]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 JB |
3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
8b93c638 JM |
32 | |
33 | #include "varobj.h" | |
28335dcc | 34 | #include "vec.h" |
6208b47d VP |
35 | #include "gdbthread.h" |
36 | #include "inferior.h" | |
8b93c638 | 37 | |
b6313243 TT |
38 | #if HAVE_PYTHON |
39 | #include "python/python.h" | |
40 | #include "python/python-internal.h" | |
41 | #else | |
42 | typedef int PyObject; | |
43 | #endif | |
44 | ||
8b93c638 JM |
45 | /* Non-zero if we want to see trace of varobj level stuff. */ |
46 | ||
47 | int varobjdebug = 0; | |
920d2a44 AC |
48 | static void |
49 | show_varobjdebug (struct ui_file *file, int from_tty, | |
50 | struct cmd_list_element *c, const char *value) | |
51 | { | |
52 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
53 | } | |
8b93c638 JM |
54 | |
55 | /* String representations of gdb's format codes */ | |
56 | char *varobj_format_string[] = | |
72330bd6 | 57 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
58 | |
59 | /* String representations of gdb's known languages */ | |
72330bd6 | 60 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 JM |
61 | |
62 | /* Data structures */ | |
63 | ||
64 | /* Every root variable has one of these structures saved in its | |
65 | varobj. Members which must be free'd are noted. */ | |
66 | struct varobj_root | |
72330bd6 | 67 | { |
8b93c638 | 68 | |
72330bd6 AC |
69 | /* Alloc'd expression for this parent. */ |
70 | struct expression *exp; | |
8b93c638 | 71 | |
72330bd6 AC |
72 | /* Block for which this expression is valid */ |
73 | struct block *valid_block; | |
8b93c638 | 74 | |
44a67aa7 VP |
75 | /* The frame for this expression. This field is set iff valid_block is |
76 | not NULL. */ | |
e64d9b3d | 77 | struct frame_id frame; |
8b93c638 | 78 | |
c5b48eac VP |
79 | /* The thread ID that this varobj_root belong to. This field |
80 | is only valid if valid_block is not NULL. | |
81 | When not 0, indicates which thread 'frame' belongs to. | |
82 | When 0, indicates that the thread list was empty when the varobj_root | |
83 | was created. */ | |
84 | int thread_id; | |
85 | ||
a5defcdc VP |
86 | /* If 1, the -var-update always recomputes the value in the |
87 | current thread and frame. Otherwise, variable object is | |
88 | always updated in the specific scope/thread/frame */ | |
89 | int floating; | |
73a93a32 | 90 | |
8756216b DP |
91 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
92 | to symbols that do not exist anymore. */ | |
93 | int is_valid; | |
94 | ||
72330bd6 AC |
95 | /* Language info for this variable and its children */ |
96 | struct language_specific *lang; | |
8b93c638 | 97 | |
72330bd6 AC |
98 | /* The varobj for this root node. */ |
99 | struct varobj *rootvar; | |
8b93c638 | 100 | |
72330bd6 AC |
101 | /* Next root variable */ |
102 | struct varobj_root *next; | |
103 | }; | |
8b93c638 JM |
104 | |
105 | /* Every variable in the system has a structure of this type defined | |
106 | for it. This structure holds all information necessary to manipulate | |
107 | a particular object variable. Members which must be freed are noted. */ | |
108 | struct varobj | |
72330bd6 | 109 | { |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* Alloc'd name of the variable for this object.. If this variable is a |
112 | child, then this name will be the child's source name. | |
113 | (bar, not foo.bar) */ | |
114 | /* NOTE: This is the "expression" */ | |
115 | char *name; | |
8b93c638 | 116 | |
02142340 VP |
117 | /* Alloc'd expression for this child. Can be used to create a |
118 | root variable corresponding to this child. */ | |
119 | char *path_expr; | |
120 | ||
72330bd6 AC |
121 | /* The alloc'd name for this variable's object. This is here for |
122 | convenience when constructing this object's children. */ | |
123 | char *obj_name; | |
8b93c638 | 124 | |
72330bd6 AC |
125 | /* Index of this variable in its parent or -1 */ |
126 | int index; | |
8b93c638 | 127 | |
202ddcaa VP |
128 | /* The type of this variable. This can be NULL |
129 | for artifial variable objects -- currently, the "accessibility" | |
130 | variable objects in C++. */ | |
72330bd6 | 131 | struct type *type; |
8b93c638 | 132 | |
b20d8971 VP |
133 | /* The value of this expression or subexpression. A NULL value |
134 | indicates there was an error getting this value. | |
b2c2bd75 VP |
135 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
136 | the value is either NULL, or not lazy. */ | |
30b28db1 | 137 | struct value *value; |
8b93c638 | 138 | |
72330bd6 AC |
139 | /* The number of (immediate) children this variable has */ |
140 | int num_children; | |
8b93c638 | 141 | |
72330bd6 AC |
142 | /* If this object is a child, this points to its immediate parent. */ |
143 | struct varobj *parent; | |
8b93c638 | 144 | |
28335dcc VP |
145 | /* Children of this object. */ |
146 | VEC (varobj_p) *children; | |
8b93c638 | 147 | |
b6313243 TT |
148 | /* Whether the children of this varobj were requested. This field is |
149 | used to decide if dynamic varobj should recompute their children. | |
150 | In the event that the frontend never asked for the children, we | |
151 | can avoid that. */ | |
152 | int children_requested; | |
153 | ||
72330bd6 AC |
154 | /* Description of the root variable. Points to root variable for children. */ |
155 | struct varobj_root *root; | |
8b93c638 | 156 | |
72330bd6 AC |
157 | /* The format of the output for this object */ |
158 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
159 | |
160 | /* Was this variable updated via a varobj_set_value operation */ | |
161 | int updated; | |
85265413 NR |
162 | |
163 | /* Last print value. */ | |
164 | char *print_value; | |
25d5ea92 VP |
165 | |
166 | /* Is this variable frozen. Frozen variables are never implicitly | |
167 | updated by -var-update * | |
168 | or -var-update <direct-or-indirect-parent>. */ | |
169 | int frozen; | |
170 | ||
171 | /* Is the value of this variable intentionally not fetched? It is | |
172 | not fetched if either the variable is frozen, or any parents is | |
173 | frozen. */ | |
174 | int not_fetched; | |
b6313243 TT |
175 | |
176 | /* The pretty-printer that has been constructed. If NULL, then a | |
177 | new printer object is needed, and one will be constructed. */ | |
178 | PyObject *pretty_printer; | |
72330bd6 | 179 | }; |
8b93c638 | 180 | |
8b93c638 | 181 | struct cpstack |
72330bd6 AC |
182 | { |
183 | char *name; | |
184 | struct cpstack *next; | |
185 | }; | |
8b93c638 JM |
186 | |
187 | /* A list of varobjs */ | |
188 | ||
189 | struct vlist | |
72330bd6 AC |
190 | { |
191 | struct varobj *var; | |
192 | struct vlist *next; | |
193 | }; | |
8b93c638 JM |
194 | |
195 | /* Private function prototypes */ | |
196 | ||
197 | /* Helper functions for the above subcommands. */ | |
198 | ||
a14ed312 | 199 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 200 | |
a14ed312 KB |
201 | static void delete_variable_1 (struct cpstack **, int *, |
202 | struct varobj *, int, int); | |
8b93c638 | 203 | |
a14ed312 | 204 | static int install_variable (struct varobj *); |
8b93c638 | 205 | |
a14ed312 | 206 | static void uninstall_variable (struct varobj *); |
8b93c638 | 207 | |
a14ed312 | 208 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 209 | |
b6313243 TT |
210 | static struct varobj * |
211 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
212 | struct value *value); | |
213 | ||
8b93c638 JM |
214 | /* Utility routines */ |
215 | ||
a14ed312 | 216 | static struct varobj *new_variable (void); |
8b93c638 | 217 | |
a14ed312 | 218 | static struct varobj *new_root_variable (void); |
8b93c638 | 219 | |
a14ed312 | 220 | static void free_variable (struct varobj *var); |
8b93c638 | 221 | |
74b7792f AC |
222 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
223 | ||
a14ed312 | 224 | static struct type *get_type (struct varobj *var); |
8b93c638 | 225 | |
6e2a9270 VP |
226 | static struct type *get_value_type (struct varobj *var); |
227 | ||
a14ed312 | 228 | static struct type *get_target_type (struct type *); |
8b93c638 | 229 | |
a14ed312 | 230 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 231 | |
a14ed312 | 232 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 233 | |
a14ed312 | 234 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 235 | |
acd65feb VP |
236 | static int install_new_value (struct varobj *var, struct value *value, |
237 | int initial); | |
238 | ||
b6313243 TT |
239 | static void install_default_visualizer (struct varobj *var); |
240 | ||
8b93c638 JM |
241 | /* Language-specific routines. */ |
242 | ||
a14ed312 | 243 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 244 | |
a14ed312 | 245 | static int number_of_children (struct varobj *); |
8b93c638 | 246 | |
a14ed312 | 247 | static char *name_of_variable (struct varobj *); |
8b93c638 | 248 | |
a14ed312 | 249 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 250 | |
30b28db1 | 251 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 252 | |
30b28db1 | 253 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 254 | |
de051565 MK |
255 | static char *my_value_of_variable (struct varobj *var, |
256 | enum varobj_display_formats format); | |
8b93c638 | 257 | |
85265413 | 258 | static char *value_get_print_value (struct value *value, |
b6313243 TT |
259 | enum varobj_display_formats format, |
260 | PyObject *value_formatter); | |
85265413 | 261 | |
b2c2bd75 VP |
262 | static int varobj_value_is_changeable_p (struct varobj *var); |
263 | ||
264 | static int is_root_p (struct varobj *var); | |
8b93c638 | 265 | |
b6313243 TT |
266 | static struct varobj * |
267 | varobj_add_child (struct varobj *var, const char *name, struct value *value); | |
268 | ||
8b93c638 JM |
269 | /* C implementation */ |
270 | ||
a14ed312 | 271 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 272 | |
a14ed312 | 273 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 274 | |
a14ed312 | 275 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 276 | |
02142340 VP |
277 | static char *c_path_expr_of_child (struct varobj *child); |
278 | ||
30b28db1 | 279 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 280 | |
30b28db1 | 281 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 282 | |
a14ed312 | 283 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 284 | |
de051565 MK |
285 | static char *c_value_of_variable (struct varobj *var, |
286 | enum varobj_display_formats format); | |
8b93c638 JM |
287 | |
288 | /* C++ implementation */ | |
289 | ||
a14ed312 | 290 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 291 | |
a14ed312 | 292 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 293 | |
a14ed312 | 294 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 295 | |
a14ed312 | 296 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 297 | |
02142340 VP |
298 | static char *cplus_path_expr_of_child (struct varobj *child); |
299 | ||
30b28db1 | 300 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 301 | |
30b28db1 | 302 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 303 | |
a14ed312 | 304 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 305 | |
de051565 MK |
306 | static char *cplus_value_of_variable (struct varobj *var, |
307 | enum varobj_display_formats format); | |
8b93c638 JM |
308 | |
309 | /* Java implementation */ | |
310 | ||
a14ed312 | 311 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 312 | |
a14ed312 | 313 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 314 | |
a14ed312 | 315 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 316 | |
02142340 VP |
317 | static char *java_path_expr_of_child (struct varobj *child); |
318 | ||
30b28db1 | 319 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 320 | |
30b28db1 | 321 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 322 | |
a14ed312 | 323 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 324 | |
de051565 MK |
325 | static char *java_value_of_variable (struct varobj *var, |
326 | enum varobj_display_formats format); | |
8b93c638 JM |
327 | |
328 | /* The language specific vector */ | |
329 | ||
330 | struct language_specific | |
72330bd6 | 331 | { |
8b93c638 | 332 | |
72330bd6 AC |
333 | /* The language of this variable */ |
334 | enum varobj_languages language; | |
8b93c638 | 335 | |
72330bd6 AC |
336 | /* The number of children of PARENT. */ |
337 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 338 | |
72330bd6 AC |
339 | /* The name (expression) of a root varobj. */ |
340 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 341 | |
72330bd6 AC |
342 | /* The name of the INDEX'th child of PARENT. */ |
343 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 344 | |
02142340 VP |
345 | /* Returns the rooted expression of CHILD, which is a variable |
346 | obtain that has some parent. */ | |
347 | char *(*path_expr_of_child) (struct varobj * child); | |
348 | ||
30b28db1 AC |
349 | /* The ``struct value *'' of the root variable ROOT. */ |
350 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 351 | |
30b28db1 AC |
352 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
353 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 354 | |
72330bd6 AC |
355 | /* The type of the INDEX'th child of PARENT. */ |
356 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 357 | |
72330bd6 | 358 | /* The current value of VAR. */ |
de051565 MK |
359 | char *(*value_of_variable) (struct varobj * var, |
360 | enum varobj_display_formats format); | |
72330bd6 | 361 | }; |
8b93c638 JM |
362 | |
363 | /* Array of known source language routines. */ | |
d5d6fca5 | 364 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
365 | /* Unknown (try treating as C */ |
366 | { | |
72330bd6 AC |
367 | vlang_unknown, |
368 | c_number_of_children, | |
369 | c_name_of_variable, | |
370 | c_name_of_child, | |
02142340 | 371 | c_path_expr_of_child, |
72330bd6 AC |
372 | c_value_of_root, |
373 | c_value_of_child, | |
374 | c_type_of_child, | |
72330bd6 | 375 | c_value_of_variable} |
8b93c638 JM |
376 | , |
377 | /* C */ | |
378 | { | |
72330bd6 AC |
379 | vlang_c, |
380 | c_number_of_children, | |
381 | c_name_of_variable, | |
382 | c_name_of_child, | |
02142340 | 383 | c_path_expr_of_child, |
72330bd6 AC |
384 | c_value_of_root, |
385 | c_value_of_child, | |
386 | c_type_of_child, | |
72330bd6 | 387 | c_value_of_variable} |
8b93c638 JM |
388 | , |
389 | /* C++ */ | |
390 | { | |
72330bd6 AC |
391 | vlang_cplus, |
392 | cplus_number_of_children, | |
393 | cplus_name_of_variable, | |
394 | cplus_name_of_child, | |
02142340 | 395 | cplus_path_expr_of_child, |
72330bd6 AC |
396 | cplus_value_of_root, |
397 | cplus_value_of_child, | |
398 | cplus_type_of_child, | |
72330bd6 | 399 | cplus_value_of_variable} |
8b93c638 JM |
400 | , |
401 | /* Java */ | |
402 | { | |
72330bd6 AC |
403 | vlang_java, |
404 | java_number_of_children, | |
405 | java_name_of_variable, | |
406 | java_name_of_child, | |
02142340 | 407 | java_path_expr_of_child, |
72330bd6 AC |
408 | java_value_of_root, |
409 | java_value_of_child, | |
410 | java_type_of_child, | |
72330bd6 | 411 | java_value_of_variable} |
8b93c638 JM |
412 | }; |
413 | ||
414 | /* A little convenience enum for dealing with C++/Java */ | |
415 | enum vsections | |
72330bd6 AC |
416 | { |
417 | v_public = 0, v_private, v_protected | |
418 | }; | |
8b93c638 JM |
419 | |
420 | /* Private data */ | |
421 | ||
422 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 423 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
424 | |
425 | /* Header of the list of root variable objects */ | |
426 | static struct varobj_root *rootlist; | |
427 | static int rootcount = 0; /* number of root varobjs in the list */ | |
428 | ||
429 | /* Prime number indicating the number of buckets in the hash table */ | |
430 | /* A prime large enough to avoid too many colisions */ | |
431 | #define VAROBJ_TABLE_SIZE 227 | |
432 | ||
433 | /* Pointer to the varobj hash table (built at run time) */ | |
434 | static struct vlist **varobj_table; | |
435 | ||
8b93c638 JM |
436 | /* Is the variable X one of our "fake" children? */ |
437 | #define CPLUS_FAKE_CHILD(x) \ | |
438 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
439 | \f | |
440 | ||
441 | /* API Implementation */ | |
b2c2bd75 VP |
442 | static int |
443 | is_root_p (struct varobj *var) | |
444 | { | |
445 | return (var->root->rootvar == var); | |
446 | } | |
8b93c638 JM |
447 | |
448 | /* Creates a varobj (not its children) */ | |
449 | ||
7d8547c9 AC |
450 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
451 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
452 | ||
453 | static struct frame_info * | |
454 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
455 | { | |
456 | struct frame_info *frame = NULL; | |
457 | ||
458 | if (frame_addr == (CORE_ADDR) 0) | |
459 | return NULL; | |
460 | ||
9d49bdc2 PA |
461 | for (frame = get_current_frame (); |
462 | frame != NULL; | |
463 | frame = get_prev_frame (frame)) | |
7d8547c9 | 464 | { |
eb5492fa | 465 | if (get_frame_base_address (frame) == frame_addr) |
7d8547c9 AC |
466 | return frame; |
467 | } | |
9d49bdc2 PA |
468 | |
469 | return NULL; | |
7d8547c9 AC |
470 | } |
471 | ||
8b93c638 JM |
472 | struct varobj * |
473 | varobj_create (char *objname, | |
72330bd6 | 474 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
475 | { |
476 | struct varobj *var; | |
2c67cb8b AC |
477 | struct frame_info *fi; |
478 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
479 | struct block *block; |
480 | struct cleanup *old_chain; | |
481 | ||
482 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
483 | var = new_root_variable (); | |
74b7792f | 484 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
485 | |
486 | if (expression != NULL) | |
487 | { | |
488 | char *p; | |
489 | enum varobj_languages lang; | |
e55dccf0 | 490 | struct value *value = NULL; |
8b93c638 | 491 | |
9d49bdc2 PA |
492 | /* Parse and evaluate the expression, filling in as much of the |
493 | variable's data as possible. */ | |
494 | ||
495 | if (has_stack_frames ()) | |
496 | { | |
497 | /* Allow creator to specify context of variable */ | |
498 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) | |
499 | fi = get_selected_frame (NULL); | |
500 | else | |
501 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
502 | lookup using the frame ID and not just the frame's | |
503 | ``address''. This, of course, means an interface | |
504 | change. However, with out that interface change ISAs, | |
505 | such as the ia64 with its two stacks, won't work. | |
506 | Similar goes for the case where there is a frameless | |
507 | function. */ | |
508 | fi = find_frame_addr_in_frame_chain (frame); | |
509 | } | |
8b93c638 | 510 | else |
9d49bdc2 | 511 | fi = NULL; |
8b93c638 | 512 | |
73a93a32 JI |
513 | /* frame = -2 means always use selected frame */ |
514 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 515 | var->root->floating = 1; |
73a93a32 | 516 | |
8b93c638 JM |
517 | block = NULL; |
518 | if (fi != NULL) | |
ae767bfb | 519 | block = get_frame_block (fi, 0); |
8b93c638 JM |
520 | |
521 | p = expression; | |
522 | innermost_block = NULL; | |
73a93a32 JI |
523 | /* Wrap the call to parse expression, so we can |
524 | return a sensible error. */ | |
525 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
526 | { | |
527 | return NULL; | |
528 | } | |
8b93c638 JM |
529 | |
530 | /* Don't allow variables to be created for types. */ | |
531 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
532 | { | |
533 | do_cleanups (old_chain); | |
bc8332bb AC |
534 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
535 | " as an expression.\n"); | |
8b93c638 JM |
536 | return NULL; |
537 | } | |
538 | ||
539 | var->format = variable_default_display (var); | |
540 | var->root->valid_block = innermost_block; | |
1b36a34b | 541 | var->name = xstrdup (expression); |
02142340 | 542 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 543 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
544 | |
545 | /* When the frame is different from the current frame, | |
546 | we must select the appropriate frame before parsing | |
547 | the expression, otherwise the value will not be current. | |
548 | Since select_frame is so benign, just call it for all cases. */ | |
44a67aa7 | 549 | if (innermost_block && fi != NULL) |
8b93c638 | 550 | { |
7a424e99 | 551 | var->root->frame = get_frame_id (fi); |
c5b48eac | 552 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
206415a3 | 553 | old_fi = get_selected_frame (NULL); |
c5b48eac | 554 | select_frame (fi); |
8b93c638 JM |
555 | } |
556 | ||
340a7723 | 557 | /* We definitely need to catch errors here. |
8b93c638 JM |
558 | If evaluate_expression succeeds we got the value we wanted. |
559 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 560 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
561 | { |
562 | /* Error getting the value. Try to at least get the | |
563 | right type. */ | |
564 | struct value *type_only_value = evaluate_type (var->root->exp); | |
565 | var->type = value_type (type_only_value); | |
566 | } | |
567 | else | |
568 | var->type = value_type (value); | |
acd65feb | 569 | |
acd65feb | 570 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
571 | |
572 | /* Set language info */ | |
573 | lang = variable_language (var); | |
d5d6fca5 | 574 | var->root->lang = &languages[lang]; |
8b93c638 JM |
575 | |
576 | /* Set ourselves as our root */ | |
577 | var->root->rootvar = var; | |
578 | ||
579 | /* Reset the selected frame */ | |
580 | if (fi != NULL) | |
0f7d239c | 581 | select_frame (old_fi); |
8b93c638 JM |
582 | } |
583 | ||
73a93a32 JI |
584 | /* If the variable object name is null, that means this |
585 | is a temporary variable, so don't install it. */ | |
586 | ||
587 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 588 | { |
1b36a34b | 589 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
590 | |
591 | /* If a varobj name is duplicated, the install will fail so | |
592 | we must clenup */ | |
593 | if (!install_variable (var)) | |
594 | { | |
595 | do_cleanups (old_chain); | |
596 | return NULL; | |
597 | } | |
598 | } | |
599 | ||
b6313243 | 600 | install_default_visualizer (var); |
8b93c638 JM |
601 | discard_cleanups (old_chain); |
602 | return var; | |
603 | } | |
604 | ||
605 | /* Generates an unique name that can be used for a varobj */ | |
606 | ||
607 | char * | |
608 | varobj_gen_name (void) | |
609 | { | |
610 | static int id = 0; | |
e64d9b3d | 611 | char *obj_name; |
8b93c638 JM |
612 | |
613 | /* generate a name for this object */ | |
614 | id++; | |
b435e160 | 615 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 616 | |
e64d9b3d | 617 | return obj_name; |
8b93c638 JM |
618 | } |
619 | ||
61d8f275 JK |
620 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
621 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
622 | |
623 | struct varobj * | |
624 | varobj_get_handle (char *objname) | |
625 | { | |
626 | struct vlist *cv; | |
627 | const char *chp; | |
628 | unsigned int index = 0; | |
629 | unsigned int i = 1; | |
630 | ||
631 | for (chp = objname; *chp; chp++) | |
632 | { | |
633 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
634 | } | |
635 | ||
636 | cv = *(varobj_table + index); | |
637 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
638 | cv = cv->next; | |
639 | ||
640 | if (cv == NULL) | |
8a3fe4f8 | 641 | error (_("Variable object not found")); |
8b93c638 JM |
642 | |
643 | return cv->var; | |
644 | } | |
645 | ||
646 | /* Given the handle, return the name of the object */ | |
647 | ||
648 | char * | |
649 | varobj_get_objname (struct varobj *var) | |
650 | { | |
651 | return var->obj_name; | |
652 | } | |
653 | ||
654 | /* Given the handle, return the expression represented by the object */ | |
655 | ||
656 | char * | |
657 | varobj_get_expression (struct varobj *var) | |
658 | { | |
659 | return name_of_variable (var); | |
660 | } | |
661 | ||
662 | /* Deletes a varobj and all its children if only_children == 0, | |
663 | otherwise deletes only the children; returns a malloc'ed list of all the | |
664 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
665 | ||
666 | int | |
667 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
668 | { | |
669 | int delcount; | |
670 | int mycount; | |
671 | struct cpstack *result = NULL; | |
672 | char **cp; | |
673 | ||
674 | /* Initialize a stack for temporary results */ | |
675 | cppush (&result, NULL); | |
676 | ||
677 | if (only_children) | |
678 | /* Delete only the variable children */ | |
679 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
680 | else | |
681 | /* Delete the variable and all its children */ | |
682 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
683 | ||
684 | /* We may have been asked to return a list of what has been deleted */ | |
685 | if (dellist != NULL) | |
686 | { | |
687 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
688 | ||
689 | cp = *dellist; | |
690 | mycount = delcount; | |
691 | *cp = cppop (&result); | |
692 | while ((*cp != NULL) && (mycount > 0)) | |
693 | { | |
694 | mycount--; | |
695 | cp++; | |
696 | *cp = cppop (&result); | |
697 | } | |
698 | ||
699 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 700 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 701 | mycount); |
8b93c638 JM |
702 | } |
703 | ||
704 | return delcount; | |
705 | } | |
706 | ||
b6313243 TT |
707 | /* Convenience function for varobj_set_visualizer. Instantiate a |
708 | pretty-printer for a given value. */ | |
709 | static PyObject * | |
710 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
711 | { | |
712 | #if HAVE_PYTHON | |
713 | PyObject *val_obj = NULL; | |
714 | PyObject *printer; | |
715 | volatile struct gdb_exception except; | |
716 | ||
717 | TRY_CATCH (except, RETURN_MASK_ALL) | |
718 | { | |
719 | value = value_copy (value); | |
720 | } | |
721 | GDB_PY_HANDLE_EXCEPTION (except); | |
722 | val_obj = value_to_value_object (value); | |
723 | ||
724 | if (! val_obj) | |
725 | return NULL; | |
726 | ||
727 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
728 | Py_DECREF (val_obj); | |
729 | return printer; | |
730 | #endif | |
731 | return NULL; | |
732 | } | |
733 | ||
8b93c638 JM |
734 | /* Set/Get variable object display format */ |
735 | ||
736 | enum varobj_display_formats | |
737 | varobj_set_display_format (struct varobj *var, | |
738 | enum varobj_display_formats format) | |
739 | { | |
740 | switch (format) | |
741 | { | |
742 | case FORMAT_NATURAL: | |
743 | case FORMAT_BINARY: | |
744 | case FORMAT_DECIMAL: | |
745 | case FORMAT_HEXADECIMAL: | |
746 | case FORMAT_OCTAL: | |
747 | var->format = format; | |
748 | break; | |
749 | ||
750 | default: | |
751 | var->format = variable_default_display (var); | |
752 | } | |
753 | ||
ae7d22a6 VP |
754 | if (varobj_value_is_changeable_p (var) |
755 | && var->value && !value_lazy (var->value)) | |
756 | { | |
6c761d9c | 757 | xfree (var->print_value); |
b6313243 TT |
758 | var->print_value = value_get_print_value (var->value, var->format, |
759 | var->pretty_printer); | |
ae7d22a6 VP |
760 | } |
761 | ||
8b93c638 JM |
762 | return var->format; |
763 | } | |
764 | ||
765 | enum varobj_display_formats | |
766 | varobj_get_display_format (struct varobj *var) | |
767 | { | |
768 | return var->format; | |
769 | } | |
770 | ||
b6313243 TT |
771 | char * |
772 | varobj_get_display_hint (struct varobj *var) | |
773 | { | |
774 | char *result = NULL; | |
775 | ||
776 | #if HAVE_PYTHON | |
777 | PyGILState_STATE state = PyGILState_Ensure (); | |
778 | if (var->pretty_printer) | |
779 | result = gdbpy_get_display_hint (var->pretty_printer); | |
780 | PyGILState_Release (state); | |
781 | #endif | |
782 | ||
783 | return result; | |
784 | } | |
785 | ||
c5b48eac VP |
786 | /* If the variable object is bound to a specific thread, that |
787 | is its evaluation can always be done in context of a frame | |
788 | inside that thread, returns GDB id of the thread -- which | |
789 | is always positive. Otherwise, returns -1. */ | |
790 | int | |
791 | varobj_get_thread_id (struct varobj *var) | |
792 | { | |
793 | if (var->root->valid_block && var->root->thread_id > 0) | |
794 | return var->root->thread_id; | |
795 | else | |
796 | return -1; | |
797 | } | |
798 | ||
25d5ea92 VP |
799 | void |
800 | varobj_set_frozen (struct varobj *var, int frozen) | |
801 | { | |
802 | /* When a variable is unfrozen, we don't fetch its value. | |
803 | The 'not_fetched' flag remains set, so next -var-update | |
804 | won't complain. | |
805 | ||
806 | We don't fetch the value, because for structures the client | |
807 | should do -var-update anyway. It would be bad to have different | |
808 | client-size logic for structure and other types. */ | |
809 | var->frozen = frozen; | |
810 | } | |
811 | ||
812 | int | |
813 | varobj_get_frozen (struct varobj *var) | |
814 | { | |
815 | return var->frozen; | |
816 | } | |
817 | ||
b6313243 TT |
818 | static int |
819 | update_dynamic_varobj_children (struct varobj *var, | |
820 | VEC (varobj_p) **changed, | |
821 | VEC (varobj_p) **new_and_unchanged, | |
822 | int *cchanged) | |
823 | ||
824 | { | |
825 | #if HAVE_PYTHON | |
826 | /* FIXME: we *might* want to provide this functionality as | |
827 | a standalone function, so that other interested parties | |
828 | than varobj code can benefit for this. */ | |
829 | struct cleanup *back_to; | |
830 | PyObject *children; | |
831 | PyObject *iterator; | |
832 | int i; | |
833 | int children_changed = 0; | |
834 | PyObject *printer = var->pretty_printer; | |
835 | PyGILState_STATE state; | |
836 | ||
837 | state = PyGILState_Ensure (); | |
838 | back_to = make_cleanup_py_restore_gil (&state); | |
839 | ||
840 | *cchanged = 0; | |
841 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
842 | { | |
843 | do_cleanups (back_to); | |
844 | return 0; | |
845 | } | |
846 | ||
847 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, | |
848 | NULL); | |
849 | ||
850 | if (!children) | |
851 | { | |
852 | gdbpy_print_stack (); | |
853 | error ("Null value returned for children"); | |
854 | } | |
855 | ||
856 | make_cleanup_py_decref (children); | |
857 | ||
858 | if (!PyIter_Check (children)) | |
859 | error ("Returned value is not iterable"); | |
860 | ||
861 | iterator = PyObject_GetIter (children); | |
862 | if (!iterator) | |
863 | { | |
864 | gdbpy_print_stack (); | |
865 | error ("Could not get children iterator"); | |
866 | } | |
867 | make_cleanup_py_decref (iterator); | |
868 | ||
869 | for (i = 0; ; ++i) | |
870 | { | |
871 | PyObject *item = PyIter_Next (iterator); | |
872 | PyObject *py_v; | |
873 | struct value *v; | |
874 | char *name; | |
875 | struct cleanup *inner; | |
876 | ||
877 | if (!item) | |
878 | break; | |
879 | inner = make_cleanup_py_decref (item); | |
880 | ||
881 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
882 | error ("Invalid item from the child list"); | |
883 | ||
884 | if (PyObject_TypeCheck (py_v, &value_object_type)) | |
885 | { | |
886 | /* If we just call convert_value_from_python for this type, | |
887 | we won't know who owns the result. For this one case we | |
888 | need to copy the resulting value. */ | |
889 | v = value_object_to_value (py_v); | |
890 | v = value_copy (v); | |
891 | } | |
892 | else | |
893 | v = convert_value_from_python (py_v); | |
894 | ||
895 | /* TODO: This assume the name of the i-th child never changes. */ | |
896 | ||
897 | /* Now see what to do here. */ | |
898 | if (VEC_length (varobj_p, var->children) < i + 1) | |
899 | { | |
900 | /* There's no child yet. */ | |
901 | struct varobj *child = varobj_add_child (var, name, v); | |
902 | if (new_and_unchanged) | |
903 | VEC_safe_push (varobj_p, *new_and_unchanged, child); | |
904 | children_changed = 1; | |
905 | } | |
906 | else | |
907 | { | |
908 | varobj_p existing = VEC_index (varobj_p, var->children, i); | |
909 | if (install_new_value (existing, v, 0) && changed) | |
910 | { | |
911 | if (changed) | |
912 | VEC_safe_push (varobj_p, *changed, existing); | |
913 | } | |
914 | else | |
915 | { | |
916 | if (new_and_unchanged) | |
917 | VEC_safe_push (varobj_p, *new_and_unchanged, existing); | |
918 | } | |
919 | } | |
920 | ||
921 | do_cleanups (inner); | |
922 | } | |
923 | ||
924 | if (i < VEC_length (varobj_p, var->children)) | |
925 | { | |
926 | int i; | |
927 | children_changed = 1; | |
928 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) | |
929 | varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0); | |
930 | } | |
931 | VEC_truncate (varobj_p, var->children, i); | |
932 | var->num_children = VEC_length (varobj_p, var->children); | |
933 | ||
934 | do_cleanups (back_to); | |
935 | ||
936 | *cchanged = children_changed; | |
937 | return 1; | |
938 | #else | |
939 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
940 | #endif | |
941 | } | |
25d5ea92 | 942 | |
8b93c638 JM |
943 | int |
944 | varobj_get_num_children (struct varobj *var) | |
945 | { | |
946 | if (var->num_children == -1) | |
b6313243 TT |
947 | { |
948 | int changed; | |
949 | if (!var->pretty_printer | |
950 | || !update_dynamic_varobj_children (var, NULL, NULL, &changed)) | |
951 | var->num_children = number_of_children (var); | |
952 | } | |
8b93c638 JM |
953 | |
954 | return var->num_children; | |
955 | } | |
956 | ||
957 | /* Creates a list of the immediate children of a variable object; | |
958 | the return code is the number of such children or -1 on error */ | |
959 | ||
d56d46f5 VP |
960 | VEC (varobj_p)* |
961 | varobj_list_children (struct varobj *var) | |
8b93c638 JM |
962 | { |
963 | struct varobj *child; | |
964 | char *name; | |
b6313243 TT |
965 | int i, children_changed; |
966 | ||
967 | var->children_requested = 1; | |
968 | ||
969 | if (var->pretty_printer | |
970 | /* This, in theory, can result in the number of children changing without | |
971 | frontend noticing. But well, calling -var-list-children on the same | |
972 | varobj twice is not something a sane frontend would do. */ | |
973 | && update_dynamic_varobj_children (var, NULL, NULL, &children_changed)) | |
974 | return var->children; | |
8b93c638 | 975 | |
8b93c638 JM |
976 | if (var->num_children == -1) |
977 | var->num_children = number_of_children (var); | |
978 | ||
74a44383 DJ |
979 | /* If that failed, give up. */ |
980 | if (var->num_children == -1) | |
d56d46f5 | 981 | return var->children; |
74a44383 | 982 | |
28335dcc VP |
983 | /* If we're called when the list of children is not yet initialized, |
984 | allocate enough elements in it. */ | |
985 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
986 | VEC_safe_push (varobj_p, var->children, NULL); | |
987 | ||
8b93c638 JM |
988 | for (i = 0; i < var->num_children; i++) |
989 | { | |
d56d46f5 | 990 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
991 | |
992 | if (existing == NULL) | |
993 | { | |
994 | /* Either it's the first call to varobj_list_children for | |
995 | this variable object, and the child was never created, | |
996 | or it was explicitly deleted by the client. */ | |
997 | name = name_of_child (var, i); | |
998 | existing = create_child (var, i, name); | |
999 | VEC_replace (varobj_p, var->children, i, existing); | |
b6313243 | 1000 | install_default_visualizer (existing); |
28335dcc | 1001 | } |
8b93c638 JM |
1002 | } |
1003 | ||
d56d46f5 | 1004 | return var->children; |
8b93c638 JM |
1005 | } |
1006 | ||
b6313243 TT |
1007 | static struct varobj * |
1008 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1009 | { | |
1010 | varobj_p v = create_child_with_value (var, | |
1011 | VEC_length (varobj_p, var->children), | |
1012 | name, value); | |
1013 | VEC_safe_push (varobj_p, var->children, v); | |
1014 | install_default_visualizer (v); | |
1015 | return v; | |
1016 | } | |
1017 | ||
8b93c638 JM |
1018 | /* Obtain the type of an object Variable as a string similar to the one gdb |
1019 | prints on the console */ | |
1020 | ||
1021 | char * | |
1022 | varobj_get_type (struct varobj *var) | |
1023 | { | |
30b28db1 | 1024 | struct value *val; |
8b93c638 JM |
1025 | struct cleanup *old_chain; |
1026 | struct ui_file *stb; | |
1027 | char *thetype; | |
1028 | long length; | |
1029 | ||
1030 | /* For the "fake" variables, do not return a type. (It's type is | |
8756216b DP |
1031 | NULL, too.) |
1032 | Do not return a type for invalid variables as well. */ | |
1033 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1034 | return NULL; |
1035 | ||
1036 | stb = mem_fileopen (); | |
1037 | old_chain = make_cleanup_ui_file_delete (stb); | |
1038 | ||
30b28db1 | 1039 | /* To print the type, we simply create a zero ``struct value *'' and |
8b93c638 JM |
1040 | cast it to our type. We then typeprint this variable. */ |
1041 | val = value_zero (var->type, not_lval); | |
df407dfe | 1042 | type_print (value_type (val), "", stb, -1); |
8b93c638 JM |
1043 | |
1044 | thetype = ui_file_xstrdup (stb, &length); | |
1045 | do_cleanups (old_chain); | |
1046 | return thetype; | |
1047 | } | |
1048 | ||
1ecb4ee0 DJ |
1049 | /* Obtain the type of an object variable. */ |
1050 | ||
1051 | struct type * | |
1052 | varobj_get_gdb_type (struct varobj *var) | |
1053 | { | |
1054 | return var->type; | |
1055 | } | |
1056 | ||
02142340 VP |
1057 | /* Return a pointer to the full rooted expression of varobj VAR. |
1058 | If it has not been computed yet, compute it. */ | |
1059 | char * | |
1060 | varobj_get_path_expr (struct varobj *var) | |
1061 | { | |
1062 | if (var->path_expr != NULL) | |
1063 | return var->path_expr; | |
1064 | else | |
1065 | { | |
1066 | /* For root varobjs, we initialize path_expr | |
1067 | when creating varobj, so here it should be | |
1068 | child varobj. */ | |
1069 | gdb_assert (!is_root_p (var)); | |
1070 | return (*var->root->lang->path_expr_of_child) (var); | |
1071 | } | |
1072 | } | |
1073 | ||
8b93c638 JM |
1074 | enum varobj_languages |
1075 | varobj_get_language (struct varobj *var) | |
1076 | { | |
1077 | return variable_language (var); | |
1078 | } | |
1079 | ||
1080 | int | |
1081 | varobj_get_attributes (struct varobj *var) | |
1082 | { | |
1083 | int attributes = 0; | |
1084 | ||
340a7723 | 1085 | if (varobj_editable_p (var)) |
8b93c638 JM |
1086 | /* FIXME: define masks for attributes */ |
1087 | attributes |= 0x00000001; /* Editable */ | |
1088 | ||
1089 | return attributes; | |
1090 | } | |
1091 | ||
de051565 MK |
1092 | char * |
1093 | varobj_get_formatted_value (struct varobj *var, | |
1094 | enum varobj_display_formats format) | |
1095 | { | |
1096 | return my_value_of_variable (var, format); | |
1097 | } | |
1098 | ||
8b93c638 JM |
1099 | char * |
1100 | varobj_get_value (struct varobj *var) | |
1101 | { | |
de051565 | 1102 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1103 | } |
1104 | ||
1105 | /* Set the value of an object variable (if it is editable) to the | |
1106 | value of the given expression */ | |
1107 | /* Note: Invokes functions that can call error() */ | |
1108 | ||
1109 | int | |
1110 | varobj_set_value (struct varobj *var, char *expression) | |
1111 | { | |
30b28db1 | 1112 | struct value *val; |
8b93c638 | 1113 | int offset = 0; |
a6c442d8 | 1114 | int error = 0; |
8b93c638 JM |
1115 | |
1116 | /* The argument "expression" contains the variable's new value. | |
1117 | We need to first construct a legal expression for this -- ugh! */ | |
1118 | /* Does this cover all the bases? */ | |
1119 | struct expression *exp; | |
30b28db1 | 1120 | struct value *value; |
8b93c638 | 1121 | int saved_input_radix = input_radix; |
340a7723 NR |
1122 | char *s = expression; |
1123 | int i; | |
8b93c638 | 1124 | |
340a7723 | 1125 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1126 | |
340a7723 NR |
1127 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
1128 | exp = parse_exp_1 (&s, 0, 0); | |
1129 | if (!gdb_evaluate_expression (exp, &value)) | |
1130 | { | |
1131 | /* We cannot proceed without a valid expression. */ | |
1132 | xfree (exp); | |
1133 | return 0; | |
8b93c638 JM |
1134 | } |
1135 | ||
340a7723 NR |
1136 | /* All types that are editable must also be changeable. */ |
1137 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1138 | ||
1139 | /* The value of a changeable variable object must not be lazy. */ | |
1140 | gdb_assert (!value_lazy (var->value)); | |
1141 | ||
1142 | /* Need to coerce the input. We want to check if the | |
1143 | value of the variable object will be different | |
1144 | after assignment, and the first thing value_assign | |
1145 | does is coerce the input. | |
1146 | For example, if we are assigning an array to a pointer variable we | |
1147 | should compare the pointer with the the array's address, not with the | |
1148 | array's content. */ | |
1149 | value = coerce_array (value); | |
1150 | ||
1151 | /* The new value may be lazy. gdb_value_assign, or | |
1152 | rather value_contents, will take care of this. | |
1153 | If fetching of the new value will fail, gdb_value_assign | |
1154 | with catch the exception. */ | |
1155 | if (!gdb_value_assign (var->value, value, &val)) | |
1156 | return 0; | |
1157 | ||
1158 | /* If the value has changed, record it, so that next -var-update can | |
1159 | report this change. If a variable had a value of '1', we've set it | |
1160 | to '333' and then set again to '1', when -var-update will report this | |
1161 | variable as changed -- because the first assignment has set the | |
1162 | 'updated' flag. There's no need to optimize that, because return value | |
1163 | of -var-update should be considered an approximation. */ | |
1164 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
1165 | input_radix = saved_input_radix; | |
1166 | return 1; | |
8b93c638 JM |
1167 | } |
1168 | ||
1169 | /* Returns a malloc'ed list with all root variable objects */ | |
1170 | int | |
1171 | varobj_list (struct varobj ***varlist) | |
1172 | { | |
1173 | struct varobj **cv; | |
1174 | struct varobj_root *croot; | |
1175 | int mycount = rootcount; | |
1176 | ||
1177 | /* Alloc (rootcount + 1) entries for the result */ | |
1178 | *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *)); | |
1179 | ||
1180 | cv = *varlist; | |
1181 | croot = rootlist; | |
1182 | while ((croot != NULL) && (mycount > 0)) | |
1183 | { | |
1184 | *cv = croot->rootvar; | |
1185 | mycount--; | |
1186 | cv++; | |
1187 | croot = croot->next; | |
1188 | } | |
1189 | /* Mark the end of the list */ | |
1190 | *cv = NULL; | |
1191 | ||
1192 | if (mycount || (croot != NULL)) | |
72330bd6 AC |
1193 | warning |
1194 | ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)", | |
1195 | rootcount, mycount); | |
8b93c638 JM |
1196 | |
1197 | return rootcount; | |
1198 | } | |
1199 | ||
acd65feb VP |
1200 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1201 | this is the first assignement after the variable object was just | |
1202 | created, or changed type. In that case, just assign the value | |
1203 | and return 0. | |
ee342b23 VP |
1204 | Otherwise, assign the new value, and return 1 if the value is different |
1205 | from the current one, 0 otherwise. The comparison is done on textual | |
1206 | representation of value. Therefore, some types need not be compared. E.g. | |
1207 | for structures the reported value is always "{...}", so no comparison is | |
1208 | necessary here. If the old value was NULL and new one is not, or vice versa, | |
1209 | we always return 1. | |
b26ed50d VP |
1210 | |
1211 | The VALUE parameter should not be released -- the function will | |
1212 | take care of releasing it when needed. */ | |
acd65feb VP |
1213 | static int |
1214 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1215 | { | |
1216 | int changeable; | |
1217 | int need_to_fetch; | |
1218 | int changed = 0; | |
25d5ea92 | 1219 | int intentionally_not_fetched = 0; |
7a4d50bf | 1220 | char *print_value = NULL; |
acd65feb | 1221 | |
acd65feb VP |
1222 | /* We need to know the varobj's type to decide if the value should |
1223 | be fetched or not. C++ fake children (public/protected/private) don't have | |
1224 | a type. */ | |
1225 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 1226 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1227 | |
1228 | /* If the type has custom visualizer, we consider it to be always | |
1229 | changeable. FIXME: need to make sure this behaviour will not | |
1230 | mess up read-sensitive values. */ | |
1231 | if (var->pretty_printer) | |
1232 | changeable = 1; | |
1233 | ||
acd65feb VP |
1234 | need_to_fetch = changeable; |
1235 | ||
b26ed50d VP |
1236 | /* We are not interested in the address of references, and given |
1237 | that in C++ a reference is not rebindable, it cannot | |
1238 | meaningfully change. So, get hold of the real value. */ | |
1239 | if (value) | |
1240 | { | |
1241 | value = coerce_ref (value); | |
1242 | release_value (value); | |
1243 | } | |
1244 | ||
acd65feb VP |
1245 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1246 | /* For unions, we need to fetch the value implicitly because | |
1247 | of implementation of union member fetch. When gdb | |
1248 | creates a value for a field and the value of the enclosing | |
1249 | structure is not lazy, it immediately copies the necessary | |
1250 | bytes from the enclosing values. If the enclosing value is | |
1251 | lazy, the call to value_fetch_lazy on the field will read | |
1252 | the data from memory. For unions, that means we'll read the | |
1253 | same memory more than once, which is not desirable. So | |
1254 | fetch now. */ | |
1255 | need_to_fetch = 1; | |
1256 | ||
1257 | /* The new value might be lazy. If the type is changeable, | |
1258 | that is we'll be comparing values of this type, fetch the | |
1259 | value now. Otherwise, on the next update the old value | |
1260 | will be lazy, which means we've lost that old value. */ | |
1261 | if (need_to_fetch && value && value_lazy (value)) | |
1262 | { | |
25d5ea92 VP |
1263 | struct varobj *parent = var->parent; |
1264 | int frozen = var->frozen; | |
1265 | for (; !frozen && parent; parent = parent->parent) | |
1266 | frozen |= parent->frozen; | |
1267 | ||
1268 | if (frozen && initial) | |
1269 | { | |
1270 | /* For variables that are frozen, or are children of frozen | |
1271 | variables, we don't do fetch on initial assignment. | |
1272 | For non-initial assignemnt we do the fetch, since it means we're | |
1273 | explicitly asked to compare the new value with the old one. */ | |
1274 | intentionally_not_fetched = 1; | |
1275 | } | |
1276 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1277 | { |
acd65feb VP |
1278 | /* Set the value to NULL, so that for the next -var-update, |
1279 | we don't try to compare the new value with this value, | |
1280 | that we couldn't even read. */ | |
1281 | value = NULL; | |
1282 | } | |
acd65feb VP |
1283 | } |
1284 | ||
b6313243 | 1285 | |
7a4d50bf VP |
1286 | /* Below, we'll be comparing string rendering of old and new |
1287 | values. Don't get string rendering if the value is | |
1288 | lazy -- if it is, the code above has decided that the value | |
1289 | should not be fetched. */ | |
1290 | if (value && !value_lazy (value)) | |
b6313243 TT |
1291 | print_value = value_get_print_value (value, var->format, |
1292 | var->pretty_printer); | |
7a4d50bf | 1293 | |
acd65feb VP |
1294 | /* If the type is changeable, compare the old and the new values. |
1295 | If this is the initial assignment, we don't have any old value | |
1296 | to compare with. */ | |
7a4d50bf | 1297 | if (!initial && changeable) |
acd65feb VP |
1298 | { |
1299 | /* If the value of the varobj was changed by -var-set-value, then the | |
1300 | value in the varobj and in the target is the same. However, that value | |
1301 | is different from the value that the varobj had after the previous | |
57e66780 | 1302 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1303 | if (var->updated) |
57e66780 | 1304 | { |
57e66780 DJ |
1305 | changed = 1; |
1306 | } | |
acd65feb VP |
1307 | else |
1308 | { | |
1309 | /* Try to compare the values. That requires that both | |
1310 | values are non-lazy. */ | |
25d5ea92 VP |
1311 | if (var->not_fetched && value_lazy (var->value)) |
1312 | { | |
1313 | /* This is a frozen varobj and the value was never read. | |
1314 | Presumably, UI shows some "never read" indicator. | |
1315 | Now that we've fetched the real value, we need to report | |
1316 | this varobj as changed so that UI can show the real | |
1317 | value. */ | |
1318 | changed = 1; | |
1319 | } | |
1320 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1321 | /* Equal. */ |
1322 | ; | |
1323 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1324 | { |
57e66780 DJ |
1325 | changed = 1; |
1326 | } | |
acd65feb VP |
1327 | else |
1328 | { | |
1329 | gdb_assert (!value_lazy (var->value)); | |
1330 | gdb_assert (!value_lazy (value)); | |
85265413 | 1331 | |
57e66780 | 1332 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1333 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1334 | changed = 1; |
acd65feb VP |
1335 | } |
1336 | } | |
1337 | } | |
85265413 | 1338 | |
ee342b23 VP |
1339 | if (!initial && !changeable) |
1340 | { | |
1341 | /* For values that are not changeable, we don't compare the values. | |
1342 | However, we want to notice if a value was not NULL and now is NULL, | |
1343 | or vise versa, so that we report when top-level varobjs come in scope | |
1344 | and leave the scope. */ | |
1345 | changed = (var->value != NULL) != (value != NULL); | |
1346 | } | |
1347 | ||
acd65feb | 1348 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1349 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1350 | value_free (var->value); |
1351 | var->value = value; | |
7a4d50bf VP |
1352 | if (var->print_value) |
1353 | xfree (var->print_value); | |
1354 | var->print_value = print_value; | |
25d5ea92 VP |
1355 | if (value && value_lazy (value) && intentionally_not_fetched) |
1356 | var->not_fetched = 1; | |
1357 | else | |
1358 | var->not_fetched = 0; | |
acd65feb | 1359 | var->updated = 0; |
85265413 | 1360 | |
b26ed50d | 1361 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1362 | |
1363 | return changed; | |
1364 | } | |
acd65feb | 1365 | |
b6313243 TT |
1366 | static void |
1367 | install_visualizer (struct varobj *var, PyObject *visualizer) | |
1368 | { | |
1369 | #if HAVE_PYTHON | |
1370 | /* If there are any children now, wipe them. */ | |
1371 | varobj_delete (var, NULL, 1 /* children only */); | |
1372 | var->num_children = -1; | |
1373 | ||
1374 | Py_XDECREF (var->pretty_printer); | |
1375 | var->pretty_printer = visualizer; | |
1376 | ||
1377 | install_new_value (var, var->value, 1); | |
1378 | ||
1379 | /* If we removed the visualizer, and the user ever requested the | |
1380 | object's children, then we must compute the list of children. | |
1381 | Note that we needn't do this when installing a visualizer, | |
1382 | because updating will recompute dynamic children. */ | |
1383 | if (!visualizer && var->children_requested) | |
1384 | varobj_list_children (var); | |
1385 | #else | |
1386 | error ("Python support required"); | |
1387 | #endif | |
1388 | } | |
1389 | ||
1390 | static void | |
1391 | install_default_visualizer (struct varobj *var) | |
1392 | { | |
1393 | #if HAVE_PYTHON | |
1394 | struct cleanup *cleanup; | |
1395 | PyGILState_STATE state; | |
1396 | PyObject *pretty_printer = NULL; | |
1397 | ||
1398 | state = PyGILState_Ensure (); | |
1399 | cleanup = make_cleanup_py_restore_gil (&state); | |
1400 | ||
1401 | if (var->value) | |
1402 | { | |
1403 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1404 | if (! pretty_printer) | |
1405 | { | |
1406 | gdbpy_print_stack (); | |
1407 | error (_("Cannot instantiate printer for default visualizer")); | |
1408 | } | |
1409 | } | |
1410 | ||
1411 | if (pretty_printer == Py_None) | |
1412 | { | |
1413 | Py_DECREF (pretty_printer); | |
1414 | pretty_printer = NULL; | |
1415 | } | |
1416 | ||
1417 | install_visualizer (var, pretty_printer); | |
1418 | do_cleanups (cleanup); | |
1419 | #else | |
1420 | /* No error is right as this function is inserted just as a hook. */ | |
1421 | #endif | |
1422 | } | |
1423 | ||
1424 | void | |
1425 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1426 | { | |
1427 | #if HAVE_PYTHON | |
1428 | PyObject *mainmod, *globals, *pretty_printer, *constructor; | |
1429 | struct cleanup *back_to, *value; | |
1430 | PyGILState_STATE state; | |
1431 | ||
1432 | ||
1433 | state = PyGILState_Ensure (); | |
1434 | back_to = make_cleanup_py_restore_gil (&state); | |
1435 | ||
1436 | mainmod = PyImport_AddModule ("__main__"); | |
1437 | globals = PyModule_GetDict (mainmod); | |
1438 | Py_INCREF (globals); | |
1439 | make_cleanup_py_decref (globals); | |
1440 | ||
1441 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
1442 | ||
1443 | /* Do not instantiate NoneType. */ | |
1444 | if (constructor == Py_None) | |
1445 | { | |
1446 | pretty_printer = Py_None; | |
1447 | Py_INCREF (pretty_printer); | |
1448 | } | |
1449 | else | |
1450 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1451 | ||
1452 | Py_XDECREF (constructor); | |
1453 | ||
1454 | if (! pretty_printer) | |
1455 | { | |
1456 | gdbpy_print_stack (); | |
1457 | error ("Could not evaluate visualizer expression: %s", visualizer); | |
1458 | } | |
1459 | ||
1460 | if (pretty_printer == Py_None) | |
1461 | { | |
1462 | Py_DECREF (pretty_printer); | |
1463 | pretty_printer = NULL; | |
1464 | } | |
1465 | ||
1466 | install_visualizer (var, pretty_printer); | |
1467 | ||
1468 | do_cleanups (back_to); | |
1469 | #else | |
1470 | error ("Python support required"); | |
1471 | #endif | |
1472 | } | |
1473 | ||
8b93c638 JM |
1474 | /* Update the values for a variable and its children. This is a |
1475 | two-pronged attack. First, re-parse the value for the root's | |
1476 | expression to see if it's changed. Then go all the way | |
1477 | through its children, reconstructing them and noting if they've | |
1478 | changed. | |
1479 | ||
25d5ea92 VP |
1480 | The EXPLICIT parameter specifies if this call is result |
1481 | of MI request to update this specific variable, or | |
1482 | result of implicit -var-update *. For implicit request, we don't | |
1483 | update frozen variables. | |
705da579 KS |
1484 | |
1485 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1486 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1487 | to point to the new varobj. */ | |
8b93c638 | 1488 | |
f7f9ae2c | 1489 | VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) |
8b93c638 JM |
1490 | { |
1491 | int changed = 0; | |
25d5ea92 | 1492 | int type_changed = 0; |
8b93c638 JM |
1493 | int i; |
1494 | int vleft; | |
8b93c638 JM |
1495 | struct varobj *v; |
1496 | struct varobj **cv; | |
2c67cb8b | 1497 | struct varobj **templist = NULL; |
30b28db1 | 1498 | struct value *new; |
b6313243 | 1499 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1500 | VEC (varobj_update_result) *result = NULL; |
e64d9b3d | 1501 | struct frame_info *fi; |
8b93c638 | 1502 | |
25d5ea92 VP |
1503 | /* Frozen means frozen -- we don't check for any change in |
1504 | this varobj, including its going out of scope, or | |
1505 | changing type. One use case for frozen varobjs is | |
1506 | retaining previously evaluated expressions, and we don't | |
1507 | want them to be reevaluated at all. */ | |
1508 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1509 | return result; |
8756216b DP |
1510 | |
1511 | if (!(*varp)->root->is_valid) | |
f7f9ae2c VP |
1512 | { |
1513 | varobj_update_result r = {*varp}; | |
1514 | r.status = VAROBJ_INVALID; | |
1515 | VEC_safe_push (varobj_update_result, result, &r); | |
1516 | return result; | |
1517 | } | |
8b93c638 | 1518 | |
25d5ea92 | 1519 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1520 | { |
f7f9ae2c VP |
1521 | varobj_update_result r = {*varp}; |
1522 | r.status = VAROBJ_IN_SCOPE; | |
1523 | ||
25d5ea92 VP |
1524 | /* Update the root variable. value_of_root can return NULL |
1525 | if the variable is no longer around, i.e. we stepped out of | |
1526 | the frame in which a local existed. We are letting the | |
1527 | value_of_root variable dispose of the varobj if the type | |
1528 | has changed. */ | |
25d5ea92 | 1529 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1530 | r.varobj = *varp; |
1531 | ||
1532 | r.type_changed = type_changed; | |
ea56f9c2 | 1533 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1534 | r.changed = 1; |
ea56f9c2 | 1535 | |
25d5ea92 | 1536 | if (new == NULL) |
f7f9ae2c | 1537 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1538 | r.value_installed = 1; |
f7f9ae2c VP |
1539 | |
1540 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 TT |
1541 | { |
1542 | VEC_safe_push (varobj_update_result, result, &r); | |
1543 | return result; | |
1544 | } | |
1545 | ||
1546 | VEC_safe_push (varobj_update_result, stack, &r); | |
1547 | } | |
1548 | else | |
1549 | { | |
1550 | varobj_update_result r = {*varp}; | |
1551 | VEC_safe_push (varobj_update_result, stack, &r); | |
b20d8971 | 1552 | } |
8b93c638 | 1553 | |
8756216b | 1554 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1555 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1556 | { |
b6313243 TT |
1557 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1558 | struct varobj *v = r.varobj; | |
1559 | ||
1560 | VEC_pop (varobj_update_result, stack); | |
1561 | ||
1562 | /* Update this variable, unless it's a root, which is already | |
1563 | updated. */ | |
1564 | if (!r.value_installed) | |
1565 | { | |
1566 | new = value_of_child (v->parent, v->index); | |
1567 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1568 | { | |
1569 | r.changed = 1; | |
1570 | v->updated = 0; | |
1571 | } | |
1572 | } | |
1573 | ||
1574 | /* We probably should not get children of a varobj that has a | |
1575 | pretty-printer, but for which -var-list-children was never | |
1576 | invoked. Presumably, such varobj is not yet expanded in the | |
1577 | UI, so we need not bother getting it. */ | |
1578 | if (v->pretty_printer) | |
1579 | { | |
1580 | VEC (varobj_p) *changed = 0, *new_and_unchanged = 0; | |
1581 | int i, children_changed; | |
1582 | varobj_p tmp; | |
1583 | ||
1584 | if (!v->children_requested) | |
1585 | continue; | |
1586 | ||
1587 | if (v->frozen) | |
1588 | continue; | |
1589 | ||
1590 | /* If update_dynamic_varobj_children returns 0, then we have | |
1591 | a non-conforming pretty-printer, so we skip it. */ | |
1592 | if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged, | |
1593 | &children_changed)) | |
1594 | { | |
1595 | if (children_changed) | |
1596 | r.children_changed = 1; | |
1597 | for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i) | |
1598 | { | |
1599 | varobj_update_result r = {tmp}; | |
1600 | r.changed = 1; | |
1601 | r.value_installed = 1; | |
1602 | VEC_safe_push (varobj_update_result, stack, &r); | |
1603 | } | |
1604 | for (i = 0; | |
1605 | VEC_iterate (varobj_p, new_and_unchanged, i, tmp); | |
1606 | ++i) | |
1607 | { | |
1608 | varobj_update_result r = {tmp}; | |
1609 | r.value_installed = 1; | |
1610 | VEC_safe_push (varobj_update_result, stack, &r); | |
1611 | } | |
1612 | if (r.changed || r.children_changed) | |
1613 | VEC_safe_push (varobj_update_result, result, &r); | |
1614 | continue; | |
1615 | } | |
1616 | } | |
28335dcc VP |
1617 | |
1618 | /* Push any children. Use reverse order so that the first | |
1619 | child is popped from the work stack first, and so | |
1620 | will be added to result first. This does not | |
1621 | affect correctness, just "nicer". */ | |
1622 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1623 | { |
28335dcc VP |
1624 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1625 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1626 | if (c != NULL && !c->frozen) |
28335dcc | 1627 | { |
b6313243 TT |
1628 | varobj_update_result r = {c}; |
1629 | VEC_safe_push (varobj_update_result, stack, &r); | |
28335dcc | 1630 | } |
8b93c638 | 1631 | } |
b6313243 TT |
1632 | |
1633 | if (r.changed || r.type_changed) | |
1634 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1635 | } |
1636 | ||
b6313243 TT |
1637 | VEC_free (varobj_update_result, stack); |
1638 | ||
f7f9ae2c | 1639 | return result; |
8b93c638 JM |
1640 | } |
1641 | \f | |
1642 | ||
1643 | /* Helper functions */ | |
1644 | ||
1645 | /* | |
1646 | * Variable object construction/destruction | |
1647 | */ | |
1648 | ||
1649 | static int | |
fba45db2 KB |
1650 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1651 | int only_children_p) | |
8b93c638 JM |
1652 | { |
1653 | int delcount = 0; | |
1654 | ||
1655 | delete_variable_1 (resultp, &delcount, var, | |
1656 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1657 | ||
1658 | return delcount; | |
1659 | } | |
1660 | ||
1661 | /* Delete the variable object VAR and its children */ | |
1662 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1663 | and the parent is not removed we dump core. It must be always | |
1664 | initially called with remove_from_parent_p set */ | |
1665 | static void | |
72330bd6 AC |
1666 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1667 | struct varobj *var, int only_children_p, | |
1668 | int remove_from_parent_p) | |
8b93c638 | 1669 | { |
28335dcc | 1670 | int i; |
8b93c638 JM |
1671 | |
1672 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1673 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1674 | { | |
1675 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
214270ab VP |
1676 | if (!child) |
1677 | continue; | |
8b93c638 | 1678 | if (!remove_from_parent_p) |
28335dcc VP |
1679 | child->parent = NULL; |
1680 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1681 | } |
28335dcc | 1682 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1683 | |
1684 | /* if we were called to delete only the children we are done here */ | |
1685 | if (only_children_p) | |
1686 | return; | |
1687 | ||
1688 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1689 | /* If the name is null, this is a temporary variable, that has not |
1690 | yet been installed, don't report it, it belongs to the caller... */ | |
1691 | if (var->obj_name != NULL) | |
8b93c638 | 1692 | { |
5b616ba1 | 1693 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1694 | *delcountp = *delcountp + 1; |
1695 | } | |
1696 | ||
1697 | /* If this variable has a parent, remove it from its parent's list */ | |
1698 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1699 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1700 | expensive list search to find the element to remove when we are | |
1701 | discarding the list afterwards */ | |
72330bd6 | 1702 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1703 | { |
28335dcc | 1704 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1705 | } |
72330bd6 | 1706 | |
73a93a32 JI |
1707 | if (var->obj_name != NULL) |
1708 | uninstall_variable (var); | |
8b93c638 JM |
1709 | |
1710 | /* Free memory associated with this variable */ | |
1711 | free_variable (var); | |
1712 | } | |
1713 | ||
1714 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1715 | static int | |
fba45db2 | 1716 | install_variable (struct varobj *var) |
8b93c638 JM |
1717 | { |
1718 | struct vlist *cv; | |
1719 | struct vlist *newvl; | |
1720 | const char *chp; | |
1721 | unsigned int index = 0; | |
1722 | unsigned int i = 1; | |
1723 | ||
1724 | for (chp = var->obj_name; *chp; chp++) | |
1725 | { | |
1726 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1727 | } | |
1728 | ||
1729 | cv = *(varobj_table + index); | |
1730 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1731 | cv = cv->next; | |
1732 | ||
1733 | if (cv != NULL) | |
8a3fe4f8 | 1734 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1735 | |
1736 | /* Add varobj to hash table */ | |
1737 | newvl = xmalloc (sizeof (struct vlist)); | |
1738 | newvl->next = *(varobj_table + index); | |
1739 | newvl->var = var; | |
1740 | *(varobj_table + index) = newvl; | |
1741 | ||
1742 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1743 | if (is_root_p (var)) |
8b93c638 JM |
1744 | { |
1745 | /* Add to list of root variables */ | |
1746 | if (rootlist == NULL) | |
1747 | var->root->next = NULL; | |
1748 | else | |
1749 | var->root->next = rootlist; | |
1750 | rootlist = var->root; | |
1751 | rootcount++; | |
1752 | } | |
1753 | ||
1754 | return 1; /* OK */ | |
1755 | } | |
1756 | ||
1757 | /* Unistall the object VAR. */ | |
1758 | static void | |
fba45db2 | 1759 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1760 | { |
1761 | struct vlist *cv; | |
1762 | struct vlist *prev; | |
1763 | struct varobj_root *cr; | |
1764 | struct varobj_root *prer; | |
1765 | const char *chp; | |
1766 | unsigned int index = 0; | |
1767 | unsigned int i = 1; | |
1768 | ||
1769 | /* Remove varobj from hash table */ | |
1770 | for (chp = var->obj_name; *chp; chp++) | |
1771 | { | |
1772 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1773 | } | |
1774 | ||
1775 | cv = *(varobj_table + index); | |
1776 | prev = NULL; | |
1777 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1778 | { | |
1779 | prev = cv; | |
1780 | cv = cv->next; | |
1781 | } | |
1782 | ||
1783 | if (varobjdebug) | |
1784 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
1785 | ||
1786 | if (cv == NULL) | |
1787 | { | |
72330bd6 AC |
1788 | warning |
1789 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
1790 | var->obj_name); | |
8b93c638 JM |
1791 | return; |
1792 | } | |
1793 | ||
1794 | if (prev == NULL) | |
1795 | *(varobj_table + index) = cv->next; | |
1796 | else | |
1797 | prev->next = cv->next; | |
1798 | ||
b8c9b27d | 1799 | xfree (cv); |
8b93c638 JM |
1800 | |
1801 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 1802 | if (is_root_p (var)) |
8b93c638 JM |
1803 | { |
1804 | /* Remove from list of root variables */ | |
1805 | if (rootlist == var->root) | |
1806 | rootlist = var->root->next; | |
1807 | else | |
1808 | { | |
1809 | prer = NULL; | |
1810 | cr = rootlist; | |
1811 | while ((cr != NULL) && (cr->rootvar != var)) | |
1812 | { | |
1813 | prer = cr; | |
1814 | cr = cr->next; | |
1815 | } | |
1816 | if (cr == NULL) | |
1817 | { | |
72330bd6 AC |
1818 | warning |
1819 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
1820 | var->obj_name); | |
8b93c638 JM |
1821 | return; |
1822 | } | |
1823 | if (prer == NULL) | |
1824 | rootlist = NULL; | |
1825 | else | |
1826 | prer->next = cr->next; | |
1827 | } | |
1828 | rootcount--; | |
1829 | } | |
1830 | ||
1831 | } | |
1832 | ||
8b93c638 JM |
1833 | /* Create and install a child of the parent of the given name */ |
1834 | static struct varobj * | |
fba45db2 | 1835 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
1836 | { |
1837 | return create_child_with_value (parent, index, name, | |
1838 | value_of_child (parent, index)); | |
1839 | } | |
1840 | ||
1841 | static struct varobj * | |
1842 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
1843 | struct value *value) | |
8b93c638 JM |
1844 | { |
1845 | struct varobj *child; | |
1846 | char *childs_name; | |
1847 | ||
1848 | child = new_variable (); | |
1849 | ||
1850 | /* name is allocated by name_of_child */ | |
b6313243 TT |
1851 | /* FIXME: xstrdup should not be here. */ |
1852 | child->name = xstrdup (name); | |
8b93c638 | 1853 | child->index = index; |
8b93c638 JM |
1854 | child->parent = parent; |
1855 | child->root = parent->root; | |
b435e160 | 1856 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
1857 | child->obj_name = childs_name; |
1858 | install_variable (child); | |
1859 | ||
acd65feb VP |
1860 | /* Compute the type of the child. Must do this before |
1861 | calling install_new_value. */ | |
1862 | if (value != NULL) | |
1863 | /* If the child had no evaluation errors, var->value | |
1864 | will be non-NULL and contain a valid type. */ | |
1865 | child->type = value_type (value); | |
1866 | else | |
1867 | /* Otherwise, we must compute the type. */ | |
1868 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
1869 | child->index); | |
1870 | install_new_value (child, value, 1); | |
1871 | ||
8b93c638 JM |
1872 | return child; |
1873 | } | |
8b93c638 JM |
1874 | \f |
1875 | ||
1876 | /* | |
1877 | * Miscellaneous utility functions. | |
1878 | */ | |
1879 | ||
1880 | /* Allocate memory and initialize a new variable */ | |
1881 | static struct varobj * | |
1882 | new_variable (void) | |
1883 | { | |
1884 | struct varobj *var; | |
1885 | ||
1886 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
1887 | var->name = NULL; | |
02142340 | 1888 | var->path_expr = NULL; |
8b93c638 JM |
1889 | var->obj_name = NULL; |
1890 | var->index = -1; | |
1891 | var->type = NULL; | |
1892 | var->value = NULL; | |
8b93c638 JM |
1893 | var->num_children = -1; |
1894 | var->parent = NULL; | |
1895 | var->children = NULL; | |
1896 | var->format = 0; | |
1897 | var->root = NULL; | |
fb9b6b35 | 1898 | var->updated = 0; |
85265413 | 1899 | var->print_value = NULL; |
25d5ea92 VP |
1900 | var->frozen = 0; |
1901 | var->not_fetched = 0; | |
b6313243 TT |
1902 | var->children_requested = 0; |
1903 | var->pretty_printer = 0; | |
8b93c638 JM |
1904 | |
1905 | return var; | |
1906 | } | |
1907 | ||
1908 | /* Allocate memory and initialize a new root variable */ | |
1909 | static struct varobj * | |
1910 | new_root_variable (void) | |
1911 | { | |
1912 | struct varobj *var = new_variable (); | |
1913 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
1914 | var->root->lang = NULL; | |
1915 | var->root->exp = NULL; | |
1916 | var->root->valid_block = NULL; | |
7a424e99 | 1917 | var->root->frame = null_frame_id; |
a5defcdc | 1918 | var->root->floating = 0; |
8b93c638 | 1919 | var->root->rootvar = NULL; |
8756216b | 1920 | var->root->is_valid = 1; |
8b93c638 JM |
1921 | |
1922 | return var; | |
1923 | } | |
1924 | ||
1925 | /* Free any allocated memory associated with VAR. */ | |
1926 | static void | |
fba45db2 | 1927 | free_variable (struct varobj *var) |
8b93c638 | 1928 | { |
36746093 JK |
1929 | value_free (var->value); |
1930 | ||
8b93c638 | 1931 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 1932 | if (is_root_p (var)) |
8b93c638 | 1933 | { |
3038237c | 1934 | xfree (var->root->exp); |
8038e1e2 | 1935 | xfree (var->root); |
8b93c638 JM |
1936 | } |
1937 | ||
b6313243 TT |
1938 | #if HAVE_PYTHON |
1939 | { | |
1940 | PyGILState_STATE state = PyGILState_Ensure (); | |
1941 | Py_XDECREF (var->pretty_printer); | |
1942 | PyGILState_Release (state); | |
1943 | } | |
1944 | #endif | |
1945 | ||
8038e1e2 AC |
1946 | xfree (var->name); |
1947 | xfree (var->obj_name); | |
85265413 | 1948 | xfree (var->print_value); |
02142340 | 1949 | xfree (var->path_expr); |
8038e1e2 | 1950 | xfree (var); |
8b93c638 JM |
1951 | } |
1952 | ||
74b7792f AC |
1953 | static void |
1954 | do_free_variable_cleanup (void *var) | |
1955 | { | |
1956 | free_variable (var); | |
1957 | } | |
1958 | ||
1959 | static struct cleanup * | |
1960 | make_cleanup_free_variable (struct varobj *var) | |
1961 | { | |
1962 | return make_cleanup (do_free_variable_cleanup, var); | |
1963 | } | |
1964 | ||
6766a268 DJ |
1965 | /* This returns the type of the variable. It also skips past typedefs |
1966 | to return the real type of the variable. | |
94b66fa7 KS |
1967 | |
1968 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1969 | except within get_target_type and get_type. */ | |
8b93c638 | 1970 | static struct type * |
fba45db2 | 1971 | get_type (struct varobj *var) |
8b93c638 JM |
1972 | { |
1973 | struct type *type; | |
1974 | type = var->type; | |
1975 | ||
6766a268 DJ |
1976 | if (type != NULL) |
1977 | type = check_typedef (type); | |
8b93c638 JM |
1978 | |
1979 | return type; | |
1980 | } | |
1981 | ||
6e2a9270 VP |
1982 | /* Return the type of the value that's stored in VAR, |
1983 | or that would have being stored there if the | |
1984 | value were accessible. | |
1985 | ||
1986 | This differs from VAR->type in that VAR->type is always | |
1987 | the true type of the expession in the source language. | |
1988 | The return value of this function is the type we're | |
1989 | actually storing in varobj, and using for displaying | |
1990 | the values and for comparing previous and new values. | |
1991 | ||
1992 | For example, top-level references are always stripped. */ | |
1993 | static struct type * | |
1994 | get_value_type (struct varobj *var) | |
1995 | { | |
1996 | struct type *type; | |
1997 | ||
1998 | if (var->value) | |
1999 | type = value_type (var->value); | |
2000 | else | |
2001 | type = var->type; | |
2002 | ||
2003 | type = check_typedef (type); | |
2004 | ||
2005 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2006 | type = get_target_type (type); | |
2007 | ||
2008 | type = check_typedef (type); | |
2009 | ||
2010 | return type; | |
2011 | } | |
2012 | ||
8b93c638 | 2013 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
2014 | past typedefs, just like get_type (). |
2015 | ||
2016 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2017 | except within get_target_type and get_type. */ | |
8b93c638 | 2018 | static struct type * |
fba45db2 | 2019 | get_target_type (struct type *type) |
8b93c638 JM |
2020 | { |
2021 | if (type != NULL) | |
2022 | { | |
2023 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
2024 | if (type != NULL) |
2025 | type = check_typedef (type); | |
8b93c638 JM |
2026 | } |
2027 | ||
2028 | return type; | |
2029 | } | |
2030 | ||
2031 | /* What is the default display for this variable? We assume that | |
2032 | everything is "natural". Any exceptions? */ | |
2033 | static enum varobj_display_formats | |
fba45db2 | 2034 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2035 | { |
2036 | return FORMAT_NATURAL; | |
2037 | } | |
2038 | ||
8b93c638 JM |
2039 | /* FIXME: The following should be generic for any pointer */ |
2040 | static void | |
fba45db2 | 2041 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2042 | { |
2043 | struct cpstack *s; | |
2044 | ||
2045 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2046 | s->name = name; | |
2047 | s->next = *pstack; | |
2048 | *pstack = s; | |
2049 | } | |
2050 | ||
2051 | /* FIXME: The following should be generic for any pointer */ | |
2052 | static char * | |
fba45db2 | 2053 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2054 | { |
2055 | struct cpstack *s; | |
2056 | char *v; | |
2057 | ||
2058 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2059 | return NULL; | |
2060 | ||
2061 | s = *pstack; | |
2062 | v = s->name; | |
2063 | *pstack = (*pstack)->next; | |
b8c9b27d | 2064 | xfree (s); |
8b93c638 JM |
2065 | |
2066 | return v; | |
2067 | } | |
2068 | \f | |
2069 | /* | |
2070 | * Language-dependencies | |
2071 | */ | |
2072 | ||
2073 | /* Common entry points */ | |
2074 | ||
2075 | /* Get the language of variable VAR. */ | |
2076 | static enum varobj_languages | |
fba45db2 | 2077 | variable_language (struct varobj *var) |
8b93c638 JM |
2078 | { |
2079 | enum varobj_languages lang; | |
2080 | ||
2081 | switch (var->root->exp->language_defn->la_language) | |
2082 | { | |
2083 | default: | |
2084 | case language_c: | |
2085 | lang = vlang_c; | |
2086 | break; | |
2087 | case language_cplus: | |
2088 | lang = vlang_cplus; | |
2089 | break; | |
2090 | case language_java: | |
2091 | lang = vlang_java; | |
2092 | break; | |
2093 | } | |
2094 | ||
2095 | return lang; | |
2096 | } | |
2097 | ||
2098 | /* Return the number of children for a given variable. | |
2099 | The result of this function is defined by the language | |
2100 | implementation. The number of children returned by this function | |
2101 | is the number of children that the user will see in the variable | |
2102 | display. */ | |
2103 | static int | |
fba45db2 | 2104 | number_of_children (struct varobj *var) |
8b93c638 JM |
2105 | { |
2106 | return (*var->root->lang->number_of_children) (var);; | |
2107 | } | |
2108 | ||
2109 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
2110 | static char * | |
fba45db2 | 2111 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2112 | { |
2113 | return (*var->root->lang->name_of_variable) (var); | |
2114 | } | |
2115 | ||
2116 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
2117 | static char * | |
fba45db2 | 2118 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2119 | { |
2120 | return (*var->root->lang->name_of_child) (var, index); | |
2121 | } | |
2122 | ||
a5defcdc VP |
2123 | /* What is the ``struct value *'' of the root variable VAR? |
2124 | For floating variable object, evaluation can get us a value | |
2125 | of different type from what is stored in varobj already. In | |
2126 | that case: | |
2127 | - *type_changed will be set to 1 | |
2128 | - old varobj will be freed, and new one will be | |
2129 | created, with the same name. | |
2130 | - *var_handle will be set to the new varobj | |
2131 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2132 | static struct value * |
fba45db2 | 2133 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2134 | { |
73a93a32 JI |
2135 | struct varobj *var; |
2136 | ||
2137 | if (var_handle == NULL) | |
2138 | return NULL; | |
2139 | ||
2140 | var = *var_handle; | |
2141 | ||
2142 | /* This should really be an exception, since this should | |
2143 | only get called with a root variable. */ | |
2144 | ||
b2c2bd75 | 2145 | if (!is_root_p (var)) |
73a93a32 JI |
2146 | return NULL; |
2147 | ||
a5defcdc | 2148 | if (var->root->floating) |
73a93a32 JI |
2149 | { |
2150 | struct varobj *tmp_var; | |
2151 | char *old_type, *new_type; | |
6225abfa | 2152 | |
73a93a32 JI |
2153 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2154 | USE_SELECTED_FRAME); | |
2155 | if (tmp_var == NULL) | |
2156 | { | |
2157 | return NULL; | |
2158 | } | |
6225abfa | 2159 | old_type = varobj_get_type (var); |
73a93a32 | 2160 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2161 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2162 | { |
fcacd99f VP |
2163 | /* The expression presently stored inside var->root->exp |
2164 | remembers the locations of local variables relatively to | |
2165 | the frame where the expression was created (in DWARF location | |
2166 | button, for example). Naturally, those locations are not | |
2167 | correct in other frames, so update the expression. */ | |
2168 | ||
2169 | struct expression *tmp_exp = var->root->exp; | |
2170 | var->root->exp = tmp_var->root->exp; | |
2171 | tmp_var->root->exp = tmp_exp; | |
2172 | ||
73a93a32 JI |
2173 | varobj_delete (tmp_var, NULL, 0); |
2174 | *type_changed = 0; | |
2175 | } | |
2176 | else | |
2177 | { | |
1b36a34b | 2178 | tmp_var->obj_name = xstrdup (var->obj_name); |
a5defcdc VP |
2179 | varobj_delete (var, NULL, 0); |
2180 | ||
73a93a32 JI |
2181 | install_variable (tmp_var); |
2182 | *var_handle = tmp_var; | |
705da579 | 2183 | var = *var_handle; |
73a93a32 JI |
2184 | *type_changed = 1; |
2185 | } | |
74dddad3 MS |
2186 | xfree (old_type); |
2187 | xfree (new_type); | |
73a93a32 JI |
2188 | } |
2189 | else | |
2190 | { | |
2191 | *type_changed = 0; | |
2192 | } | |
2193 | ||
2194 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2195 | } |
2196 | ||
30b28db1 AC |
2197 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
2198 | static struct value * | |
fba45db2 | 2199 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2200 | { |
30b28db1 | 2201 | struct value *value; |
8b93c638 JM |
2202 | |
2203 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2204 | ||
8b93c638 JM |
2205 | return value; |
2206 | } | |
2207 | ||
8b93c638 JM |
2208 | /* GDB already has a command called "value_of_variable". Sigh. */ |
2209 | static char * | |
de051565 | 2210 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2211 | { |
8756216b | 2212 | if (var->root->is_valid) |
de051565 | 2213 | return (*var->root->lang->value_of_variable) (var, format); |
8756216b DP |
2214 | else |
2215 | return NULL; | |
8b93c638 JM |
2216 | } |
2217 | ||
85265413 | 2218 | static char * |
b6313243 TT |
2219 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
2220 | PyObject *value_formatter) | |
85265413 NR |
2221 | { |
2222 | long dummy; | |
57e66780 DJ |
2223 | struct ui_file *stb; |
2224 | struct cleanup *old_chain; | |
b6313243 | 2225 | char *thevalue = NULL; |
79a45b7d | 2226 | struct value_print_options opts; |
57e66780 DJ |
2227 | |
2228 | if (value == NULL) | |
2229 | return NULL; | |
2230 | ||
b6313243 TT |
2231 | #if HAVE_PYTHON |
2232 | { | |
2233 | PyGILState_STATE state = PyGILState_Ensure (); | |
2234 | if (value_formatter && PyObject_HasAttr (value_formatter, | |
2235 | gdbpy_to_string_cst)) | |
2236 | { | |
2237 | char *hint; | |
2238 | struct value *replacement; | |
2239 | int string_print = 0; | |
2240 | ||
2241 | hint = gdbpy_get_display_hint (value_formatter); | |
2242 | if (hint) | |
2243 | { | |
2244 | if (!strcmp (hint, "string")) | |
2245 | string_print = 1; | |
2246 | xfree (hint); | |
2247 | } | |
2248 | ||
2249 | thevalue = apply_varobj_pretty_printer (value_formatter, | |
2250 | &replacement); | |
2251 | if (thevalue && !string_print) | |
2252 | { | |
2253 | PyGILState_Release (state); | |
2254 | return thevalue; | |
2255 | } | |
2256 | if (replacement) | |
2257 | value = replacement; | |
2258 | } | |
2259 | PyGILState_Release (state); | |
2260 | } | |
2261 | #endif | |
2262 | ||
57e66780 DJ |
2263 | stb = mem_fileopen (); |
2264 | old_chain = make_cleanup_ui_file_delete (stb); | |
2265 | ||
79a45b7d TT |
2266 | get_formatted_print_options (&opts, format_code[(int) format]); |
2267 | opts.deref_ref = 0; | |
b6313243 TT |
2268 | opts.raw = 1; |
2269 | if (thevalue) | |
2270 | { | |
2271 | make_cleanup (xfree, thevalue); | |
2272 | LA_PRINT_STRING (stb, builtin_type (current_gdbarch)->builtin_char, | |
2273 | (gdb_byte *) thevalue, strlen (thevalue), | |
2274 | 0, &opts); | |
2275 | } | |
2276 | else | |
2277 | common_val_print (value, stb, 0, &opts, current_language); | |
85265413 | 2278 | thevalue = ui_file_xstrdup (stb, &dummy); |
57e66780 | 2279 | |
85265413 NR |
2280 | do_cleanups (old_chain); |
2281 | return thevalue; | |
2282 | } | |
2283 | ||
340a7723 NR |
2284 | int |
2285 | varobj_editable_p (struct varobj *var) | |
2286 | { | |
2287 | struct type *type; | |
2288 | struct value *value; | |
2289 | ||
2290 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2291 | return 0; | |
2292 | ||
2293 | type = get_value_type (var); | |
2294 | ||
2295 | switch (TYPE_CODE (type)) | |
2296 | { | |
2297 | case TYPE_CODE_STRUCT: | |
2298 | case TYPE_CODE_UNION: | |
2299 | case TYPE_CODE_ARRAY: | |
2300 | case TYPE_CODE_FUNC: | |
2301 | case TYPE_CODE_METHOD: | |
2302 | return 0; | |
2303 | break; | |
2304 | ||
2305 | default: | |
2306 | return 1; | |
2307 | break; | |
2308 | } | |
2309 | } | |
2310 | ||
acd65feb VP |
2311 | /* Return non-zero if changes in value of VAR |
2312 | must be detected and reported by -var-update. | |
2313 | Return zero is -var-update should never report | |
2314 | changes of such values. This makes sense for structures | |
2315 | (since the changes in children values will be reported separately), | |
2316 | or for artifical objects (like 'public' pseudo-field in C++). | |
2317 | ||
2318 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2319 | for the value of this variable object. */ | |
8b93c638 | 2320 | static int |
b2c2bd75 | 2321 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2322 | { |
2323 | int r; | |
2324 | struct type *type; | |
2325 | ||
2326 | if (CPLUS_FAKE_CHILD (var)) | |
2327 | return 0; | |
2328 | ||
6e2a9270 | 2329 | type = get_value_type (var); |
8b93c638 JM |
2330 | |
2331 | switch (TYPE_CODE (type)) | |
2332 | { | |
72330bd6 AC |
2333 | case TYPE_CODE_STRUCT: |
2334 | case TYPE_CODE_UNION: | |
2335 | case TYPE_CODE_ARRAY: | |
2336 | r = 0; | |
2337 | break; | |
8b93c638 | 2338 | |
72330bd6 AC |
2339 | default: |
2340 | r = 1; | |
8b93c638 JM |
2341 | } |
2342 | ||
2343 | return r; | |
2344 | } | |
2345 | ||
5a413362 VP |
2346 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2347 | selected frame, and not bound to thread/frame. Such variable objects | |
2348 | are created using '@' as frame specifier to -var-create. */ | |
2349 | int | |
2350 | varobj_floating_p (struct varobj *var) | |
2351 | { | |
2352 | return var->root->floating; | |
2353 | } | |
2354 | ||
2024f65a VP |
2355 | /* Given the value and the type of a variable object, |
2356 | adjust the value and type to those necessary | |
2357 | for getting children of the variable object. | |
2358 | This includes dereferencing top-level references | |
2359 | to all types and dereferencing pointers to | |
2360 | structures. | |
2361 | ||
2362 | Both TYPE and *TYPE should be non-null. VALUE | |
2363 | can be null if we want to only translate type. | |
2364 | *VALUE can be null as well -- if the parent | |
02142340 VP |
2365 | value is not known. |
2366 | ||
2367 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2368 | depending on whether pointer was dereferenced |
02142340 | 2369 | in this function. */ |
2024f65a VP |
2370 | static void |
2371 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2372 | struct type **type, |
2373 | int *was_ptr) | |
2024f65a VP |
2374 | { |
2375 | gdb_assert (type && *type); | |
2376 | ||
02142340 VP |
2377 | if (was_ptr) |
2378 | *was_ptr = 0; | |
2379 | ||
2024f65a VP |
2380 | *type = check_typedef (*type); |
2381 | ||
2382 | /* The type of value stored in varobj, that is passed | |
2383 | to us, is already supposed to be | |
2384 | reference-stripped. */ | |
2385 | ||
2386 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2387 | ||
2388 | /* Pointers to structures are treated just like | |
2389 | structures when accessing children. Don't | |
2390 | dererences pointers to other types. */ | |
2391 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2392 | { | |
2393 | struct type *target_type = get_target_type (*type); | |
2394 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2395 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2396 | { | |
2397 | if (value && *value) | |
3f4178d6 DJ |
2398 | { |
2399 | int success = gdb_value_ind (*value, value); | |
2400 | if (!success) | |
2401 | *value = NULL; | |
2402 | } | |
2024f65a | 2403 | *type = target_type; |
02142340 VP |
2404 | if (was_ptr) |
2405 | *was_ptr = 1; | |
2024f65a VP |
2406 | } |
2407 | } | |
2408 | ||
2409 | /* The 'get_target_type' function calls check_typedef on | |
2410 | result, so we can immediately check type code. No | |
2411 | need to call check_typedef here. */ | |
2412 | } | |
2413 | ||
8b93c638 JM |
2414 | /* C */ |
2415 | static int | |
fba45db2 | 2416 | c_number_of_children (struct varobj *var) |
8b93c638 | 2417 | { |
2024f65a VP |
2418 | struct type *type = get_value_type (var); |
2419 | int children = 0; | |
8b93c638 | 2420 | struct type *target; |
8b93c638 | 2421 | |
02142340 | 2422 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2423 | target = get_target_type (type); |
8b93c638 JM |
2424 | |
2425 | switch (TYPE_CODE (type)) | |
2426 | { | |
2427 | case TYPE_CODE_ARRAY: | |
2428 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2429 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2430 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2431 | else | |
74a44383 DJ |
2432 | /* If we don't know how many elements there are, don't display |
2433 | any. */ | |
2434 | children = 0; | |
8b93c638 JM |
2435 | break; |
2436 | ||
2437 | case TYPE_CODE_STRUCT: | |
2438 | case TYPE_CODE_UNION: | |
2439 | children = TYPE_NFIELDS (type); | |
2440 | break; | |
2441 | ||
2442 | case TYPE_CODE_PTR: | |
2024f65a VP |
2443 | /* The type here is a pointer to non-struct. Typically, pointers |
2444 | have one child, except for function ptrs, which have no children, | |
2445 | and except for void*, as we don't know what to show. | |
2446 | ||
0755e6c1 FN |
2447 | We can show char* so we allow it to be dereferenced. If you decide |
2448 | to test for it, please mind that a little magic is necessary to | |
2449 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
2450 | TYPE_NAME == "char" */ | |
2024f65a VP |
2451 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2452 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2453 | children = 0; | |
2454 | else | |
2455 | children = 1; | |
8b93c638 JM |
2456 | break; |
2457 | ||
2458 | default: | |
2459 | /* Other types have no children */ | |
2460 | break; | |
2461 | } | |
2462 | ||
2463 | return children; | |
2464 | } | |
2465 | ||
2466 | static char * | |
fba45db2 | 2467 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2468 | { |
1b36a34b | 2469 | return xstrdup (parent->name); |
8b93c638 JM |
2470 | } |
2471 | ||
bbec2603 VP |
2472 | /* Return the value of element TYPE_INDEX of a structure |
2473 | value VALUE. VALUE's type should be a structure, | |
2474 | or union, or a typedef to struct/union. | |
2475 | ||
2476 | Returns NULL if getting the value fails. Never throws. */ | |
2477 | static struct value * | |
2478 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2479 | { |
bbec2603 VP |
2480 | struct value *result = NULL; |
2481 | volatile struct gdb_exception e; | |
8b93c638 | 2482 | |
bbec2603 VP |
2483 | struct type *type = value_type (value); |
2484 | type = check_typedef (type); | |
2485 | ||
2486 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2487 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2488 | |
bbec2603 VP |
2489 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2490 | { | |
d6a843b5 | 2491 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2492 | result = value_static_field (type, type_index); |
2493 | else | |
2494 | result = value_primitive_field (value, 0, type_index, type); | |
2495 | } | |
2496 | if (e.reason < 0) | |
2497 | { | |
2498 | return NULL; | |
2499 | } | |
2500 | else | |
2501 | { | |
2502 | return result; | |
2503 | } | |
2504 | } | |
2505 | ||
2506 | /* Obtain the information about child INDEX of the variable | |
2507 | object PARENT. | |
2508 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2509 | to the parent. | |
2510 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2511 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2512 | ||
2513 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2514 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2515 | to NULL. */ | |
2516 | static void | |
2517 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2518 | char **cname, struct value **cvalue, struct type **ctype, |
2519 | char **cfull_expression) | |
bbec2603 VP |
2520 | { |
2521 | struct value *value = parent->value; | |
2024f65a | 2522 | struct type *type = get_value_type (parent); |
02142340 VP |
2523 | char *parent_expression = NULL; |
2524 | int was_ptr; | |
bbec2603 VP |
2525 | |
2526 | if (cname) | |
2527 | *cname = NULL; | |
2528 | if (cvalue) | |
2529 | *cvalue = NULL; | |
2530 | if (ctype) | |
2531 | *ctype = NULL; | |
02142340 VP |
2532 | if (cfull_expression) |
2533 | { | |
2534 | *cfull_expression = NULL; | |
2535 | parent_expression = varobj_get_path_expr (parent); | |
2536 | } | |
2537 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2538 | |
8b93c638 JM |
2539 | switch (TYPE_CODE (type)) |
2540 | { | |
2541 | case TYPE_CODE_ARRAY: | |
bbec2603 VP |
2542 | if (cname) |
2543 | *cname = xstrprintf ("%d", index | |
2544 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2545 | ||
2546 | if (cvalue && value) | |
2547 | { | |
2548 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2549 | struct value *indval = | |
6d84d3d8 | 2550 | value_from_longest (builtin_type_int32, (LONGEST) real_index); |
bbec2603 VP |
2551 | gdb_value_subscript (value, indval, cvalue); |
2552 | } | |
2553 | ||
2554 | if (ctype) | |
2555 | *ctype = get_target_type (type); | |
2556 | ||
02142340 VP |
2557 | if (cfull_expression) |
2558 | *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression, | |
2559 | index | |
2560 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2561 | ||
2562 | ||
8b93c638 JM |
2563 | break; |
2564 | ||
2565 | case TYPE_CODE_STRUCT: | |
2566 | case TYPE_CODE_UNION: | |
bbec2603 | 2567 | if (cname) |
1b36a34b | 2568 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
2569 | |
2570 | if (cvalue && value) | |
2571 | { | |
2572 | /* For C, varobj index is the same as type index. */ | |
2573 | *cvalue = value_struct_element_index (value, index); | |
2574 | } | |
2575 | ||
2576 | if (ctype) | |
2577 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2578 | ||
02142340 VP |
2579 | if (cfull_expression) |
2580 | { | |
2581 | char *join = was_ptr ? "->" : "."; | |
2582 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, | |
2583 | TYPE_FIELD_NAME (type, index)); | |
2584 | } | |
2585 | ||
8b93c638 JM |
2586 | break; |
2587 | ||
2588 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2589 | if (cname) |
2590 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2591 | |
bbec2603 | 2592 | if (cvalue && value) |
3f4178d6 DJ |
2593 | { |
2594 | int success = gdb_value_ind (value, cvalue); | |
2595 | if (!success) | |
2596 | *cvalue = NULL; | |
2597 | } | |
bbec2603 | 2598 | |
2024f65a VP |
2599 | /* Don't use get_target_type because it calls |
2600 | check_typedef and here, we want to show the true | |
2601 | declared type of the variable. */ | |
bbec2603 | 2602 | if (ctype) |
2024f65a | 2603 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2604 | |
2605 | if (cfull_expression) | |
2606 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2607 | |
8b93c638 JM |
2608 | break; |
2609 | ||
2610 | default: | |
2611 | /* This should not happen */ | |
bbec2603 VP |
2612 | if (cname) |
2613 | *cname = xstrdup ("???"); | |
02142340 VP |
2614 | if (cfull_expression) |
2615 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2616 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2617 | } |
bbec2603 | 2618 | } |
8b93c638 | 2619 | |
bbec2603 VP |
2620 | static char * |
2621 | c_name_of_child (struct varobj *parent, int index) | |
2622 | { | |
2623 | char *name; | |
02142340 | 2624 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2625 | return name; |
2626 | } | |
2627 | ||
02142340 VP |
2628 | static char * |
2629 | c_path_expr_of_child (struct varobj *child) | |
2630 | { | |
2631 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2632 | &child->path_expr); | |
2633 | return child->path_expr; | |
2634 | } | |
2635 | ||
c5b48eac VP |
2636 | /* If frame associated with VAR can be found, switch |
2637 | to it and return 1. Otherwise, return 0. */ | |
2638 | static int | |
2639 | check_scope (struct varobj *var) | |
2640 | { | |
2641 | struct frame_info *fi; | |
2642 | int scope; | |
2643 | ||
2644 | fi = frame_find_by_id (var->root->frame); | |
2645 | scope = fi != NULL; | |
2646 | ||
2647 | if (fi) | |
2648 | { | |
2649 | CORE_ADDR pc = get_frame_pc (fi); | |
2650 | if (pc < BLOCK_START (var->root->valid_block) || | |
2651 | pc >= BLOCK_END (var->root->valid_block)) | |
2652 | scope = 0; | |
2653 | else | |
2654 | select_frame (fi); | |
2655 | } | |
2656 | return scope; | |
2657 | } | |
2658 | ||
30b28db1 | 2659 | static struct value * |
fba45db2 | 2660 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2661 | { |
5e572bb4 | 2662 | struct value *new_val = NULL; |
73a93a32 | 2663 | struct varobj *var = *var_handle; |
8b93c638 | 2664 | struct frame_info *fi; |
c5b48eac | 2665 | int within_scope = 0; |
6208b47d VP |
2666 | struct cleanup *back_to; |
2667 | ||
73a93a32 | 2668 | /* Only root variables can be updated... */ |
b2c2bd75 | 2669 | if (!is_root_p (var)) |
73a93a32 JI |
2670 | /* Not a root var */ |
2671 | return NULL; | |
2672 | ||
4f8d22e3 | 2673 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 2674 | |
8b93c638 | 2675 | /* Determine whether the variable is still around. */ |
a5defcdc | 2676 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2677 | within_scope = 1; |
c5b48eac VP |
2678 | else if (var->root->thread_id == 0) |
2679 | { | |
2680 | /* The program was single-threaded when the variable object was | |
2681 | created. Technically, it's possible that the program became | |
2682 | multi-threaded since then, but we don't support such | |
2683 | scenario yet. */ | |
2684 | within_scope = check_scope (var); | |
2685 | } | |
8b93c638 JM |
2686 | else |
2687 | { | |
c5b48eac VP |
2688 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2689 | if (in_thread_list (ptid)) | |
d2353924 | 2690 | { |
c5b48eac VP |
2691 | switch_to_thread (ptid); |
2692 | within_scope = check_scope (var); | |
2693 | } | |
8b93c638 | 2694 | } |
72330bd6 | 2695 | |
8b93c638 JM |
2696 | if (within_scope) |
2697 | { | |
73a93a32 | 2698 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2699 | expression fails we want to just return NULL. */ |
2700 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2701 | return new_val; |
2702 | } | |
2703 | ||
6208b47d VP |
2704 | do_cleanups (back_to); |
2705 | ||
8b93c638 JM |
2706 | return NULL; |
2707 | } | |
2708 | ||
30b28db1 | 2709 | static struct value * |
fba45db2 | 2710 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2711 | { |
bbec2603 | 2712 | struct value *value = NULL; |
02142340 | 2713 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2714 | |
2715 | return value; | |
2716 | } | |
2717 | ||
2718 | static struct type * | |
fba45db2 | 2719 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2720 | { |
bbec2603 | 2721 | struct type *type = NULL; |
02142340 | 2722 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2723 | return type; |
2724 | } | |
2725 | ||
8b93c638 | 2726 | static char * |
de051565 | 2727 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2728 | { |
14b3d9c9 JB |
2729 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
2730 | it will print out its children instead of "{...}". So we need to | |
2731 | catch that case explicitly. */ | |
2732 | struct type *type = get_type (var); | |
e64d9b3d | 2733 | |
b6313243 TT |
2734 | /* If we have a custom formatter, return whatever string it has |
2735 | produced. */ | |
2736 | if (var->pretty_printer && var->print_value) | |
2737 | return xstrdup (var->print_value); | |
2738 | ||
14b3d9c9 JB |
2739 | /* Strip top-level references. */ |
2740 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
2741 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
2742 | ||
2743 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
2744 | { |
2745 | case TYPE_CODE_STRUCT: | |
2746 | case TYPE_CODE_UNION: | |
2747 | return xstrdup ("{...}"); | |
2748 | /* break; */ | |
2749 | ||
2750 | case TYPE_CODE_ARRAY: | |
2751 | { | |
e64d9b3d | 2752 | char *number; |
b435e160 | 2753 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 2754 | return (number); |
8b93c638 JM |
2755 | } |
2756 | /* break; */ | |
2757 | ||
2758 | default: | |
2759 | { | |
575bbeb6 KS |
2760 | if (var->value == NULL) |
2761 | { | |
2762 | /* This can happen if we attempt to get the value of a struct | |
2763 | member when the parent is an invalid pointer. This is an | |
2764 | error condition, so we should tell the caller. */ | |
2765 | return NULL; | |
2766 | } | |
2767 | else | |
2768 | { | |
25d5ea92 VP |
2769 | if (var->not_fetched && value_lazy (var->value)) |
2770 | /* Frozen variable and no value yet. We don't | |
2771 | implicitly fetch the value. MI response will | |
2772 | use empty string for the value, which is OK. */ | |
2773 | return NULL; | |
2774 | ||
b2c2bd75 | 2775 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 2776 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
2777 | |
2778 | /* If the specified format is the current one, | |
2779 | we can reuse print_value */ | |
2780 | if (format == var->format) | |
2781 | return xstrdup (var->print_value); | |
2782 | else | |
b6313243 TT |
2783 | return value_get_print_value (var->value, format, |
2784 | var->pretty_printer); | |
85265413 | 2785 | } |
e64d9b3d | 2786 | } |
8b93c638 JM |
2787 | } |
2788 | } | |
2789 | \f | |
2790 | ||
2791 | /* C++ */ | |
2792 | ||
2793 | static int | |
fba45db2 | 2794 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
2795 | { |
2796 | struct type *type; | |
2797 | int children, dont_know; | |
2798 | ||
2799 | dont_know = 1; | |
2800 | children = 0; | |
2801 | ||
2802 | if (!CPLUS_FAKE_CHILD (var)) | |
2803 | { | |
2024f65a | 2804 | type = get_value_type (var); |
02142340 | 2805 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2806 | |
2807 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 2808 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
2809 | { |
2810 | int kids[3]; | |
2811 | ||
2812 | cplus_class_num_children (type, kids); | |
2813 | if (kids[v_public] != 0) | |
2814 | children++; | |
2815 | if (kids[v_private] != 0) | |
2816 | children++; | |
2817 | if (kids[v_protected] != 0) | |
2818 | children++; | |
2819 | ||
2820 | /* Add any baseclasses */ | |
2821 | children += TYPE_N_BASECLASSES (type); | |
2822 | dont_know = 0; | |
2823 | ||
2824 | /* FIXME: save children in var */ | |
2825 | } | |
2826 | } | |
2827 | else | |
2828 | { | |
2829 | int kids[3]; | |
2830 | ||
2024f65a | 2831 | type = get_value_type (var->parent); |
02142340 | 2832 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2833 | |
2834 | cplus_class_num_children (type, kids); | |
6e382aa3 | 2835 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 2836 | children = kids[v_public]; |
6e382aa3 | 2837 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
2838 | children = kids[v_private]; |
2839 | else | |
2840 | children = kids[v_protected]; | |
2841 | dont_know = 0; | |
2842 | } | |
2843 | ||
2844 | if (dont_know) | |
2845 | children = c_number_of_children (var); | |
2846 | ||
2847 | return children; | |
2848 | } | |
2849 | ||
2850 | /* Compute # of public, private, and protected variables in this class. | |
2851 | That means we need to descend into all baseclasses and find out | |
2852 | how many are there, too. */ | |
2853 | static void | |
1669605f | 2854 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 JM |
2855 | { |
2856 | int i; | |
2857 | ||
2858 | children[v_public] = 0; | |
2859 | children[v_private] = 0; | |
2860 | children[v_protected] = 0; | |
2861 | ||
2862 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) | |
2863 | { | |
2864 | /* If we have a virtual table pointer, omit it. */ | |
72330bd6 | 2865 | if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i) |
8b93c638 JM |
2866 | continue; |
2867 | ||
2868 | if (TYPE_FIELD_PROTECTED (type, i)) | |
2869 | children[v_protected]++; | |
2870 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
2871 | children[v_private]++; | |
2872 | else | |
2873 | children[v_public]++; | |
2874 | } | |
2875 | } | |
2876 | ||
2877 | static char * | |
fba45db2 | 2878 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2879 | { |
2880 | return c_name_of_variable (parent); | |
2881 | } | |
2882 | ||
2024f65a VP |
2883 | enum accessibility { private_field, protected_field, public_field }; |
2884 | ||
2885 | /* Check if field INDEX of TYPE has the specified accessibility. | |
2886 | Return 0 if so and 1 otherwise. */ | |
2887 | static int | |
2888 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 2889 | { |
2024f65a VP |
2890 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
2891 | return 1; | |
2892 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
2893 | return 1; | |
2894 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
2895 | && !TYPE_FIELD_PROTECTED (type, index)) | |
2896 | return 1; | |
2897 | else | |
2898 | return 0; | |
2899 | } | |
2900 | ||
2901 | static void | |
2902 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2903 | char **cname, struct value **cvalue, struct type **ctype, |
2904 | char **cfull_expression) | |
2024f65a | 2905 | { |
348144ba | 2906 | char *name = NULL; |
2024f65a | 2907 | struct value *value; |
8b93c638 | 2908 | struct type *type; |
02142340 VP |
2909 | int was_ptr; |
2910 | char *parent_expression = NULL; | |
8b93c638 | 2911 | |
2024f65a VP |
2912 | if (cname) |
2913 | *cname = NULL; | |
2914 | if (cvalue) | |
2915 | *cvalue = NULL; | |
2916 | if (ctype) | |
2917 | *ctype = NULL; | |
02142340 VP |
2918 | if (cfull_expression) |
2919 | *cfull_expression = NULL; | |
2024f65a | 2920 | |
8b93c638 JM |
2921 | if (CPLUS_FAKE_CHILD (parent)) |
2922 | { | |
2024f65a VP |
2923 | value = parent->parent->value; |
2924 | type = get_value_type (parent->parent); | |
02142340 VP |
2925 | if (cfull_expression) |
2926 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
2927 | } |
2928 | else | |
2024f65a VP |
2929 | { |
2930 | value = parent->value; | |
2931 | type = get_value_type (parent); | |
02142340 VP |
2932 | if (cfull_expression) |
2933 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 2934 | } |
8b93c638 | 2935 | |
02142340 | 2936 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
2937 | |
2938 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 2939 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 2940 | { |
02142340 | 2941 | char *join = was_ptr ? "->" : "."; |
8b93c638 JM |
2942 | if (CPLUS_FAKE_CHILD (parent)) |
2943 | { | |
6e382aa3 JJ |
2944 | /* The fields of the class type are ordered as they |
2945 | appear in the class. We are given an index for a | |
2946 | particular access control type ("public","protected", | |
2947 | or "private"). We must skip over fields that don't | |
2948 | have the access control we are looking for to properly | |
2949 | find the indexed field. */ | |
2950 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 2951 | enum accessibility acc = public_field; |
6e382aa3 | 2952 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 2953 | acc = private_field; |
6e382aa3 | 2954 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
2955 | acc = protected_field; |
2956 | ||
2957 | while (index >= 0) | |
6e382aa3 | 2958 | { |
2024f65a VP |
2959 | if (TYPE_VPTR_BASETYPE (type) == type |
2960 | && type_index == TYPE_VPTR_FIELDNO (type)) | |
2961 | ; /* ignore vptr */ | |
2962 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
2963 | --index; |
2964 | ++type_index; | |
6e382aa3 | 2965 | } |
2024f65a VP |
2966 | --type_index; |
2967 | ||
2968 | if (cname) | |
2969 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
2970 | ||
2971 | if (cvalue && value) | |
2972 | *cvalue = value_struct_element_index (value, type_index); | |
2973 | ||
2974 | if (ctype) | |
2975 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
2976 | |
2977 | if (cfull_expression) | |
2978 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
2979 | join, | |
2980 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
2981 | } |
2982 | else if (index < TYPE_N_BASECLASSES (type)) | |
2983 | { | |
2984 | /* This is a baseclass. */ | |
2985 | if (cname) | |
2986 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
2987 | ||
2988 | if (cvalue && value) | |
6e382aa3 | 2989 | { |
2024f65a | 2990 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
02142340 | 2991 | release_value (*cvalue); |
6e382aa3 JJ |
2992 | } |
2993 | ||
2024f65a VP |
2994 | if (ctype) |
2995 | { | |
2996 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2997 | } | |
02142340 VP |
2998 | |
2999 | if (cfull_expression) | |
3000 | { | |
3001 | char *ptr = was_ptr ? "*" : ""; | |
3002 | /* Cast the parent to the base' type. Note that in gdb, | |
3003 | expression like | |
3004 | (Base1)d | |
3005 | will create an lvalue, for all appearences, so we don't | |
3006 | need to use more fancy: | |
3007 | *(Base1*)(&d) | |
3008 | construct. */ | |
3009 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
3010 | ptr, | |
3011 | TYPE_FIELD_NAME (type, index), | |
3012 | ptr, | |
3013 | parent_expression); | |
3014 | } | |
8b93c638 | 3015 | } |
8b93c638 JM |
3016 | else |
3017 | { | |
348144ba | 3018 | char *access = NULL; |
6e382aa3 | 3019 | int children[3]; |
2024f65a | 3020 | cplus_class_num_children (type, children); |
6e382aa3 | 3021 | |
8b93c638 | 3022 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
3023 | only be "public", "private", or "protected" |
3024 | ||
3025 | The special "fake" children are always output by varobj in | |
3026 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
3027 | index -= TYPE_N_BASECLASSES (type); |
3028 | switch (index) | |
3029 | { | |
3030 | case 0: | |
6e382aa3 | 3031 | if (children[v_public] > 0) |
2024f65a | 3032 | access = "public"; |
6e382aa3 | 3033 | else if (children[v_private] > 0) |
2024f65a | 3034 | access = "private"; |
6e382aa3 | 3035 | else |
2024f65a | 3036 | access = "protected"; |
6e382aa3 | 3037 | break; |
8b93c638 | 3038 | case 1: |
6e382aa3 | 3039 | if (children[v_public] > 0) |
8b93c638 | 3040 | { |
6e382aa3 | 3041 | if (children[v_private] > 0) |
2024f65a | 3042 | access = "private"; |
6e382aa3 | 3043 | else |
2024f65a | 3044 | access = "protected"; |
8b93c638 | 3045 | } |
6e382aa3 | 3046 | else if (children[v_private] > 0) |
2024f65a | 3047 | access = "protected"; |
6e382aa3 | 3048 | break; |
8b93c638 | 3049 | case 2: |
6e382aa3 | 3050 | /* Must be protected */ |
2024f65a | 3051 | access = "protected"; |
6e382aa3 | 3052 | break; |
8b93c638 JM |
3053 | default: |
3054 | /* error! */ | |
3055 | break; | |
3056 | } | |
348144ba MS |
3057 | |
3058 | gdb_assert (access); | |
2024f65a VP |
3059 | if (cname) |
3060 | *cname = xstrdup (access); | |
8b93c638 | 3061 | |
02142340 | 3062 | /* Value and type and full expression are null here. */ |
2024f65a | 3063 | } |
8b93c638 | 3064 | } |
8b93c638 JM |
3065 | else |
3066 | { | |
02142340 | 3067 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3068 | } |
3069 | } | |
8b93c638 | 3070 | |
2024f65a VP |
3071 | static char * |
3072 | cplus_name_of_child (struct varobj *parent, int index) | |
3073 | { | |
3074 | char *name = NULL; | |
02142340 | 3075 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3076 | return name; |
3077 | } | |
3078 | ||
02142340 VP |
3079 | static char * |
3080 | cplus_path_expr_of_child (struct varobj *child) | |
3081 | { | |
3082 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3083 | &child->path_expr); | |
3084 | return child->path_expr; | |
3085 | } | |
3086 | ||
30b28db1 | 3087 | static struct value * |
fba45db2 | 3088 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3089 | { |
73a93a32 | 3090 | return c_value_of_root (var_handle); |
8b93c638 JM |
3091 | } |
3092 | ||
30b28db1 | 3093 | static struct value * |
fba45db2 | 3094 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3095 | { |
2024f65a | 3096 | struct value *value = NULL; |
02142340 | 3097 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3098 | return value; |
3099 | } | |
3100 | ||
3101 | static struct type * | |
fba45db2 | 3102 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3103 | { |
2024f65a | 3104 | struct type *type = NULL; |
02142340 | 3105 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3106 | return type; |
3107 | } | |
3108 | ||
8b93c638 | 3109 | static char * |
de051565 | 3110 | cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 JM |
3111 | { |
3112 | ||
3113 | /* If we have one of our special types, don't print out | |
3114 | any value. */ | |
3115 | if (CPLUS_FAKE_CHILD (var)) | |
3116 | return xstrdup (""); | |
3117 | ||
de051565 | 3118 | return c_value_of_variable (var, format); |
8b93c638 JM |
3119 | } |
3120 | \f | |
3121 | /* Java */ | |
3122 | ||
3123 | static int | |
fba45db2 | 3124 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3125 | { |
3126 | return cplus_number_of_children (var); | |
3127 | } | |
3128 | ||
3129 | static char * | |
fba45db2 | 3130 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3131 | { |
3132 | char *p, *name; | |
3133 | ||
3134 | name = cplus_name_of_variable (parent); | |
3135 | /* If the name has "-" in it, it is because we | |
3136 | needed to escape periods in the name... */ | |
3137 | p = name; | |
3138 | ||
3139 | while (*p != '\000') | |
3140 | { | |
3141 | if (*p == '-') | |
3142 | *p = '.'; | |
3143 | p++; | |
3144 | } | |
3145 | ||
3146 | return name; | |
3147 | } | |
3148 | ||
3149 | static char * | |
fba45db2 | 3150 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3151 | { |
3152 | char *name, *p; | |
3153 | ||
3154 | name = cplus_name_of_child (parent, index); | |
3155 | /* Escape any periods in the name... */ | |
3156 | p = name; | |
3157 | ||
3158 | while (*p != '\000') | |
3159 | { | |
3160 | if (*p == '.') | |
3161 | *p = '-'; | |
3162 | p++; | |
3163 | } | |
3164 | ||
3165 | return name; | |
3166 | } | |
3167 | ||
02142340 VP |
3168 | static char * |
3169 | java_path_expr_of_child (struct varobj *child) | |
3170 | { | |
3171 | return NULL; | |
3172 | } | |
3173 | ||
30b28db1 | 3174 | static struct value * |
fba45db2 | 3175 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3176 | { |
73a93a32 | 3177 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3178 | } |
3179 | ||
30b28db1 | 3180 | static struct value * |
fba45db2 | 3181 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3182 | { |
3183 | return cplus_value_of_child (parent, index); | |
3184 | } | |
3185 | ||
3186 | static struct type * | |
fba45db2 | 3187 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3188 | { |
3189 | return cplus_type_of_child (parent, index); | |
3190 | } | |
3191 | ||
8b93c638 | 3192 | static char * |
de051565 | 3193 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3194 | { |
de051565 | 3195 | return cplus_value_of_variable (var, format); |
8b93c638 JM |
3196 | } |
3197 | \f | |
3198 | extern void _initialize_varobj (void); | |
3199 | void | |
3200 | _initialize_varobj (void) | |
3201 | { | |
3202 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3203 | ||
3204 | varobj_table = xmalloc (sizeof_table); | |
3205 | memset (varobj_table, 0, sizeof_table); | |
3206 | ||
85c07804 AC |
3207 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3208 | &varobjdebug, _("\ | |
3209 | Set varobj debugging."), _("\ | |
3210 | Show varobj debugging."), _("\ | |
3211 | When non-zero, varobj debugging is enabled."), | |
3212 | NULL, | |
920d2a44 | 3213 | show_varobjdebug, |
85c07804 | 3214 | &setlist, &showlist); |
8b93c638 | 3215 | } |
8756216b DP |
3216 | |
3217 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3218 | are defined on globals. | |
3219 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
2dbd25e5 | 3220 | |
8756216b DP |
3221 | void |
3222 | varobj_invalidate (void) | |
3223 | { | |
3224 | struct varobj **all_rootvarobj; | |
3225 | struct varobj **varp; | |
3226 | ||
3227 | if (varobj_list (&all_rootvarobj) > 0) | |
2dbd25e5 JK |
3228 | { |
3229 | varp = all_rootvarobj; | |
3230 | while (*varp != NULL) | |
3231 | { | |
3232 | /* Floating varobjs are reparsed on each stop, so we don't care if | |
f4a34a08 JK |
3233 | the presently parsed expression refers to something that's gone. |
3234 | */ | |
2dbd25e5 JK |
3235 | if ((*varp)->root->floating) |
3236 | continue; | |
3237 | ||
3238 | /* global var must be re-evaluated. */ | |
3239 | if ((*varp)->root->valid_block == NULL) | |
3240 | { | |
3241 | struct varobj *tmp_var; | |
3242 | ||
f4a34a08 JK |
3243 | /* Try to create a varobj with same expression. If we succeed |
3244 | replace the old varobj, otherwise invalidate it. */ | |
3245 | tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, | |
3246 | USE_CURRENT_FRAME); | |
2dbd25e5 JK |
3247 | if (tmp_var != NULL) |
3248 | { | |
3249 | tmp_var->obj_name = xstrdup ((*varp)->obj_name); | |
3250 | varobj_delete (*varp, NULL, 0); | |
3251 | install_variable (tmp_var); | |
3252 | } | |
3253 | else | |
3254 | (*varp)->root->is_valid = 0; | |
3255 | } | |
3256 | else /* locals must be invalidated. */ | |
3257 | (*varp)->root->is_valid = 0; | |
3258 | ||
3259 | varp++; | |
3260 | } | |
3261 | } | |
f7545552 | 3262 | xfree (all_rootvarobj); |
8756216b DP |
3263 | return; |
3264 | } |