static CORE_ADDR | |
481 | alpha_extract_struct_value_address (struct regcache *regcache) | |
482 | { | |
483 | ULONGEST addr; | |
484 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr); | |
485 | return addr; | |
486 | } | |
487 | ||
488 | /* Insert the given value into REGCACHE as if it was being | |
489 | returned by a function. */ | |
0d056799 | 490 | |
d2427a71 | 491 | static void |
5ec2bb99 RH |
492 | alpha_store_return_value (struct type *valtype, struct regcache *regcache, |
493 | const void *valbuf) | |
c906108c | 494 | { |
d2427a71 | 495 | int length = TYPE_LENGTH (valtype); |
5ec2bb99 RH |
496 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
497 | ULONGEST l; | |
d2427a71 | 498 | |
5ec2bb99 | 499 | switch (TYPE_CODE (valtype)) |
c906108c | 500 | { |
5ec2bb99 RH |
501 | case TYPE_CODE_FLT: |
502 | switch (length) | |
503 | { | |
504 | case 4: | |
505 | alpha_convert_flt_dbl (raw_buffer, valbuf); | |
f75d70cc RH |
506 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer); |
507 | break; | |
5ec2bb99 RH |
508 | |
509 | case 8: | |
510 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
511 | break; | |
512 | ||
24064b5c RH |
513 | case 16: |
514 | /* FIXME: 128-bit long doubles are returned like structures: | |
515 | by writing into indirect storage provided by the caller | |
516 | as the first argument. */ | |
517 | error ("Cannot set a 128-bit long double return value."); | |
518 | ||
5ec2bb99 | 519 | default: |
67dfac52 | 520 | internal_error (__FILE__, __LINE__, "unknown floating point width"); |
5ec2bb99 RH |
521 | } |
522 | break; | |
d2427a71 | 523 | |
7b5e1cb3 RH |
524 | case TYPE_CODE_COMPLEX: |
525 | switch (length) | |
526 | { | |
527 | case 8: | |
528 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
529 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
530 | break; | |
531 | ||
532 | case 16: | |
533 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
534 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1, | |
535 | (const char *)valbuf + 8); | |
536 | break; | |
537 | ||
538 | case 32: | |
539 | /* FIXME: 128-bit long doubles are returned like structures: | |
540 | by writing into indirect storage provided by the caller | |
541 | as the first argument. */ | |
542 | error ("Cannot set a 128-bit long double return value."); | |
543 | ||
544 | default: | |
67dfac52 | 545 | internal_error (__FILE__, __LINE__, "unknown floating point width"); |
7b5e1cb3 RH |
546 | } |
547 | break; | |
548 | ||
5ec2bb99 RH |
549 | default: |
550 | /* Assume everything else degenerates to an integer. */ | |
0ede8eca RH |
551 | /* 32-bit values must be sign-extended to 64 bits |
552 | even if the base data type is unsigned. */ | |
553 | if (length == 4) | |
554 | valtype = builtin_type_int32; | |
5ec2bb99 RH |
555 | l = unpack_long (valtype, valbuf); |
556 | regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l); | |
557 | break; | |
558 | } | |
c906108c SS |
559 | } |
560 | ||
d2427a71 RH |
561 | static int |
562 | alpha_use_struct_convention (int gcc_p, struct type *type) | |
c906108c | 563 | { |
d2427a71 RH |
564 | /* Structures are returned by ref in extra arg0. */ |
565 | return 1; | |
566 | } | |
c906108c | 567 | |
d2427a71 RH |
568 | \f |
569 | static const unsigned char * | |
570 | alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
c906108c | 571 | { |
d2427a71 RH |
572 | static const unsigned char alpha_breakpoint[] = |
573 | { 0x80, 0, 0, 0 }; /* call_pal bpt */ | |
c906108c | 574 | |
d2427a71 RH |
575 | *lenptr = sizeof(alpha_breakpoint); |
576 | return (alpha_breakpoint); | |
577 | } | |
c906108c | 578 | |
d2427a71 RH |
579 | \f |
580 | /* This returns the PC of the first insn after the prologue. | |
581 | If we can't find the prologue, then return 0. */ | |
c906108c | 582 | |
d2427a71 RH |
583 | CORE_ADDR |
584 | alpha_after_prologue (CORE_ADDR pc) | |
c906108c | 585 | { |
d2427a71 RH |
586 | struct symtab_and_line sal; |
587 | CORE_ADDR func_addr, func_end; | |
c906108c | 588 | |
d2427a71 | 589 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c5aa993b | 590 | return 0; |
c906108c | 591 | |
d2427a71 RH |
592 | sal = find_pc_line (func_addr, 0); |
593 | if (sal.end < func_end) | |
594 | return sal.end; | |
c5aa993b | 595 | |
d2427a71 RH |
596 | /* The line after the prologue is after the end of the function. In this |
597 | case, tell the caller to find the prologue the hard way. */ | |
598 | return 0; | |
c906108c SS |
599 | } |
600 | ||
d2427a71 RH |
601 | /* Read an instruction from memory at PC, looking through breakpoints. */ |
602 | ||
603 | unsigned int | |
604 | alpha_read_insn (CORE_ADDR pc) | |
c906108c | 605 | { |
d2427a71 RH |
606 | char buf[4]; |
607 | int status; | |
c5aa993b | 608 | |
d2427a71 RH |
609 | status = read_memory_nobpt (pc, buf, 4); |
610 | if (status) | |
611 | memory_error (status, pc); | |
612 | return extract_unsigned_integer (buf, 4); | |
613 | } | |
c5aa993b | 614 | |
d2427a71 RH |
615 | /* To skip prologues, I use this predicate. Returns either PC itself |
616 | if the code at PC does not look like a function prologue; otherwise | |
617 | returns an address that (if we're lucky) follows the prologue. If | |
618 | LENIENT, then we must skip everything which is involved in setting | |
619 | up the frame (it's OK to skip more, just so long as we don't skip | |
620 | anything which might clobber the registers which are being saved. */ | |
c906108c | 621 | |
d2427a71 RH |
622 | static CORE_ADDR |
623 | alpha_skip_prologue (CORE_ADDR pc) | |
624 | { | |
625 | unsigned long inst; | |
626 | int offset; | |
627 | CORE_ADDR post_prologue_pc; | |
628 | char buf[4]; | |
c906108c | 629 | |
d2427a71 RH |
630 | /* Silently return the unaltered pc upon memory errors. |
631 | This could happen on OSF/1 if decode_line_1 tries to skip the | |
632 | prologue for quickstarted shared library functions when the | |
633 | shared library is not yet mapped in. | |
634 | Reading target memory is slow over serial lines, so we perform | |
635 | this check only if the target has shared libraries (which all | |
636 | Alpha targets do). */ | |
637 | if (target_read_memory (pc, buf, 4)) | |
638 | return pc; | |
c906108c | 639 | |
d2427a71 RH |
640 | /* See if we can determine the end of the prologue via the symbol table. |
641 | If so, then return either PC, or the PC after the prologue, whichever | |
642 | is greater. */ | |
c906108c | 643 | |
d2427a71 RH |
644 | post_prologue_pc = alpha_after_prologue (pc); |
645 | if (post_prologue_pc != 0) | |
646 | return max (pc, post_prologue_pc); | |
c906108c | 647 | |
d2427a71 RH |
648 | /* Can't determine prologue from the symbol table, need to examine |
649 | instructions. */ | |
dc1b0db2 | 650 | |
d2427a71 RH |
651 | /* Skip the typical prologue instructions. These are the stack adjustment |
652 | instruction and the instructions that save registers on the stack | |
653 | or in the gcc frame. */ | |
654 | for (offset = 0; offset < 100; offset += 4) | |
655 | { | |
656 | inst = alpha_read_insn (pc + offset); | |
c906108c | 657 | |
d2427a71 RH |
658 | if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ |
659 | continue; | |
660 | if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ | |
661 | continue; | |
662 | if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
663 | continue; | |
664 | if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */ | |
665 | continue; | |
c906108c | 666 | |
d2427a71 RH |
667 | if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */ |
668 | || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */ | |
669 | && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */ | |
670 | continue; | |
c906108c | 671 | |
d2427a71 RH |
672 | if (inst == 0x47de040f) /* bis sp,sp,fp */ |
673 | continue; | |
674 | if (inst == 0x47fe040f) /* bis zero,sp,fp */ | |
675 | continue; | |
c906108c | 676 | |
d2427a71 | 677 | break; |
c906108c | 678 | } |
d2427a71 RH |
679 | return pc + offset; |
680 | } | |
c906108c | 681 | |
d2427a71 RH |
682 | \f |
683 | /* Figure out where the longjmp will land. | |
684 | We expect the first arg to be a pointer to the jmp_buf structure from | |
685 | which we extract the PC (JB_PC) that we will land at. The PC is copied | |
686 | into the "pc". This routine returns true on success. */ | |
c906108c SS |
687 | |
688 | static int | |
d2427a71 | 689 | alpha_get_longjmp_target (CORE_ADDR *pc) |
c906108c | 690 | { |
d2427a71 RH |
691 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
692 | CORE_ADDR jb_addr; | |
5ab84872 | 693 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
c906108c | 694 | |
d2427a71 | 695 | jb_addr = read_register (ALPHA_A0_REGNUM); |
c906108c | 696 | |
d2427a71 RH |
697 | if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size), |
698 | raw_buffer, tdep->jb_elt_size)) | |
c906108c | 699 | return 0; |
d2427a71 | 700 | |
7c0b4a20 | 701 | *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size); |
d2427a71 | 702 | return 1; |
c906108c SS |
703 | } |
704 | ||
d2427a71 RH |
705 | \f |
706 | /* Frame unwinder for signal trampolines. We use alpha tdep bits that | |
707 | describe the location and shape of the sigcontext structure. After | |
708 | that, all registers are in memory, so it's easy. */ | |
709 | /* ??? Shouldn't we be able to do this generically, rather than with | |
710 | OSABI data specific to Alpha? */ | |
711 | ||
712 | struct alpha_sigtramp_unwind_cache | |
c906108c | 713 | { |
d2427a71 RH |
714 | CORE_ADDR sigcontext_addr; |
715 | }; | |
c906108c | 716 | |
d2427a71 RH |
717 | static struct alpha_sigtramp_unwind_cache * |
718 | alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame, | |
719 | void **this_prologue_cache) | |
720 | { | |
721 | struct alpha_sigtramp_unwind_cache *info; | |
722 | struct gdbarch_tdep *tdep; | |
c906108c | 723 | |
d2427a71 RH |
724 | if (*this_prologue_cache) |
725 | return *this_prologue_cache; | |
c906108c | 726 | |
d2427a71 RH |
727 | info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache); |
728 | *this_prologue_cache = info; | |
c906108c | 729 | |
d2427a71 RH |
730 | tdep = gdbarch_tdep (current_gdbarch); |
731 | info->sigcontext_addr = tdep->sigcontext_addr (next_frame); | |
c906108c | 732 | |
d2427a71 | 733 | return info; |
c906108c SS |
734 | } |
735 | ||
d2427a71 RH |
736 | /* Return the address of REGNO in a sigtramp frame. Since this is all |
737 | arithmetic, it doesn't seem worthwhile to cache it. */ | |
c5aa993b | 738 | |
d2427a71 RH |
739 | #ifndef SIGFRAME_PC_OFF |
740 | #define SIGFRAME_PC_OFF (2 * 8) | |
741 | #define SIGFRAME_REGSAVE_OFF (4 * 8) | |
742 | #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8) | |
743 | #endif | |
c5aa993b | 744 | |
d2427a71 RH |
745 | static CORE_ADDR |
746 | alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, unsigned int regno) | |
747 | { | |
748 | if (regno < 32) | |
749 | return sigcontext_addr + SIGFRAME_REGSAVE_OFF + regno * 8; | |
750 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32) | |
751 | return sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + regno * 8; | |
752 | if (regno == PC_REGNUM) | |
753 | return sigcontext_addr + SIGFRAME_PC_OFF; | |
c5aa993b | 754 | |
d2427a71 | 755 | return 0; |
c906108c SS |
756 | } |
757 | ||
d2427a71 RH |
758 | /* Given a GDB frame, determine the address of the calling function's |
759 | frame. This will be used to create a new GDB frame struct. */ | |
140f9984 | 760 | |
dc129d82 | 761 | static void |
d2427a71 RH |
762 | alpha_sigtramp_frame_this_id (struct frame_info *next_frame, |
763 | void **this_prologue_cache, | |
764 | struct frame_id *this_id) | |
c906108c | 765 | { |
d2427a71 RH |
766 | struct alpha_sigtramp_unwind_cache *info |
767 | = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
768 | struct gdbarch_tdep *tdep; | |
769 | CORE_ADDR stack_addr, code_addr; | |
770 | ||
771 | /* If the OSABI couldn't locate the sigcontext, give up. */ | |
772 | if (info->sigcontext_addr == 0) | |
773 | return; | |
774 | ||
775 | /* If we have dynamic signal trampolines, find their start. | |
776 | If we do not, then we must assume there is a symbol record | |
777 | that can provide the start address. */ | |
778 | tdep = gdbarch_tdep (current_gdbarch); | |
779 | if (tdep->dynamic_sigtramp_offset) | |
c906108c | 780 | { |
d2427a71 RH |
781 | int offset; |
782 | code_addr = frame_pc_unwind (next_frame); | |
783 | offset = tdep->dynamic_sigtramp_offset (code_addr); | |
784 | if (offset >= 0) | |
785 | code_addr -= offset; | |
c906108c | 786 | else |
d2427a71 | 787 | code_addr = 0; |
c906108c | 788 | } |
d2427a71 RH |
789 | else |
790 | code_addr = frame_func_unwind (next_frame); | |
c906108c | 791 | |
d2427a71 RH |
792 | /* The stack address is trivially read from the sigcontext. */ |
793 | stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr, | |
794 | ALPHA_SP_REGNUM); | |
795 | stack_addr = read_memory_unsigned_integer (stack_addr, ALPHA_REGISTER_SIZE); | |
c906108c | 796 | |
d2427a71 | 797 | *this_id = frame_id_build (stack_addr, code_addr); |
c906108c SS |
798 | } |
799 | ||
d2427a71 | 800 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
c906108c | 801 | |
d2427a71 RH |
802 | static void |
803 | alpha_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
804 | void **this_prologue_cache, | |
805 | int regnum, int *optimizedp, | |
806 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
807 | int *realnump, void *bufferp) | |
c906108c | 808 | { |
d2427a71 RH |
809 | struct alpha_sigtramp_unwind_cache *info |
810 | = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
811 | CORE_ADDR addr; | |
c906108c | 812 | |
d2427a71 | 813 | if (info->sigcontext_addr != 0) |
c906108c | 814 | { |
d2427a71 RH |
815 | /* All integer and fp registers are stored in memory. */ |
816 | addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum); | |
817 | if (addr != 0) | |
c906108c | 818 | { |
d2427a71 RH |
819 | *optimizedp = 0; |
820 | *lvalp = lval_memory; | |
821 | *addrp = addr; | |
822 | *realnump = -1; | |
823 | if (bufferp != NULL) | |
824 | read_memory (addr, bufferp, ALPHA_REGISTER_SIZE); | |
825 | return; | |
c906108c | 826 | } |
c906108c SS |
827 | } |
828 | ||
d2427a71 RH |
829 | /* This extra register may actually be in the sigcontext, but our |
830 | current description of it in alpha_sigtramp_frame_unwind_cache | |
831 | doesn't include it. Too bad. Fall back on whatever's in the | |
832 | outer frame. */ | |
833 | frame_register (next_frame, regnum, optimizedp, lvalp, addrp, | |
834 | realnump, bufferp); | |
835 | } | |
c906108c | 836 | |
d2427a71 RH |
837 | static const struct frame_unwind alpha_sigtramp_frame_unwind = { |
838 | SIGTRAMP_FRAME, | |
839 | alpha_sigtramp_frame_this_id, | |
840 | alpha_sigtramp_frame_prev_register | |
841 | }; | |
c906108c | 842 | |
d2427a71 RH |
843 | static const struct frame_unwind * |
844 | alpha_sigtramp_frame_p (CORE_ADDR pc) | |
845 | { | |
846 | char *name; | |
c906108c | 847 | |
d2427a71 RH |
848 | /* We shouldn't even bother to try if the OSABI didn't register |
849 | a sigcontext_addr handler. */ | |
850 | if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr) | |
851 | return NULL; | |
c906108c | 852 | |
d2427a71 RH |
853 | /* Otherwise we should be in a signal frame. */ |
854 | find_pc_partial_function (pc, &name, NULL, NULL); | |
855 | if (PC_IN_SIGTRAMP (pc, name)) | |
856 | return &alpha_sigtramp_frame_unwind; | |
c906108c | 857 | |
d2427a71 | 858 | return NULL; |
c906108c | 859 | } |
d2427a71 RH |
860 | \f |
861 | /* Fallback alpha frame unwinder. Uses instruction scanning and knows | |
862 | something about the traditional layout of alpha stack frames. */ | |
c906108c | 863 | |
d2427a71 | 864 | struct alpha_heuristic_unwind_cache |
c906108c | 865 | { |
d2427a71 RH |
866 | CORE_ADDR *saved_regs; |
867 | CORE_ADDR vfp; | |
868 | CORE_ADDR start_pc; | |
869 | int return_reg; | |
870 | }; | |
c906108c | 871 | |
d2427a71 RH |
872 | /* Heuristic_proc_start may hunt through the text section for a long |
873 | time across a 2400 baud serial line. Allows the user to limit this | |
874 | search. */ | |
875 | static unsigned int heuristic_fence_post = 0; | |
c906108c | 876 | |
d2427a71 RH |
877 | /* Attempt to locate the start of the function containing PC. We assume that |
878 | the previous function ends with an about_to_return insn. Not foolproof by | |
879 | any means, since gcc is happy to put the epilogue in the middle of a | |
880 | function. But we're guessing anyway... */ | |
c906108c | 881 | |
d2427a71 RH |
882 | static CORE_ADDR |
883 | alpha_heuristic_proc_start (CORE_ADDR pc) | |
884 | { | |
885 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
886 | CORE_ADDR last_non_nop = pc; | |
887 | CORE_ADDR fence = pc - heuristic_fence_post; | |
888 | CORE_ADDR orig_pc = pc; | |
fbe586ae | 889 | CORE_ADDR func; |
9e0b60a8 | 890 | |
d2427a71 RH |
891 | if (pc == 0) |
892 | return 0; | |
9e0b60a8 | 893 | |
fbe586ae RH |
894 | /* First see if we can find the start of the function from minimal |
895 | symbol information. This can succeed with a binary that doesn't | |
896 | have debug info, but hasn't been stripped. */ | |
897 | func = get_pc_function_start (pc); | |
898 | if (func) | |
899 | return func; | |
900 | ||
d2427a71 RH |
901 | if (heuristic_fence_post == UINT_MAX |
902 | || fence < tdep->vm_min_address) | |
903 | fence = tdep->vm_min_address; | |
c906108c | 904 | |
d2427a71 RH |
905 | /* Search back for previous return; also stop at a 0, which might be |
906 | seen for instance before the start of a code section. Don't include | |
907 | nops, since this usually indicates padding between functions. */ | |
908 | for (pc -= 4; pc >= fence; pc -= 4) | |
c906108c | 909 | { |
d2427a71 RH |
910 | unsigned int insn = alpha_read_insn (pc); |
911 | switch (insn) | |
c906108c | 912 | { |
d2427a71 RH |
913 | case 0: /* invalid insn */ |
914 | case 0x6bfa8001: /* ret $31,($26),1 */ | |
915 | return last_non_nop; | |
916 | ||
917 | case 0x2ffe0000: /* unop: ldq_u $31,0($30) */ | |
918 | case 0x47ff041f: /* nop: bis $31,$31,$31 */ | |
919 | break; | |
920 | ||
921 | default: | |
922 | last_non_nop = pc; | |
923 | break; | |
c906108c | 924 | } |
d2427a71 | 925 | } |
c906108c | 926 | |
d2427a71 RH |
927 | /* It's not clear to me why we reach this point when stopping quietly, |
928 | but with this test, at least we don't print out warnings for every | |
929 | child forked (eg, on decstation). 22apr93 [email protected]. */ | |
930 | if (stop_soon == NO_STOP_QUIETLY) | |
931 | { | |
932 | static int blurb_printed = 0; | |
c906108c | 933 | |
d2427a71 RH |
934 | if (fence == tdep->vm_min_address) |
935 | warning ("Hit beginning of text section without finding"); | |
c906108c | 936 | else |
d2427a71 RH |
937 | warning ("Hit heuristic-fence-post without finding"); |
938 | warning ("enclosing function for address 0x%s", paddr_nz (orig_pc)); | |
c906108c | 939 | |
d2427a71 RH |
940 | if (!blurb_printed) |
941 | { | |
942 | printf_filtered ("\ | |
943 | This warning occurs if you are debugging a function without any symbols\n\ | |
944 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
945 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
946 | \n\ | |
947 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
948 | (more likely) you have encountered a bug in GDB.\n"); | |
949 | blurb_printed = 1; | |
950 | } | |
951 | } | |
c906108c | 952 | |
d2427a71 RH |
953 | return 0; |
954 | } | |
c906108c | 955 | |
fbe586ae | 956 | static struct alpha_heuristic_unwind_cache * |
d2427a71 RH |
957 | alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame, |
958 | void **this_prologue_cache, | |
959 | CORE_ADDR start_pc) | |
960 | { | |
961 | struct alpha_heuristic_unwind_cache *info; | |
962 | ULONGEST val; | |
963 | CORE_ADDR limit_pc, cur_pc; | |
964 | int frame_reg, frame_size, return_reg, reg; | |
c906108c | 965 | |
d2427a71 RH |
966 | if (*this_prologue_cache) |
967 | return *this_prologue_cache; | |
c906108c | 968 | |
d2427a71 RH |
969 | info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache); |
970 | *this_prologue_cache = info; | |
971 | info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS); | |
c906108c | 972 | |
d2427a71 RH |
973 | limit_pc = frame_pc_unwind (next_frame); |
974 | if (start_pc == 0) | |
975 | start_pc = alpha_heuristic_proc_start (limit_pc); | |
976 | info->start_pc = start_pc; | |
c906108c | 977 | |
d2427a71 RH |
978 | frame_reg = ALPHA_SP_REGNUM; |
979 | frame_size = 0; | |
980 | return_reg = -1; | |
c906108c | 981 | |
d2427a71 RH |
982 | /* If we've identified a likely place to start, do code scanning. */ |
983 | if (start_pc != 0) | |
c5aa993b | 984 | { |
d2427a71 RH |
985 | /* Limit the forward search to 50 instructions. */ |
986 | if (start_pc + 200 < limit_pc) | |
987 | limit_pc = start_pc + 200; | |
c5aa993b | 988 | |
d2427a71 RH |
989 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4) |
990 | { | |
991 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 992 | |
d2427a71 RH |
993 | if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ |
994 | { | |
995 | if (word & 0x8000) | |
996 | { | |
997 | /* Consider only the first stack allocation instruction | |
998 | to contain the static size of the frame. */ | |
999 | if (frame_size == 0) | |
1000 | frame_size = (-word) & 0xffff; | |
1001 | } | |
1002 | else | |
1003 | { | |
1004 | /* Exit loop if a positive stack adjustment is found, which | |
1005 | usually means that the stack cleanup code in the function | |
1006 | epilogue is reached. */ | |
1007 | break; | |
1008 | } | |
1009 | } | |
1010 | else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1011 | { | |
1012 | reg = (word & 0x03e00000) >> 21; | |
1013 | ||
1014 | if (reg == 31) | |
1015 | continue; | |
1016 | ||
1017 | /* Do not compute the address where the register was saved yet, | |
1018 | because we don't know yet if the offset will need to be | |
1019 | relative to $sp or $fp (we can not compute the address | |
1020 | relative to $sp if $sp is updated during the execution of | |
1021 | the current subroutine, for instance when doing some alloca). | |
1022 | So just store the offset for the moment, and compute the | |
1023 | address later when we know whether this frame has a frame | |
1024 | pointer or not. */ | |
1025 | /* Hack: temporarily add one, so that the offset is non-zero | |
1026 | and we can tell which registers have save offsets below. */ | |
1027 | info->saved_regs[reg] = (word & 0xffff) + 1; | |
1028 | ||
1029 | /* Starting with OSF/1-3.2C, the system libraries are shipped | |
1030 | without local symbols, but they still contain procedure | |
1031 | descriptors without a symbol reference. GDB is currently | |
1032 | unable to find these procedure descriptors and uses | |
1033 | heuristic_proc_desc instead. | |
1034 | As some low level compiler support routines (__div*, __add*) | |
1035 | use a non-standard return address register, we have to | |
1036 | add some heuristics to determine the return address register, | |
1037 | or stepping over these routines will fail. | |
1038 | Usually the return address register is the first register | |
1039 | saved on the stack, but assembler optimization might | |
1040 | rearrange the register saves. | |
1041 | So we recognize only a few registers (t7, t9, ra) within | |
1042 | the procedure prologue as valid return address registers. | |
1043 | If we encounter a return instruction, we extract the | |
1044 | the return address register from it. | |
1045 | ||
1046 | FIXME: Rewriting GDB to access the procedure descriptors, | |
1047 | e.g. via the minimal symbol table, might obviate this hack. */ | |
1048 | if (return_reg == -1 | |
1049 | && cur_pc < (start_pc + 80) | |
1050 | && (reg == ALPHA_T7_REGNUM | |
1051 | || reg == ALPHA_T9_REGNUM | |
1052 | || reg == ALPHA_RA_REGNUM)) | |
1053 | return_reg = reg; | |
1054 | } | |
1055 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1056 | return_reg = (word >> 16) & 0x1f; | |
1057 | else if (word == 0x47de040f) /* bis sp,sp,fp */ | |
1058 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1059 | else if (word == 0x47fe040f) /* bis zero,sp,fp */ | |
1060 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1061 | } | |
c5aa993b | 1062 | |
d2427a71 RH |
1063 | /* If we haven't found a valid return address register yet, keep |
1064 | searching in the procedure prologue. */ | |
1065 | if (return_reg == -1) | |
1066 | { | |
1067 | while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80)) | |
1068 | { | |
1069 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1070 | |
d2427a71 RH |
1071 | if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ |
1072 | { | |
1073 | reg = (word & 0x03e00000) >> 21; | |
1074 | if (reg == ALPHA_T7_REGNUM | |
1075 | || reg == ALPHA_T9_REGNUM | |
1076 | || reg == ALPHA_RA_REGNUM) | |
1077 | { | |
1078 | return_reg = reg; | |
1079 | break; | |
1080 | } | |
1081 | } | |
1082 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1083 | { | |
1084 | return_reg = (word >> 16) & 0x1f; | |
1085 | break; | |
1086 | } | |
85b32d22 RH |
1087 | |
1088 | cur_pc += 4; | |
d2427a71 RH |
1089 | } |
1090 | } | |
c906108c | 1091 | } |
c906108c | 1092 | |
d2427a71 RH |
1093 | /* Failing that, do default to the customary RA. */ |
1094 | if (return_reg == -1) | |
1095 | return_reg = ALPHA_RA_REGNUM; | |
1096 | info->return_reg = return_reg; | |
f8453e34 | 1097 | |
d2427a71 RH |
1098 | frame_unwind_unsigned_register (next_frame, frame_reg, &val); |
1099 | info->vfp = val + frame_size; | |
c906108c | 1100 | |
d2427a71 RH |
1101 | /* Convert offsets to absolute addresses. See above about adding |
1102 | one to the offsets to make all detected offsets non-zero. */ | |
1103 | for (reg = 0; reg < ALPHA_NUM_REGS; ++reg) | |
1104 | if (info->saved_regs[reg]) | |
1105 | info->saved_regs[reg] += val - 1; | |
1106 | ||
1107 | return info; | |
c906108c | 1108 | } |
c906108c | 1109 | |
d2427a71 RH |
1110 | /* Given a GDB frame, determine the address of the calling function's |
1111 | frame. This will be used to create a new GDB frame struct. */ | |
1112 | ||
fbe586ae | 1113 | static void |
d2427a71 RH |
1114 | alpha_heuristic_frame_this_id (struct frame_info *next_frame, |
1115 | void **this_prologue_cache, | |
1116 | struct frame_id *this_id) | |
c906108c | 1117 | { |
d2427a71 RH |
1118 | struct alpha_heuristic_unwind_cache *info |
1119 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
c906108c | 1120 | |
fbe586ae RH |
1121 | /* This is meant to halt the backtrace at "_start". Make sure we |
1122 | don't halt it at a generic dummy frame. */ | |
1123 | if (inside_entry_file (info->start_pc)) | |
1124 | return; | |
1125 | ||
d2427a71 | 1126 | *this_id = frame_id_build (info->vfp, info->start_pc); |
c906108c SS |
1127 | } |
1128 | ||
d2427a71 RH |
1129 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
1130 | ||
fbe586ae | 1131 | static void |
d2427a71 RH |
1132 | alpha_heuristic_frame_prev_register (struct frame_info *next_frame, |
1133 | void **this_prologue_cache, | |
1134 | int regnum, int *optimizedp, | |
1135 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1136 | int *realnump, void *bufferp) | |
c906108c | 1137 | { |
d2427a71 RH |
1138 | struct alpha_heuristic_unwind_cache *info |
1139 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
1140 | ||
1141 | /* The PC of the previous frame is stored in the link register of | |
1142 | the current frame. Frob regnum so that we pull the value from | |
1143 | the correct place. */ | |
1144 | if (regnum == ALPHA_PC_REGNUM) | |
1145 | regnum = info->return_reg; | |
1146 | ||
1147 | /* For all registers known to be saved in the current frame, | |
1148 | do the obvious and pull the value out. */ | |
1149 | if (info->saved_regs[regnum]) | |
c906108c | 1150 | { |
d2427a71 RH |
1151 | *optimizedp = 0; |
1152 | *lvalp = lval_memory; | |
1153 | *addrp = info->saved_regs[regnum]; | |
1154 | *realnump = -1; | |
1155 | if (bufferp != NULL) | |
1156 | read_memory (*addrp, bufferp, ALPHA_REGISTER_SIZE); | |
c906108c SS |
1157 | return; |
1158 | } | |
1159 | ||
d2427a71 RH |
1160 | /* The stack pointer of the previous frame is computed by popping |
1161 | the current stack frame. */ | |
1162 | if (regnum == ALPHA_SP_REGNUM) | |
c906108c | 1163 | { |
d2427a71 RH |
1164 | *optimizedp = 0; |
1165 | *lvalp = not_lval; | |
1166 | *addrp = 0; | |
1167 | *realnump = -1; | |
1168 | if (bufferp != NULL) | |
1169 | store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp); | |
1170 | return; | |
c906108c | 1171 | } |
95b80706 | 1172 | |
d2427a71 RH |
1173 | /* Otherwise assume the next frame has the same register value. */ |
1174 | frame_register (next_frame, regnum, optimizedp, lvalp, addrp, | |
1175 | realnump, bufferp); | |
95b80706 JT |
1176 | } |
1177 | ||
d2427a71 RH |
1178 | static const struct frame_unwind alpha_heuristic_frame_unwind = { |
1179 | NORMAL_FRAME, | |
1180 | alpha_heuristic_frame_this_id, | |
1181 | alpha_heuristic_frame_prev_register | |
1182 | }; | |
c906108c | 1183 | |
d2427a71 RH |
1184 | static const struct frame_unwind * |
1185 | alpha_heuristic_frame_p (CORE_ADDR pc) | |
c906108c | 1186 | { |
d2427a71 | 1187 | return &alpha_heuristic_frame_unwind; |
c906108c SS |
1188 | } |
1189 | ||
fbe586ae | 1190 | static CORE_ADDR |
d2427a71 RH |
1191 | alpha_heuristic_frame_base_address (struct frame_info *next_frame, |
1192 | void **this_prologue_cache) | |
c906108c | 1193 | { |
d2427a71 RH |
1194 | struct alpha_heuristic_unwind_cache *info |
1195 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
c906108c | 1196 | |
d2427a71 | 1197 | return info->vfp; |
c906108c SS |
1198 | } |
1199 | ||
d2427a71 RH |
1200 | static const struct frame_base alpha_heuristic_frame_base = { |
1201 | &alpha_heuristic_frame_unwind, | |
1202 | alpha_heuristic_frame_base_address, | |
1203 | alpha_heuristic_frame_base_address, | |
1204 | alpha_heuristic_frame_base_address | |
1205 | }; | |
1206 | ||
c906108c | 1207 | /* Just like reinit_frame_cache, but with the right arguments to be |
d2427a71 | 1208 | callable as an sfunc. Used by the "set heuristic-fence-post" command. */ |
c906108c SS |
1209 | |
1210 | static void | |
fba45db2 | 1211 | reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c) |
c906108c SS |
1212 | { |
1213 | reinit_frame_cache (); | |
1214 | } | |
1215 | ||
d2427a71 RH |
1216 | \f |
1217 | /* ALPHA stack frames are almost impenetrable. When execution stops, | |
1218 | we basically have to look at symbol information for the function | |
1219 | that we stopped in, which tells us *which* register (if any) is | |
1220 | the base of the frame pointer, and what offset from that register | |
1221 | the frame itself is at. | |
c906108c | 1222 | |
d2427a71 RH |
1223 | This presents a problem when trying to examine a stack in memory |
1224 | (that isn't executing at the moment), using the "frame" command. We | |
1225 | don't have a PC, nor do we have any registers except SP. | |
c906108c | 1226 | |
d2427a71 RH |
1227 | This routine takes two arguments, SP and PC, and tries to make the |
1228 | cached frames look as if these two arguments defined a frame on the | |
1229 | cache. This allows the rest of info frame to extract the important | |
1230 | arguments without difficulty. */ | |
ec32e4be | 1231 | |
d2427a71 RH |
1232 | struct frame_info * |
1233 | alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv) | |
0d056799 | 1234 | { |
d2427a71 RH |
1235 | if (argc != 2) |
1236 | error ("ALPHA frame specifications require two arguments: sp and pc"); | |
0d056799 | 1237 | |
d2427a71 | 1238 | return create_new_frame (argv[0], argv[1]); |
0d056799 JT |
1239 | } |
1240 | ||
d2427a71 RH |
1241 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1242 | dummy frame. The frame ID's base needs to match the TOS value | |
1243 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1244 | breakpoint. */ | |
d734c450 | 1245 | |
d2427a71 RH |
1246 | static struct frame_id |
1247 | alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
0d056799 | 1248 | { |
d2427a71 RH |
1249 | ULONGEST base; |
1250 | frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base); | |
1251 | return frame_id_build (base, frame_pc_unwind (next_frame)); | |
0d056799 JT |
1252 | } |
1253 | ||
dc129d82 | 1254 | static CORE_ADDR |
d2427a71 | 1255 | alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
accc6d1f | 1256 | { |
d2427a71 RH |
1257 | ULONGEST pc; |
1258 | frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc); | |
1259 | return pc; | |
accc6d1f JT |
1260 | } |
1261 | ||
98a8e1e5 RH |
1262 | \f |
1263 | /* Helper routines for alpha*-nat.c files to move register sets to and | |
1264 | from core files. The UNIQUE pointer is allowed to be NULL, as most | |
1265 | targets don't supply this value in their core files. */ | |
1266 | ||
1267 | void | |
1268 | alpha_supply_int_regs (int regno, const void *r0_r30, | |
1269 | const void *pc, const void *unique) | |
1270 | { | |
1271 | int i; | |
1272 | ||
1273 | for (i = 0; i < 31; ++i) | |
1274 | if (regno == i || regno == -1) | |
1275 | supply_register (i, (const char *)r0_r30 + i*8); | |
1276 | ||
1277 | if (regno == ALPHA_ZERO_REGNUM || regno == -1) | |
1278 | supply_register (ALPHA_ZERO_REGNUM, NULL); | |
1279 | ||
1280 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
1281 | supply_register (ALPHA_PC_REGNUM, pc); | |
1282 | ||
1283 | if (regno == ALPHA_UNIQUE_REGNUM || regno == -1) | |
1284 | supply_register (ALPHA_UNIQUE_REGNUM, unique); | |
1285 | } | |
1286 | ||
1287 | void | |
1288 | alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique) | |
1289 | { | |
1290 | int i; | |
1291 | ||
1292 | for (i = 0; i < 31; ++i) | |
1293 | if (regno == i || regno == -1) | |
1294 | regcache_collect (i, (char *)r0_r30 + i*8); | |
1295 | ||
1296 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
1297 | regcache_collect (ALPHA_PC_REGNUM, pc); | |
1298 | ||
1299 | if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1)) | |
1300 | regcache_collect (ALPHA_UNIQUE_REGNUM, unique); | |
1301 | } | |
1302 | ||
1303 | void | |
1304 | alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr) | |
1305 | { | |
1306 | int i; | |
1307 | ||
1308 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1309 | if (regno == i || regno == -1) | |
1310 | supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8); | |
1311 | ||
1312 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
1313 | supply_register (ALPHA_FPCR_REGNUM, fpcr); | |
1314 | } | |
1315 | ||
1316 | void | |
1317 | alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr) | |
1318 | { | |
1319 | int i; | |
1320 | ||
1321 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1322 | if (regno == i || regno == -1) | |
1323 | regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8); | |
1324 | ||
1325 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
1326 | regcache_collect (ALPHA_FPCR_REGNUM, fpcr); | |
1327 | } | |
1328 | ||
d2427a71 | 1329 | \f |
ec32e4be JT |
1330 | /* alpha_software_single_step() is called just before we want to resume |
1331 | the inferior, if we want to single-step it but there is no hardware | |
1332 | or kernel single-step support (NetBSD on Alpha, for example). We find | |
1333 | the target of the coming instruction and breakpoint it. | |
1334 | ||
1335 | single_step is also called just after the inferior stops. If we had | |
1336 | set up a simulated single-step, we undo our damage. */ | |
1337 | ||
1338 | static CORE_ADDR | |
1339 | alpha_next_pc (CORE_ADDR pc) | |
1340 | { | |
1341 | unsigned int insn; | |
1342 | unsigned int op; | |
1343 | int offset; | |
1344 | LONGEST rav; | |
1345 | ||
1346 | insn = read_memory_unsigned_integer (pc, sizeof (insn)); | |
1347 | ||
1348 | /* Opcode is top 6 bits. */ | |
1349 | op = (insn >> 26) & 0x3f; | |
1350 | ||
1351 | if (op == 0x1a) | |
1352 | { | |
1353 | /* Jump format: target PC is: | |
1354 | RB & ~3 */ | |
1355 | return (read_register ((insn >> 16) & 0x1f) & ~3); | |
1356 | } | |
1357 | ||
1358 | if ((op & 0x30) == 0x30) | |
1359 | { | |
1360 | /* Branch format: target PC is: | |
1361 | (new PC) + (4 * sext(displacement)) */ | |
1362 | if (op == 0x30 || /* BR */ | |
1363 | op == 0x34) /* BSR */ | |
1364 | { | |
1365 | branch_taken: | |
1366 | offset = (insn & 0x001fffff); | |
1367 | if (offset & 0x00100000) | |
1368 | offset |= 0xffe00000; | |
1369 | offset *= 4; | |
1370 | return (pc + 4 + offset); | |
1371 | } | |
1372 | ||
1373 | /* Need to determine if branch is taken; read RA. */ | |
1374 | rav = (LONGEST) read_register ((insn >> 21) & 0x1f); | |
1375 | switch (op) | |
1376 | { | |
1377 | case 0x38: /* BLBC */ | |
1378 | if ((rav & 1) == 0) | |
1379 | goto branch_taken; | |
1380 | break; | |
1381 | case 0x3c: /* BLBS */ | |
1382 | if (rav & 1) | |
1383 | goto branch_taken; | |
1384 | break; | |
1385 | case 0x39: /* BEQ */ | |
1386 | if (rav == 0) | |
1387 | goto branch_taken; | |
1388 | break; | |
1389 | case 0x3d: /* BNE */ | |
1390 | if (rav != 0) | |
1391 | goto branch_taken; | |
1392 | break; | |
1393 | case 0x3a: /* BLT */ | |
1394 | if (rav < 0) | |
1395 | goto branch_taken; | |
1396 | break; | |
1397 | case 0x3b: /* BLE */ | |
1398 | if (rav <= 0) | |
1399 | goto branch_taken; | |
1400 | break; | |
1401 | case 0x3f: /* BGT */ | |
1402 | if (rav > 0) | |
1403 | goto branch_taken; | |
1404 | break; | |
1405 | case 0x3e: /* BGE */ | |
1406 | if (rav >= 0) | |
1407 | goto branch_taken; | |
1408 | break; | |
d2427a71 RH |
1409 | |
1410 | /* ??? Missing floating-point branches. */ | |
ec32e4be JT |
1411 | } |
1412 | } | |
1413 | ||
1414 | /* Not a branch or branch not taken; target PC is: | |
1415 | pc + 4 */ | |
1416 | return (pc + 4); | |
1417 | } | |
1418 | ||
1419 | void | |
1420 | alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1421 | { | |
1422 | static CORE_ADDR next_pc; | |
1423 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
1424 | static binsn_quantum break_mem; | |
1425 | CORE_ADDR pc; | |
1426 | ||
1427 | if (insert_breakpoints_p) | |
1428 | { | |
1429 | pc = read_pc (); | |
1430 | next_pc = alpha_next_pc (pc); | |
1431 | ||
1432 | target_insert_breakpoint (next_pc, break_mem); | |
1433 | } | |
1434 | else | |
1435 | { | |
1436 | target_remove_breakpoint (next_pc, break_mem); | |
1437 | write_pc (next_pc); | |
1438 | } | |
c906108c SS |
1439 | } |
1440 | ||
dc129d82 | 1441 | \f |
dc129d82 JT |
1442 | /* Initialize the current architecture based on INFO. If possible, re-use an |
1443 | architecture from ARCHES, which is a list of architectures already created | |
1444 | during this debugging session. | |
1445 | ||
1446 | Called e.g. at program startup, when reading a core file, and when reading | |
1447 | a binary file. */ | |
1448 | ||
1449 | static struct gdbarch * | |
1450 | alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1451 | { | |
1452 | struct gdbarch_tdep *tdep; | |
1453 | struct gdbarch *gdbarch; | |
dc129d82 JT |
1454 | |
1455 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 1456 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
dc129d82 | 1457 | { |
4be87837 DJ |
1458 | /* If it's an ECOFF file, assume it's OSF/1. */ |
1459 | if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour) | |
aff87235 | 1460 | info.osabi = GDB_OSABI_OSF1; |
dc129d82 JT |
1461 | } |
1462 | ||
1463 | /* Find a candidate among extant architectures. */ | |
4be87837 DJ |
1464 | arches = gdbarch_list_lookup_by_info (arches, &info); |
1465 | if (arches != NULL) | |
1466 | return arches->gdbarch; | |
dc129d82 JT |
1467 | |
1468 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
1469 | gdbarch = gdbarch_alloc (&info, tdep); | |
1470 | ||
d2427a71 RH |
1471 | /* Lowest text address. This is used by heuristic_proc_start() |
1472 | to decide when to stop looking. */ | |
d9b023cc JT |
1473 | tdep->vm_min_address = (CORE_ADDR) 0x120000000; |
1474 | ||
36a6271d | 1475 | tdep->dynamic_sigtramp_offset = NULL; |
5868c862 | 1476 | tdep->sigcontext_addr = NULL; |
36a6271d | 1477 | |
accc6d1f JT |
1478 | tdep->jb_pc = -1; /* longjmp support not enabled by default */ |
1479 | ||
dc129d82 JT |
1480 | /* Type sizes */ |
1481 | set_gdbarch_short_bit (gdbarch, 16); | |
1482 | set_gdbarch_int_bit (gdbarch, 32); | |
1483 | set_gdbarch_long_bit (gdbarch, 64); | |
1484 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1485 | set_gdbarch_float_bit (gdbarch, 32); | |
1486 | set_gdbarch_double_bit (gdbarch, 64); | |
1487 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1488 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1489 | ||
1490 | /* Register info */ | |
1491 | set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS); | |
1492 | set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM); | |
dc129d82 JT |
1493 | set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM); |
1494 | set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM); | |
1495 | ||
1496 | set_gdbarch_register_name (gdbarch, alpha_register_name); | |
dc129d82 JT |
1497 | set_gdbarch_register_byte (gdbarch, alpha_register_byte); |
1498 | set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size); | |
dc129d82 | 1499 | set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size); |
dc129d82 JT |
1500 | set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type); |
1501 | ||
1502 | set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register); | |
1503 | set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register); | |
1504 | ||
1505 | set_gdbarch_register_convertible (gdbarch, alpha_register_convertible); | |
1506 | set_gdbarch_register_convert_to_virtual (gdbarch, | |
1507 | alpha_register_convert_to_virtual); | |
1508 | set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw); | |
1509 | ||
615967cb RH |
1510 | set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p); |
1511 | ||
d2427a71 | 1512 | /* Prologue heuristics. */ |
dc129d82 JT |
1513 | set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue); |
1514 | ||
5ef165c2 RH |
1515 | /* Disassembler. */ |
1516 | set_gdbarch_print_insn (gdbarch, print_insn_alpha); | |
1517 | ||
d2427a71 | 1518 | /* Call info. */ |
dc129d82 JT |
1519 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); |
1520 | set_gdbarch_frameless_function_invocation (gdbarch, | |
1521 | generic_frameless_function_invocation_not); | |
1522 | ||
dc129d82 | 1523 | set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention); |
5ec2bb99 RH |
1524 | set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value); |
1525 | set_gdbarch_store_return_value (gdbarch, alpha_store_return_value); | |
1526 | set_gdbarch_extract_struct_value_address (gdbarch, | |
dc129d82 JT |
1527 | alpha_extract_struct_value_address); |
1528 | ||
1529 | /* Settings for calling functions in the inferior. */ | |
c88e30c0 | 1530 | set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call); |
d2427a71 RH |
1531 | |
1532 | /* Methods for saving / extracting a dummy frame's ID. */ | |
1533 | set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id); | |
1534 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); | |
1535 | ||
1536 | /* Return the unwound PC value. */ | |
1537 | set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc); | |
dc129d82 JT |
1538 | |
1539 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
36a6271d | 1540 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
dc129d82 | 1541 | |
95b80706 | 1542 | set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc); |
dc129d82 | 1543 | set_gdbarch_decr_pc_after_break (gdbarch, 4); |
95b80706 JT |
1544 | |
1545 | set_gdbarch_function_start_offset (gdbarch, 0); | |
dc129d82 JT |
1546 | set_gdbarch_frame_args_skip (gdbarch, 0); |
1547 | ||
44dffaac | 1548 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 1549 | gdbarch_init_osabi (info, gdbarch); |
44dffaac | 1550 | |
accc6d1f JT |
1551 | /* Now that we have tuned the configuration, set a few final things |
1552 | based on what the OS ABI has told us. */ | |
1553 | ||
1554 | if (tdep->jb_pc >= 0) | |
1555 | set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target); | |
1556 | ||
d2427a71 RH |
1557 | frame_unwind_append_predicate (gdbarch, alpha_sigtramp_frame_p); |
1558 | frame_unwind_append_predicate (gdbarch, alpha_heuristic_frame_p); | |
dc129d82 | 1559 | |
d2427a71 | 1560 | frame_base_set_default (gdbarch, &alpha_heuristic_frame_base); |
accc6d1f | 1561 | |
d2427a71 | 1562 | return gdbarch; |
dc129d82 JT |
1563 | } |
1564 | ||
c906108c | 1565 | void |
fba45db2 | 1566 | _initialize_alpha_tdep (void) |
c906108c SS |
1567 | { |
1568 | struct cmd_list_element *c; | |
1569 | ||
d2427a71 | 1570 | gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL); |
c906108c SS |
1571 | |
1572 | /* Let the user set the fence post for heuristic_proc_start. */ | |
1573 | ||
1574 | /* We really would like to have both "0" and "unlimited" work, but | |
1575 | command.c doesn't deal with that. So make it a var_zinteger | |
1576 | because the user can always use "999999" or some such for unlimited. */ | |
1577 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
1578 | (char *) &heuristic_fence_post, | |
1579 | "\ | |
1580 | Set the distance searched for the start of a function.\n\ | |
1581 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
1582 | program for the start of a function. This command sets the distance of the\n\ | |
1583 | search. The only need to set it is when debugging a stripped executable.", | |
1584 | &setlist); | |
1585 | /* We need to throw away the frame cache when we set this, since it | |
1586 | might change our ability to get backtraces. */ | |
9f60d481 | 1587 | set_cmd_sfunc (c, reinit_frame_cache_sfunc); |
c906108c SS |
1588 | add_show_from_set (c, &showlist); |
1589 | } |