]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
3666a048 | 3 | Copyright (C) 1992-2021 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
d55e5aa6 | 23 | #include "gdb_regex.h" |
4de283e4 TT |
24 | #include "frame.h" |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
14f9c5c9 | 27 | #include "gdbcmd.h" |
4de283e4 TT |
28 | #include "expression.h" |
29 | #include "parser-defs.h" | |
30 | #include "language.h" | |
31 | #include "varobj.h" | |
4de283e4 TT |
32 | #include "inferior.h" |
33 | #include "symfile.h" | |
34 | #include "objfiles.h" | |
35 | #include "breakpoint.h" | |
14f9c5c9 | 36 | #include "gdbcore.h" |
4c4b4cd2 | 37 | #include "hashtab.h" |
4de283e4 TT |
38 | #include "gdb_obstack.h" |
39 | #include "ada-lang.h" | |
40 | #include "completer.h" | |
4de283e4 TT |
41 | #include "ui-out.h" |
42 | #include "block.h" | |
04714b91 | 43 | #include "infcall.h" |
4de283e4 TT |
44 | #include "annotate.h" |
45 | #include "valprint.h" | |
d55e5aa6 | 46 | #include "source.h" |
4de283e4 | 47 | #include "observable.h" |
692465f1 | 48 | #include "stack.h" |
79d43c61 | 49 | #include "typeprint.h" |
4de283e4 | 50 | #include "namespace.h" |
7f6aba03 | 51 | #include "cli/cli-style.h" |
4de283e4 | 52 | |
40bc484c | 53 | #include "value.h" |
4de283e4 TT |
54 | #include "mi/mi-common.h" |
55 | #include "arch-utils.h" | |
56 | #include "cli/cli-utils.h" | |
268a13a5 TT |
57 | #include "gdbsupport/function-view.h" |
58 | #include "gdbsupport/byte-vector.h" | |
4de283e4 | 59 | #include <algorithm> |
03070ee9 | 60 | #include "ada-exp.h" |
ccefe4c4 | 61 | |
4c4b4cd2 | 62 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 63 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
64 | Copied from valarith.c. */ |
65 | ||
66 | #ifndef TRUNCATION_TOWARDS_ZERO | |
67 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
68 | #endif | |
69 | ||
d2e4a39e | 70 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 71 | |
d2e4a39e | 72 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 79 | |
556bdfd4 | 80 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 81 | |
d2e4a39e | 82 | static struct value *desc_data (struct value *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static int desc_arity (struct type *); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 101 | |
40bc484c | 102 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 103 | |
d1183b06 | 104 | static void ada_add_block_symbols (std::vector<struct block_symbol> &, |
b5ec771e PA |
105 | const struct block *, |
106 | const lookup_name_info &lookup_name, | |
107 | domain_enum, struct objfile *); | |
14f9c5c9 | 108 | |
d1183b06 TT |
109 | static void ada_add_all_symbols (std::vector<struct block_symbol> &, |
110 | const struct block *, | |
b5ec771e PA |
111 | const lookup_name_info &lookup_name, |
112 | domain_enum, int, int *); | |
22cee43f | 113 | |
d1183b06 | 114 | static int is_nonfunction (const std::vector<struct block_symbol> &); |
14f9c5c9 | 115 | |
d1183b06 TT |
116 | static void add_defn_to_vec (std::vector<struct block_symbol> &, |
117 | struct symbol *, | |
dda83cd7 | 118 | const struct block *); |
14f9c5c9 | 119 | |
d2e4a39e | 120 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 121 | |
4c4b4cd2 | 122 | static const char *ada_decoded_op_name (enum exp_opcode); |
14f9c5c9 | 123 | |
d2e4a39e | 124 | static int numeric_type_p (struct type *); |
14f9c5c9 | 125 | |
d2e4a39e | 126 | static int integer_type_p (struct type *); |
14f9c5c9 | 127 | |
d2e4a39e | 128 | static int scalar_type_p (struct type *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int discrete_type_p (struct type *); |
14f9c5c9 | 131 | |
a121b7c1 | 132 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
dda83cd7 | 133 | int, int); |
4c4b4cd2 | 134 | |
b4ba55a1 | 135 | static struct type *ada_find_parallel_type_with_name (struct type *, |
dda83cd7 | 136 | const char *); |
b4ba55a1 | 137 | |
d2e4a39e | 138 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 139 | |
10a2c479 | 140 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 141 | const gdb_byte *, |
dda83cd7 | 142 | CORE_ADDR, struct value *); |
4c4b4cd2 PH |
143 | |
144 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 145 | |
28c85d6c | 146 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 147 | |
d2e4a39e | 148 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 149 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 150 | |
d2e4a39e | 151 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 152 | |
ad82864c | 153 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 154 | |
ad82864c | 155 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 156 | |
ad82864c JB |
157 | static long decode_packed_array_bitsize (struct type *); |
158 | ||
159 | static struct value *decode_constrained_packed_array (struct value *); | |
160 | ||
ad82864c | 161 | static int ada_is_unconstrained_packed_array_type (struct type *); |
14f9c5c9 | 162 | |
d2e4a39e | 163 | static struct value *value_subscript_packed (struct value *, int, |
dda83cd7 | 164 | struct value **); |
14f9c5c9 | 165 | |
4c4b4cd2 | 166 | static struct value *coerce_unspec_val_to_type (struct value *, |
dda83cd7 | 167 | struct type *); |
14f9c5c9 | 168 | |
d2e4a39e | 169 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 170 | |
d2e4a39e | 171 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static int is_name_suffix (const char *); |
14f9c5c9 | 174 | |
59c8a30b | 175 | static int advance_wild_match (const char **, const char *, char); |
73589123 | 176 | |
b5ec771e | 177 | static bool wild_match (const char *name, const char *patn); |
14f9c5c9 | 178 | |
d2e4a39e | 179 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 180 | |
4c4b4cd2 PH |
181 | static LONGEST pos_atr (struct value *); |
182 | ||
53a47a3e TT |
183 | static struct value *val_atr (struct type *, LONGEST); |
184 | ||
4c4b4cd2 | 185 | static struct symbol *standard_lookup (const char *, const struct block *, |
dda83cd7 | 186 | domain_enum); |
14f9c5c9 | 187 | |
108d56a4 | 188 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
dda83cd7 | 189 | struct type *); |
4c4b4cd2 | 190 | |
0d5cff50 | 191 | static int find_struct_field (const char *, struct type *, int, |
dda83cd7 | 192 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 | 193 | |
d1183b06 | 194 | static int ada_resolve_function (std::vector<struct block_symbol> &, |
dda83cd7 | 195 | struct value **, int, const char *, |
7056f312 | 196 | struct type *, bool); |
4c4b4cd2 | 197 | |
4c4b4cd2 PH |
198 | static int ada_is_direct_array_type (struct type *); |
199 | ||
52ce6436 PH |
200 | static struct value *ada_index_struct_field (int, struct value *, int, |
201 | struct type *); | |
202 | ||
cf608cc4 | 203 | static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &); |
52ce6436 PH |
204 | |
205 | ||
852dff6c | 206 | static struct type *ada_find_any_type (const char *name); |
b5ec771e PA |
207 | |
208 | static symbol_name_matcher_ftype *ada_get_symbol_name_matcher | |
209 | (const lookup_name_info &lookup_name); | |
210 | ||
4c4b4cd2 PH |
211 | \f |
212 | ||
ee01b665 JB |
213 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
214 | ||
215 | struct cache_entry | |
216 | { | |
217 | /* The name used to perform the lookup. */ | |
218 | const char *name; | |
219 | /* The namespace used during the lookup. */ | |
fe978cb0 | 220 | domain_enum domain; |
ee01b665 JB |
221 | /* The symbol returned by the lookup, or NULL if no matching symbol |
222 | was found. */ | |
223 | struct symbol *sym; | |
224 | /* The block where the symbol was found, or NULL if no matching | |
225 | symbol was found. */ | |
226 | const struct block *block; | |
227 | /* A pointer to the next entry with the same hash. */ | |
228 | struct cache_entry *next; | |
229 | }; | |
230 | ||
231 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
232 | lookups in the course of executing the user's commands. | |
233 | ||
234 | The cache is implemented using a simple, fixed-sized hash. | |
235 | The size is fixed on the grounds that there are not likely to be | |
236 | all that many symbols looked up during any given session, regardless | |
237 | of the size of the symbol table. If we decide to go to a resizable | |
238 | table, let's just use the stuff from libiberty instead. */ | |
239 | ||
240 | #define HASH_SIZE 1009 | |
241 | ||
242 | struct ada_symbol_cache | |
243 | { | |
244 | /* An obstack used to store the entries in our cache. */ | |
bdcccc56 | 245 | struct auto_obstack cache_space; |
ee01b665 JB |
246 | |
247 | /* The root of the hash table used to implement our symbol cache. */ | |
bdcccc56 | 248 | struct cache_entry *root[HASH_SIZE] {}; |
ee01b665 JB |
249 | }; |
250 | ||
4c4b4cd2 | 251 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
252 | static unsigned int varsize_limit; |
253 | ||
67cb5b2d | 254 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
255 | #ifdef VMS |
256 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
257 | #else | |
14f9c5c9 | 258 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 259 | #endif |
14f9c5c9 | 260 | |
4c4b4cd2 | 261 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 262 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 263 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 264 | |
4c4b4cd2 PH |
265 | /* Limit on the number of warnings to raise per expression evaluation. */ |
266 | static int warning_limit = 2; | |
267 | ||
268 | /* Number of warning messages issued; reset to 0 by cleanups after | |
269 | expression evaluation. */ | |
270 | static int warnings_issued = 0; | |
271 | ||
27087b7f | 272 | static const char * const known_runtime_file_name_patterns[] = { |
4c4b4cd2 PH |
273 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL |
274 | }; | |
275 | ||
27087b7f | 276 | static const char * const known_auxiliary_function_name_patterns[] = { |
4c4b4cd2 PH |
277 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL |
278 | }; | |
279 | ||
c6044dd1 JB |
280 | /* Maintenance-related settings for this module. */ |
281 | ||
282 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
283 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
284 | ||
c6044dd1 JB |
285 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ |
286 | ||
491144b5 | 287 | static bool ada_ignore_descriptive_types_p = false; |
c6044dd1 | 288 | |
e802dbe0 JB |
289 | /* Inferior-specific data. */ |
290 | ||
291 | /* Per-inferior data for this module. */ | |
292 | ||
293 | struct ada_inferior_data | |
294 | { | |
295 | /* The ada__tags__type_specific_data type, which is used when decoding | |
296 | tagged types. With older versions of GNAT, this type was directly | |
297 | accessible through a component ("tsd") in the object tag. But this | |
298 | is no longer the case, so we cache it for each inferior. */ | |
f37b313d | 299 | struct type *tsd_type = nullptr; |
3eecfa55 JB |
300 | |
301 | /* The exception_support_info data. This data is used to determine | |
302 | how to implement support for Ada exception catchpoints in a given | |
303 | inferior. */ | |
f37b313d | 304 | const struct exception_support_info *exception_info = nullptr; |
e802dbe0 JB |
305 | }; |
306 | ||
307 | /* Our key to this module's inferior data. */ | |
f37b313d | 308 | static const struct inferior_key<ada_inferior_data> ada_inferior_data; |
e802dbe0 JB |
309 | |
310 | /* Return our inferior data for the given inferior (INF). | |
311 | ||
312 | This function always returns a valid pointer to an allocated | |
313 | ada_inferior_data structure. If INF's inferior data has not | |
314 | been previously set, this functions creates a new one with all | |
315 | fields set to zero, sets INF's inferior to it, and then returns | |
316 | a pointer to that newly allocated ada_inferior_data. */ | |
317 | ||
318 | static struct ada_inferior_data * | |
319 | get_ada_inferior_data (struct inferior *inf) | |
320 | { | |
321 | struct ada_inferior_data *data; | |
322 | ||
f37b313d | 323 | data = ada_inferior_data.get (inf); |
e802dbe0 | 324 | if (data == NULL) |
f37b313d | 325 | data = ada_inferior_data.emplace (inf); |
e802dbe0 JB |
326 | |
327 | return data; | |
328 | } | |
329 | ||
330 | /* Perform all necessary cleanups regarding our module's inferior data | |
331 | that is required after the inferior INF just exited. */ | |
332 | ||
333 | static void | |
334 | ada_inferior_exit (struct inferior *inf) | |
335 | { | |
f37b313d | 336 | ada_inferior_data.clear (inf); |
e802dbe0 JB |
337 | } |
338 | ||
ee01b665 JB |
339 | |
340 | /* program-space-specific data. */ | |
341 | ||
342 | /* This module's per-program-space data. */ | |
343 | struct ada_pspace_data | |
344 | { | |
345 | /* The Ada symbol cache. */ | |
bdcccc56 | 346 | std::unique_ptr<ada_symbol_cache> sym_cache; |
ee01b665 JB |
347 | }; |
348 | ||
349 | /* Key to our per-program-space data. */ | |
f37b313d | 350 | static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle; |
ee01b665 JB |
351 | |
352 | /* Return this module's data for the given program space (PSPACE). | |
353 | If not is found, add a zero'ed one now. | |
354 | ||
355 | This function always returns a valid object. */ | |
356 | ||
357 | static struct ada_pspace_data * | |
358 | get_ada_pspace_data (struct program_space *pspace) | |
359 | { | |
360 | struct ada_pspace_data *data; | |
361 | ||
f37b313d | 362 | data = ada_pspace_data_handle.get (pspace); |
ee01b665 | 363 | if (data == NULL) |
f37b313d | 364 | data = ada_pspace_data_handle.emplace (pspace); |
ee01b665 JB |
365 | |
366 | return data; | |
367 | } | |
368 | ||
dda83cd7 | 369 | /* Utilities */ |
4c4b4cd2 | 370 | |
720d1a40 | 371 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 372 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
373 | |
374 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
375 | In other words, we really expect the target type of a typedef type to be | |
376 | a non-typedef type. This is particularly true for Ada units, because | |
377 | the language does not have a typedef vs not-typedef distinction. | |
378 | In that respect, the Ada compiler has been trying to eliminate as many | |
379 | typedef definitions in the debugging information, since they generally | |
380 | do not bring any extra information (we still use typedef under certain | |
381 | circumstances related mostly to the GNAT encoding). | |
382 | ||
383 | Unfortunately, we have seen situations where the debugging information | |
384 | generated by the compiler leads to such multiple typedef layers. For | |
385 | instance, consider the following example with stabs: | |
386 | ||
387 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
388 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
389 | ||
390 | This is an error in the debugging information which causes type | |
391 | pck__float_array___XUP to be defined twice, and the second time, | |
392 | it is defined as a typedef of a typedef. | |
393 | ||
394 | This is on the fringe of legality as far as debugging information is | |
395 | concerned, and certainly unexpected. But it is easy to handle these | |
396 | situations correctly, so we can afford to be lenient in this case. */ | |
397 | ||
398 | static struct type * | |
399 | ada_typedef_target_type (struct type *type) | |
400 | { | |
78134374 | 401 | while (type->code () == TYPE_CODE_TYPEDEF) |
720d1a40 JB |
402 | type = TYPE_TARGET_TYPE (type); |
403 | return type; | |
404 | } | |
405 | ||
41d27058 JB |
406 | /* Given DECODED_NAME a string holding a symbol name in its |
407 | decoded form (ie using the Ada dotted notation), returns | |
408 | its unqualified name. */ | |
409 | ||
410 | static const char * | |
411 | ada_unqualified_name (const char *decoded_name) | |
412 | { | |
2b0f535a JB |
413 | const char *result; |
414 | ||
415 | /* If the decoded name starts with '<', it means that the encoded | |
416 | name does not follow standard naming conventions, and thus that | |
417 | it is not your typical Ada symbol name. Trying to unqualify it | |
418 | is therefore pointless and possibly erroneous. */ | |
419 | if (decoded_name[0] == '<') | |
420 | return decoded_name; | |
421 | ||
422 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
423 | if (result != NULL) |
424 | result++; /* Skip the dot... */ | |
425 | else | |
426 | result = decoded_name; | |
427 | ||
428 | return result; | |
429 | } | |
430 | ||
39e7af3e | 431 | /* Return a string starting with '<', followed by STR, and '>'. */ |
41d27058 | 432 | |
39e7af3e | 433 | static std::string |
41d27058 JB |
434 | add_angle_brackets (const char *str) |
435 | { | |
39e7af3e | 436 | return string_printf ("<%s>", str); |
41d27058 | 437 | } |
96d887e8 | 438 | |
14f9c5c9 | 439 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing |
4c4b4cd2 | 440 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
441 | |
442 | static int | |
ebf56fd3 | 443 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
444 | { |
445 | int len = strlen (target); | |
5b4ee69b | 446 | |
d2e4a39e | 447 | return |
4c4b4cd2 PH |
448 | (strncmp (field_name, target, len) == 0 |
449 | && (field_name[len] == '\0' | |
dda83cd7 SM |
450 | || (startswith (field_name + len, "___") |
451 | && strcmp (field_name + strlen (field_name) - 6, | |
452 | "___XVN") != 0))); | |
14f9c5c9 AS |
453 | } |
454 | ||
455 | ||
872c8b51 JB |
456 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
457 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
458 | and return its index. This function also handles fields whose name | |
459 | have ___ suffixes because the compiler sometimes alters their name | |
460 | by adding such a suffix to represent fields with certain constraints. | |
461 | If the field could not be found, return a negative number if | |
462 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
463 | |
464 | int | |
465 | ada_get_field_index (const struct type *type, const char *field_name, | |
dda83cd7 | 466 | int maybe_missing) |
4c4b4cd2 PH |
467 | { |
468 | int fieldno; | |
872c8b51 JB |
469 | struct type *struct_type = check_typedef ((struct type *) type); |
470 | ||
1f704f76 | 471 | for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++) |
872c8b51 | 472 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) |
4c4b4cd2 PH |
473 | return fieldno; |
474 | ||
475 | if (!maybe_missing) | |
323e0a4a | 476 | error (_("Unable to find field %s in struct %s. Aborting"), |
dda83cd7 | 477 | field_name, struct_type->name ()); |
4c4b4cd2 PH |
478 | |
479 | return -1; | |
480 | } | |
481 | ||
482 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
483 | |
484 | int | |
d2e4a39e | 485 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
486 | { |
487 | if (name == NULL) | |
488 | return 0; | |
d2e4a39e | 489 | else |
14f9c5c9 | 490 | { |
d2e4a39e | 491 | const char *p = strstr (name, "___"); |
5b4ee69b | 492 | |
14f9c5c9 | 493 | if (p == NULL) |
dda83cd7 | 494 | return strlen (name); |
14f9c5c9 | 495 | else |
dda83cd7 | 496 | return p - name; |
14f9c5c9 AS |
497 | } |
498 | } | |
499 | ||
4c4b4cd2 PH |
500 | /* Return non-zero if SUFFIX is a suffix of STR. |
501 | Return zero if STR is null. */ | |
502 | ||
14f9c5c9 | 503 | static int |
d2e4a39e | 504 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
505 | { |
506 | int len1, len2; | |
5b4ee69b | 507 | |
14f9c5c9 AS |
508 | if (str == NULL) |
509 | return 0; | |
510 | len1 = strlen (str); | |
511 | len2 = strlen (suffix); | |
4c4b4cd2 | 512 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
513 | } |
514 | ||
4c4b4cd2 PH |
515 | /* The contents of value VAL, treated as a value of type TYPE. The |
516 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 517 | |
d2e4a39e | 518 | static struct value * |
4c4b4cd2 | 519 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 520 | { |
61ee279c | 521 | type = ada_check_typedef (type); |
df407dfe | 522 | if (value_type (val) == type) |
4c4b4cd2 | 523 | return val; |
d2e4a39e | 524 | else |
14f9c5c9 | 525 | { |
4c4b4cd2 PH |
526 | struct value *result; |
527 | ||
528 | /* Make sure that the object size is not unreasonable before | |
dda83cd7 | 529 | trying to allocate some memory for it. */ |
c1b5a1a6 | 530 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 531 | |
f73e424f TT |
532 | if (value_optimized_out (val)) |
533 | result = allocate_optimized_out_value (type); | |
534 | else if (value_lazy (val) | |
535 | /* Be careful not to make a lazy not_lval value. */ | |
536 | || (VALUE_LVAL (val) != not_lval | |
537 | && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))) | |
41e8491f JK |
538 | result = allocate_value_lazy (type); |
539 | else | |
540 | { | |
541 | result = allocate_value (type); | |
f73e424f | 542 | value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 543 | } |
74bcbdf3 | 544 | set_value_component_location (result, val); |
9bbda503 AC |
545 | set_value_bitsize (result, value_bitsize (val)); |
546 | set_value_bitpos (result, value_bitpos (val)); | |
c408a94f TT |
547 | if (VALUE_LVAL (result) == lval_memory) |
548 | set_value_address (result, value_address (val)); | |
14f9c5c9 AS |
549 | return result; |
550 | } | |
551 | } | |
552 | ||
fc1a4b47 AC |
553 | static const gdb_byte * |
554 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
555 | { |
556 | if (valaddr == NULL) | |
557 | return NULL; | |
558 | else | |
559 | return valaddr + offset; | |
560 | } | |
561 | ||
562 | static CORE_ADDR | |
ebf56fd3 | 563 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
564 | { |
565 | if (address == 0) | |
566 | return 0; | |
d2e4a39e | 567 | else |
14f9c5c9 AS |
568 | return address + offset; |
569 | } | |
570 | ||
4c4b4cd2 PH |
571 | /* Issue a warning (as for the definition of warning in utils.c, but |
572 | with exactly one argument rather than ...), unless the limit on the | |
573 | number of warnings has passed during the evaluation of the current | |
574 | expression. */ | |
a2249542 | 575 | |
77109804 AC |
576 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
577 | provided by "complaint". */ | |
a0b31db1 | 578 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 579 | |
14f9c5c9 | 580 | static void |
a2249542 | 581 | lim_warning (const char *format, ...) |
14f9c5c9 | 582 | { |
a2249542 | 583 | va_list args; |
a2249542 | 584 | |
5b4ee69b | 585 | va_start (args, format); |
4c4b4cd2 PH |
586 | warnings_issued += 1; |
587 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
588 | vwarning (format, args); |
589 | ||
590 | va_end (args); | |
4c4b4cd2 PH |
591 | } |
592 | ||
714e53ab PH |
593 | /* Issue an error if the size of an object of type T is unreasonable, |
594 | i.e. if it would be a bad idea to allocate a value of this type in | |
595 | GDB. */ | |
596 | ||
c1b5a1a6 JB |
597 | void |
598 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
599 | { |
600 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 601 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
602 | } |
603 | ||
0963b4bd | 604 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 605 | static LONGEST |
c3e5cd34 | 606 | max_of_size (int size) |
4c4b4cd2 | 607 | { |
76a01679 | 608 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 609 | |
76a01679 | 610 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
611 | } |
612 | ||
0963b4bd | 613 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 614 | static LONGEST |
c3e5cd34 | 615 | min_of_size (int size) |
4c4b4cd2 | 616 | { |
c3e5cd34 | 617 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
618 | } |
619 | ||
0963b4bd | 620 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 621 | static ULONGEST |
c3e5cd34 | 622 | umax_of_size (int size) |
4c4b4cd2 | 623 | { |
76a01679 | 624 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 625 | |
76a01679 | 626 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
627 | } |
628 | ||
0963b4bd | 629 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
630 | static LONGEST |
631 | max_of_type (struct type *t) | |
4c4b4cd2 | 632 | { |
c6d940a9 | 633 | if (t->is_unsigned ()) |
c3e5cd34 PH |
634 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); |
635 | else | |
636 | return max_of_size (TYPE_LENGTH (t)); | |
637 | } | |
638 | ||
0963b4bd | 639 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
640 | static LONGEST |
641 | min_of_type (struct type *t) | |
642 | { | |
c6d940a9 | 643 | if (t->is_unsigned ()) |
c3e5cd34 PH |
644 | return 0; |
645 | else | |
646 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
647 | } |
648 | ||
649 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
650 | LONGEST |
651 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 652 | { |
b249d2c2 | 653 | type = resolve_dynamic_type (type, {}, 0); |
78134374 | 654 | switch (type->code ()) |
4c4b4cd2 PH |
655 | { |
656 | case TYPE_CODE_RANGE: | |
d1fd641e SM |
657 | { |
658 | const dynamic_prop &high = type->bounds ()->high; | |
659 | ||
660 | if (high.kind () == PROP_CONST) | |
661 | return high.const_val (); | |
662 | else | |
663 | { | |
664 | gdb_assert (high.kind () == PROP_UNDEFINED); | |
665 | ||
666 | /* This happens when trying to evaluate a type's dynamic bound | |
667 | without a live target. There is nothing relevant for us to | |
668 | return here, so return 0. */ | |
669 | return 0; | |
670 | } | |
671 | } | |
4c4b4cd2 | 672 | case TYPE_CODE_ENUM: |
1f704f76 | 673 | return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1); |
690cc4eb PH |
674 | case TYPE_CODE_BOOL: |
675 | return 1; | |
676 | case TYPE_CODE_CHAR: | |
76a01679 | 677 | case TYPE_CODE_INT: |
690cc4eb | 678 | return max_of_type (type); |
4c4b4cd2 | 679 | default: |
43bbcdc2 | 680 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
681 | } |
682 | } | |
683 | ||
14e75d8e | 684 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
685 | LONGEST |
686 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 687 | { |
b249d2c2 | 688 | type = resolve_dynamic_type (type, {}, 0); |
78134374 | 689 | switch (type->code ()) |
4c4b4cd2 PH |
690 | { |
691 | case TYPE_CODE_RANGE: | |
d1fd641e SM |
692 | { |
693 | const dynamic_prop &low = type->bounds ()->low; | |
694 | ||
695 | if (low.kind () == PROP_CONST) | |
696 | return low.const_val (); | |
697 | else | |
698 | { | |
699 | gdb_assert (low.kind () == PROP_UNDEFINED); | |
700 | ||
701 | /* This happens when trying to evaluate a type's dynamic bound | |
702 | without a live target. There is nothing relevant for us to | |
703 | return here, so return 0. */ | |
704 | return 0; | |
705 | } | |
706 | } | |
4c4b4cd2 | 707 | case TYPE_CODE_ENUM: |
14e75d8e | 708 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
709 | case TYPE_CODE_BOOL: |
710 | return 0; | |
711 | case TYPE_CODE_CHAR: | |
76a01679 | 712 | case TYPE_CODE_INT: |
690cc4eb | 713 | return min_of_type (type); |
4c4b4cd2 | 714 | default: |
43bbcdc2 | 715 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
716 | } |
717 | } | |
718 | ||
719 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 720 | non-range scalar type. */ |
4c4b4cd2 PH |
721 | |
722 | static struct type * | |
18af8284 | 723 | get_base_type (struct type *type) |
4c4b4cd2 | 724 | { |
78134374 | 725 | while (type != NULL && type->code () == TYPE_CODE_RANGE) |
4c4b4cd2 | 726 | { |
76a01679 | 727 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
dda83cd7 | 728 | return type; |
4c4b4cd2 PH |
729 | type = TYPE_TARGET_TYPE (type); |
730 | } | |
731 | return type; | |
14f9c5c9 | 732 | } |
41246937 JB |
733 | |
734 | /* Return a decoded version of the given VALUE. This means returning | |
735 | a value whose type is obtained by applying all the GNAT-specific | |
85102364 | 736 | encodings, making the resulting type a static but standard description |
41246937 JB |
737 | of the initial type. */ |
738 | ||
739 | struct value * | |
740 | ada_get_decoded_value (struct value *value) | |
741 | { | |
742 | struct type *type = ada_check_typedef (value_type (value)); | |
743 | ||
744 | if (ada_is_array_descriptor_type (type) | |
745 | || (ada_is_constrained_packed_array_type (type) | |
dda83cd7 | 746 | && type->code () != TYPE_CODE_PTR)) |
41246937 | 747 | { |
78134374 | 748 | if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */ |
dda83cd7 | 749 | value = ada_coerce_to_simple_array_ptr (value); |
41246937 | 750 | else |
dda83cd7 | 751 | value = ada_coerce_to_simple_array (value); |
41246937 JB |
752 | } |
753 | else | |
754 | value = ada_to_fixed_value (value); | |
755 | ||
756 | return value; | |
757 | } | |
758 | ||
759 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
760 | Because there is no associated actual value for this type, | |
761 | the resulting type might be a best-effort approximation in | |
762 | the case of dynamic types. */ | |
763 | ||
764 | struct type * | |
765 | ada_get_decoded_type (struct type *type) | |
766 | { | |
767 | type = to_static_fixed_type (type); | |
768 | if (ada_is_constrained_packed_array_type (type)) | |
769 | type = ada_coerce_to_simple_array_type (type); | |
770 | return type; | |
771 | } | |
772 | ||
4c4b4cd2 | 773 | \f |
76a01679 | 774 | |
dda83cd7 | 775 | /* Language Selection */ |
14f9c5c9 AS |
776 | |
777 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 778 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 779 | |
de93309a | 780 | static enum language |
ccefe4c4 | 781 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 782 | { |
cafb3438 | 783 | if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL) |
4c4b4cd2 | 784 | return language_ada; |
14f9c5c9 AS |
785 | |
786 | return lang; | |
787 | } | |
96d887e8 PH |
788 | |
789 | /* If the main procedure is written in Ada, then return its name. | |
790 | The result is good until the next call. Return NULL if the main | |
791 | procedure doesn't appear to be in Ada. */ | |
792 | ||
793 | char * | |
794 | ada_main_name (void) | |
795 | { | |
3b7344d5 | 796 | struct bound_minimal_symbol msym; |
e83e4e24 | 797 | static gdb::unique_xmalloc_ptr<char> main_program_name; |
6c038f32 | 798 | |
96d887e8 PH |
799 | /* For Ada, the name of the main procedure is stored in a specific |
800 | string constant, generated by the binder. Look for that symbol, | |
801 | extract its address, and then read that string. If we didn't find | |
802 | that string, then most probably the main procedure is not written | |
803 | in Ada. */ | |
804 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
805 | ||
3b7344d5 | 806 | if (msym.minsym != NULL) |
96d887e8 | 807 | { |
66920317 | 808 | CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 809 | if (main_program_name_addr == 0) |
dda83cd7 | 810 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 811 | |
66920317 | 812 | main_program_name = target_read_string (main_program_name_addr, 1024); |
e83e4e24 | 813 | return main_program_name.get (); |
96d887e8 PH |
814 | } |
815 | ||
816 | /* The main procedure doesn't seem to be in Ada. */ | |
817 | return NULL; | |
818 | } | |
14f9c5c9 | 819 | \f |
dda83cd7 | 820 | /* Symbols */ |
d2e4a39e | 821 | |
4c4b4cd2 PH |
822 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
823 | of NULLs. */ | |
14f9c5c9 | 824 | |
d2e4a39e AS |
825 | const struct ada_opname_map ada_opname_table[] = { |
826 | {"Oadd", "\"+\"", BINOP_ADD}, | |
827 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
828 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
829 | {"Odivide", "\"/\"", BINOP_DIV}, | |
830 | {"Omod", "\"mod\"", BINOP_MOD}, | |
831 | {"Orem", "\"rem\"", BINOP_REM}, | |
832 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
833 | {"Olt", "\"<\"", BINOP_LESS}, | |
834 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
835 | {"Ogt", "\">\"", BINOP_GTR}, | |
836 | {"Oge", "\">=\"", BINOP_GEQ}, | |
837 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
838 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
839 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
840 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
841 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
842 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
843 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
844 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
845 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
846 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
847 | {NULL, NULL} | |
14f9c5c9 AS |
848 | }; |
849 | ||
5c4258f4 | 850 | /* The "encoded" form of DECODED, according to GNAT conventions. If |
b5ec771e | 851 | THROW_ERRORS, throw an error if invalid operator name is found. |
5c4258f4 | 852 | Otherwise, return the empty string in that case. */ |
4c4b4cd2 | 853 | |
5c4258f4 | 854 | static std::string |
b5ec771e | 855 | ada_encode_1 (const char *decoded, bool throw_errors) |
14f9c5c9 | 856 | { |
4c4b4cd2 | 857 | if (decoded == NULL) |
5c4258f4 | 858 | return {}; |
14f9c5c9 | 859 | |
5c4258f4 TT |
860 | std::string encoding_buffer; |
861 | for (const char *p = decoded; *p != '\0'; p += 1) | |
14f9c5c9 | 862 | { |
cdc7bb92 | 863 | if (*p == '.') |
5c4258f4 | 864 | encoding_buffer.append ("__"); |
14f9c5c9 | 865 | else if (*p == '"') |
dda83cd7 SM |
866 | { |
867 | const struct ada_opname_map *mapping; | |
868 | ||
869 | for (mapping = ada_opname_table; | |
870 | mapping->encoded != NULL | |
871 | && !startswith (p, mapping->decoded); mapping += 1) | |
872 | ; | |
873 | if (mapping->encoded == NULL) | |
b5ec771e PA |
874 | { |
875 | if (throw_errors) | |
876 | error (_("invalid Ada operator name: %s"), p); | |
877 | else | |
5c4258f4 | 878 | return {}; |
b5ec771e | 879 | } |
5c4258f4 | 880 | encoding_buffer.append (mapping->encoded); |
dda83cd7 SM |
881 | break; |
882 | } | |
d2e4a39e | 883 | else |
5c4258f4 | 884 | encoding_buffer.push_back (*p); |
14f9c5c9 AS |
885 | } |
886 | ||
4c4b4cd2 | 887 | return encoding_buffer; |
14f9c5c9 AS |
888 | } |
889 | ||
5c4258f4 | 890 | /* The "encoded" form of DECODED, according to GNAT conventions. */ |
b5ec771e | 891 | |
5c4258f4 | 892 | std::string |
b5ec771e PA |
893 | ada_encode (const char *decoded) |
894 | { | |
895 | return ada_encode_1 (decoded, true); | |
896 | } | |
897 | ||
14f9c5c9 | 898 | /* Return NAME folded to lower case, or, if surrounded by single |
4c4b4cd2 PH |
899 | quotes, unfolded, but with the quotes stripped away. Result good |
900 | to next call. */ | |
901 | ||
5f9febe0 | 902 | static const char * |
e0802d59 | 903 | ada_fold_name (gdb::string_view name) |
14f9c5c9 | 904 | { |
5f9febe0 | 905 | static std::string fold_storage; |
14f9c5c9 | 906 | |
6a780b67 | 907 | if (!name.empty () && name[0] == '\'') |
01573d73 | 908 | fold_storage = gdb::to_string (name.substr (1, name.size () - 2)); |
14f9c5c9 AS |
909 | else |
910 | { | |
01573d73 | 911 | fold_storage = gdb::to_string (name); |
5f9febe0 TT |
912 | for (int i = 0; i < name.size (); i += 1) |
913 | fold_storage[i] = tolower (fold_storage[i]); | |
14f9c5c9 AS |
914 | } |
915 | ||
5f9febe0 | 916 | return fold_storage.c_str (); |
14f9c5c9 AS |
917 | } |
918 | ||
529cad9c PH |
919 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
920 | ||
921 | static int | |
922 | is_lower_alphanum (const char c) | |
923 | { | |
924 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
925 | } | |
926 | ||
c90092fe JB |
927 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
928 | This function saves in LEN the length of that same symbol name but | |
929 | without either of these suffixes: | |
29480c32 JB |
930 | . .{DIGIT}+ |
931 | . ${DIGIT}+ | |
932 | . ___{DIGIT}+ | |
933 | . __{DIGIT}+. | |
c90092fe | 934 | |
29480c32 JB |
935 | These are suffixes introduced by the compiler for entities such as |
936 | nested subprogram for instance, in order to avoid name clashes. | |
937 | They do not serve any purpose for the debugger. */ | |
938 | ||
939 | static void | |
940 | ada_remove_trailing_digits (const char *encoded, int *len) | |
941 | { | |
942 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
943 | { | |
944 | int i = *len - 2; | |
5b4ee69b | 945 | |
29480c32 | 946 | while (i > 0 && isdigit (encoded[i])) |
dda83cd7 | 947 | i--; |
29480c32 | 948 | if (i >= 0 && encoded[i] == '.') |
dda83cd7 | 949 | *len = i; |
29480c32 | 950 | else if (i >= 0 && encoded[i] == '$') |
dda83cd7 | 951 | *len = i; |
61012eef | 952 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
dda83cd7 | 953 | *len = i - 2; |
61012eef | 954 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
dda83cd7 | 955 | *len = i - 1; |
29480c32 JB |
956 | } |
957 | } | |
958 | ||
959 | /* Remove the suffix introduced by the compiler for protected object | |
960 | subprograms. */ | |
961 | ||
962 | static void | |
963 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
964 | { | |
965 | /* Remove trailing N. */ | |
966 | ||
967 | /* Protected entry subprograms are broken into two | |
968 | separate subprograms: The first one is unprotected, and has | |
969 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 970 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
971 | the protection. Since the P subprograms are internally generated, |
972 | we leave these names undecoded, giving the user a clue that this | |
973 | entity is internal. */ | |
974 | ||
975 | if (*len > 1 | |
976 | && encoded[*len - 1] == 'N' | |
977 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
978 | *len = *len - 1; | |
979 | } | |
980 | ||
981 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
982 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
f945dedf | 983 | replaced by ENCODED. */ |
14f9c5c9 | 984 | |
f945dedf | 985 | std::string |
4c4b4cd2 | 986 | ada_decode (const char *encoded) |
14f9c5c9 AS |
987 | { |
988 | int i, j; | |
989 | int len0; | |
d2e4a39e | 990 | const char *p; |
14f9c5c9 | 991 | int at_start_name; |
f945dedf | 992 | std::string decoded; |
d2e4a39e | 993 | |
0d81f350 JG |
994 | /* With function descriptors on PPC64, the value of a symbol named |
995 | ".FN", if it exists, is the entry point of the function "FN". */ | |
996 | if (encoded[0] == '.') | |
997 | encoded += 1; | |
998 | ||
29480c32 JB |
999 | /* The name of the Ada main procedure starts with "_ada_". |
1000 | This prefix is not part of the decoded name, so skip this part | |
1001 | if we see this prefix. */ | |
61012eef | 1002 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1003 | encoded += 5; |
14f9c5c9 | 1004 | |
29480c32 JB |
1005 | /* If the name starts with '_', then it is not a properly encoded |
1006 | name, so do not attempt to decode it. Similarly, if the name | |
1007 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1008 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1009 | goto Suppress; |
1010 | ||
4c4b4cd2 | 1011 | len0 = strlen (encoded); |
4c4b4cd2 | 1012 | |
29480c32 JB |
1013 | ada_remove_trailing_digits (encoded, &len0); |
1014 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1015 | |
4c4b4cd2 PH |
1016 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1017 | the suffix is located before the current "end" of ENCODED. We want | |
1018 | to avoid re-matching parts of ENCODED that have previously been | |
1019 | marked as discarded (by decrementing LEN0). */ | |
1020 | p = strstr (encoded, "___"); | |
1021 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1022 | { |
1023 | if (p[3] == 'X') | |
dda83cd7 | 1024 | len0 = p - encoded; |
14f9c5c9 | 1025 | else |
dda83cd7 | 1026 | goto Suppress; |
14f9c5c9 | 1027 | } |
4c4b4cd2 | 1028 | |
29480c32 JB |
1029 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1030 | is for the body of a task, but that information does not actually | |
1031 | appear in the decoded name. */ | |
1032 | ||
61012eef | 1033 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1034 | len0 -= 3; |
76a01679 | 1035 | |
a10967fa JB |
1036 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1037 | from the TKB suffix because it is used for non-anonymous task | |
1038 | bodies. */ | |
1039 | ||
61012eef | 1040 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1041 | len0 -= 2; |
1042 | ||
29480c32 JB |
1043 | /* Remove trailing "B" suffixes. */ |
1044 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1045 | ||
61012eef | 1046 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1047 | len0 -= 1; |
1048 | ||
4c4b4cd2 | 1049 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1050 | |
f945dedf | 1051 | decoded.resize (2 * len0 + 1, 'X'); |
14f9c5c9 | 1052 | |
29480c32 JB |
1053 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1054 | ||
4c4b4cd2 | 1055 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1056 | { |
4c4b4cd2 PH |
1057 | i = len0 - 2; |
1058 | while ((i >= 0 && isdigit (encoded[i])) | |
dda83cd7 SM |
1059 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) |
1060 | i -= 1; | |
4c4b4cd2 | 1061 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') |
dda83cd7 | 1062 | len0 = i - 1; |
4c4b4cd2 | 1063 | else if (encoded[i] == '$') |
dda83cd7 | 1064 | len0 = i; |
d2e4a39e | 1065 | } |
14f9c5c9 | 1066 | |
29480c32 JB |
1067 | /* The first few characters that are not alphabetic are not part |
1068 | of any encoding we use, so we can copy them over verbatim. */ | |
1069 | ||
4c4b4cd2 PH |
1070 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1071 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1072 | |
1073 | at_start_name = 1; | |
1074 | while (i < len0) | |
1075 | { | |
29480c32 | 1076 | /* Is this a symbol function? */ |
4c4b4cd2 | 1077 | if (at_start_name && encoded[i] == 'O') |
dda83cd7 SM |
1078 | { |
1079 | int k; | |
1080 | ||
1081 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
1082 | { | |
1083 | int op_len = strlen (ada_opname_table[k].encoded); | |
1084 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, | |
1085 | op_len - 1) == 0) | |
1086 | && !isalnum (encoded[i + op_len])) | |
1087 | { | |
1088 | strcpy (&decoded.front() + j, ada_opname_table[k].decoded); | |
1089 | at_start_name = 0; | |
1090 | i += op_len; | |
1091 | j += strlen (ada_opname_table[k].decoded); | |
1092 | break; | |
1093 | } | |
1094 | } | |
1095 | if (ada_opname_table[k].encoded != NULL) | |
1096 | continue; | |
1097 | } | |
14f9c5c9 AS |
1098 | at_start_name = 0; |
1099 | ||
529cad9c | 1100 | /* Replace "TK__" with "__", which will eventually be translated |
dda83cd7 | 1101 | into "." (just below). */ |
529cad9c | 1102 | |
61012eef | 1103 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
dda83cd7 | 1104 | i += 2; |
529cad9c | 1105 | |
29480c32 | 1106 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
dda83cd7 SM |
1107 | be translated into "." (just below). These are internal names |
1108 | generated for anonymous blocks inside which our symbol is nested. */ | |
29480c32 JB |
1109 | |
1110 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
dda83cd7 SM |
1111 | && encoded [i+2] == 'B' && encoded [i+3] == '_' |
1112 | && isdigit (encoded [i+4])) | |
1113 | { | |
1114 | int k = i + 5; | |
1115 | ||
1116 | while (k < len0 && isdigit (encoded[k])) | |
1117 | k++; /* Skip any extra digit. */ | |
1118 | ||
1119 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1120 | is indeed followed by "__". */ | |
1121 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1122 | i = k; | |
1123 | } | |
29480c32 | 1124 | |
529cad9c PH |
1125 | /* Remove _E{DIGITS}+[sb] */ |
1126 | ||
1127 | /* Just as for protected object subprograms, there are 2 categories | |
dda83cd7 SM |
1128 | of subprograms created by the compiler for each entry. The first |
1129 | one implements the actual entry code, and has a suffix following | |
1130 | the convention above; the second one implements the barrier and | |
1131 | uses the same convention as above, except that the 'E' is replaced | |
1132 | by a 'B'. | |
529cad9c | 1133 | |
dda83cd7 SM |
1134 | Just as above, we do not decode the name of barrier functions |
1135 | to give the user a clue that the code he is debugging has been | |
1136 | internally generated. */ | |
529cad9c PH |
1137 | |
1138 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
dda83cd7 SM |
1139 | && isdigit (encoded[i+2])) |
1140 | { | |
1141 | int k = i + 3; | |
1142 | ||
1143 | while (k < len0 && isdigit (encoded[k])) | |
1144 | k++; | |
1145 | ||
1146 | if (k < len0 | |
1147 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1148 | { | |
1149 | k++; | |
1150 | /* Just as an extra precaution, make sure that if this | |
1151 | suffix is followed by anything else, it is a '_'. | |
1152 | Otherwise, we matched this sequence by accident. */ | |
1153 | if (k == len0 | |
1154 | || (k < len0 && encoded[k] == '_')) | |
1155 | i = k; | |
1156 | } | |
1157 | } | |
529cad9c PH |
1158 | |
1159 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
dda83cd7 | 1160 | the GNAT front-end in protected object subprograms. */ |
529cad9c PH |
1161 | |
1162 | if (i < len0 + 3 | |
dda83cd7 SM |
1163 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') |
1164 | { | |
1165 | /* Backtrack a bit up until we reach either the begining of | |
1166 | the encoded name, or "__". Make sure that we only find | |
1167 | digits or lowercase characters. */ | |
1168 | const char *ptr = encoded + i - 1; | |
1169 | ||
1170 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1171 | ptr--; | |
1172 | if (ptr < encoded | |
1173 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1174 | i++; | |
1175 | } | |
529cad9c | 1176 | |
4c4b4cd2 | 1177 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
dda83cd7 SM |
1178 | { |
1179 | /* This is a X[bn]* sequence not separated from the previous | |
1180 | part of the name with a non-alpha-numeric character (in other | |
1181 | words, immediately following an alpha-numeric character), then | |
1182 | verify that it is placed at the end of the encoded name. If | |
1183 | not, then the encoding is not valid and we should abort the | |
1184 | decoding. Otherwise, just skip it, it is used in body-nested | |
1185 | package names. */ | |
1186 | do | |
1187 | i += 1; | |
1188 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1189 | if (i < len0) | |
1190 | goto Suppress; | |
1191 | } | |
cdc7bb92 | 1192 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
dda83cd7 SM |
1193 | { |
1194 | /* Replace '__' by '.'. */ | |
1195 | decoded[j] = '.'; | |
1196 | at_start_name = 1; | |
1197 | i += 2; | |
1198 | j += 1; | |
1199 | } | |
14f9c5c9 | 1200 | else |
dda83cd7 SM |
1201 | { |
1202 | /* It's a character part of the decoded name, so just copy it | |
1203 | over. */ | |
1204 | decoded[j] = encoded[i]; | |
1205 | i += 1; | |
1206 | j += 1; | |
1207 | } | |
14f9c5c9 | 1208 | } |
f945dedf | 1209 | decoded.resize (j); |
14f9c5c9 | 1210 | |
29480c32 JB |
1211 | /* Decoded names should never contain any uppercase character. |
1212 | Double-check this, and abort the decoding if we find one. */ | |
1213 | ||
f945dedf | 1214 | for (i = 0; i < decoded.length(); ++i) |
4c4b4cd2 | 1215 | if (isupper (decoded[i]) || decoded[i] == ' ') |
14f9c5c9 AS |
1216 | goto Suppress; |
1217 | ||
f945dedf | 1218 | return decoded; |
14f9c5c9 AS |
1219 | |
1220 | Suppress: | |
4c4b4cd2 | 1221 | if (encoded[0] == '<') |
f945dedf | 1222 | decoded = encoded; |
14f9c5c9 | 1223 | else |
f945dedf | 1224 | decoded = '<' + std::string(encoded) + '>'; |
4c4b4cd2 PH |
1225 | return decoded; |
1226 | ||
1227 | } | |
1228 | ||
1229 | /* Table for keeping permanent unique copies of decoded names. Once | |
1230 | allocated, names in this table are never released. While this is a | |
1231 | storage leak, it should not be significant unless there are massive | |
1232 | changes in the set of decoded names in successive versions of a | |
1233 | symbol table loaded during a single session. */ | |
1234 | static struct htab *decoded_names_store; | |
1235 | ||
1236 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1237 | in the language-specific part of GSYMBOL, if it has not been | |
1238 | previously computed. Tries to save the decoded name in the same | |
1239 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1240 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1241 | GSYMBOL). |
4c4b4cd2 PH |
1242 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1243 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1244 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1245 | |
45e6c716 | 1246 | const char * |
f85f34ed | 1247 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1248 | { |
f85f34ed TT |
1249 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1250 | const char **resultp = | |
615b3f62 | 1251 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1252 | |
f85f34ed | 1253 | if (!gsymbol->ada_mangled) |
4c4b4cd2 | 1254 | { |
4d4eaa30 | 1255 | std::string decoded = ada_decode (gsymbol->linkage_name ()); |
f85f34ed | 1256 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1257 | |
f85f34ed | 1258 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1259 | |
f85f34ed | 1260 | if (obstack != NULL) |
f945dedf | 1261 | *resultp = obstack_strdup (obstack, decoded.c_str ()); |
f85f34ed | 1262 | else |
dda83cd7 | 1263 | { |
f85f34ed TT |
1264 | /* Sometimes, we can't find a corresponding objfile, in |
1265 | which case, we put the result on the heap. Since we only | |
1266 | decode when needed, we hope this usually does not cause a | |
1267 | significant memory leak (FIXME). */ | |
1268 | ||
dda83cd7 SM |
1269 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1270 | decoded.c_str (), INSERT); | |
5b4ee69b | 1271 | |
dda83cd7 SM |
1272 | if (*slot == NULL) |
1273 | *slot = xstrdup (decoded.c_str ()); | |
1274 | *resultp = *slot; | |
1275 | } | |
4c4b4cd2 | 1276 | } |
14f9c5c9 | 1277 | |
4c4b4cd2 PH |
1278 | return *resultp; |
1279 | } | |
76a01679 | 1280 | |
2c0b251b | 1281 | static char * |
76a01679 | 1282 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 | 1283 | { |
f945dedf | 1284 | return xstrdup (ada_decode (encoded).c_str ()); |
14f9c5c9 AS |
1285 | } |
1286 | ||
14f9c5c9 | 1287 | \f |
d2e4a39e | 1288 | |
dda83cd7 | 1289 | /* Arrays */ |
14f9c5c9 | 1290 | |
28c85d6c JB |
1291 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1292 | generated by the GNAT compiler to describe the index type used | |
1293 | for each dimension of an array, check whether it follows the latest | |
1294 | known encoding. If not, fix it up to conform to the latest encoding. | |
1295 | Otherwise, do nothing. This function also does nothing if | |
1296 | INDEX_DESC_TYPE is NULL. | |
1297 | ||
85102364 | 1298 | The GNAT encoding used to describe the array index type evolved a bit. |
28c85d6c JB |
1299 | Initially, the information would be provided through the name of each |
1300 | field of the structure type only, while the type of these fields was | |
1301 | described as unspecified and irrelevant. The debugger was then expected | |
1302 | to perform a global type lookup using the name of that field in order | |
1303 | to get access to the full index type description. Because these global | |
1304 | lookups can be very expensive, the encoding was later enhanced to make | |
1305 | the global lookup unnecessary by defining the field type as being | |
1306 | the full index type description. | |
1307 | ||
1308 | The purpose of this routine is to allow us to support older versions | |
1309 | of the compiler by detecting the use of the older encoding, and by | |
1310 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1311 | we essentially replace each field's meaningless type by the associated | |
1312 | index subtype). */ | |
1313 | ||
1314 | void | |
1315 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1316 | { | |
1317 | int i; | |
1318 | ||
1319 | if (index_desc_type == NULL) | |
1320 | return; | |
1f704f76 | 1321 | gdb_assert (index_desc_type->num_fields () > 0); |
28c85d6c JB |
1322 | |
1323 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1324 | to check one field only, no need to check them all). If not, return | |
1325 | now. | |
1326 | ||
1327 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1328 | the field type should be a meaningless integer type whose name | |
1329 | is not equal to the field name. */ | |
940da03e SM |
1330 | if (index_desc_type->field (0).type ()->name () != NULL |
1331 | && strcmp (index_desc_type->field (0).type ()->name (), | |
dda83cd7 | 1332 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) |
28c85d6c JB |
1333 | return; |
1334 | ||
1335 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1f704f76 | 1336 | for (i = 0; i < index_desc_type->num_fields (); i++) |
28c85d6c | 1337 | { |
0d5cff50 | 1338 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1339 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1340 | ||
1341 | if (raw_type) | |
5d14b6e5 | 1342 | index_desc_type->field (i).set_type (raw_type); |
28c85d6c JB |
1343 | } |
1344 | } | |
1345 | ||
4c4b4cd2 PH |
1346 | /* The desc_* routines return primitive portions of array descriptors |
1347 | (fat pointers). */ | |
14f9c5c9 AS |
1348 | |
1349 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1350 | level of indirection, if needed. */ |
1351 | ||
d2e4a39e AS |
1352 | static struct type * |
1353 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1354 | { |
1355 | if (type == NULL) | |
1356 | return NULL; | |
61ee279c | 1357 | type = ada_check_typedef (type); |
78134374 | 1358 | if (type->code () == TYPE_CODE_TYPEDEF) |
720d1a40 JB |
1359 | type = ada_typedef_target_type (type); |
1360 | ||
1265e4aa | 1361 | if (type != NULL |
78134374 | 1362 | && (type->code () == TYPE_CODE_PTR |
dda83cd7 | 1363 | || type->code () == TYPE_CODE_REF)) |
61ee279c | 1364 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1365 | else |
1366 | return type; | |
1367 | } | |
1368 | ||
4c4b4cd2 PH |
1369 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1370 | ||
14f9c5c9 | 1371 | static int |
d2e4a39e | 1372 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1373 | { |
d2e4a39e | 1374 | return |
14f9c5c9 AS |
1375 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1376 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1377 | } | |
1378 | ||
4c4b4cd2 PH |
1379 | /* The descriptor type for thin pointer type TYPE. */ |
1380 | ||
d2e4a39e AS |
1381 | static struct type * |
1382 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1383 | { |
d2e4a39e | 1384 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1385 | |
14f9c5c9 AS |
1386 | if (base_type == NULL) |
1387 | return NULL; | |
1388 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1389 | return base_type; | |
d2e4a39e | 1390 | else |
14f9c5c9 | 1391 | { |
d2e4a39e | 1392 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1393 | |
14f9c5c9 | 1394 | if (alt_type == NULL) |
dda83cd7 | 1395 | return base_type; |
14f9c5c9 | 1396 | else |
dda83cd7 | 1397 | return alt_type; |
14f9c5c9 AS |
1398 | } |
1399 | } | |
1400 | ||
4c4b4cd2 PH |
1401 | /* A pointer to the array data for thin-pointer value VAL. */ |
1402 | ||
d2e4a39e AS |
1403 | static struct value * |
1404 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1405 | { |
828292f2 | 1406 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1407 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1408 | |
556bdfd4 UW |
1409 | data_type = lookup_pointer_type (data_type); |
1410 | ||
78134374 | 1411 | if (type->code () == TYPE_CODE_PTR) |
556bdfd4 | 1412 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1413 | else |
42ae5230 | 1414 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1415 | } |
1416 | ||
4c4b4cd2 PH |
1417 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1418 | ||
14f9c5c9 | 1419 | static int |
d2e4a39e | 1420 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1421 | { |
1422 | type = desc_base_type (type); | |
78134374 | 1423 | return (type != NULL && type->code () == TYPE_CODE_STRUCT |
dda83cd7 | 1424 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1425 | } |
1426 | ||
4c4b4cd2 PH |
1427 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1428 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1429 | |
d2e4a39e AS |
1430 | static struct type * |
1431 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1432 | { |
d2e4a39e | 1433 | struct type *r; |
14f9c5c9 AS |
1434 | |
1435 | type = desc_base_type (type); | |
1436 | ||
1437 | if (type == NULL) | |
1438 | return NULL; | |
1439 | else if (is_thin_pntr (type)) | |
1440 | { | |
1441 | type = thin_descriptor_type (type); | |
1442 | if (type == NULL) | |
dda83cd7 | 1443 | return NULL; |
14f9c5c9 AS |
1444 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1445 | if (r != NULL) | |
dda83cd7 | 1446 | return ada_check_typedef (r); |
14f9c5c9 | 1447 | } |
78134374 | 1448 | else if (type->code () == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
1449 | { |
1450 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1451 | if (r != NULL) | |
dda83cd7 | 1452 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1453 | } |
1454 | return NULL; | |
1455 | } | |
1456 | ||
1457 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1458 | one, a pointer to its bounds data. Otherwise NULL. */ |
1459 | ||
d2e4a39e AS |
1460 | static struct value * |
1461 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1462 | { |
df407dfe | 1463 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1464 | |
d2e4a39e | 1465 | if (is_thin_pntr (type)) |
14f9c5c9 | 1466 | { |
d2e4a39e | 1467 | struct type *bounds_type = |
dda83cd7 | 1468 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1469 | LONGEST addr; |
1470 | ||
4cdfadb1 | 1471 | if (bounds_type == NULL) |
dda83cd7 | 1472 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1473 | |
1474 | /* NOTE: The following calculation is not really kosher, but | |
dda83cd7 SM |
1475 | since desc_type is an XVE-encoded type (and shouldn't be), |
1476 | the correct calculation is a real pain. FIXME (and fix GCC). */ | |
78134374 | 1477 | if (type->code () == TYPE_CODE_PTR) |
dda83cd7 | 1478 | addr = value_as_long (arr); |
d2e4a39e | 1479 | else |
dda83cd7 | 1480 | addr = value_address (arr); |
14f9c5c9 | 1481 | |
d2e4a39e | 1482 | return |
dda83cd7 SM |
1483 | value_from_longest (lookup_pointer_type (bounds_type), |
1484 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1485 | } |
1486 | ||
1487 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1488 | { |
1489 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1490 | _("Bad GNAT array descriptor")); | |
1491 | struct type *p_bounds_type = value_type (p_bounds); | |
1492 | ||
1493 | if (p_bounds_type | |
78134374 | 1494 | && p_bounds_type->code () == TYPE_CODE_PTR) |
05e522ef JB |
1495 | { |
1496 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1497 | ||
e46d3488 | 1498 | if (target_type->is_stub ()) |
05e522ef JB |
1499 | p_bounds = value_cast (lookup_pointer_type |
1500 | (ada_check_typedef (target_type)), | |
1501 | p_bounds); | |
1502 | } | |
1503 | else | |
1504 | error (_("Bad GNAT array descriptor")); | |
1505 | ||
1506 | return p_bounds; | |
1507 | } | |
14f9c5c9 AS |
1508 | else |
1509 | return NULL; | |
1510 | } | |
1511 | ||
4c4b4cd2 PH |
1512 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1513 | position of the field containing the address of the bounds data. */ | |
1514 | ||
14f9c5c9 | 1515 | static int |
d2e4a39e | 1516 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1517 | { |
1518 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1519 | } | |
1520 | ||
1521 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1522 | size of the field containing the address of the bounds data. */ |
1523 | ||
14f9c5c9 | 1524 | static int |
d2e4a39e | 1525 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1526 | { |
1527 | type = desc_base_type (type); | |
1528 | ||
d2e4a39e | 1529 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1530 | return TYPE_FIELD_BITSIZE (type, 1); |
1531 | else | |
940da03e | 1532 | return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ())); |
14f9c5c9 AS |
1533 | } |
1534 | ||
4c4b4cd2 | 1535 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1536 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1537 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1538 | data. */ | |
4c4b4cd2 | 1539 | |
d2e4a39e | 1540 | static struct type * |
556bdfd4 | 1541 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1542 | { |
1543 | type = desc_base_type (type); | |
1544 | ||
4c4b4cd2 | 1545 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1546 | if (is_thin_pntr (type)) |
940da03e | 1547 | return desc_base_type (thin_descriptor_type (type)->field (1).type ()); |
14f9c5c9 | 1548 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1549 | { |
1550 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1551 | ||
1552 | if (data_type | |
78134374 | 1553 | && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR) |
05e522ef | 1554 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1555 | } |
1556 | ||
1557 | return NULL; | |
14f9c5c9 AS |
1558 | } |
1559 | ||
1560 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1561 | its array data. */ | |
4c4b4cd2 | 1562 | |
d2e4a39e AS |
1563 | static struct value * |
1564 | desc_data (struct value *arr) | |
14f9c5c9 | 1565 | { |
df407dfe | 1566 | struct type *type = value_type (arr); |
5b4ee69b | 1567 | |
14f9c5c9 AS |
1568 | if (is_thin_pntr (type)) |
1569 | return thin_data_pntr (arr); | |
1570 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1571 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
dda83cd7 | 1572 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1573 | else |
1574 | return NULL; | |
1575 | } | |
1576 | ||
1577 | ||
1578 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1579 | position of the field containing the address of the data. */ |
1580 | ||
14f9c5c9 | 1581 | static int |
d2e4a39e | 1582 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1583 | { |
1584 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1585 | } | |
1586 | ||
1587 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1588 | size of the field containing the address of the data. */ |
1589 | ||
14f9c5c9 | 1590 | static int |
d2e4a39e | 1591 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1592 | { |
1593 | type = desc_base_type (type); | |
1594 | ||
1595 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1596 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1597 | else |
940da03e | 1598 | return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ()); |
14f9c5c9 AS |
1599 | } |
1600 | ||
4c4b4cd2 | 1601 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1602 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1603 | bound, if WHICH is 1. The first bound is I=1. */ |
1604 | ||
d2e4a39e AS |
1605 | static struct value * |
1606 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1607 | { |
250106a7 TT |
1608 | char bound_name[20]; |
1609 | xsnprintf (bound_name, sizeof (bound_name), "%cB%d", | |
1610 | which ? 'U' : 'L', i - 1); | |
1611 | return value_struct_elt (&bounds, NULL, bound_name, NULL, | |
dda83cd7 | 1612 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1613 | } |
1614 | ||
1615 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1616 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1617 | bound, if WHICH is 1. The first bound is I=1. */ |
1618 | ||
14f9c5c9 | 1619 | static int |
d2e4a39e | 1620 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1621 | { |
d2e4a39e | 1622 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1623 | } |
1624 | ||
1625 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1626 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1627 | bound, if WHICH is 1. The first bound is I=1. */ |
1628 | ||
76a01679 | 1629 | static int |
d2e4a39e | 1630 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1631 | { |
1632 | type = desc_base_type (type); | |
1633 | ||
d2e4a39e AS |
1634 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1635 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1636 | else | |
940da03e | 1637 | return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ()); |
14f9c5c9 AS |
1638 | } |
1639 | ||
1640 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1641 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1642 | ||
d2e4a39e AS |
1643 | static struct type * |
1644 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1645 | { |
1646 | type = desc_base_type (type); | |
1647 | ||
78134374 | 1648 | if (type->code () == TYPE_CODE_STRUCT) |
250106a7 TT |
1649 | { |
1650 | char bound_name[20]; | |
1651 | xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1); | |
1652 | return lookup_struct_elt_type (type, bound_name, 1); | |
1653 | } | |
d2e4a39e | 1654 | else |
14f9c5c9 AS |
1655 | return NULL; |
1656 | } | |
1657 | ||
4c4b4cd2 PH |
1658 | /* The number of index positions in the array-bounds type TYPE. |
1659 | Return 0 if TYPE is NULL. */ | |
1660 | ||
14f9c5c9 | 1661 | static int |
d2e4a39e | 1662 | desc_arity (struct type *type) |
14f9c5c9 AS |
1663 | { |
1664 | type = desc_base_type (type); | |
1665 | ||
1666 | if (type != NULL) | |
1f704f76 | 1667 | return type->num_fields () / 2; |
14f9c5c9 AS |
1668 | return 0; |
1669 | } | |
1670 | ||
4c4b4cd2 PH |
1671 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1672 | an array descriptor type (representing an unconstrained array | |
1673 | type). */ | |
1674 | ||
76a01679 JB |
1675 | static int |
1676 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1677 | { |
1678 | if (type == NULL) | |
1679 | return 0; | |
61ee279c | 1680 | type = ada_check_typedef (type); |
78134374 | 1681 | return (type->code () == TYPE_CODE_ARRAY |
dda83cd7 | 1682 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1683 | } |
1684 | ||
52ce6436 | 1685 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1686 | * to one. */ |
52ce6436 | 1687 | |
2c0b251b | 1688 | static int |
52ce6436 PH |
1689 | ada_is_array_type (struct type *type) |
1690 | { | |
78134374 SM |
1691 | while (type != NULL |
1692 | && (type->code () == TYPE_CODE_PTR | |
1693 | || type->code () == TYPE_CODE_REF)) | |
52ce6436 PH |
1694 | type = TYPE_TARGET_TYPE (type); |
1695 | return ada_is_direct_array_type (type); | |
1696 | } | |
1697 | ||
4c4b4cd2 | 1698 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1699 | |
14f9c5c9 | 1700 | int |
4c4b4cd2 | 1701 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1702 | { |
1703 | if (type == NULL) | |
1704 | return 0; | |
61ee279c | 1705 | type = ada_check_typedef (type); |
78134374 SM |
1706 | return (type->code () == TYPE_CODE_ARRAY |
1707 | || (type->code () == TYPE_CODE_PTR | |
1708 | && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code () | |
1709 | == TYPE_CODE_ARRAY))); | |
14f9c5c9 AS |
1710 | } |
1711 | ||
4c4b4cd2 PH |
1712 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1713 | ||
14f9c5c9 | 1714 | int |
4c4b4cd2 | 1715 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1716 | { |
556bdfd4 | 1717 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1718 | |
1719 | if (type == NULL) | |
1720 | return 0; | |
61ee279c | 1721 | type = ada_check_typedef (type); |
556bdfd4 | 1722 | return (data_type != NULL |
78134374 | 1723 | && data_type->code () == TYPE_CODE_ARRAY |
556bdfd4 | 1724 | && desc_arity (desc_bounds_type (type)) > 0); |
14f9c5c9 AS |
1725 | } |
1726 | ||
1727 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1728 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1729 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1730 | is still needed. */ |
1731 | ||
14f9c5c9 | 1732 | int |
ebf56fd3 | 1733 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1734 | { |
d2e4a39e | 1735 | return |
14f9c5c9 | 1736 | type != NULL |
78134374 | 1737 | && type->code () == TYPE_CODE_STRUCT |
14f9c5c9 | 1738 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL |
dda83cd7 | 1739 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
4c4b4cd2 | 1740 | && !ada_is_array_descriptor_type (type); |
14f9c5c9 AS |
1741 | } |
1742 | ||
1743 | ||
4c4b4cd2 | 1744 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1745 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1746 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1747 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1748 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1749 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1750 | a descriptor. */ |
de93309a SM |
1751 | |
1752 | static struct type * | |
d2e4a39e | 1753 | ada_type_of_array (struct value *arr, int bounds) |
14f9c5c9 | 1754 | { |
ad82864c JB |
1755 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1756 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1757 | |
df407dfe AC |
1758 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1759 | return value_type (arr); | |
d2e4a39e AS |
1760 | |
1761 | if (!bounds) | |
ad82864c JB |
1762 | { |
1763 | struct type *array_type = | |
1764 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1765 | ||
1766 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1767 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1768 | decode_packed_array_bitsize (value_type (arr)); | |
1769 | ||
1770 | return array_type; | |
1771 | } | |
14f9c5c9 AS |
1772 | else |
1773 | { | |
d2e4a39e | 1774 | struct type *elt_type; |
14f9c5c9 | 1775 | int arity; |
d2e4a39e | 1776 | struct value *descriptor; |
14f9c5c9 | 1777 | |
df407dfe AC |
1778 | elt_type = ada_array_element_type (value_type (arr), -1); |
1779 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1780 | |
d2e4a39e | 1781 | if (elt_type == NULL || arity == 0) |
dda83cd7 | 1782 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1783 | |
1784 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1785 | if (value_as_long (descriptor) == 0) |
dda83cd7 | 1786 | return NULL; |
d2e4a39e | 1787 | while (arity > 0) |
dda83cd7 SM |
1788 | { |
1789 | struct type *range_type = alloc_type_copy (value_type (arr)); | |
1790 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
1791 | struct value *low = desc_one_bound (descriptor, arity, 0); | |
1792 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1793 | ||
1794 | arity -= 1; | |
1795 | create_static_range_type (range_type, value_type (low), | |
0c9c3474 SA |
1796 | longest_to_int (value_as_long (low)), |
1797 | longest_to_int (value_as_long (high))); | |
dda83cd7 | 1798 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1799 | |
1800 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1801 | { |
1802 | /* We need to store the element packed bitsize, as well as | |
dda83cd7 | 1803 | recompute the array size, because it was previously |
e67ad678 JB |
1804 | computed based on the unpacked element size. */ |
1805 | LONGEST lo = value_as_long (low); | |
1806 | LONGEST hi = value_as_long (high); | |
1807 | ||
1808 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1809 | decode_packed_array_bitsize (value_type (arr)); | |
1810 | /* If the array has no element, then the size is already | |
dda83cd7 | 1811 | zero, and does not need to be recomputed. */ |
e67ad678 JB |
1812 | if (lo < hi) |
1813 | { | |
1814 | int array_bitsize = | |
dda83cd7 | 1815 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); |
e67ad678 JB |
1816 | |
1817 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1818 | } | |
1819 | } | |
dda83cd7 | 1820 | } |
14f9c5c9 AS |
1821 | |
1822 | return lookup_pointer_type (elt_type); | |
1823 | } | |
1824 | } | |
1825 | ||
1826 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1827 | Otherwise, returns either a standard GDB array with bounds set |
1828 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1829 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1830 | ||
d2e4a39e AS |
1831 | struct value * |
1832 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1833 | { |
df407dfe | 1834 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1835 | { |
d2e4a39e | 1836 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1837 | |
14f9c5c9 | 1838 | if (arrType == NULL) |
dda83cd7 | 1839 | return NULL; |
14f9c5c9 AS |
1840 | return value_cast (arrType, value_copy (desc_data (arr))); |
1841 | } | |
ad82864c JB |
1842 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1843 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1844 | else |
1845 | return arr; | |
1846 | } | |
1847 | ||
1848 | /* If ARR does not represent an array, returns ARR unchanged. | |
1849 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1850 | be ARR itself if it already is in the proper form). */ |
1851 | ||
720d1a40 | 1852 | struct value * |
d2e4a39e | 1853 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1854 | { |
df407dfe | 1855 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1856 | { |
d2e4a39e | 1857 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1858 | |
14f9c5c9 | 1859 | if (arrVal == NULL) |
dda83cd7 | 1860 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 1861 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1862 | return value_ind (arrVal); |
1863 | } | |
ad82864c JB |
1864 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1865 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1866 | else |
14f9c5c9 AS |
1867 | return arr; |
1868 | } | |
1869 | ||
1870 | /* If TYPE represents a GNAT array type, return it translated to an | |
1871 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1872 | packing). For other types, is the identity. */ |
1873 | ||
d2e4a39e AS |
1874 | struct type * |
1875 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1876 | { |
ad82864c JB |
1877 | if (ada_is_constrained_packed_array_type (type)) |
1878 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1879 | |
1880 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1881 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1882 | |
1883 | return type; | |
14f9c5c9 AS |
1884 | } |
1885 | ||
4c4b4cd2 PH |
1886 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1887 | ||
ad82864c | 1888 | static int |
57567375 | 1889 | ada_is_gnat_encoded_packed_array_type (struct type *type) |
14f9c5c9 AS |
1890 | { |
1891 | if (type == NULL) | |
1892 | return 0; | |
4c4b4cd2 | 1893 | type = desc_base_type (type); |
61ee279c | 1894 | type = ada_check_typedef (type); |
d2e4a39e | 1895 | return |
14f9c5c9 AS |
1896 | ada_type_name (type) != NULL |
1897 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1898 | } | |
1899 | ||
ad82864c JB |
1900 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1901 | packed-array type. */ | |
1902 | ||
1903 | int | |
1904 | ada_is_constrained_packed_array_type (struct type *type) | |
1905 | { | |
57567375 | 1906 | return ada_is_gnat_encoded_packed_array_type (type) |
ad82864c JB |
1907 | && !ada_is_array_descriptor_type (type); |
1908 | } | |
1909 | ||
1910 | /* Non-zero iff TYPE represents an array descriptor for a | |
1911 | unconstrained packed-array type. */ | |
1912 | ||
1913 | static int | |
1914 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1915 | { | |
57567375 TT |
1916 | if (!ada_is_array_descriptor_type (type)) |
1917 | return 0; | |
1918 | ||
1919 | if (ada_is_gnat_encoded_packed_array_type (type)) | |
1920 | return 1; | |
1921 | ||
1922 | /* If we saw GNAT encodings, then the above code is sufficient. | |
1923 | However, with minimal encodings, we will just have a thick | |
1924 | pointer instead. */ | |
1925 | if (is_thick_pntr (type)) | |
1926 | { | |
1927 | type = desc_base_type (type); | |
1928 | /* The structure's first field is a pointer to an array, so this | |
1929 | fetches the array type. */ | |
1930 | type = TYPE_TARGET_TYPE (type->field (0).type ()); | |
1931 | /* Now we can see if the array elements are packed. */ | |
1932 | return TYPE_FIELD_BITSIZE (type, 0) > 0; | |
1933 | } | |
1934 | ||
1935 | return 0; | |
ad82864c JB |
1936 | } |
1937 | ||
c9a28cbe TT |
1938 | /* Return true if TYPE is a (Gnat-encoded) constrained packed array |
1939 | type, or if it is an ordinary (non-Gnat-encoded) packed array. */ | |
1940 | ||
1941 | static bool | |
1942 | ada_is_any_packed_array_type (struct type *type) | |
1943 | { | |
1944 | return (ada_is_constrained_packed_array_type (type) | |
1945 | || (type->code () == TYPE_CODE_ARRAY | |
1946 | && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0)); | |
1947 | } | |
1948 | ||
ad82864c JB |
1949 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), |
1950 | return the size of its elements in bits. */ | |
1951 | ||
1952 | static long | |
1953 | decode_packed_array_bitsize (struct type *type) | |
1954 | { | |
0d5cff50 DE |
1955 | const char *raw_name; |
1956 | const char *tail; | |
ad82864c JB |
1957 | long bits; |
1958 | ||
720d1a40 JB |
1959 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1960 | of the fat pointer type. We need the name of the fat pointer type | |
1961 | to do the decoding, so strip the typedef layer. */ | |
78134374 | 1962 | if (type->code () == TYPE_CODE_TYPEDEF) |
720d1a40 JB |
1963 | type = ada_typedef_target_type (type); |
1964 | ||
1965 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1966 | if (!raw_name) |
1967 | raw_name = ada_type_name (desc_base_type (type)); | |
1968 | ||
1969 | if (!raw_name) | |
1970 | return 0; | |
1971 | ||
1972 | tail = strstr (raw_name, "___XP"); | |
57567375 TT |
1973 | if (tail == nullptr) |
1974 | { | |
1975 | gdb_assert (is_thick_pntr (type)); | |
1976 | /* The structure's first field is a pointer to an array, so this | |
1977 | fetches the array type. */ | |
1978 | type = TYPE_TARGET_TYPE (type->field (0).type ()); | |
1979 | /* Now we can see if the array elements are packed. */ | |
1980 | return TYPE_FIELD_BITSIZE (type, 0); | |
1981 | } | |
ad82864c JB |
1982 | |
1983 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1984 | { | |
1985 | lim_warning | |
1986 | (_("could not understand bit size information on packed array")); | |
1987 | return 0; | |
1988 | } | |
1989 | ||
1990 | return bits; | |
1991 | } | |
1992 | ||
14f9c5c9 AS |
1993 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1994 | in, and that the element size of its ultimate scalar constituents | |
1995 | (that is, either its elements, or, if it is an array of arrays, its | |
1996 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1997 | but with the bit sizes of its elements (and those of any | |
1998 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 1999 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2000 | in bits. |
2001 | ||
2002 | Note that, for arrays whose index type has an XA encoding where | |
2003 | a bound references a record discriminant, getting that discriminant, | |
2004 | and therefore the actual value of that bound, is not possible | |
2005 | because none of the given parameters gives us access to the record. | |
2006 | This function assumes that it is OK in the context where it is being | |
2007 | used to return an array whose bounds are still dynamic and where | |
2008 | the length is arbitrary. */ | |
4c4b4cd2 | 2009 | |
d2e4a39e | 2010 | static struct type * |
ad82864c | 2011 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2012 | { |
d2e4a39e AS |
2013 | struct type *new_elt_type; |
2014 | struct type *new_type; | |
99b1c762 JB |
2015 | struct type *index_type_desc; |
2016 | struct type *index_type; | |
14f9c5c9 AS |
2017 | LONGEST low_bound, high_bound; |
2018 | ||
61ee279c | 2019 | type = ada_check_typedef (type); |
78134374 | 2020 | if (type->code () != TYPE_CODE_ARRAY) |
14f9c5c9 AS |
2021 | return type; |
2022 | ||
99b1c762 JB |
2023 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2024 | if (index_type_desc) | |
940da03e | 2025 | index_type = to_fixed_range_type (index_type_desc->field (0).type (), |
99b1c762 JB |
2026 | NULL); |
2027 | else | |
3d967001 | 2028 | index_type = type->index_type (); |
99b1c762 | 2029 | |
e9bb382b | 2030 | new_type = alloc_type_copy (type); |
ad82864c JB |
2031 | new_elt_type = |
2032 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2033 | elt_bits); | |
99b1c762 | 2034 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 | 2035 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
d0e39ea2 | 2036 | new_type->set_name (ada_type_name (type)); |
14f9c5c9 | 2037 | |
78134374 | 2038 | if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE |
4a46959e | 2039 | && is_dynamic_type (check_typedef (index_type))) |
1f8d2881 | 2040 | || !get_discrete_bounds (index_type, &low_bound, &high_bound)) |
14f9c5c9 AS |
2041 | low_bound = high_bound = 0; |
2042 | if (high_bound < low_bound) | |
2043 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2044 | else |
14f9c5c9 AS |
2045 | { |
2046 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2047 | TYPE_LENGTH (new_type) = |
dda83cd7 | 2048 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2049 | } |
2050 | ||
9cdd0d12 | 2051 | new_type->set_is_fixed_instance (true); |
14f9c5c9 AS |
2052 | return new_type; |
2053 | } | |
2054 | ||
ad82864c JB |
2055 | /* The array type encoded by TYPE, where |
2056 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2057 | |
d2e4a39e | 2058 | static struct type * |
ad82864c | 2059 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2060 | { |
0d5cff50 | 2061 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2062 | char *name; |
0d5cff50 | 2063 | const char *tail; |
d2e4a39e | 2064 | struct type *shadow_type; |
14f9c5c9 | 2065 | long bits; |
14f9c5c9 | 2066 | |
727e3d2e JB |
2067 | if (!raw_name) |
2068 | raw_name = ada_type_name (desc_base_type (type)); | |
2069 | ||
2070 | if (!raw_name) | |
2071 | return NULL; | |
2072 | ||
2073 | name = (char *) alloca (strlen (raw_name) + 1); | |
2074 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2075 | type = desc_base_type (type); |
2076 | ||
14f9c5c9 AS |
2077 | memcpy (name, raw_name, tail - raw_name); |
2078 | name[tail - raw_name] = '\000'; | |
2079 | ||
b4ba55a1 JB |
2080 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2081 | ||
2082 | if (shadow_type == NULL) | |
14f9c5c9 | 2083 | { |
323e0a4a | 2084 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2085 | return NULL; |
2086 | } | |
f168693b | 2087 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 | 2088 | |
78134374 | 2089 | if (shadow_type->code () != TYPE_CODE_ARRAY) |
14f9c5c9 | 2090 | { |
0963b4bd MS |
2091 | lim_warning (_("could not understand bounds " |
2092 | "information on packed array")); | |
14f9c5c9 AS |
2093 | return NULL; |
2094 | } | |
d2e4a39e | 2095 | |
ad82864c JB |
2096 | bits = decode_packed_array_bitsize (type); |
2097 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2098 | } |
2099 | ||
a7400e44 TT |
2100 | /* Helper function for decode_constrained_packed_array. Set the field |
2101 | bitsize on a series of packed arrays. Returns the number of | |
2102 | elements in TYPE. */ | |
2103 | ||
2104 | static LONGEST | |
2105 | recursively_update_array_bitsize (struct type *type) | |
2106 | { | |
2107 | gdb_assert (type->code () == TYPE_CODE_ARRAY); | |
2108 | ||
2109 | LONGEST low, high; | |
1f8d2881 | 2110 | if (!get_discrete_bounds (type->index_type (), &low, &high) |
a7400e44 TT |
2111 | || low > high) |
2112 | return 0; | |
2113 | LONGEST our_len = high - low + 1; | |
2114 | ||
2115 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
2116 | if (elt_type->code () == TYPE_CODE_ARRAY) | |
2117 | { | |
2118 | LONGEST elt_len = recursively_update_array_bitsize (elt_type); | |
2119 | LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2120 | TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize; | |
2121 | ||
2122 | TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1) | |
2123 | / HOST_CHAR_BIT); | |
2124 | } | |
2125 | ||
2126 | return our_len; | |
2127 | } | |
2128 | ||
ad82864c JB |
2129 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2130 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2131 | standard GDB array type except that the BITSIZEs of the array |
2132 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2133 | type length is set appropriately. */ |
14f9c5c9 | 2134 | |
d2e4a39e | 2135 | static struct value * |
ad82864c | 2136 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2137 | { |
4c4b4cd2 | 2138 | struct type *type; |
14f9c5c9 | 2139 | |
11aa919a PMR |
2140 | /* If our value is a pointer, then dereference it. Likewise if |
2141 | the value is a reference. Make sure that this operation does not | |
2142 | cause the target type to be fixed, as this would indirectly cause | |
2143 | this array to be decoded. The rest of the routine assumes that | |
2144 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2145 | and "value_ind" routines to perform the dereferencing, as opposed | |
2146 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2147 | arr = coerce_ref (arr); | |
78134374 | 2148 | if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR) |
284614f0 | 2149 | arr = value_ind (arr); |
4c4b4cd2 | 2150 | |
ad82864c | 2151 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2152 | if (type == NULL) |
2153 | { | |
323e0a4a | 2154 | error (_("can't unpack array")); |
14f9c5c9 AS |
2155 | return NULL; |
2156 | } | |
61ee279c | 2157 | |
a7400e44 TT |
2158 | /* Decoding the packed array type could not correctly set the field |
2159 | bitsizes for any dimension except the innermost, because the | |
2160 | bounds may be variable and were not passed to that function. So, | |
2161 | we further resolve the array bounds here and then update the | |
2162 | sizes. */ | |
2163 | const gdb_byte *valaddr = value_contents_for_printing (arr); | |
2164 | CORE_ADDR address = value_address (arr); | |
2165 | gdb::array_view<const gdb_byte> view | |
2166 | = gdb::make_array_view (valaddr, TYPE_LENGTH (type)); | |
2167 | type = resolve_dynamic_type (type, view, address); | |
2168 | recursively_update_array_bitsize (type); | |
2169 | ||
d5a22e77 | 2170 | if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG |
32c9a795 | 2171 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2172 | { |
2173 | /* This is a (right-justified) modular type representing a packed | |
2174 | array with no wrapper. In order to interpret the value through | |
2175 | the (left-justified) packed array type we just built, we must | |
2176 | first left-justify it. */ | |
2177 | int bit_size, bit_pos; | |
2178 | ULONGEST mod; | |
2179 | ||
df407dfe | 2180 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2181 | bit_size = 0; |
2182 | while (mod > 0) | |
2183 | { | |
2184 | bit_size += 1; | |
2185 | mod >>= 1; | |
2186 | } | |
df407dfe | 2187 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2188 | arr = ada_value_primitive_packed_val (arr, NULL, |
2189 | bit_pos / HOST_CHAR_BIT, | |
2190 | bit_pos % HOST_CHAR_BIT, | |
2191 | bit_size, | |
2192 | type); | |
2193 | } | |
2194 | ||
4c4b4cd2 | 2195 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2196 | } |
2197 | ||
2198 | ||
2199 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2200 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2201 | |
d2e4a39e AS |
2202 | static struct value * |
2203 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2204 | { |
2205 | int i; | |
2206 | int bits, elt_off, bit_off; | |
2207 | long elt_total_bit_offset; | |
d2e4a39e AS |
2208 | struct type *elt_type; |
2209 | struct value *v; | |
14f9c5c9 AS |
2210 | |
2211 | bits = 0; | |
2212 | elt_total_bit_offset = 0; | |
df407dfe | 2213 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2214 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2215 | { |
78134374 | 2216 | if (elt_type->code () != TYPE_CODE_ARRAY |
dda83cd7 SM |
2217 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2218 | error | |
2219 | (_("attempt to do packed indexing of " | |
0963b4bd | 2220 | "something other than a packed array")); |
14f9c5c9 | 2221 | else |
dda83cd7 SM |
2222 | { |
2223 | struct type *range_type = elt_type->index_type (); | |
2224 | LONGEST lowerbound, upperbound; | |
2225 | LONGEST idx; | |
2226 | ||
1f8d2881 | 2227 | if (!get_discrete_bounds (range_type, &lowerbound, &upperbound)) |
dda83cd7 SM |
2228 | { |
2229 | lim_warning (_("don't know bounds of array")); | |
2230 | lowerbound = upperbound = 0; | |
2231 | } | |
2232 | ||
2233 | idx = pos_atr (ind[i]); | |
2234 | if (idx < lowerbound || idx > upperbound) | |
2235 | lim_warning (_("packed array index %ld out of bounds"), | |
0963b4bd | 2236 | (long) idx); |
dda83cd7 SM |
2237 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2238 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
2239 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2240 | } | |
14f9c5c9 AS |
2241 | } |
2242 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2243 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2244 | |
2245 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
dda83cd7 | 2246 | bits, elt_type); |
14f9c5c9 AS |
2247 | return v; |
2248 | } | |
2249 | ||
4c4b4cd2 | 2250 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2251 | |
2252 | static int | |
d2e4a39e | 2253 | has_negatives (struct type *type) |
14f9c5c9 | 2254 | { |
78134374 | 2255 | switch (type->code ()) |
d2e4a39e AS |
2256 | { |
2257 | default: | |
2258 | return 0; | |
2259 | case TYPE_CODE_INT: | |
c6d940a9 | 2260 | return !type->is_unsigned (); |
d2e4a39e | 2261 | case TYPE_CODE_RANGE: |
5537ddd0 | 2262 | return type->bounds ()->low.const_val () - type->bounds ()->bias < 0; |
d2e4a39e | 2263 | } |
14f9c5c9 | 2264 | } |
d2e4a39e | 2265 | |
f93fca70 | 2266 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2267 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2268 | the unpacked buffer. |
14f9c5c9 | 2269 | |
5b639dea JB |
2270 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2271 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2272 | ||
f93fca70 JB |
2273 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2274 | zero otherwise. | |
14f9c5c9 | 2275 | |
f93fca70 | 2276 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2277 | |
f93fca70 JB |
2278 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2279 | ||
2280 | static void | |
2281 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2282 | gdb_byte *unpacked, int unpacked_len, | |
2283 | int is_big_endian, int is_signed_type, | |
2284 | int is_scalar) | |
2285 | { | |
a1c95e6b JB |
2286 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2287 | int src_idx; /* Index into the source area */ | |
2288 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2289 | int srcBitsLeft; /* Number of source bits left to move */ | |
2290 | int unusedLS; /* Number of bits in next significant | |
dda83cd7 | 2291 | byte of source that are unused */ |
a1c95e6b | 2292 | |
a1c95e6b JB |
2293 | int unpacked_idx; /* Index into the unpacked buffer */ |
2294 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2295 | ||
4c4b4cd2 | 2296 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2297 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2298 | unsigned char sign; |
a1c95e6b | 2299 | |
4c4b4cd2 PH |
2300 | /* Transmit bytes from least to most significant; delta is the direction |
2301 | the indices move. */ | |
f93fca70 | 2302 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2303 | |
5b639dea JB |
2304 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2305 | bits from SRC. .*/ | |
2306 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2307 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2308 | bit_size, unpacked_len); | |
2309 | ||
14f9c5c9 | 2310 | srcBitsLeft = bit_size; |
086ca51f | 2311 | src_bytes_left = src_len; |
f93fca70 | 2312 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2313 | sign = 0; |
f93fca70 JB |
2314 | |
2315 | if (is_big_endian) | |
14f9c5c9 | 2316 | { |
086ca51f | 2317 | src_idx = src_len - 1; |
f93fca70 JB |
2318 | if (is_signed_type |
2319 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
dda83cd7 | 2320 | sign = ~0; |
d2e4a39e AS |
2321 | |
2322 | unusedLS = | |
dda83cd7 SM |
2323 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2324 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2325 | |
f93fca70 JB |
2326 | if (is_scalar) |
2327 | { | |
dda83cd7 SM |
2328 | accumSize = 0; |
2329 | unpacked_idx = unpacked_len - 1; | |
f93fca70 JB |
2330 | } |
2331 | else | |
2332 | { | |
dda83cd7 SM |
2333 | /* Non-scalar values must be aligned at a byte boundary... */ |
2334 | accumSize = | |
2335 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2336 | /* ... And are placed at the beginning (most-significant) bytes | |
2337 | of the target. */ | |
2338 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; | |
2339 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2340 | } |
14f9c5c9 | 2341 | } |
d2e4a39e | 2342 | else |
14f9c5c9 AS |
2343 | { |
2344 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2345 | ||
086ca51f | 2346 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2347 | unusedLS = bit_offset; |
2348 | accumSize = 0; | |
2349 | ||
f93fca70 | 2350 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
dda83cd7 | 2351 | sign = ~0; |
14f9c5c9 | 2352 | } |
d2e4a39e | 2353 | |
14f9c5c9 | 2354 | accum = 0; |
086ca51f | 2355 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2356 | { |
2357 | /* Mask for removing bits of the next source byte that are not | |
dda83cd7 | 2358 | part of the value. */ |
d2e4a39e | 2359 | unsigned int unusedMSMask = |
dda83cd7 SM |
2360 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2361 | 1; | |
4c4b4cd2 | 2362 | /* Sign-extend bits for this byte. */ |
14f9c5c9 | 2363 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2364 | |
d2e4a39e | 2365 | accum |= |
dda83cd7 | 2366 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2367 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2368 | if (accumSize >= HOST_CHAR_BIT) |
dda83cd7 SM |
2369 | { |
2370 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); | |
2371 | accumSize -= HOST_CHAR_BIT; | |
2372 | accum >>= HOST_CHAR_BIT; | |
2373 | unpacked_bytes_left -= 1; | |
2374 | unpacked_idx += delta; | |
2375 | } | |
14f9c5c9 AS |
2376 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2377 | unusedLS = 0; | |
086ca51f JB |
2378 | src_bytes_left -= 1; |
2379 | src_idx += delta; | |
14f9c5c9 | 2380 | } |
086ca51f | 2381 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2382 | { |
2383 | accum |= sign << accumSize; | |
db297a65 | 2384 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2385 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2386 | if (accumSize < 0) |
2387 | accumSize = 0; | |
14f9c5c9 | 2388 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2389 | unpacked_bytes_left -= 1; |
2390 | unpacked_idx += delta; | |
14f9c5c9 | 2391 | } |
f93fca70 JB |
2392 | } |
2393 | ||
2394 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2395 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2396 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2397 | assigning through the result will set the field fetched from. | |
2398 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2399 | VALADDR+OFFSET must address the start of storage containing the | |
2400 | packed value. The value returned in this case is never an lval. | |
2401 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2402 | ||
2403 | struct value * | |
2404 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2405 | long offset, int bit_offset, int bit_size, | |
dda83cd7 | 2406 | struct type *type) |
f93fca70 JB |
2407 | { |
2408 | struct value *v; | |
bfb1c796 | 2409 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2410 | gdb_byte *unpacked; |
220475ed | 2411 | const int is_scalar = is_scalar_type (type); |
d5a22e77 | 2412 | const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG; |
d5722aa2 | 2413 | gdb::byte_vector staging; |
f93fca70 JB |
2414 | |
2415 | type = ada_check_typedef (type); | |
2416 | ||
d0a9e810 | 2417 | if (obj == NULL) |
bfb1c796 | 2418 | src = valaddr + offset; |
d0a9e810 | 2419 | else |
bfb1c796 | 2420 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2421 | |
2422 | if (is_dynamic_type (type)) | |
2423 | { | |
2424 | /* The length of TYPE might by dynamic, so we need to resolve | |
2425 | TYPE in order to know its actual size, which we then use | |
2426 | to create the contents buffer of the value we return. | |
2427 | The difficulty is that the data containing our object is | |
2428 | packed, and therefore maybe not at a byte boundary. So, what | |
2429 | we do, is unpack the data into a byte-aligned buffer, and then | |
2430 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2431 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2432 | staging.resize (staging_len); | |
d0a9e810 JB |
2433 | |
2434 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
dda83cd7 | 2435 | staging.data (), staging.size (), |
d0a9e810 JB |
2436 | is_big_endian, has_negatives (type), |
2437 | is_scalar); | |
b249d2c2 | 2438 | type = resolve_dynamic_type (type, staging, 0); |
0cafa88c JB |
2439 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2440 | { | |
2441 | /* This happens when the length of the object is dynamic, | |
2442 | and is actually smaller than the space reserved for it. | |
2443 | For instance, in an array of variant records, the bit_size | |
2444 | we're given is the array stride, which is constant and | |
2445 | normally equal to the maximum size of its element. | |
2446 | But, in reality, each element only actually spans a portion | |
2447 | of that stride. */ | |
2448 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2449 | } | |
d0a9e810 JB |
2450 | } |
2451 | ||
f93fca70 JB |
2452 | if (obj == NULL) |
2453 | { | |
2454 | v = allocate_value (type); | |
bfb1c796 | 2455 | src = valaddr + offset; |
f93fca70 JB |
2456 | } |
2457 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2458 | { | |
0cafa88c | 2459 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2460 | gdb_byte *buf; |
0cafa88c | 2461 | |
f93fca70 | 2462 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2463 | buf = (gdb_byte *) alloca (src_len); |
2464 | read_memory (value_address (v), buf, src_len); | |
2465 | src = buf; | |
f93fca70 JB |
2466 | } |
2467 | else | |
2468 | { | |
2469 | v = allocate_value (type); | |
bfb1c796 | 2470 | src = value_contents (obj) + offset; |
f93fca70 JB |
2471 | } |
2472 | ||
2473 | if (obj != NULL) | |
2474 | { | |
2475 | long new_offset = offset; | |
2476 | ||
2477 | set_value_component_location (v, obj); | |
2478 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2479 | set_value_bitsize (v, bit_size); | |
2480 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
dda83cd7 | 2481 | { |
f93fca70 | 2482 | ++new_offset; |
dda83cd7 SM |
2483 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
2484 | } | |
f93fca70 JB |
2485 | set_value_offset (v, new_offset); |
2486 | ||
2487 | /* Also set the parent value. This is needed when trying to | |
2488 | assign a new value (in inferior memory). */ | |
2489 | set_value_parent (v, obj); | |
2490 | } | |
2491 | else | |
2492 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2493 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2494 | |
2495 | if (bit_size == 0) | |
2496 | { | |
2497 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2498 | return v; | |
2499 | } | |
2500 | ||
d5722aa2 | 2501 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2502 | { |
d0a9e810 JB |
2503 | /* Small short-cut: If we've unpacked the data into a buffer |
2504 | of the same size as TYPE's length, then we can reuse that, | |
2505 | instead of doing the unpacking again. */ | |
d5722aa2 | 2506 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2507 | } |
d0a9e810 JB |
2508 | else |
2509 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2510 | unpacked, TYPE_LENGTH (type), | |
2511 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2512 | |
14f9c5c9 AS |
2513 | return v; |
2514 | } | |
d2e4a39e | 2515 | |
14f9c5c9 AS |
2516 | /* Store the contents of FROMVAL into the location of TOVAL. |
2517 | Return a new value with the location of TOVAL and contents of | |
2518 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2519 | floating-point or non-scalar types. */ |
14f9c5c9 | 2520 | |
d2e4a39e AS |
2521 | static struct value * |
2522 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2523 | { |
df407dfe AC |
2524 | struct type *type = value_type (toval); |
2525 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2526 | |
52ce6436 PH |
2527 | toval = ada_coerce_ref (toval); |
2528 | fromval = ada_coerce_ref (fromval); | |
2529 | ||
2530 | if (ada_is_direct_array_type (value_type (toval))) | |
2531 | toval = ada_coerce_to_simple_array (toval); | |
2532 | if (ada_is_direct_array_type (value_type (fromval))) | |
2533 | fromval = ada_coerce_to_simple_array (fromval); | |
2534 | ||
88e3b34b | 2535 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2536 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2537 | |
d2e4a39e | 2538 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2539 | && bits > 0 |
78134374 | 2540 | && (type->code () == TYPE_CODE_FLT |
dda83cd7 | 2541 | || type->code () == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2542 | { |
df407dfe AC |
2543 | int len = (value_bitpos (toval) |
2544 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2545 | int from_size; |
224c3ddb | 2546 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2547 | struct value *val; |
42ae5230 | 2548 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 | 2549 | |
78134374 | 2550 | if (type->code () == TYPE_CODE_FLT) |
dda83cd7 | 2551 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2552 | |
52ce6436 | 2553 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2554 | from_size = value_bitsize (fromval); |
2555 | if (from_size == 0) | |
2556 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
d48e62f4 | 2557 | |
d5a22e77 | 2558 | const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG; |
d48e62f4 TT |
2559 | ULONGEST from_offset = 0; |
2560 | if (is_big_endian && is_scalar_type (value_type (fromval))) | |
2561 | from_offset = from_size - bits; | |
2562 | copy_bitwise (buffer, value_bitpos (toval), | |
2563 | value_contents (fromval), from_offset, | |
2564 | bits, is_big_endian); | |
972daa01 | 2565 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2566 | |
14f9c5c9 | 2567 | val = value_copy (toval); |
0fd88904 | 2568 | memcpy (value_contents_raw (val), value_contents (fromval), |
dda83cd7 | 2569 | TYPE_LENGTH (type)); |
04624583 | 2570 | deprecated_set_value_type (val, type); |
d2e4a39e | 2571 | |
14f9c5c9 AS |
2572 | return val; |
2573 | } | |
2574 | ||
2575 | return value_assign (toval, fromval); | |
2576 | } | |
2577 | ||
2578 | ||
7c512744 JB |
2579 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2580 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2581 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2582 | COMPONENT, and not the inferior's memory. The current contents | |
2583 | of COMPONENT are ignored. | |
2584 | ||
2585 | Although not part of the initial design, this function also works | |
2586 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2587 | had a null address, and COMPONENT had an address which is equal to | |
2588 | its offset inside CONTAINER. */ | |
2589 | ||
52ce6436 PH |
2590 | static void |
2591 | value_assign_to_component (struct value *container, struct value *component, | |
2592 | struct value *val) | |
2593 | { | |
2594 | LONGEST offset_in_container = | |
42ae5230 | 2595 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2596 | int bit_offset_in_container = |
52ce6436 PH |
2597 | value_bitpos (component) - value_bitpos (container); |
2598 | int bits; | |
7c512744 | 2599 | |
52ce6436 PH |
2600 | val = value_cast (value_type (component), val); |
2601 | ||
2602 | if (value_bitsize (component) == 0) | |
2603 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2604 | else | |
2605 | bits = value_bitsize (component); | |
2606 | ||
d5a22e77 | 2607 | if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG) |
2a62dfa9 JB |
2608 | { |
2609 | int src_offset; | |
2610 | ||
2611 | if (is_scalar_type (check_typedef (value_type (component)))) | |
dda83cd7 | 2612 | src_offset |
2a62dfa9 JB |
2613 | = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits; |
2614 | else | |
2615 | src_offset = 0; | |
a99bc3d2 JB |
2616 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2617 | value_bitpos (container) + bit_offset_in_container, | |
2618 | value_contents (val), src_offset, bits, 1); | |
2a62dfa9 | 2619 | } |
52ce6436 | 2620 | else |
a99bc3d2 JB |
2621 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2622 | value_bitpos (container) + bit_offset_in_container, | |
2623 | value_contents (val), 0, bits, 0); | |
7c512744 JB |
2624 | } |
2625 | ||
736ade86 XR |
2626 | /* Determine if TYPE is an access to an unconstrained array. */ |
2627 | ||
d91e9ea8 | 2628 | bool |
736ade86 XR |
2629 | ada_is_access_to_unconstrained_array (struct type *type) |
2630 | { | |
78134374 | 2631 | return (type->code () == TYPE_CODE_TYPEDEF |
736ade86 XR |
2632 | && is_thick_pntr (ada_typedef_target_type (type))); |
2633 | } | |
2634 | ||
4c4b4cd2 PH |
2635 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2636 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2637 | thereto. */ |
2638 | ||
d2e4a39e AS |
2639 | struct value * |
2640 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2641 | { |
2642 | int k; | |
d2e4a39e AS |
2643 | struct value *elt; |
2644 | struct type *elt_type; | |
14f9c5c9 AS |
2645 | |
2646 | elt = ada_coerce_to_simple_array (arr); | |
2647 | ||
df407dfe | 2648 | elt_type = ada_check_typedef (value_type (elt)); |
78134374 | 2649 | if (elt_type->code () == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2650 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2651 | return value_subscript_packed (elt, arity, ind); | |
2652 | ||
2653 | for (k = 0; k < arity; k += 1) | |
2654 | { | |
b9c50e9a XR |
2655 | struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type); |
2656 | ||
78134374 | 2657 | if (elt_type->code () != TYPE_CODE_ARRAY) |
dda83cd7 | 2658 | error (_("too many subscripts (%d expected)"), k); |
b9c50e9a | 2659 | |
2497b498 | 2660 | elt = value_subscript (elt, pos_atr (ind[k])); |
b9c50e9a XR |
2661 | |
2662 | if (ada_is_access_to_unconstrained_array (saved_elt_type) | |
78134374 | 2663 | && value_type (elt)->code () != TYPE_CODE_TYPEDEF) |
b9c50e9a XR |
2664 | { |
2665 | /* The element is a typedef to an unconstrained array, | |
2666 | except that the value_subscript call stripped the | |
2667 | typedef layer. The typedef layer is GNAT's way to | |
2668 | specify that the element is, at the source level, an | |
2669 | access to the unconstrained array, rather than the | |
2670 | unconstrained array. So, we need to restore that | |
2671 | typedef layer, which we can do by forcing the element's | |
2672 | type back to its original type. Otherwise, the returned | |
2673 | value is going to be printed as the array, rather | |
2674 | than as an access. Another symptom of the same issue | |
2675 | would be that an expression trying to dereference the | |
2676 | element would also be improperly rejected. */ | |
2677 | deprecated_set_value_type (elt, saved_elt_type); | |
2678 | } | |
2679 | ||
2680 | elt_type = ada_check_typedef (value_type (elt)); | |
14f9c5c9 | 2681 | } |
b9c50e9a | 2682 | |
14f9c5c9 AS |
2683 | return elt; |
2684 | } | |
2685 | ||
deede10c JB |
2686 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2687 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2688 | Does not read the entire array into memory. |
2689 | ||
2690 | Note: Unlike what one would expect, this function is used instead of | |
2691 | ada_value_subscript for basically all non-packed array types. The reason | |
2692 | for this is that a side effect of doing our own pointer arithmetics instead | |
2693 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2694 | This is important for arrays of array accesses, where it allows us to | |
2695 | preserve the fact that the array's element is an array access, where the | |
2696 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2697 | |
2c0b251b | 2698 | static struct value * |
deede10c | 2699 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2700 | { |
2701 | int k; | |
919e6dbe | 2702 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2703 | struct type *type |
919e6dbe PMR |
2704 | = check_typedef (value_enclosing_type (array_ind)); |
2705 | ||
78134374 | 2706 | if (type->code () == TYPE_CODE_ARRAY |
919e6dbe PMR |
2707 | && TYPE_FIELD_BITSIZE (type, 0) > 0) |
2708 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2709 | |
2710 | for (k = 0; k < arity; k += 1) | |
2711 | { | |
2712 | LONGEST lwb, upb; | |
14f9c5c9 | 2713 | |
78134374 | 2714 | if (type->code () != TYPE_CODE_ARRAY) |
dda83cd7 | 2715 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2716 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
dda83cd7 | 2717 | value_copy (arr)); |
3d967001 | 2718 | get_discrete_bounds (type->index_type (), &lwb, &upb); |
53a47a3e | 2719 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2720 | type = TYPE_TARGET_TYPE (type); |
2721 | } | |
2722 | ||
2723 | return value_ind (arr); | |
2724 | } | |
2725 | ||
0b5d8877 | 2726 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2727 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2728 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2729 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2730 | static struct value * |
f5938064 | 2731 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
dda83cd7 | 2732 | int low, int high) |
0b5d8877 | 2733 | { |
b0dd7688 | 2734 | struct type *type0 = ada_check_typedef (type); |
3d967001 | 2735 | struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ()); |
0c9c3474 | 2736 | struct type *index_type |
aa715135 | 2737 | = create_static_range_type (NULL, base_index_type, low, high); |
9fe561ab JB |
2738 | struct type *slice_type = create_array_type_with_stride |
2739 | (NULL, TYPE_TARGET_TYPE (type0), index_type, | |
24e99c6c | 2740 | type0->dyn_prop (DYN_PROP_BYTE_STRIDE), |
9fe561ab | 2741 | TYPE_FIELD_BITSIZE (type0, 0)); |
3d967001 | 2742 | int base_low = ada_discrete_type_low_bound (type0->index_type ()); |
6244c119 | 2743 | gdb::optional<LONGEST> base_low_pos, low_pos; |
aa715135 JG |
2744 | CORE_ADDR base; |
2745 | ||
6244c119 SM |
2746 | low_pos = discrete_position (base_index_type, low); |
2747 | base_low_pos = discrete_position (base_index_type, base_low); | |
2748 | ||
2749 | if (!low_pos.has_value () || !base_low_pos.has_value ()) | |
aa715135 JG |
2750 | { |
2751 | warning (_("unable to get positions in slice, use bounds instead")); | |
2752 | low_pos = low; | |
2753 | base_low_pos = base_low; | |
2754 | } | |
5b4ee69b | 2755 | |
7ff5b937 TT |
2756 | ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8; |
2757 | if (stride == 0) | |
2758 | stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0)); | |
2759 | ||
6244c119 | 2760 | base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride; |
f5938064 | 2761 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2762 | } |
2763 | ||
2764 | ||
2765 | static struct value * | |
2766 | ada_value_slice (struct value *array, int low, int high) | |
2767 | { | |
b0dd7688 | 2768 | struct type *type = ada_check_typedef (value_type (array)); |
3d967001 | 2769 | struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ()); |
0c9c3474 | 2770 | struct type *index_type |
3d967001 | 2771 | = create_static_range_type (NULL, type->index_type (), low, high); |
9fe561ab JB |
2772 | struct type *slice_type = create_array_type_with_stride |
2773 | (NULL, TYPE_TARGET_TYPE (type), index_type, | |
24e99c6c | 2774 | type->dyn_prop (DYN_PROP_BYTE_STRIDE), |
9fe561ab | 2775 | TYPE_FIELD_BITSIZE (type, 0)); |
6244c119 SM |
2776 | gdb::optional<LONGEST> low_pos, high_pos; |
2777 | ||
5b4ee69b | 2778 | |
6244c119 SM |
2779 | low_pos = discrete_position (base_index_type, low); |
2780 | high_pos = discrete_position (base_index_type, high); | |
2781 | ||
2782 | if (!low_pos.has_value () || !high_pos.has_value ()) | |
aa715135 JG |
2783 | { |
2784 | warning (_("unable to get positions in slice, use bounds instead")); | |
2785 | low_pos = low; | |
2786 | high_pos = high; | |
2787 | } | |
2788 | ||
2789 | return value_cast (slice_type, | |
6244c119 | 2790 | value_slice (array, low, *high_pos - *low_pos + 1)); |
0b5d8877 PH |
2791 | } |
2792 | ||
14f9c5c9 AS |
2793 | /* If type is a record type in the form of a standard GNAT array |
2794 | descriptor, returns the number of dimensions for type. If arr is a | |
2795 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2796 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2797 | |
2798 | int | |
d2e4a39e | 2799 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2800 | { |
2801 | int arity; | |
2802 | ||
2803 | if (type == NULL) | |
2804 | return 0; | |
2805 | ||
2806 | type = desc_base_type (type); | |
2807 | ||
2808 | arity = 0; | |
78134374 | 2809 | if (type->code () == TYPE_CODE_STRUCT) |
14f9c5c9 | 2810 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e | 2811 | else |
78134374 | 2812 | while (type->code () == TYPE_CODE_ARRAY) |
14f9c5c9 | 2813 | { |
dda83cd7 SM |
2814 | arity += 1; |
2815 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); | |
14f9c5c9 | 2816 | } |
d2e4a39e | 2817 | |
14f9c5c9 AS |
2818 | return arity; |
2819 | } | |
2820 | ||
2821 | /* If TYPE is a record type in the form of a standard GNAT array | |
2822 | descriptor or a simple array type, returns the element type for | |
2823 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2824 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2825 | |
d2e4a39e AS |
2826 | struct type * |
2827 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2828 | { |
2829 | type = desc_base_type (type); | |
2830 | ||
78134374 | 2831 | if (type->code () == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2832 | { |
2833 | int k; | |
d2e4a39e | 2834 | struct type *p_array_type; |
14f9c5c9 | 2835 | |
556bdfd4 | 2836 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2837 | |
2838 | k = ada_array_arity (type); | |
2839 | if (k == 0) | |
dda83cd7 | 2840 | return NULL; |
d2e4a39e | 2841 | |
4c4b4cd2 | 2842 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2843 | if (nindices >= 0 && k > nindices) |
dda83cd7 | 2844 | k = nindices; |
d2e4a39e | 2845 | while (k > 0 && p_array_type != NULL) |
dda83cd7 SM |
2846 | { |
2847 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); | |
2848 | k -= 1; | |
2849 | } | |
14f9c5c9 AS |
2850 | return p_array_type; |
2851 | } | |
78134374 | 2852 | else if (type->code () == TYPE_CODE_ARRAY) |
14f9c5c9 | 2853 | { |
78134374 | 2854 | while (nindices != 0 && type->code () == TYPE_CODE_ARRAY) |
dda83cd7 SM |
2855 | { |
2856 | type = TYPE_TARGET_TYPE (type); | |
2857 | nindices -= 1; | |
2858 | } | |
14f9c5c9 AS |
2859 | return type; |
2860 | } | |
2861 | ||
2862 | return NULL; | |
2863 | } | |
2864 | ||
08a057e6 | 2865 | /* See ada-lang.h. */ |
14f9c5c9 | 2866 | |
08a057e6 | 2867 | struct type * |
1eea4ebd | 2868 | ada_index_type (struct type *type, int n, const char *name) |
14f9c5c9 | 2869 | { |
4c4b4cd2 PH |
2870 | struct type *result_type; |
2871 | ||
14f9c5c9 AS |
2872 | type = desc_base_type (type); |
2873 | ||
1eea4ebd UW |
2874 | if (n < 0 || n > ada_array_arity (type)) |
2875 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2876 | |
4c4b4cd2 | 2877 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2878 | { |
2879 | int i; | |
2880 | ||
2881 | for (i = 1; i < n; i += 1) | |
dda83cd7 | 2882 | type = TYPE_TARGET_TYPE (type); |
3d967001 | 2883 | result_type = TYPE_TARGET_TYPE (type->index_type ()); |
4c4b4cd2 | 2884 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
dda83cd7 SM |
2885 | has a target type of TYPE_CODE_UNDEF. We compensate here, but |
2886 | perhaps stabsread.c would make more sense. */ | |
78134374 | 2887 | if (result_type && result_type->code () == TYPE_CODE_UNDEF) |
dda83cd7 | 2888 | result_type = NULL; |
14f9c5c9 | 2889 | } |
d2e4a39e | 2890 | else |
1eea4ebd UW |
2891 | { |
2892 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2893 | if (result_type == NULL) | |
2894 | error (_("attempt to take bound of something that is not an array")); | |
2895 | } | |
2896 | ||
2897 | return result_type; | |
14f9c5c9 AS |
2898 | } |
2899 | ||
2900 | /* Given that arr is an array type, returns the lower bound of the | |
2901 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2902 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2903 | array-descriptor type. It works for other arrays with bounds supplied |
2904 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2905 | |
abb68b3e | 2906 | static LONGEST |
fb5e3d5c | 2907 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2908 | { |
8a48ac95 | 2909 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2910 | int i; |
262452ec JK |
2911 | |
2912 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2913 | |
ad82864c JB |
2914 | if (ada_is_constrained_packed_array_type (arr_type)) |
2915 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2916 | |
4c4b4cd2 | 2917 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2918 | return (LONGEST) - which; |
14f9c5c9 | 2919 | |
78134374 | 2920 | if (arr_type->code () == TYPE_CODE_PTR) |
14f9c5c9 AS |
2921 | type = TYPE_TARGET_TYPE (arr_type); |
2922 | else | |
2923 | type = arr_type; | |
2924 | ||
22c4c60c | 2925 | if (type->is_fixed_instance ()) |
bafffb51 JB |
2926 | { |
2927 | /* The array has already been fixed, so we do not need to | |
2928 | check the parallel ___XA type again. That encoding has | |
2929 | already been applied, so ignore it now. */ | |
2930 | index_type_desc = NULL; | |
2931 | } | |
2932 | else | |
2933 | { | |
2934 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
2935 | ada_fixup_array_indexes_type (index_type_desc); | |
2936 | } | |
2937 | ||
262452ec | 2938 | if (index_type_desc != NULL) |
940da03e | 2939 | index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (), |
28c85d6c | 2940 | NULL); |
262452ec | 2941 | else |
8a48ac95 JB |
2942 | { |
2943 | struct type *elt_type = check_typedef (type); | |
2944 | ||
2945 | for (i = 1; i < n; i++) | |
2946 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2947 | ||
3d967001 | 2948 | index_type = elt_type->index_type (); |
8a48ac95 | 2949 | } |
262452ec | 2950 | |
43bbcdc2 PH |
2951 | return |
2952 | (LONGEST) (which == 0 | |
dda83cd7 SM |
2953 | ? ada_discrete_type_low_bound (index_type) |
2954 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2955 | } |
2956 | ||
2957 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2958 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2959 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2960 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2961 | |
1eea4ebd | 2962 | static LONGEST |
4dc81987 | 2963 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2964 | { |
eb479039 JB |
2965 | struct type *arr_type; |
2966 | ||
78134374 | 2967 | if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR) |
eb479039 JB |
2968 | arr = value_ind (arr); |
2969 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 2970 | |
ad82864c JB |
2971 | if (ada_is_constrained_packed_array_type (arr_type)) |
2972 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2973 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2974 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2975 | else |
1eea4ebd | 2976 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2977 | } |
2978 | ||
2979 | /* Given that arr is an array value, returns the length of the | |
2980 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2981 | supplied by run-time quantities other than discriminants. |
2982 | Does not work for arrays indexed by enumeration types with representation | |
2983 | clauses at the moment. */ | |
14f9c5c9 | 2984 | |
1eea4ebd | 2985 | static LONGEST |
d2e4a39e | 2986 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2987 | { |
aa715135 JG |
2988 | struct type *arr_type, *index_type; |
2989 | int low, high; | |
eb479039 | 2990 | |
78134374 | 2991 | if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR) |
eb479039 JB |
2992 | arr = value_ind (arr); |
2993 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 2994 | |
ad82864c JB |
2995 | if (ada_is_constrained_packed_array_type (arr_type)) |
2996 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2997 | |
4c4b4cd2 | 2998 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
2999 | { |
3000 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3001 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3002 | } | |
14f9c5c9 | 3003 | else |
aa715135 JG |
3004 | { |
3005 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3006 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3007 | } | |
3008 | ||
f168693b | 3009 | arr_type = check_typedef (arr_type); |
7150d33c | 3010 | index_type = ada_index_type (arr_type, n, "length"); |
aa715135 JG |
3011 | if (index_type != NULL) |
3012 | { | |
3013 | struct type *base_type; | |
78134374 | 3014 | if (index_type->code () == TYPE_CODE_RANGE) |
aa715135 JG |
3015 | base_type = TYPE_TARGET_TYPE (index_type); |
3016 | else | |
3017 | base_type = index_type; | |
3018 | ||
3019 | low = pos_atr (value_from_longest (base_type, low)); | |
3020 | high = pos_atr (value_from_longest (base_type, high)); | |
3021 | } | |
3022 | return high - low + 1; | |
4c4b4cd2 PH |
3023 | } |
3024 | ||
bff8c71f TT |
3025 | /* An array whose type is that of ARR_TYPE (an array type), with |
3026 | bounds LOW to HIGH, but whose contents are unimportant. If HIGH is | |
3027 | less than LOW, then LOW-1 is used. */ | |
4c4b4cd2 PH |
3028 | |
3029 | static struct value * | |
bff8c71f | 3030 | empty_array (struct type *arr_type, int low, int high) |
4c4b4cd2 | 3031 | { |
b0dd7688 | 3032 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3033 | struct type *index_type |
3034 | = create_static_range_type | |
dda83cd7 | 3035 | (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low, |
bff8c71f | 3036 | high < low ? low - 1 : high); |
b0dd7688 | 3037 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3038 | |
0b5d8877 | 3039 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3040 | } |
14f9c5c9 | 3041 | \f |
d2e4a39e | 3042 | |
dda83cd7 | 3043 | /* Name resolution */ |
14f9c5c9 | 3044 | |
4c4b4cd2 PH |
3045 | /* The "decoded" name for the user-definable Ada operator corresponding |
3046 | to OP. */ | |
14f9c5c9 | 3047 | |
d2e4a39e | 3048 | static const char * |
4c4b4cd2 | 3049 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3050 | { |
3051 | int i; | |
3052 | ||
4c4b4cd2 | 3053 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3054 | { |
3055 | if (ada_opname_table[i].op == op) | |
dda83cd7 | 3056 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3057 | } |
323e0a4a | 3058 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3059 | } |
3060 | ||
de93309a SM |
3061 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3062 | in a listing of choices during disambiguation (see sort_choices, below). | |
3063 | The idea is that overloadings of a subprogram name from the | |
3064 | same package should sort in their source order. We settle for ordering | |
3065 | such symbols by their trailing number (__N or $N). */ | |
14f9c5c9 | 3066 | |
de93309a SM |
3067 | static int |
3068 | encoded_ordered_before (const char *N0, const char *N1) | |
14f9c5c9 | 3069 | { |
de93309a SM |
3070 | if (N1 == NULL) |
3071 | return 0; | |
3072 | else if (N0 == NULL) | |
3073 | return 1; | |
3074 | else | |
3075 | { | |
3076 | int k0, k1; | |
30b15541 | 3077 | |
de93309a | 3078 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
dda83cd7 | 3079 | ; |
de93309a | 3080 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
dda83cd7 | 3081 | ; |
de93309a | 3082 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
dda83cd7 SM |
3083 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3084 | { | |
3085 | int n0, n1; | |
3086 | ||
3087 | n0 = k0; | |
3088 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3089 | n0 -= 1; | |
3090 | n1 = k1; | |
3091 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3092 | n1 -= 1; | |
3093 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3094 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3095 | } | |
de93309a SM |
3096 | return (strcmp (N0, N1) < 0); |
3097 | } | |
14f9c5c9 AS |
3098 | } |
3099 | ||
de93309a SM |
3100 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3101 | encoded names. */ | |
14f9c5c9 | 3102 | |
de93309a SM |
3103 | static void |
3104 | sort_choices (struct block_symbol syms[], int nsyms) | |
14f9c5c9 | 3105 | { |
14f9c5c9 | 3106 | int i; |
14f9c5c9 | 3107 | |
de93309a | 3108 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3109 | { |
de93309a SM |
3110 | struct block_symbol sym = syms[i]; |
3111 | int j; | |
3112 | ||
3113 | for (j = i - 1; j >= 0; j -= 1) | |
dda83cd7 SM |
3114 | { |
3115 | if (encoded_ordered_before (syms[j].symbol->linkage_name (), | |
3116 | sym.symbol->linkage_name ())) | |
3117 | break; | |
3118 | syms[j + 1] = syms[j]; | |
3119 | } | |
de93309a SM |
3120 | syms[j + 1] = sym; |
3121 | } | |
3122 | } | |
14f9c5c9 | 3123 | |
de93309a SM |
3124 | /* Whether GDB should display formals and return types for functions in the |
3125 | overloads selection menu. */ | |
3126 | static bool print_signatures = true; | |
4c4b4cd2 | 3127 | |
de93309a SM |
3128 | /* Print the signature for SYM on STREAM according to the FLAGS options. For |
3129 | all but functions, the signature is just the name of the symbol. For | |
3130 | functions, this is the name of the function, the list of types for formals | |
3131 | and the return type (if any). */ | |
4c4b4cd2 | 3132 | |
de93309a SM |
3133 | static void |
3134 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3135 | const struct type_print_options *flags) | |
3136 | { | |
3137 | struct type *type = SYMBOL_TYPE (sym); | |
14f9c5c9 | 3138 | |
987012b8 | 3139 | fprintf_filtered (stream, "%s", sym->print_name ()); |
de93309a SM |
3140 | if (!print_signatures |
3141 | || type == NULL | |
78134374 | 3142 | || type->code () != TYPE_CODE_FUNC) |
de93309a | 3143 | return; |
4c4b4cd2 | 3144 | |
1f704f76 | 3145 | if (type->num_fields () > 0) |
de93309a SM |
3146 | { |
3147 | int i; | |
14f9c5c9 | 3148 | |
de93309a | 3149 | fprintf_filtered (stream, " ("); |
1f704f76 | 3150 | for (i = 0; i < type->num_fields (); ++i) |
de93309a SM |
3151 | { |
3152 | if (i > 0) | |
3153 | fprintf_filtered (stream, "; "); | |
940da03e | 3154 | ada_print_type (type->field (i).type (), NULL, stream, -1, 0, |
de93309a SM |
3155 | flags); |
3156 | } | |
3157 | fprintf_filtered (stream, ")"); | |
3158 | } | |
3159 | if (TYPE_TARGET_TYPE (type) != NULL | |
78134374 | 3160 | && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID) |
de93309a SM |
3161 | { |
3162 | fprintf_filtered (stream, " return "); | |
3163 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3164 | } | |
3165 | } | |
14f9c5c9 | 3166 | |
de93309a SM |
3167 | /* Read and validate a set of numeric choices from the user in the |
3168 | range 0 .. N_CHOICES-1. Place the results in increasing | |
3169 | order in CHOICES[0 .. N-1], and return N. | |
14f9c5c9 | 3170 | |
de93309a SM |
3171 | The user types choices as a sequence of numbers on one line |
3172 | separated by blanks, encoding them as follows: | |
14f9c5c9 | 3173 | |
de93309a SM |
3174 | + A choice of 0 means to cancel the selection, throwing an error. |
3175 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. | |
3176 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
14f9c5c9 | 3177 | |
de93309a | 3178 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 | 3179 | |
de93309a SM |
3180 | ANNOTATION_SUFFIX, if present, is used to annotate the input |
3181 | prompts (for use with the -f switch). */ | |
14f9c5c9 | 3182 | |
de93309a SM |
3183 | static int |
3184 | get_selections (int *choices, int n_choices, int max_results, | |
dda83cd7 | 3185 | int is_all_choice, const char *annotation_suffix) |
de93309a | 3186 | { |
992a7040 | 3187 | const char *args; |
de93309a SM |
3188 | const char *prompt; |
3189 | int n_chosen; | |
3190 | int first_choice = is_all_choice ? 2 : 1; | |
14f9c5c9 | 3191 | |
de93309a SM |
3192 | prompt = getenv ("PS2"); |
3193 | if (prompt == NULL) | |
3194 | prompt = "> "; | |
4c4b4cd2 | 3195 | |
de93309a | 3196 | args = command_line_input (prompt, annotation_suffix); |
4c4b4cd2 | 3197 | |
de93309a SM |
3198 | if (args == NULL) |
3199 | error_no_arg (_("one or more choice numbers")); | |
14f9c5c9 | 3200 | |
de93309a | 3201 | n_chosen = 0; |
4c4b4cd2 | 3202 | |
de93309a SM |
3203 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3204 | order, as given in args. Choices are validated. */ | |
3205 | while (1) | |
14f9c5c9 | 3206 | { |
de93309a SM |
3207 | char *args2; |
3208 | int choice, j; | |
76a01679 | 3209 | |
de93309a SM |
3210 | args = skip_spaces (args); |
3211 | if (*args == '\0' && n_chosen == 0) | |
dda83cd7 | 3212 | error_no_arg (_("one or more choice numbers")); |
de93309a | 3213 | else if (*args == '\0') |
dda83cd7 | 3214 | break; |
76a01679 | 3215 | |
de93309a SM |
3216 | choice = strtol (args, &args2, 10); |
3217 | if (args == args2 || choice < 0 | |
dda83cd7 SM |
3218 | || choice > n_choices + first_choice - 1) |
3219 | error (_("Argument must be choice number")); | |
de93309a | 3220 | args = args2; |
76a01679 | 3221 | |
de93309a | 3222 | if (choice == 0) |
dda83cd7 | 3223 | error (_("cancelled")); |
76a01679 | 3224 | |
de93309a | 3225 | if (choice < first_choice) |
dda83cd7 SM |
3226 | { |
3227 | n_chosen = n_choices; | |
3228 | for (j = 0; j < n_choices; j += 1) | |
3229 | choices[j] = j; | |
3230 | break; | |
3231 | } | |
de93309a | 3232 | choice -= first_choice; |
76a01679 | 3233 | |
de93309a | 3234 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
dda83cd7 SM |
3235 | { |
3236 | } | |
4c4b4cd2 | 3237 | |
de93309a | 3238 | if (j < 0 || choice != choices[j]) |
dda83cd7 SM |
3239 | { |
3240 | int k; | |
4c4b4cd2 | 3241 | |
dda83cd7 SM |
3242 | for (k = n_chosen - 1; k > j; k -= 1) |
3243 | choices[k + 1] = choices[k]; | |
3244 | choices[j + 1] = choice; | |
3245 | n_chosen += 1; | |
3246 | } | |
14f9c5c9 AS |
3247 | } |
3248 | ||
de93309a SM |
3249 | if (n_chosen > max_results) |
3250 | error (_("Select no more than %d of the above"), max_results); | |
3251 | ||
3252 | return n_chosen; | |
14f9c5c9 AS |
3253 | } |
3254 | ||
de93309a SM |
3255 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3256 | by asking the user (if necessary), returning the number selected, | |
3257 | and setting the first elements of SYMS items. Error if no symbols | |
3258 | selected. */ | |
3259 | ||
3260 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
3261 | to be re-integrated one of these days. */ | |
14f9c5c9 AS |
3262 | |
3263 | static int | |
de93309a | 3264 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 | 3265 | { |
de93309a SM |
3266 | int i; |
3267 | int *chosen = XALLOCAVEC (int , nsyms); | |
3268 | int n_chosen; | |
3269 | int first_choice = (max_results == 1) ? 1 : 2; | |
3270 | const char *select_mode = multiple_symbols_select_mode (); | |
14f9c5c9 | 3271 | |
de93309a SM |
3272 | if (max_results < 1) |
3273 | error (_("Request to select 0 symbols!")); | |
3274 | if (nsyms <= 1) | |
3275 | return nsyms; | |
14f9c5c9 | 3276 | |
de93309a SM |
3277 | if (select_mode == multiple_symbols_cancel) |
3278 | error (_("\ | |
3279 | canceled because the command is ambiguous\n\ | |
3280 | See set/show multiple-symbol.")); | |
14f9c5c9 | 3281 | |
de93309a SM |
3282 | /* If select_mode is "all", then return all possible symbols. |
3283 | Only do that if more than one symbol can be selected, of course. | |
3284 | Otherwise, display the menu as usual. */ | |
3285 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3286 | return nsyms; | |
14f9c5c9 | 3287 | |
de93309a SM |
3288 | printf_filtered (_("[0] cancel\n")); |
3289 | if (max_results > 1) | |
3290 | printf_filtered (_("[1] all\n")); | |
14f9c5c9 | 3291 | |
de93309a | 3292 | sort_choices (syms, nsyms); |
14f9c5c9 | 3293 | |
de93309a SM |
3294 | for (i = 0; i < nsyms; i += 1) |
3295 | { | |
3296 | if (syms[i].symbol == NULL) | |
dda83cd7 | 3297 | continue; |
14f9c5c9 | 3298 | |
de93309a | 3299 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
dda83cd7 SM |
3300 | { |
3301 | struct symtab_and_line sal = | |
3302 | find_function_start_sal (syms[i].symbol, 1); | |
14f9c5c9 | 3303 | |
de93309a SM |
3304 | printf_filtered ("[%d] ", i + first_choice); |
3305 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3306 | &type_print_raw_options); | |
3307 | if (sal.symtab == NULL) | |
3308 | printf_filtered (_(" at %p[<no source file available>%p]:%d\n"), | |
3309 | metadata_style.style ().ptr (), nullptr, sal.line); | |
3310 | else | |
3311 | printf_filtered | |
3312 | (_(" at %ps:%d\n"), | |
3313 | styled_string (file_name_style.style (), | |
3314 | symtab_to_filename_for_display (sal.symtab)), | |
3315 | sal.line); | |
dda83cd7 SM |
3316 | continue; |
3317 | } | |
76a01679 | 3318 | else |
dda83cd7 SM |
3319 | { |
3320 | int is_enumeral = | |
3321 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST | |
3322 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3323 | && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM); | |
de93309a | 3324 | struct symtab *symtab = NULL; |
4c4b4cd2 | 3325 | |
de93309a SM |
3326 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3327 | symtab = symbol_symtab (syms[i].symbol); | |
3328 | ||
dda83cd7 | 3329 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
de93309a SM |
3330 | { |
3331 | printf_filtered ("[%d] ", i + first_choice); | |
3332 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3333 | &type_print_raw_options); | |
3334 | printf_filtered (_(" at %s:%d\n"), | |
3335 | symtab_to_filename_for_display (symtab), | |
3336 | SYMBOL_LINE (syms[i].symbol)); | |
3337 | } | |
dda83cd7 SM |
3338 | else if (is_enumeral |
3339 | && SYMBOL_TYPE (syms[i].symbol)->name () != NULL) | |
3340 | { | |
3341 | printf_filtered (("[%d] "), i + first_choice); | |
3342 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, | |
3343 | gdb_stdout, -1, 0, &type_print_raw_options); | |
3344 | printf_filtered (_("'(%s) (enumeral)\n"), | |
987012b8 | 3345 | syms[i].symbol->print_name ()); |
dda83cd7 | 3346 | } |
de93309a SM |
3347 | else |
3348 | { | |
3349 | printf_filtered ("[%d] ", i + first_choice); | |
3350 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3351 | &type_print_raw_options); | |
3352 | ||
3353 | if (symtab != NULL) | |
3354 | printf_filtered (is_enumeral | |
3355 | ? _(" in %s (enumeral)\n") | |
3356 | : _(" at %s:?\n"), | |
3357 | symtab_to_filename_for_display (symtab)); | |
3358 | else | |
3359 | printf_filtered (is_enumeral | |
3360 | ? _(" (enumeral)\n") | |
3361 | : _(" at ?\n")); | |
3362 | } | |
dda83cd7 | 3363 | } |
14f9c5c9 | 3364 | } |
14f9c5c9 | 3365 | |
de93309a | 3366 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
dda83cd7 | 3367 | "overload-choice"); |
14f9c5c9 | 3368 | |
de93309a SM |
3369 | for (i = 0; i < n_chosen; i += 1) |
3370 | syms[i] = syms[chosen[i]]; | |
14f9c5c9 | 3371 | |
de93309a SM |
3372 | return n_chosen; |
3373 | } | |
14f9c5c9 | 3374 | |
cd9a3148 TT |
3375 | /* See ada-lang.h. */ |
3376 | ||
3377 | block_symbol | |
7056f312 | 3378 | ada_find_operator_symbol (enum exp_opcode op, bool parse_completion, |
cd9a3148 TT |
3379 | int nargs, value *argvec[]) |
3380 | { | |
3381 | if (possible_user_operator_p (op, argvec)) | |
3382 | { | |
3383 | std::vector<struct block_symbol> candidates | |
3384 | = ada_lookup_symbol_list (ada_decoded_op_name (op), | |
3385 | NULL, VAR_DOMAIN); | |
3386 | ||
3387 | int i = ada_resolve_function (candidates, argvec, | |
3388 | nargs, ada_decoded_op_name (op), NULL, | |
3389 | parse_completion); | |
3390 | if (i >= 0) | |
3391 | return candidates[i]; | |
3392 | } | |
3393 | return {}; | |
3394 | } | |
3395 | ||
3396 | /* See ada-lang.h. */ | |
3397 | ||
3398 | block_symbol | |
3399 | ada_resolve_funcall (struct symbol *sym, const struct block *block, | |
3400 | struct type *context_type, | |
7056f312 | 3401 | bool parse_completion, |
cd9a3148 TT |
3402 | int nargs, value *argvec[], |
3403 | innermost_block_tracker *tracker) | |
3404 | { | |
3405 | std::vector<struct block_symbol> candidates | |
3406 | = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN); | |
3407 | ||
3408 | int i; | |
3409 | if (candidates.size () == 1) | |
3410 | i = 0; | |
3411 | else | |
3412 | { | |
3413 | i = ada_resolve_function | |
3414 | (candidates, | |
3415 | argvec, nargs, | |
3416 | sym->linkage_name (), | |
3417 | context_type, parse_completion); | |
3418 | if (i < 0) | |
3419 | error (_("Could not find a match for %s"), sym->print_name ()); | |
3420 | } | |
3421 | ||
3422 | tracker->update (candidates[i]); | |
3423 | return candidates[i]; | |
3424 | } | |
3425 | ||
3426 | /* See ada-lang.h. */ | |
3427 | ||
3428 | block_symbol | |
3429 | ada_resolve_variable (struct symbol *sym, const struct block *block, | |
3430 | struct type *context_type, | |
7056f312 | 3431 | bool parse_completion, |
cd9a3148 TT |
3432 | int deprocedure_p, |
3433 | innermost_block_tracker *tracker) | |
3434 | { | |
3435 | std::vector<struct block_symbol> candidates | |
3436 | = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN); | |
3437 | ||
3438 | if (std::any_of (candidates.begin (), | |
3439 | candidates.end (), | |
3440 | [] (block_symbol &bsym) | |
3441 | { | |
3442 | switch (SYMBOL_CLASS (bsym.symbol)) | |
3443 | { | |
3444 | case LOC_REGISTER: | |
3445 | case LOC_ARG: | |
3446 | case LOC_REF_ARG: | |
3447 | case LOC_REGPARM_ADDR: | |
3448 | case LOC_LOCAL: | |
3449 | case LOC_COMPUTED: | |
3450 | return true; | |
3451 | default: | |
3452 | return false; | |
3453 | } | |
3454 | })) | |
3455 | { | |
3456 | /* Types tend to get re-introduced locally, so if there | |
3457 | are any local symbols that are not types, first filter | |
3458 | out all types. */ | |
3459 | candidates.erase | |
3460 | (std::remove_if | |
3461 | (candidates.begin (), | |
3462 | candidates.end (), | |
3463 | [] (block_symbol &bsym) | |
3464 | { | |
3465 | return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF; | |
3466 | }), | |
3467 | candidates.end ()); | |
3468 | } | |
3469 | ||
3470 | int i; | |
3471 | if (candidates.empty ()) | |
3472 | error (_("No definition found for %s"), sym->print_name ()); | |
3473 | else if (candidates.size () == 1) | |
3474 | i = 0; | |
3475 | else if (deprocedure_p && !is_nonfunction (candidates)) | |
3476 | { | |
3477 | i = ada_resolve_function | |
3478 | (candidates, NULL, 0, | |
3479 | sym->linkage_name (), | |
3480 | context_type, parse_completion); | |
3481 | if (i < 0) | |
3482 | error (_("Could not find a match for %s"), sym->print_name ()); | |
3483 | } | |
3484 | else | |
3485 | { | |
3486 | printf_filtered (_("Multiple matches for %s\n"), sym->print_name ()); | |
3487 | user_select_syms (candidates.data (), candidates.size (), 1); | |
3488 | i = 0; | |
3489 | } | |
3490 | ||
3491 | tracker->update (candidates[i]); | |
3492 | return candidates[i]; | |
3493 | } | |
3494 | ||
de93309a SM |
3495 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If |
3496 | MAY_DEREF is non-zero, the formal may be a pointer and the actual | |
3497 | a non-pointer. */ | |
3498 | /* The term "match" here is rather loose. The match is heuristic and | |
3499 | liberal. */ | |
14f9c5c9 | 3500 | |
de93309a SM |
3501 | static int |
3502 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) | |
14f9c5c9 | 3503 | { |
de93309a SM |
3504 | ftype = ada_check_typedef (ftype); |
3505 | atype = ada_check_typedef (atype); | |
14f9c5c9 | 3506 | |
78134374 | 3507 | if (ftype->code () == TYPE_CODE_REF) |
de93309a | 3508 | ftype = TYPE_TARGET_TYPE (ftype); |
78134374 | 3509 | if (atype->code () == TYPE_CODE_REF) |
de93309a | 3510 | atype = TYPE_TARGET_TYPE (atype); |
14f9c5c9 | 3511 | |
78134374 | 3512 | switch (ftype->code ()) |
14f9c5c9 | 3513 | { |
de93309a | 3514 | default: |
78134374 | 3515 | return ftype->code () == atype->code (); |
de93309a | 3516 | case TYPE_CODE_PTR: |
78134374 | 3517 | if (atype->code () == TYPE_CODE_PTR) |
dda83cd7 SM |
3518 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3519 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3520 | else |
dda83cd7 SM |
3521 | return (may_deref |
3522 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
de93309a SM |
3523 | case TYPE_CODE_INT: |
3524 | case TYPE_CODE_ENUM: | |
3525 | case TYPE_CODE_RANGE: | |
78134374 | 3526 | switch (atype->code ()) |
dda83cd7 SM |
3527 | { |
3528 | case TYPE_CODE_INT: | |
3529 | case TYPE_CODE_ENUM: | |
3530 | case TYPE_CODE_RANGE: | |
3531 | return 1; | |
3532 | default: | |
3533 | return 0; | |
3534 | } | |
d2e4a39e | 3535 | |
de93309a | 3536 | case TYPE_CODE_ARRAY: |
78134374 | 3537 | return (atype->code () == TYPE_CODE_ARRAY |
dda83cd7 | 3538 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 | 3539 | |
de93309a SM |
3540 | case TYPE_CODE_STRUCT: |
3541 | if (ada_is_array_descriptor_type (ftype)) | |
dda83cd7 SM |
3542 | return (atype->code () == TYPE_CODE_ARRAY |
3543 | || ada_is_array_descriptor_type (atype)); | |
de93309a | 3544 | else |
dda83cd7 SM |
3545 | return (atype->code () == TYPE_CODE_STRUCT |
3546 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3547 | |
de93309a SM |
3548 | case TYPE_CODE_UNION: |
3549 | case TYPE_CODE_FLT: | |
78134374 | 3550 | return (atype->code () == ftype->code ()); |
de93309a | 3551 | } |
14f9c5c9 AS |
3552 | } |
3553 | ||
de93309a SM |
3554 | /* Return non-zero if the formals of FUNC "sufficiently match" the |
3555 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3556 | may also be an enumeral, in which case it is treated as a 0- | |
3557 | argument function. */ | |
14f9c5c9 | 3558 | |
de93309a SM |
3559 | static int |
3560 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) | |
3561 | { | |
3562 | int i; | |
3563 | struct type *func_type = SYMBOL_TYPE (func); | |
14f9c5c9 | 3564 | |
de93309a | 3565 | if (SYMBOL_CLASS (func) == LOC_CONST |
78134374 | 3566 | && func_type->code () == TYPE_CODE_ENUM) |
de93309a | 3567 | return (n_actuals == 0); |
78134374 | 3568 | else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC) |
de93309a | 3569 | return 0; |
14f9c5c9 | 3570 | |
1f704f76 | 3571 | if (func_type->num_fields () != n_actuals) |
de93309a | 3572 | return 0; |
14f9c5c9 | 3573 | |
de93309a SM |
3574 | for (i = 0; i < n_actuals; i += 1) |
3575 | { | |
3576 | if (actuals[i] == NULL) | |
dda83cd7 | 3577 | return 0; |
de93309a | 3578 | else |
dda83cd7 SM |
3579 | { |
3580 | struct type *ftype = ada_check_typedef (func_type->field (i).type ()); | |
3581 | struct type *atype = ada_check_typedef (value_type (actuals[i])); | |
14f9c5c9 | 3582 | |
dda83cd7 SM |
3583 | if (!ada_type_match (ftype, atype, 1)) |
3584 | return 0; | |
3585 | } | |
de93309a SM |
3586 | } |
3587 | return 1; | |
3588 | } | |
d2e4a39e | 3589 | |
de93309a SM |
3590 | /* False iff function type FUNC_TYPE definitely does not produce a value |
3591 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3592 | FUNC_TYPE is not a valid function type with a non-null return type | |
3593 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
14f9c5c9 | 3594 | |
de93309a SM |
3595 | static int |
3596 | return_match (struct type *func_type, struct type *context_type) | |
3597 | { | |
3598 | struct type *return_type; | |
d2e4a39e | 3599 | |
de93309a SM |
3600 | if (func_type == NULL) |
3601 | return 1; | |
14f9c5c9 | 3602 | |
78134374 | 3603 | if (func_type->code () == TYPE_CODE_FUNC) |
de93309a SM |
3604 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
3605 | else | |
3606 | return_type = get_base_type (func_type); | |
3607 | if (return_type == NULL) | |
3608 | return 1; | |
76a01679 | 3609 | |
de93309a | 3610 | context_type = get_base_type (context_type); |
14f9c5c9 | 3611 | |
78134374 | 3612 | if (return_type->code () == TYPE_CODE_ENUM) |
de93309a SM |
3613 | return context_type == NULL || return_type == context_type; |
3614 | else if (context_type == NULL) | |
78134374 | 3615 | return return_type->code () != TYPE_CODE_VOID; |
de93309a | 3616 | else |
78134374 | 3617 | return return_type->code () == context_type->code (); |
de93309a | 3618 | } |
14f9c5c9 | 3619 | |
14f9c5c9 | 3620 | |
1bfa81ac | 3621 | /* Returns the index in SYMS that contains the symbol for the |
de93309a SM |
3622 | function (if any) that matches the types of the NARGS arguments in |
3623 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match | |
3624 | that returns that type, then eliminate matches that don't. If | |
3625 | CONTEXT_TYPE is void and there is at least one match that does not | |
3626 | return void, eliminate all matches that do. | |
14f9c5c9 | 3627 | |
de93309a SM |
3628 | Asks the user if there is more than one match remaining. Returns -1 |
3629 | if there is no such symbol or none is selected. NAME is used | |
3630 | solely for messages. May re-arrange and modify SYMS in | |
3631 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3632 | |
de93309a | 3633 | static int |
d1183b06 TT |
3634 | ada_resolve_function (std::vector<struct block_symbol> &syms, |
3635 | struct value **args, int nargs, | |
dda83cd7 | 3636 | const char *name, struct type *context_type, |
7056f312 | 3637 | bool parse_completion) |
de93309a SM |
3638 | { |
3639 | int fallback; | |
3640 | int k; | |
3641 | int m; /* Number of hits */ | |
14f9c5c9 | 3642 | |
de93309a SM |
3643 | m = 0; |
3644 | /* In the first pass of the loop, we only accept functions matching | |
3645 | context_type. If none are found, we add a second pass of the loop | |
3646 | where every function is accepted. */ | |
3647 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
3648 | { | |
d1183b06 | 3649 | for (k = 0; k < syms.size (); k += 1) |
dda83cd7 SM |
3650 | { |
3651 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); | |
5b4ee69b | 3652 | |
dda83cd7 SM |
3653 | if (ada_args_match (syms[k].symbol, args, nargs) |
3654 | && (fallback || return_match (type, context_type))) | |
3655 | { | |
3656 | syms[m] = syms[k]; | |
3657 | m += 1; | |
3658 | } | |
3659 | } | |
14f9c5c9 AS |
3660 | } |
3661 | ||
de93309a SM |
3662 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3663 | interactive thing during completion, though, as the purpose of the | |
3664 | completion is providing a list of all possible matches. Prompting the | |
3665 | user to filter it down would be completely unexpected in this case. */ | |
3666 | if (m == 0) | |
3667 | return -1; | |
3668 | else if (m > 1 && !parse_completion) | |
3669 | { | |
3670 | printf_filtered (_("Multiple matches for %s\n"), name); | |
d1183b06 | 3671 | user_select_syms (syms.data (), m, 1); |
de93309a SM |
3672 | return 0; |
3673 | } | |
3674 | return 0; | |
14f9c5c9 AS |
3675 | } |
3676 | ||
14f9c5c9 AS |
3677 | /* Type-class predicates */ |
3678 | ||
4c4b4cd2 PH |
3679 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3680 | or FLOAT). */ | |
14f9c5c9 AS |
3681 | |
3682 | static int | |
d2e4a39e | 3683 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3684 | { |
3685 | if (type == NULL) | |
3686 | return 0; | |
d2e4a39e AS |
3687 | else |
3688 | { | |
78134374 | 3689 | switch (type->code ()) |
dda83cd7 SM |
3690 | { |
3691 | case TYPE_CODE_INT: | |
3692 | case TYPE_CODE_FLT: | |
c04da66c | 3693 | case TYPE_CODE_FIXED_POINT: |
dda83cd7 SM |
3694 | return 1; |
3695 | case TYPE_CODE_RANGE: | |
3696 | return (type == TYPE_TARGET_TYPE (type) | |
3697 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3698 | default: | |
3699 | return 0; | |
3700 | } | |
d2e4a39e | 3701 | } |
14f9c5c9 AS |
3702 | } |
3703 | ||
4c4b4cd2 | 3704 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3705 | |
3706 | static int | |
d2e4a39e | 3707 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3708 | { |
3709 | if (type == NULL) | |
3710 | return 0; | |
d2e4a39e AS |
3711 | else |
3712 | { | |
78134374 | 3713 | switch (type->code ()) |
dda83cd7 SM |
3714 | { |
3715 | case TYPE_CODE_INT: | |
3716 | return 1; | |
3717 | case TYPE_CODE_RANGE: | |
3718 | return (type == TYPE_TARGET_TYPE (type) | |
3719 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3720 | default: | |
3721 | return 0; | |
3722 | } | |
d2e4a39e | 3723 | } |
14f9c5c9 AS |
3724 | } |
3725 | ||
4c4b4cd2 | 3726 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3727 | |
3728 | static int | |
d2e4a39e | 3729 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3730 | { |
3731 | if (type == NULL) | |
3732 | return 0; | |
d2e4a39e AS |
3733 | else |
3734 | { | |
78134374 | 3735 | switch (type->code ()) |
dda83cd7 SM |
3736 | { |
3737 | case TYPE_CODE_INT: | |
3738 | case TYPE_CODE_RANGE: | |
3739 | case TYPE_CODE_ENUM: | |
3740 | case TYPE_CODE_FLT: | |
c04da66c | 3741 | case TYPE_CODE_FIXED_POINT: |
dda83cd7 SM |
3742 | return 1; |
3743 | default: | |
3744 | return 0; | |
3745 | } | |
d2e4a39e | 3746 | } |
14f9c5c9 AS |
3747 | } |
3748 | ||
4c4b4cd2 | 3749 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3750 | |
3751 | static int | |
d2e4a39e | 3752 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3753 | { |
3754 | if (type == NULL) | |
3755 | return 0; | |
d2e4a39e AS |
3756 | else |
3757 | { | |
78134374 | 3758 | switch (type->code ()) |
dda83cd7 SM |
3759 | { |
3760 | case TYPE_CODE_INT: | |
3761 | case TYPE_CODE_RANGE: | |
3762 | case TYPE_CODE_ENUM: | |
3763 | case TYPE_CODE_BOOL: | |
3764 | return 1; | |
3765 | default: | |
3766 | return 0; | |
3767 | } | |
d2e4a39e | 3768 | } |
14f9c5c9 AS |
3769 | } |
3770 | ||
4c4b4cd2 PH |
3771 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3772 | a user-defined function. Errs on the side of pre-defined operators | |
3773 | (i.e., result 0). */ | |
14f9c5c9 AS |
3774 | |
3775 | static int | |
d2e4a39e | 3776 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3777 | { |
76a01679 | 3778 | struct type *type0 = |
df407dfe | 3779 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3780 | struct type *type1 = |
df407dfe | 3781 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3782 | |
4c4b4cd2 PH |
3783 | if (type0 == NULL) |
3784 | return 0; | |
3785 | ||
14f9c5c9 AS |
3786 | switch (op) |
3787 | { | |
3788 | default: | |
3789 | return 0; | |
3790 | ||
3791 | case BINOP_ADD: | |
3792 | case BINOP_SUB: | |
3793 | case BINOP_MUL: | |
3794 | case BINOP_DIV: | |
d2e4a39e | 3795 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3796 | |
3797 | case BINOP_REM: | |
3798 | case BINOP_MOD: | |
3799 | case BINOP_BITWISE_AND: | |
3800 | case BINOP_BITWISE_IOR: | |
3801 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3802 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3803 | |
3804 | case BINOP_EQUAL: | |
3805 | case BINOP_NOTEQUAL: | |
3806 | case BINOP_LESS: | |
3807 | case BINOP_GTR: | |
3808 | case BINOP_LEQ: | |
3809 | case BINOP_GEQ: | |
d2e4a39e | 3810 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3811 | |
3812 | case BINOP_CONCAT: | |
ee90b9ab | 3813 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3814 | |
3815 | case BINOP_EXP: | |
d2e4a39e | 3816 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3817 | |
3818 | case UNOP_NEG: | |
3819 | case UNOP_PLUS: | |
3820 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3821 | case UNOP_ABS: |
3822 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3823 | |
3824 | } | |
3825 | } | |
3826 | \f | |
dda83cd7 | 3827 | /* Renaming */ |
14f9c5c9 | 3828 | |
aeb5907d JB |
3829 | /* NOTES: |
3830 | ||
3831 | 1. In the following, we assume that a renaming type's name may | |
3832 | have an ___XD suffix. It would be nice if this went away at some | |
3833 | point. | |
3834 | 2. We handle both the (old) purely type-based representation of | |
3835 | renamings and the (new) variable-based encoding. At some point, | |
3836 | it is devoutly to be hoped that the former goes away | |
3837 | (FIXME: hilfinger-2007-07-09). | |
3838 | 3. Subprogram renamings are not implemented, although the XRS | |
3839 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3840 | ||
3841 | /* If SYM encodes a renaming, | |
3842 | ||
3843 | <renaming> renames <renamed entity>, | |
3844 | ||
3845 | sets *LEN to the length of the renamed entity's name, | |
3846 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3847 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3848 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3849 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3850 | are undefined). Otherwise, returns a value indicating the category | |
3851 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3852 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3853 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3854 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3855 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3856 | may be NULL, in which case they are not assigned. | |
3857 | ||
3858 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3859 | ||
3860 | enum ada_renaming_category | |
3861 | ada_parse_renaming (struct symbol *sym, | |
3862 | const char **renamed_entity, int *len, | |
3863 | const char **renaming_expr) | |
3864 | { | |
3865 | enum ada_renaming_category kind; | |
3866 | const char *info; | |
3867 | const char *suffix; | |
3868 | ||
3869 | if (sym == NULL) | |
3870 | return ADA_NOT_RENAMING; | |
3871 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3872 | { |
aeb5907d JB |
3873 | default: |
3874 | return ADA_NOT_RENAMING; | |
aeb5907d JB |
3875 | case LOC_LOCAL: |
3876 | case LOC_STATIC: | |
3877 | case LOC_COMPUTED: | |
3878 | case LOC_OPTIMIZED_OUT: | |
987012b8 | 3879 | info = strstr (sym->linkage_name (), "___XR"); |
aeb5907d JB |
3880 | if (info == NULL) |
3881 | return ADA_NOT_RENAMING; | |
3882 | switch (info[5]) | |
3883 | { | |
3884 | case '_': | |
3885 | kind = ADA_OBJECT_RENAMING; | |
3886 | info += 6; | |
3887 | break; | |
3888 | case 'E': | |
3889 | kind = ADA_EXCEPTION_RENAMING; | |
3890 | info += 7; | |
3891 | break; | |
3892 | case 'P': | |
3893 | kind = ADA_PACKAGE_RENAMING; | |
3894 | info += 7; | |
3895 | break; | |
3896 | case 'S': | |
3897 | kind = ADA_SUBPROGRAM_RENAMING; | |
3898 | info += 7; | |
3899 | break; | |
3900 | default: | |
3901 | return ADA_NOT_RENAMING; | |
3902 | } | |
14f9c5c9 | 3903 | } |
4c4b4cd2 | 3904 | |
de93309a SM |
3905 | if (renamed_entity != NULL) |
3906 | *renamed_entity = info; | |
3907 | suffix = strstr (info, "___XE"); | |
3908 | if (suffix == NULL || suffix == info) | |
3909 | return ADA_NOT_RENAMING; | |
3910 | if (len != NULL) | |
3911 | *len = strlen (info) - strlen (suffix); | |
3912 | suffix += 5; | |
3913 | if (renaming_expr != NULL) | |
3914 | *renaming_expr = suffix; | |
3915 | return kind; | |
3916 | } | |
3917 | ||
3918 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
3919 | be a symbol encoding a renaming expression. BLOCK is the block | |
3920 | used to evaluate the renaming. */ | |
3921 | ||
3922 | static struct value * | |
3923 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3924 | const struct block *block) | |
3925 | { | |
3926 | const char *sym_name; | |
3927 | ||
987012b8 | 3928 | sym_name = renaming_sym->linkage_name (); |
de93309a SM |
3929 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
3930 | return evaluate_expression (expr.get ()); | |
3931 | } | |
3932 | \f | |
3933 | ||
dda83cd7 | 3934 | /* Evaluation: Function Calls */ |
de93309a SM |
3935 | |
3936 | /* Return an lvalue containing the value VAL. This is the identity on | |
3937 | lvalues, and otherwise has the side-effect of allocating memory | |
3938 | in the inferior where a copy of the value contents is copied. */ | |
3939 | ||
3940 | static struct value * | |
3941 | ensure_lval (struct value *val) | |
3942 | { | |
3943 | if (VALUE_LVAL (val) == not_lval | |
3944 | || VALUE_LVAL (val) == lval_internalvar) | |
3945 | { | |
3946 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); | |
3947 | const CORE_ADDR addr = | |
dda83cd7 | 3948 | value_as_long (value_allocate_space_in_inferior (len)); |
de93309a SM |
3949 | |
3950 | VALUE_LVAL (val) = lval_memory; | |
3951 | set_value_address (val, addr); | |
3952 | write_memory (addr, value_contents (val), len); | |
3953 | } | |
3954 | ||
3955 | return val; | |
3956 | } | |
3957 | ||
3958 | /* Given ARG, a value of type (pointer or reference to a)* | |
3959 | structure/union, extract the component named NAME from the ultimate | |
3960 | target structure/union and return it as a value with its | |
3961 | appropriate type. | |
3962 | ||
3963 | The routine searches for NAME among all members of the structure itself | |
3964 | and (recursively) among all members of any wrapper members | |
3965 | (e.g., '_parent'). | |
3966 | ||
3967 | If NO_ERR, then simply return NULL in case of error, rather than | |
3968 | calling error. */ | |
3969 | ||
3970 | static struct value * | |
3971 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) | |
3972 | { | |
3973 | struct type *t, *t1; | |
3974 | struct value *v; | |
3975 | int check_tag; | |
3976 | ||
3977 | v = NULL; | |
3978 | t1 = t = ada_check_typedef (value_type (arg)); | |
78134374 | 3979 | if (t->code () == TYPE_CODE_REF) |
de93309a SM |
3980 | { |
3981 | t1 = TYPE_TARGET_TYPE (t); | |
3982 | if (t1 == NULL) | |
3983 | goto BadValue; | |
3984 | t1 = ada_check_typedef (t1); | |
78134374 | 3985 | if (t1->code () == TYPE_CODE_PTR) |
dda83cd7 SM |
3986 | { |
3987 | arg = coerce_ref (arg); | |
3988 | t = t1; | |
3989 | } | |
de93309a SM |
3990 | } |
3991 | ||
78134374 | 3992 | while (t->code () == TYPE_CODE_PTR) |
de93309a SM |
3993 | { |
3994 | t1 = TYPE_TARGET_TYPE (t); | |
3995 | if (t1 == NULL) | |
3996 | goto BadValue; | |
3997 | t1 = ada_check_typedef (t1); | |
78134374 | 3998 | if (t1->code () == TYPE_CODE_PTR) |
dda83cd7 SM |
3999 | { |
4000 | arg = value_ind (arg); | |
4001 | t = t1; | |
4002 | } | |
de93309a | 4003 | else |
dda83cd7 | 4004 | break; |
de93309a | 4005 | } |
aeb5907d | 4006 | |
78134374 | 4007 | if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION) |
de93309a | 4008 | goto BadValue; |
52ce6436 | 4009 | |
de93309a SM |
4010 | if (t1 == t) |
4011 | v = ada_search_struct_field (name, arg, 0, t); | |
4012 | else | |
4013 | { | |
4014 | int bit_offset, bit_size, byte_offset; | |
4015 | struct type *field_type; | |
4016 | CORE_ADDR address; | |
a5ee536b | 4017 | |
78134374 | 4018 | if (t->code () == TYPE_CODE_PTR) |
de93309a SM |
4019 | address = value_address (ada_value_ind (arg)); |
4020 | else | |
4021 | address = value_address (ada_coerce_ref (arg)); | |
d2e4a39e | 4022 | |
de93309a | 4023 | /* Check to see if this is a tagged type. We also need to handle |
dda83cd7 SM |
4024 | the case where the type is a reference to a tagged type, but |
4025 | we have to be careful to exclude pointers to tagged types. | |
4026 | The latter should be shown as usual (as a pointer), whereas | |
4027 | a reference should mostly be transparent to the user. */ | |
14f9c5c9 | 4028 | |
de93309a | 4029 | if (ada_is_tagged_type (t1, 0) |
dda83cd7 SM |
4030 | || (t1->code () == TYPE_CODE_REF |
4031 | && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0))) | |
4032 | { | |
4033 | /* We first try to find the searched field in the current type. | |
de93309a | 4034 | If not found then let's look in the fixed type. */ |
14f9c5c9 | 4035 | |
dda83cd7 SM |
4036 | if (!find_struct_field (name, t1, 0, |
4037 | &field_type, &byte_offset, &bit_offset, | |
4038 | &bit_size, NULL)) | |
de93309a SM |
4039 | check_tag = 1; |
4040 | else | |
4041 | check_tag = 0; | |
dda83cd7 | 4042 | } |
de93309a SM |
4043 | else |
4044 | check_tag = 0; | |
c3e5cd34 | 4045 | |
de93309a SM |
4046 | /* Convert to fixed type in all cases, so that we have proper |
4047 | offsets to each field in unconstrained record types. */ | |
4048 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, | |
4049 | address, NULL, check_tag); | |
4050 | ||
24aa1b02 TT |
4051 | /* Resolve the dynamic type as well. */ |
4052 | arg = value_from_contents_and_address (t1, nullptr, address); | |
4053 | t1 = value_type (arg); | |
4054 | ||
de93309a | 4055 | if (find_struct_field (name, t1, 0, |
dda83cd7 SM |
4056 | &field_type, &byte_offset, &bit_offset, |
4057 | &bit_size, NULL)) | |
4058 | { | |
4059 | if (bit_size != 0) | |
4060 | { | |
4061 | if (t->code () == TYPE_CODE_REF) | |
4062 | arg = ada_coerce_ref (arg); | |
4063 | else | |
4064 | arg = ada_value_ind (arg); | |
4065 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, | |
4066 | bit_offset, bit_size, | |
4067 | field_type); | |
4068 | } | |
4069 | else | |
4070 | v = value_at_lazy (field_type, address + byte_offset); | |
4071 | } | |
c3e5cd34 | 4072 | } |
14f9c5c9 | 4073 | |
de93309a SM |
4074 | if (v != NULL || no_err) |
4075 | return v; | |
4076 | else | |
4077 | error (_("There is no member named %s."), name); | |
4078 | ||
4079 | BadValue: | |
4080 | if (no_err) | |
4081 | return NULL; | |
4082 | else | |
4083 | error (_("Attempt to extract a component of " | |
4084 | "a value that is not a record.")); | |
14f9c5c9 AS |
4085 | } |
4086 | ||
4087 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4088 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4089 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4090 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4091 | |
a93c0eb6 | 4092 | struct value * |
40bc484c | 4093 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4094 | { |
df407dfe | 4095 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4096 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e | 4097 | struct type *formal_target = |
78134374 | 4098 | formal_type->code () == TYPE_CODE_PTR |
61ee279c | 4099 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e | 4100 | struct type *actual_target = |
78134374 | 4101 | actual_type->code () == TYPE_CODE_PTR |
61ee279c | 4102 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4103 | |
4c4b4cd2 | 4104 | if (ada_is_array_descriptor_type (formal_target) |
78134374 | 4105 | && actual_target->code () == TYPE_CODE_ARRAY) |
40bc484c | 4106 | return make_array_descriptor (formal_type, actual); |
78134374 SM |
4107 | else if (formal_type->code () == TYPE_CODE_PTR |
4108 | || formal_type->code () == TYPE_CODE_REF) | |
14f9c5c9 | 4109 | { |
a84a8a0d | 4110 | struct value *result; |
5b4ee69b | 4111 | |
78134374 | 4112 | if (formal_target->code () == TYPE_CODE_ARRAY |
dda83cd7 | 4113 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4114 | result = desc_data (actual); |
78134374 | 4115 | else if (formal_type->code () != TYPE_CODE_PTR) |
dda83cd7 SM |
4116 | { |
4117 | if (VALUE_LVAL (actual) != lval_memory) | |
4118 | { | |
4119 | struct value *val; | |
4120 | ||
4121 | actual_type = ada_check_typedef (value_type (actual)); | |
4122 | val = allocate_value (actual_type); | |
4123 | memcpy ((char *) value_contents_raw (val), | |
4124 | (char *) value_contents (actual), | |
4125 | TYPE_LENGTH (actual_type)); | |
4126 | actual = ensure_lval (val); | |
4127 | } | |
4128 | result = value_addr (actual); | |
4129 | } | |
a84a8a0d JB |
4130 | else |
4131 | return actual; | |
b1af9e97 | 4132 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 | 4133 | } |
78134374 | 4134 | else if (actual_type->code () == TYPE_CODE_PTR) |
14f9c5c9 | 4135 | return ada_value_ind (actual); |
8344af1e JB |
4136 | else if (ada_is_aligner_type (formal_type)) |
4137 | { | |
4138 | /* We need to turn this parameter into an aligner type | |
4139 | as well. */ | |
4140 | struct value *aligner = allocate_value (formal_type); | |
4141 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4142 | ||
4143 | value_assign_to_component (aligner, component, actual); | |
4144 | return aligner; | |
4145 | } | |
14f9c5c9 AS |
4146 | |
4147 | return actual; | |
4148 | } | |
4149 | ||
438c98a1 JB |
4150 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4151 | type TYPE. This is usually an inefficient no-op except on some targets | |
4152 | (such as AVR) where the representation of a pointer and an address | |
4153 | differs. */ | |
4154 | ||
4155 | static CORE_ADDR | |
4156 | value_pointer (struct value *value, struct type *type) | |
4157 | { | |
438c98a1 | 4158 | unsigned len = TYPE_LENGTH (type); |
224c3ddb | 4159 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4160 | CORE_ADDR addr; |
4161 | ||
4162 | addr = value_address (value); | |
8ee511af | 4163 | gdbarch_address_to_pointer (type->arch (), type, buf, addr); |
34877895 | 4164 | addr = extract_unsigned_integer (buf, len, type_byte_order (type)); |
438c98a1 JB |
4165 | return addr; |
4166 | } | |
4167 | ||
14f9c5c9 | 4168 | |
4c4b4cd2 PH |
4169 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4170 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4171 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4172 | to-descriptor type rather than a descriptor type), a struct value * |
4173 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4174 | |
d2e4a39e | 4175 | static struct value * |
40bc484c | 4176 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4177 | { |
d2e4a39e AS |
4178 | struct type *bounds_type = desc_bounds_type (type); |
4179 | struct type *desc_type = desc_base_type (type); | |
4180 | struct value *descriptor = allocate_value (desc_type); | |
4181 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4182 | int i; |
d2e4a39e | 4183 | |
0963b4bd MS |
4184 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4185 | i > 0; i -= 1) | |
14f9c5c9 | 4186 | { |
19f220c3 JK |
4187 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4188 | ada_array_bound (arr, i, 0), | |
4189 | desc_bound_bitpos (bounds_type, i, 0), | |
4190 | desc_bound_bitsize (bounds_type, i, 0)); | |
4191 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4192 | ada_array_bound (arr, i, 1), | |
4193 | desc_bound_bitpos (bounds_type, i, 1), | |
4194 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4195 | } |
d2e4a39e | 4196 | |
40bc484c | 4197 | bounds = ensure_lval (bounds); |
d2e4a39e | 4198 | |
19f220c3 JK |
4199 | modify_field (value_type (descriptor), |
4200 | value_contents_writeable (descriptor), | |
4201 | value_pointer (ensure_lval (arr), | |
940da03e | 4202 | desc_type->field (0).type ()), |
19f220c3 JK |
4203 | fat_pntr_data_bitpos (desc_type), |
4204 | fat_pntr_data_bitsize (desc_type)); | |
4205 | ||
4206 | modify_field (value_type (descriptor), | |
4207 | value_contents_writeable (descriptor), | |
4208 | value_pointer (bounds, | |
940da03e | 4209 | desc_type->field (1).type ()), |
19f220c3 JK |
4210 | fat_pntr_bounds_bitpos (desc_type), |
4211 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4212 | |
40bc484c | 4213 | descriptor = ensure_lval (descriptor); |
14f9c5c9 | 4214 | |
78134374 | 4215 | if (type->code () == TYPE_CODE_PTR) |
14f9c5c9 AS |
4216 | return value_addr (descriptor); |
4217 | else | |
4218 | return descriptor; | |
4219 | } | |
14f9c5c9 | 4220 | \f |
dda83cd7 | 4221 | /* Symbol Cache Module */ |
3d9434b5 | 4222 | |
3d9434b5 | 4223 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4224 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4225 | on the type of entity being printed, the cache can make it as much |
4226 | as an order of magnitude faster than without it. | |
4227 | ||
4228 | The descriptive type DWARF extension has significantly reduced | |
4229 | the need for this cache, at least when DWARF is being used. However, | |
4230 | even in this case, some expensive name-based symbol searches are still | |
4231 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4232 | ||
ee01b665 JB |
4233 | /* Return the symbol cache associated to the given program space PSPACE. |
4234 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4235 | |
ee01b665 JB |
4236 | static struct ada_symbol_cache * |
4237 | ada_get_symbol_cache (struct program_space *pspace) | |
4238 | { | |
4239 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4240 | |
bdcccc56 TT |
4241 | if (pspace_data->sym_cache == nullptr) |
4242 | pspace_data->sym_cache.reset (new ada_symbol_cache); | |
ee01b665 | 4243 | |
bdcccc56 | 4244 | return pspace_data->sym_cache.get (); |
ee01b665 | 4245 | } |
3d9434b5 JB |
4246 | |
4247 | /* Clear all entries from the symbol cache. */ | |
4248 | ||
4249 | static void | |
bdcccc56 | 4250 | ada_clear_symbol_cache () |
3d9434b5 | 4251 | { |
bdcccc56 TT |
4252 | struct ada_pspace_data *pspace_data |
4253 | = get_ada_pspace_data (current_program_space); | |
ee01b665 | 4254 | |
bdcccc56 TT |
4255 | if (pspace_data->sym_cache != nullptr) |
4256 | pspace_data->sym_cache.reset (); | |
3d9434b5 JB |
4257 | } |
4258 | ||
fe978cb0 | 4259 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4260 | Return it if found, or NULL otherwise. */ |
4261 | ||
4262 | static struct cache_entry ** | |
fe978cb0 | 4263 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4264 | { |
ee01b665 JB |
4265 | struct ada_symbol_cache *sym_cache |
4266 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4267 | int h = msymbol_hash (name) % HASH_SIZE; |
4268 | struct cache_entry **e; | |
4269 | ||
ee01b665 | 4270 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4271 | { |
fe978cb0 | 4272 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
dda83cd7 | 4273 | return e; |
3d9434b5 JB |
4274 | } |
4275 | return NULL; | |
4276 | } | |
4277 | ||
fe978cb0 | 4278 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4279 | Return 1 if found, 0 otherwise. |
4280 | ||
4281 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4282 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4283 | |
96d887e8 | 4284 | static int |
fe978cb0 | 4285 | lookup_cached_symbol (const char *name, domain_enum domain, |
dda83cd7 | 4286 | struct symbol **sym, const struct block **block) |
96d887e8 | 4287 | { |
fe978cb0 | 4288 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4289 | |
4290 | if (e == NULL) | |
4291 | return 0; | |
4292 | if (sym != NULL) | |
4293 | *sym = (*e)->sym; | |
4294 | if (block != NULL) | |
4295 | *block = (*e)->block; | |
4296 | return 1; | |
96d887e8 PH |
4297 | } |
4298 | ||
3d9434b5 | 4299 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4300 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4301 | |
96d887e8 | 4302 | static void |
fe978cb0 | 4303 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
dda83cd7 | 4304 | const struct block *block) |
96d887e8 | 4305 | { |
ee01b665 JB |
4306 | struct ada_symbol_cache *sym_cache |
4307 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 | 4308 | int h; |
3d9434b5 JB |
4309 | struct cache_entry *e; |
4310 | ||
1994afbf DE |
4311 | /* Symbols for builtin types don't have a block. |
4312 | For now don't cache such symbols. */ | |
4313 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4314 | return; | |
4315 | ||
3d9434b5 JB |
4316 | /* If the symbol is a local symbol, then do not cache it, as a search |
4317 | for that symbol depends on the context. To determine whether | |
4318 | the symbol is local or not, we check the block where we found it | |
4319 | against the global and static blocks of its associated symtab. */ | |
4320 | if (sym | |
08be3fe3 | 4321 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4322 | GLOBAL_BLOCK) != block |
08be3fe3 | 4323 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4324 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4325 | return; |
4326 | ||
4327 | h = msymbol_hash (name) % HASH_SIZE; | |
e39db4db | 4328 | e = XOBNEW (&sym_cache->cache_space, cache_entry); |
ee01b665 JB |
4329 | e->next = sym_cache->root[h]; |
4330 | sym_cache->root[h] = e; | |
2ef5453b | 4331 | e->name = obstack_strdup (&sym_cache->cache_space, name); |
3d9434b5 | 4332 | e->sym = sym; |
fe978cb0 | 4333 | e->domain = domain; |
3d9434b5 | 4334 | e->block = block; |
96d887e8 | 4335 | } |
4c4b4cd2 | 4336 | \f |
dda83cd7 | 4337 | /* Symbol Lookup */ |
4c4b4cd2 | 4338 | |
b5ec771e PA |
4339 | /* Return the symbol name match type that should be used used when |
4340 | searching for all symbols matching LOOKUP_NAME. | |
c0431670 JB |
4341 | |
4342 | LOOKUP_NAME is expected to be a symbol name after transformation | |
f98b2e33 | 4343 | for Ada lookups. */ |
c0431670 | 4344 | |
b5ec771e PA |
4345 | static symbol_name_match_type |
4346 | name_match_type_from_name (const char *lookup_name) | |
c0431670 | 4347 | { |
b5ec771e PA |
4348 | return (strstr (lookup_name, "__") == NULL |
4349 | ? symbol_name_match_type::WILD | |
4350 | : symbol_name_match_type::FULL); | |
c0431670 JB |
4351 | } |
4352 | ||
4c4b4cd2 PH |
4353 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4354 | given DOMAIN, visible from lexical block BLOCK. */ | |
4355 | ||
4356 | static struct symbol * | |
4357 | standard_lookup (const char *name, const struct block *block, | |
dda83cd7 | 4358 | domain_enum domain) |
4c4b4cd2 | 4359 | { |
acbd605d | 4360 | /* Initialize it just to avoid a GCC false warning. */ |
6640a367 | 4361 | struct block_symbol sym = {}; |
4c4b4cd2 | 4362 | |
d12307c1 PMR |
4363 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4364 | return sym.symbol; | |
a2cd4f14 | 4365 | ada_lookup_encoded_symbol (name, block, domain, &sym); |
d12307c1 PMR |
4366 | cache_symbol (name, domain, sym.symbol, sym.block); |
4367 | return sym.symbol; | |
4c4b4cd2 PH |
4368 | } |
4369 | ||
4370 | ||
4371 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
1bfa81ac | 4372 | in the symbol fields of SYMS. We treat enumerals as functions, |
4c4b4cd2 PH |
4373 | since they contend in overloading in the same way. */ |
4374 | static int | |
d1183b06 | 4375 | is_nonfunction (const std::vector<struct block_symbol> &syms) |
4c4b4cd2 | 4376 | { |
d1183b06 TT |
4377 | for (const block_symbol &sym : syms) |
4378 | if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC | |
4379 | && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM | |
4380 | || SYMBOL_CLASS (sym.symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4381 | return 1; |
4382 | ||
4383 | return 0; | |
4384 | } | |
4385 | ||
4386 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4387 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4388 | |
4389 | static int | |
d2e4a39e | 4390 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4391 | { |
d2e4a39e | 4392 | if (type0 == type1) |
14f9c5c9 | 4393 | return 1; |
d2e4a39e | 4394 | if (type0 == NULL || type1 == NULL |
78134374 | 4395 | || type0->code () != type1->code ()) |
14f9c5c9 | 4396 | return 0; |
78134374 SM |
4397 | if ((type0->code () == TYPE_CODE_STRUCT |
4398 | || type0->code () == TYPE_CODE_ENUM) | |
14f9c5c9 | 4399 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL |
4c4b4cd2 | 4400 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4401 | return 1; |
d2e4a39e | 4402 | |
14f9c5c9 AS |
4403 | return 0; |
4404 | } | |
4405 | ||
4406 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4407 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4408 | |
4409 | static int | |
d2e4a39e | 4410 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4411 | { |
4412 | if (sym0 == sym1) | |
4413 | return 1; | |
176620f1 | 4414 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4415 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4416 | return 0; | |
4417 | ||
d2e4a39e | 4418 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4419 | { |
4420 | case LOC_UNDEF: | |
4421 | return 1; | |
4422 | case LOC_TYPEDEF: | |
4423 | { | |
dda83cd7 SM |
4424 | struct type *type0 = SYMBOL_TYPE (sym0); |
4425 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4426 | const char *name0 = sym0->linkage_name (); | |
4427 | const char *name1 = sym1->linkage_name (); | |
4428 | int len0 = strlen (name0); | |
4429 | ||
4430 | return | |
4431 | type0->code () == type1->code () | |
4432 | && (equiv_types (type0, type1) | |
4433 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4434 | && startswith (name1 + len0, "___XV"))); | |
14f9c5c9 AS |
4435 | } |
4436 | case LOC_CONST: | |
4437 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
dda83cd7 | 4438 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
4b610737 TT |
4439 | |
4440 | case LOC_STATIC: | |
4441 | { | |
dda83cd7 SM |
4442 | const char *name0 = sym0->linkage_name (); |
4443 | const char *name1 = sym1->linkage_name (); | |
4444 | return (strcmp (name0, name1) == 0 | |
4445 | && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1)); | |
4b610737 TT |
4446 | } |
4447 | ||
d2e4a39e AS |
4448 | default: |
4449 | return 0; | |
14f9c5c9 AS |
4450 | } |
4451 | } | |
4452 | ||
d1183b06 TT |
4453 | /* Append (SYM,BLOCK) to the end of the array of struct block_symbol |
4454 | records in RESULT. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4455 | |
4456 | static void | |
d1183b06 | 4457 | add_defn_to_vec (std::vector<struct block_symbol> &result, |
dda83cd7 SM |
4458 | struct symbol *sym, |
4459 | const struct block *block) | |
14f9c5c9 | 4460 | { |
529cad9c PH |
4461 | /* Do not try to complete stub types, as the debugger is probably |
4462 | already scanning all symbols matching a certain name at the | |
4463 | time when this function is called. Trying to replace the stub | |
4464 | type by its associated full type will cause us to restart a scan | |
4465 | which may lead to an infinite recursion. Instead, the client | |
4466 | collecting the matching symbols will end up collecting several | |
4467 | matches, with at least one of them complete. It can then filter | |
4468 | out the stub ones if needed. */ | |
4469 | ||
d1183b06 | 4470 | for (int i = result.size () - 1; i >= 0; i -= 1) |
4c4b4cd2 | 4471 | { |
d1183b06 | 4472 | if (lesseq_defined_than (sym, result[i].symbol)) |
dda83cd7 | 4473 | return; |
d1183b06 | 4474 | else if (lesseq_defined_than (result[i].symbol, sym)) |
dda83cd7 | 4475 | { |
d1183b06 TT |
4476 | result[i].symbol = sym; |
4477 | result[i].block = block; | |
dda83cd7 SM |
4478 | return; |
4479 | } | |
4c4b4cd2 PH |
4480 | } |
4481 | ||
d1183b06 TT |
4482 | struct block_symbol info; |
4483 | info.symbol = sym; | |
4484 | info.block = block; | |
4485 | result.push_back (info); | |
4c4b4cd2 PH |
4486 | } |
4487 | ||
7c7b6655 TT |
4488 | /* Return a bound minimal symbol matching NAME according to Ada |
4489 | decoding rules. Returns an invalid symbol if there is no such | |
4490 | minimal symbol. Names prefixed with "standard__" are handled | |
4491 | specially: "standard__" is first stripped off, and only static and | |
4492 | global symbols are searched. */ | |
4c4b4cd2 | 4493 | |
7c7b6655 | 4494 | struct bound_minimal_symbol |
96d887e8 | 4495 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4496 | { |
7c7b6655 | 4497 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4498 | |
7c7b6655 TT |
4499 | memset (&result, 0, sizeof (result)); |
4500 | ||
b5ec771e PA |
4501 | symbol_name_match_type match_type = name_match_type_from_name (name); |
4502 | lookup_name_info lookup_name (name, match_type); | |
4503 | ||
4504 | symbol_name_matcher_ftype *match_name | |
4505 | = ada_get_symbol_name_matcher (lookup_name); | |
4c4b4cd2 | 4506 | |
2030c079 | 4507 | for (objfile *objfile : current_program_space->objfiles ()) |
5325b9bf | 4508 | { |
7932255d | 4509 | for (minimal_symbol *msymbol : objfile->msymbols ()) |
5325b9bf | 4510 | { |
c9d95fa3 | 4511 | if (match_name (msymbol->linkage_name (), lookup_name, NULL) |
5325b9bf TT |
4512 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4513 | { | |
4514 | result.minsym = msymbol; | |
4515 | result.objfile = objfile; | |
4516 | break; | |
4517 | } | |
4518 | } | |
4519 | } | |
4c4b4cd2 | 4520 | |
7c7b6655 | 4521 | return result; |
96d887e8 | 4522 | } |
4c4b4cd2 | 4523 | |
96d887e8 PH |
4524 | /* For all subprograms that statically enclose the subprogram of the |
4525 | selected frame, add symbols matching identifier NAME in DOMAIN | |
1bfa81ac | 4526 | and their blocks to the list of data in RESULT, as for |
48b78332 JB |
4527 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4528 | with a wildcard prefix. */ | |
4c4b4cd2 | 4529 | |
96d887e8 | 4530 | static void |
d1183b06 | 4531 | add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result, |
b5ec771e PA |
4532 | const lookup_name_info &lookup_name, |
4533 | domain_enum domain) | |
96d887e8 | 4534 | { |
96d887e8 | 4535 | } |
14f9c5c9 | 4536 | |
96d887e8 PH |
4537 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4538 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4539 | |
96d887e8 PH |
4540 | static int |
4541 | is_nondebugging_type (struct type *type) | |
4542 | { | |
0d5cff50 | 4543 | const char *name = ada_type_name (type); |
5b4ee69b | 4544 | |
96d887e8 PH |
4545 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4546 | } | |
4c4b4cd2 | 4547 | |
8f17729f JB |
4548 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4549 | that are deemed "identical" for practical purposes. | |
4550 | ||
4551 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4552 | types and that their number of enumerals is identical (in other | |
1f704f76 | 4553 | words, type1->num_fields () == type2->num_fields ()). */ |
8f17729f JB |
4554 | |
4555 | static int | |
4556 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4557 | { | |
4558 | int i; | |
4559 | ||
4560 | /* The heuristic we use here is fairly conservative. We consider | |
4561 | that 2 enumerate types are identical if they have the same | |
4562 | number of enumerals and that all enumerals have the same | |
4563 | underlying value and name. */ | |
4564 | ||
4565 | /* All enums in the type should have an identical underlying value. */ | |
1f704f76 | 4566 | for (i = 0; i < type1->num_fields (); i++) |
14e75d8e | 4567 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4568 | return 0; |
4569 | ||
4570 | /* All enumerals should also have the same name (modulo any numerical | |
4571 | suffix). */ | |
1f704f76 | 4572 | for (i = 0; i < type1->num_fields (); i++) |
8f17729f | 4573 | { |
0d5cff50 DE |
4574 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4575 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4576 | int len_1 = strlen (name_1); |
4577 | int len_2 = strlen (name_2); | |
4578 | ||
4579 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4580 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4581 | if (len_1 != len_2 | |
dda83cd7 | 4582 | || strncmp (TYPE_FIELD_NAME (type1, i), |
8f17729f JB |
4583 | TYPE_FIELD_NAME (type2, i), |
4584 | len_1) != 0) | |
4585 | return 0; | |
4586 | } | |
4587 | ||
4588 | return 1; | |
4589 | } | |
4590 | ||
4591 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4592 | that are deemed "identical" for practical purposes. Sometimes, | |
4593 | enumerals are not strictly identical, but their types are so similar | |
4594 | that they can be considered identical. | |
4595 | ||
4596 | For instance, consider the following code: | |
4597 | ||
4598 | type Color is (Black, Red, Green, Blue, White); | |
4599 | type RGB_Color is new Color range Red .. Blue; | |
4600 | ||
4601 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4602 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4603 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4604 | As a result, when an expression references any of the enumeral | |
4605 | by name (Eg. "print green"), the expression is technically | |
4606 | ambiguous and the user should be asked to disambiguate. But | |
4607 | doing so would only hinder the user, since it wouldn't matter | |
4608 | what choice he makes, the outcome would always be the same. | |
4609 | So, for practical purposes, we consider them as the same. */ | |
4610 | ||
4611 | static int | |
54d343a2 | 4612 | symbols_are_identical_enums (const std::vector<struct block_symbol> &syms) |
8f17729f JB |
4613 | { |
4614 | int i; | |
4615 | ||
4616 | /* Before performing a thorough comparison check of each type, | |
4617 | we perform a series of inexpensive checks. We expect that these | |
4618 | checks will quickly fail in the vast majority of cases, and thus | |
4619 | help prevent the unnecessary use of a more expensive comparison. | |
4620 | Said comparison also expects us to make some of these checks | |
4621 | (see ada_identical_enum_types_p). */ | |
4622 | ||
4623 | /* Quick check: All symbols should have an enum type. */ | |
54d343a2 | 4624 | for (i = 0; i < syms.size (); i++) |
78134374 | 4625 | if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM) |
8f17729f JB |
4626 | return 0; |
4627 | ||
4628 | /* Quick check: They should all have the same value. */ | |
54d343a2 | 4629 | for (i = 1; i < syms.size (); i++) |
d12307c1 | 4630 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
4631 | return 0; |
4632 | ||
4633 | /* Quick check: They should all have the same number of enumerals. */ | |
54d343a2 | 4634 | for (i = 1; i < syms.size (); i++) |
1f704f76 | 4635 | if (SYMBOL_TYPE (syms[i].symbol)->num_fields () |
dda83cd7 | 4636 | != SYMBOL_TYPE (syms[0].symbol)->num_fields ()) |
8f17729f JB |
4637 | return 0; |
4638 | ||
4639 | /* All the sanity checks passed, so we might have a set of | |
4640 | identical enumeration types. Perform a more complete | |
4641 | comparison of the type of each symbol. */ | |
54d343a2 | 4642 | for (i = 1; i < syms.size (); i++) |
d12307c1 | 4643 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
dda83cd7 | 4644 | SYMBOL_TYPE (syms[0].symbol))) |
8f17729f JB |
4645 | return 0; |
4646 | ||
4647 | return 1; | |
4648 | } | |
4649 | ||
54d343a2 | 4650 | /* Remove any non-debugging symbols in SYMS that definitely |
96d887e8 PH |
4651 | duplicate other symbols in the list (The only case I know of where |
4652 | this happens is when object files containing stabs-in-ecoff are | |
4653 | linked with files containing ordinary ecoff debugging symbols (or no | |
1bfa81ac | 4654 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. */ |
4c4b4cd2 | 4655 | |
d1183b06 | 4656 | static void |
54d343a2 | 4657 | remove_extra_symbols (std::vector<struct block_symbol> *syms) |
96d887e8 PH |
4658 | { |
4659 | int i, j; | |
4c4b4cd2 | 4660 | |
8f17729f JB |
4661 | /* We should never be called with less than 2 symbols, as there |
4662 | cannot be any extra symbol in that case. But it's easy to | |
4663 | handle, since we have nothing to do in that case. */ | |
54d343a2 | 4664 | if (syms->size () < 2) |
d1183b06 | 4665 | return; |
8f17729f | 4666 | |
96d887e8 | 4667 | i = 0; |
54d343a2 | 4668 | while (i < syms->size ()) |
96d887e8 | 4669 | { |
a35ddb44 | 4670 | int remove_p = 0; |
339c13b6 JB |
4671 | |
4672 | /* If two symbols have the same name and one of them is a stub type, | |
dda83cd7 | 4673 | the get rid of the stub. */ |
339c13b6 | 4674 | |
e46d3488 | 4675 | if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub () |
dda83cd7 SM |
4676 | && (*syms)[i].symbol->linkage_name () != NULL) |
4677 | { | |
4678 | for (j = 0; j < syms->size (); j++) | |
4679 | { | |
4680 | if (j != i | |
4681 | && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub () | |
4682 | && (*syms)[j].symbol->linkage_name () != NULL | |
4683 | && strcmp ((*syms)[i].symbol->linkage_name (), | |
4684 | (*syms)[j].symbol->linkage_name ()) == 0) | |
4685 | remove_p = 1; | |
4686 | } | |
4687 | } | |
339c13b6 JB |
4688 | |
4689 | /* Two symbols with the same name, same class and same address | |
dda83cd7 | 4690 | should be identical. */ |
339c13b6 | 4691 | |
987012b8 | 4692 | else if ((*syms)[i].symbol->linkage_name () != NULL |
dda83cd7 SM |
4693 | && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC |
4694 | && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol))) | |
4695 | { | |
4696 | for (j = 0; j < syms->size (); j += 1) | |
4697 | { | |
4698 | if (i != j | |
4699 | && (*syms)[j].symbol->linkage_name () != NULL | |
4700 | && strcmp ((*syms)[i].symbol->linkage_name (), | |
4701 | (*syms)[j].symbol->linkage_name ()) == 0 | |
4702 | && SYMBOL_CLASS ((*syms)[i].symbol) | |
54d343a2 | 4703 | == SYMBOL_CLASS ((*syms)[j].symbol) |
dda83cd7 SM |
4704 | && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol) |
4705 | == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol)) | |
4706 | remove_p = 1; | |
4707 | } | |
4708 | } | |
339c13b6 | 4709 | |
a35ddb44 | 4710 | if (remove_p) |
54d343a2 | 4711 | syms->erase (syms->begin () + i); |
1b788fb6 TT |
4712 | else |
4713 | i += 1; | |
14f9c5c9 | 4714 | } |
8f17729f JB |
4715 | |
4716 | /* If all the remaining symbols are identical enumerals, then | |
4717 | just keep the first one and discard the rest. | |
4718 | ||
4719 | Unlike what we did previously, we do not discard any entry | |
4720 | unless they are ALL identical. This is because the symbol | |
4721 | comparison is not a strict comparison, but rather a practical | |
4722 | comparison. If all symbols are considered identical, then | |
4723 | we can just go ahead and use the first one and discard the rest. | |
4724 | But if we cannot reduce the list to a single element, we have | |
4725 | to ask the user to disambiguate anyways. And if we have to | |
4726 | present a multiple-choice menu, it's less confusing if the list | |
4727 | isn't missing some choices that were identical and yet distinct. */ | |
54d343a2 TT |
4728 | if (symbols_are_identical_enums (*syms)) |
4729 | syms->resize (1); | |
14f9c5c9 AS |
4730 | } |
4731 | ||
96d887e8 PH |
4732 | /* Given a type that corresponds to a renaming entity, use the type name |
4733 | to extract the scope (package name or function name, fully qualified, | |
4734 | and following the GNAT encoding convention) where this renaming has been | |
49d83361 | 4735 | defined. */ |
4c4b4cd2 | 4736 | |
49d83361 | 4737 | static std::string |
96d887e8 | 4738 | xget_renaming_scope (struct type *renaming_type) |
14f9c5c9 | 4739 | { |
96d887e8 | 4740 | /* The renaming types adhere to the following convention: |
0963b4bd | 4741 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4742 | So, to extract the scope, we search for the "___XR" extension, |
4743 | and then backtrack until we find the first "__". */ | |
76a01679 | 4744 | |
7d93a1e0 | 4745 | const char *name = renaming_type->name (); |
108d56a4 SM |
4746 | const char *suffix = strstr (name, "___XR"); |
4747 | const char *last; | |
14f9c5c9 | 4748 | |
96d887e8 PH |
4749 | /* Now, backtrack a bit until we find the first "__". Start looking |
4750 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4751 | |
96d887e8 PH |
4752 | for (last = suffix - 3; last > name; last--) |
4753 | if (last[0] == '_' && last[1] == '_') | |
4754 | break; | |
76a01679 | 4755 | |
96d887e8 | 4756 | /* Make a copy of scope and return it. */ |
49d83361 | 4757 | return std::string (name, last); |
4c4b4cd2 PH |
4758 | } |
4759 | ||
96d887e8 | 4760 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4761 | |
96d887e8 PH |
4762 | static int |
4763 | is_package_name (const char *name) | |
4c4b4cd2 | 4764 | { |
96d887e8 PH |
4765 | /* Here, We take advantage of the fact that no symbols are generated |
4766 | for packages, while symbols are generated for each function. | |
4767 | So the condition for NAME represent a package becomes equivalent | |
4768 | to NAME not existing in our list of symbols. There is only one | |
4769 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4770 | |
96d887e8 PH |
4771 | /* If it is a function that has not been defined at library level, |
4772 | then we should be able to look it up in the symbols. */ | |
4773 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4774 | return 0; | |
14f9c5c9 | 4775 | |
96d887e8 PH |
4776 | /* Library-level function names start with "_ada_". See if function |
4777 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4778 | |
96d887e8 | 4779 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4780 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4781 | if (strstr (name, "__") != NULL) |
4782 | return 0; | |
4c4b4cd2 | 4783 | |
528e1572 | 4784 | std::string fun_name = string_printf ("_ada_%s", name); |
14f9c5c9 | 4785 | |
528e1572 | 4786 | return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL); |
96d887e8 | 4787 | } |
14f9c5c9 | 4788 | |
96d887e8 | 4789 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4790 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4791 | |
96d887e8 | 4792 | static int |
0d5cff50 | 4793 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4794 | { |
aeb5907d JB |
4795 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) |
4796 | return 0; | |
4797 | ||
49d83361 | 4798 | std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym)); |
14f9c5c9 | 4799 | |
96d887e8 | 4800 | /* If the rename has been defined in a package, then it is visible. */ |
49d83361 TT |
4801 | if (is_package_name (scope.c_str ())) |
4802 | return 0; | |
14f9c5c9 | 4803 | |
96d887e8 PH |
4804 | /* Check that the rename is in the current function scope by checking |
4805 | that its name starts with SCOPE. */ | |
76a01679 | 4806 | |
96d887e8 PH |
4807 | /* If the function name starts with "_ada_", it means that it is |
4808 | a library-level function. Strip this prefix before doing the | |
4809 | comparison, as the encoding for the renaming does not contain | |
4810 | this prefix. */ | |
61012eef | 4811 | if (startswith (function_name, "_ada_")) |
96d887e8 | 4812 | function_name += 5; |
f26caa11 | 4813 | |
49d83361 | 4814 | return !startswith (function_name, scope.c_str ()); |
f26caa11 PH |
4815 | } |
4816 | ||
aeb5907d JB |
4817 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4818 | is not visible from the function associated with CURRENT_BLOCK or | |
4819 | that is superfluous due to the presence of more specific renaming | |
4820 | information. Places surviving symbols in the initial entries of | |
d1183b06 TT |
4821 | SYMS. |
4822 | ||
96d887e8 | 4823 | Rationale: |
aeb5907d JB |
4824 | First, in cases where an object renaming is implemented as a |
4825 | reference variable, GNAT may produce both the actual reference | |
4826 | variable and the renaming encoding. In this case, we discard the | |
4827 | latter. | |
4828 | ||
4829 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4830 | entity. Unfortunately, STABS currently does not support the definition |
4831 | of types that are local to a given lexical block, so all renamings types | |
4832 | are emitted at library level. As a consequence, if an application | |
4833 | contains two renaming entities using the same name, and a user tries to | |
4834 | print the value of one of these entities, the result of the ada symbol | |
4835 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4836 | |
96d887e8 PH |
4837 | This function partially covers for this limitation by attempting to |
4838 | remove from the SYMS list renaming symbols that should be visible | |
4839 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4840 | method with the current information available. The implementation | |
4841 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4842 | ||
4843 | - When the user tries to print a rename in a function while there | |
dda83cd7 SM |
4844 | is another rename entity defined in a package: Normally, the |
4845 | rename in the function has precedence over the rename in the | |
4846 | package, so the latter should be removed from the list. This is | |
4847 | currently not the case. | |
4848 | ||
96d887e8 | 4849 | - This function will incorrectly remove valid renames if |
dda83cd7 SM |
4850 | the CURRENT_BLOCK corresponds to a function which symbol name |
4851 | has been changed by an "Export" pragma. As a consequence, | |
4852 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4853 | |
d1183b06 | 4854 | static void |
54d343a2 TT |
4855 | remove_irrelevant_renamings (std::vector<struct block_symbol> *syms, |
4856 | const struct block *current_block) | |
4c4b4cd2 PH |
4857 | { |
4858 | struct symbol *current_function; | |
0d5cff50 | 4859 | const char *current_function_name; |
4c4b4cd2 | 4860 | int i; |
aeb5907d JB |
4861 | int is_new_style_renaming; |
4862 | ||
4863 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4864 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4865 | First, zero out such symbols, then compress. */ |
aeb5907d | 4866 | is_new_style_renaming = 0; |
54d343a2 | 4867 | for (i = 0; i < syms->size (); i += 1) |
aeb5907d | 4868 | { |
54d343a2 TT |
4869 | struct symbol *sym = (*syms)[i].symbol; |
4870 | const struct block *block = (*syms)[i].block; | |
aeb5907d JB |
4871 | const char *name; |
4872 | const char *suffix; | |
4873 | ||
4874 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4875 | continue; | |
987012b8 | 4876 | name = sym->linkage_name (); |
aeb5907d JB |
4877 | suffix = strstr (name, "___XR"); |
4878 | ||
4879 | if (suffix != NULL) | |
4880 | { | |
4881 | int name_len = suffix - name; | |
4882 | int j; | |
5b4ee69b | 4883 | |
aeb5907d | 4884 | is_new_style_renaming = 1; |
54d343a2 TT |
4885 | for (j = 0; j < syms->size (); j += 1) |
4886 | if (i != j && (*syms)[j].symbol != NULL | |
987012b8 | 4887 | && strncmp (name, (*syms)[j].symbol->linkage_name (), |
aeb5907d | 4888 | name_len) == 0 |
54d343a2 TT |
4889 | && block == (*syms)[j].block) |
4890 | (*syms)[j].symbol = NULL; | |
aeb5907d JB |
4891 | } |
4892 | } | |
4893 | if (is_new_style_renaming) | |
4894 | { | |
4895 | int j, k; | |
4896 | ||
54d343a2 TT |
4897 | for (j = k = 0; j < syms->size (); j += 1) |
4898 | if ((*syms)[j].symbol != NULL) | |
aeb5907d | 4899 | { |
54d343a2 | 4900 | (*syms)[k] = (*syms)[j]; |
aeb5907d JB |
4901 | k += 1; |
4902 | } | |
d1183b06 TT |
4903 | syms->resize (k); |
4904 | return; | |
aeb5907d | 4905 | } |
4c4b4cd2 PH |
4906 | |
4907 | /* Extract the function name associated to CURRENT_BLOCK. | |
4908 | Abort if unable to do so. */ | |
76a01679 | 4909 | |
4c4b4cd2 | 4910 | if (current_block == NULL) |
d1183b06 | 4911 | return; |
76a01679 | 4912 | |
7f0df278 | 4913 | current_function = block_linkage_function (current_block); |
4c4b4cd2 | 4914 | if (current_function == NULL) |
d1183b06 | 4915 | return; |
4c4b4cd2 | 4916 | |
987012b8 | 4917 | current_function_name = current_function->linkage_name (); |
4c4b4cd2 | 4918 | if (current_function_name == NULL) |
d1183b06 | 4919 | return; |
4c4b4cd2 PH |
4920 | |
4921 | /* Check each of the symbols, and remove it from the list if it is | |
4922 | a type corresponding to a renaming that is out of the scope of | |
4923 | the current block. */ | |
4924 | ||
4925 | i = 0; | |
54d343a2 | 4926 | while (i < syms->size ()) |
4c4b4cd2 | 4927 | { |
54d343a2 | 4928 | if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL) |
dda83cd7 SM |
4929 | == ADA_OBJECT_RENAMING |
4930 | && old_renaming_is_invisible ((*syms)[i].symbol, | |
54d343a2 TT |
4931 | current_function_name)) |
4932 | syms->erase (syms->begin () + i); | |
4c4b4cd2 | 4933 | else |
dda83cd7 | 4934 | i += 1; |
4c4b4cd2 | 4935 | } |
4c4b4cd2 PH |
4936 | } |
4937 | ||
d1183b06 | 4938 | /* Add to RESULT all symbols from BLOCK (and its super-blocks) |
339c13b6 JB |
4939 | whose name and domain match NAME and DOMAIN respectively. |
4940 | If no match was found, then extend the search to "enclosing" | |
4941 | routines (in other words, if we're inside a nested function, | |
4942 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
4943 | If WILD_MATCH_P is nonzero, perform the naming matching in |
4944 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 | 4945 | |
d1183b06 | 4946 | Note: This function assumes that RESULT has 0 (zero) element in it. */ |
339c13b6 JB |
4947 | |
4948 | static void | |
d1183b06 | 4949 | ada_add_local_symbols (std::vector<struct block_symbol> &result, |
b5ec771e PA |
4950 | const lookup_name_info &lookup_name, |
4951 | const struct block *block, domain_enum domain) | |
339c13b6 JB |
4952 | { |
4953 | int block_depth = 0; | |
4954 | ||
4955 | while (block != NULL) | |
4956 | { | |
4957 | block_depth += 1; | |
d1183b06 | 4958 | ada_add_block_symbols (result, block, lookup_name, domain, NULL); |
339c13b6 JB |
4959 | |
4960 | /* If we found a non-function match, assume that's the one. */ | |
d1183b06 | 4961 | if (is_nonfunction (result)) |
dda83cd7 | 4962 | return; |
339c13b6 JB |
4963 | |
4964 | block = BLOCK_SUPERBLOCK (block); | |
4965 | } | |
4966 | ||
4967 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4968 | enclosing subprogram. */ | |
d1183b06 TT |
4969 | if (result.empty () && block_depth > 2) |
4970 | add_symbols_from_enclosing_procs (result, lookup_name, domain); | |
339c13b6 JB |
4971 | } |
4972 | ||
2315bb2d | 4973 | /* An object of this type is used as the callback argument when |
40658b94 | 4974 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4975 | |
40658b94 | 4976 | struct match_data |
ccefe4c4 | 4977 | { |
1bfa81ac TT |
4978 | explicit match_data (std::vector<struct block_symbol> *rp) |
4979 | : resultp (rp) | |
4980 | { | |
4981 | } | |
4982 | DISABLE_COPY_AND_ASSIGN (match_data); | |
4983 | ||
2315bb2d TT |
4984 | bool operator() (struct block_symbol *bsym); |
4985 | ||
1bfa81ac | 4986 | struct objfile *objfile = nullptr; |
d1183b06 | 4987 | std::vector<struct block_symbol> *resultp; |
1bfa81ac | 4988 | struct symbol *arg_sym = nullptr; |
1178743e | 4989 | bool found_sym = false; |
ccefe4c4 TT |
4990 | }; |
4991 | ||
2315bb2d TT |
4992 | /* A callback for add_nonlocal_symbols that adds symbol, found in |
4993 | BSYM, to a list of symbols. */ | |
ccefe4c4 | 4994 | |
2315bb2d TT |
4995 | bool |
4996 | match_data::operator() (struct block_symbol *bsym) | |
ccefe4c4 | 4997 | { |
199b4314 TT |
4998 | const struct block *block = bsym->block; |
4999 | struct symbol *sym = bsym->symbol; | |
5000 | ||
40658b94 PH |
5001 | if (sym == NULL) |
5002 | { | |
2315bb2d TT |
5003 | if (!found_sym && arg_sym != NULL) |
5004 | add_defn_to_vec (*resultp, | |
5005 | fixup_symbol_section (arg_sym, objfile), | |
40658b94 | 5006 | block); |
2315bb2d TT |
5007 | found_sym = false; |
5008 | arg_sym = NULL; | |
40658b94 PH |
5009 | } |
5010 | else | |
5011 | { | |
5012 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
199b4314 | 5013 | return true; |
40658b94 | 5014 | else if (SYMBOL_IS_ARGUMENT (sym)) |
2315bb2d | 5015 | arg_sym = sym; |
40658b94 PH |
5016 | else |
5017 | { | |
2315bb2d TT |
5018 | found_sym = true; |
5019 | add_defn_to_vec (*resultp, | |
5020 | fixup_symbol_section (sym, objfile), | |
40658b94 PH |
5021 | block); |
5022 | } | |
5023 | } | |
199b4314 | 5024 | return true; |
40658b94 PH |
5025 | } |
5026 | ||
b5ec771e PA |
5027 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are |
5028 | targeted by renamings matching LOOKUP_NAME in BLOCK. Add these | |
1bfa81ac | 5029 | symbols to RESULT. Return whether we found such symbols. */ |
22cee43f PMR |
5030 | |
5031 | static int | |
d1183b06 | 5032 | ada_add_block_renamings (std::vector<struct block_symbol> &result, |
22cee43f | 5033 | const struct block *block, |
b5ec771e PA |
5034 | const lookup_name_info &lookup_name, |
5035 | domain_enum domain) | |
22cee43f PMR |
5036 | { |
5037 | struct using_direct *renaming; | |
d1183b06 | 5038 | int defns_mark = result.size (); |
22cee43f | 5039 | |
b5ec771e PA |
5040 | symbol_name_matcher_ftype *name_match |
5041 | = ada_get_symbol_name_matcher (lookup_name); | |
5042 | ||
22cee43f PMR |
5043 | for (renaming = block_using (block); |
5044 | renaming != NULL; | |
5045 | renaming = renaming->next) | |
5046 | { | |
5047 | const char *r_name; | |
22cee43f PMR |
5048 | |
5049 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5050 | already traversing it. | |
5051 | ||
5052 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5053 | C++/Fortran support: skip namespace imports that use them. */ | |
5054 | if (renaming->searched | |
5055 | || (renaming->import_src != NULL | |
5056 | && renaming->import_src[0] != '\0') | |
5057 | || (renaming->import_dest != NULL | |
5058 | && renaming->import_dest[0] != '\0')) | |
5059 | continue; | |
5060 | renaming->searched = 1; | |
5061 | ||
5062 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5063 | pull its own multiple overloads. In theory, we should be able to do | |
5064 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5065 | not a simple name. But in order to do this, we would need to enhance | |
5066 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5067 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5068 | namespace machinery. */ | |
5069 | r_name = (renaming->alias != NULL | |
5070 | ? renaming->alias | |
5071 | : renaming->declaration); | |
b5ec771e PA |
5072 | if (name_match (r_name, lookup_name, NULL)) |
5073 | { | |
5074 | lookup_name_info decl_lookup_name (renaming->declaration, | |
5075 | lookup_name.match_type ()); | |
d1183b06 | 5076 | ada_add_all_symbols (result, block, decl_lookup_name, domain, |
b5ec771e PA |
5077 | 1, NULL); |
5078 | } | |
22cee43f PMR |
5079 | renaming->searched = 0; |
5080 | } | |
d1183b06 | 5081 | return result.size () != defns_mark; |
22cee43f PMR |
5082 | } |
5083 | ||
db230ce3 JB |
5084 | /* Implements compare_names, but only applying the comparision using |
5085 | the given CASING. */ | |
5b4ee69b | 5086 | |
40658b94 | 5087 | static int |
db230ce3 JB |
5088 | compare_names_with_case (const char *string1, const char *string2, |
5089 | enum case_sensitivity casing) | |
40658b94 PH |
5090 | { |
5091 | while (*string1 != '\0' && *string2 != '\0') | |
5092 | { | |
db230ce3 JB |
5093 | char c1, c2; |
5094 | ||
40658b94 PH |
5095 | if (isspace (*string1) || isspace (*string2)) |
5096 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5097 | |
5098 | if (casing == case_sensitive_off) | |
5099 | { | |
5100 | c1 = tolower (*string1); | |
5101 | c2 = tolower (*string2); | |
5102 | } | |
5103 | else | |
5104 | { | |
5105 | c1 = *string1; | |
5106 | c2 = *string2; | |
5107 | } | |
5108 | if (c1 != c2) | |
40658b94 | 5109 | break; |
db230ce3 | 5110 | |
40658b94 PH |
5111 | string1 += 1; |
5112 | string2 += 1; | |
5113 | } | |
db230ce3 | 5114 | |
40658b94 PH |
5115 | switch (*string1) |
5116 | { | |
5117 | case '(': | |
5118 | return strcmp_iw_ordered (string1, string2); | |
5119 | case '_': | |
5120 | if (*string2 == '\0') | |
5121 | { | |
052874e8 | 5122 | if (is_name_suffix (string1)) |
40658b94 PH |
5123 | return 0; |
5124 | else | |
1a1d5513 | 5125 | return 1; |
40658b94 | 5126 | } |
dbb8534f | 5127 | /* FALLTHROUGH */ |
40658b94 PH |
5128 | default: |
5129 | if (*string2 == '(') | |
5130 | return strcmp_iw_ordered (string1, string2); | |
5131 | else | |
db230ce3 JB |
5132 | { |
5133 | if (casing == case_sensitive_off) | |
5134 | return tolower (*string1) - tolower (*string2); | |
5135 | else | |
5136 | return *string1 - *string2; | |
5137 | } | |
40658b94 | 5138 | } |
ccefe4c4 TT |
5139 | } |
5140 | ||
db230ce3 JB |
5141 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5142 | Compatible with strcmp_iw_ordered in that... | |
5143 | ||
5144 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5145 | ||
5146 | ... implies... | |
5147 | ||
5148 | compare_names (STRING1, STRING2) <= 0 | |
5149 | ||
5150 | (they may differ as to what symbols compare equal). */ | |
5151 | ||
5152 | static int | |
5153 | compare_names (const char *string1, const char *string2) | |
5154 | { | |
5155 | int result; | |
5156 | ||
5157 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5158 | a case-insensitive comparison first, and only resort to | |
5159 | a second, case-sensitive, comparison if the first one was | |
5160 | not sufficient to differentiate the two strings. */ | |
5161 | ||
5162 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5163 | if (result == 0) | |
5164 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5165 | ||
5166 | return result; | |
5167 | } | |
5168 | ||
b5ec771e PA |
5169 | /* Convenience function to get at the Ada encoded lookup name for |
5170 | LOOKUP_NAME, as a C string. */ | |
5171 | ||
5172 | static const char * | |
5173 | ada_lookup_name (const lookup_name_info &lookup_name) | |
5174 | { | |
5175 | return lookup_name.ada ().lookup_name ().c_str (); | |
5176 | } | |
5177 | ||
1bfa81ac | 5178 | /* Add to RESULT all non-local symbols whose name and domain match |
b5ec771e PA |
5179 | LOOKUP_NAME and DOMAIN respectively. The search is performed on |
5180 | GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK | |
5181 | symbols otherwise. */ | |
339c13b6 JB |
5182 | |
5183 | static void | |
d1183b06 | 5184 | add_nonlocal_symbols (std::vector<struct block_symbol> &result, |
b5ec771e PA |
5185 | const lookup_name_info &lookup_name, |
5186 | domain_enum domain, int global) | |
339c13b6 | 5187 | { |
1bfa81ac | 5188 | struct match_data data (&result); |
339c13b6 | 5189 | |
b5ec771e PA |
5190 | bool is_wild_match = lookup_name.ada ().wild_match_p (); |
5191 | ||
2030c079 | 5192 | for (objfile *objfile : current_program_space->objfiles ()) |
40658b94 PH |
5193 | { |
5194 | data.objfile = objfile; | |
5195 | ||
2315bb2d | 5196 | objfile->map_matching_symbols (lookup_name, domain, global, data, |
4d080b46 | 5197 | is_wild_match ? NULL : compare_names); |
22cee43f | 5198 | |
b669c953 | 5199 | for (compunit_symtab *cu : objfile->compunits ()) |
22cee43f PMR |
5200 | { |
5201 | const struct block *global_block | |
5202 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5203 | ||
d1183b06 | 5204 | if (ada_add_block_renamings (result, global_block, lookup_name, |
b5ec771e | 5205 | domain)) |
1178743e | 5206 | data.found_sym = true; |
22cee43f | 5207 | } |
40658b94 PH |
5208 | } |
5209 | ||
d1183b06 | 5210 | if (result.empty () && global && !is_wild_match) |
40658b94 | 5211 | { |
b5ec771e | 5212 | const char *name = ada_lookup_name (lookup_name); |
e0802d59 TT |
5213 | std::string bracket_name = std::string ("<_ada_") + name + '>'; |
5214 | lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL); | |
b5ec771e | 5215 | |
2030c079 | 5216 | for (objfile *objfile : current_program_space->objfiles ()) |
dda83cd7 | 5217 | { |
40658b94 | 5218 | data.objfile = objfile; |
2315bb2d | 5219 | objfile->map_matching_symbols (name1, domain, global, data, |
4d080b46 | 5220 | compare_names); |
40658b94 PH |
5221 | } |
5222 | } | |
339c13b6 JB |
5223 | } |
5224 | ||
b5ec771e PA |
5225 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if |
5226 | FULL_SEARCH is non-zero, enclosing scope and in global scopes, | |
1bfa81ac | 5227 | returning the number of matches. Add these to RESULT. |
4eeaa230 | 5228 | |
22cee43f PMR |
5229 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5230 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5231 | is the one match returned (no other matches in that or |
d9680e73 | 5232 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5233 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5234 | |
b5ec771e PA |
5235 | Names prefixed with "standard__" are handled specially: |
5236 | "standard__" is first stripped off (by the lookup_name | |
5237 | constructor), and only static and global symbols are searched. | |
14f9c5c9 | 5238 | |
22cee43f PMR |
5239 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5240 | to lookup global symbols. */ | |
5241 | ||
5242 | static void | |
d1183b06 | 5243 | ada_add_all_symbols (std::vector<struct block_symbol> &result, |
22cee43f | 5244 | const struct block *block, |
b5ec771e | 5245 | const lookup_name_info &lookup_name, |
22cee43f PMR |
5246 | domain_enum domain, |
5247 | int full_search, | |
5248 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5249 | { |
5250 | struct symbol *sym; | |
14f9c5c9 | 5251 | |
22cee43f PMR |
5252 | if (made_global_lookup_p) |
5253 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5254 | |
5255 | /* Special case: If the user specifies a symbol name inside package | |
5256 | Standard, do a non-wild matching of the symbol name without | |
5257 | the "standard__" prefix. This was primarily introduced in order | |
5258 | to allow the user to specifically access the standard exceptions | |
5259 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5260 | is ambiguous (due to the user defining its own Constraint_Error | |
5261 | entity inside its program). */ | |
b5ec771e PA |
5262 | if (lookup_name.ada ().standard_p ()) |
5263 | block = NULL; | |
4c4b4cd2 | 5264 | |
339c13b6 | 5265 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5266 | |
4eeaa230 DE |
5267 | if (block != NULL) |
5268 | { | |
5269 | if (full_search) | |
d1183b06 | 5270 | ada_add_local_symbols (result, lookup_name, block, domain); |
4eeaa230 DE |
5271 | else |
5272 | { | |
5273 | /* In the !full_search case we're are being called by | |
4009ee92 | 5274 | iterate_over_symbols, and we don't want to search |
4eeaa230 | 5275 | superblocks. */ |
d1183b06 | 5276 | ada_add_block_symbols (result, block, lookup_name, domain, NULL); |
4eeaa230 | 5277 | } |
d1183b06 | 5278 | if (!result.empty () || !full_search) |
22cee43f | 5279 | return; |
4eeaa230 | 5280 | } |
d2e4a39e | 5281 | |
339c13b6 JB |
5282 | /* No non-global symbols found. Check our cache to see if we have |
5283 | already performed this search before. If we have, then return | |
5284 | the same result. */ | |
5285 | ||
b5ec771e PA |
5286 | if (lookup_cached_symbol (ada_lookup_name (lookup_name), |
5287 | domain, &sym, &block)) | |
4c4b4cd2 PH |
5288 | { |
5289 | if (sym != NULL) | |
d1183b06 | 5290 | add_defn_to_vec (result, sym, block); |
22cee43f | 5291 | return; |
4c4b4cd2 | 5292 | } |
14f9c5c9 | 5293 | |
22cee43f PMR |
5294 | if (made_global_lookup_p) |
5295 | *made_global_lookup_p = 1; | |
b1eedac9 | 5296 | |
339c13b6 JB |
5297 | /* Search symbols from all global blocks. */ |
5298 | ||
d1183b06 | 5299 | add_nonlocal_symbols (result, lookup_name, domain, 1); |
d2e4a39e | 5300 | |
4c4b4cd2 | 5301 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5302 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5303 | |
d1183b06 TT |
5304 | if (result.empty ()) |
5305 | add_nonlocal_symbols (result, lookup_name, domain, 0); | |
22cee43f PMR |
5306 | } |
5307 | ||
b5ec771e | 5308 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH |
d1183b06 TT |
5309 | is non-zero, enclosing scope and in global scopes. |
5310 | ||
5311 | Returns (SYM,BLOCK) tuples, indicating the symbols found and the | |
5312 | blocks and symbol tables (if any) in which they were found. | |
22cee43f PMR |
5313 | |
5314 | When full_search is non-zero, any non-function/non-enumeral | |
5315 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5316 | is the one match returned (no other matches in that or | |
5317 | enclosing blocks is returned). If there are any matches in or | |
5318 | surrounding BLOCK, then these alone are returned. | |
5319 | ||
5320 | Names prefixed with "standard__" are handled specially: "standard__" | |
5321 | is first stripped off, and only static and global symbols are searched. */ | |
5322 | ||
d1183b06 | 5323 | static std::vector<struct block_symbol> |
b5ec771e PA |
5324 | ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name, |
5325 | const struct block *block, | |
22cee43f | 5326 | domain_enum domain, |
22cee43f PMR |
5327 | int full_search) |
5328 | { | |
22cee43f | 5329 | int syms_from_global_search; |
d1183b06 | 5330 | std::vector<struct block_symbol> results; |
22cee43f | 5331 | |
d1183b06 | 5332 | ada_add_all_symbols (results, block, lookup_name, |
b5ec771e | 5333 | domain, full_search, &syms_from_global_search); |
14f9c5c9 | 5334 | |
d1183b06 | 5335 | remove_extra_symbols (&results); |
4c4b4cd2 | 5336 | |
d1183b06 | 5337 | if (results.empty () && full_search && syms_from_global_search) |
b5ec771e | 5338 | cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL); |
14f9c5c9 | 5339 | |
d1183b06 | 5340 | if (results.size () == 1 && full_search && syms_from_global_search) |
b5ec771e | 5341 | cache_symbol (ada_lookup_name (lookup_name), domain, |
d1183b06 | 5342 | results[0].symbol, results[0].block); |
ec6a20c2 | 5343 | |
d1183b06 TT |
5344 | remove_irrelevant_renamings (&results, block); |
5345 | return results; | |
14f9c5c9 AS |
5346 | } |
5347 | ||
b5ec771e | 5348 | /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and |
d1183b06 | 5349 | in global scopes, returning (SYM,BLOCK) tuples. |
ec6a20c2 | 5350 | |
4eeaa230 DE |
5351 | See ada_lookup_symbol_list_worker for further details. */ |
5352 | ||
d1183b06 | 5353 | std::vector<struct block_symbol> |
b5ec771e | 5354 | ada_lookup_symbol_list (const char *name, const struct block *block, |
d1183b06 | 5355 | domain_enum domain) |
4eeaa230 | 5356 | { |
b5ec771e PA |
5357 | symbol_name_match_type name_match_type = name_match_type_from_name (name); |
5358 | lookup_name_info lookup_name (name, name_match_type); | |
5359 | ||
d1183b06 | 5360 | return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1); |
4eeaa230 DE |
5361 | } |
5362 | ||
4e5c77fe JB |
5363 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5364 | to 1, but choosing the first symbol found if there are multiple | |
5365 | choices. | |
5366 | ||
5e2336be JB |
5367 | The result is stored in *INFO, which must be non-NULL. |
5368 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5369 | |
5370 | void | |
5371 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5372 | domain_enum domain, |
d12307c1 | 5373 | struct block_symbol *info) |
14f9c5c9 | 5374 | { |
b5ec771e PA |
5375 | /* Since we already have an encoded name, wrap it in '<>' to force a |
5376 | verbatim match. Otherwise, if the name happens to not look like | |
5377 | an encoded name (because it doesn't include a "__"), | |
5378 | ada_lookup_name_info would re-encode/fold it again, and that | |
5379 | would e.g., incorrectly lowercase object renaming names like | |
5380 | "R28b" -> "r28b". */ | |
12932e2c | 5381 | std::string verbatim = add_angle_brackets (name); |
b5ec771e | 5382 | |
5e2336be | 5383 | gdb_assert (info != NULL); |
65392b3e | 5384 | *info = ada_lookup_symbol (verbatim.c_str (), block, domain); |
4e5c77fe | 5385 | } |
aeb5907d JB |
5386 | |
5387 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5388 | scope and in global scopes, or NULL if none. NAME is folded and | |
5389 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
65392b3e | 5390 | choosing the first symbol if there are multiple choices. */ |
4e5c77fe | 5391 | |
d12307c1 | 5392 | struct block_symbol |
aeb5907d | 5393 | ada_lookup_symbol (const char *name, const struct block *block0, |
dda83cd7 | 5394 | domain_enum domain) |
aeb5907d | 5395 | { |
d1183b06 TT |
5396 | std::vector<struct block_symbol> candidates |
5397 | = ada_lookup_symbol_list (name, block0, domain); | |
f98fc17b | 5398 | |
d1183b06 | 5399 | if (candidates.empty ()) |
54d343a2 | 5400 | return {}; |
f98fc17b PA |
5401 | |
5402 | block_symbol info = candidates[0]; | |
5403 | info.symbol = fixup_symbol_section (info.symbol, NULL); | |
d12307c1 | 5404 | return info; |
4c4b4cd2 | 5405 | } |
14f9c5c9 | 5406 | |
14f9c5c9 | 5407 | |
4c4b4cd2 PH |
5408 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5409 | that is to be ignored for matching purposes. Suffixes of parallel | |
5410 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5411 | are given by any of the regular expressions: |
4c4b4cd2 | 5412 | |
babe1480 JB |
5413 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5414 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5415 | TKB [subprogram suffix for task bodies] |
babe1480 | 5416 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5417 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5418 | |
5419 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5420 | match is performed. This sequence is used to differentiate homonyms, | |
5421 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5422 | |
14f9c5c9 | 5423 | static int |
d2e4a39e | 5424 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5425 | { |
5426 | int k; | |
4c4b4cd2 PH |
5427 | const char *matching; |
5428 | const int len = strlen (str); | |
5429 | ||
babe1480 JB |
5430 | /* Skip optional leading __[0-9]+. */ |
5431 | ||
4c4b4cd2 PH |
5432 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5433 | { | |
babe1480 JB |
5434 | str += 3; |
5435 | while (isdigit (str[0])) | |
dda83cd7 | 5436 | str += 1; |
4c4b4cd2 | 5437 | } |
babe1480 JB |
5438 | |
5439 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5440 | |
babe1480 | 5441 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5442 | { |
babe1480 | 5443 | matching = str + 1; |
4c4b4cd2 | 5444 | while (isdigit (matching[0])) |
dda83cd7 | 5445 | matching += 1; |
4c4b4cd2 | 5446 | if (matching[0] == '\0') |
dda83cd7 | 5447 | return 1; |
4c4b4cd2 PH |
5448 | } |
5449 | ||
5450 | /* ___[0-9]+ */ | |
babe1480 | 5451 | |
4c4b4cd2 PH |
5452 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5453 | { | |
5454 | matching = str + 3; | |
5455 | while (isdigit (matching[0])) | |
dda83cd7 | 5456 | matching += 1; |
4c4b4cd2 | 5457 | if (matching[0] == '\0') |
dda83cd7 | 5458 | return 1; |
4c4b4cd2 PH |
5459 | } |
5460 | ||
9ac7f98e JB |
5461 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5462 | ||
5463 | if (strcmp (str, "TKB") == 0) | |
5464 | return 1; | |
5465 | ||
529cad9c PH |
5466 | #if 0 |
5467 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5468 | with a N at the end. Unfortunately, the compiler uses the same |
5469 | convention for other internal types it creates. So treating | |
529cad9c | 5470 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5471 | some regressions. For instance, consider the case of an enumerated |
5472 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5473 | name ends with N. |
5474 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5475 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5476 | to be something like "_N" instead. In the meantime, do not do |
5477 | the following check. */ | |
5478 | /* Protected Object Subprograms */ | |
5479 | if (len == 1 && str [0] == 'N') | |
5480 | return 1; | |
5481 | #endif | |
5482 | ||
5483 | /* _E[0-9]+[bs]$ */ | |
5484 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5485 | { | |
5486 | matching = str + 3; | |
5487 | while (isdigit (matching[0])) | |
dda83cd7 | 5488 | matching += 1; |
529cad9c | 5489 | if ((matching[0] == 'b' || matching[0] == 's') |
dda83cd7 SM |
5490 | && matching [1] == '\0') |
5491 | return 1; | |
529cad9c PH |
5492 | } |
5493 | ||
4c4b4cd2 PH |
5494 | /* ??? We should not modify STR directly, as we are doing below. This |
5495 | is fine in this case, but may become problematic later if we find | |
5496 | that this alternative did not work, and want to try matching | |
5497 | another one from the begining of STR. Since we modified it, we | |
5498 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5499 | if (str[0] == 'X') |
5500 | { | |
5501 | str += 1; | |
d2e4a39e | 5502 | while (str[0] != '_' && str[0] != '\0') |
dda83cd7 SM |
5503 | { |
5504 | if (str[0] != 'n' && str[0] != 'b') | |
5505 | return 0; | |
5506 | str += 1; | |
5507 | } | |
14f9c5c9 | 5508 | } |
babe1480 | 5509 | |
14f9c5c9 AS |
5510 | if (str[0] == '\000') |
5511 | return 1; | |
babe1480 | 5512 | |
d2e4a39e | 5513 | if (str[0] == '_') |
14f9c5c9 AS |
5514 | { |
5515 | if (str[1] != '_' || str[2] == '\000') | |
dda83cd7 | 5516 | return 0; |
d2e4a39e | 5517 | if (str[2] == '_') |
dda83cd7 SM |
5518 | { |
5519 | if (strcmp (str + 3, "JM") == 0) | |
5520 | return 1; | |
5521 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5522 | the LJM suffix in favor of the JM one. But we will | |
5523 | still accept LJM as a valid suffix for a reasonable | |
5524 | amount of time, just to allow ourselves to debug programs | |
5525 | compiled using an older version of GNAT. */ | |
5526 | if (strcmp (str + 3, "LJM") == 0) | |
5527 | return 1; | |
5528 | if (str[3] != 'X') | |
5529 | return 0; | |
5530 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' | |
5531 | || str[4] == 'U' || str[4] == 'P') | |
5532 | return 1; | |
5533 | if (str[4] == 'R' && str[5] != 'T') | |
5534 | return 1; | |
5535 | return 0; | |
5536 | } | |
4c4b4cd2 | 5537 | if (!isdigit (str[2])) |
dda83cd7 | 5538 | return 0; |
4c4b4cd2 | 5539 | for (k = 3; str[k] != '\0'; k += 1) |
dda83cd7 SM |
5540 | if (!isdigit (str[k]) && str[k] != '_') |
5541 | return 0; | |
14f9c5c9 AS |
5542 | return 1; |
5543 | } | |
4c4b4cd2 | 5544 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5545 | { |
4c4b4cd2 | 5546 | for (k = 2; str[k] != '\0'; k += 1) |
dda83cd7 SM |
5547 | if (!isdigit (str[k]) && str[k] != '_') |
5548 | return 0; | |
14f9c5c9 AS |
5549 | return 1; |
5550 | } | |
5551 | return 0; | |
5552 | } | |
d2e4a39e | 5553 | |
aeb5907d JB |
5554 | /* Return non-zero if the string starting at NAME and ending before |
5555 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5556 | |
5557 | static int | |
5558 | is_valid_name_for_wild_match (const char *name0) | |
5559 | { | |
f945dedf | 5560 | std::string decoded_name = ada_decode (name0); |
529cad9c PH |
5561 | int i; |
5562 | ||
5823c3ef JB |
5563 | /* If the decoded name starts with an angle bracket, it means that |
5564 | NAME0 does not follow the GNAT encoding format. It should then | |
5565 | not be allowed as a possible wild match. */ | |
5566 | if (decoded_name[0] == '<') | |
5567 | return 0; | |
5568 | ||
529cad9c PH |
5569 | for (i=0; decoded_name[i] != '\0'; i++) |
5570 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5571 | return 0; | |
5572 | ||
5573 | return 1; | |
5574 | } | |
5575 | ||
59c8a30b JB |
5576 | /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0 |
5577 | character which could start a simple name. Assumes that *NAMEP points | |
5578 | somewhere inside the string beginning at NAME0. */ | |
4c4b4cd2 | 5579 | |
14f9c5c9 | 5580 | static int |
59c8a30b | 5581 | advance_wild_match (const char **namep, const char *name0, char target0) |
14f9c5c9 | 5582 | { |
73589123 | 5583 | const char *name = *namep; |
5b4ee69b | 5584 | |
5823c3ef | 5585 | while (1) |
14f9c5c9 | 5586 | { |
59c8a30b | 5587 | char t0, t1; |
73589123 PH |
5588 | |
5589 | t0 = *name; | |
5590 | if (t0 == '_') | |
5591 | { | |
5592 | t1 = name[1]; | |
5593 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5594 | { | |
5595 | name += 1; | |
61012eef | 5596 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
5597 | break; |
5598 | else | |
5599 | name += 1; | |
5600 | } | |
aa27d0b3 JB |
5601 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5602 | || name[2] == target0)) | |
73589123 PH |
5603 | { |
5604 | name += 2; | |
5605 | break; | |
5606 | } | |
86b44259 TT |
5607 | else if (t1 == '_' && name[2] == 'B' && name[3] == '_') |
5608 | { | |
5609 | /* Names like "pkg__B_N__name", where N is a number, are | |
5610 | block-local. We can handle these by simply skipping | |
5611 | the "B_" here. */ | |
5612 | name += 4; | |
5613 | } | |
73589123 PH |
5614 | else |
5615 | return 0; | |
5616 | } | |
5617 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5618 | name += 1; | |
5619 | else | |
5823c3ef | 5620 | return 0; |
73589123 PH |
5621 | } |
5622 | ||
5623 | *namep = name; | |
5624 | return 1; | |
5625 | } | |
5626 | ||
b5ec771e PA |
5627 | /* Return true iff NAME encodes a name of the form prefix.PATN. |
5628 | Ignores any informational suffixes of NAME (i.e., for which | |
5629 | is_name_suffix is true). Assumes that PATN is a lower-cased Ada | |
5630 | simple name. */ | |
73589123 | 5631 | |
b5ec771e | 5632 | static bool |
73589123 PH |
5633 | wild_match (const char *name, const char *patn) |
5634 | { | |
22e048c9 | 5635 | const char *p; |
73589123 PH |
5636 | const char *name0 = name; |
5637 | ||
5638 | while (1) | |
5639 | { | |
5640 | const char *match = name; | |
5641 | ||
5642 | if (*name == *patn) | |
5643 | { | |
5644 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5645 | if (*p != *name) | |
5646 | break; | |
5647 | if (*p == '\0' && is_name_suffix (name)) | |
b5ec771e | 5648 | return match == name0 || is_valid_name_for_wild_match (name0); |
73589123 PH |
5649 | |
5650 | if (name[-1] == '_') | |
5651 | name -= 1; | |
5652 | } | |
5653 | if (!advance_wild_match (&name, name0, *patn)) | |
b5ec771e | 5654 | return false; |
96d887e8 | 5655 | } |
96d887e8 PH |
5656 | } |
5657 | ||
d1183b06 | 5658 | /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if |
b5ec771e | 5659 | necessary). OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5660 | |
5661 | static void | |
d1183b06 | 5662 | ada_add_block_symbols (std::vector<struct block_symbol> &result, |
b5ec771e PA |
5663 | const struct block *block, |
5664 | const lookup_name_info &lookup_name, | |
5665 | domain_enum domain, struct objfile *objfile) | |
96d887e8 | 5666 | { |
8157b174 | 5667 | struct block_iterator iter; |
96d887e8 PH |
5668 | /* A matching argument symbol, if any. */ |
5669 | struct symbol *arg_sym; | |
5670 | /* Set true when we find a matching non-argument symbol. */ | |
1178743e | 5671 | bool found_sym; |
96d887e8 PH |
5672 | struct symbol *sym; |
5673 | ||
5674 | arg_sym = NULL; | |
1178743e | 5675 | found_sym = false; |
b5ec771e PA |
5676 | for (sym = block_iter_match_first (block, lookup_name, &iter); |
5677 | sym != NULL; | |
5678 | sym = block_iter_match_next (lookup_name, &iter)) | |
96d887e8 | 5679 | { |
c1b5c1eb | 5680 | if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain)) |
b5ec771e PA |
5681 | { |
5682 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) | |
5683 | { | |
5684 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5685 | arg_sym = sym; | |
5686 | else | |
5687 | { | |
1178743e | 5688 | found_sym = true; |
d1183b06 | 5689 | add_defn_to_vec (result, |
b5ec771e PA |
5690 | fixup_symbol_section (sym, objfile), |
5691 | block); | |
5692 | } | |
5693 | } | |
5694 | } | |
96d887e8 PH |
5695 | } |
5696 | ||
22cee43f PMR |
5697 | /* Handle renamings. */ |
5698 | ||
d1183b06 | 5699 | if (ada_add_block_renamings (result, block, lookup_name, domain)) |
1178743e | 5700 | found_sym = true; |
22cee43f | 5701 | |
96d887e8 PH |
5702 | if (!found_sym && arg_sym != NULL) |
5703 | { | |
d1183b06 | 5704 | add_defn_to_vec (result, |
dda83cd7 SM |
5705 | fixup_symbol_section (arg_sym, objfile), |
5706 | block); | |
96d887e8 PH |
5707 | } |
5708 | ||
b5ec771e | 5709 | if (!lookup_name.ada ().wild_match_p ()) |
96d887e8 PH |
5710 | { |
5711 | arg_sym = NULL; | |
1178743e | 5712 | found_sym = false; |
b5ec771e PA |
5713 | const std::string &ada_lookup_name = lookup_name.ada ().lookup_name (); |
5714 | const char *name = ada_lookup_name.c_str (); | |
5715 | size_t name_len = ada_lookup_name.size (); | |
96d887e8 PH |
5716 | |
5717 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5718 | { |
dda83cd7 SM |
5719 | if (symbol_matches_domain (sym->language (), |
5720 | SYMBOL_DOMAIN (sym), domain)) | |
5721 | { | |
5722 | int cmp; | |
5723 | ||
5724 | cmp = (int) '_' - (int) sym->linkage_name ()[0]; | |
5725 | if (cmp == 0) | |
5726 | { | |
5727 | cmp = !startswith (sym->linkage_name (), "_ada_"); | |
5728 | if (cmp == 0) | |
5729 | cmp = strncmp (name, sym->linkage_name () + 5, | |
5730 | name_len); | |
5731 | } | |
5732 | ||
5733 | if (cmp == 0 | |
5734 | && is_name_suffix (sym->linkage_name () + name_len + 5)) | |
5735 | { | |
2a2d4dc3 AS |
5736 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5737 | { | |
5738 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5739 | arg_sym = sym; | |
5740 | else | |
5741 | { | |
1178743e | 5742 | found_sym = true; |
d1183b06 | 5743 | add_defn_to_vec (result, |
2a2d4dc3 AS |
5744 | fixup_symbol_section (sym, objfile), |
5745 | block); | |
5746 | } | |
5747 | } | |
dda83cd7 SM |
5748 | } |
5749 | } | |
76a01679 | 5750 | } |
96d887e8 PH |
5751 | |
5752 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
dda83cd7 | 5753 | They aren't parameters, right? */ |
96d887e8 | 5754 | if (!found_sym && arg_sym != NULL) |
dda83cd7 | 5755 | { |
d1183b06 | 5756 | add_defn_to_vec (result, |
dda83cd7 SM |
5757 | fixup_symbol_section (arg_sym, objfile), |
5758 | block); | |
5759 | } | |
96d887e8 PH |
5760 | } |
5761 | } | |
5762 | \f | |
41d27058 | 5763 | |
dda83cd7 | 5764 | /* Symbol Completion */ |
41d27058 | 5765 | |
b5ec771e | 5766 | /* See symtab.h. */ |
41d27058 | 5767 | |
b5ec771e PA |
5768 | bool |
5769 | ada_lookup_name_info::matches | |
5770 | (const char *sym_name, | |
5771 | symbol_name_match_type match_type, | |
a207cff2 | 5772 | completion_match_result *comp_match_res) const |
41d27058 | 5773 | { |
b5ec771e PA |
5774 | bool match = false; |
5775 | const char *text = m_encoded_name.c_str (); | |
5776 | size_t text_len = m_encoded_name.size (); | |
41d27058 JB |
5777 | |
5778 | /* First, test against the fully qualified name of the symbol. */ | |
5779 | ||
5780 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 5781 | match = true; |
41d27058 | 5782 | |
f945dedf | 5783 | std::string decoded_name = ada_decode (sym_name); |
b5ec771e | 5784 | if (match && !m_encoded_p) |
41d27058 JB |
5785 | { |
5786 | /* One needed check before declaring a positive match is to verify | |
dda83cd7 SM |
5787 | that iff we are doing a verbatim match, the decoded version |
5788 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5789 | is not a suitable completion. */ | |
41d27058 | 5790 | |
f945dedf | 5791 | bool has_angle_bracket = (decoded_name[0] == '<'); |
b5ec771e | 5792 | match = (has_angle_bracket == m_verbatim_p); |
41d27058 JB |
5793 | } |
5794 | ||
b5ec771e | 5795 | if (match && !m_verbatim_p) |
41d27058 JB |
5796 | { |
5797 | /* When doing non-verbatim match, another check that needs to | |
dda83cd7 SM |
5798 | be done is to verify that the potentially matching symbol name |
5799 | does not include capital letters, because the ada-mode would | |
5800 | not be able to understand these symbol names without the | |
5801 | angle bracket notation. */ | |
41d27058 JB |
5802 | const char *tmp; |
5803 | ||
5804 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5805 | if (*tmp != '\0') | |
b5ec771e | 5806 | match = false; |
41d27058 JB |
5807 | } |
5808 | ||
5809 | /* Second: Try wild matching... */ | |
5810 | ||
b5ec771e | 5811 | if (!match && m_wild_match_p) |
41d27058 JB |
5812 | { |
5813 | /* Since we are doing wild matching, this means that TEXT | |
dda83cd7 SM |
5814 | may represent an unqualified symbol name. We therefore must |
5815 | also compare TEXT against the unqualified name of the symbol. */ | |
f945dedf | 5816 | sym_name = ada_unqualified_name (decoded_name.c_str ()); |
41d27058 JB |
5817 | |
5818 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 5819 | match = true; |
41d27058 JB |
5820 | } |
5821 | ||
b5ec771e | 5822 | /* Finally: If we found a match, prepare the result to return. */ |
41d27058 JB |
5823 | |
5824 | if (!match) | |
b5ec771e | 5825 | return false; |
41d27058 | 5826 | |
a207cff2 | 5827 | if (comp_match_res != NULL) |
b5ec771e | 5828 | { |
a207cff2 | 5829 | std::string &match_str = comp_match_res->match.storage (); |
41d27058 | 5830 | |
b5ec771e | 5831 | if (!m_encoded_p) |
a207cff2 | 5832 | match_str = ada_decode (sym_name); |
b5ec771e PA |
5833 | else |
5834 | { | |
5835 | if (m_verbatim_p) | |
5836 | match_str = add_angle_brackets (sym_name); | |
5837 | else | |
5838 | match_str = sym_name; | |
41d27058 | 5839 | |
b5ec771e | 5840 | } |
a207cff2 PA |
5841 | |
5842 | comp_match_res->set_match (match_str.c_str ()); | |
41d27058 JB |
5843 | } |
5844 | ||
b5ec771e | 5845 | return true; |
41d27058 JB |
5846 | } |
5847 | ||
dda83cd7 | 5848 | /* Field Access */ |
96d887e8 | 5849 | |
73fb9985 JB |
5850 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5851 | for tagged types. */ | |
5852 | ||
5853 | static int | |
5854 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5855 | { | |
0d5cff50 | 5856 | const char *name; |
73fb9985 | 5857 | |
78134374 | 5858 | if (type->code () != TYPE_CODE_PTR) |
73fb9985 JB |
5859 | return 0; |
5860 | ||
7d93a1e0 | 5861 | name = TYPE_TARGET_TYPE (type)->name (); |
73fb9985 JB |
5862 | if (name == NULL) |
5863 | return 0; | |
5864 | ||
5865 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5866 | } | |
5867 | ||
ac4a2da4 JG |
5868 | /* Return non-zero if TYPE is an interface tag. */ |
5869 | ||
5870 | static int | |
5871 | ada_is_interface_tag (struct type *type) | |
5872 | { | |
7d93a1e0 | 5873 | const char *name = type->name (); |
ac4a2da4 JG |
5874 | |
5875 | if (name == NULL) | |
5876 | return 0; | |
5877 | ||
5878 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
5879 | } | |
5880 | ||
963a6417 PH |
5881 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5882 | to be invisible to users. */ | |
96d887e8 | 5883 | |
963a6417 PH |
5884 | int |
5885 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5886 | { |
1f704f76 | 5887 | if (field_num < 0 || field_num > type->num_fields ()) |
963a6417 | 5888 | return 1; |
ffde82bf | 5889 | |
73fb9985 JB |
5890 | /* Check the name of that field. */ |
5891 | { | |
5892 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5893 | ||
5894 | /* Anonymous field names should not be printed. | |
5895 | brobecker/2007-02-20: I don't think this can actually happen | |
30baf67b | 5896 | but we don't want to print the value of anonymous fields anyway. */ |
73fb9985 JB |
5897 | if (name == NULL) |
5898 | return 1; | |
5899 | ||
ffde82bf JB |
5900 | /* Normally, fields whose name start with an underscore ("_") |
5901 | are fields that have been internally generated by the compiler, | |
5902 | and thus should not be printed. The "_parent" field is special, | |
5903 | however: This is a field internally generated by the compiler | |
5904 | for tagged types, and it contains the components inherited from | |
5905 | the parent type. This field should not be printed as is, but | |
5906 | should not be ignored either. */ | |
61012eef | 5907 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
5908 | return 1; |
5909 | } | |
5910 | ||
ac4a2da4 JG |
5911 | /* If this is the dispatch table of a tagged type or an interface tag, |
5912 | then ignore. */ | |
73fb9985 | 5913 | if (ada_is_tagged_type (type, 1) |
940da03e SM |
5914 | && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ()) |
5915 | || ada_is_interface_tag (type->field (field_num).type ()))) | |
73fb9985 JB |
5916 | return 1; |
5917 | ||
5918 | /* Not a special field, so it should not be ignored. */ | |
5919 | return 0; | |
963a6417 | 5920 | } |
96d887e8 | 5921 | |
963a6417 | 5922 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5923 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5924 | |
963a6417 PH |
5925 | int |
5926 | ada_is_tagged_type (struct type *type, int refok) | |
5927 | { | |
988f6b3d | 5928 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 5929 | } |
96d887e8 | 5930 | |
963a6417 | 5931 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5932 | |
963a6417 PH |
5933 | int |
5934 | ada_is_tag_type (struct type *type) | |
5935 | { | |
460efde1 JB |
5936 | type = ada_check_typedef (type); |
5937 | ||
78134374 | 5938 | if (type == NULL || type->code () != TYPE_CODE_PTR) |
963a6417 PH |
5939 | return 0; |
5940 | else | |
96d887e8 | 5941 | { |
963a6417 | 5942 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5943 | |
963a6417 | 5944 | return (name != NULL |
dda83cd7 | 5945 | && strcmp (name, "ada__tags__dispatch_table") == 0); |
96d887e8 | 5946 | } |
96d887e8 PH |
5947 | } |
5948 | ||
963a6417 | 5949 | /* The type of the tag on VAL. */ |
76a01679 | 5950 | |
de93309a | 5951 | static struct type * |
963a6417 | 5952 | ada_tag_type (struct value *val) |
96d887e8 | 5953 | { |
988f6b3d | 5954 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 5955 | } |
96d887e8 | 5956 | |
b50d69b5 JG |
5957 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
5958 | retired at Ada 05). */ | |
5959 | ||
5960 | static int | |
5961 | is_ada95_tag (struct value *tag) | |
5962 | { | |
5963 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
5964 | } | |
5965 | ||
963a6417 | 5966 | /* The value of the tag on VAL. */ |
96d887e8 | 5967 | |
de93309a | 5968 | static struct value * |
963a6417 PH |
5969 | ada_value_tag (struct value *val) |
5970 | { | |
03ee6b2e | 5971 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5972 | } |
5973 | ||
963a6417 PH |
5974 | /* The value of the tag on the object of type TYPE whose contents are |
5975 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5976 | ADDRESS. */ |
96d887e8 | 5977 | |
963a6417 | 5978 | static struct value * |
10a2c479 | 5979 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5980 | const gdb_byte *valaddr, |
dda83cd7 | 5981 | CORE_ADDR address) |
96d887e8 | 5982 | { |
b5385fc0 | 5983 | int tag_byte_offset; |
963a6417 | 5984 | struct type *tag_type; |
5b4ee69b | 5985 | |
963a6417 | 5986 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
dda83cd7 | 5987 | NULL, NULL, NULL)) |
96d887e8 | 5988 | { |
fc1a4b47 | 5989 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5990 | ? NULL |
5991 | : valaddr + tag_byte_offset); | |
963a6417 | 5992 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5993 | |
963a6417 | 5994 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5995 | } |
963a6417 PH |
5996 | return NULL; |
5997 | } | |
96d887e8 | 5998 | |
963a6417 PH |
5999 | static struct type * |
6000 | type_from_tag (struct value *tag) | |
6001 | { | |
f5272a3b | 6002 | gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag); |
5b4ee69b | 6003 | |
963a6417 | 6004 | if (type_name != NULL) |
5c4258f4 | 6005 | return ada_find_any_type (ada_encode (type_name.get ()).c_str ()); |
963a6417 PH |
6006 | return NULL; |
6007 | } | |
96d887e8 | 6008 | |
b50d69b5 JG |
6009 | /* Given a value OBJ of a tagged type, return a value of this |
6010 | type at the base address of the object. The base address, as | |
6011 | defined in Ada.Tags, it is the address of the primary tag of | |
6012 | the object, and therefore where the field values of its full | |
6013 | view can be fetched. */ | |
6014 | ||
6015 | struct value * | |
6016 | ada_tag_value_at_base_address (struct value *obj) | |
6017 | { | |
b50d69b5 JG |
6018 | struct value *val; |
6019 | LONGEST offset_to_top = 0; | |
6020 | struct type *ptr_type, *obj_type; | |
6021 | struct value *tag; | |
6022 | CORE_ADDR base_address; | |
6023 | ||
6024 | obj_type = value_type (obj); | |
6025 | ||
6026 | /* It is the responsability of the caller to deref pointers. */ | |
6027 | ||
78134374 | 6028 | if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF) |
b50d69b5 JG |
6029 | return obj; |
6030 | ||
6031 | tag = ada_value_tag (obj); | |
6032 | if (!tag) | |
6033 | return obj; | |
6034 | ||
6035 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6036 | ||
6037 | if (is_ada95_tag (tag)) | |
6038 | return obj; | |
6039 | ||
08f49010 XR |
6040 | ptr_type = language_lookup_primitive_type |
6041 | (language_def (language_ada), target_gdbarch(), "storage_offset"); | |
b50d69b5 JG |
6042 | ptr_type = lookup_pointer_type (ptr_type); |
6043 | val = value_cast (ptr_type, tag); | |
6044 | if (!val) | |
6045 | return obj; | |
6046 | ||
6047 | /* It is perfectly possible that an exception be raised while | |
6048 | trying to determine the base address, just like for the tag; | |
6049 | see ada_tag_name for more details. We do not print the error | |
6050 | message for the same reason. */ | |
6051 | ||
a70b8144 | 6052 | try |
b50d69b5 JG |
6053 | { |
6054 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6055 | } | |
6056 | ||
230d2906 | 6057 | catch (const gdb_exception_error &e) |
492d29ea PA |
6058 | { |
6059 | return obj; | |
6060 | } | |
b50d69b5 JG |
6061 | |
6062 | /* If offset is null, nothing to do. */ | |
6063 | ||
6064 | if (offset_to_top == 0) | |
6065 | return obj; | |
6066 | ||
6067 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6068 | is not quite clear from the documentation. So do nothing for | |
6069 | now. */ | |
6070 | ||
6071 | if (offset_to_top == -1) | |
6072 | return obj; | |
6073 | ||
08f49010 XR |
6074 | /* OFFSET_TO_TOP used to be a positive value to be subtracted |
6075 | from the base address. This was however incompatible with | |
6076 | C++ dispatch table: C++ uses a *negative* value to *add* | |
6077 | to the base address. Ada's convention has therefore been | |
6078 | changed in GNAT 19.0w 20171023: since then, C++ and Ada | |
6079 | use the same convention. Here, we support both cases by | |
6080 | checking the sign of OFFSET_TO_TOP. */ | |
6081 | ||
6082 | if (offset_to_top > 0) | |
6083 | offset_to_top = -offset_to_top; | |
6084 | ||
6085 | base_address = value_address (obj) + offset_to_top; | |
b50d69b5 JG |
6086 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); |
6087 | ||
6088 | /* Make sure that we have a proper tag at the new address. | |
6089 | Otherwise, offset_to_top is bogus (which can happen when | |
6090 | the object is not initialized yet). */ | |
6091 | ||
6092 | if (!tag) | |
6093 | return obj; | |
6094 | ||
6095 | obj_type = type_from_tag (tag); | |
6096 | ||
6097 | if (!obj_type) | |
6098 | return obj; | |
6099 | ||
6100 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6101 | } | |
6102 | ||
1b611343 JB |
6103 | /* Return the "ada__tags__type_specific_data" type. */ |
6104 | ||
6105 | static struct type * | |
6106 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6107 | { |
1b611343 | 6108 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6109 | |
1b611343 JB |
6110 | if (data->tsd_type == 0) |
6111 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6112 | return data->tsd_type; | |
6113 | } | |
529cad9c | 6114 | |
1b611343 JB |
6115 | /* Return the TSD (type-specific data) associated to the given TAG. |
6116 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6117 | |
1b611343 | 6118 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6119 | |
1b611343 JB |
6120 | static struct value * |
6121 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6122 | { |
4c4b4cd2 | 6123 | struct value *val; |
1b611343 | 6124 | struct type *type; |
5b4ee69b | 6125 | |
1b611343 JB |
6126 | /* First option: The TSD is simply stored as a field of our TAG. |
6127 | Only older versions of GNAT would use this format, but we have | |
6128 | to test it first, because there are no visible markers for | |
6129 | the current approach except the absence of that field. */ | |
529cad9c | 6130 | |
1b611343 JB |
6131 | val = ada_value_struct_elt (tag, "tsd", 1); |
6132 | if (val) | |
6133 | return val; | |
e802dbe0 | 6134 | |
1b611343 JB |
6135 | /* Try the second representation for the dispatch table (in which |
6136 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6137 | and instead the tsd pointer is stored just before the dispatch | |
6138 | table. */ | |
e802dbe0 | 6139 | |
1b611343 JB |
6140 | type = ada_get_tsd_type (current_inferior()); |
6141 | if (type == NULL) | |
6142 | return NULL; | |
6143 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6144 | val = value_cast (type, tag); | |
6145 | if (val == NULL) | |
6146 | return NULL; | |
6147 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6148 | } |
6149 | ||
1b611343 JB |
6150 | /* Given the TSD of a tag (type-specific data), return a string |
6151 | containing the name of the associated type. | |
6152 | ||
f5272a3b | 6153 | May return NULL if we are unable to determine the tag name. */ |
1b611343 | 6154 | |
f5272a3b | 6155 | static gdb::unique_xmalloc_ptr<char> |
1b611343 | 6156 | ada_tag_name_from_tsd (struct value *tsd) |
529cad9c | 6157 | { |
529cad9c | 6158 | char *p; |
1b611343 | 6159 | struct value *val; |
529cad9c | 6160 | |
1b611343 | 6161 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6162 | if (val == NULL) |
1b611343 | 6163 | return NULL; |
66920317 TT |
6164 | gdb::unique_xmalloc_ptr<char> buffer |
6165 | = target_read_string (value_as_address (val), INT_MAX); | |
6166 | if (buffer == nullptr) | |
f5272a3b TT |
6167 | return nullptr; |
6168 | ||
6169 | for (p = buffer.get (); *p != '\0'; ++p) | |
6170 | { | |
6171 | if (isalpha (*p)) | |
6172 | *p = tolower (*p); | |
6173 | } | |
6174 | ||
6175 | return buffer; | |
4c4b4cd2 PH |
6176 | } |
6177 | ||
6178 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6179 | a C string. |
6180 | ||
6181 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
f5272a3b | 6182 | determine the name of that tag. */ |
4c4b4cd2 | 6183 | |
f5272a3b | 6184 | gdb::unique_xmalloc_ptr<char> |
4c4b4cd2 PH |
6185 | ada_tag_name (struct value *tag) |
6186 | { | |
f5272a3b | 6187 | gdb::unique_xmalloc_ptr<char> name; |
5b4ee69b | 6188 | |
df407dfe | 6189 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6190 | return NULL; |
1b611343 JB |
6191 | |
6192 | /* It is perfectly possible that an exception be raised while trying | |
6193 | to determine the TAG's name, even under normal circumstances: | |
6194 | The associated variable may be uninitialized or corrupted, for | |
6195 | instance. We do not let any exception propagate past this point. | |
6196 | instead we return NULL. | |
6197 | ||
6198 | We also do not print the error message either (which often is very | |
6199 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6200 | the caller print a more meaningful message if necessary. */ | |
a70b8144 | 6201 | try |
1b611343 JB |
6202 | { |
6203 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6204 | ||
6205 | if (tsd != NULL) | |
6206 | name = ada_tag_name_from_tsd (tsd); | |
6207 | } | |
230d2906 | 6208 | catch (const gdb_exception_error &e) |
492d29ea PA |
6209 | { |
6210 | } | |
1b611343 JB |
6211 | |
6212 | return name; | |
4c4b4cd2 PH |
6213 | } |
6214 | ||
6215 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6216 | |
d2e4a39e | 6217 | struct type * |
ebf56fd3 | 6218 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6219 | { |
6220 | int i; | |
6221 | ||
61ee279c | 6222 | type = ada_check_typedef (type); |
14f9c5c9 | 6223 | |
78134374 | 6224 | if (type == NULL || type->code () != TYPE_CODE_STRUCT) |
14f9c5c9 AS |
6225 | return NULL; |
6226 | ||
1f704f76 | 6227 | for (i = 0; i < type->num_fields (); i += 1) |
14f9c5c9 | 6228 | if (ada_is_parent_field (type, i)) |
0c1f74cf | 6229 | { |
dda83cd7 | 6230 | struct type *parent_type = type->field (i).type (); |
0c1f74cf | 6231 | |
dda83cd7 SM |
6232 | /* If the _parent field is a pointer, then dereference it. */ |
6233 | if (parent_type->code () == TYPE_CODE_PTR) | |
6234 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6235 | /* If there is a parallel XVS type, get the actual base type. */ | |
6236 | parent_type = ada_get_base_type (parent_type); | |
0c1f74cf | 6237 | |
dda83cd7 | 6238 | return ada_check_typedef (parent_type); |
0c1f74cf | 6239 | } |
14f9c5c9 AS |
6240 | |
6241 | return NULL; | |
6242 | } | |
6243 | ||
4c4b4cd2 PH |
6244 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6245 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6246 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6247 | |
6248 | int | |
ebf56fd3 | 6249 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6250 | { |
61ee279c | 6251 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6252 | |
4c4b4cd2 | 6253 | return (name != NULL |
dda83cd7 SM |
6254 | && (startswith (name, "PARENT") |
6255 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6256 | } |
6257 | ||
4c4b4cd2 | 6258 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6259 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6260 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6261 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6262 | structures. */ |
14f9c5c9 AS |
6263 | |
6264 | int | |
ebf56fd3 | 6265 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6266 | { |
d2e4a39e | 6267 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6268 | |
dddc0e16 JB |
6269 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
6270 | { | |
6271 | /* This happens in functions with "out" or "in out" parameters | |
6272 | which are passed by copy. For such functions, GNAT describes | |
6273 | the function's return type as being a struct where the return | |
6274 | value is in a field called RETVAL, and where the other "out" | |
6275 | or "in out" parameters are fields of that struct. This is not | |
6276 | a wrapper. */ | |
6277 | return 0; | |
6278 | } | |
6279 | ||
d2e4a39e | 6280 | return (name != NULL |
dda83cd7 SM |
6281 | && (startswith (name, "PARENT") |
6282 | || strcmp (name, "REP") == 0 | |
6283 | || startswith (name, "_parent") | |
6284 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6285 | } |
6286 | ||
4c4b4cd2 PH |
6287 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6288 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6289 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6290 | |
6291 | int | |
ebf56fd3 | 6292 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6293 | { |
8ecb59f8 TT |
6294 | /* Only Ada types are eligible. */ |
6295 | if (!ADA_TYPE_P (type)) | |
6296 | return 0; | |
6297 | ||
940da03e | 6298 | struct type *field_type = type->field (field_num).type (); |
5b4ee69b | 6299 | |
78134374 SM |
6300 | return (field_type->code () == TYPE_CODE_UNION |
6301 | || (is_dynamic_field (type, field_num) | |
6302 | && (TYPE_TARGET_TYPE (field_type)->code () | |
c3e5cd34 | 6303 | == TYPE_CODE_UNION))); |
14f9c5c9 AS |
6304 | } |
6305 | ||
6306 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6307 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6308 | returns the type of the controlling discriminant for the variant. |
6309 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6310 | |
d2e4a39e | 6311 | struct type * |
ebf56fd3 | 6312 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6313 | { |
a121b7c1 | 6314 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6315 | |
988f6b3d | 6316 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
6317 | } |
6318 | ||
4c4b4cd2 | 6319 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6320 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6321 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 | 6322 | |
de93309a | 6323 | static int |
ebf56fd3 | 6324 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6325 | { |
d2e4a39e | 6326 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6327 | |
14f9c5c9 AS |
6328 | return (name != NULL && name[0] == 'O'); |
6329 | } | |
6330 | ||
6331 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6332 | returns the name of the discriminant controlling the variant. |
6333 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6334 | |
a121b7c1 | 6335 | const char * |
ebf56fd3 | 6336 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6337 | { |
5f9febe0 | 6338 | static std::string result; |
d2e4a39e AS |
6339 | struct type *type; |
6340 | const char *name; | |
6341 | const char *discrim_end; | |
6342 | const char *discrim_start; | |
14f9c5c9 | 6343 | |
78134374 | 6344 | if (type0->code () == TYPE_CODE_PTR) |
14f9c5c9 AS |
6345 | type = TYPE_TARGET_TYPE (type0); |
6346 | else | |
6347 | type = type0; | |
6348 | ||
6349 | name = ada_type_name (type); | |
6350 | ||
6351 | if (name == NULL || name[0] == '\000') | |
6352 | return ""; | |
6353 | ||
6354 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6355 | discrim_end -= 1) | |
6356 | { | |
61012eef | 6357 | if (startswith (discrim_end, "___XVN")) |
dda83cd7 | 6358 | break; |
14f9c5c9 AS |
6359 | } |
6360 | if (discrim_end == name) | |
6361 | return ""; | |
6362 | ||
d2e4a39e | 6363 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6364 | discrim_start -= 1) |
6365 | { | |
d2e4a39e | 6366 | if (discrim_start == name + 1) |
dda83cd7 | 6367 | return ""; |
76a01679 | 6368 | if ((discrim_start > name + 3 |
dda83cd7 SM |
6369 | && startswith (discrim_start - 3, "___")) |
6370 | || discrim_start[-1] == '.') | |
6371 | break; | |
14f9c5c9 AS |
6372 | } |
6373 | ||
5f9febe0 TT |
6374 | result = std::string (discrim_start, discrim_end - discrim_start); |
6375 | return result.c_str (); | |
14f9c5c9 AS |
6376 | } |
6377 | ||
4c4b4cd2 PH |
6378 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6379 | Put the position of the character just past the number scanned in | |
6380 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6381 | Return 1 if there was a valid number at the given position, and 0 | |
6382 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6383 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6384 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6385 | |
6386 | int | |
d2e4a39e | 6387 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6388 | { |
6389 | ULONGEST RU; | |
6390 | ||
d2e4a39e | 6391 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6392 | return 0; |
6393 | ||
4c4b4cd2 | 6394 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6395 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6396 | LONGEST. */ |
14f9c5c9 AS |
6397 | RU = 0; |
6398 | while (isdigit (str[k])) | |
6399 | { | |
d2e4a39e | 6400 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6401 | k += 1; |
6402 | } | |
6403 | ||
d2e4a39e | 6404 | if (str[k] == 'm') |
14f9c5c9 AS |
6405 | { |
6406 | if (R != NULL) | |
dda83cd7 | 6407 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6408 | k += 1; |
6409 | } | |
6410 | else if (R != NULL) | |
6411 | *R = (LONGEST) RU; | |
6412 | ||
4c4b4cd2 | 6413 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6414 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6415 | number representable as a LONGEST (although either would probably work | |
6416 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6417 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6418 | |
6419 | if (new_k != NULL) | |
6420 | *new_k = k; | |
6421 | return 1; | |
6422 | } | |
6423 | ||
4c4b4cd2 PH |
6424 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6425 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6426 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6427 | |
de93309a | 6428 | static int |
ebf56fd3 | 6429 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6430 | { |
d2e4a39e | 6431 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6432 | int p; |
6433 | ||
6434 | p = 0; | |
6435 | while (1) | |
6436 | { | |
d2e4a39e | 6437 | switch (name[p]) |
dda83cd7 SM |
6438 | { |
6439 | case '\0': | |
6440 | return 0; | |
6441 | case 'S': | |
6442 | { | |
6443 | LONGEST W; | |
6444 | ||
6445 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
6446 | return 0; | |
6447 | if (val == W) | |
6448 | return 1; | |
6449 | break; | |
6450 | } | |
6451 | case 'R': | |
6452 | { | |
6453 | LONGEST L, U; | |
6454 | ||
6455 | if (!ada_scan_number (name, p + 1, &L, &p) | |
6456 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6457 | return 0; | |
6458 | if (val >= L && val <= U) | |
6459 | return 1; | |
6460 | break; | |
6461 | } | |
6462 | case 'O': | |
6463 | return 1; | |
6464 | default: | |
6465 | return 0; | |
6466 | } | |
4c4b4cd2 PH |
6467 | } |
6468 | } | |
6469 | ||
0963b4bd | 6470 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6471 | |
6472 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6473 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6474 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6475 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6476 | |
5eb68a39 | 6477 | struct value * |
d2e4a39e | 6478 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
dda83cd7 | 6479 | struct type *arg_type) |
14f9c5c9 | 6480 | { |
14f9c5c9 AS |
6481 | struct type *type; |
6482 | ||
61ee279c | 6483 | arg_type = ada_check_typedef (arg_type); |
940da03e | 6484 | type = arg_type->field (fieldno).type (); |
14f9c5c9 | 6485 | |
4504bbde TT |
6486 | /* Handle packed fields. It might be that the field is not packed |
6487 | relative to its containing structure, but the structure itself is | |
6488 | packed; in this case we must take the bit-field path. */ | |
6489 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0) | |
14f9c5c9 AS |
6490 | { |
6491 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6492 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6493 | |
0fd88904 | 6494 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
dda83cd7 SM |
6495 | offset + bit_pos / 8, |
6496 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6497 | } |
6498 | else | |
6499 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6500 | } | |
6501 | ||
52ce6436 PH |
6502 | /* Find field with name NAME in object of type TYPE. If found, |
6503 | set the following for each argument that is non-null: | |
6504 | - *FIELD_TYPE_P to the field's type; | |
6505 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6506 | an object of that type; | |
6507 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6508 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6509 | 0 otherwise; | |
6510 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6511 | fields up to but not including the desired field, or by the total | |
6512 | number of fields if not found. A NULL value of NAME never | |
6513 | matches; the function just counts visible fields in this case. | |
6514 | ||
828d5846 XR |
6515 | Notice that we need to handle when a tagged record hierarchy |
6516 | has some components with the same name, like in this scenario: | |
6517 | ||
6518 | type Top_T is tagged record | |
dda83cd7 SM |
6519 | N : Integer := 1; |
6520 | U : Integer := 974; | |
6521 | A : Integer := 48; | |
828d5846 XR |
6522 | end record; |
6523 | ||
6524 | type Middle_T is new Top.Top_T with record | |
dda83cd7 SM |
6525 | N : Character := 'a'; |
6526 | C : Integer := 3; | |
828d5846 XR |
6527 | end record; |
6528 | ||
6529 | type Bottom_T is new Middle.Middle_T with record | |
dda83cd7 SM |
6530 | N : Float := 4.0; |
6531 | C : Character := '5'; | |
6532 | X : Integer := 6; | |
6533 | A : Character := 'J'; | |
828d5846 XR |
6534 | end record; |
6535 | ||
6536 | Let's say we now have a variable declared and initialized as follow: | |
6537 | ||
6538 | TC : Top_A := new Bottom_T; | |
6539 | ||
6540 | And then we use this variable to call this function | |
6541 | ||
6542 | procedure Assign (Obj: in out Top_T; TV : Integer); | |
6543 | ||
6544 | as follow: | |
6545 | ||
6546 | Assign (Top_T (B), 12); | |
6547 | ||
6548 | Now, we're in the debugger, and we're inside that procedure | |
6549 | then and we want to print the value of obj.c: | |
6550 | ||
6551 | Usually, the tagged record or one of the parent type owns the | |
6552 | component to print and there's no issue but in this particular | |
6553 | case, what does it mean to ask for Obj.C? Since the actual | |
6554 | type for object is type Bottom_T, it could mean two things: type | |
6555 | component C from the Middle_T view, but also component C from | |
6556 | Bottom_T. So in that "undefined" case, when the component is | |
6557 | not found in the non-resolved type (which includes all the | |
6558 | components of the parent type), then resolve it and see if we | |
6559 | get better luck once expanded. | |
6560 | ||
6561 | In the case of homonyms in the derived tagged type, we don't | |
6562 | guaranty anything, and pick the one that's easiest for us | |
6563 | to program. | |
6564 | ||
0963b4bd | 6565 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6566 | |
4c4b4cd2 | 6567 | static int |
0d5cff50 | 6568 | find_struct_field (const char *name, struct type *type, int offset, |
dda83cd7 SM |
6569 | struct type **field_type_p, |
6570 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, | |
52ce6436 | 6571 | int *index_p) |
4c4b4cd2 PH |
6572 | { |
6573 | int i; | |
828d5846 | 6574 | int parent_offset = -1; |
4c4b4cd2 | 6575 | |
61ee279c | 6576 | type = ada_check_typedef (type); |
76a01679 | 6577 | |
52ce6436 PH |
6578 | if (field_type_p != NULL) |
6579 | *field_type_p = NULL; | |
6580 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6581 | *byte_offset_p = 0; |
52ce6436 PH |
6582 | if (bit_offset_p != NULL) |
6583 | *bit_offset_p = 0; | |
6584 | if (bit_size_p != NULL) | |
6585 | *bit_size_p = 0; | |
6586 | ||
1f704f76 | 6587 | for (i = 0; i < type->num_fields (); i += 1) |
4c4b4cd2 PH |
6588 | { |
6589 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6590 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6591 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6592 | |
4c4b4cd2 | 6593 | if (t_field_name == NULL) |
dda83cd7 | 6594 | continue; |
4c4b4cd2 | 6595 | |
828d5846 | 6596 | else if (ada_is_parent_field (type, i)) |
dda83cd7 | 6597 | { |
828d5846 XR |
6598 | /* This is a field pointing us to the parent type of a tagged |
6599 | type. As hinted in this function's documentation, we give | |
6600 | preference to fields in the current record first, so what | |
6601 | we do here is just record the index of this field before | |
6602 | we skip it. If it turns out we couldn't find our field | |
6603 | in the current record, then we'll get back to it and search | |
6604 | inside it whether the field might exist in the parent. */ | |
6605 | ||
dda83cd7 SM |
6606 | parent_offset = i; |
6607 | continue; | |
6608 | } | |
828d5846 | 6609 | |
52ce6436 | 6610 | else if (name != NULL && field_name_match (t_field_name, name)) |
dda83cd7 SM |
6611 | { |
6612 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6613 | |
52ce6436 | 6614 | if (field_type_p != NULL) |
940da03e | 6615 | *field_type_p = type->field (i).type (); |
52ce6436 PH |
6616 | if (byte_offset_p != NULL) |
6617 | *byte_offset_p = fld_offset; | |
6618 | if (bit_offset_p != NULL) | |
6619 | *bit_offset_p = bit_pos % 8; | |
6620 | if (bit_size_p != NULL) | |
6621 | *bit_size_p = bit_size; | |
dda83cd7 SM |
6622 | return 1; |
6623 | } | |
4c4b4cd2 | 6624 | else if (ada_is_wrapper_field (type, i)) |
dda83cd7 | 6625 | { |
940da03e | 6626 | if (find_struct_field (name, type->field (i).type (), fld_offset, |
52ce6436 PH |
6627 | field_type_p, byte_offset_p, bit_offset_p, |
6628 | bit_size_p, index_p)) | |
dda83cd7 SM |
6629 | return 1; |
6630 | } | |
4c4b4cd2 | 6631 | else if (ada_is_variant_part (type, i)) |
dda83cd7 | 6632 | { |
52ce6436 PH |
6633 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6634 | fixed type?? */ | |
dda83cd7 SM |
6635 | int j; |
6636 | struct type *field_type | |
940da03e | 6637 | = ada_check_typedef (type->field (i).type ()); |
4c4b4cd2 | 6638 | |
dda83cd7 SM |
6639 | for (j = 0; j < field_type->num_fields (); j += 1) |
6640 | { | |
6641 | if (find_struct_field (name, field_type->field (j).type (), | |
6642 | fld_offset | |
6643 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6644 | field_type_p, byte_offset_p, | |
6645 | bit_offset_p, bit_size_p, index_p)) | |
6646 | return 1; | |
6647 | } | |
6648 | } | |
52ce6436 PH |
6649 | else if (index_p != NULL) |
6650 | *index_p += 1; | |
4c4b4cd2 | 6651 | } |
828d5846 XR |
6652 | |
6653 | /* Field not found so far. If this is a tagged type which | |
6654 | has a parent, try finding that field in the parent now. */ | |
6655 | ||
6656 | if (parent_offset != -1) | |
6657 | { | |
6658 | int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset); | |
6659 | int fld_offset = offset + bit_pos / 8; | |
6660 | ||
940da03e | 6661 | if (find_struct_field (name, type->field (parent_offset).type (), |
dda83cd7 SM |
6662 | fld_offset, field_type_p, byte_offset_p, |
6663 | bit_offset_p, bit_size_p, index_p)) | |
6664 | return 1; | |
828d5846 XR |
6665 | } |
6666 | ||
4c4b4cd2 PH |
6667 | return 0; |
6668 | } | |
6669 | ||
0963b4bd | 6670 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6671 | |
52ce6436 PH |
6672 | static int |
6673 | num_visible_fields (struct type *type) | |
6674 | { | |
6675 | int n; | |
5b4ee69b | 6676 | |
52ce6436 PH |
6677 | n = 0; |
6678 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6679 | return n; | |
6680 | } | |
14f9c5c9 | 6681 | |
4c4b4cd2 | 6682 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6683 | and search in it assuming it has (class) type TYPE. |
6684 | If found, return value, else return NULL. | |
6685 | ||
828d5846 XR |
6686 | Searches recursively through wrapper fields (e.g., '_parent'). |
6687 | ||
6688 | In the case of homonyms in the tagged types, please refer to the | |
6689 | long explanation in find_struct_field's function documentation. */ | |
14f9c5c9 | 6690 | |
4c4b4cd2 | 6691 | static struct value * |
108d56a4 | 6692 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
dda83cd7 | 6693 | struct type *type) |
14f9c5c9 AS |
6694 | { |
6695 | int i; | |
828d5846 | 6696 | int parent_offset = -1; |
14f9c5c9 | 6697 | |
5b4ee69b | 6698 | type = ada_check_typedef (type); |
1f704f76 | 6699 | for (i = 0; i < type->num_fields (); i += 1) |
14f9c5c9 | 6700 | { |
0d5cff50 | 6701 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6702 | |
6703 | if (t_field_name == NULL) | |
dda83cd7 | 6704 | continue; |
14f9c5c9 | 6705 | |
828d5846 | 6706 | else if (ada_is_parent_field (type, i)) |
dda83cd7 | 6707 | { |
828d5846 XR |
6708 | /* This is a field pointing us to the parent type of a tagged |
6709 | type. As hinted in this function's documentation, we give | |
6710 | preference to fields in the current record first, so what | |
6711 | we do here is just record the index of this field before | |
6712 | we skip it. If it turns out we couldn't find our field | |
6713 | in the current record, then we'll get back to it and search | |
6714 | inside it whether the field might exist in the parent. */ | |
6715 | ||
dda83cd7 SM |
6716 | parent_offset = i; |
6717 | continue; | |
6718 | } | |
828d5846 | 6719 | |
14f9c5c9 | 6720 | else if (field_name_match (t_field_name, name)) |
dda83cd7 | 6721 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6722 | |
6723 | else if (ada_is_wrapper_field (type, i)) | |
dda83cd7 SM |
6724 | { |
6725 | struct value *v = /* Do not let indent join lines here. */ | |
6726 | ada_search_struct_field (name, arg, | |
6727 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6728 | type->field (i).type ()); | |
5b4ee69b | 6729 | |
dda83cd7 SM |
6730 | if (v != NULL) |
6731 | return v; | |
6732 | } | |
14f9c5c9 AS |
6733 | |
6734 | else if (ada_is_variant_part (type, i)) | |
dda83cd7 | 6735 | { |
0963b4bd | 6736 | /* PNH: Do we ever get here? See find_struct_field. */ |
dda83cd7 SM |
6737 | int j; |
6738 | struct type *field_type = ada_check_typedef (type->field (i).type ()); | |
6739 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; | |
4c4b4cd2 | 6740 | |
dda83cd7 SM |
6741 | for (j = 0; j < field_type->num_fields (); j += 1) |
6742 | { | |
6743 | struct value *v = ada_search_struct_field /* Force line | |
0963b4bd | 6744 | break. */ |
dda83cd7 SM |
6745 | (name, arg, |
6746 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6747 | field_type->field (j).type ()); | |
5b4ee69b | 6748 | |
dda83cd7 SM |
6749 | if (v != NULL) |
6750 | return v; | |
6751 | } | |
6752 | } | |
14f9c5c9 | 6753 | } |
828d5846 XR |
6754 | |
6755 | /* Field not found so far. If this is a tagged type which | |
6756 | has a parent, try finding that field in the parent now. */ | |
6757 | ||
6758 | if (parent_offset != -1) | |
6759 | { | |
6760 | struct value *v = ada_search_struct_field ( | |
6761 | name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8, | |
940da03e | 6762 | type->field (parent_offset).type ()); |
828d5846 XR |
6763 | |
6764 | if (v != NULL) | |
dda83cd7 | 6765 | return v; |
828d5846 XR |
6766 | } |
6767 | ||
14f9c5c9 AS |
6768 | return NULL; |
6769 | } | |
d2e4a39e | 6770 | |
52ce6436 PH |
6771 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6772 | int, struct type *); | |
6773 | ||
6774 | ||
6775 | /* Return field #INDEX in ARG, where the index is that returned by | |
6776 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6777 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6778 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6779 | |
6780 | static struct value * | |
6781 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6782 | struct type *type) | |
6783 | { | |
6784 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6785 | } | |
6786 | ||
6787 | ||
6788 | /* Auxiliary function for ada_index_struct_field. Like | |
6789 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6790 | * *INDEX_P. */ |
52ce6436 PH |
6791 | |
6792 | static struct value * | |
6793 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6794 | struct type *type) | |
6795 | { | |
6796 | int i; | |
6797 | type = ada_check_typedef (type); | |
6798 | ||
1f704f76 | 6799 | for (i = 0; i < type->num_fields (); i += 1) |
52ce6436 PH |
6800 | { |
6801 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
dda83cd7 | 6802 | continue; |
52ce6436 | 6803 | else if (ada_is_wrapper_field (type, i)) |
dda83cd7 SM |
6804 | { |
6805 | struct value *v = /* Do not let indent join lines here. */ | |
6806 | ada_index_struct_field_1 (index_p, arg, | |
52ce6436 | 6807 | offset + TYPE_FIELD_BITPOS (type, i) / 8, |
940da03e | 6808 | type->field (i).type ()); |
5b4ee69b | 6809 | |
dda83cd7 SM |
6810 | if (v != NULL) |
6811 | return v; | |
6812 | } | |
52ce6436 PH |
6813 | |
6814 | else if (ada_is_variant_part (type, i)) | |
dda83cd7 | 6815 | { |
52ce6436 | 6816 | /* PNH: Do we ever get here? See ada_search_struct_field, |
0963b4bd | 6817 | find_struct_field. */ |
52ce6436 | 6818 | error (_("Cannot assign this kind of variant record")); |
dda83cd7 | 6819 | } |
52ce6436 | 6820 | else if (*index_p == 0) |
dda83cd7 | 6821 | return ada_value_primitive_field (arg, offset, i, type); |
52ce6436 PH |
6822 | else |
6823 | *index_p -= 1; | |
6824 | } | |
6825 | return NULL; | |
6826 | } | |
6827 | ||
3b4de39c | 6828 | /* Return a string representation of type TYPE. */ |
99bbb428 | 6829 | |
3b4de39c | 6830 | static std::string |
99bbb428 PA |
6831 | type_as_string (struct type *type) |
6832 | { | |
d7e74731 | 6833 | string_file tmp_stream; |
99bbb428 | 6834 | |
d7e74731 | 6835 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 6836 | |
d7e74731 | 6837 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
6838 | } |
6839 | ||
14f9c5c9 | 6840 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
6841 | If DISPP is non-null, add its byte displacement from the beginning of a |
6842 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6843 | work for packed fields). |
6844 | ||
6845 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6846 | followed by "___". |
14f9c5c9 | 6847 | |
0963b4bd | 6848 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6849 | be a (pointer or reference)+ to a struct or union, and the |
6850 | ultimate target type will be searched. | |
14f9c5c9 AS |
6851 | |
6852 | Looks recursively into variant clauses and parent types. | |
6853 | ||
828d5846 XR |
6854 | In the case of homonyms in the tagged types, please refer to the |
6855 | long explanation in find_struct_field's function documentation. | |
6856 | ||
4c4b4cd2 PH |
6857 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6858 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6859 | |
4c4b4cd2 | 6860 | static struct type * |
a121b7c1 | 6861 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
dda83cd7 | 6862 | int noerr) |
14f9c5c9 AS |
6863 | { |
6864 | int i; | |
828d5846 | 6865 | int parent_offset = -1; |
14f9c5c9 AS |
6866 | |
6867 | if (name == NULL) | |
6868 | goto BadName; | |
6869 | ||
76a01679 | 6870 | if (refok && type != NULL) |
4c4b4cd2 PH |
6871 | while (1) |
6872 | { | |
dda83cd7 SM |
6873 | type = ada_check_typedef (type); |
6874 | if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF) | |
6875 | break; | |
6876 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6877 | } |
14f9c5c9 | 6878 | |
76a01679 | 6879 | if (type == NULL |
78134374 SM |
6880 | || (type->code () != TYPE_CODE_STRUCT |
6881 | && type->code () != TYPE_CODE_UNION)) | |
14f9c5c9 | 6882 | { |
4c4b4cd2 | 6883 | if (noerr) |
dda83cd7 | 6884 | return NULL; |
99bbb428 | 6885 | |
3b4de39c PA |
6886 | error (_("Type %s is not a structure or union type"), |
6887 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
6888 | } |
6889 | ||
6890 | type = to_static_fixed_type (type); | |
6891 | ||
1f704f76 | 6892 | for (i = 0; i < type->num_fields (); i += 1) |
14f9c5c9 | 6893 | { |
0d5cff50 | 6894 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 6895 | struct type *t; |
d2e4a39e | 6896 | |
14f9c5c9 | 6897 | if (t_field_name == NULL) |
dda83cd7 | 6898 | continue; |
14f9c5c9 | 6899 | |
828d5846 | 6900 | else if (ada_is_parent_field (type, i)) |
dda83cd7 | 6901 | { |
828d5846 XR |
6902 | /* This is a field pointing us to the parent type of a tagged |
6903 | type. As hinted in this function's documentation, we give | |
6904 | preference to fields in the current record first, so what | |
6905 | we do here is just record the index of this field before | |
6906 | we skip it. If it turns out we couldn't find our field | |
6907 | in the current record, then we'll get back to it and search | |
6908 | inside it whether the field might exist in the parent. */ | |
6909 | ||
dda83cd7 SM |
6910 | parent_offset = i; |
6911 | continue; | |
6912 | } | |
828d5846 | 6913 | |
14f9c5c9 | 6914 | else if (field_name_match (t_field_name, name)) |
940da03e | 6915 | return type->field (i).type (); |
14f9c5c9 AS |
6916 | |
6917 | else if (ada_is_wrapper_field (type, i)) | |
dda83cd7 SM |
6918 | { |
6919 | t = ada_lookup_struct_elt_type (type->field (i).type (), name, | |
6920 | 0, 1); | |
6921 | if (t != NULL) | |
988f6b3d | 6922 | return t; |
dda83cd7 | 6923 | } |
14f9c5c9 AS |
6924 | |
6925 | else if (ada_is_variant_part (type, i)) | |
dda83cd7 SM |
6926 | { |
6927 | int j; | |
6928 | struct type *field_type = ada_check_typedef (type->field (i).type ()); | |
4c4b4cd2 | 6929 | |
dda83cd7 SM |
6930 | for (j = field_type->num_fields () - 1; j >= 0; j -= 1) |
6931 | { | |
b1f33ddd | 6932 | /* FIXME pnh 2008/01/26: We check for a field that is |
dda83cd7 | 6933 | NOT wrapped in a struct, since the compiler sometimes |
b1f33ddd | 6934 | generates these for unchecked variant types. Revisit |
dda83cd7 | 6935 | if the compiler changes this practice. */ |
0d5cff50 | 6936 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 6937 | |
b1f33ddd JB |
6938 | if (v_field_name != NULL |
6939 | && field_name_match (v_field_name, name)) | |
940da03e | 6940 | t = field_type->field (j).type (); |
b1f33ddd | 6941 | else |
940da03e | 6942 | t = ada_lookup_struct_elt_type (field_type->field (j).type (), |
988f6b3d | 6943 | name, 0, 1); |
b1f33ddd | 6944 | |
dda83cd7 | 6945 | if (t != NULL) |
988f6b3d | 6946 | return t; |
dda83cd7 SM |
6947 | } |
6948 | } | |
14f9c5c9 AS |
6949 | |
6950 | } | |
6951 | ||
828d5846 XR |
6952 | /* Field not found so far. If this is a tagged type which |
6953 | has a parent, try finding that field in the parent now. */ | |
6954 | ||
6955 | if (parent_offset != -1) | |
6956 | { | |
dda83cd7 | 6957 | struct type *t; |
828d5846 | 6958 | |
dda83cd7 SM |
6959 | t = ada_lookup_struct_elt_type (type->field (parent_offset).type (), |
6960 | name, 0, 1); | |
6961 | if (t != NULL) | |
828d5846 XR |
6962 | return t; |
6963 | } | |
6964 | ||
14f9c5c9 | 6965 | BadName: |
d2e4a39e | 6966 | if (!noerr) |
14f9c5c9 | 6967 | { |
2b2798cc | 6968 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
6969 | |
6970 | error (_("Type %s has no component named %s"), | |
3b4de39c | 6971 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
6972 | } |
6973 | ||
6974 | return NULL; | |
6975 | } | |
6976 | ||
b1f33ddd JB |
6977 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6978 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6979 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6980 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6981 | |
6982 | static int | |
6983 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6984 | { | |
a121b7c1 | 6985 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6986 | |
988f6b3d | 6987 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
6988 | } |
6989 | ||
6990 | ||
14f9c5c9 | 6991 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
d8af9068 | 6992 | within OUTER, determine which variant clause (field number in VAR_TYPE, |
4c4b4cd2 | 6993 | numbering from 0) is applicable. Returns -1 if none are. */ |
14f9c5c9 | 6994 | |
d2e4a39e | 6995 | int |
d8af9068 | 6996 | ada_which_variant_applies (struct type *var_type, struct value *outer) |
14f9c5c9 AS |
6997 | { |
6998 | int others_clause; | |
6999 | int i; | |
a121b7c1 | 7000 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 | 7001 | struct value *discrim; |
14f9c5c9 AS |
7002 | LONGEST discrim_val; |
7003 | ||
012370f6 TT |
7004 | /* Using plain value_from_contents_and_address here causes problems |
7005 | because we will end up trying to resolve a type that is currently | |
7006 | being constructed. */ | |
0c281816 JB |
7007 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7008 | if (discrim == NULL) | |
14f9c5c9 | 7009 | return -1; |
0c281816 | 7010 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7011 | |
7012 | others_clause = -1; | |
1f704f76 | 7013 | for (i = 0; i < var_type->num_fields (); i += 1) |
14f9c5c9 AS |
7014 | { |
7015 | if (ada_is_others_clause (var_type, i)) | |
dda83cd7 | 7016 | others_clause = i; |
14f9c5c9 | 7017 | else if (ada_in_variant (discrim_val, var_type, i)) |
dda83cd7 | 7018 | return i; |
14f9c5c9 AS |
7019 | } |
7020 | ||
7021 | return others_clause; | |
7022 | } | |
d2e4a39e | 7023 | \f |
14f9c5c9 AS |
7024 | |
7025 | ||
dda83cd7 | 7026 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7027 | |
7028 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7029 | (i.e., a size that is not statically recorded in the debugging | |
7030 | data) does not accurately reflect the size or layout of the value. | |
7031 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7032 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7033 | |
7034 | /* There is a subtle and tricky problem here. In general, we cannot | |
7035 | determine the size of dynamic records without its data. However, | |
7036 | the 'struct value' data structure, which GDB uses to represent | |
7037 | quantities in the inferior process (the target), requires the size | |
7038 | of the type at the time of its allocation in order to reserve space | |
7039 | for GDB's internal copy of the data. That's why the | |
7040 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7041 | rather than struct value*s. |
14f9c5c9 AS |
7042 | |
7043 | However, GDB's internal history variables ($1, $2, etc.) are | |
7044 | struct value*s containing internal copies of the data that are not, in | |
7045 | general, the same as the data at their corresponding addresses in | |
7046 | the target. Fortunately, the types we give to these values are all | |
7047 | conventional, fixed-size types (as per the strategy described | |
7048 | above), so that we don't usually have to perform the | |
7049 | 'to_fixed_xxx_type' conversions to look at their values. | |
7050 | Unfortunately, there is one exception: if one of the internal | |
7051 | history variables is an array whose elements are unconstrained | |
7052 | records, then we will need to create distinct fixed types for each | |
7053 | element selected. */ | |
7054 | ||
7055 | /* The upshot of all of this is that many routines take a (type, host | |
7056 | address, target address) triple as arguments to represent a value. | |
7057 | The host address, if non-null, is supposed to contain an internal | |
7058 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7059 | target at the target address. */ |
14f9c5c9 AS |
7060 | |
7061 | /* Assuming that VAL0 represents a pointer value, the result of | |
7062 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7063 | dynamic-sized types. */ |
14f9c5c9 | 7064 | |
d2e4a39e AS |
7065 | struct value * |
7066 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7067 | { |
c48db5ca | 7068 | struct value *val = value_ind (val0); |
5b4ee69b | 7069 | |
b50d69b5 JG |
7070 | if (ada_is_tagged_type (value_type (val), 0)) |
7071 | val = ada_tag_value_at_base_address (val); | |
7072 | ||
4c4b4cd2 | 7073 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7074 | } |
7075 | ||
7076 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7077 | qualifiers on VAL0. */ |
7078 | ||
d2e4a39e AS |
7079 | static struct value * |
7080 | ada_coerce_ref (struct value *val0) | |
7081 | { | |
78134374 | 7082 | if (value_type (val0)->code () == TYPE_CODE_REF) |
d2e4a39e AS |
7083 | { |
7084 | struct value *val = val0; | |
5b4ee69b | 7085 | |
994b9211 | 7086 | val = coerce_ref (val); |
b50d69b5 JG |
7087 | |
7088 | if (ada_is_tagged_type (value_type (val), 0)) | |
7089 | val = ada_tag_value_at_base_address (val); | |
7090 | ||
4c4b4cd2 | 7091 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7092 | } |
7093 | else | |
14f9c5c9 AS |
7094 | return val0; |
7095 | } | |
7096 | ||
4c4b4cd2 | 7097 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7098 | |
7099 | static unsigned int | |
ebf56fd3 | 7100 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7101 | { |
d2e4a39e | 7102 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7103 | int len; |
14f9c5c9 AS |
7104 | int align_offset; |
7105 | ||
64a1bf19 JB |
7106 | /* The field name should never be null, unless the debugging information |
7107 | is somehow malformed. In this case, we assume the field does not | |
7108 | require any alignment. */ | |
7109 | if (name == NULL) | |
7110 | return 1; | |
7111 | ||
7112 | len = strlen (name); | |
7113 | ||
4c4b4cd2 PH |
7114 | if (!isdigit (name[len - 1])) |
7115 | return 1; | |
14f9c5c9 | 7116 | |
d2e4a39e | 7117 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7118 | align_offset = len - 2; |
7119 | else | |
7120 | align_offset = len - 1; | |
7121 | ||
61012eef | 7122 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7123 | return TARGET_CHAR_BIT; |
7124 | ||
4c4b4cd2 PH |
7125 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7126 | } | |
7127 | ||
852dff6c | 7128 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7129 | |
852dff6c JB |
7130 | static struct symbol * |
7131 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7132 | { |
7133 | struct symbol *sym; | |
7134 | ||
7135 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7136 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7137 | return sym; |
7138 | ||
4186eb54 KS |
7139 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7140 | return sym; | |
14f9c5c9 AS |
7141 | } |
7142 | ||
dddfab26 UW |
7143 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7144 | solely for types defined by debug info, it will not search the GDB | |
7145 | primitive types. */ | |
4c4b4cd2 | 7146 | |
852dff6c | 7147 | static struct type * |
ebf56fd3 | 7148 | ada_find_any_type (const char *name) |
14f9c5c9 | 7149 | { |
852dff6c | 7150 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7151 | |
14f9c5c9 | 7152 | if (sym != NULL) |
dddfab26 | 7153 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7154 | |
dddfab26 | 7155 | return NULL; |
14f9c5c9 AS |
7156 | } |
7157 | ||
739593e0 JB |
7158 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7159 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7160 | symbol, in which case it is returned. Otherwise, this looks for | |
7161 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7162 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 | 7163 | |
c0e70c62 TT |
7164 | static bool |
7165 | ada_is_renaming_symbol (struct symbol *name_sym) | |
aeb5907d | 7166 | { |
987012b8 | 7167 | const char *name = name_sym->linkage_name (); |
c0e70c62 | 7168 | return strstr (name, "___XR") != NULL; |
4c4b4cd2 PH |
7169 | } |
7170 | ||
14f9c5c9 | 7171 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7172 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7173 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7174 | otherwise return 0. */ |
7175 | ||
14f9c5c9 | 7176 | int |
d2e4a39e | 7177 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7178 | { |
7179 | if (type1 == NULL) | |
7180 | return 1; | |
7181 | else if (type0 == NULL) | |
7182 | return 0; | |
78134374 | 7183 | else if (type1->code () == TYPE_CODE_VOID) |
14f9c5c9 | 7184 | return 1; |
78134374 | 7185 | else if (type0->code () == TYPE_CODE_VOID) |
14f9c5c9 | 7186 | return 0; |
7d93a1e0 | 7187 | else if (type1->name () == NULL && type0->name () != NULL) |
4c4b4cd2 | 7188 | return 1; |
ad82864c | 7189 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7190 | return 1; |
4c4b4cd2 | 7191 | else if (ada_is_array_descriptor_type (type0) |
dda83cd7 | 7192 | && !ada_is_array_descriptor_type (type1)) |
14f9c5c9 | 7193 | return 1; |
aeb5907d JB |
7194 | else |
7195 | { | |
7d93a1e0 SM |
7196 | const char *type0_name = type0->name (); |
7197 | const char *type1_name = type1->name (); | |
aeb5907d JB |
7198 | |
7199 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7200 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7201 | return 1; | |
7202 | } | |
14f9c5c9 AS |
7203 | return 0; |
7204 | } | |
7205 | ||
e86ca25f TT |
7206 | /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is |
7207 | null. */ | |
4c4b4cd2 | 7208 | |
0d5cff50 | 7209 | const char * |
d2e4a39e | 7210 | ada_type_name (struct type *type) |
14f9c5c9 | 7211 | { |
d2e4a39e | 7212 | if (type == NULL) |
14f9c5c9 | 7213 | return NULL; |
7d93a1e0 | 7214 | return type->name (); |
14f9c5c9 AS |
7215 | } |
7216 | ||
b4ba55a1 JB |
7217 | /* Search the list of "descriptive" types associated to TYPE for a type |
7218 | whose name is NAME. */ | |
7219 | ||
7220 | static struct type * | |
7221 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7222 | { | |
931e5bc3 | 7223 | struct type *result, *tmp; |
b4ba55a1 | 7224 | |
c6044dd1 JB |
7225 | if (ada_ignore_descriptive_types_p) |
7226 | return NULL; | |
7227 | ||
b4ba55a1 JB |
7228 | /* If there no descriptive-type info, then there is no parallel type |
7229 | to be found. */ | |
7230 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7231 | return NULL; | |
7232 | ||
7233 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7234 | while (result != NULL) | |
7235 | { | |
0d5cff50 | 7236 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7237 | |
7238 | if (result_name == NULL) | |
dda83cd7 SM |
7239 | { |
7240 | warning (_("unexpected null name on descriptive type")); | |
7241 | return NULL; | |
7242 | } | |
b4ba55a1 JB |
7243 | |
7244 | /* If the names match, stop. */ | |
7245 | if (strcmp (result_name, name) == 0) | |
7246 | break; | |
7247 | ||
7248 | /* Otherwise, look at the next item on the list, if any. */ | |
7249 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
7250 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
7251 | else | |
7252 | tmp = NULL; | |
7253 | ||
7254 | /* If not found either, try after having resolved the typedef. */ | |
7255 | if (tmp != NULL) | |
7256 | result = tmp; | |
b4ba55a1 | 7257 | else |
931e5bc3 | 7258 | { |
f168693b | 7259 | result = check_typedef (result); |
931e5bc3 JG |
7260 | if (HAVE_GNAT_AUX_INFO (result)) |
7261 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7262 | else | |
7263 | result = NULL; | |
7264 | } | |
b4ba55a1 JB |
7265 | } |
7266 | ||
7267 | /* If we didn't find a match, see whether this is a packed array. With | |
7268 | older compilers, the descriptive type information is either absent or | |
7269 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7270 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7271 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7272 | return ada_find_any_type (name); |
7273 | ||
7274 | return result; | |
7275 | } | |
7276 | ||
7277 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7278 | descriptive type taken from the debugging information, if available, | |
7279 | and otherwise using the (slower) name-based method. */ | |
7280 | ||
7281 | static struct type * | |
7282 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7283 | { | |
7284 | struct type *result = NULL; | |
7285 | ||
7286 | if (HAVE_GNAT_AUX_INFO (type)) | |
7287 | result = find_parallel_type_by_descriptive_type (type, name); | |
7288 | else | |
7289 | result = ada_find_any_type (name); | |
7290 | ||
7291 | return result; | |
7292 | } | |
7293 | ||
7294 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7295 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7296 | |
d2e4a39e | 7297 | struct type * |
ebf56fd3 | 7298 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7299 | { |
0d5cff50 | 7300 | char *name; |
fe978cb0 | 7301 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 7302 | int len; |
d2e4a39e | 7303 | |
fe978cb0 | 7304 | if (type_name == NULL) |
14f9c5c9 AS |
7305 | return NULL; |
7306 | ||
fe978cb0 | 7307 | len = strlen (type_name); |
14f9c5c9 | 7308 | |
b4ba55a1 | 7309 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 7310 | |
fe978cb0 | 7311 | strcpy (name, type_name); |
14f9c5c9 AS |
7312 | strcpy (name + len, suffix); |
7313 | ||
b4ba55a1 | 7314 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7315 | } |
7316 | ||
14f9c5c9 | 7317 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7318 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7319 | |
d2e4a39e AS |
7320 | static struct type * |
7321 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7322 | { |
61ee279c | 7323 | type = ada_check_typedef (type); |
14f9c5c9 | 7324 | |
78134374 | 7325 | if (type == NULL || type->code () != TYPE_CODE_STRUCT |
d2e4a39e | 7326 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7327 | return NULL; |
d2e4a39e | 7328 | else |
14f9c5c9 AS |
7329 | { |
7330 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7331 | |
4c4b4cd2 | 7332 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
dda83cd7 | 7333 | return type; |
14f9c5c9 | 7334 | else |
dda83cd7 | 7335 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7336 | } |
7337 | } | |
7338 | ||
7339 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7340 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7341 | |
d2e4a39e AS |
7342 | static int |
7343 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7344 | { |
7345 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7346 | |
d2e4a39e | 7347 | return name != NULL |
940da03e | 7348 | && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR |
14f9c5c9 AS |
7349 | && strstr (name, "___XVL") != NULL; |
7350 | } | |
7351 | ||
4c4b4cd2 PH |
7352 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7353 | represent a variant record type. */ | |
14f9c5c9 | 7354 | |
d2e4a39e | 7355 | static int |
4c4b4cd2 | 7356 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7357 | { |
7358 | int f; | |
7359 | ||
78134374 | 7360 | if (type == NULL || type->code () != TYPE_CODE_STRUCT) |
4c4b4cd2 PH |
7361 | return -1; |
7362 | ||
1f704f76 | 7363 | for (f = 0; f < type->num_fields (); f += 1) |
4c4b4cd2 PH |
7364 | { |
7365 | if (ada_is_variant_part (type, f)) | |
dda83cd7 | 7366 | return f; |
4c4b4cd2 PH |
7367 | } |
7368 | return -1; | |
14f9c5c9 AS |
7369 | } |
7370 | ||
4c4b4cd2 PH |
7371 | /* A record type with no fields. */ |
7372 | ||
d2e4a39e | 7373 | static struct type * |
fe978cb0 | 7374 | empty_record (struct type *templ) |
14f9c5c9 | 7375 | { |
fe978cb0 | 7376 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 7377 | |
67607e24 | 7378 | type->set_code (TYPE_CODE_STRUCT); |
8ecb59f8 | 7379 | INIT_NONE_SPECIFIC (type); |
d0e39ea2 | 7380 | type->set_name ("<empty>"); |
14f9c5c9 AS |
7381 | TYPE_LENGTH (type) = 0; |
7382 | return type; | |
7383 | } | |
7384 | ||
7385 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7386 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7387 | the beginning of this section) VAL according to GNAT conventions. | |
7388 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7389 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7390 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7391 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7392 | of the variant. |
14f9c5c9 | 7393 | |
4c4b4cd2 PH |
7394 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7395 | length are not statically known are discarded. As a consequence, | |
7396 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7397 | ||
7398 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7399 | variants occupy whole numbers of bytes. However, they need not be | |
7400 | byte-aligned. */ | |
7401 | ||
7402 | struct type * | |
10a2c479 | 7403 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7404 | const gdb_byte *valaddr, |
dda83cd7 SM |
7405 | CORE_ADDR address, struct value *dval0, |
7406 | int keep_dynamic_fields) | |
14f9c5c9 | 7407 | { |
d2e4a39e AS |
7408 | struct value *mark = value_mark (); |
7409 | struct value *dval; | |
7410 | struct type *rtype; | |
14f9c5c9 | 7411 | int nfields, bit_len; |
4c4b4cd2 | 7412 | int variant_field; |
14f9c5c9 | 7413 | long off; |
d94e4f4f | 7414 | int fld_bit_len; |
14f9c5c9 AS |
7415 | int f; |
7416 | ||
4c4b4cd2 PH |
7417 | /* Compute the number of fields in this record type that are going |
7418 | to be processed: unless keep_dynamic_fields, this includes only | |
7419 | fields whose position and length are static will be processed. */ | |
7420 | if (keep_dynamic_fields) | |
1f704f76 | 7421 | nfields = type->num_fields (); |
4c4b4cd2 PH |
7422 | else |
7423 | { | |
7424 | nfields = 0; | |
1f704f76 | 7425 | while (nfields < type->num_fields () |
dda83cd7 SM |
7426 | && !ada_is_variant_part (type, nfields) |
7427 | && !is_dynamic_field (type, nfields)) | |
7428 | nfields++; | |
4c4b4cd2 PH |
7429 | } |
7430 | ||
e9bb382b | 7431 | rtype = alloc_type_copy (type); |
67607e24 | 7432 | rtype->set_code (TYPE_CODE_STRUCT); |
8ecb59f8 | 7433 | INIT_NONE_SPECIFIC (rtype); |
5e33d5f4 | 7434 | rtype->set_num_fields (nfields); |
3cabb6b0 SM |
7435 | rtype->set_fields |
7436 | ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field))); | |
d0e39ea2 | 7437 | rtype->set_name (ada_type_name (type)); |
9cdd0d12 | 7438 | rtype->set_is_fixed_instance (true); |
14f9c5c9 | 7439 | |
d2e4a39e AS |
7440 | off = 0; |
7441 | bit_len = 0; | |
4c4b4cd2 PH |
7442 | variant_field = -1; |
7443 | ||
14f9c5c9 AS |
7444 | for (f = 0; f < nfields; f += 1) |
7445 | { | |
a89febbd | 7446 | off = align_up (off, field_alignment (type, f)) |
6c038f32 | 7447 | + TYPE_FIELD_BITPOS (type, f); |
ceacbf6e | 7448 | SET_FIELD_BITPOS (rtype->field (f), off); |
d2e4a39e | 7449 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7450 | |
d2e4a39e | 7451 | if (ada_is_variant_part (type, f)) |
dda83cd7 SM |
7452 | { |
7453 | variant_field = f; | |
7454 | fld_bit_len = 0; | |
7455 | } | |
14f9c5c9 | 7456 | else if (is_dynamic_field (type, f)) |
dda83cd7 | 7457 | { |
284614f0 JB |
7458 | const gdb_byte *field_valaddr = valaddr; |
7459 | CORE_ADDR field_address = address; | |
7460 | struct type *field_type = | |
940da03e | 7461 | TYPE_TARGET_TYPE (type->field (f).type ()); |
284614f0 | 7462 | |
dda83cd7 | 7463 | if (dval0 == NULL) |
b5304971 JG |
7464 | { |
7465 | /* rtype's length is computed based on the run-time | |
7466 | value of discriminants. If the discriminants are not | |
7467 | initialized, the type size may be completely bogus and | |
0963b4bd | 7468 | GDB may fail to allocate a value for it. So check the |
b5304971 | 7469 | size first before creating the value. */ |
c1b5a1a6 | 7470 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
7471 | /* Using plain value_from_contents_and_address here |
7472 | causes problems because we will end up trying to | |
7473 | resolve a type that is currently being | |
7474 | constructed. */ | |
7475 | dval = value_from_contents_and_address_unresolved (rtype, | |
7476 | valaddr, | |
7477 | address); | |
9f1f738a | 7478 | rtype = value_type (dval); |
b5304971 | 7479 | } |
dda83cd7 SM |
7480 | else |
7481 | dval = dval0; | |
4c4b4cd2 | 7482 | |
284614f0 JB |
7483 | /* If the type referenced by this field is an aligner type, we need |
7484 | to unwrap that aligner type, because its size might not be set. | |
7485 | Keeping the aligner type would cause us to compute the wrong | |
7486 | size for this field, impacting the offset of the all the fields | |
7487 | that follow this one. */ | |
7488 | if (ada_is_aligner_type (field_type)) | |
7489 | { | |
7490 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7491 | ||
7492 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7493 | field_address = cond_offset_target (field_address, field_offset); | |
7494 | field_type = ada_aligned_type (field_type); | |
7495 | } | |
7496 | ||
7497 | field_valaddr = cond_offset_host (field_valaddr, | |
7498 | off / TARGET_CHAR_BIT); | |
7499 | field_address = cond_offset_target (field_address, | |
7500 | off / TARGET_CHAR_BIT); | |
7501 | ||
7502 | /* Get the fixed type of the field. Note that, in this case, | |
7503 | we do not want to get the real type out of the tag: if | |
7504 | the current field is the parent part of a tagged record, | |
7505 | we will get the tag of the object. Clearly wrong: the real | |
7506 | type of the parent is not the real type of the child. We | |
7507 | would end up in an infinite loop. */ | |
7508 | field_type = ada_get_base_type (field_type); | |
7509 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7510 | field_address, dval, 0); | |
27f2a97b JB |
7511 | /* If the field size is already larger than the maximum |
7512 | object size, then the record itself will necessarily | |
7513 | be larger than the maximum object size. We need to make | |
7514 | this check now, because the size might be so ridiculously | |
7515 | large (due to an uninitialized variable in the inferior) | |
7516 | that it would cause an overflow when adding it to the | |
7517 | record size. */ | |
c1b5a1a6 | 7518 | ada_ensure_varsize_limit (field_type); |
284614f0 | 7519 | |
5d14b6e5 | 7520 | rtype->field (f).set_type (field_type); |
dda83cd7 | 7521 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7522 | /* The multiplication can potentially overflow. But because |
7523 | the field length has been size-checked just above, and | |
7524 | assuming that the maximum size is a reasonable value, | |
7525 | an overflow should not happen in practice. So rather than | |
7526 | adding overflow recovery code to this already complex code, | |
7527 | we just assume that it's not going to happen. */ | |
dda83cd7 SM |
7528 | fld_bit_len = |
7529 | TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT; | |
7530 | } | |
14f9c5c9 | 7531 | else |
dda83cd7 | 7532 | { |
5ded5331 JB |
7533 | /* Note: If this field's type is a typedef, it is important |
7534 | to preserve the typedef layer. | |
7535 | ||
7536 | Otherwise, we might be transforming a typedef to a fat | |
7537 | pointer (encoding a pointer to an unconstrained array), | |
7538 | into a basic fat pointer (encoding an unconstrained | |
7539 | array). As both types are implemented using the same | |
7540 | structure, the typedef is the only clue which allows us | |
7541 | to distinguish between the two options. Stripping it | |
7542 | would prevent us from printing this field appropriately. */ | |
dda83cd7 SM |
7543 | rtype->field (f).set_type (type->field (f).type ()); |
7544 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
7545 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
7546 | fld_bit_len = | |
7547 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
7548 | else | |
5ded5331 | 7549 | { |
940da03e | 7550 | struct type *field_type = type->field (f).type (); |
5ded5331 JB |
7551 | |
7552 | /* We need to be careful of typedefs when computing | |
7553 | the length of our field. If this is a typedef, | |
7554 | get the length of the target type, not the length | |
7555 | of the typedef. */ | |
78134374 | 7556 | if (field_type->code () == TYPE_CODE_TYPEDEF) |
5ded5331 JB |
7557 | field_type = ada_typedef_target_type (field_type); |
7558 | ||
dda83cd7 SM |
7559 | fld_bit_len = |
7560 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
5ded5331 | 7561 | } |
dda83cd7 | 7562 | } |
14f9c5c9 | 7563 | if (off + fld_bit_len > bit_len) |
dda83cd7 | 7564 | bit_len = off + fld_bit_len; |
d94e4f4f | 7565 | off += fld_bit_len; |
4c4b4cd2 | 7566 | TYPE_LENGTH (rtype) = |
dda83cd7 | 7567 | align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; |
14f9c5c9 | 7568 | } |
4c4b4cd2 PH |
7569 | |
7570 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7571 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7572 | the record. This can happen in the presence of representation |
7573 | clauses. */ | |
7574 | if (variant_field >= 0) | |
7575 | { | |
7576 | struct type *branch_type; | |
7577 | ||
7578 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7579 | ||
7580 | if (dval0 == NULL) | |
9f1f738a | 7581 | { |
012370f6 TT |
7582 | /* Using plain value_from_contents_and_address here causes |
7583 | problems because we will end up trying to resolve a type | |
7584 | that is currently being constructed. */ | |
7585 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
7586 | address); | |
9f1f738a SA |
7587 | rtype = value_type (dval); |
7588 | } | |
4c4b4cd2 | 7589 | else |
dda83cd7 | 7590 | dval = dval0; |
4c4b4cd2 PH |
7591 | |
7592 | branch_type = | |
dda83cd7 SM |
7593 | to_fixed_variant_branch_type |
7594 | (type->field (variant_field).type (), | |
7595 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7596 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
4c4b4cd2 | 7597 | if (branch_type == NULL) |
dda83cd7 SM |
7598 | { |
7599 | for (f = variant_field + 1; f < rtype->num_fields (); f += 1) | |
7600 | rtype->field (f - 1) = rtype->field (f); | |
5e33d5f4 | 7601 | rtype->set_num_fields (rtype->num_fields () - 1); |
dda83cd7 | 7602 | } |
4c4b4cd2 | 7603 | else |
dda83cd7 SM |
7604 | { |
7605 | rtype->field (variant_field).set_type (branch_type); | |
7606 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7607 | fld_bit_len = | |
7608 | TYPE_LENGTH (rtype->field (variant_field).type ()) * | |
7609 | TARGET_CHAR_BIT; | |
7610 | if (off + fld_bit_len > bit_len) | |
7611 | bit_len = off + fld_bit_len; | |
7612 | TYPE_LENGTH (rtype) = | |
7613 | align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7614 | } | |
4c4b4cd2 PH |
7615 | } |
7616 | ||
714e53ab PH |
7617 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7618 | should contain the alignment of that record, which should be a strictly | |
7619 | positive value. If null or negative, then something is wrong, most | |
7620 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7621 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7622 | the current RTYPE length might be good enough for our purposes. */ |
7623 | if (TYPE_LENGTH (type) <= 0) | |
7624 | { | |
7d93a1e0 | 7625 | if (rtype->name ()) |
cc1defb1 | 7626 | warning (_("Invalid type size for `%s' detected: %s."), |
7d93a1e0 | 7627 | rtype->name (), pulongest (TYPE_LENGTH (type))); |
323e0a4a | 7628 | else |
cc1defb1 KS |
7629 | warning (_("Invalid type size for <unnamed> detected: %s."), |
7630 | pulongest (TYPE_LENGTH (type))); | |
714e53ab PH |
7631 | } |
7632 | else | |
7633 | { | |
a89febbd TT |
7634 | TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype), |
7635 | TYPE_LENGTH (type)); | |
714e53ab | 7636 | } |
14f9c5c9 AS |
7637 | |
7638 | value_free_to_mark (mark); | |
d2e4a39e | 7639 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7640 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7641 | return rtype; |
7642 | } | |
7643 | ||
4c4b4cd2 PH |
7644 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7645 | of 1. */ | |
14f9c5c9 | 7646 | |
d2e4a39e | 7647 | static struct type * |
fc1a4b47 | 7648 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
dda83cd7 | 7649 | CORE_ADDR address, struct value *dval0) |
4c4b4cd2 PH |
7650 | { |
7651 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
dda83cd7 | 7652 | address, dval0, 1); |
4c4b4cd2 PH |
7653 | } |
7654 | ||
7655 | /* An ordinary record type in which ___XVL-convention fields and | |
7656 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7657 | static approximations, containing all possible fields. Uses | |
7658 | no runtime values. Useless for use in values, but that's OK, | |
7659 | since the results are used only for type determinations. Works on both | |
7660 | structs and unions. Representation note: to save space, we memorize | |
7661 | the result of this function in the TYPE_TARGET_TYPE of the | |
7662 | template type. */ | |
7663 | ||
7664 | static struct type * | |
7665 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7666 | { |
7667 | struct type *type; | |
7668 | int nfields; | |
7669 | int f; | |
7670 | ||
9e195661 | 7671 | /* No need no do anything if the input type is already fixed. */ |
22c4c60c | 7672 | if (type0->is_fixed_instance ()) |
9e195661 PMR |
7673 | return type0; |
7674 | ||
7675 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
7676 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7677 | return TYPE_TARGET_TYPE (type0); | |
7678 | ||
9e195661 | 7679 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 7680 | type = type0; |
1f704f76 | 7681 | nfields = type0->num_fields (); |
9e195661 PMR |
7682 | |
7683 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
7684 | recompute all over next time. */ | |
7685 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
7686 | |
7687 | for (f = 0; f < nfields; f += 1) | |
7688 | { | |
940da03e | 7689 | struct type *field_type = type0->field (f).type (); |
4c4b4cd2 | 7690 | struct type *new_type; |
14f9c5c9 | 7691 | |
4c4b4cd2 | 7692 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
7693 | { |
7694 | field_type = ada_check_typedef (field_type); | |
dda83cd7 | 7695 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); |
460efde1 | 7696 | } |
14f9c5c9 | 7697 | else |
dda83cd7 | 7698 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
7699 | |
7700 | if (new_type != field_type) | |
7701 | { | |
7702 | /* Clone TYPE0 only the first time we get a new field type. */ | |
7703 | if (type == type0) | |
7704 | { | |
7705 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
78134374 | 7706 | type->set_code (type0->code ()); |
8ecb59f8 | 7707 | INIT_NONE_SPECIFIC (type); |
5e33d5f4 | 7708 | type->set_num_fields (nfields); |
3cabb6b0 SM |
7709 | |
7710 | field *fields = | |
7711 | ((struct field *) | |
7712 | TYPE_ALLOC (type, nfields * sizeof (struct field))); | |
80fc5e77 | 7713 | memcpy (fields, type0->fields (), |
9e195661 | 7714 | sizeof (struct field) * nfields); |
3cabb6b0 SM |
7715 | type->set_fields (fields); |
7716 | ||
d0e39ea2 | 7717 | type->set_name (ada_type_name (type0)); |
9cdd0d12 | 7718 | type->set_is_fixed_instance (true); |
9e195661 PMR |
7719 | TYPE_LENGTH (type) = 0; |
7720 | } | |
5d14b6e5 | 7721 | type->field (f).set_type (new_type); |
9e195661 PMR |
7722 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); |
7723 | } | |
14f9c5c9 | 7724 | } |
9e195661 | 7725 | |
14f9c5c9 AS |
7726 | return type; |
7727 | } | |
7728 | ||
4c4b4cd2 | 7729 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7730 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7731 | which should be a non-dynamic-sized record, in which the variant | |
7732 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7733 | for discriminant values in DVAL0, which can be NULL if the record |
7734 | contains the necessary discriminant values. */ | |
7735 | ||
d2e4a39e | 7736 | static struct type * |
fc1a4b47 | 7737 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
dda83cd7 | 7738 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7739 | { |
d2e4a39e | 7740 | struct value *mark = value_mark (); |
4c4b4cd2 | 7741 | struct value *dval; |
d2e4a39e | 7742 | struct type *rtype; |
14f9c5c9 | 7743 | struct type *branch_type; |
1f704f76 | 7744 | int nfields = type->num_fields (); |
4c4b4cd2 | 7745 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7746 | |
4c4b4cd2 | 7747 | if (variant_field == -1) |
14f9c5c9 AS |
7748 | return type; |
7749 | ||
4c4b4cd2 | 7750 | if (dval0 == NULL) |
9f1f738a SA |
7751 | { |
7752 | dval = value_from_contents_and_address (type, valaddr, address); | |
7753 | type = value_type (dval); | |
7754 | } | |
4c4b4cd2 PH |
7755 | else |
7756 | dval = dval0; | |
7757 | ||
e9bb382b | 7758 | rtype = alloc_type_copy (type); |
67607e24 | 7759 | rtype->set_code (TYPE_CODE_STRUCT); |
8ecb59f8 | 7760 | INIT_NONE_SPECIFIC (rtype); |
5e33d5f4 | 7761 | rtype->set_num_fields (nfields); |
3cabb6b0 SM |
7762 | |
7763 | field *fields = | |
d2e4a39e | 7764 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
80fc5e77 | 7765 | memcpy (fields, type->fields (), sizeof (struct field) * nfields); |
3cabb6b0 SM |
7766 | rtype->set_fields (fields); |
7767 | ||
d0e39ea2 | 7768 | rtype->set_name (ada_type_name (type)); |
9cdd0d12 | 7769 | rtype->set_is_fixed_instance (true); |
14f9c5c9 AS |
7770 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7771 | ||
4c4b4cd2 | 7772 | branch_type = to_fixed_variant_branch_type |
940da03e | 7773 | (type->field (variant_field).type (), |
d2e4a39e | 7774 | cond_offset_host (valaddr, |
dda83cd7 SM |
7775 | TYPE_FIELD_BITPOS (type, variant_field) |
7776 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7777 | cond_offset_target (address, |
dda83cd7 SM |
7778 | TYPE_FIELD_BITPOS (type, variant_field) |
7779 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7780 | if (branch_type == NULL) |
14f9c5c9 | 7781 | { |
4c4b4cd2 | 7782 | int f; |
5b4ee69b | 7783 | |
4c4b4cd2 | 7784 | for (f = variant_field + 1; f < nfields; f += 1) |
dda83cd7 | 7785 | rtype->field (f - 1) = rtype->field (f); |
5e33d5f4 | 7786 | rtype->set_num_fields (rtype->num_fields () - 1); |
14f9c5c9 AS |
7787 | } |
7788 | else | |
7789 | { | |
5d14b6e5 | 7790 | rtype->field (variant_field).set_type (branch_type); |
4c4b4cd2 PH |
7791 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; |
7792 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7793 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7794 | } |
940da03e | 7795 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ()); |
d2e4a39e | 7796 | |
4c4b4cd2 | 7797 | value_free_to_mark (mark); |
14f9c5c9 AS |
7798 | return rtype; |
7799 | } | |
7800 | ||
7801 | /* An ordinary record type (with fixed-length fields) that describes | |
7802 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7803 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7804 | should be in DVAL, a record value; it may be NULL if the object |
7805 | at ADDR itself contains any necessary discriminant values. | |
7806 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7807 | values from the record are needed. Except in the case that DVAL, | |
7808 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7809 | unchecked) is replaced by a particular branch of the variant. | |
7810 | ||
7811 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7812 | is questionable and may be removed. It can arise during the | |
7813 | processing of an unconstrained-array-of-record type where all the | |
7814 | variant branches have exactly the same size. This is because in | |
7815 | such cases, the compiler does not bother to use the XVS convention | |
7816 | when encoding the record. I am currently dubious of this | |
7817 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7818 | |
d2e4a39e | 7819 | static struct type * |
fc1a4b47 | 7820 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
dda83cd7 | 7821 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7822 | { |
d2e4a39e | 7823 | struct type *templ_type; |
14f9c5c9 | 7824 | |
22c4c60c | 7825 | if (type0->is_fixed_instance ()) |
4c4b4cd2 PH |
7826 | return type0; |
7827 | ||
d2e4a39e | 7828 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7829 | |
7830 | if (templ_type != NULL) | |
7831 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7832 | else if (variant_field_index (type0) >= 0) |
7833 | { | |
7834 | if (dval == NULL && valaddr == NULL && address == 0) | |
dda83cd7 | 7835 | return type0; |
4c4b4cd2 | 7836 | return to_record_with_fixed_variant_part (type0, valaddr, address, |
dda83cd7 | 7837 | dval); |
4c4b4cd2 | 7838 | } |
14f9c5c9 AS |
7839 | else |
7840 | { | |
9cdd0d12 | 7841 | type0->set_is_fixed_instance (true); |
14f9c5c9 AS |
7842 | return type0; |
7843 | } | |
7844 | ||
7845 | } | |
7846 | ||
7847 | /* An ordinary record type (with fixed-length fields) that describes | |
7848 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7849 | union type. Any necessary discriminants' values should be in DVAL, | |
7850 | a record value. That is, this routine selects the appropriate | |
7851 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7852 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7853 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7854 | |
d2e4a39e | 7855 | static struct type * |
fc1a4b47 | 7856 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
dda83cd7 | 7857 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7858 | { |
7859 | int which; | |
d2e4a39e AS |
7860 | struct type *templ_type; |
7861 | struct type *var_type; | |
14f9c5c9 | 7862 | |
78134374 | 7863 | if (var_type0->code () == TYPE_CODE_PTR) |
14f9c5c9 | 7864 | var_type = TYPE_TARGET_TYPE (var_type0); |
d2e4a39e | 7865 | else |
14f9c5c9 AS |
7866 | var_type = var_type0; |
7867 | ||
7868 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7869 | ||
7870 | if (templ_type != NULL) | |
7871 | var_type = templ_type; | |
7872 | ||
b1f33ddd JB |
7873 | if (is_unchecked_variant (var_type, value_type (dval))) |
7874 | return var_type0; | |
d8af9068 | 7875 | which = ada_which_variant_applies (var_type, dval); |
14f9c5c9 AS |
7876 | |
7877 | if (which < 0) | |
e9bb382b | 7878 | return empty_record (var_type); |
14f9c5c9 | 7879 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7880 | return to_fixed_record_type |
940da03e | 7881 | (TYPE_TARGET_TYPE (var_type->field (which).type ()), |
d2e4a39e | 7882 | valaddr, address, dval); |
940da03e | 7883 | else if (variant_field_index (var_type->field (which).type ()) >= 0) |
d2e4a39e AS |
7884 | return |
7885 | to_fixed_record_type | |
940da03e | 7886 | (var_type->field (which).type (), valaddr, address, dval); |
14f9c5c9 | 7887 | else |
940da03e | 7888 | return var_type->field (which).type (); |
14f9c5c9 AS |
7889 | } |
7890 | ||
8908fca5 JB |
7891 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
7892 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
7893 | type encodings, only carries redundant information. */ | |
7894 | ||
7895 | static int | |
7896 | ada_is_redundant_range_encoding (struct type *range_type, | |
7897 | struct type *encoding_type) | |
7898 | { | |
108d56a4 | 7899 | const char *bounds_str; |
8908fca5 JB |
7900 | int n; |
7901 | LONGEST lo, hi; | |
7902 | ||
78134374 | 7903 | gdb_assert (range_type->code () == TYPE_CODE_RANGE); |
8908fca5 | 7904 | |
78134374 SM |
7905 | if (get_base_type (range_type)->code () |
7906 | != get_base_type (encoding_type)->code ()) | |
005e2509 JB |
7907 | { |
7908 | /* The compiler probably used a simple base type to describe | |
7909 | the range type instead of the range's actual base type, | |
7910 | expecting us to get the real base type from the encoding | |
7911 | anyway. In this situation, the encoding cannot be ignored | |
7912 | as redundant. */ | |
7913 | return 0; | |
7914 | } | |
7915 | ||
8908fca5 JB |
7916 | if (is_dynamic_type (range_type)) |
7917 | return 0; | |
7918 | ||
7d93a1e0 | 7919 | if (encoding_type->name () == NULL) |
8908fca5 JB |
7920 | return 0; |
7921 | ||
7d93a1e0 | 7922 | bounds_str = strstr (encoding_type->name (), "___XDLU_"); |
8908fca5 JB |
7923 | if (bounds_str == NULL) |
7924 | return 0; | |
7925 | ||
7926 | n = 8; /* Skip "___XDLU_". */ | |
7927 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
7928 | return 0; | |
5537ddd0 | 7929 | if (range_type->bounds ()->low.const_val () != lo) |
8908fca5 JB |
7930 | return 0; |
7931 | ||
7932 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
7933 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
7934 | return 0; | |
5537ddd0 | 7935 | if (range_type->bounds ()->high.const_val () != hi) |
8908fca5 JB |
7936 | return 0; |
7937 | ||
7938 | return 1; | |
7939 | } | |
7940 | ||
7941 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
7942 | a type following the GNAT encoding for describing array type | |
7943 | indices, only carries redundant information. */ | |
7944 | ||
7945 | static int | |
7946 | ada_is_redundant_index_type_desc (struct type *array_type, | |
7947 | struct type *desc_type) | |
7948 | { | |
7949 | struct type *this_layer = check_typedef (array_type); | |
7950 | int i; | |
7951 | ||
1f704f76 | 7952 | for (i = 0; i < desc_type->num_fields (); i++) |
8908fca5 | 7953 | { |
3d967001 | 7954 | if (!ada_is_redundant_range_encoding (this_layer->index_type (), |
940da03e | 7955 | desc_type->field (i).type ())) |
8908fca5 JB |
7956 | return 0; |
7957 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
7958 | } | |
7959 | ||
7960 | return 1; | |
7961 | } | |
7962 | ||
14f9c5c9 AS |
7963 | /* Assuming that TYPE0 is an array type describing the type of a value |
7964 | at ADDR, and that DVAL describes a record containing any | |
7965 | discriminants used in TYPE0, returns a type for the value that | |
7966 | contains no dynamic components (that is, no components whose sizes | |
7967 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7968 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7969 | varsize_limit. */ |
14f9c5c9 | 7970 | |
d2e4a39e AS |
7971 | static struct type * |
7972 | to_fixed_array_type (struct type *type0, struct value *dval, | |
dda83cd7 | 7973 | int ignore_too_big) |
14f9c5c9 | 7974 | { |
d2e4a39e AS |
7975 | struct type *index_type_desc; |
7976 | struct type *result; | |
ad82864c | 7977 | int constrained_packed_array_p; |
931e5bc3 | 7978 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 7979 | |
b0dd7688 | 7980 | type0 = ada_check_typedef (type0); |
22c4c60c | 7981 | if (type0->is_fixed_instance ()) |
4c4b4cd2 | 7982 | return type0; |
14f9c5c9 | 7983 | |
ad82864c JB |
7984 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7985 | if (constrained_packed_array_p) | |
75fd6a26 TT |
7986 | { |
7987 | type0 = decode_constrained_packed_array_type (type0); | |
7988 | if (type0 == nullptr) | |
7989 | error (_("could not decode constrained packed array type")); | |
7990 | } | |
284614f0 | 7991 | |
931e5bc3 JG |
7992 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
7993 | ||
7994 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
7995 | encoding suffixed with 'P' may still be generated. If so, | |
7996 | it should be used to find the XA type. */ | |
7997 | ||
7998 | if (index_type_desc == NULL) | |
7999 | { | |
1da0522e | 8000 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8001 | |
1da0522e | 8002 | if (type_name != NULL) |
931e5bc3 | 8003 | { |
1da0522e | 8004 | const int len = strlen (type_name); |
931e5bc3 JG |
8005 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8006 | ||
1da0522e | 8007 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8008 | { |
1da0522e | 8009 | strcpy (name, type_name); |
931e5bc3 JG |
8010 | strcpy (name + len - 1, xa_suffix); |
8011 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8012 | } | |
8013 | } | |
8014 | } | |
8015 | ||
28c85d6c | 8016 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8017 | if (index_type_desc != NULL |
8018 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8019 | { | |
8020 | /* Ignore this ___XA parallel type, as it does not bring any | |
8021 | useful information. This allows us to avoid creating fixed | |
8022 | versions of the array's index types, which would be identical | |
8023 | to the original ones. This, in turn, can also help avoid | |
8024 | the creation of fixed versions of the array itself. */ | |
8025 | index_type_desc = NULL; | |
8026 | } | |
8027 | ||
14f9c5c9 AS |
8028 | if (index_type_desc == NULL) |
8029 | { | |
61ee279c | 8030 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8031 | |
14f9c5c9 | 8032 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
dda83cd7 SM |
8033 | depend on the contents of the array in properly constructed |
8034 | debugging data. */ | |
529cad9c | 8035 | /* Create a fixed version of the array element type. |
dda83cd7 SM |
8036 | We're not providing the address of an element here, |
8037 | and thus the actual object value cannot be inspected to do | |
8038 | the conversion. This should not be a problem, since arrays of | |
8039 | unconstrained objects are not allowed. In particular, all | |
8040 | the elements of an array of a tagged type should all be of | |
8041 | the same type specified in the debugging info. No need to | |
8042 | consult the object tag. */ | |
1ed6ede0 | 8043 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8044 | |
284614f0 JB |
8045 | /* Make sure we always create a new array type when dealing with |
8046 | packed array types, since we're going to fix-up the array | |
8047 | type length and element bitsize a little further down. */ | |
ad82864c | 8048 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
dda83cd7 | 8049 | result = type0; |
14f9c5c9 | 8050 | else |
dda83cd7 SM |
8051 | result = create_array_type (alloc_type_copy (type0), |
8052 | elt_type, type0->index_type ()); | |
14f9c5c9 AS |
8053 | } |
8054 | else | |
8055 | { | |
8056 | int i; | |
8057 | struct type *elt_type0; | |
8058 | ||
8059 | elt_type0 = type0; | |
1f704f76 | 8060 | for (i = index_type_desc->num_fields (); i > 0; i -= 1) |
dda83cd7 | 8061 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8062 | |
8063 | /* NOTE: result---the fixed version of elt_type0---should never | |
dda83cd7 SM |
8064 | depend on the contents of the array in properly constructed |
8065 | debugging data. */ | |
529cad9c | 8066 | /* Create a fixed version of the array element type. |
dda83cd7 SM |
8067 | We're not providing the address of an element here, |
8068 | and thus the actual object value cannot be inspected to do | |
8069 | the conversion. This should not be a problem, since arrays of | |
8070 | unconstrained objects are not allowed. In particular, all | |
8071 | the elements of an array of a tagged type should all be of | |
8072 | the same type specified in the debugging info. No need to | |
8073 | consult the object tag. */ | |
1ed6ede0 | 8074 | result = |
dda83cd7 | 8075 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); |
1ce677a4 UW |
8076 | |
8077 | elt_type0 = type0; | |
1f704f76 | 8078 | for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1) |
dda83cd7 SM |
8079 | { |
8080 | struct type *range_type = | |
8081 | to_fixed_range_type (index_type_desc->field (i).type (), dval); | |
5b4ee69b | 8082 | |
dda83cd7 SM |
8083 | result = create_array_type (alloc_type_copy (elt_type0), |
8084 | result, range_type); | |
1ce677a4 | 8085 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
dda83cd7 | 8086 | } |
d2e4a39e | 8087 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
dda83cd7 | 8088 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8089 | } |
8090 | ||
2e6fda7d JB |
8091 | /* We want to preserve the type name. This can be useful when |
8092 | trying to get the type name of a value that has already been | |
8093 | printed (for instance, if the user did "print VAR; whatis $". */ | |
7d93a1e0 | 8094 | result->set_name (type0->name ()); |
2e6fda7d | 8095 | |
ad82864c | 8096 | if (constrained_packed_array_p) |
284614f0 JB |
8097 | { |
8098 | /* So far, the resulting type has been created as if the original | |
8099 | type was a regular (non-packed) array type. As a result, the | |
8100 | bitsize of the array elements needs to be set again, and the array | |
8101 | length needs to be recomputed based on that bitsize. */ | |
8102 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8103 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8104 | ||
8105 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8106 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8107 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
dda83cd7 | 8108 | TYPE_LENGTH (result)++; |
284614f0 JB |
8109 | } |
8110 | ||
9cdd0d12 | 8111 | result->set_is_fixed_instance (true); |
14f9c5c9 | 8112 | return result; |
d2e4a39e | 8113 | } |
14f9c5c9 AS |
8114 | |
8115 | ||
8116 | /* A standard type (containing no dynamically sized components) | |
8117 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8118 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8119 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8120 | ADDRESS or in VALADDR contains these discriminants. |
8121 | ||
1ed6ede0 JB |
8122 | If CHECK_TAG is not null, in the case of tagged types, this function |
8123 | attempts to locate the object's tag and use it to compute the actual | |
8124 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8125 | location of the tag, and therefore compute the tagged type's actual type. | |
8126 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8127 | |
f192137b JB |
8128 | static struct type * |
8129 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
dda83cd7 | 8130 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8131 | { |
61ee279c | 8132 | type = ada_check_typedef (type); |
8ecb59f8 TT |
8133 | |
8134 | /* Only un-fixed types need to be handled here. */ | |
8135 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8136 | return type; | |
8137 | ||
78134374 | 8138 | switch (type->code ()) |
d2e4a39e AS |
8139 | { |
8140 | default: | |
14f9c5c9 | 8141 | return type; |
d2e4a39e | 8142 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8143 | { |
dda83cd7 SM |
8144 | struct type *static_type = to_static_fixed_type (type); |
8145 | struct type *fixed_record_type = | |
8146 | to_fixed_record_type (type, valaddr, address, NULL); | |
8147 | ||
8148 | /* If STATIC_TYPE is a tagged type and we know the object's address, | |
8149 | then we can determine its tag, and compute the object's actual | |
8150 | type from there. Note that we have to use the fixed record | |
8151 | type (the parent part of the record may have dynamic fields | |
8152 | and the way the location of _tag is expressed may depend on | |
8153 | them). */ | |
8154 | ||
8155 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) | |
8156 | { | |
b50d69b5 JG |
8157 | struct value *tag = |
8158 | value_tag_from_contents_and_address | |
8159 | (fixed_record_type, | |
8160 | valaddr, | |
8161 | address); | |
8162 | struct type *real_type = type_from_tag (tag); | |
8163 | struct value *obj = | |
8164 | value_from_contents_and_address (fixed_record_type, | |
8165 | valaddr, | |
8166 | address); | |
dda83cd7 SM |
8167 | fixed_record_type = value_type (obj); |
8168 | if (real_type != NULL) | |
8169 | return to_fixed_record_type | |
b50d69b5 JG |
8170 | (real_type, NULL, |
8171 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
dda83cd7 SM |
8172 | } |
8173 | ||
8174 | /* Check to see if there is a parallel ___XVZ variable. | |
8175 | If there is, then it provides the actual size of our type. */ | |
8176 | else if (ada_type_name (fixed_record_type) != NULL) | |
8177 | { | |
8178 | const char *name = ada_type_name (fixed_record_type); | |
8179 | char *xvz_name | |
224c3ddb | 8180 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); |
eccab96d | 8181 | bool xvz_found = false; |
dda83cd7 | 8182 | LONGEST size; |
4af88198 | 8183 | |
dda83cd7 | 8184 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
a70b8144 | 8185 | try |
eccab96d JB |
8186 | { |
8187 | xvz_found = get_int_var_value (xvz_name, size); | |
8188 | } | |
230d2906 | 8189 | catch (const gdb_exception_error &except) |
eccab96d JB |
8190 | { |
8191 | /* We found the variable, but somehow failed to read | |
8192 | its value. Rethrow the same error, but with a little | |
8193 | bit more information, to help the user understand | |
8194 | what went wrong (Eg: the variable might have been | |
8195 | optimized out). */ | |
8196 | throw_error (except.error, | |
8197 | _("unable to read value of %s (%s)"), | |
3d6e9d23 | 8198 | xvz_name, except.what ()); |
eccab96d | 8199 | } |
eccab96d | 8200 | |
dda83cd7 SM |
8201 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) |
8202 | { | |
8203 | fixed_record_type = copy_type (fixed_record_type); | |
8204 | TYPE_LENGTH (fixed_record_type) = size; | |
8205 | ||
8206 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8207 | observed this when the debugging info is STABS, and | |
8208 | apparently it is something that is hard to fix. | |
8209 | ||
8210 | In practice, we don't need the actual type definition | |
8211 | at all, because the presence of the XVZ variable allows us | |
8212 | to assume that there must be a XVS type as well, which we | |
8213 | should be able to use later, when we need the actual type | |
8214 | definition. | |
8215 | ||
8216 | In the meantime, pretend that the "fixed" type we are | |
8217 | returning is NOT a stub, because this can cause trouble | |
8218 | when using this type to create new types targeting it. | |
8219 | Indeed, the associated creation routines often check | |
8220 | whether the target type is a stub and will try to replace | |
8221 | it, thus using a type with the wrong size. This, in turn, | |
8222 | might cause the new type to have the wrong size too. | |
8223 | Consider the case of an array, for instance, where the size | |
8224 | of the array is computed from the number of elements in | |
8225 | our array multiplied by the size of its element. */ | |
b4b73759 | 8226 | fixed_record_type->set_is_stub (false); |
dda83cd7 SM |
8227 | } |
8228 | } | |
8229 | return fixed_record_type; | |
4c4b4cd2 | 8230 | } |
d2e4a39e | 8231 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8232 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8233 | case TYPE_CODE_UNION: |
8234 | if (dval == NULL) | |
dda83cd7 | 8235 | return type; |
d2e4a39e | 8236 | else |
dda83cd7 | 8237 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8238 | } |
14f9c5c9 AS |
8239 | } |
8240 | ||
f192137b JB |
8241 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8242 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8243 | |
8244 | The typedef layer needs be preserved in order to differentiate between | |
8245 | arrays and array pointers when both types are implemented using the same | |
8246 | fat pointer. In the array pointer case, the pointer is encoded as | |
8247 | a typedef of the pointer type. For instance, considering: | |
8248 | ||
8249 | type String_Access is access String; | |
8250 | S1 : String_Access := null; | |
8251 | ||
8252 | To the debugger, S1 is defined as a typedef of type String. But | |
8253 | to the user, it is a pointer. So if the user tries to print S1, | |
8254 | we should not dereference the array, but print the array address | |
8255 | instead. | |
8256 | ||
8257 | If we didn't preserve the typedef layer, we would lose the fact that | |
8258 | the type is to be presented as a pointer (needs de-reference before | |
8259 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8260 | |
8261 | struct type * | |
8262 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
dda83cd7 | 8263 | CORE_ADDR address, struct value *dval, int check_tag) |
f192137b JB |
8264 | |
8265 | { | |
8266 | struct type *fixed_type = | |
8267 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8268 | ||
96dbd2c1 JB |
8269 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8270 | then preserve the typedef layer. | |
8271 | ||
8272 | Implementation note: We can only check the main-type portion of | |
8273 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8274 | from TYPE now returns a type that has the same instance flags | |
8275 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8276 | target type is a "struct", then the typedef elimination will return | |
8277 | a "const" version of the target type. See check_typedef for more | |
8278 | details about how the typedef layer elimination is done. | |
8279 | ||
8280 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8281 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8282 | Perhaps, we could add a check for that and preserve the typedef layer | |
85102364 | 8283 | only in that situation. But this seems unnecessary so far, probably |
96dbd2c1 JB |
8284 | because we call check_typedef/ada_check_typedef pretty much everywhere. |
8285 | */ | |
78134374 | 8286 | if (type->code () == TYPE_CODE_TYPEDEF |
720d1a40 | 8287 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8288 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8289 | return type; |
8290 | ||
8291 | return fixed_type; | |
8292 | } | |
8293 | ||
14f9c5c9 | 8294 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8295 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8296 | |
d2e4a39e AS |
8297 | static struct type * |
8298 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8299 | { |
d2e4a39e | 8300 | struct type *type; |
14f9c5c9 AS |
8301 | |
8302 | if (type0 == NULL) | |
8303 | return NULL; | |
8304 | ||
22c4c60c | 8305 | if (type0->is_fixed_instance ()) |
4c4b4cd2 PH |
8306 | return type0; |
8307 | ||
61ee279c | 8308 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8309 | |
78134374 | 8310 | switch (type0->code ()) |
14f9c5c9 AS |
8311 | { |
8312 | default: | |
8313 | return type0; | |
8314 | case TYPE_CODE_STRUCT: | |
8315 | type = dynamic_template_type (type0); | |
d2e4a39e | 8316 | if (type != NULL) |
dda83cd7 | 8317 | return template_to_static_fixed_type (type); |
4c4b4cd2 | 8318 | else |
dda83cd7 | 8319 | return template_to_static_fixed_type (type0); |
14f9c5c9 AS |
8320 | case TYPE_CODE_UNION: |
8321 | type = ada_find_parallel_type (type0, "___XVU"); | |
8322 | if (type != NULL) | |
dda83cd7 | 8323 | return template_to_static_fixed_type (type); |
4c4b4cd2 | 8324 | else |
dda83cd7 | 8325 | return template_to_static_fixed_type (type0); |
14f9c5c9 AS |
8326 | } |
8327 | } | |
8328 | ||
4c4b4cd2 PH |
8329 | /* A static approximation of TYPE with all type wrappers removed. */ |
8330 | ||
d2e4a39e AS |
8331 | static struct type * |
8332 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8333 | { |
8334 | if (ada_is_aligner_type (type)) | |
8335 | { | |
940da03e | 8336 | struct type *type1 = ada_check_typedef (type)->field (0).type (); |
14f9c5c9 | 8337 | if (ada_type_name (type1) == NULL) |
d0e39ea2 | 8338 | type1->set_name (ada_type_name (type)); |
14f9c5c9 AS |
8339 | |
8340 | return static_unwrap_type (type1); | |
8341 | } | |
d2e4a39e | 8342 | else |
14f9c5c9 | 8343 | { |
d2e4a39e | 8344 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8345 | |
d2e4a39e | 8346 | if (raw_real_type == type) |
dda83cd7 | 8347 | return type; |
14f9c5c9 | 8348 | else |
dda83cd7 | 8349 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8350 | } |
8351 | } | |
8352 | ||
8353 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8354 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8355 | type Foo; |
8356 | type FooP is access Foo; | |
8357 | V: FooP; | |
8358 | type Foo is array ...; | |
4c4b4cd2 | 8359 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8360 | cross-references to such types, we instead substitute for FooP a |
8361 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8362 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8363 | |
8364 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8365 | exists, otherwise TYPE. */ |
8366 | ||
d2e4a39e | 8367 | struct type * |
61ee279c | 8368 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8369 | { |
727e3d2e JB |
8370 | if (type == NULL) |
8371 | return NULL; | |
8372 | ||
736ade86 XR |
8373 | /* If our type is an access to an unconstrained array, which is encoded |
8374 | as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done. | |
720d1a40 JB |
8375 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is |
8376 | what allows us to distinguish between fat pointers that represent | |
8377 | array types, and fat pointers that represent array access types | |
8378 | (in both cases, the compiler implements them as fat pointers). */ | |
736ade86 | 8379 | if (ada_is_access_to_unconstrained_array (type)) |
720d1a40 JB |
8380 | return type; |
8381 | ||
f168693b | 8382 | type = check_typedef (type); |
78134374 | 8383 | if (type == NULL || type->code () != TYPE_CODE_ENUM |
e46d3488 | 8384 | || !type->is_stub () |
7d93a1e0 | 8385 | || type->name () == NULL) |
14f9c5c9 | 8386 | return type; |
d2e4a39e | 8387 | else |
14f9c5c9 | 8388 | { |
7d93a1e0 | 8389 | const char *name = type->name (); |
d2e4a39e | 8390 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8391 | |
05e522ef | 8392 | if (type1 == NULL) |
dda83cd7 | 8393 | return type; |
05e522ef JB |
8394 | |
8395 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8396 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8397 | types, only for the typedef-to-array types). If that's the case, |
8398 | strip the typedef layer. */ | |
78134374 | 8399 | if (type1->code () == TYPE_CODE_TYPEDEF) |
3a867c22 JB |
8400 | type1 = ada_check_typedef (type1); |
8401 | ||
8402 | return type1; | |
14f9c5c9 AS |
8403 | } |
8404 | } | |
8405 | ||
8406 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8407 | type TYPE0, but with a standard (static-sized) type that correctly | |
8408 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8409 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8410 | creation of struct values]. */ |
14f9c5c9 | 8411 | |
4c4b4cd2 PH |
8412 | static struct value * |
8413 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
dda83cd7 | 8414 | struct value *val0) |
14f9c5c9 | 8415 | { |
1ed6ede0 | 8416 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8417 | |
14f9c5c9 AS |
8418 | if (type == type0 && val0 != NULL) |
8419 | return val0; | |
cc0e770c JB |
8420 | |
8421 | if (VALUE_LVAL (val0) != lval_memory) | |
8422 | { | |
8423 | /* Our value does not live in memory; it could be a convenience | |
8424 | variable, for instance. Create a not_lval value using val0's | |
8425 | contents. */ | |
8426 | return value_from_contents (type, value_contents (val0)); | |
8427 | } | |
8428 | ||
8429 | return value_from_contents_and_address (type, 0, address); | |
4c4b4cd2 PH |
8430 | } |
8431 | ||
8432 | /* A value representing VAL, but with a standard (static-sized) type | |
8433 | that correctly describes it. Does not necessarily create a new | |
8434 | value. */ | |
8435 | ||
0c3acc09 | 8436 | struct value * |
4c4b4cd2 PH |
8437 | ada_to_fixed_value (struct value *val) |
8438 | { | |
c48db5ca | 8439 | val = unwrap_value (val); |
d8ce9127 | 8440 | val = ada_to_fixed_value_create (value_type (val), value_address (val), val); |
c48db5ca | 8441 | return val; |
14f9c5c9 | 8442 | } |
d2e4a39e | 8443 | \f |
14f9c5c9 | 8444 | |
14f9c5c9 AS |
8445 | /* Attributes */ |
8446 | ||
4c4b4cd2 PH |
8447 | /* Table mapping attribute numbers to names. |
8448 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8449 | |
27087b7f | 8450 | static const char * const attribute_names[] = { |
14f9c5c9 AS |
8451 | "<?>", |
8452 | ||
d2e4a39e | 8453 | "first", |
14f9c5c9 AS |
8454 | "last", |
8455 | "length", | |
8456 | "image", | |
14f9c5c9 AS |
8457 | "max", |
8458 | "min", | |
4c4b4cd2 PH |
8459 | "modulus", |
8460 | "pos", | |
8461 | "size", | |
8462 | "tag", | |
14f9c5c9 | 8463 | "val", |
14f9c5c9 AS |
8464 | 0 |
8465 | }; | |
8466 | ||
de93309a | 8467 | static const char * |
4c4b4cd2 | 8468 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8469 | { |
4c4b4cd2 PH |
8470 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8471 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8472 | else |
8473 | return attribute_names[0]; | |
8474 | } | |
8475 | ||
4c4b4cd2 | 8476 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8477 | |
4c4b4cd2 PH |
8478 | static LONGEST |
8479 | pos_atr (struct value *arg) | |
14f9c5c9 | 8480 | { |
24209737 PH |
8481 | struct value *val = coerce_ref (arg); |
8482 | struct type *type = value_type (val); | |
14f9c5c9 | 8483 | |
d2e4a39e | 8484 | if (!discrete_type_p (type)) |
323e0a4a | 8485 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 8486 | |
6244c119 SM |
8487 | gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val)); |
8488 | if (!result.has_value ()) | |
aa715135 | 8489 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 | 8490 | |
6244c119 | 8491 | return *result; |
4c4b4cd2 PH |
8492 | } |
8493 | ||
7631cf6c | 8494 | struct value * |
7992accc TT |
8495 | ada_pos_atr (struct type *expect_type, |
8496 | struct expression *exp, | |
8497 | enum noside noside, enum exp_opcode op, | |
8498 | struct value *arg) | |
4c4b4cd2 | 8499 | { |
7992accc TT |
8500 | struct type *type = builtin_type (exp->gdbarch)->builtin_int; |
8501 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8502 | return value_zero (type, not_lval); | |
3cb382c9 | 8503 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8504 | } |
8505 | ||
4c4b4cd2 | 8506 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8507 | |
d2e4a39e | 8508 | static struct value * |
53a47a3e | 8509 | val_atr (struct type *type, LONGEST val) |
14f9c5c9 | 8510 | { |
53a47a3e | 8511 | gdb_assert (discrete_type_p (type)); |
0bc2354b TT |
8512 | if (type->code () == TYPE_CODE_RANGE) |
8513 | type = TYPE_TARGET_TYPE (type); | |
78134374 | 8514 | if (type->code () == TYPE_CODE_ENUM) |
14f9c5c9 | 8515 | { |
53a47a3e | 8516 | if (val < 0 || val >= type->num_fields ()) |
dda83cd7 | 8517 | error (_("argument to 'VAL out of range")); |
53a47a3e | 8518 | val = TYPE_FIELD_ENUMVAL (type, val); |
14f9c5c9 | 8519 | } |
53a47a3e TT |
8520 | return value_from_longest (type, val); |
8521 | } | |
8522 | ||
9e99f48f | 8523 | struct value * |
3848abd6 | 8524 | ada_val_atr (enum noside noside, struct type *type, struct value *arg) |
53a47a3e | 8525 | { |
3848abd6 TT |
8526 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
8527 | return value_zero (type, not_lval); | |
8528 | ||
53a47a3e TT |
8529 | if (!discrete_type_p (type)) |
8530 | error (_("'VAL only defined on discrete types")); | |
8531 | if (!integer_type_p (value_type (arg))) | |
8532 | error (_("'VAL requires integral argument")); | |
8533 | ||
8534 | return val_atr (type, value_as_long (arg)); | |
14f9c5c9 | 8535 | } |
14f9c5c9 | 8536 | \f |
d2e4a39e | 8537 | |
dda83cd7 | 8538 | /* Evaluation */ |
14f9c5c9 | 8539 | |
4c4b4cd2 PH |
8540 | /* True if TYPE appears to be an Ada character type. |
8541 | [At the moment, this is true only for Character and Wide_Character; | |
8542 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8543 | |
fc913e53 | 8544 | bool |
d2e4a39e | 8545 | ada_is_character_type (struct type *type) |
14f9c5c9 | 8546 | { |
7b9f71f2 JB |
8547 | const char *name; |
8548 | ||
8549 | /* If the type code says it's a character, then assume it really is, | |
8550 | and don't check any further. */ | |
78134374 | 8551 | if (type->code () == TYPE_CODE_CHAR) |
fc913e53 | 8552 | return true; |
7b9f71f2 JB |
8553 | |
8554 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8555 | with a known character type name. */ | |
8556 | name = ada_type_name (type); | |
8557 | return (name != NULL | |
dda83cd7 SM |
8558 | && (type->code () == TYPE_CODE_INT |
8559 | || type->code () == TYPE_CODE_RANGE) | |
8560 | && (strcmp (name, "character") == 0 | |
8561 | || strcmp (name, "wide_character") == 0 | |
8562 | || strcmp (name, "wide_wide_character") == 0 | |
8563 | || strcmp (name, "unsigned char") == 0)); | |
14f9c5c9 AS |
8564 | } |
8565 | ||
4c4b4cd2 | 8566 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 | 8567 | |
fc913e53 | 8568 | bool |
ebf56fd3 | 8569 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8570 | { |
61ee279c | 8571 | type = ada_check_typedef (type); |
d2e4a39e | 8572 | if (type != NULL |
78134374 | 8573 | && type->code () != TYPE_CODE_PTR |
76a01679 | 8574 | && (ada_is_simple_array_type (type) |
dda83cd7 | 8575 | || ada_is_array_descriptor_type (type)) |
14f9c5c9 AS |
8576 | && ada_array_arity (type) == 1) |
8577 | { | |
8578 | struct type *elttype = ada_array_element_type (type, 1); | |
8579 | ||
8580 | return ada_is_character_type (elttype); | |
8581 | } | |
d2e4a39e | 8582 | else |
fc913e53 | 8583 | return false; |
14f9c5c9 AS |
8584 | } |
8585 | ||
5bf03f13 JB |
8586 | /* The compiler sometimes provides a parallel XVS type for a given |
8587 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8588 | but older versions of the compiler have a bug that causes the offset | |
8589 | of its "F" field to be wrong. Following that field in that case | |
8590 | would lead to incorrect results, but this can be worked around | |
8591 | by ignoring the PAD type and using the associated XVS type instead. | |
8592 | ||
8593 | Set to True if the debugger should trust the contents of PAD types. | |
8594 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
491144b5 | 8595 | static bool trust_pad_over_xvs = true; |
14f9c5c9 AS |
8596 | |
8597 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8598 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8599 | distinctive name. */ |
14f9c5c9 AS |
8600 | |
8601 | int | |
ebf56fd3 | 8602 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8603 | { |
61ee279c | 8604 | type = ada_check_typedef (type); |
714e53ab | 8605 | |
5bf03f13 | 8606 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8607 | return 0; |
8608 | ||
78134374 | 8609 | return (type->code () == TYPE_CODE_STRUCT |
dda83cd7 SM |
8610 | && type->num_fields () == 1 |
8611 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8612 | } |
8613 | ||
8614 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8615 | the parallel type. */ |
14f9c5c9 | 8616 | |
d2e4a39e AS |
8617 | struct type * |
8618 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8619 | { |
d2e4a39e AS |
8620 | struct type *real_type_namer; |
8621 | struct type *raw_real_type; | |
14f9c5c9 | 8622 | |
78134374 | 8623 | if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT) |
14f9c5c9 AS |
8624 | return raw_type; |
8625 | ||
284614f0 JB |
8626 | if (ada_is_aligner_type (raw_type)) |
8627 | /* The encoding specifies that we should always use the aligner type. | |
8628 | So, even if this aligner type has an associated XVS type, we should | |
8629 | simply ignore it. | |
8630 | ||
8631 | According to the compiler gurus, an XVS type parallel to an aligner | |
8632 | type may exist because of a stabs limitation. In stabs, aligner | |
8633 | types are empty because the field has a variable-sized type, and | |
8634 | thus cannot actually be used as an aligner type. As a result, | |
8635 | we need the associated parallel XVS type to decode the type. | |
8636 | Since the policy in the compiler is to not change the internal | |
8637 | representation based on the debugging info format, we sometimes | |
8638 | end up having a redundant XVS type parallel to the aligner type. */ | |
8639 | return raw_type; | |
8640 | ||
14f9c5c9 | 8641 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8642 | if (real_type_namer == NULL |
78134374 | 8643 | || real_type_namer->code () != TYPE_CODE_STRUCT |
1f704f76 | 8644 | || real_type_namer->num_fields () != 1) |
14f9c5c9 AS |
8645 | return raw_type; |
8646 | ||
940da03e | 8647 | if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF) |
f80d3ff2 JB |
8648 | { |
8649 | /* This is an older encoding form where the base type needs to be | |
85102364 | 8650 | looked up by name. We prefer the newer encoding because it is |
f80d3ff2 JB |
8651 | more efficient. */ |
8652 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8653 | if (raw_real_type == NULL) | |
8654 | return raw_type; | |
8655 | else | |
8656 | return raw_real_type; | |
8657 | } | |
8658 | ||
8659 | /* The field in our XVS type is a reference to the base type. */ | |
940da03e | 8660 | return TYPE_TARGET_TYPE (real_type_namer->field (0).type ()); |
d2e4a39e | 8661 | } |
14f9c5c9 | 8662 | |
4c4b4cd2 | 8663 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8664 | |
d2e4a39e AS |
8665 | struct type * |
8666 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8667 | { |
8668 | if (ada_is_aligner_type (type)) | |
940da03e | 8669 | return ada_aligned_type (type->field (0).type ()); |
14f9c5c9 AS |
8670 | else |
8671 | return ada_get_base_type (type); | |
8672 | } | |
8673 | ||
8674 | ||
8675 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8676 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8677 | |
fc1a4b47 AC |
8678 | const gdb_byte * |
8679 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8680 | { |
d2e4a39e | 8681 | if (ada_is_aligner_type (type)) |
940da03e | 8682 | return ada_aligned_value_addr (type->field (0).type (), |
dda83cd7 SM |
8683 | valaddr + |
8684 | TYPE_FIELD_BITPOS (type, | |
8685 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8686 | else |
8687 | return valaddr; | |
8688 | } | |
8689 | ||
4c4b4cd2 PH |
8690 | |
8691 | ||
14f9c5c9 | 8692 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8693 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8694 | const char * |
8695 | ada_enum_name (const char *name) | |
14f9c5c9 | 8696 | { |
5f9febe0 | 8697 | static std::string storage; |
e6a959d6 | 8698 | const char *tmp; |
14f9c5c9 | 8699 | |
4c4b4cd2 PH |
8700 | /* First, unqualify the enumeration name: |
8701 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8702 | all the preceding characters, the unqualified name starts |
76a01679 | 8703 | right after that dot. |
4c4b4cd2 | 8704 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8705 | translates dots into "__". Search forward for double underscores, |
8706 | but stop searching when we hit an overloading suffix, which is | |
8707 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8708 | |
c3e5cd34 PH |
8709 | tmp = strrchr (name, '.'); |
8710 | if (tmp != NULL) | |
4c4b4cd2 PH |
8711 | name = tmp + 1; |
8712 | else | |
14f9c5c9 | 8713 | { |
4c4b4cd2 | 8714 | while ((tmp = strstr (name, "__")) != NULL) |
dda83cd7 SM |
8715 | { |
8716 | if (isdigit (tmp[2])) | |
8717 | break; | |
8718 | else | |
8719 | name = tmp + 2; | |
8720 | } | |
14f9c5c9 AS |
8721 | } |
8722 | ||
8723 | if (name[0] == 'Q') | |
8724 | { | |
14f9c5c9 | 8725 | int v; |
5b4ee69b | 8726 | |
14f9c5c9 | 8727 | if (name[1] == 'U' || name[1] == 'W') |
dda83cd7 SM |
8728 | { |
8729 | if (sscanf (name + 2, "%x", &v) != 1) | |
8730 | return name; | |
8731 | } | |
272560b5 TT |
8732 | else if (((name[1] >= '0' && name[1] <= '9') |
8733 | || (name[1] >= 'a' && name[1] <= 'z')) | |
8734 | && name[2] == '\0') | |
8735 | { | |
5f9febe0 TT |
8736 | storage = string_printf ("'%c'", name[1]); |
8737 | return storage.c_str (); | |
272560b5 | 8738 | } |
14f9c5c9 | 8739 | else |
dda83cd7 | 8740 | return name; |
14f9c5c9 AS |
8741 | |
8742 | if (isascii (v) && isprint (v)) | |
5f9febe0 | 8743 | storage = string_printf ("'%c'", v); |
14f9c5c9 | 8744 | else if (name[1] == 'U') |
5f9febe0 | 8745 | storage = string_printf ("[\"%02x\"]", v); |
14f9c5c9 | 8746 | else |
5f9febe0 | 8747 | storage = string_printf ("[\"%04x\"]", v); |
14f9c5c9 | 8748 | |
5f9febe0 | 8749 | return storage.c_str (); |
14f9c5c9 | 8750 | } |
d2e4a39e | 8751 | else |
4c4b4cd2 | 8752 | { |
c3e5cd34 PH |
8753 | tmp = strstr (name, "__"); |
8754 | if (tmp == NULL) | |
8755 | tmp = strstr (name, "$"); | |
8756 | if (tmp != NULL) | |
dda83cd7 | 8757 | { |
5f9febe0 TT |
8758 | storage = std::string (name, tmp - name); |
8759 | return storage.c_str (); | |
dda83cd7 | 8760 | } |
4c4b4cd2 PH |
8761 | |
8762 | return name; | |
8763 | } | |
14f9c5c9 AS |
8764 | } |
8765 | ||
14f9c5c9 | 8766 | /* If VAL is wrapped in an aligner or subtype wrapper, return the |
4c4b4cd2 | 8767 | value it wraps. */ |
14f9c5c9 | 8768 | |
d2e4a39e AS |
8769 | static struct value * |
8770 | unwrap_value (struct value *val) | |
14f9c5c9 | 8771 | { |
df407dfe | 8772 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8773 | |
14f9c5c9 AS |
8774 | if (ada_is_aligner_type (type)) |
8775 | { | |
de4d072f | 8776 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8777 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8778 | |
14f9c5c9 | 8779 | if (ada_type_name (val_type) == NULL) |
d0e39ea2 | 8780 | val_type->set_name (ada_type_name (type)); |
14f9c5c9 AS |
8781 | |
8782 | return unwrap_value (v); | |
8783 | } | |
d2e4a39e | 8784 | else |
14f9c5c9 | 8785 | { |
d2e4a39e | 8786 | struct type *raw_real_type = |
dda83cd7 | 8787 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8788 | |
5bf03f13 JB |
8789 | /* If there is no parallel XVS or XVE type, then the value is |
8790 | already unwrapped. Return it without further modification. */ | |
8791 | if ((type == raw_real_type) | |
8792 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8793 | return val; | |
14f9c5c9 | 8794 | |
d2e4a39e | 8795 | return |
dda83cd7 SM |
8796 | coerce_unspec_val_to_type |
8797 | (val, ada_to_fixed_type (raw_real_type, 0, | |
8798 | value_address (val), | |
8799 | NULL, 1)); | |
14f9c5c9 AS |
8800 | } |
8801 | } | |
d2e4a39e | 8802 | |
d99dcf51 JB |
8803 | /* Given two array types T1 and T2, return nonzero iff both arrays |
8804 | contain the same number of elements. */ | |
8805 | ||
8806 | static int | |
8807 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
8808 | { | |
8809 | LONGEST lo1, hi1, lo2, hi2; | |
8810 | ||
8811 | /* Get the array bounds in order to verify that the size of | |
8812 | the two arrays match. */ | |
8813 | if (!get_array_bounds (t1, &lo1, &hi1) | |
8814 | || !get_array_bounds (t2, &lo2, &hi2)) | |
8815 | error (_("unable to determine array bounds")); | |
8816 | ||
8817 | /* To make things easier for size comparison, normalize a bit | |
8818 | the case of empty arrays by making sure that the difference | |
8819 | between upper bound and lower bound is always -1. */ | |
8820 | if (lo1 > hi1) | |
8821 | hi1 = lo1 - 1; | |
8822 | if (lo2 > hi2) | |
8823 | hi2 = lo2 - 1; | |
8824 | ||
8825 | return (hi1 - lo1 == hi2 - lo2); | |
8826 | } | |
8827 | ||
8828 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
8829 | an array with the same number of elements, but with wider integral | |
8830 | elements, return an array "casted" to TYPE. In practice, this | |
8831 | means that the returned array is built by casting each element | |
8832 | of the original array into TYPE's (wider) element type. */ | |
8833 | ||
8834 | static struct value * | |
8835 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
8836 | { | |
8837 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
8838 | LONGEST lo, hi; | |
8839 | struct value *res; | |
8840 | LONGEST i; | |
8841 | ||
8842 | /* Verify that both val and type are arrays of scalars, and | |
8843 | that the size of val's elements is smaller than the size | |
8844 | of type's element. */ | |
78134374 | 8845 | gdb_assert (type->code () == TYPE_CODE_ARRAY); |
d99dcf51 | 8846 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); |
78134374 | 8847 | gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY); |
d99dcf51 JB |
8848 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); |
8849 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
8850 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
8851 | ||
8852 | if (!get_array_bounds (type, &lo, &hi)) | |
8853 | error (_("unable to determine array bounds")); | |
8854 | ||
8855 | res = allocate_value (type); | |
8856 | ||
8857 | /* Promote each array element. */ | |
8858 | for (i = 0; i < hi - lo + 1; i++) | |
8859 | { | |
8860 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
8861 | ||
8862 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
8863 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
8864 | } | |
8865 | ||
8866 | return res; | |
8867 | } | |
8868 | ||
4c4b4cd2 PH |
8869 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8870 | return the converted value. */ | |
8871 | ||
d2e4a39e AS |
8872 | static struct value * |
8873 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8874 | { |
df407dfe | 8875 | struct type *type2 = value_type (val); |
5b4ee69b | 8876 | |
14f9c5c9 AS |
8877 | if (type == type2) |
8878 | return val; | |
8879 | ||
61ee279c PH |
8880 | type2 = ada_check_typedef (type2); |
8881 | type = ada_check_typedef (type); | |
14f9c5c9 | 8882 | |
78134374 SM |
8883 | if (type2->code () == TYPE_CODE_PTR |
8884 | && type->code () == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8885 | { |
8886 | val = ada_value_ind (val); | |
df407dfe | 8887 | type2 = value_type (val); |
14f9c5c9 AS |
8888 | } |
8889 | ||
78134374 SM |
8890 | if (type2->code () == TYPE_CODE_ARRAY |
8891 | && type->code () == TYPE_CODE_ARRAY) | |
14f9c5c9 | 8892 | { |
d99dcf51 JB |
8893 | if (!ada_same_array_size_p (type, type2)) |
8894 | error (_("cannot assign arrays of different length")); | |
8895 | ||
8896 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
8897 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
8898 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8899 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
8900 | { | |
8901 | /* Allow implicit promotion of the array elements to | |
8902 | a wider type. */ | |
8903 | return ada_promote_array_of_integrals (type, val); | |
8904 | } | |
8905 | ||
8906 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
dda83cd7 SM |
8907 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) |
8908 | error (_("Incompatible types in assignment")); | |
04624583 | 8909 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8910 | } |
d2e4a39e | 8911 | return val; |
14f9c5c9 AS |
8912 | } |
8913 | ||
4c4b4cd2 PH |
8914 | static struct value * |
8915 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8916 | { | |
8917 | struct value *val; | |
8918 | struct type *type1, *type2; | |
8919 | LONGEST v, v1, v2; | |
8920 | ||
994b9211 AC |
8921 | arg1 = coerce_ref (arg1); |
8922 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8923 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8924 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8925 | |
78134374 SM |
8926 | if (type1->code () != TYPE_CODE_INT |
8927 | || type2->code () != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8928 | return value_binop (arg1, arg2, op); |
8929 | ||
76a01679 | 8930 | switch (op) |
4c4b4cd2 PH |
8931 | { |
8932 | case BINOP_MOD: | |
8933 | case BINOP_DIV: | |
8934 | case BINOP_REM: | |
8935 | break; | |
8936 | default: | |
8937 | return value_binop (arg1, arg2, op); | |
8938 | } | |
8939 | ||
8940 | v2 = value_as_long (arg2); | |
8941 | if (v2 == 0) | |
b0f9164c TT |
8942 | { |
8943 | const char *name; | |
8944 | if (op == BINOP_MOD) | |
8945 | name = "mod"; | |
8946 | else if (op == BINOP_DIV) | |
8947 | name = "/"; | |
8948 | else | |
8949 | { | |
8950 | gdb_assert (op == BINOP_REM); | |
8951 | name = "rem"; | |
8952 | } | |
8953 | ||
8954 | error (_("second operand of %s must not be zero."), name); | |
8955 | } | |
4c4b4cd2 | 8956 | |
c6d940a9 | 8957 | if (type1->is_unsigned () || op == BINOP_MOD) |
4c4b4cd2 PH |
8958 | return value_binop (arg1, arg2, op); |
8959 | ||
8960 | v1 = value_as_long (arg1); | |
8961 | switch (op) | |
8962 | { | |
8963 | case BINOP_DIV: | |
8964 | v = v1 / v2; | |
76a01679 | 8965 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
dda83cd7 | 8966 | v += v > 0 ? -1 : 1; |
4c4b4cd2 PH |
8967 | break; |
8968 | case BINOP_REM: | |
8969 | v = v1 % v2; | |
76a01679 | 8970 | if (v * v1 < 0) |
dda83cd7 | 8971 | v -= v2; |
4c4b4cd2 PH |
8972 | break; |
8973 | default: | |
8974 | /* Should not reach this point. */ | |
8975 | v = 0; | |
8976 | } | |
8977 | ||
8978 | val = allocate_value (type1); | |
990a07ab | 8979 | store_unsigned_integer (value_contents_raw (val), |
dda83cd7 | 8980 | TYPE_LENGTH (value_type (val)), |
34877895 | 8981 | type_byte_order (type1), v); |
4c4b4cd2 PH |
8982 | return val; |
8983 | } | |
8984 | ||
8985 | static int | |
8986 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8987 | { | |
df407dfe AC |
8988 | if (ada_is_direct_array_type (value_type (arg1)) |
8989 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8990 | { |
79e8fcaa JB |
8991 | struct type *arg1_type, *arg2_type; |
8992 | ||
f58b38bf | 8993 | /* Automatically dereference any array reference before |
dda83cd7 | 8994 | we attempt to perform the comparison. */ |
f58b38bf JB |
8995 | arg1 = ada_coerce_ref (arg1); |
8996 | arg2 = ada_coerce_ref (arg2); | |
79e8fcaa | 8997 | |
4c4b4cd2 PH |
8998 | arg1 = ada_coerce_to_simple_array (arg1); |
8999 | arg2 = ada_coerce_to_simple_array (arg2); | |
79e8fcaa JB |
9000 | |
9001 | arg1_type = ada_check_typedef (value_type (arg1)); | |
9002 | arg2_type = ada_check_typedef (value_type (arg2)); | |
9003 | ||
78134374 | 9004 | if (arg1_type->code () != TYPE_CODE_ARRAY |
dda83cd7 SM |
9005 | || arg2_type->code () != TYPE_CODE_ARRAY) |
9006 | error (_("Attempt to compare array with non-array")); | |
4c4b4cd2 | 9007 | /* FIXME: The following works only for types whose |
dda83cd7 SM |
9008 | representations use all bits (no padding or undefined bits) |
9009 | and do not have user-defined equality. */ | |
79e8fcaa JB |
9010 | return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type) |
9011 | && memcmp (value_contents (arg1), value_contents (arg2), | |
9012 | TYPE_LENGTH (arg1_type)) == 0); | |
4c4b4cd2 PH |
9013 | } |
9014 | return value_equal (arg1, arg2); | |
9015 | } | |
9016 | ||
d3c54a1c TT |
9017 | namespace expr |
9018 | { | |
9019 | ||
9020 | bool | |
9021 | check_objfile (const std::unique_ptr<ada_component> &comp, | |
9022 | struct objfile *objfile) | |
9023 | { | |
9024 | return comp->uses_objfile (objfile); | |
9025 | } | |
9026 | ||
9027 | /* Assign the result of evaluating ARG starting at *POS to the INDEXth | |
9028 | component of LHS (a simple array or a record). Does not modify the | |
9029 | inferior's memory, nor does it modify LHS (unless LHS == | |
9030 | CONTAINER). */ | |
52ce6436 PH |
9031 | |
9032 | static void | |
9033 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
d3c54a1c | 9034 | struct expression *exp, operation_up &arg) |
52ce6436 | 9035 | { |
d3c54a1c TT |
9036 | scoped_value_mark mark; |
9037 | ||
52ce6436 | 9038 | struct value *elt; |
0e2da9f0 | 9039 | struct type *lhs_type = check_typedef (value_type (lhs)); |
5b4ee69b | 9040 | |
78134374 | 9041 | if (lhs_type->code () == TYPE_CODE_ARRAY) |
52ce6436 | 9042 | { |
22601c15 UW |
9043 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9044 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9045 | |
52ce6436 PH |
9046 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9047 | } | |
9048 | else | |
9049 | { | |
9050 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9051 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9052 | } |
9053 | ||
d3c54a1c TT |
9054 | ada_aggregate_operation *ag_op |
9055 | = dynamic_cast<ada_aggregate_operation *> (arg.get ()); | |
9056 | if (ag_op != nullptr) | |
9057 | ag_op->assign_aggregate (container, elt, exp); | |
52ce6436 | 9058 | else |
d3c54a1c TT |
9059 | value_assign_to_component (container, elt, |
9060 | arg->evaluate (nullptr, exp, | |
9061 | EVAL_NORMAL)); | |
9062 | } | |
52ce6436 | 9063 | |
d3c54a1c TT |
9064 | bool |
9065 | ada_aggregate_component::uses_objfile (struct objfile *objfile) | |
9066 | { | |
9067 | for (const auto &item : m_components) | |
9068 | if (item->uses_objfile (objfile)) | |
9069 | return true; | |
9070 | return false; | |
9071 | } | |
9072 | ||
9073 | void | |
9074 | ada_aggregate_component::dump (ui_file *stream, int depth) | |
9075 | { | |
9076 | fprintf_filtered (stream, _("%*sAggregate\n"), depth, ""); | |
9077 | for (const auto &item : m_components) | |
9078 | item->dump (stream, depth + 1); | |
9079 | } | |
9080 | ||
9081 | void | |
9082 | ada_aggregate_component::assign (struct value *container, | |
9083 | struct value *lhs, struct expression *exp, | |
9084 | std::vector<LONGEST> &indices, | |
9085 | LONGEST low, LONGEST high) | |
9086 | { | |
9087 | for (auto &item : m_components) | |
9088 | item->assign (container, lhs, exp, indices, low, high); | |
52ce6436 PH |
9089 | } |
9090 | ||
207582c0 | 9091 | /* See ada-exp.h. */ |
52ce6436 | 9092 | |
207582c0 | 9093 | value * |
d3c54a1c TT |
9094 | ada_aggregate_operation::assign_aggregate (struct value *container, |
9095 | struct value *lhs, | |
9096 | struct expression *exp) | |
52ce6436 PH |
9097 | { |
9098 | struct type *lhs_type; | |
52ce6436 | 9099 | LONGEST low_index, high_index; |
52ce6436 PH |
9100 | |
9101 | container = ada_coerce_ref (container); | |
9102 | if (ada_is_direct_array_type (value_type (container))) | |
9103 | container = ada_coerce_to_simple_array (container); | |
9104 | lhs = ada_coerce_ref (lhs); | |
9105 | if (!deprecated_value_modifiable (lhs)) | |
9106 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9107 | ||
0e2da9f0 | 9108 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
9109 | if (ada_is_direct_array_type (lhs_type)) |
9110 | { | |
9111 | lhs = ada_coerce_to_simple_array (lhs); | |
0e2da9f0 | 9112 | lhs_type = check_typedef (value_type (lhs)); |
cf88be68 SM |
9113 | low_index = lhs_type->bounds ()->low.const_val (); |
9114 | high_index = lhs_type->bounds ()->high.const_val (); | |
52ce6436 | 9115 | } |
78134374 | 9116 | else if (lhs_type->code () == TYPE_CODE_STRUCT) |
52ce6436 PH |
9117 | { |
9118 | low_index = 0; | |
9119 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9120 | } |
9121 | else | |
9122 | error (_("Left-hand side must be array or record.")); | |
9123 | ||
cf608cc4 | 9124 | std::vector<LONGEST> indices (4); |
52ce6436 PH |
9125 | indices[0] = indices[1] = low_index - 1; |
9126 | indices[2] = indices[3] = high_index + 1; | |
52ce6436 | 9127 | |
d3c54a1c TT |
9128 | std::get<0> (m_storage)->assign (container, lhs, exp, indices, |
9129 | low_index, high_index); | |
207582c0 TT |
9130 | |
9131 | return container; | |
d3c54a1c TT |
9132 | } |
9133 | ||
9134 | bool | |
9135 | ada_positional_component::uses_objfile (struct objfile *objfile) | |
9136 | { | |
9137 | return m_op->uses_objfile (objfile); | |
9138 | } | |
52ce6436 | 9139 | |
d3c54a1c TT |
9140 | void |
9141 | ada_positional_component::dump (ui_file *stream, int depth) | |
9142 | { | |
9143 | fprintf_filtered (stream, _("%*sPositional, index = %d\n"), | |
9144 | depth, "", m_index); | |
9145 | m_op->dump (stream, depth + 1); | |
52ce6436 | 9146 | } |
d3c54a1c | 9147 | |
52ce6436 | 9148 | /* Assign into the component of LHS indexed by the OP_POSITIONAL |
d3c54a1c TT |
9149 | construct, given that the positions are relative to lower bound |
9150 | LOW, where HIGH is the upper bound. Record the position in | |
9151 | INDICES. CONTAINER is as for assign_aggregate. */ | |
9152 | void | |
9153 | ada_positional_component::assign (struct value *container, | |
9154 | struct value *lhs, struct expression *exp, | |
9155 | std::vector<LONGEST> &indices, | |
9156 | LONGEST low, LONGEST high) | |
52ce6436 | 9157 | { |
d3c54a1c TT |
9158 | LONGEST ind = m_index + low; |
9159 | ||
52ce6436 | 9160 | if (ind - 1 == high) |
e1d5a0d2 | 9161 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9162 | if (ind <= high) |
9163 | { | |
cf608cc4 | 9164 | add_component_interval (ind, ind, indices); |
d3c54a1c | 9165 | assign_component (container, lhs, ind, exp, m_op); |
52ce6436 | 9166 | } |
52ce6436 PH |
9167 | } |
9168 | ||
d3c54a1c TT |
9169 | bool |
9170 | ada_discrete_range_association::uses_objfile (struct objfile *objfile) | |
a88c4354 TT |
9171 | { |
9172 | return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile); | |
9173 | } | |
9174 | ||
9175 | void | |
9176 | ada_discrete_range_association::dump (ui_file *stream, int depth) | |
9177 | { | |
9178 | fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, ""); | |
9179 | m_low->dump (stream, depth + 1); | |
9180 | m_high->dump (stream, depth + 1); | |
9181 | } | |
9182 | ||
9183 | void | |
9184 | ada_discrete_range_association::assign (struct value *container, | |
9185 | struct value *lhs, | |
9186 | struct expression *exp, | |
9187 | std::vector<LONGEST> &indices, | |
9188 | LONGEST low, LONGEST high, | |
9189 | operation_up &op) | |
9190 | { | |
9191 | LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL)); | |
9192 | LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL)); | |
9193 | ||
9194 | if (lower <= upper && (lower < low || upper > high)) | |
9195 | error (_("Index in component association out of bounds.")); | |
9196 | ||
9197 | add_component_interval (lower, upper, indices); | |
9198 | while (lower <= upper) | |
9199 | { | |
9200 | assign_component (container, lhs, lower, exp, op); | |
9201 | lower += 1; | |
9202 | } | |
9203 | } | |
9204 | ||
9205 | bool | |
9206 | ada_name_association::uses_objfile (struct objfile *objfile) | |
9207 | { | |
9208 | return m_val->uses_objfile (objfile); | |
9209 | } | |
9210 | ||
9211 | void | |
9212 | ada_name_association::dump (ui_file *stream, int depth) | |
9213 | { | |
9214 | fprintf_filtered (stream, _("%*sName:\n"), depth, ""); | |
9215 | m_val->dump (stream, depth + 1); | |
9216 | } | |
9217 | ||
9218 | void | |
9219 | ada_name_association::assign (struct value *container, | |
9220 | struct value *lhs, | |
9221 | struct expression *exp, | |
9222 | std::vector<LONGEST> &indices, | |
9223 | LONGEST low, LONGEST high, | |
9224 | operation_up &op) | |
9225 | { | |
9226 | int index; | |
9227 | ||
9228 | if (ada_is_direct_array_type (value_type (lhs))) | |
9229 | index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp, | |
9230 | EVAL_NORMAL))); | |
9231 | else | |
9232 | { | |
9233 | ada_string_operation *strop | |
9234 | = dynamic_cast<ada_string_operation *> (m_val.get ()); | |
9235 | ||
9236 | const char *name; | |
9237 | if (strop != nullptr) | |
9238 | name = strop->get_name (); | |
9239 | else | |
9240 | { | |
9241 | ada_var_value_operation *vvo | |
9242 | = dynamic_cast<ada_var_value_operation *> (m_val.get ()); | |
9243 | if (vvo != nullptr) | |
9244 | error (_("Invalid record component association.")); | |
9245 | name = vvo->get_symbol ()->natural_name (); | |
9246 | } | |
9247 | ||
9248 | index = 0; | |
9249 | if (! find_struct_field (name, value_type (lhs), 0, | |
9250 | NULL, NULL, NULL, NULL, &index)) | |
9251 | error (_("Unknown component name: %s."), name); | |
9252 | } | |
9253 | ||
9254 | add_component_interval (index, index, indices); | |
9255 | assign_component (container, lhs, index, exp, op); | |
9256 | } | |
9257 | ||
9258 | bool | |
9259 | ada_choices_component::uses_objfile (struct objfile *objfile) | |
9260 | { | |
9261 | if (m_op->uses_objfile (objfile)) | |
9262 | return true; | |
9263 | for (const auto &item : m_assocs) | |
9264 | if (item->uses_objfile (objfile)) | |
9265 | return true; | |
9266 | return false; | |
9267 | } | |
9268 | ||
9269 | void | |
9270 | ada_choices_component::dump (ui_file *stream, int depth) | |
9271 | { | |
9272 | fprintf_filtered (stream, _("%*sChoices:\n"), depth, ""); | |
9273 | m_op->dump (stream, depth + 1); | |
9274 | for (const auto &item : m_assocs) | |
9275 | item->dump (stream, depth + 1); | |
9276 | } | |
9277 | ||
9278 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9279 | construct at *POS, updating *POS past the construct, given that | |
9280 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9281 | to in INDICES. CONTAINER is as for assign_aggregate. */ | |
9282 | void | |
9283 | ada_choices_component::assign (struct value *container, | |
9284 | struct value *lhs, struct expression *exp, | |
9285 | std::vector<LONGEST> &indices, | |
9286 | LONGEST low, LONGEST high) | |
9287 | { | |
9288 | for (auto &item : m_assocs) | |
9289 | item->assign (container, lhs, exp, indices, low, high, m_op); | |
9290 | } | |
9291 | ||
9292 | bool | |
9293 | ada_others_component::uses_objfile (struct objfile *objfile) | |
9294 | { | |
9295 | return m_op->uses_objfile (objfile); | |
9296 | } | |
9297 | ||
9298 | void | |
9299 | ada_others_component::dump (ui_file *stream, int depth) | |
9300 | { | |
9301 | fprintf_filtered (stream, _("%*sOthers:\n"), depth, ""); | |
9302 | m_op->dump (stream, depth + 1); | |
9303 | } | |
9304 | ||
9305 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9306 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9307 | have not been previously assigned. The index intervals already assigned | |
9308 | are in INDICES. CONTAINER is as for assign_aggregate. */ | |
9309 | void | |
9310 | ada_others_component::assign (struct value *container, | |
9311 | struct value *lhs, struct expression *exp, | |
9312 | std::vector<LONGEST> &indices, | |
9313 | LONGEST low, LONGEST high) | |
9314 | { | |
9315 | int num_indices = indices.size (); | |
9316 | for (int i = 0; i < num_indices - 2; i += 2) | |
9317 | { | |
9318 | for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
9319 | assign_component (container, lhs, ind, exp, m_op); | |
9320 | } | |
9321 | } | |
9322 | ||
9323 | struct value * | |
9324 | ada_assign_operation::evaluate (struct type *expect_type, | |
9325 | struct expression *exp, | |
9326 | enum noside noside) | |
9327 | { | |
9328 | value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); | |
9329 | ||
9330 | ada_aggregate_operation *ag_op | |
9331 | = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ()); | |
9332 | if (ag_op != nullptr) | |
9333 | { | |
9334 | if (noside != EVAL_NORMAL) | |
9335 | return arg1; | |
9336 | ||
207582c0 | 9337 | arg1 = ag_op->assign_aggregate (arg1, arg1, exp); |
a88c4354 TT |
9338 | return ada_value_assign (arg1, arg1); |
9339 | } | |
9340 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, | |
9341 | except if the lhs of our assignment is a convenience variable. | |
9342 | In the case of assigning to a convenience variable, the lhs | |
9343 | should be exactly the result of the evaluation of the rhs. */ | |
9344 | struct type *type = value_type (arg1); | |
9345 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9346 | type = NULL; | |
9347 | value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside); | |
0b2b0b82 | 9348 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a88c4354 TT |
9349 | return arg1; |
9350 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9351 | { | |
9352 | /* Nothing. */ | |
9353 | } | |
9354 | else | |
9355 | arg2 = coerce_for_assign (value_type (arg1), arg2); | |
9356 | return ada_value_assign (arg1, arg2); | |
9357 | } | |
9358 | ||
9359 | } /* namespace expr */ | |
9360 | ||
cf608cc4 TT |
9361 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals |
9362 | [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not | |
9363 | overlap. */ | |
52ce6436 PH |
9364 | static void |
9365 | add_component_interval (LONGEST low, LONGEST high, | |
cf608cc4 | 9366 | std::vector<LONGEST> &indices) |
52ce6436 PH |
9367 | { |
9368 | int i, j; | |
5b4ee69b | 9369 | |
cf608cc4 TT |
9370 | int size = indices.size (); |
9371 | for (i = 0; i < size; i += 2) { | |
52ce6436 PH |
9372 | if (high >= indices[i] && low <= indices[i + 1]) |
9373 | { | |
9374 | int kh; | |
5b4ee69b | 9375 | |
cf608cc4 | 9376 | for (kh = i + 2; kh < size; kh += 2) |
52ce6436 PH |
9377 | if (high < indices[kh]) |
9378 | break; | |
9379 | if (low < indices[i]) | |
9380 | indices[i] = low; | |
9381 | indices[i + 1] = indices[kh - 1]; | |
9382 | if (high > indices[i + 1]) | |
9383 | indices[i + 1] = high; | |
cf608cc4 TT |
9384 | memcpy (indices.data () + i + 2, indices.data () + kh, size - kh); |
9385 | indices.resize (kh - i - 2); | |
52ce6436 PH |
9386 | return; |
9387 | } | |
9388 | else if (high < indices[i]) | |
9389 | break; | |
9390 | } | |
9391 | ||
cf608cc4 | 9392 | indices.resize (indices.size () + 2); |
d4813f10 | 9393 | for (j = indices.size () - 1; j >= i + 2; j -= 1) |
52ce6436 PH |
9394 | indices[j] = indices[j - 2]; |
9395 | indices[i] = low; | |
9396 | indices[i + 1] = high; | |
9397 | } | |
9398 | ||
6e48bd2c JB |
9399 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9400 | is different. */ | |
9401 | ||
9402 | static struct value * | |
b7e22850 | 9403 | ada_value_cast (struct type *type, struct value *arg2) |
6e48bd2c JB |
9404 | { |
9405 | if (type == ada_check_typedef (value_type (arg2))) | |
9406 | return arg2; | |
9407 | ||
6e48bd2c JB |
9408 | return value_cast (type, arg2); |
9409 | } | |
9410 | ||
284614f0 JB |
9411 | /* Evaluating Ada expressions, and printing their result. |
9412 | ------------------------------------------------------ | |
9413 | ||
21649b50 JB |
9414 | 1. Introduction: |
9415 | ---------------- | |
9416 | ||
284614f0 JB |
9417 | We usually evaluate an Ada expression in order to print its value. |
9418 | We also evaluate an expression in order to print its type, which | |
9419 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9420 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9421 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9422 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9423 | similar. | |
9424 | ||
9425 | Evaluating expressions is a little more complicated for Ada entities | |
9426 | than it is for entities in languages such as C. The main reason for | |
9427 | this is that Ada provides types whose definition might be dynamic. | |
9428 | One example of such types is variant records. Or another example | |
9429 | would be an array whose bounds can only be known at run time. | |
9430 | ||
9431 | The following description is a general guide as to what should be | |
9432 | done (and what should NOT be done) in order to evaluate an expression | |
9433 | involving such types, and when. This does not cover how the semantic | |
9434 | information is encoded by GNAT as this is covered separatly. For the | |
9435 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9436 | in the GNAT sources. | |
9437 | ||
9438 | Ideally, we should embed each part of this description next to its | |
9439 | associated code. Unfortunately, the amount of code is so vast right | |
9440 | now that it's hard to see whether the code handling a particular | |
9441 | situation might be duplicated or not. One day, when the code is | |
9442 | cleaned up, this guide might become redundant with the comments | |
9443 | inserted in the code, and we might want to remove it. | |
9444 | ||
21649b50 JB |
9445 | 2. ``Fixing'' an Entity, the Simple Case: |
9446 | ----------------------------------------- | |
9447 | ||
284614f0 JB |
9448 | When evaluating Ada expressions, the tricky issue is that they may |
9449 | reference entities whose type contents and size are not statically | |
9450 | known. Consider for instance a variant record: | |
9451 | ||
9452 | type Rec (Empty : Boolean := True) is record | |
dda83cd7 SM |
9453 | case Empty is |
9454 | when True => null; | |
9455 | when False => Value : Integer; | |
9456 | end case; | |
284614f0 JB |
9457 | end record; |
9458 | Yes : Rec := (Empty => False, Value => 1); | |
9459 | No : Rec := (empty => True); | |
9460 | ||
9461 | The size and contents of that record depends on the value of the | |
9462 | descriminant (Rec.Empty). At this point, neither the debugging | |
9463 | information nor the associated type structure in GDB are able to | |
9464 | express such dynamic types. So what the debugger does is to create | |
9465 | "fixed" versions of the type that applies to the specific object. | |
30baf67b | 9466 | We also informally refer to this operation as "fixing" an object, |
284614f0 JB |
9467 | which means creating its associated fixed type. |
9468 | ||
9469 | Example: when printing the value of variable "Yes" above, its fixed | |
9470 | type would look like this: | |
9471 | ||
9472 | type Rec is record | |
dda83cd7 SM |
9473 | Empty : Boolean; |
9474 | Value : Integer; | |
284614f0 JB |
9475 | end record; |
9476 | ||
9477 | On the other hand, if we printed the value of "No", its fixed type | |
9478 | would become: | |
9479 | ||
9480 | type Rec is record | |
dda83cd7 | 9481 | Empty : Boolean; |
284614f0 JB |
9482 | end record; |
9483 | ||
9484 | Things become a little more complicated when trying to fix an entity | |
9485 | with a dynamic type that directly contains another dynamic type, | |
9486 | such as an array of variant records, for instance. There are | |
9487 | two possible cases: Arrays, and records. | |
9488 | ||
21649b50 JB |
9489 | 3. ``Fixing'' Arrays: |
9490 | --------------------- | |
9491 | ||
9492 | The type structure in GDB describes an array in terms of its bounds, | |
9493 | and the type of its elements. By design, all elements in the array | |
9494 | have the same type and we cannot represent an array of variant elements | |
9495 | using the current type structure in GDB. When fixing an array, | |
9496 | we cannot fix the array element, as we would potentially need one | |
9497 | fixed type per element of the array. As a result, the best we can do | |
9498 | when fixing an array is to produce an array whose bounds and size | |
9499 | are correct (allowing us to read it from memory), but without having | |
9500 | touched its element type. Fixing each element will be done later, | |
9501 | when (if) necessary. | |
9502 | ||
9503 | Arrays are a little simpler to handle than records, because the same | |
9504 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9505 | the amount of space actually used by each element differs from element |
21649b50 | 9506 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9507 | |
9508 | type Rec_Array is array (1 .. 2) of Rec; | |
9509 | ||
1b536f04 JB |
9510 | The actual amount of memory occupied by each element might be different |
9511 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9512 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9513 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9514 | the debugging information available, from which we can then determine |
9515 | the array size (we multiply the number of elements of the array by | |
9516 | the size of each element). | |
9517 | ||
9518 | The simplest case is when we have an array of a constrained element | |
9519 | type. For instance, consider the following type declarations: | |
9520 | ||
dda83cd7 SM |
9521 | type Bounded_String (Max_Size : Integer) is |
9522 | Length : Integer; | |
9523 | Buffer : String (1 .. Max_Size); | |
9524 | end record; | |
9525 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
21649b50 JB |
9526 | |
9527 | In this case, the compiler describes the array as an array of | |
9528 | variable-size elements (identified by its XVS suffix) for which | |
9529 | the size can be read in the parallel XVZ variable. | |
9530 | ||
9531 | In the case of an array of an unconstrained element type, the compiler | |
9532 | wraps the array element inside a private PAD type. This type should not | |
9533 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9534 | that we also use the adjective "aligner" in our code to designate |
9535 | these wrapper types. | |
9536 | ||
1b536f04 | 9537 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9538 | known. In that case, the PAD type already has the correct size, |
9539 | and the array element should remain unfixed. | |
9540 | ||
9541 | But there are cases when this size is not statically known. | |
9542 | For instance, assuming that "Five" is an integer variable: | |
284614f0 | 9543 | |
dda83cd7 SM |
9544 | type Dynamic is array (1 .. Five) of Integer; |
9545 | type Wrapper (Has_Length : Boolean := False) is record | |
9546 | Data : Dynamic; | |
9547 | case Has_Length is | |
9548 | when True => Length : Integer; | |
9549 | when False => null; | |
9550 | end case; | |
9551 | end record; | |
9552 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
284614f0 | 9553 | |
dda83cd7 SM |
9554 | Hello : Wrapper_Array := (others => (Has_Length => True, |
9555 | Data => (others => 17), | |
9556 | Length => 1)); | |
284614f0 JB |
9557 | |
9558 | ||
9559 | The debugging info would describe variable Hello as being an | |
9560 | array of a PAD type. The size of that PAD type is not statically | |
9561 | known, but can be determined using a parallel XVZ variable. | |
9562 | In that case, a copy of the PAD type with the correct size should | |
9563 | be used for the fixed array. | |
9564 | ||
21649b50 JB |
9565 | 3. ``Fixing'' record type objects: |
9566 | ---------------------------------- | |
9567 | ||
9568 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9569 | record types. In this case, in order to compute the associated |
9570 | fixed type, we need to determine the size and offset of each of | |
9571 | its components. This, in turn, requires us to compute the fixed | |
9572 | type of each of these components. | |
9573 | ||
9574 | Consider for instance the example: | |
9575 | ||
dda83cd7 SM |
9576 | type Bounded_String (Max_Size : Natural) is record |
9577 | Str : String (1 .. Max_Size); | |
9578 | Length : Natural; | |
9579 | end record; | |
9580 | My_String : Bounded_String (Max_Size => 10); | |
284614f0 JB |
9581 | |
9582 | In that case, the position of field "Length" depends on the size | |
9583 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9584 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9585 | we need to fix the type of field Str. Therefore, fixing a variant |
9586 | record requires us to fix each of its components. | |
9587 | ||
9588 | However, if a component does not have a dynamic size, the component | |
9589 | should not be fixed. In particular, fields that use a PAD type | |
9590 | should not fixed. Here is an example where this might happen | |
9591 | (assuming type Rec above): | |
9592 | ||
9593 | type Container (Big : Boolean) is record | |
dda83cd7 SM |
9594 | First : Rec; |
9595 | After : Integer; | |
9596 | case Big is | |
9597 | when True => Another : Integer; | |
9598 | when False => null; | |
9599 | end case; | |
284614f0 JB |
9600 | end record; |
9601 | My_Container : Container := (Big => False, | |
dda83cd7 SM |
9602 | First => (Empty => True), |
9603 | After => 42); | |
284614f0 JB |
9604 | |
9605 | In that example, the compiler creates a PAD type for component First, | |
9606 | whose size is constant, and then positions the component After just | |
9607 | right after it. The offset of component After is therefore constant | |
9608 | in this case. | |
9609 | ||
9610 | The debugger computes the position of each field based on an algorithm | |
9611 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9612 | preceding it. Let's now imagine that the user is trying to print |
9613 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9614 | end up computing the offset of field After based on the size of the |
9615 | fixed version of field First. And since in our example First has | |
9616 | only one actual field, the size of the fixed type is actually smaller | |
9617 | than the amount of space allocated to that field, and thus we would | |
9618 | compute the wrong offset of field After. | |
9619 | ||
21649b50 JB |
9620 | To make things more complicated, we need to watch out for dynamic |
9621 | components of variant records (identified by the ___XVL suffix in | |
9622 | the component name). Even if the target type is a PAD type, the size | |
9623 | of that type might not be statically known. So the PAD type needs | |
9624 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9625 | we might end up with the wrong size for our component. This can be | |
9626 | observed with the following type declarations: | |
284614f0 | 9627 | |
dda83cd7 SM |
9628 | type Octal is new Integer range 0 .. 7; |
9629 | type Octal_Array is array (Positive range <>) of Octal; | |
9630 | pragma Pack (Octal_Array); | |
284614f0 | 9631 | |
dda83cd7 SM |
9632 | type Octal_Buffer (Size : Positive) is record |
9633 | Buffer : Octal_Array (1 .. Size); | |
9634 | Length : Integer; | |
9635 | end record; | |
284614f0 JB |
9636 | |
9637 | In that case, Buffer is a PAD type whose size is unset and needs | |
9638 | to be computed by fixing the unwrapped type. | |
9639 | ||
21649b50 JB |
9640 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9641 | ---------------------------------------------------------- | |
9642 | ||
9643 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9644 | thus far, be actually fixed? |
9645 | ||
9646 | The answer is: Only when referencing that element. For instance | |
9647 | when selecting one component of a record, this specific component | |
9648 | should be fixed at that point in time. Or when printing the value | |
9649 | of a record, each component should be fixed before its value gets | |
9650 | printed. Similarly for arrays, the element of the array should be | |
9651 | fixed when printing each element of the array, or when extracting | |
9652 | one element out of that array. On the other hand, fixing should | |
9653 | not be performed on the elements when taking a slice of an array! | |
9654 | ||
31432a67 | 9655 | Note that one of the side effects of miscomputing the offset and |
284614f0 JB |
9656 | size of each field is that we end up also miscomputing the size |
9657 | of the containing type. This can have adverse results when computing | |
9658 | the value of an entity. GDB fetches the value of an entity based | |
9659 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9660 | the wrong amount of memory. In the case where the computed size is | |
9661 | too small, GDB fetches too little data to print the value of our | |
31432a67 | 9662 | entity. Results in this case are unpredictable, as we usually read |
284614f0 JB |
9663 | past the buffer containing the data =:-o. */ |
9664 | ||
62d4bd94 TT |
9665 | /* A helper function for TERNOP_IN_RANGE. */ |
9666 | ||
9667 | static value * | |
9668 | eval_ternop_in_range (struct type *expect_type, struct expression *exp, | |
9669 | enum noside noside, | |
9670 | value *arg1, value *arg2, value *arg3) | |
9671 | { | |
62d4bd94 TT |
9672 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9673 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
9674 | struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9675 | return | |
9676 | value_from_longest (type, | |
9677 | (value_less (arg1, arg3) | |
9678 | || value_equal (arg1, arg3)) | |
9679 | && (value_less (arg2, arg1) | |
9680 | || value_equal (arg2, arg1))); | |
9681 | } | |
9682 | ||
82390ab8 TT |
9683 | /* A helper function for UNOP_NEG. */ |
9684 | ||
7c15d377 | 9685 | value * |
82390ab8 TT |
9686 | ada_unop_neg (struct type *expect_type, |
9687 | struct expression *exp, | |
9688 | enum noside noside, enum exp_opcode op, | |
9689 | struct value *arg1) | |
9690 | { | |
82390ab8 TT |
9691 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
9692 | return value_neg (arg1); | |
9693 | } | |
9694 | ||
7efc87ff TT |
9695 | /* A helper function for UNOP_IN_RANGE. */ |
9696 | ||
95d49dfb | 9697 | value * |
7efc87ff TT |
9698 | ada_unop_in_range (struct type *expect_type, |
9699 | struct expression *exp, | |
9700 | enum noside noside, enum exp_opcode op, | |
9701 | struct value *arg1, struct type *type) | |
9702 | { | |
7efc87ff TT |
9703 | struct value *arg2, *arg3; |
9704 | switch (type->code ()) | |
9705 | { | |
9706 | default: | |
9707 | lim_warning (_("Membership test incompletely implemented; " | |
9708 | "always returns true")); | |
9709 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9710 | return value_from_longest (type, (LONGEST) 1); | |
9711 | ||
9712 | case TYPE_CODE_RANGE: | |
9713 | arg2 = value_from_longest (type, | |
9714 | type->bounds ()->low.const_val ()); | |
9715 | arg3 = value_from_longest (type, | |
9716 | type->bounds ()->high.const_val ()); | |
9717 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9718 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
9719 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9720 | return | |
9721 | value_from_longest (type, | |
9722 | (value_less (arg1, arg3) | |
9723 | || value_equal (arg1, arg3)) | |
9724 | && (value_less (arg2, arg1) | |
9725 | || value_equal (arg2, arg1))); | |
9726 | } | |
9727 | } | |
9728 | ||
020dbabe TT |
9729 | /* A helper function for OP_ATR_TAG. */ |
9730 | ||
7c15d377 | 9731 | value * |
020dbabe TT |
9732 | ada_atr_tag (struct type *expect_type, |
9733 | struct expression *exp, | |
9734 | enum noside noside, enum exp_opcode op, | |
9735 | struct value *arg1) | |
9736 | { | |
9737 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9738 | return value_zero (ada_tag_type (arg1), not_lval); | |
9739 | ||
9740 | return ada_value_tag (arg1); | |
9741 | } | |
9742 | ||
68c75735 TT |
9743 | /* A helper function for OP_ATR_SIZE. */ |
9744 | ||
7c15d377 | 9745 | value * |
68c75735 TT |
9746 | ada_atr_size (struct type *expect_type, |
9747 | struct expression *exp, | |
9748 | enum noside noside, enum exp_opcode op, | |
9749 | struct value *arg1) | |
9750 | { | |
9751 | struct type *type = value_type (arg1); | |
9752 | ||
9753 | /* If the argument is a reference, then dereference its type, since | |
9754 | the user is really asking for the size of the actual object, | |
9755 | not the size of the pointer. */ | |
9756 | if (type->code () == TYPE_CODE_REF) | |
9757 | type = TYPE_TARGET_TYPE (type); | |
9758 | ||
0b2b0b82 | 9759 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
68c75735 TT |
9760 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
9761 | else | |
9762 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, | |
9763 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); | |
9764 | } | |
9765 | ||
d05e24e6 TT |
9766 | /* A helper function for UNOP_ABS. */ |
9767 | ||
7c15d377 | 9768 | value * |
d05e24e6 TT |
9769 | ada_abs (struct type *expect_type, |
9770 | struct expression *exp, | |
9771 | enum noside noside, enum exp_opcode op, | |
9772 | struct value *arg1) | |
9773 | { | |
9774 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9775 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) | |
9776 | return value_neg (arg1); | |
9777 | else | |
9778 | return arg1; | |
9779 | } | |
9780 | ||
faa1dfd7 TT |
9781 | /* A helper function for BINOP_MUL. */ |
9782 | ||
d9e7db06 | 9783 | value * |
faa1dfd7 TT |
9784 | ada_mult_binop (struct type *expect_type, |
9785 | struct expression *exp, | |
9786 | enum noside noside, enum exp_opcode op, | |
9787 | struct value *arg1, struct value *arg2) | |
9788 | { | |
9789 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9790 | { | |
9791 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9792 | return value_zero (value_type (arg1), not_lval); | |
9793 | } | |
9794 | else | |
9795 | { | |
9796 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9797 | return ada_value_binop (arg1, arg2, op); | |
9798 | } | |
9799 | } | |
9800 | ||
214b13ac TT |
9801 | /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */ |
9802 | ||
6e8fb7b7 | 9803 | value * |
214b13ac TT |
9804 | ada_equal_binop (struct type *expect_type, |
9805 | struct expression *exp, | |
9806 | enum noside noside, enum exp_opcode op, | |
9807 | struct value *arg1, struct value *arg2) | |
9808 | { | |
9809 | int tem; | |
9810 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9811 | tem = 0; | |
9812 | else | |
9813 | { | |
9814 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9815 | tem = ada_value_equal (arg1, arg2); | |
9816 | } | |
9817 | if (op == BINOP_NOTEQUAL) | |
9818 | tem = !tem; | |
9819 | struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9820 | return value_from_longest (type, (LONGEST) tem); | |
9821 | } | |
9822 | ||
5ce19db8 TT |
9823 | /* A helper function for TERNOP_SLICE. */ |
9824 | ||
1b1ebfab | 9825 | value * |
5ce19db8 TT |
9826 | ada_ternop_slice (struct expression *exp, |
9827 | enum noside noside, | |
9828 | struct value *array, struct value *low_bound_val, | |
9829 | struct value *high_bound_val) | |
9830 | { | |
9831 | LONGEST low_bound; | |
9832 | LONGEST high_bound; | |
9833 | ||
9834 | low_bound_val = coerce_ref (low_bound_val); | |
9835 | high_bound_val = coerce_ref (high_bound_val); | |
9836 | low_bound = value_as_long (low_bound_val); | |
9837 | high_bound = value_as_long (high_bound_val); | |
9838 | ||
9839 | /* If this is a reference to an aligner type, then remove all | |
9840 | the aligners. */ | |
9841 | if (value_type (array)->code () == TYPE_CODE_REF | |
9842 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9843 | TYPE_TARGET_TYPE (value_type (array)) = | |
9844 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
9845 | ||
9846 | if (ada_is_any_packed_array_type (value_type (array))) | |
9847 | error (_("cannot slice a packed array")); | |
9848 | ||
9849 | /* If this is a reference to an array or an array lvalue, | |
9850 | convert to a pointer. */ | |
9851 | if (value_type (array)->code () == TYPE_CODE_REF | |
9852 | || (value_type (array)->code () == TYPE_CODE_ARRAY | |
9853 | && VALUE_LVAL (array) == lval_memory)) | |
9854 | array = value_addr (array); | |
9855 | ||
9856 | if (noside == EVAL_AVOID_SIDE_EFFECTS | |
9857 | && ada_is_array_descriptor_type (ada_check_typedef | |
9858 | (value_type (array)))) | |
9859 | return empty_array (ada_type_of_array (array, 0), low_bound, | |
9860 | high_bound); | |
9861 | ||
9862 | array = ada_coerce_to_simple_array_ptr (array); | |
9863 | ||
9864 | /* If we have more than one level of pointer indirection, | |
9865 | dereference the value until we get only one level. */ | |
9866 | while (value_type (array)->code () == TYPE_CODE_PTR | |
9867 | && (TYPE_TARGET_TYPE (value_type (array))->code () | |
9868 | == TYPE_CODE_PTR)) | |
9869 | array = value_ind (array); | |
9870 | ||
9871 | /* Make sure we really do have an array type before going further, | |
9872 | to avoid a SEGV when trying to get the index type or the target | |
9873 | type later down the road if the debug info generated by | |
9874 | the compiler is incorrect or incomplete. */ | |
9875 | if (!ada_is_simple_array_type (value_type (array))) | |
9876 | error (_("cannot take slice of non-array")); | |
9877 | ||
9878 | if (ada_check_typedef (value_type (array))->code () | |
9879 | == TYPE_CODE_PTR) | |
9880 | { | |
9881 | struct type *type0 = ada_check_typedef (value_type (array)); | |
9882 | ||
9883 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9884 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound); | |
9885 | else | |
9886 | { | |
9887 | struct type *arr_type0 = | |
9888 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); | |
9889 | ||
9890 | return ada_value_slice_from_ptr (array, arr_type0, | |
9891 | longest_to_int (low_bound), | |
9892 | longest_to_int (high_bound)); | |
9893 | } | |
9894 | } | |
9895 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9896 | return array; | |
9897 | else if (high_bound < low_bound) | |
9898 | return empty_array (value_type (array), low_bound, high_bound); | |
9899 | else | |
9900 | return ada_value_slice (array, longest_to_int (low_bound), | |
9901 | longest_to_int (high_bound)); | |
9902 | } | |
9903 | ||
b467efaa TT |
9904 | /* A helper function for BINOP_IN_BOUNDS. */ |
9905 | ||
82c3886e | 9906 | value * |
b467efaa TT |
9907 | ada_binop_in_bounds (struct expression *exp, enum noside noside, |
9908 | struct value *arg1, struct value *arg2, int n) | |
9909 | { | |
9910 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9911 | { | |
9912 | struct type *type = language_bool_type (exp->language_defn, | |
9913 | exp->gdbarch); | |
9914 | return value_zero (type, not_lval); | |
9915 | } | |
9916 | ||
9917 | struct type *type = ada_index_type (value_type (arg2), n, "range"); | |
9918 | if (!type) | |
9919 | type = value_type (arg1); | |
9920 | ||
9921 | value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1)); | |
9922 | arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0)); | |
9923 | ||
9924 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9925 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
9926 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9927 | return value_from_longest (type, | |
9928 | (value_less (arg1, arg3) | |
9929 | || value_equal (arg1, arg3)) | |
9930 | && (value_less (arg2, arg1) | |
9931 | || value_equal (arg2, arg1))); | |
9932 | } | |
9933 | ||
b84564fc TT |
9934 | /* A helper function for some attribute operations. */ |
9935 | ||
9936 | static value * | |
9937 | ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op, | |
9938 | struct value *arg1, struct type *type_arg, int tem) | |
9939 | { | |
9940 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9941 | { | |
9942 | if (type_arg == NULL) | |
9943 | type_arg = value_type (arg1); | |
9944 | ||
9945 | if (ada_is_constrained_packed_array_type (type_arg)) | |
9946 | type_arg = decode_constrained_packed_array_type (type_arg); | |
9947 | ||
9948 | if (!discrete_type_p (type_arg)) | |
9949 | { | |
9950 | switch (op) | |
9951 | { | |
9952 | default: /* Should never happen. */ | |
9953 | error (_("unexpected attribute encountered")); | |
9954 | case OP_ATR_FIRST: | |
9955 | case OP_ATR_LAST: | |
9956 | type_arg = ada_index_type (type_arg, tem, | |
9957 | ada_attribute_name (op)); | |
9958 | break; | |
9959 | case OP_ATR_LENGTH: | |
9960 | type_arg = builtin_type (exp->gdbarch)->builtin_int; | |
9961 | break; | |
9962 | } | |
9963 | } | |
9964 | ||
9965 | return value_zero (type_arg, not_lval); | |
9966 | } | |
9967 | else if (type_arg == NULL) | |
9968 | { | |
9969 | arg1 = ada_coerce_ref (arg1); | |
9970 | ||
9971 | if (ada_is_constrained_packed_array_type (value_type (arg1))) | |
9972 | arg1 = ada_coerce_to_simple_array (arg1); | |
9973 | ||
9974 | struct type *type; | |
9975 | if (op == OP_ATR_LENGTH) | |
9976 | type = builtin_type (exp->gdbarch)->builtin_int; | |
9977 | else | |
9978 | { | |
9979 | type = ada_index_type (value_type (arg1), tem, | |
9980 | ada_attribute_name (op)); | |
9981 | if (type == NULL) | |
9982 | type = builtin_type (exp->gdbarch)->builtin_int; | |
9983 | } | |
9984 | ||
9985 | switch (op) | |
9986 | { | |
9987 | default: /* Should never happen. */ | |
9988 | error (_("unexpected attribute encountered")); | |
9989 | case OP_ATR_FIRST: | |
9990 | return value_from_longest | |
9991 | (type, ada_array_bound (arg1, tem, 0)); | |
9992 | case OP_ATR_LAST: | |
9993 | return value_from_longest | |
9994 | (type, ada_array_bound (arg1, tem, 1)); | |
9995 | case OP_ATR_LENGTH: | |
9996 | return value_from_longest | |
9997 | (type, ada_array_length (arg1, tem)); | |
9998 | } | |
9999 | } | |
10000 | else if (discrete_type_p (type_arg)) | |
10001 | { | |
10002 | struct type *range_type; | |
10003 | const char *name = ada_type_name (type_arg); | |
10004 | ||
10005 | range_type = NULL; | |
10006 | if (name != NULL && type_arg->code () != TYPE_CODE_ENUM) | |
10007 | range_type = to_fixed_range_type (type_arg, NULL); | |
10008 | if (range_type == NULL) | |
10009 | range_type = type_arg; | |
10010 | switch (op) | |
10011 | { | |
10012 | default: | |
10013 | error (_("unexpected attribute encountered")); | |
10014 | case OP_ATR_FIRST: | |
10015 | return value_from_longest | |
10016 | (range_type, ada_discrete_type_low_bound (range_type)); | |
10017 | case OP_ATR_LAST: | |
10018 | return value_from_longest | |
10019 | (range_type, ada_discrete_type_high_bound (range_type)); | |
10020 | case OP_ATR_LENGTH: | |
10021 | error (_("the 'length attribute applies only to array types")); | |
10022 | } | |
10023 | } | |
10024 | else if (type_arg->code () == TYPE_CODE_FLT) | |
10025 | error (_("unimplemented type attribute")); | |
10026 | else | |
10027 | { | |
10028 | LONGEST low, high; | |
10029 | ||
10030 | if (ada_is_constrained_packed_array_type (type_arg)) | |
10031 | type_arg = decode_constrained_packed_array_type (type_arg); | |
10032 | ||
10033 | struct type *type; | |
10034 | if (op == OP_ATR_LENGTH) | |
10035 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10036 | else | |
10037 | { | |
10038 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
10039 | if (type == NULL) | |
10040 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10041 | } | |
10042 | ||
10043 | switch (op) | |
10044 | { | |
10045 | default: | |
10046 | error (_("unexpected attribute encountered")); | |
10047 | case OP_ATR_FIRST: | |
10048 | low = ada_array_bound_from_type (type_arg, tem, 0); | |
10049 | return value_from_longest (type, low); | |
10050 | case OP_ATR_LAST: | |
10051 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
10052 | return value_from_longest (type, high); | |
10053 | case OP_ATR_LENGTH: | |
10054 | low = ada_array_bound_from_type (type_arg, tem, 0); | |
10055 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
10056 | return value_from_longest (type, high - low + 1); | |
10057 | } | |
10058 | } | |
10059 | } | |
10060 | ||
38dc70cf TT |
10061 | /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */ |
10062 | ||
6ad3b8bf | 10063 | struct value * |
38dc70cf TT |
10064 | ada_binop_minmax (struct type *expect_type, |
10065 | struct expression *exp, | |
10066 | enum noside noside, enum exp_opcode op, | |
10067 | struct value *arg1, struct value *arg2) | |
10068 | { | |
10069 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10070 | return value_zero (value_type (arg1), not_lval); | |
10071 | else | |
10072 | { | |
10073 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
0922dc84 | 10074 | return value_binop (arg1, arg2, op); |
38dc70cf TT |
10075 | } |
10076 | } | |
10077 | ||
dd5fd283 TT |
10078 | /* A helper function for BINOP_EXP. */ |
10079 | ||
065ec826 | 10080 | struct value * |
dd5fd283 TT |
10081 | ada_binop_exp (struct type *expect_type, |
10082 | struct expression *exp, | |
10083 | enum noside noside, enum exp_opcode op, | |
10084 | struct value *arg1, struct value *arg2) | |
10085 | { | |
10086 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10087 | return value_zero (value_type (arg1), not_lval); | |
10088 | else | |
10089 | { | |
10090 | /* For integer exponentiation operations, | |
10091 | only promote the first argument. */ | |
10092 | if (is_integral_type (value_type (arg2))) | |
10093 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10094 | else | |
10095 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10096 | ||
10097 | return value_binop (arg1, arg2, op); | |
10098 | } | |
10099 | } | |
10100 | ||
03070ee9 TT |
10101 | namespace expr |
10102 | { | |
10103 | ||
10104 | value * | |
10105 | ada_wrapped_operation::evaluate (struct type *expect_type, | |
10106 | struct expression *exp, | |
10107 | enum noside noside) | |
10108 | { | |
10109 | value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside); | |
10110 | if (noside == EVAL_NORMAL) | |
10111 | result = unwrap_value (result); | |
10112 | ||
10113 | /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, | |
10114 | then we need to perform the conversion manually, because | |
10115 | evaluate_subexp_standard doesn't do it. This conversion is | |
10116 | necessary in Ada because the different kinds of float/fixed | |
10117 | types in Ada have different representations. | |
10118 | ||
10119 | Similarly, we need to perform the conversion from OP_LONG | |
10120 | ourselves. */ | |
10121 | if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL) | |
10122 | result = ada_value_cast (expect_type, result); | |
10123 | ||
10124 | return result; | |
10125 | } | |
10126 | ||
42fecb61 TT |
10127 | value * |
10128 | ada_string_operation::evaluate (struct type *expect_type, | |
10129 | struct expression *exp, | |
10130 | enum noside noside) | |
10131 | { | |
10132 | value *result = string_operation::evaluate (expect_type, exp, noside); | |
10133 | /* The result type will have code OP_STRING, bashed there from | |
10134 | OP_ARRAY. Bash it back. */ | |
10135 | if (value_type (result)->code () == TYPE_CODE_STRING) | |
10136 | value_type (result)->set_code (TYPE_CODE_ARRAY); | |
10137 | return result; | |
10138 | } | |
10139 | ||
cc6bd32e TT |
10140 | value * |
10141 | ada_qual_operation::evaluate (struct type *expect_type, | |
10142 | struct expression *exp, | |
10143 | enum noside noside) | |
10144 | { | |
10145 | struct type *type = std::get<1> (m_storage); | |
10146 | return std::get<0> (m_storage)->evaluate (type, exp, noside); | |
10147 | } | |
10148 | ||
fc715eb2 TT |
10149 | value * |
10150 | ada_ternop_range_operation::evaluate (struct type *expect_type, | |
10151 | struct expression *exp, | |
10152 | enum noside noside) | |
10153 | { | |
10154 | value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); | |
10155 | value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside); | |
10156 | value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside); | |
10157 | return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2); | |
10158 | } | |
10159 | ||
73796c73 TT |
10160 | value * |
10161 | ada_binop_addsub_operation::evaluate (struct type *expect_type, | |
10162 | struct expression *exp, | |
10163 | enum noside noside) | |
10164 | { | |
10165 | value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside); | |
10166 | value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside); | |
10167 | ||
10168 | auto do_op = [=] (LONGEST x, LONGEST y) | |
10169 | { | |
10170 | if (std::get<0> (m_storage) == BINOP_ADD) | |
10171 | return x + y; | |
10172 | return x - y; | |
10173 | }; | |
10174 | ||
10175 | if (value_type (arg1)->code () == TYPE_CODE_PTR) | |
10176 | return (value_from_longest | |
10177 | (value_type (arg1), | |
10178 | do_op (value_as_long (arg1), value_as_long (arg2)))); | |
10179 | if (value_type (arg2)->code () == TYPE_CODE_PTR) | |
10180 | return (value_from_longest | |
10181 | (value_type (arg2), | |
10182 | do_op (value_as_long (arg1), value_as_long (arg2)))); | |
10183 | /* Preserve the original type for use by the range case below. | |
10184 | We cannot cast the result to a reference type, so if ARG1 is | |
10185 | a reference type, find its underlying type. */ | |
10186 | struct type *type = value_type (arg1); | |
10187 | while (type->code () == TYPE_CODE_REF) | |
10188 | type = TYPE_TARGET_TYPE (type); | |
10189 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10190 | arg1 = value_binop (arg1, arg2, std::get<0> (m_storage)); | |
10191 | /* We need to special-case the result with a range. | |
10192 | This is done for the benefit of "ptype". gdb's Ada support | |
10193 | historically used the LHS to set the result type here, so | |
10194 | preserve this behavior. */ | |
10195 | if (type->code () == TYPE_CODE_RANGE) | |
10196 | arg1 = value_cast (type, arg1); | |
10197 | return arg1; | |
10198 | } | |
10199 | ||
60fa02ca TT |
10200 | value * |
10201 | ada_unop_atr_operation::evaluate (struct type *expect_type, | |
10202 | struct expression *exp, | |
10203 | enum noside noside) | |
10204 | { | |
10205 | struct type *type_arg = nullptr; | |
10206 | value *val = nullptr; | |
10207 | ||
10208 | if (std::get<0> (m_storage)->opcode () == OP_TYPE) | |
10209 | { | |
10210 | value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp, | |
10211 | EVAL_AVOID_SIDE_EFFECTS); | |
10212 | type_arg = value_type (tem); | |
10213 | } | |
10214 | else | |
10215 | val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); | |
10216 | ||
10217 | return ada_unop_atr (exp, noside, std::get<1> (m_storage), | |
10218 | val, type_arg, std::get<2> (m_storage)); | |
10219 | } | |
10220 | ||
3f4a0053 TT |
10221 | value * |
10222 | ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type, | |
10223 | struct expression *exp, | |
10224 | enum noside noside) | |
10225 | { | |
10226 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10227 | return value_zero (expect_type, not_lval); | |
10228 | ||
9c79936b TT |
10229 | const bound_minimal_symbol &b = std::get<0> (m_storage); |
10230 | value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym); | |
3f4a0053 TT |
10231 | |
10232 | val = ada_value_cast (expect_type, val); | |
10233 | ||
10234 | /* Follow the Ada language semantics that do not allow taking | |
10235 | an address of the result of a cast (view conversion in Ada). */ | |
10236 | if (VALUE_LVAL (val) == lval_memory) | |
10237 | { | |
10238 | if (value_lazy (val)) | |
10239 | value_fetch_lazy (val); | |
10240 | VALUE_LVAL (val) = not_lval; | |
10241 | } | |
10242 | return val; | |
10243 | } | |
10244 | ||
99a3b1e7 TT |
10245 | value * |
10246 | ada_var_value_operation::evaluate_for_cast (struct type *expect_type, | |
10247 | struct expression *exp, | |
10248 | enum noside noside) | |
10249 | { | |
10250 | value *val = evaluate_var_value (noside, | |
10251 | std::get<1> (m_storage), | |
10252 | std::get<0> (m_storage)); | |
10253 | ||
10254 | val = ada_value_cast (expect_type, val); | |
10255 | ||
10256 | /* Follow the Ada language semantics that do not allow taking | |
10257 | an address of the result of a cast (view conversion in Ada). */ | |
10258 | if (VALUE_LVAL (val) == lval_memory) | |
10259 | { | |
10260 | if (value_lazy (val)) | |
10261 | value_fetch_lazy (val); | |
10262 | VALUE_LVAL (val) = not_lval; | |
10263 | } | |
10264 | return val; | |
10265 | } | |
10266 | ||
10267 | value * | |
10268 | ada_var_value_operation::evaluate (struct type *expect_type, | |
10269 | struct expression *exp, | |
10270 | enum noside noside) | |
10271 | { | |
10272 | symbol *sym = std::get<0> (m_storage); | |
10273 | ||
10274 | if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN) | |
10275 | /* Only encountered when an unresolved symbol occurs in a | |
10276 | context other than a function call, in which case, it is | |
10277 | invalid. */ | |
10278 | error (_("Unexpected unresolved symbol, %s, during evaluation"), | |
10279 | sym->print_name ()); | |
10280 | ||
10281 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10282 | { | |
10283 | struct type *type = static_unwrap_type (SYMBOL_TYPE (sym)); | |
10284 | /* Check to see if this is a tagged type. We also need to handle | |
10285 | the case where the type is a reference to a tagged type, but | |
10286 | we have to be careful to exclude pointers to tagged types. | |
10287 | The latter should be shown as usual (as a pointer), whereas | |
10288 | a reference should mostly be transparent to the user. */ | |
10289 | if (ada_is_tagged_type (type, 0) | |
10290 | || (type->code () == TYPE_CODE_REF | |
10291 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
10292 | { | |
10293 | /* Tagged types are a little special in the fact that the real | |
10294 | type is dynamic and can only be determined by inspecting the | |
10295 | object's tag. This means that we need to get the object's | |
10296 | value first (EVAL_NORMAL) and then extract the actual object | |
10297 | type from its tag. | |
10298 | ||
10299 | Note that we cannot skip the final step where we extract | |
10300 | the object type from its tag, because the EVAL_NORMAL phase | |
10301 | results in dynamic components being resolved into fixed ones. | |
10302 | This can cause problems when trying to print the type | |
10303 | description of tagged types whose parent has a dynamic size: | |
10304 | We use the type name of the "_parent" component in order | |
10305 | to print the name of the ancestor type in the type description. | |
10306 | If that component had a dynamic size, the resolution into | |
10307 | a fixed type would result in the loss of that type name, | |
10308 | thus preventing us from printing the name of the ancestor | |
10309 | type in the type description. */ | |
9863c3b5 | 10310 | value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL); |
99a3b1e7 TT |
10311 | |
10312 | if (type->code () != TYPE_CODE_REF) | |
10313 | { | |
10314 | struct type *actual_type; | |
10315 | ||
10316 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10317 | if (actual_type == NULL) | |
10318 | /* If, for some reason, we were unable to determine | |
10319 | the actual type from the tag, then use the static | |
10320 | approximation that we just computed as a fallback. | |
10321 | This can happen if the debugging information is | |
10322 | incomplete, for instance. */ | |
10323 | actual_type = type; | |
10324 | return value_zero (actual_type, not_lval); | |
10325 | } | |
10326 | else | |
10327 | { | |
10328 | /* In the case of a ref, ada_coerce_ref takes care | |
10329 | of determining the actual type. But the evaluation | |
10330 | should return a ref as it should be valid to ask | |
10331 | for its address; so rebuild a ref after coerce. */ | |
10332 | arg1 = ada_coerce_ref (arg1); | |
10333 | return value_ref (arg1, TYPE_CODE_REF); | |
10334 | } | |
10335 | } | |
10336 | ||
10337 | /* Records and unions for which GNAT encodings have been | |
10338 | generated need to be statically fixed as well. | |
10339 | Otherwise, non-static fixing produces a type where | |
10340 | all dynamic properties are removed, which prevents "ptype" | |
10341 | from being able to completely describe the type. | |
10342 | For instance, a case statement in a variant record would be | |
10343 | replaced by the relevant components based on the actual | |
10344 | value of the discriminants. */ | |
10345 | if ((type->code () == TYPE_CODE_STRUCT | |
10346 | && dynamic_template_type (type) != NULL) | |
10347 | || (type->code () == TYPE_CODE_UNION | |
10348 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10349 | return value_zero (to_static_fixed_type (type), not_lval); | |
10350 | } | |
10351 | ||
10352 | value *arg1 = var_value_operation::evaluate (expect_type, exp, noside); | |
10353 | return ada_to_fixed_value (arg1); | |
10354 | } | |
10355 | ||
d8a4ed8a TT |
10356 | bool |
10357 | ada_var_value_operation::resolve (struct expression *exp, | |
10358 | bool deprocedure_p, | |
10359 | bool parse_completion, | |
10360 | innermost_block_tracker *tracker, | |
10361 | struct type *context_type) | |
10362 | { | |
10363 | symbol *sym = std::get<0> (m_storage); | |
10364 | if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN) | |
10365 | { | |
10366 | block_symbol resolved | |
10367 | = ada_resolve_variable (sym, std::get<1> (m_storage), | |
10368 | context_type, parse_completion, | |
10369 | deprocedure_p, tracker); | |
10370 | std::get<0> (m_storage) = resolved.symbol; | |
10371 | std::get<1> (m_storage) = resolved.block; | |
10372 | } | |
10373 | ||
10374 | if (deprocedure_p | |
10375 | && SYMBOL_TYPE (std::get<0> (m_storage))->code () == TYPE_CODE_FUNC) | |
10376 | return true; | |
10377 | ||
10378 | return false; | |
10379 | } | |
10380 | ||
9e99f48f TT |
10381 | value * |
10382 | ada_atr_val_operation::evaluate (struct type *expect_type, | |
10383 | struct expression *exp, | |
10384 | enum noside noside) | |
10385 | { | |
10386 | value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside); | |
10387 | return ada_val_atr (noside, std::get<0> (m_storage), arg); | |
10388 | } | |
10389 | ||
e8c33fa1 TT |
10390 | value * |
10391 | ada_unop_ind_operation::evaluate (struct type *expect_type, | |
10392 | struct expression *exp, | |
10393 | enum noside noside) | |
10394 | { | |
10395 | value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside); | |
10396 | ||
10397 | struct type *type = ada_check_typedef (value_type (arg1)); | |
10398 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10399 | { | |
10400 | if (ada_is_array_descriptor_type (type)) | |
10401 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10402 | { | |
10403 | struct type *arrType = ada_type_of_array (arg1, 0); | |
10404 | ||
10405 | if (arrType == NULL) | |
10406 | error (_("Attempt to dereference null array pointer.")); | |
10407 | return value_at_lazy (arrType, 0); | |
10408 | } | |
10409 | else if (type->code () == TYPE_CODE_PTR | |
10410 | || type->code () == TYPE_CODE_REF | |
10411 | /* In C you can dereference an array to get the 1st elt. */ | |
10412 | || type->code () == TYPE_CODE_ARRAY) | |
10413 | { | |
10414 | /* As mentioned in the OP_VAR_VALUE case, tagged types can | |
10415 | only be determined by inspecting the object's tag. | |
10416 | This means that we need to evaluate completely the | |
10417 | expression in order to get its type. */ | |
10418 | ||
10419 | if ((type->code () == TYPE_CODE_REF | |
10420 | || type->code () == TYPE_CODE_PTR) | |
10421 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) | |
10422 | { | |
10423 | arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, | |
10424 | EVAL_NORMAL); | |
10425 | type = value_type (ada_value_ind (arg1)); | |
10426 | } | |
10427 | else | |
10428 | { | |
10429 | type = to_static_fixed_type | |
10430 | (ada_aligned_type | |
10431 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10432 | } | |
10433 | ada_ensure_varsize_limit (type); | |
10434 | return value_zero (type, lval_memory); | |
10435 | } | |
10436 | else if (type->code () == TYPE_CODE_INT) | |
10437 | { | |
10438 | /* GDB allows dereferencing an int. */ | |
10439 | if (expect_type == NULL) | |
10440 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10441 | lval_memory); | |
10442 | else | |
10443 | { | |
10444 | expect_type = | |
10445 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10446 | return value_zero (expect_type, lval_memory); | |
10447 | } | |
10448 | } | |
10449 | else | |
10450 | error (_("Attempt to take contents of a non-pointer value.")); | |
10451 | } | |
10452 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ | |
10453 | type = ada_check_typedef (value_type (arg1)); | |
10454 | ||
10455 | if (type->code () == TYPE_CODE_INT) | |
10456 | /* GDB allows dereferencing an int. If we were given | |
10457 | the expect_type, then use that as the target type. | |
10458 | Otherwise, assume that the target type is an int. */ | |
10459 | { | |
10460 | if (expect_type != NULL) | |
10461 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10462 | arg1)); | |
10463 | else | |
10464 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10465 | (CORE_ADDR) value_as_address (arg1)); | |
10466 | } | |
10467 | ||
3b5c4de0 TT |
10468 | struct type *target_type = (to_static_fixed_type |
10469 | (ada_aligned_type | |
10470 | (ada_check_typedef (TYPE_TARGET_TYPE (type))))); | |
10471 | ada_ensure_varsize_limit (target_type); | |
10472 | ||
e8c33fa1 TT |
10473 | if (ada_is_array_descriptor_type (type)) |
10474 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10475 | return ada_coerce_to_simple_array (arg1); | |
10476 | else | |
10477 | return ada_value_ind (arg1); | |
10478 | } | |
10479 | ||
ebc06ad8 TT |
10480 | value * |
10481 | ada_structop_operation::evaluate (struct type *expect_type, | |
10482 | struct expression *exp, | |
10483 | enum noside noside) | |
10484 | { | |
10485 | value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); | |
10486 | const char *str = std::get<1> (m_storage).c_str (); | |
10487 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10488 | { | |
10489 | struct type *type; | |
10490 | struct type *type1 = value_type (arg1); | |
10491 | ||
10492 | if (ada_is_tagged_type (type1, 1)) | |
10493 | { | |
10494 | type = ada_lookup_struct_elt_type (type1, str, 1, 1); | |
10495 | ||
10496 | /* If the field is not found, check if it exists in the | |
10497 | extension of this object's type. This means that we | |
10498 | need to evaluate completely the expression. */ | |
10499 | ||
10500 | if (type == NULL) | |
10501 | { | |
10502 | arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, | |
10503 | EVAL_NORMAL); | |
10504 | arg1 = ada_value_struct_elt (arg1, str, 0); | |
10505 | arg1 = unwrap_value (arg1); | |
10506 | type = value_type (ada_to_fixed_value (arg1)); | |
10507 | } | |
10508 | } | |
10509 | else | |
10510 | type = ada_lookup_struct_elt_type (type1, str, 1, 0); | |
10511 | ||
10512 | return value_zero (ada_aligned_type (type), lval_memory); | |
10513 | } | |
10514 | else | |
10515 | { | |
10516 | arg1 = ada_value_struct_elt (arg1, str, 0); | |
10517 | arg1 = unwrap_value (arg1); | |
10518 | return ada_to_fixed_value (arg1); | |
10519 | } | |
10520 | } | |
10521 | ||
efe3af2f TT |
10522 | value * |
10523 | ada_funcall_operation::evaluate (struct type *expect_type, | |
10524 | struct expression *exp, | |
10525 | enum noside noside) | |
10526 | { | |
10527 | const std::vector<operation_up> &args_up = std::get<1> (m_storage); | |
10528 | int nargs = args_up.size (); | |
10529 | std::vector<value *> argvec (nargs); | |
10530 | operation_up &callee_op = std::get<0> (m_storage); | |
10531 | ||
10532 | ada_var_value_operation *avv | |
10533 | = dynamic_cast<ada_var_value_operation *> (callee_op.get ()); | |
10534 | if (avv != nullptr | |
10535 | && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN) | |
10536 | error (_("Unexpected unresolved symbol, %s, during evaluation"), | |
10537 | avv->get_symbol ()->print_name ()); | |
10538 | ||
10539 | value *callee = callee_op->evaluate (nullptr, exp, noside); | |
10540 | for (int i = 0; i < args_up.size (); ++i) | |
10541 | argvec[i] = args_up[i]->evaluate (nullptr, exp, noside); | |
10542 | ||
10543 | if (ada_is_constrained_packed_array_type | |
10544 | (desc_base_type (value_type (callee)))) | |
10545 | callee = ada_coerce_to_simple_array (callee); | |
10546 | else if (value_type (callee)->code () == TYPE_CODE_ARRAY | |
10547 | && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0) | |
10548 | /* This is a packed array that has already been fixed, and | |
10549 | therefore already coerced to a simple array. Nothing further | |
10550 | to do. */ | |
10551 | ; | |
10552 | else if (value_type (callee)->code () == TYPE_CODE_REF) | |
10553 | { | |
10554 | /* Make sure we dereference references so that all the code below | |
10555 | feels like it's really handling the referenced value. Wrapping | |
10556 | types (for alignment) may be there, so make sure we strip them as | |
10557 | well. */ | |
10558 | callee = ada_to_fixed_value (coerce_ref (callee)); | |
10559 | } | |
10560 | else if (value_type (callee)->code () == TYPE_CODE_ARRAY | |
10561 | && VALUE_LVAL (callee) == lval_memory) | |
10562 | callee = value_addr (callee); | |
10563 | ||
10564 | struct type *type = ada_check_typedef (value_type (callee)); | |
10565 | ||
10566 | /* Ada allows us to implicitly dereference arrays when subscripting | |
10567 | them. So, if this is an array typedef (encoding use for array | |
10568 | access types encoded as fat pointers), strip it now. */ | |
10569 | if (type->code () == TYPE_CODE_TYPEDEF) | |
10570 | type = ada_typedef_target_type (type); | |
10571 | ||
10572 | if (type->code () == TYPE_CODE_PTR) | |
10573 | { | |
10574 | switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()) | |
10575 | { | |
10576 | case TYPE_CODE_FUNC: | |
10577 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); | |
10578 | break; | |
10579 | case TYPE_CODE_ARRAY: | |
10580 | break; | |
10581 | case TYPE_CODE_STRUCT: | |
10582 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10583 | callee = ada_value_ind (callee); | |
10584 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); | |
10585 | break; | |
10586 | default: | |
10587 | error (_("cannot subscript or call something of type `%s'"), | |
10588 | ada_type_name (value_type (callee))); | |
10589 | break; | |
10590 | } | |
10591 | } | |
10592 | ||
10593 | switch (type->code ()) | |
10594 | { | |
10595 | case TYPE_CODE_FUNC: | |
10596 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10597 | { | |
10598 | if (TYPE_TARGET_TYPE (type) == NULL) | |
10599 | error_call_unknown_return_type (NULL); | |
10600 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
10601 | } | |
10602 | return call_function_by_hand (callee, NULL, argvec); | |
10603 | case TYPE_CODE_INTERNAL_FUNCTION: | |
10604 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10605 | /* We don't know anything about what the internal | |
10606 | function might return, but we have to return | |
10607 | something. */ | |
10608 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10609 | not_lval); | |
10610 | else | |
10611 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10612 | callee, nargs, | |
10613 | argvec.data ()); | |
10614 | ||
d3c54a1c TT |
10615 | case TYPE_CODE_STRUCT: |
10616 | { | |
10617 | int arity; | |
4c4b4cd2 | 10618 | |
d3c54a1c TT |
10619 | arity = ada_array_arity (type); |
10620 | type = ada_array_element_type (type, nargs); | |
10621 | if (type == NULL) | |
10622 | error (_("cannot subscript or call a record")); | |
10623 | if (arity != nargs) | |
10624 | error (_("wrong number of subscripts; expecting %d"), arity); | |
10625 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10626 | return value_zero (ada_aligned_type (type), lval_memory); | |
10627 | return | |
10628 | unwrap_value (ada_value_subscript | |
10629 | (callee, nargs, argvec.data ())); | |
10630 | } | |
10631 | case TYPE_CODE_ARRAY: | |
14f9c5c9 | 10632 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
dda83cd7 | 10633 | { |
d3c54a1c TT |
10634 | type = ada_array_element_type (type, nargs); |
10635 | if (type == NULL) | |
10636 | error (_("element type of array unknown")); | |
dda83cd7 | 10637 | else |
d3c54a1c | 10638 | return value_zero (ada_aligned_type (type), lval_memory); |
dda83cd7 | 10639 | } |
d3c54a1c TT |
10640 | return |
10641 | unwrap_value (ada_value_subscript | |
10642 | (ada_coerce_to_simple_array (callee), | |
10643 | nargs, argvec.data ())); | |
10644 | case TYPE_CODE_PTR: /* Pointer to array */ | |
10645 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
dda83cd7 | 10646 | { |
d3c54a1c TT |
10647 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
10648 | type = ada_array_element_type (type, nargs); | |
10649 | if (type == NULL) | |
10650 | error (_("element type of array unknown")); | |
96967637 | 10651 | else |
d3c54a1c | 10652 | return value_zero (ada_aligned_type (type), lval_memory); |
dda83cd7 | 10653 | } |
d3c54a1c TT |
10654 | return |
10655 | unwrap_value (ada_value_ptr_subscript (callee, nargs, | |
10656 | argvec.data ())); | |
6b0d7253 | 10657 | |
d3c54a1c TT |
10658 | default: |
10659 | error (_("Attempt to index or call something other than an " | |
10660 | "array or function")); | |
10661 | } | |
10662 | } | |
5b4ee69b | 10663 | |
d3c54a1c TT |
10664 | bool |
10665 | ada_funcall_operation::resolve (struct expression *exp, | |
10666 | bool deprocedure_p, | |
10667 | bool parse_completion, | |
10668 | innermost_block_tracker *tracker, | |
10669 | struct type *context_type) | |
10670 | { | |
10671 | operation_up &callee_op = std::get<0> (m_storage); | |
5ec18f2b | 10672 | |
d3c54a1c TT |
10673 | ada_var_value_operation *avv |
10674 | = dynamic_cast<ada_var_value_operation *> (callee_op.get ()); | |
10675 | if (avv == nullptr) | |
10676 | return false; | |
5ec18f2b | 10677 | |
d3c54a1c TT |
10678 | symbol *sym = avv->get_symbol (); |
10679 | if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN) | |
10680 | return false; | |
dda83cd7 | 10681 | |
d3c54a1c TT |
10682 | const std::vector<operation_up> &args_up = std::get<1> (m_storage); |
10683 | int nargs = args_up.size (); | |
10684 | std::vector<value *> argvec (nargs); | |
284614f0 | 10685 | |
d3c54a1c TT |
10686 | for (int i = 0; i < args_up.size (); ++i) |
10687 | argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS); | |
52ce6436 | 10688 | |
d3c54a1c TT |
10689 | const block *block = avv->get_block (); |
10690 | block_symbol resolved | |
10691 | = ada_resolve_funcall (sym, block, | |
10692 | context_type, parse_completion, | |
10693 | nargs, argvec.data (), | |
10694 | tracker); | |
10695 | ||
10696 | std::get<0> (m_storage) | |
10697 | = make_operation<ada_var_value_operation> (resolved.symbol, | |
10698 | resolved.block); | |
10699 | return false; | |
10700 | } | |
10701 | ||
10702 | bool | |
10703 | ada_ternop_slice_operation::resolve (struct expression *exp, | |
10704 | bool deprocedure_p, | |
10705 | bool parse_completion, | |
10706 | innermost_block_tracker *tracker, | |
10707 | struct type *context_type) | |
10708 | { | |
10709 | /* Historically this check was done during resolution, so we | |
10710 | continue that here. */ | |
10711 | value *v = std::get<0> (m_storage)->evaluate (context_type, exp, | |
10712 | EVAL_AVOID_SIDE_EFFECTS); | |
10713 | if (ada_is_any_packed_array_type (value_type (v))) | |
10714 | error (_("cannot slice a packed array")); | |
10715 | return false; | |
10716 | } | |
14f9c5c9 | 10717 | |
14f9c5c9 | 10718 | } |
d3c54a1c | 10719 | |
14f9c5c9 | 10720 | \f |
d2e4a39e | 10721 | |
4c4b4cd2 PH |
10722 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10723 | ||
10724 | int | |
10725 | ada_is_system_address_type (struct type *type) | |
10726 | { | |
7d93a1e0 | 10727 | return (type->name () && strcmp (type->name (), "system__address") == 0); |
4c4b4cd2 PH |
10728 | } |
10729 | ||
14f9c5c9 | 10730 | \f |
d2e4a39e | 10731 | |
dda83cd7 | 10732 | /* Range types */ |
14f9c5c9 AS |
10733 | |
10734 | /* Scan STR beginning at position K for a discriminant name, and | |
10735 | return the value of that discriminant field of DVAL in *PX. If | |
10736 | PNEW_K is not null, put the position of the character beyond the | |
10737 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10738 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10739 | |
10740 | static int | |
108d56a4 | 10741 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
dda83cd7 | 10742 | int *pnew_k) |
14f9c5c9 | 10743 | { |
5f9febe0 | 10744 | static std::string storage; |
5da1a4d3 | 10745 | const char *pstart, *pend, *bound; |
d2e4a39e | 10746 | struct value *bound_val; |
14f9c5c9 AS |
10747 | |
10748 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10749 | return 0; | |
10750 | ||
5da1a4d3 SM |
10751 | pstart = str + k; |
10752 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
10753 | if (pend == NULL) |
10754 | { | |
5da1a4d3 | 10755 | bound = pstart; |
14f9c5c9 AS |
10756 | k += strlen (bound); |
10757 | } | |
d2e4a39e | 10758 | else |
14f9c5c9 | 10759 | { |
5da1a4d3 SM |
10760 | int len = pend - pstart; |
10761 | ||
10762 | /* Strip __ and beyond. */ | |
5f9febe0 TT |
10763 | storage = std::string (pstart, len); |
10764 | bound = storage.c_str (); | |
d2e4a39e | 10765 | k = pend - str; |
14f9c5c9 | 10766 | } |
d2e4a39e | 10767 | |
df407dfe | 10768 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10769 | if (bound_val == NULL) |
10770 | return 0; | |
10771 | ||
10772 | *px = value_as_long (bound_val); | |
10773 | if (pnew_k != NULL) | |
10774 | *pnew_k = k; | |
10775 | return 1; | |
10776 | } | |
10777 | ||
25a1127b TT |
10778 | /* Value of variable named NAME. Only exact matches are considered. |
10779 | If no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10780 | otherwise causes an error with message ERR_MSG. */ |
10781 | ||
d2e4a39e | 10782 | static struct value * |
edb0c9cb | 10783 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 10784 | { |
25a1127b TT |
10785 | std::string quoted_name = add_angle_brackets (name); |
10786 | ||
10787 | lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL); | |
14f9c5c9 | 10788 | |
d1183b06 TT |
10789 | std::vector<struct block_symbol> syms |
10790 | = ada_lookup_symbol_list_worker (lookup_name, | |
10791 | get_selected_block (0), | |
10792 | VAR_DOMAIN, 1); | |
14f9c5c9 | 10793 | |
d1183b06 | 10794 | if (syms.size () != 1) |
14f9c5c9 AS |
10795 | { |
10796 | if (err_msg == NULL) | |
dda83cd7 | 10797 | return 0; |
14f9c5c9 | 10798 | else |
dda83cd7 | 10799 | error (("%s"), err_msg); |
14f9c5c9 AS |
10800 | } |
10801 | ||
54d343a2 | 10802 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 10803 | } |
d2e4a39e | 10804 | |
edb0c9cb PA |
10805 | /* Value of integer variable named NAME in the current environment. |
10806 | If no such variable is found, returns false. Otherwise, sets VALUE | |
10807 | to the variable's value and returns true. */ | |
4c4b4cd2 | 10808 | |
edb0c9cb PA |
10809 | bool |
10810 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 10811 | { |
4c4b4cd2 | 10812 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10813 | |
14f9c5c9 | 10814 | if (var_val == 0) |
edb0c9cb PA |
10815 | return false; |
10816 | ||
10817 | value = value_as_long (var_val); | |
10818 | return true; | |
14f9c5c9 | 10819 | } |
d2e4a39e | 10820 | |
14f9c5c9 AS |
10821 | |
10822 | /* Return a range type whose base type is that of the range type named | |
10823 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10824 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10825 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10826 | corresponding range type from debug information; fall back to using it | |
10827 | if symbol lookup fails. If a new type must be created, allocate it | |
10828 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10829 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10830 | |
d2e4a39e | 10831 | static struct type * |
28c85d6c | 10832 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10833 | { |
0d5cff50 | 10834 | const char *name; |
14f9c5c9 | 10835 | struct type *base_type; |
108d56a4 | 10836 | const char *subtype_info; |
14f9c5c9 | 10837 | |
28c85d6c | 10838 | gdb_assert (raw_type != NULL); |
7d93a1e0 | 10839 | gdb_assert (raw_type->name () != NULL); |
dddfab26 | 10840 | |
78134374 | 10841 | if (raw_type->code () == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10842 | base_type = TYPE_TARGET_TYPE (raw_type); |
10843 | else | |
10844 | base_type = raw_type; | |
10845 | ||
7d93a1e0 | 10846 | name = raw_type->name (); |
14f9c5c9 AS |
10847 | subtype_info = strstr (name, "___XD"); |
10848 | if (subtype_info == NULL) | |
690cc4eb | 10849 | { |
43bbcdc2 PH |
10850 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10851 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10852 | |
690cc4eb PH |
10853 | if (L < INT_MIN || U > INT_MAX) |
10854 | return raw_type; | |
10855 | else | |
0c9c3474 SA |
10856 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
10857 | L, U); | |
690cc4eb | 10858 | } |
14f9c5c9 AS |
10859 | else |
10860 | { | |
14f9c5c9 AS |
10861 | int prefix_len = subtype_info - name; |
10862 | LONGEST L, U; | |
10863 | struct type *type; | |
108d56a4 | 10864 | const char *bounds_str; |
14f9c5c9 AS |
10865 | int n; |
10866 | ||
14f9c5c9 AS |
10867 | subtype_info += 5; |
10868 | bounds_str = strchr (subtype_info, '_'); | |
10869 | n = 1; | |
10870 | ||
d2e4a39e | 10871 | if (*subtype_info == 'L') |
dda83cd7 SM |
10872 | { |
10873 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10874 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10875 | return raw_type; | |
10876 | if (bounds_str[n] == '_') | |
10877 | n += 2; | |
10878 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
10879 | n += 1; | |
10880 | subtype_info += 1; | |
10881 | } | |
d2e4a39e | 10882 | else |
dda83cd7 | 10883 | { |
5f9febe0 TT |
10884 | std::string name_buf = std::string (name, prefix_len) + "___L"; |
10885 | if (!get_int_var_value (name_buf.c_str (), L)) | |
dda83cd7 SM |
10886 | { |
10887 | lim_warning (_("Unknown lower bound, using 1.")); | |
10888 | L = 1; | |
10889 | } | |
10890 | } | |
14f9c5c9 | 10891 | |
d2e4a39e | 10892 | if (*subtype_info == 'U') |
dda83cd7 SM |
10893 | { |
10894 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10895 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10896 | return raw_type; | |
10897 | } | |
d2e4a39e | 10898 | else |
dda83cd7 | 10899 | { |
5f9febe0 TT |
10900 | std::string name_buf = std::string (name, prefix_len) + "___U"; |
10901 | if (!get_int_var_value (name_buf.c_str (), U)) | |
dda83cd7 SM |
10902 | { |
10903 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); | |
10904 | U = L; | |
10905 | } | |
10906 | } | |
14f9c5c9 | 10907 | |
0c9c3474 SA |
10908 | type = create_static_range_type (alloc_type_copy (raw_type), |
10909 | base_type, L, U); | |
f5a91472 | 10910 | /* create_static_range_type alters the resulting type's length |
dda83cd7 SM |
10911 | to match the size of the base_type, which is not what we want. |
10912 | Set it back to the original range type's length. */ | |
f5a91472 | 10913 | TYPE_LENGTH (type) = TYPE_LENGTH (raw_type); |
d0e39ea2 | 10914 | type->set_name (name); |
14f9c5c9 AS |
10915 | return type; |
10916 | } | |
10917 | } | |
10918 | ||
4c4b4cd2 PH |
10919 | /* True iff NAME is the name of a range type. */ |
10920 | ||
14f9c5c9 | 10921 | int |
d2e4a39e | 10922 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10923 | { |
10924 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10925 | } |
14f9c5c9 | 10926 | \f |
d2e4a39e | 10927 | |
dda83cd7 | 10928 | /* Modular types */ |
4c4b4cd2 PH |
10929 | |
10930 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10931 | |
14f9c5c9 | 10932 | int |
d2e4a39e | 10933 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10934 | { |
18af8284 | 10935 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 | 10936 | |
78134374 | 10937 | return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE |
dda83cd7 SM |
10938 | && subranged_type->code () == TYPE_CODE_INT |
10939 | && subranged_type->is_unsigned ()); | |
14f9c5c9 AS |
10940 | } |
10941 | ||
4c4b4cd2 PH |
10942 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10943 | ||
61ee279c | 10944 | ULONGEST |
0056e4d5 | 10945 | ada_modulus (struct type *type) |
14f9c5c9 | 10946 | { |
5e500d33 SM |
10947 | const dynamic_prop &high = type->bounds ()->high; |
10948 | ||
10949 | if (high.kind () == PROP_CONST) | |
10950 | return (ULONGEST) high.const_val () + 1; | |
10951 | ||
10952 | /* If TYPE is unresolved, the high bound might be a location list. Return | |
10953 | 0, for lack of a better value to return. */ | |
10954 | return 0; | |
14f9c5c9 | 10955 | } |
d2e4a39e | 10956 | \f |
f7f9143b JB |
10957 | |
10958 | /* Ada exception catchpoint support: | |
10959 | --------------------------------- | |
10960 | ||
10961 | We support 3 kinds of exception catchpoints: | |
10962 | . catchpoints on Ada exceptions | |
10963 | . catchpoints on unhandled Ada exceptions | |
10964 | . catchpoints on failed assertions | |
10965 | ||
10966 | Exceptions raised during failed assertions, or unhandled exceptions | |
10967 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10968 | However, we can easily differentiate these two special cases, and having | |
10969 | the option to distinguish these two cases from the rest can be useful | |
10970 | to zero-in on certain situations. | |
10971 | ||
10972 | Exception catchpoints are a specialized form of breakpoint, | |
10973 | since they rely on inserting breakpoints inside known routines | |
10974 | of the GNAT runtime. The implementation therefore uses a standard | |
10975 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10976 | of breakpoint_ops. | |
10977 | ||
0259addd JB |
10978 | Support in the runtime for exception catchpoints have been changed |
10979 | a few times already, and these changes affect the implementation | |
10980 | of these catchpoints. In order to be able to support several | |
10981 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10982 | the runtime variant used by the program being debugged. */ |
f7f9143b | 10983 | |
82eacd52 JB |
10984 | /* Ada's standard exceptions. |
10985 | ||
10986 | The Ada 83 standard also defined Numeric_Error. But there so many | |
10987 | situations where it was unclear from the Ada 83 Reference Manual | |
10988 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
10989 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
10990 | Interpretation saying that anytime the RM says that Numeric_Error | |
10991 | should be raised, the implementation may raise Constraint_Error. | |
10992 | Ada 95 went one step further and pretty much removed Numeric_Error | |
10993 | from the list of standard exceptions (it made it a renaming of | |
10994 | Constraint_Error, to help preserve compatibility when compiling | |
10995 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
10996 | this list of standard exceptions. */ | |
3d0b0fa3 | 10997 | |
27087b7f | 10998 | static const char * const standard_exc[] = { |
3d0b0fa3 JB |
10999 | "constraint_error", |
11000 | "program_error", | |
11001 | "storage_error", | |
11002 | "tasking_error" | |
11003 | }; | |
11004 | ||
0259addd JB |
11005 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11006 | ||
11007 | /* A structure that describes how to support exception catchpoints | |
11008 | for a given executable. */ | |
11009 | ||
11010 | struct exception_support_info | |
11011 | { | |
11012 | /* The name of the symbol to break on in order to insert | |
11013 | a catchpoint on exceptions. */ | |
11014 | const char *catch_exception_sym; | |
11015 | ||
11016 | /* The name of the symbol to break on in order to insert | |
11017 | a catchpoint on unhandled exceptions. */ | |
11018 | const char *catch_exception_unhandled_sym; | |
11019 | ||
11020 | /* The name of the symbol to break on in order to insert | |
11021 | a catchpoint on failed assertions. */ | |
11022 | const char *catch_assert_sym; | |
11023 | ||
9f757bf7 XR |
11024 | /* The name of the symbol to break on in order to insert |
11025 | a catchpoint on exception handling. */ | |
11026 | const char *catch_handlers_sym; | |
11027 | ||
0259addd JB |
11028 | /* Assuming that the inferior just triggered an unhandled exception |
11029 | catchpoint, this function is responsible for returning the address | |
11030 | in inferior memory where the name of that exception is stored. | |
11031 | Return zero if the address could not be computed. */ | |
11032 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11033 | }; | |
11034 | ||
11035 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11036 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11037 | ||
11038 | /* The following exception support info structure describes how to | |
11039 | implement exception catchpoints with the latest version of the | |
ca683e3a | 11040 | Ada runtime (as of 2019-08-??). */ |
0259addd JB |
11041 | |
11042 | static const struct exception_support_info default_exception_support_info = | |
ca683e3a AO |
11043 | { |
11044 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11045 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11046 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11047 | "__gnat_begin_handler_v1", /* catch_handlers_sym */ | |
11048 | ada_unhandled_exception_name_addr | |
11049 | }; | |
11050 | ||
11051 | /* The following exception support info structure describes how to | |
11052 | implement exception catchpoints with an earlier version of the | |
11053 | Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */ | |
11054 | ||
11055 | static const struct exception_support_info exception_support_info_v0 = | |
0259addd JB |
11056 | { |
11057 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11058 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11059 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 11060 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
11061 | ada_unhandled_exception_name_addr |
11062 | }; | |
11063 | ||
11064 | /* The following exception support info structure describes how to | |
11065 | implement exception catchpoints with a slightly older version | |
11066 | of the Ada runtime. */ | |
11067 | ||
11068 | static const struct exception_support_info exception_support_info_fallback = | |
11069 | { | |
11070 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11071 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11072 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 11073 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
11074 | ada_unhandled_exception_name_addr_from_raise |
11075 | }; | |
11076 | ||
f17011e0 JB |
11077 | /* Return nonzero if we can detect the exception support routines |
11078 | described in EINFO. | |
11079 | ||
11080 | This function errors out if an abnormal situation is detected | |
11081 | (for instance, if we find the exception support routines, but | |
11082 | that support is found to be incomplete). */ | |
11083 | ||
11084 | static int | |
11085 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11086 | { | |
11087 | struct symbol *sym; | |
11088 | ||
11089 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11090 | that should be compiled with debugging information. As a result, we | |
11091 | expect to find that symbol in the symtabs. */ | |
11092 | ||
11093 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11094 | if (sym == NULL) | |
a6af7abe JB |
11095 | { |
11096 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11097 | compiled without debugging info, or simply stripped of it. | |
11098 | It happens on some GNU/Linux distributions for instance, where | |
11099 | users have to install a separate debug package in order to get | |
11100 | the runtime's debugging info. In that situation, let the user | |
11101 | know why we cannot insert an Ada exception catchpoint. | |
11102 | ||
11103 | Note: Just for the purpose of inserting our Ada exception | |
11104 | catchpoint, we could rely purely on the associated minimal symbol. | |
11105 | But we would be operating in degraded mode anyway, since we are | |
11106 | still lacking the debugging info needed later on to extract | |
11107 | the name of the exception being raised (this name is printed in | |
11108 | the catchpoint message, and is also used when trying to catch | |
11109 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11110 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11111 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11112 | ||
3b7344d5 | 11113 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11114 | error (_("Your Ada runtime appears to be missing some debugging " |
11115 | "information.\nCannot insert Ada exception catchpoint " | |
11116 | "in this configuration.")); | |
11117 | ||
11118 | return 0; | |
11119 | } | |
f17011e0 JB |
11120 | |
11121 | /* Make sure that the symbol we found corresponds to a function. */ | |
11122 | ||
11123 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
ca683e3a AO |
11124 | { |
11125 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
987012b8 | 11126 | sym->linkage_name (), SYMBOL_CLASS (sym)); |
ca683e3a AO |
11127 | return 0; |
11128 | } | |
11129 | ||
11130 | sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN); | |
11131 | if (sym == NULL) | |
11132 | { | |
11133 | struct bound_minimal_symbol msym | |
11134 | = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL); | |
11135 | ||
11136 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) | |
11137 | error (_("Your Ada runtime appears to be missing some debugging " | |
11138 | "information.\nCannot insert Ada exception catchpoint " | |
11139 | "in this configuration.")); | |
11140 | ||
11141 | return 0; | |
11142 | } | |
11143 | ||
11144 | /* Make sure that the symbol we found corresponds to a function. */ | |
11145 | ||
11146 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11147 | { | |
11148 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
987012b8 | 11149 | sym->linkage_name (), SYMBOL_CLASS (sym)); |
ca683e3a AO |
11150 | return 0; |
11151 | } | |
f17011e0 JB |
11152 | |
11153 | return 1; | |
11154 | } | |
11155 | ||
0259addd JB |
11156 | /* Inspect the Ada runtime and determine which exception info structure |
11157 | should be used to provide support for exception catchpoints. | |
11158 | ||
3eecfa55 JB |
11159 | This function will always set the per-inferior exception_info, |
11160 | or raise an error. */ | |
0259addd JB |
11161 | |
11162 | static void | |
11163 | ada_exception_support_info_sniffer (void) | |
11164 | { | |
3eecfa55 | 11165 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11166 | |
11167 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11168 | if (data->exception_info != NULL) |
0259addd JB |
11169 | return; |
11170 | ||
11171 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11172 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11173 | { |
3eecfa55 | 11174 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11175 | return; |
11176 | } | |
11177 | ||
ca683e3a AO |
11178 | /* Try the v0 exception suport info. */ |
11179 | if (ada_has_this_exception_support (&exception_support_info_v0)) | |
11180 | { | |
11181 | data->exception_info = &exception_support_info_v0; | |
11182 | return; | |
11183 | } | |
11184 | ||
0259addd | 11185 | /* Try our fallback exception suport info. */ |
f17011e0 | 11186 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11187 | { |
3eecfa55 | 11188 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11189 | return; |
11190 | } | |
11191 | ||
11192 | /* Sometimes, it is normal for us to not be able to find the routine | |
11193 | we are looking for. This happens when the program is linked with | |
11194 | the shared version of the GNAT runtime, and the program has not been | |
11195 | started yet. Inform the user of these two possible causes if | |
11196 | applicable. */ | |
11197 | ||
ccefe4c4 | 11198 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11199 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11200 | ||
11201 | /* If the symbol does not exist, then check that the program is | |
11202 | already started, to make sure that shared libraries have been | |
11203 | loaded. If it is not started, this may mean that the symbol is | |
11204 | in a shared library. */ | |
11205 | ||
e99b03dc | 11206 | if (inferior_ptid.pid () == 0) |
0259addd JB |
11207 | error (_("Unable to insert catchpoint. Try to start the program first.")); |
11208 | ||
11209 | /* At this point, we know that we are debugging an Ada program and | |
11210 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11211 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11212 | configurable run time mode, or that a-except as been optimized |
11213 | out by the linker... In any case, at this point it is not worth | |
11214 | supporting this feature. */ | |
11215 | ||
7dda8cff | 11216 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11217 | } |
11218 | ||
f7f9143b JB |
11219 | /* True iff FRAME is very likely to be that of a function that is |
11220 | part of the runtime system. This is all very heuristic, but is | |
11221 | intended to be used as advice as to what frames are uninteresting | |
11222 | to most users. */ | |
11223 | ||
11224 | static int | |
11225 | is_known_support_routine (struct frame_info *frame) | |
11226 | { | |
692465f1 | 11227 | enum language func_lang; |
f7f9143b | 11228 | int i; |
f35a17b5 | 11229 | const char *fullname; |
f7f9143b | 11230 | |
4ed6b5be JB |
11231 | /* If this code does not have any debugging information (no symtab), |
11232 | This cannot be any user code. */ | |
f7f9143b | 11233 | |
51abb421 | 11234 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
11235 | if (sal.symtab == NULL) |
11236 | return 1; | |
11237 | ||
4ed6b5be JB |
11238 | /* If there is a symtab, but the associated source file cannot be |
11239 | located, then assume this is not user code: Selecting a frame | |
11240 | for which we cannot display the code would not be very helpful | |
11241 | for the user. This should also take care of case such as VxWorks | |
11242 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11243 | |
f35a17b5 JK |
11244 | fullname = symtab_to_fullname (sal.symtab); |
11245 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11246 | return 1; |
11247 | ||
85102364 | 11248 | /* Check the unit filename against the Ada runtime file naming. |
4ed6b5be JB |
11249 | We also check the name of the objfile against the name of some |
11250 | known system libraries that sometimes come with debugging info | |
11251 | too. */ | |
11252 | ||
f7f9143b JB |
11253 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11254 | { | |
11255 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11256 | if (re_exec (lbasename (sal.symtab->filename))) |
dda83cd7 | 11257 | return 1; |
eb822aa6 | 11258 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
dda83cd7 SM |
11259 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) |
11260 | return 1; | |
f7f9143b JB |
11261 | } |
11262 | ||
4ed6b5be | 11263 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11264 | |
c6dc63a1 TT |
11265 | gdb::unique_xmalloc_ptr<char> func_name |
11266 | = find_frame_funname (frame, &func_lang, NULL); | |
f7f9143b JB |
11267 | if (func_name == NULL) |
11268 | return 1; | |
11269 | ||
11270 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11271 | { | |
11272 | re_comp (known_auxiliary_function_name_patterns[i]); | |
c6dc63a1 TT |
11273 | if (re_exec (func_name.get ())) |
11274 | return 1; | |
f7f9143b JB |
11275 | } |
11276 | ||
11277 | return 0; | |
11278 | } | |
11279 | ||
11280 | /* Find the first frame that contains debugging information and that is not | |
11281 | part of the Ada run-time, starting from FI and moving upward. */ | |
11282 | ||
0ef643c8 | 11283 | void |
f7f9143b JB |
11284 | ada_find_printable_frame (struct frame_info *fi) |
11285 | { | |
11286 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11287 | { | |
11288 | if (!is_known_support_routine (fi)) | |
dda83cd7 SM |
11289 | { |
11290 | select_frame (fi); | |
11291 | break; | |
11292 | } | |
f7f9143b JB |
11293 | } |
11294 | ||
11295 | } | |
11296 | ||
11297 | /* Assuming that the inferior just triggered an unhandled exception | |
11298 | catchpoint, return the address in inferior memory where the name | |
11299 | of the exception is stored. | |
11300 | ||
11301 | Return zero if the address could not be computed. */ | |
11302 | ||
11303 | static CORE_ADDR | |
11304 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11305 | { |
11306 | return parse_and_eval_address ("e.full_name"); | |
11307 | } | |
11308 | ||
11309 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11310 | should be used when the inferior uses an older version of the runtime, | |
11311 | where the exception name needs to be extracted from a specific frame | |
11312 | several frames up in the callstack. */ | |
11313 | ||
11314 | static CORE_ADDR | |
11315 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11316 | { |
11317 | int frame_level; | |
11318 | struct frame_info *fi; | |
3eecfa55 | 11319 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
11320 | |
11321 | /* To determine the name of this exception, we need to select | |
11322 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11323 | at least 3 levels up, so we simply skip the first 3 frames | |
11324 | without checking the name of their associated function. */ | |
11325 | fi = get_current_frame (); | |
11326 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11327 | if (fi != NULL) | |
11328 | fi = get_prev_frame (fi); | |
11329 | ||
11330 | while (fi != NULL) | |
11331 | { | |
692465f1 JB |
11332 | enum language func_lang; |
11333 | ||
c6dc63a1 TT |
11334 | gdb::unique_xmalloc_ptr<char> func_name |
11335 | = find_frame_funname (fi, &func_lang, NULL); | |
55b87a52 KS |
11336 | if (func_name != NULL) |
11337 | { | |
dda83cd7 | 11338 | if (strcmp (func_name.get (), |
55b87a52 KS |
11339 | data->exception_info->catch_exception_sym) == 0) |
11340 | break; /* We found the frame we were looking for... */ | |
55b87a52 | 11341 | } |
fb44b1a7 | 11342 | fi = get_prev_frame (fi); |
f7f9143b JB |
11343 | } |
11344 | ||
11345 | if (fi == NULL) | |
11346 | return 0; | |
11347 | ||
11348 | select_frame (fi); | |
11349 | return parse_and_eval_address ("id.full_name"); | |
11350 | } | |
11351 | ||
11352 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11353 | (of any type), return the address in inferior memory where the name | |
11354 | of the exception is stored, if applicable. | |
11355 | ||
45db7c09 PA |
11356 | Assumes the selected frame is the current frame. |
11357 | ||
f7f9143b JB |
11358 | Return zero if the address could not be computed, or if not relevant. */ |
11359 | ||
11360 | static CORE_ADDR | |
761269c8 | 11361 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
dda83cd7 | 11362 | struct breakpoint *b) |
f7f9143b | 11363 | { |
3eecfa55 JB |
11364 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11365 | ||
f7f9143b JB |
11366 | switch (ex) |
11367 | { | |
761269c8 | 11368 | case ada_catch_exception: |
dda83cd7 SM |
11369 | return (parse_and_eval_address ("e.full_name")); |
11370 | break; | |
f7f9143b | 11371 | |
761269c8 | 11372 | case ada_catch_exception_unhandled: |
dda83cd7 SM |
11373 | return data->exception_info->unhandled_exception_name_addr (); |
11374 | break; | |
9f757bf7 XR |
11375 | |
11376 | case ada_catch_handlers: | |
dda83cd7 | 11377 | return 0; /* The runtimes does not provide access to the exception |
9f757bf7 | 11378 | name. */ |
dda83cd7 | 11379 | break; |
9f757bf7 | 11380 | |
761269c8 | 11381 | case ada_catch_assert: |
dda83cd7 SM |
11382 | return 0; /* Exception name is not relevant in this case. */ |
11383 | break; | |
f7f9143b JB |
11384 | |
11385 | default: | |
dda83cd7 SM |
11386 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
11387 | break; | |
f7f9143b JB |
11388 | } |
11389 | ||
11390 | return 0; /* Should never be reached. */ | |
11391 | } | |
11392 | ||
e547c119 JB |
11393 | /* Assuming the inferior is stopped at an exception catchpoint, |
11394 | return the message which was associated to the exception, if | |
11395 | available. Return NULL if the message could not be retrieved. | |
11396 | ||
e547c119 JB |
11397 | Note: The exception message can be associated to an exception |
11398 | either through the use of the Raise_Exception function, or | |
11399 | more simply (Ada 2005 and later), via: | |
11400 | ||
11401 | raise Exception_Name with "exception message"; | |
11402 | ||
11403 | */ | |
11404 | ||
6f46ac85 | 11405 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
11406 | ada_exception_message_1 (void) |
11407 | { | |
11408 | struct value *e_msg_val; | |
e547c119 | 11409 | int e_msg_len; |
e547c119 JB |
11410 | |
11411 | /* For runtimes that support this feature, the exception message | |
11412 | is passed as an unbounded string argument called "message". */ | |
11413 | e_msg_val = parse_and_eval ("message"); | |
11414 | if (e_msg_val == NULL) | |
11415 | return NULL; /* Exception message not supported. */ | |
11416 | ||
11417 | e_msg_val = ada_coerce_to_simple_array (e_msg_val); | |
11418 | gdb_assert (e_msg_val != NULL); | |
11419 | e_msg_len = TYPE_LENGTH (value_type (e_msg_val)); | |
11420 | ||
11421 | /* If the message string is empty, then treat it as if there was | |
11422 | no exception message. */ | |
11423 | if (e_msg_len <= 0) | |
11424 | return NULL; | |
11425 | ||
15f3b077 TT |
11426 | gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1)); |
11427 | read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (), | |
11428 | e_msg_len); | |
11429 | e_msg.get ()[e_msg_len] = '\0'; | |
11430 | ||
11431 | return e_msg; | |
e547c119 JB |
11432 | } |
11433 | ||
11434 | /* Same as ada_exception_message_1, except that all exceptions are | |
11435 | contained here (returning NULL instead). */ | |
11436 | ||
6f46ac85 | 11437 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
11438 | ada_exception_message (void) |
11439 | { | |
6f46ac85 | 11440 | gdb::unique_xmalloc_ptr<char> e_msg; |
e547c119 | 11441 | |
a70b8144 | 11442 | try |
e547c119 JB |
11443 | { |
11444 | e_msg = ada_exception_message_1 (); | |
11445 | } | |
230d2906 | 11446 | catch (const gdb_exception_error &e) |
e547c119 | 11447 | { |
6f46ac85 | 11448 | e_msg.reset (nullptr); |
e547c119 | 11449 | } |
e547c119 JB |
11450 | |
11451 | return e_msg; | |
11452 | } | |
11453 | ||
f7f9143b JB |
11454 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains |
11455 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11456 | When an error is intercepted, a warning with the error message is printed, | |
11457 | and zero is returned. */ | |
11458 | ||
11459 | static CORE_ADDR | |
761269c8 | 11460 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
dda83cd7 | 11461 | struct breakpoint *b) |
f7f9143b | 11462 | { |
f7f9143b JB |
11463 | CORE_ADDR result = 0; |
11464 | ||
a70b8144 | 11465 | try |
f7f9143b JB |
11466 | { |
11467 | result = ada_exception_name_addr_1 (ex, b); | |
11468 | } | |
11469 | ||
230d2906 | 11470 | catch (const gdb_exception_error &e) |
f7f9143b | 11471 | { |
3d6e9d23 | 11472 | warning (_("failed to get exception name: %s"), e.what ()); |
f7f9143b JB |
11473 | return 0; |
11474 | } | |
11475 | ||
11476 | return result; | |
11477 | } | |
11478 | ||
cb7de75e | 11479 | static std::string ada_exception_catchpoint_cond_string |
9f757bf7 XR |
11480 | (const char *excep_string, |
11481 | enum ada_exception_catchpoint_kind ex); | |
28010a5d PA |
11482 | |
11483 | /* Ada catchpoints. | |
11484 | ||
11485 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11486 | stop the target on every exception the program throws. When a user | |
11487 | specifies the name of a specific exception, we translate this | |
11488 | request into a condition expression (in text form), and then parse | |
11489 | it into an expression stored in each of the catchpoint's locations. | |
11490 | We then use this condition to check whether the exception that was | |
11491 | raised is the one the user is interested in. If not, then the | |
11492 | target is resumed again. We store the name of the requested | |
11493 | exception, in order to be able to re-set the condition expression | |
11494 | when symbols change. */ | |
11495 | ||
11496 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 11497 | breakpoint location. */ |
28010a5d | 11498 | |
5625a286 | 11499 | class ada_catchpoint_location : public bp_location |
28010a5d | 11500 | { |
5625a286 | 11501 | public: |
5f486660 | 11502 | ada_catchpoint_location (breakpoint *owner) |
f06f1252 | 11503 | : bp_location (owner, bp_loc_software_breakpoint) |
5625a286 | 11504 | {} |
28010a5d PA |
11505 | |
11506 | /* The condition that checks whether the exception that was raised | |
11507 | is the specific exception the user specified on catchpoint | |
11508 | creation. */ | |
4d01a485 | 11509 | expression_up excep_cond_expr; |
28010a5d PA |
11510 | }; |
11511 | ||
c1fc2657 | 11512 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 11513 | |
c1fc2657 | 11514 | struct ada_catchpoint : public breakpoint |
28010a5d | 11515 | { |
37f6a7f4 TT |
11516 | explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind) |
11517 | : m_kind (kind) | |
11518 | { | |
11519 | } | |
11520 | ||
28010a5d | 11521 | /* The name of the specific exception the user specified. */ |
bc18fbb5 | 11522 | std::string excep_string; |
37f6a7f4 TT |
11523 | |
11524 | /* What kind of catchpoint this is. */ | |
11525 | enum ada_exception_catchpoint_kind m_kind; | |
28010a5d PA |
11526 | }; |
11527 | ||
11528 | /* Parse the exception condition string in the context of each of the | |
11529 | catchpoint's locations, and store them for later evaluation. */ | |
11530 | ||
11531 | static void | |
9f757bf7 | 11532 | create_excep_cond_exprs (struct ada_catchpoint *c, |
dda83cd7 | 11533 | enum ada_exception_catchpoint_kind ex) |
28010a5d | 11534 | { |
fccf9de1 TT |
11535 | struct bp_location *bl; |
11536 | ||
28010a5d | 11537 | /* Nothing to do if there's no specific exception to catch. */ |
bc18fbb5 | 11538 | if (c->excep_string.empty ()) |
28010a5d PA |
11539 | return; |
11540 | ||
11541 | /* Same if there are no locations... */ | |
c1fc2657 | 11542 | if (c->loc == NULL) |
28010a5d PA |
11543 | return; |
11544 | ||
fccf9de1 TT |
11545 | /* Compute the condition expression in text form, from the specific |
11546 | expection we want to catch. */ | |
11547 | std::string cond_string | |
11548 | = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex); | |
28010a5d | 11549 | |
fccf9de1 TT |
11550 | /* Iterate over all the catchpoint's locations, and parse an |
11551 | expression for each. */ | |
11552 | for (bl = c->loc; bl != NULL; bl = bl->next) | |
28010a5d PA |
11553 | { |
11554 | struct ada_catchpoint_location *ada_loc | |
fccf9de1 | 11555 | = (struct ada_catchpoint_location *) bl; |
4d01a485 | 11556 | expression_up exp; |
28010a5d | 11557 | |
fccf9de1 | 11558 | if (!bl->shlib_disabled) |
28010a5d | 11559 | { |
bbc13ae3 | 11560 | const char *s; |
28010a5d | 11561 | |
cb7de75e | 11562 | s = cond_string.c_str (); |
a70b8144 | 11563 | try |
28010a5d | 11564 | { |
fccf9de1 TT |
11565 | exp = parse_exp_1 (&s, bl->address, |
11566 | block_for_pc (bl->address), | |
036e657b | 11567 | 0); |
28010a5d | 11568 | } |
230d2906 | 11569 | catch (const gdb_exception_error &e) |
849f2b52 JB |
11570 | { |
11571 | warning (_("failed to reevaluate internal exception condition " | |
11572 | "for catchpoint %d: %s"), | |
3d6e9d23 | 11573 | c->number, e.what ()); |
849f2b52 | 11574 | } |
28010a5d PA |
11575 | } |
11576 | ||
b22e99fd | 11577 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d | 11578 | } |
28010a5d PA |
11579 | } |
11580 | ||
28010a5d PA |
11581 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops |
11582 | structure for all exception catchpoint kinds. */ | |
11583 | ||
11584 | static struct bp_location * | |
37f6a7f4 | 11585 | allocate_location_exception (struct breakpoint *self) |
28010a5d | 11586 | { |
5f486660 | 11587 | return new ada_catchpoint_location (self); |
28010a5d PA |
11588 | } |
11589 | ||
11590 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11591 | exception catchpoint kinds. */ | |
11592 | ||
11593 | static void | |
37f6a7f4 | 11594 | re_set_exception (struct breakpoint *b) |
28010a5d PA |
11595 | { |
11596 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11597 | ||
11598 | /* Call the base class's method. This updates the catchpoint's | |
11599 | locations. */ | |
2060206e | 11600 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11601 | |
11602 | /* Reparse the exception conditional expressions. One for each | |
11603 | location. */ | |
37f6a7f4 | 11604 | create_excep_cond_exprs (c, c->m_kind); |
28010a5d PA |
11605 | } |
11606 | ||
11607 | /* Returns true if we should stop for this breakpoint hit. If the | |
11608 | user specified a specific exception, we only want to cause a stop | |
11609 | if the program thrown that exception. */ | |
11610 | ||
11611 | static int | |
11612 | should_stop_exception (const struct bp_location *bl) | |
11613 | { | |
11614 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11615 | const struct ada_catchpoint_location *ada_loc | |
11616 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
11617 | int stop; |
11618 | ||
37f6a7f4 TT |
11619 | struct internalvar *var = lookup_internalvar ("_ada_exception"); |
11620 | if (c->m_kind == ada_catch_assert) | |
11621 | clear_internalvar (var); | |
11622 | else | |
11623 | { | |
11624 | try | |
11625 | { | |
11626 | const char *expr; | |
11627 | ||
11628 | if (c->m_kind == ada_catch_handlers) | |
11629 | expr = ("GNAT_GCC_exception_Access(gcc_exception)" | |
11630 | ".all.occurrence.id"); | |
11631 | else | |
11632 | expr = "e"; | |
11633 | ||
11634 | struct value *exc = parse_and_eval (expr); | |
11635 | set_internalvar (var, exc); | |
11636 | } | |
11637 | catch (const gdb_exception_error &ex) | |
11638 | { | |
11639 | clear_internalvar (var); | |
11640 | } | |
11641 | } | |
11642 | ||
28010a5d | 11643 | /* With no specific exception, should always stop. */ |
bc18fbb5 | 11644 | if (c->excep_string.empty ()) |
28010a5d PA |
11645 | return 1; |
11646 | ||
11647 | if (ada_loc->excep_cond_expr == NULL) | |
11648 | { | |
11649 | /* We will have a NULL expression if back when we were creating | |
11650 | the expressions, this location's had failed to parse. */ | |
11651 | return 1; | |
11652 | } | |
11653 | ||
11654 | stop = 1; | |
a70b8144 | 11655 | try |
28010a5d PA |
11656 | { |
11657 | struct value *mark; | |
11658 | ||
11659 | mark = value_mark (); | |
4d01a485 | 11660 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
11661 | value_free_to_mark (mark); |
11662 | } | |
230d2906 | 11663 | catch (const gdb_exception &ex) |
492d29ea PA |
11664 | { |
11665 | exception_fprintf (gdb_stderr, ex, | |
11666 | _("Error in testing exception condition:\n")); | |
11667 | } | |
492d29ea | 11668 | |
28010a5d PA |
11669 | return stop; |
11670 | } | |
11671 | ||
11672 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11673 | for all exception catchpoint kinds. */ | |
11674 | ||
11675 | static void | |
37f6a7f4 | 11676 | check_status_exception (bpstat bs) |
28010a5d | 11677 | { |
b6433ede | 11678 | bs->stop = should_stop_exception (bs->bp_location_at.get ()); |
28010a5d PA |
11679 | } |
11680 | ||
f7f9143b JB |
11681 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11682 | for all exception catchpoint kinds. */ | |
11683 | ||
11684 | static enum print_stop_action | |
37f6a7f4 | 11685 | print_it_exception (bpstat bs) |
f7f9143b | 11686 | { |
79a45e25 | 11687 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11688 | struct breakpoint *b = bs->breakpoint_at; |
11689 | ||
956a9fb9 | 11690 | annotate_catchpoint (b->number); |
f7f9143b | 11691 | |
112e8700 | 11692 | if (uiout->is_mi_like_p ()) |
f7f9143b | 11693 | { |
112e8700 | 11694 | uiout->field_string ("reason", |
956a9fb9 | 11695 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 11696 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
11697 | } |
11698 | ||
112e8700 SM |
11699 | uiout->text (b->disposition == disp_del |
11700 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
381befee | 11701 | uiout->field_signed ("bkptno", b->number); |
112e8700 | 11702 | uiout->text (", "); |
f7f9143b | 11703 | |
45db7c09 PA |
11704 | /* ada_exception_name_addr relies on the selected frame being the |
11705 | current frame. Need to do this here because this function may be | |
11706 | called more than once when printing a stop, and below, we'll | |
11707 | select the first frame past the Ada run-time (see | |
11708 | ada_find_printable_frame). */ | |
11709 | select_frame (get_current_frame ()); | |
11710 | ||
37f6a7f4 TT |
11711 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11712 | switch (c->m_kind) | |
f7f9143b | 11713 | { |
761269c8 JB |
11714 | case ada_catch_exception: |
11715 | case ada_catch_exception_unhandled: | |
9f757bf7 | 11716 | case ada_catch_handlers: |
956a9fb9 | 11717 | { |
37f6a7f4 | 11718 | const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b); |
956a9fb9 JB |
11719 | char exception_name[256]; |
11720 | ||
11721 | if (addr != 0) | |
11722 | { | |
c714b426 PA |
11723 | read_memory (addr, (gdb_byte *) exception_name, |
11724 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
11725 | exception_name [sizeof (exception_name) - 1] = '\0'; |
11726 | } | |
11727 | else | |
11728 | { | |
11729 | /* For some reason, we were unable to read the exception | |
11730 | name. This could happen if the Runtime was compiled | |
11731 | without debugging info, for instance. In that case, | |
11732 | just replace the exception name by the generic string | |
11733 | "exception" - it will read as "an exception" in the | |
11734 | notification we are about to print. */ | |
967cff16 | 11735 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11736 | } |
11737 | /* In the case of unhandled exception breakpoints, we print | |
11738 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11739 | it clearer to the user which kind of catchpoint just got | |
11740 | hit. We used ui_out_text to make sure that this extra | |
11741 | info does not pollute the exception name in the MI case. */ | |
37f6a7f4 | 11742 | if (c->m_kind == ada_catch_exception_unhandled) |
112e8700 SM |
11743 | uiout->text ("unhandled "); |
11744 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
11745 | } |
11746 | break; | |
761269c8 | 11747 | case ada_catch_assert: |
956a9fb9 JB |
11748 | /* In this case, the name of the exception is not really |
11749 | important. Just print "failed assertion" to make it clearer | |
11750 | that his program just hit an assertion-failure catchpoint. | |
11751 | We used ui_out_text because this info does not belong in | |
11752 | the MI output. */ | |
112e8700 | 11753 | uiout->text ("failed assertion"); |
956a9fb9 | 11754 | break; |
f7f9143b | 11755 | } |
e547c119 | 11756 | |
6f46ac85 | 11757 | gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message (); |
e547c119 JB |
11758 | if (exception_message != NULL) |
11759 | { | |
e547c119 | 11760 | uiout->text (" ("); |
6f46ac85 | 11761 | uiout->field_string ("exception-message", exception_message.get ()); |
e547c119 | 11762 | uiout->text (")"); |
e547c119 JB |
11763 | } |
11764 | ||
112e8700 | 11765 | uiout->text (" at "); |
956a9fb9 | 11766 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
11767 | |
11768 | return PRINT_SRC_AND_LOC; | |
11769 | } | |
11770 | ||
11771 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11772 | for all exception catchpoint kinds. */ | |
11773 | ||
11774 | static void | |
37f6a7f4 | 11775 | print_one_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11776 | { |
79a45e25 | 11777 | struct ui_out *uiout = current_uiout; |
28010a5d | 11778 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11779 | struct value_print_options opts; |
11780 | ||
11781 | get_user_print_options (&opts); | |
f06f1252 | 11782 | |
79a45b7d | 11783 | if (opts.addressprint) |
f06f1252 | 11784 | uiout->field_skip ("addr"); |
f7f9143b JB |
11785 | |
11786 | annotate_field (5); | |
37f6a7f4 | 11787 | switch (c->m_kind) |
f7f9143b | 11788 | { |
761269c8 | 11789 | case ada_catch_exception: |
dda83cd7 SM |
11790 | if (!c->excep_string.empty ()) |
11791 | { | |
bc18fbb5 TT |
11792 | std::string msg = string_printf (_("`%s' Ada exception"), |
11793 | c->excep_string.c_str ()); | |
28010a5d | 11794 | |
dda83cd7 SM |
11795 | uiout->field_string ("what", msg); |
11796 | } | |
11797 | else | |
11798 | uiout->field_string ("what", "all Ada exceptions"); | |
11799 | ||
11800 | break; | |
f7f9143b | 11801 | |
761269c8 | 11802 | case ada_catch_exception_unhandled: |
dda83cd7 SM |
11803 | uiout->field_string ("what", "unhandled Ada exceptions"); |
11804 | break; | |
f7f9143b | 11805 | |
9f757bf7 | 11806 | case ada_catch_handlers: |
dda83cd7 SM |
11807 | if (!c->excep_string.empty ()) |
11808 | { | |
9f757bf7 XR |
11809 | uiout->field_fmt ("what", |
11810 | _("`%s' Ada exception handlers"), | |
bc18fbb5 | 11811 | c->excep_string.c_str ()); |
dda83cd7 SM |
11812 | } |
11813 | else | |
9f757bf7 | 11814 | uiout->field_string ("what", "all Ada exceptions handlers"); |
dda83cd7 | 11815 | break; |
9f757bf7 | 11816 | |
761269c8 | 11817 | case ada_catch_assert: |
dda83cd7 SM |
11818 | uiout->field_string ("what", "failed Ada assertions"); |
11819 | break; | |
f7f9143b JB |
11820 | |
11821 | default: | |
dda83cd7 SM |
11822 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
11823 | break; | |
f7f9143b JB |
11824 | } |
11825 | } | |
11826 | ||
11827 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11828 | for all exception catchpoint kinds. */ | |
11829 | ||
11830 | static void | |
37f6a7f4 | 11831 | print_mention_exception (struct breakpoint *b) |
f7f9143b | 11832 | { |
28010a5d | 11833 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11834 | struct ui_out *uiout = current_uiout; |
28010a5d | 11835 | |
112e8700 | 11836 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
dda83cd7 | 11837 | : _("Catchpoint ")); |
381befee | 11838 | uiout->field_signed ("bkptno", b->number); |
112e8700 | 11839 | uiout->text (": "); |
00eb2c4a | 11840 | |
37f6a7f4 | 11841 | switch (c->m_kind) |
f7f9143b | 11842 | { |
761269c8 | 11843 | case ada_catch_exception: |
dda83cd7 | 11844 | if (!c->excep_string.empty ()) |
00eb2c4a | 11845 | { |
862d101a | 11846 | std::string info = string_printf (_("`%s' Ada exception"), |
bc18fbb5 | 11847 | c->excep_string.c_str ()); |
862d101a | 11848 | uiout->text (info.c_str ()); |
00eb2c4a | 11849 | } |
dda83cd7 SM |
11850 | else |
11851 | uiout->text (_("all Ada exceptions")); | |
11852 | break; | |
f7f9143b | 11853 | |
761269c8 | 11854 | case ada_catch_exception_unhandled: |
dda83cd7 SM |
11855 | uiout->text (_("unhandled Ada exceptions")); |
11856 | break; | |
9f757bf7 XR |
11857 | |
11858 | case ada_catch_handlers: | |
dda83cd7 | 11859 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
11860 | { |
11861 | std::string info | |
11862 | = string_printf (_("`%s' Ada exception handlers"), | |
bc18fbb5 | 11863 | c->excep_string.c_str ()); |
9f757bf7 XR |
11864 | uiout->text (info.c_str ()); |
11865 | } | |
dda83cd7 SM |
11866 | else |
11867 | uiout->text (_("all Ada exceptions handlers")); | |
11868 | break; | |
9f757bf7 | 11869 | |
761269c8 | 11870 | case ada_catch_assert: |
dda83cd7 SM |
11871 | uiout->text (_("failed Ada assertions")); |
11872 | break; | |
f7f9143b JB |
11873 | |
11874 | default: | |
dda83cd7 SM |
11875 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
11876 | break; | |
f7f9143b JB |
11877 | } |
11878 | } | |
11879 | ||
6149aea9 PA |
11880 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11881 | for all exception catchpoint kinds. */ | |
11882 | ||
11883 | static void | |
37f6a7f4 | 11884 | print_recreate_exception (struct breakpoint *b, struct ui_file *fp) |
6149aea9 | 11885 | { |
28010a5d PA |
11886 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11887 | ||
37f6a7f4 | 11888 | switch (c->m_kind) |
6149aea9 | 11889 | { |
761269c8 | 11890 | case ada_catch_exception: |
6149aea9 | 11891 | fprintf_filtered (fp, "catch exception"); |
bc18fbb5 TT |
11892 | if (!c->excep_string.empty ()) |
11893 | fprintf_filtered (fp, " %s", c->excep_string.c_str ()); | |
6149aea9 PA |
11894 | break; |
11895 | ||
761269c8 | 11896 | case ada_catch_exception_unhandled: |
78076abc | 11897 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11898 | break; |
11899 | ||
9f757bf7 XR |
11900 | case ada_catch_handlers: |
11901 | fprintf_filtered (fp, "catch handlers"); | |
11902 | break; | |
11903 | ||
761269c8 | 11904 | case ada_catch_assert: |
6149aea9 PA |
11905 | fprintf_filtered (fp, "catch assert"); |
11906 | break; | |
11907 | ||
11908 | default: | |
11909 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11910 | } | |
d9b3f62e | 11911 | print_recreate_thread (b, fp); |
6149aea9 PA |
11912 | } |
11913 | ||
37f6a7f4 | 11914 | /* Virtual tables for various breakpoint types. */ |
2060206e | 11915 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
2060206e | 11916 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
2060206e | 11917 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
9f757bf7 XR |
11918 | static struct breakpoint_ops catch_handlers_breakpoint_ops; |
11919 | ||
f06f1252 TT |
11920 | /* See ada-lang.h. */ |
11921 | ||
11922 | bool | |
11923 | is_ada_exception_catchpoint (breakpoint *bp) | |
11924 | { | |
11925 | return (bp->ops == &catch_exception_breakpoint_ops | |
11926 | || bp->ops == &catch_exception_unhandled_breakpoint_ops | |
11927 | || bp->ops == &catch_assert_breakpoint_ops | |
11928 | || bp->ops == &catch_handlers_breakpoint_ops); | |
11929 | } | |
11930 | ||
f7f9143b JB |
11931 | /* Split the arguments specified in a "catch exception" command. |
11932 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11933 | Set EXCEP_STRING to the name of the specific exception if |
5845583d | 11934 | specified by the user. |
9f757bf7 XR |
11935 | IS_CATCH_HANDLERS_CMD: True if the arguments are for a |
11936 | "catch handlers" command. False otherwise. | |
5845583d JB |
11937 | If a condition is found at the end of the arguments, the condition |
11938 | expression is stored in COND_STRING (memory must be deallocated | |
11939 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
11940 | |
11941 | static void | |
a121b7c1 | 11942 | catch_ada_exception_command_split (const char *args, |
9f757bf7 | 11943 | bool is_catch_handlers_cmd, |
dda83cd7 | 11944 | enum ada_exception_catchpoint_kind *ex, |
bc18fbb5 TT |
11945 | std::string *excep_string, |
11946 | std::string *cond_string) | |
f7f9143b | 11947 | { |
bc18fbb5 | 11948 | std::string exception_name; |
f7f9143b | 11949 | |
bc18fbb5 TT |
11950 | exception_name = extract_arg (&args); |
11951 | if (exception_name == "if") | |
5845583d JB |
11952 | { |
11953 | /* This is not an exception name; this is the start of a condition | |
11954 | expression for a catchpoint on all exceptions. So, "un-get" | |
11955 | this token, and set exception_name to NULL. */ | |
bc18fbb5 | 11956 | exception_name.clear (); |
5845583d JB |
11957 | args -= 2; |
11958 | } | |
f7f9143b | 11959 | |
5845583d | 11960 | /* Check to see if we have a condition. */ |
f7f9143b | 11961 | |
f1735a53 | 11962 | args = skip_spaces (args); |
61012eef | 11963 | if (startswith (args, "if") |
5845583d JB |
11964 | && (isspace (args[2]) || args[2] == '\0')) |
11965 | { | |
11966 | args += 2; | |
f1735a53 | 11967 | args = skip_spaces (args); |
5845583d JB |
11968 | |
11969 | if (args[0] == '\0') | |
dda83cd7 | 11970 | error (_("Condition missing after `if' keyword")); |
bc18fbb5 | 11971 | *cond_string = args; |
5845583d JB |
11972 | |
11973 | args += strlen (args); | |
11974 | } | |
11975 | ||
11976 | /* Check that we do not have any more arguments. Anything else | |
11977 | is unexpected. */ | |
f7f9143b JB |
11978 | |
11979 | if (args[0] != '\0') | |
11980 | error (_("Junk at end of expression")); | |
11981 | ||
9f757bf7 XR |
11982 | if (is_catch_handlers_cmd) |
11983 | { | |
11984 | /* Catch handling of exceptions. */ | |
11985 | *ex = ada_catch_handlers; | |
11986 | *excep_string = exception_name; | |
11987 | } | |
bc18fbb5 | 11988 | else if (exception_name.empty ()) |
f7f9143b JB |
11989 | { |
11990 | /* Catch all exceptions. */ | |
761269c8 | 11991 | *ex = ada_catch_exception; |
bc18fbb5 | 11992 | excep_string->clear (); |
f7f9143b | 11993 | } |
bc18fbb5 | 11994 | else if (exception_name == "unhandled") |
f7f9143b JB |
11995 | { |
11996 | /* Catch unhandled exceptions. */ | |
761269c8 | 11997 | *ex = ada_catch_exception_unhandled; |
bc18fbb5 | 11998 | excep_string->clear (); |
f7f9143b JB |
11999 | } |
12000 | else | |
12001 | { | |
12002 | /* Catch a specific exception. */ | |
761269c8 | 12003 | *ex = ada_catch_exception; |
28010a5d | 12004 | *excep_string = exception_name; |
f7f9143b JB |
12005 | } |
12006 | } | |
12007 | ||
12008 | /* Return the name of the symbol on which we should break in order to | |
12009 | implement a catchpoint of the EX kind. */ | |
12010 | ||
12011 | static const char * | |
761269c8 | 12012 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12013 | { |
3eecfa55 JB |
12014 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12015 | ||
12016 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12017 | |
f7f9143b JB |
12018 | switch (ex) |
12019 | { | |
761269c8 | 12020 | case ada_catch_exception: |
dda83cd7 SM |
12021 | return (data->exception_info->catch_exception_sym); |
12022 | break; | |
761269c8 | 12023 | case ada_catch_exception_unhandled: |
dda83cd7 SM |
12024 | return (data->exception_info->catch_exception_unhandled_sym); |
12025 | break; | |
761269c8 | 12026 | case ada_catch_assert: |
dda83cd7 SM |
12027 | return (data->exception_info->catch_assert_sym); |
12028 | break; | |
9f757bf7 | 12029 | case ada_catch_handlers: |
dda83cd7 SM |
12030 | return (data->exception_info->catch_handlers_sym); |
12031 | break; | |
f7f9143b | 12032 | default: |
dda83cd7 SM |
12033 | internal_error (__FILE__, __LINE__, |
12034 | _("unexpected catchpoint kind (%d)"), ex); | |
f7f9143b JB |
12035 | } |
12036 | } | |
12037 | ||
12038 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12039 | of the EX kind. */ | |
12040 | ||
c0a91b2b | 12041 | static const struct breakpoint_ops * |
761269c8 | 12042 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12043 | { |
12044 | switch (ex) | |
12045 | { | |
761269c8 | 12046 | case ada_catch_exception: |
dda83cd7 SM |
12047 | return (&catch_exception_breakpoint_ops); |
12048 | break; | |
761269c8 | 12049 | case ada_catch_exception_unhandled: |
dda83cd7 SM |
12050 | return (&catch_exception_unhandled_breakpoint_ops); |
12051 | break; | |
761269c8 | 12052 | case ada_catch_assert: |
dda83cd7 SM |
12053 | return (&catch_assert_breakpoint_ops); |
12054 | break; | |
9f757bf7 | 12055 | case ada_catch_handlers: |
dda83cd7 SM |
12056 | return (&catch_handlers_breakpoint_ops); |
12057 | break; | |
f7f9143b | 12058 | default: |
dda83cd7 SM |
12059 | internal_error (__FILE__, __LINE__, |
12060 | _("unexpected catchpoint kind (%d)"), ex); | |
f7f9143b JB |
12061 | } |
12062 | } | |
12063 | ||
12064 | /* Return the condition that will be used to match the current exception | |
12065 | being raised with the exception that the user wants to catch. This | |
12066 | assumes that this condition is used when the inferior just triggered | |
12067 | an exception catchpoint. | |
cb7de75e | 12068 | EX: the type of catchpoints used for catching Ada exceptions. */ |
f7f9143b | 12069 | |
cb7de75e | 12070 | static std::string |
9f757bf7 | 12071 | ada_exception_catchpoint_cond_string (const char *excep_string, |
dda83cd7 | 12072 | enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12073 | { |
3d0b0fa3 | 12074 | int i; |
fccf9de1 | 12075 | bool is_standard_exc = false; |
cb7de75e | 12076 | std::string result; |
9f757bf7 XR |
12077 | |
12078 | if (ex == ada_catch_handlers) | |
12079 | { | |
12080 | /* For exception handlers catchpoints, the condition string does | |
dda83cd7 | 12081 | not use the same parameter as for the other exceptions. */ |
fccf9de1 TT |
12082 | result = ("long_integer (GNAT_GCC_exception_Access" |
12083 | "(gcc_exception).all.occurrence.id)"); | |
9f757bf7 XR |
12084 | } |
12085 | else | |
fccf9de1 | 12086 | result = "long_integer (e)"; |
3d0b0fa3 | 12087 | |
0963b4bd | 12088 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12089 | runtime units that have been compiled without debugging info; if |
28010a5d | 12090 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12091 | exception (e.g. "constraint_error") then, during the evaluation |
12092 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12093 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12094 | may then be set only on user-defined exceptions which have the |
12095 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12096 | ||
12097 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12098 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12099 | exception constraint_error" is rewritten into "catch exception |
12100 | standard.constraint_error". | |
12101 | ||
85102364 | 12102 | If an exception named constraint_error is defined in another package of |
3d0b0fa3 JB |
12103 | the inferior program, then the only way to specify this exception as a |
12104 | breakpoint condition is to use its fully-qualified named: | |
fccf9de1 | 12105 | e.g. my_package.constraint_error. */ |
3d0b0fa3 JB |
12106 | |
12107 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12108 | { | |
28010a5d | 12109 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 | 12110 | { |
fccf9de1 | 12111 | is_standard_exc = true; |
9f757bf7 | 12112 | break; |
3d0b0fa3 JB |
12113 | } |
12114 | } | |
9f757bf7 | 12115 | |
fccf9de1 TT |
12116 | result += " = "; |
12117 | ||
12118 | if (is_standard_exc) | |
12119 | string_appendf (result, "long_integer (&standard.%s)", excep_string); | |
12120 | else | |
12121 | string_appendf (result, "long_integer (&%s)", excep_string); | |
9f757bf7 | 12122 | |
9f757bf7 | 12123 | return result; |
f7f9143b JB |
12124 | } |
12125 | ||
12126 | /* Return the symtab_and_line that should be used to insert an exception | |
12127 | catchpoint of the TYPE kind. | |
12128 | ||
28010a5d PA |
12129 | ADDR_STRING returns the name of the function where the real |
12130 | breakpoint that implements the catchpoints is set, depending on the | |
12131 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12132 | |
12133 | static struct symtab_and_line | |
bc18fbb5 | 12134 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, |
cc12f4a8 | 12135 | std::string *addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12136 | { |
12137 | const char *sym_name; | |
12138 | struct symbol *sym; | |
f7f9143b | 12139 | |
0259addd JB |
12140 | /* First, find out which exception support info to use. */ |
12141 | ada_exception_support_info_sniffer (); | |
12142 | ||
12143 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12144 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12145 | sym_name = ada_exception_sym_name (ex); |
12146 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12147 | ||
57aff202 JB |
12148 | if (sym == NULL) |
12149 | error (_("Catchpoint symbol not found: %s"), sym_name); | |
12150 | ||
12151 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
12152 | error (_("Unable to insert catchpoint. %s is not a function."), sym_name); | |
f7f9143b JB |
12153 | |
12154 | /* Set ADDR_STRING. */ | |
cc12f4a8 | 12155 | *addr_string = sym_name; |
f7f9143b | 12156 | |
f7f9143b | 12157 | /* Set OPS. */ |
4b9eee8c | 12158 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12159 | |
f17011e0 | 12160 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12161 | } |
12162 | ||
b4a5b78b | 12163 | /* Create an Ada exception catchpoint. |
f7f9143b | 12164 | |
b4a5b78b | 12165 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12166 | |
bc18fbb5 | 12167 | If EXCEPT_STRING is empty, this catchpoint is expected to trigger |
2df4d1d5 | 12168 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name |
bc18fbb5 | 12169 | of the exception to which this catchpoint applies. |
2df4d1d5 | 12170 | |
bc18fbb5 | 12171 | COND_STRING, if not empty, is the catchpoint condition. |
f7f9143b | 12172 | |
b4a5b78b JB |
12173 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12174 | should be temporary. | |
28010a5d | 12175 | |
b4a5b78b | 12176 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12177 | |
349774ef | 12178 | void |
28010a5d | 12179 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12180 | enum ada_exception_catchpoint_kind ex_kind, |
bc18fbb5 | 12181 | const std::string &excep_string, |
56ecd069 | 12182 | const std::string &cond_string, |
28010a5d | 12183 | int tempflag, |
349774ef | 12184 | int disabled, |
28010a5d PA |
12185 | int from_tty) |
12186 | { | |
cc12f4a8 | 12187 | std::string addr_string; |
b4a5b78b | 12188 | const struct breakpoint_ops *ops = NULL; |
bc18fbb5 | 12189 | struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops); |
28010a5d | 12190 | |
37f6a7f4 | 12191 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind)); |
cc12f4a8 | 12192 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (), |
349774ef | 12193 | ops, tempflag, disabled, from_tty); |
28010a5d | 12194 | c->excep_string = excep_string; |
9f757bf7 | 12195 | create_excep_cond_exprs (c.get (), ex_kind); |
56ecd069 | 12196 | if (!cond_string.empty ()) |
733d554a | 12197 | set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false); |
b270e6f9 | 12198 | install_breakpoint (0, std::move (c), 1); |
f7f9143b JB |
12199 | } |
12200 | ||
9ac4176b PA |
12201 | /* Implement the "catch exception" command. */ |
12202 | ||
12203 | static void | |
eb4c3f4a | 12204 | catch_ada_exception_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
12205 | struct cmd_list_element *command) |
12206 | { | |
a121b7c1 | 12207 | const char *arg = arg_entry; |
9ac4176b PA |
12208 | struct gdbarch *gdbarch = get_current_arch (); |
12209 | int tempflag; | |
761269c8 | 12210 | enum ada_exception_catchpoint_kind ex_kind; |
bc18fbb5 | 12211 | std::string excep_string; |
56ecd069 | 12212 | std::string cond_string; |
9ac4176b PA |
12213 | |
12214 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12215 | ||
12216 | if (!arg) | |
12217 | arg = ""; | |
9f757bf7 | 12218 | catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string, |
bc18fbb5 | 12219 | &cond_string); |
9f757bf7 XR |
12220 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
12221 | excep_string, cond_string, | |
12222 | tempflag, 1 /* enabled */, | |
12223 | from_tty); | |
12224 | } | |
12225 | ||
12226 | /* Implement the "catch handlers" command. */ | |
12227 | ||
12228 | static void | |
12229 | catch_ada_handlers_command (const char *arg_entry, int from_tty, | |
12230 | struct cmd_list_element *command) | |
12231 | { | |
12232 | const char *arg = arg_entry; | |
12233 | struct gdbarch *gdbarch = get_current_arch (); | |
12234 | int tempflag; | |
12235 | enum ada_exception_catchpoint_kind ex_kind; | |
bc18fbb5 | 12236 | std::string excep_string; |
56ecd069 | 12237 | std::string cond_string; |
9f757bf7 XR |
12238 | |
12239 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12240 | ||
12241 | if (!arg) | |
12242 | arg = ""; | |
12243 | catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string, | |
bc18fbb5 | 12244 | &cond_string); |
b4a5b78b JB |
12245 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
12246 | excep_string, cond_string, | |
349774ef JB |
12247 | tempflag, 1 /* enabled */, |
12248 | from_tty); | |
9ac4176b PA |
12249 | } |
12250 | ||
71bed2db TT |
12251 | /* Completion function for the Ada "catch" commands. */ |
12252 | ||
12253 | static void | |
12254 | catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker, | |
12255 | const char *text, const char *word) | |
12256 | { | |
12257 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL); | |
12258 | ||
12259 | for (const ada_exc_info &info : exceptions) | |
12260 | { | |
12261 | if (startswith (info.name, word)) | |
b02f78f9 | 12262 | tracker.add_completion (make_unique_xstrdup (info.name)); |
71bed2db TT |
12263 | } |
12264 | } | |
12265 | ||
b4a5b78b | 12266 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12267 | |
b4a5b78b JB |
12268 | ARGS contains the command's arguments (or the empty string if |
12269 | no arguments were passed). | |
5845583d JB |
12270 | |
12271 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12272 | (the memory needs to be deallocated after use). */ |
5845583d | 12273 | |
b4a5b78b | 12274 | static void |
56ecd069 | 12275 | catch_ada_assert_command_split (const char *args, std::string &cond_string) |
f7f9143b | 12276 | { |
f1735a53 | 12277 | args = skip_spaces (args); |
f7f9143b | 12278 | |
5845583d | 12279 | /* Check whether a condition was provided. */ |
61012eef | 12280 | if (startswith (args, "if") |
5845583d | 12281 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 12282 | { |
5845583d | 12283 | args += 2; |
f1735a53 | 12284 | args = skip_spaces (args); |
5845583d | 12285 | if (args[0] == '\0') |
dda83cd7 | 12286 | error (_("condition missing after `if' keyword")); |
56ecd069 | 12287 | cond_string.assign (args); |
f7f9143b JB |
12288 | } |
12289 | ||
5845583d JB |
12290 | /* Otherwise, there should be no other argument at the end of |
12291 | the command. */ | |
12292 | else if (args[0] != '\0') | |
12293 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
12294 | } |
12295 | ||
9ac4176b PA |
12296 | /* Implement the "catch assert" command. */ |
12297 | ||
12298 | static void | |
eb4c3f4a | 12299 | catch_assert_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
12300 | struct cmd_list_element *command) |
12301 | { | |
a121b7c1 | 12302 | const char *arg = arg_entry; |
9ac4176b PA |
12303 | struct gdbarch *gdbarch = get_current_arch (); |
12304 | int tempflag; | |
56ecd069 | 12305 | std::string cond_string; |
9ac4176b PA |
12306 | |
12307 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12308 | ||
12309 | if (!arg) | |
12310 | arg = ""; | |
56ecd069 | 12311 | catch_ada_assert_command_split (arg, cond_string); |
761269c8 | 12312 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
241db429 | 12313 | "", cond_string, |
349774ef JB |
12314 | tempflag, 1 /* enabled */, |
12315 | from_tty); | |
9ac4176b | 12316 | } |
778865d3 JB |
12317 | |
12318 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
12319 | ||
12320 | static int | |
12321 | ada_is_exception_sym (struct symbol *sym) | |
12322 | { | |
7d93a1e0 | 12323 | const char *type_name = SYMBOL_TYPE (sym)->name (); |
778865d3 JB |
12324 | |
12325 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
dda83cd7 SM |
12326 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
12327 | && SYMBOL_CLASS (sym) != LOC_CONST | |
12328 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
12329 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
778865d3 JB |
12330 | } |
12331 | ||
12332 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
12333 | Ada exception object. This matches all exceptions except the ones | |
12334 | defined by the Ada language. */ | |
12335 | ||
12336 | static int | |
12337 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
12338 | { | |
12339 | int i; | |
12340 | ||
12341 | if (!ada_is_exception_sym (sym)) | |
12342 | return 0; | |
12343 | ||
12344 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
987012b8 | 12345 | if (strcmp (sym->linkage_name (), standard_exc[i]) == 0) |
778865d3 JB |
12346 | return 0; /* A standard exception. */ |
12347 | ||
12348 | /* Numeric_Error is also a standard exception, so exclude it. | |
12349 | See the STANDARD_EXC description for more details as to why | |
12350 | this exception is not listed in that array. */ | |
987012b8 | 12351 | if (strcmp (sym->linkage_name (), "numeric_error") == 0) |
778865d3 JB |
12352 | return 0; |
12353 | ||
12354 | return 1; | |
12355 | } | |
12356 | ||
ab816a27 | 12357 | /* A helper function for std::sort, comparing two struct ada_exc_info |
778865d3 JB |
12358 | objects. |
12359 | ||
12360 | The comparison is determined first by exception name, and then | |
12361 | by exception address. */ | |
12362 | ||
ab816a27 | 12363 | bool |
cc536b21 | 12364 | ada_exc_info::operator< (const ada_exc_info &other) const |
778865d3 | 12365 | { |
778865d3 JB |
12366 | int result; |
12367 | ||
ab816a27 TT |
12368 | result = strcmp (name, other.name); |
12369 | if (result < 0) | |
12370 | return true; | |
12371 | if (result == 0 && addr < other.addr) | |
12372 | return true; | |
12373 | return false; | |
12374 | } | |
778865d3 | 12375 | |
ab816a27 | 12376 | bool |
cc536b21 | 12377 | ada_exc_info::operator== (const ada_exc_info &other) const |
ab816a27 TT |
12378 | { |
12379 | return addr == other.addr && strcmp (name, other.name) == 0; | |
778865d3 JB |
12380 | } |
12381 | ||
12382 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
12383 | routine, but keeping the first SKIP elements untouched. | |
12384 | ||
12385 | All duplicates are also removed. */ | |
12386 | ||
12387 | static void | |
ab816a27 | 12388 | sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
778865d3 JB |
12389 | int skip) |
12390 | { | |
ab816a27 TT |
12391 | std::sort (exceptions->begin () + skip, exceptions->end ()); |
12392 | exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), | |
12393 | exceptions->end ()); | |
778865d3 JB |
12394 | } |
12395 | ||
778865d3 JB |
12396 | /* Add all exceptions defined by the Ada standard whose name match |
12397 | a regular expression. | |
12398 | ||
12399 | If PREG is not NULL, then this regexp_t object is used to | |
12400 | perform the symbol name matching. Otherwise, no name-based | |
12401 | filtering is performed. | |
12402 | ||
12403 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12404 | gets pushed. */ | |
12405 | ||
12406 | static void | |
2d7cc5c7 | 12407 | ada_add_standard_exceptions (compiled_regex *preg, |
ab816a27 | 12408 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
12409 | { |
12410 | int i; | |
12411 | ||
12412 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12413 | { | |
12414 | if (preg == NULL | |
2d7cc5c7 | 12415 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
12416 | { |
12417 | struct bound_minimal_symbol msymbol | |
12418 | = ada_lookup_simple_minsym (standard_exc[i]); | |
12419 | ||
12420 | if (msymbol.minsym != NULL) | |
12421 | { | |
12422 | struct ada_exc_info info | |
77e371c0 | 12423 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 | 12424 | |
ab816a27 | 12425 | exceptions->push_back (info); |
778865d3 JB |
12426 | } |
12427 | } | |
12428 | } | |
12429 | } | |
12430 | ||
12431 | /* Add all Ada exceptions defined locally and accessible from the given | |
12432 | FRAME. | |
12433 | ||
12434 | If PREG is not NULL, then this regexp_t object is used to | |
12435 | perform the symbol name matching. Otherwise, no name-based | |
12436 | filtering is performed. | |
12437 | ||
12438 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12439 | gets pushed. */ | |
12440 | ||
12441 | static void | |
2d7cc5c7 PA |
12442 | ada_add_exceptions_from_frame (compiled_regex *preg, |
12443 | struct frame_info *frame, | |
ab816a27 | 12444 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 12445 | { |
3977b71f | 12446 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
12447 | |
12448 | while (block != 0) | |
12449 | { | |
12450 | struct block_iterator iter; | |
12451 | struct symbol *sym; | |
12452 | ||
12453 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
12454 | { | |
12455 | switch (SYMBOL_CLASS (sym)) | |
12456 | { | |
12457 | case LOC_TYPEDEF: | |
12458 | case LOC_BLOCK: | |
12459 | case LOC_CONST: | |
12460 | break; | |
12461 | default: | |
12462 | if (ada_is_exception_sym (sym)) | |
12463 | { | |
987012b8 | 12464 | struct ada_exc_info info = {sym->print_name (), |
778865d3 JB |
12465 | SYMBOL_VALUE_ADDRESS (sym)}; |
12466 | ||
ab816a27 | 12467 | exceptions->push_back (info); |
778865d3 JB |
12468 | } |
12469 | } | |
12470 | } | |
12471 | if (BLOCK_FUNCTION (block) != NULL) | |
12472 | break; | |
12473 | block = BLOCK_SUPERBLOCK (block); | |
12474 | } | |
12475 | } | |
12476 | ||
14bc53a8 PA |
12477 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
12478 | ||
12479 | static bool | |
2d7cc5c7 | 12480 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
12481 | { |
12482 | return (preg == NULL | |
f945dedf | 12483 | || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0); |
14bc53a8 PA |
12484 | } |
12485 | ||
778865d3 JB |
12486 | /* Add all exceptions defined globally whose name name match |
12487 | a regular expression, excluding standard exceptions. | |
12488 | ||
12489 | The reason we exclude standard exceptions is that they need | |
12490 | to be handled separately: Standard exceptions are defined inside | |
12491 | a runtime unit which is normally not compiled with debugging info, | |
12492 | and thus usually do not show up in our symbol search. However, | |
12493 | if the unit was in fact built with debugging info, we need to | |
12494 | exclude them because they would duplicate the entry we found | |
12495 | during the special loop that specifically searches for those | |
12496 | standard exceptions. | |
12497 | ||
12498 | If PREG is not NULL, then this regexp_t object is used to | |
12499 | perform the symbol name matching. Otherwise, no name-based | |
12500 | filtering is performed. | |
12501 | ||
12502 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12503 | gets pushed. */ | |
12504 | ||
12505 | static void | |
2d7cc5c7 | 12506 | ada_add_global_exceptions (compiled_regex *preg, |
ab816a27 | 12507 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 12508 | { |
14bc53a8 PA |
12509 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
12510 | regular expression used to do the matching refers to the natural | |
12511 | name. So match against the decoded name. */ | |
12512 | expand_symtabs_matching (NULL, | |
b5ec771e | 12513 | lookup_name_info::match_any (), |
14bc53a8 PA |
12514 | [&] (const char *search_name) |
12515 | { | |
f945dedf CB |
12516 | std::string decoded = ada_decode (search_name); |
12517 | return name_matches_regex (decoded.c_str (), preg); | |
14bc53a8 PA |
12518 | }, |
12519 | NULL, | |
12520 | VARIABLES_DOMAIN); | |
778865d3 | 12521 | |
2030c079 | 12522 | for (objfile *objfile : current_program_space->objfiles ()) |
778865d3 | 12523 | { |
b669c953 | 12524 | for (compunit_symtab *s : objfile->compunits ()) |
778865d3 | 12525 | { |
d8aeb77f TT |
12526 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
12527 | int i; | |
778865d3 | 12528 | |
d8aeb77f TT |
12529 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
12530 | { | |
582942f4 | 12531 | const struct block *b = BLOCKVECTOR_BLOCK (bv, i); |
d8aeb77f TT |
12532 | struct block_iterator iter; |
12533 | struct symbol *sym; | |
778865d3 | 12534 | |
d8aeb77f TT |
12535 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
12536 | if (ada_is_non_standard_exception_sym (sym) | |
987012b8 | 12537 | && name_matches_regex (sym->natural_name (), preg)) |
d8aeb77f TT |
12538 | { |
12539 | struct ada_exc_info info | |
987012b8 | 12540 | = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)}; |
d8aeb77f TT |
12541 | |
12542 | exceptions->push_back (info); | |
12543 | } | |
12544 | } | |
778865d3 JB |
12545 | } |
12546 | } | |
12547 | } | |
12548 | ||
12549 | /* Implements ada_exceptions_list with the regular expression passed | |
12550 | as a regex_t, rather than a string. | |
12551 | ||
12552 | If not NULL, PREG is used to filter out exceptions whose names | |
12553 | do not match. Otherwise, all exceptions are listed. */ | |
12554 | ||
ab816a27 | 12555 | static std::vector<ada_exc_info> |
2d7cc5c7 | 12556 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 | 12557 | { |
ab816a27 | 12558 | std::vector<ada_exc_info> result; |
778865d3 JB |
12559 | int prev_len; |
12560 | ||
12561 | /* First, list the known standard exceptions. These exceptions | |
12562 | need to be handled separately, as they are usually defined in | |
12563 | runtime units that have been compiled without debugging info. */ | |
12564 | ||
12565 | ada_add_standard_exceptions (preg, &result); | |
12566 | ||
12567 | /* Next, find all exceptions whose scope is local and accessible | |
12568 | from the currently selected frame. */ | |
12569 | ||
12570 | if (has_stack_frames ()) | |
12571 | { | |
ab816a27 | 12572 | prev_len = result.size (); |
778865d3 JB |
12573 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
12574 | &result); | |
ab816a27 | 12575 | if (result.size () > prev_len) |
778865d3 JB |
12576 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
12577 | } | |
12578 | ||
12579 | /* Add all exceptions whose scope is global. */ | |
12580 | ||
ab816a27 | 12581 | prev_len = result.size (); |
778865d3 | 12582 | ada_add_global_exceptions (preg, &result); |
ab816a27 | 12583 | if (result.size () > prev_len) |
778865d3 JB |
12584 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
12585 | ||
778865d3 JB |
12586 | return result; |
12587 | } | |
12588 | ||
12589 | /* Return a vector of ada_exc_info. | |
12590 | ||
12591 | If REGEXP is NULL, all exceptions are included in the result. | |
12592 | Otherwise, it should contain a valid regular expression, | |
12593 | and only the exceptions whose names match that regular expression | |
12594 | are included in the result. | |
12595 | ||
12596 | The exceptions are sorted in the following order: | |
12597 | - Standard exceptions (defined by the Ada language), in | |
12598 | alphabetical order; | |
12599 | - Exceptions only visible from the current frame, in | |
12600 | alphabetical order; | |
12601 | - Exceptions whose scope is global, in alphabetical order. */ | |
12602 | ||
ab816a27 | 12603 | std::vector<ada_exc_info> |
778865d3 JB |
12604 | ada_exceptions_list (const char *regexp) |
12605 | { | |
2d7cc5c7 PA |
12606 | if (regexp == NULL) |
12607 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 12608 | |
2d7cc5c7 PA |
12609 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
12610 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
12611 | } |
12612 | ||
12613 | /* Implement the "info exceptions" command. */ | |
12614 | ||
12615 | static void | |
1d12d88f | 12616 | info_exceptions_command (const char *regexp, int from_tty) |
778865d3 | 12617 | { |
778865d3 | 12618 | struct gdbarch *gdbarch = get_current_arch (); |
778865d3 | 12619 | |
ab816a27 | 12620 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
778865d3 JB |
12621 | |
12622 | if (regexp != NULL) | |
12623 | printf_filtered | |
12624 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
12625 | else | |
12626 | printf_filtered (_("All defined Ada exceptions:\n")); | |
12627 | ||
ab816a27 TT |
12628 | for (const ada_exc_info &info : exceptions) |
12629 | printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); | |
778865d3 JB |
12630 | } |
12631 | ||
6c038f32 PH |
12632 | \f |
12633 | /* Language vector */ | |
12634 | ||
b5ec771e PA |
12635 | /* symbol_name_matcher_ftype adapter for wild_match. */ |
12636 | ||
12637 | static bool | |
12638 | do_wild_match (const char *symbol_search_name, | |
12639 | const lookup_name_info &lookup_name, | |
a207cff2 | 12640 | completion_match_result *comp_match_res) |
b5ec771e PA |
12641 | { |
12642 | return wild_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
12643 | } | |
12644 | ||
12645 | /* symbol_name_matcher_ftype adapter for full_match. */ | |
12646 | ||
12647 | static bool | |
12648 | do_full_match (const char *symbol_search_name, | |
12649 | const lookup_name_info &lookup_name, | |
a207cff2 | 12650 | completion_match_result *comp_match_res) |
b5ec771e | 12651 | { |
959d6a67 TT |
12652 | const char *lname = lookup_name.ada ().lookup_name ().c_str (); |
12653 | ||
12654 | /* If both symbols start with "_ada_", just let the loop below | |
12655 | handle the comparison. However, if only the symbol name starts | |
12656 | with "_ada_", skip the prefix and let the match proceed as | |
12657 | usual. */ | |
12658 | if (startswith (symbol_search_name, "_ada_") | |
12659 | && !startswith (lname, "_ada")) | |
86b44259 TT |
12660 | symbol_search_name += 5; |
12661 | ||
86b44259 TT |
12662 | int uscore_count = 0; |
12663 | while (*lname != '\0') | |
12664 | { | |
12665 | if (*symbol_search_name != *lname) | |
12666 | { | |
12667 | if (*symbol_search_name == 'B' && uscore_count == 2 | |
12668 | && symbol_search_name[1] == '_') | |
12669 | { | |
12670 | symbol_search_name += 2; | |
12671 | while (isdigit (*symbol_search_name)) | |
12672 | ++symbol_search_name; | |
12673 | if (symbol_search_name[0] == '_' | |
12674 | && symbol_search_name[1] == '_') | |
12675 | { | |
12676 | symbol_search_name += 2; | |
12677 | continue; | |
12678 | } | |
12679 | } | |
12680 | return false; | |
12681 | } | |
12682 | ||
12683 | if (*symbol_search_name == '_') | |
12684 | ++uscore_count; | |
12685 | else | |
12686 | uscore_count = 0; | |
12687 | ||
12688 | ++symbol_search_name; | |
12689 | ++lname; | |
12690 | } | |
12691 | ||
12692 | return is_name_suffix (symbol_search_name); | |
b5ec771e PA |
12693 | } |
12694 | ||
a2cd4f14 JB |
12695 | /* symbol_name_matcher_ftype for exact (verbatim) matches. */ |
12696 | ||
12697 | static bool | |
12698 | do_exact_match (const char *symbol_search_name, | |
12699 | const lookup_name_info &lookup_name, | |
12700 | completion_match_result *comp_match_res) | |
12701 | { | |
12702 | return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0; | |
12703 | } | |
12704 | ||
b5ec771e PA |
12705 | /* Build the Ada lookup name for LOOKUP_NAME. */ |
12706 | ||
12707 | ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name) | |
12708 | { | |
e0802d59 | 12709 | gdb::string_view user_name = lookup_name.name (); |
b5ec771e | 12710 | |
6a780b67 | 12711 | if (!user_name.empty () && user_name[0] == '<') |
b5ec771e PA |
12712 | { |
12713 | if (user_name.back () == '>') | |
e0802d59 | 12714 | m_encoded_name |
5ac58899 | 12715 | = gdb::to_string (user_name.substr (1, user_name.size () - 2)); |
b5ec771e | 12716 | else |
e0802d59 | 12717 | m_encoded_name |
5ac58899 | 12718 | = gdb::to_string (user_name.substr (1, user_name.size () - 1)); |
b5ec771e PA |
12719 | m_encoded_p = true; |
12720 | m_verbatim_p = true; | |
12721 | m_wild_match_p = false; | |
12722 | m_standard_p = false; | |
12723 | } | |
12724 | else | |
12725 | { | |
12726 | m_verbatim_p = false; | |
12727 | ||
e0802d59 | 12728 | m_encoded_p = user_name.find ("__") != gdb::string_view::npos; |
b5ec771e PA |
12729 | |
12730 | if (!m_encoded_p) | |
12731 | { | |
e0802d59 | 12732 | const char *folded = ada_fold_name (user_name); |
5c4258f4 TT |
12733 | m_encoded_name = ada_encode_1 (folded, false); |
12734 | if (m_encoded_name.empty ()) | |
5ac58899 | 12735 | m_encoded_name = gdb::to_string (user_name); |
b5ec771e PA |
12736 | } |
12737 | else | |
5ac58899 | 12738 | m_encoded_name = gdb::to_string (user_name); |
b5ec771e PA |
12739 | |
12740 | /* Handle the 'package Standard' special case. See description | |
12741 | of m_standard_p. */ | |
12742 | if (startswith (m_encoded_name.c_str (), "standard__")) | |
12743 | { | |
12744 | m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1); | |
12745 | m_standard_p = true; | |
12746 | } | |
12747 | else | |
12748 | m_standard_p = false; | |
74ccd7f5 | 12749 | |
b5ec771e PA |
12750 | /* If the name contains a ".", then the user is entering a fully |
12751 | qualified entity name, and the match must not be done in wild | |
12752 | mode. Similarly, if the user wants to complete what looks | |
12753 | like an encoded name, the match must not be done in wild | |
12754 | mode. Also, in the standard__ special case always do | |
12755 | non-wild matching. */ | |
12756 | m_wild_match_p | |
12757 | = (lookup_name.match_type () != symbol_name_match_type::FULL | |
12758 | && !m_encoded_p | |
12759 | && !m_standard_p | |
12760 | && user_name.find ('.') == std::string::npos); | |
12761 | } | |
12762 | } | |
12763 | ||
12764 | /* symbol_name_matcher_ftype method for Ada. This only handles | |
12765 | completion mode. */ | |
12766 | ||
12767 | static bool | |
12768 | ada_symbol_name_matches (const char *symbol_search_name, | |
12769 | const lookup_name_info &lookup_name, | |
a207cff2 | 12770 | completion_match_result *comp_match_res) |
74ccd7f5 | 12771 | { |
b5ec771e PA |
12772 | return lookup_name.ada ().matches (symbol_search_name, |
12773 | lookup_name.match_type (), | |
a207cff2 | 12774 | comp_match_res); |
b5ec771e PA |
12775 | } |
12776 | ||
de63c46b PA |
12777 | /* A name matcher that matches the symbol name exactly, with |
12778 | strcmp. */ | |
12779 | ||
12780 | static bool | |
12781 | literal_symbol_name_matcher (const char *symbol_search_name, | |
12782 | const lookup_name_info &lookup_name, | |
12783 | completion_match_result *comp_match_res) | |
12784 | { | |
e0802d59 | 12785 | gdb::string_view name_view = lookup_name.name (); |
de63c46b | 12786 | |
e0802d59 TT |
12787 | if (lookup_name.completion_mode () |
12788 | ? (strncmp (symbol_search_name, name_view.data (), | |
12789 | name_view.size ()) == 0) | |
12790 | : symbol_search_name == name_view) | |
de63c46b PA |
12791 | { |
12792 | if (comp_match_res != NULL) | |
12793 | comp_match_res->set_match (symbol_search_name); | |
12794 | return true; | |
12795 | } | |
12796 | else | |
12797 | return false; | |
12798 | } | |
12799 | ||
c9debfb9 | 12800 | /* Implement the "get_symbol_name_matcher" language_defn method for |
b5ec771e PA |
12801 | Ada. */ |
12802 | ||
12803 | static symbol_name_matcher_ftype * | |
12804 | ada_get_symbol_name_matcher (const lookup_name_info &lookup_name) | |
12805 | { | |
de63c46b PA |
12806 | if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
12807 | return literal_symbol_name_matcher; | |
12808 | ||
b5ec771e PA |
12809 | if (lookup_name.completion_mode ()) |
12810 | return ada_symbol_name_matches; | |
74ccd7f5 | 12811 | else |
b5ec771e PA |
12812 | { |
12813 | if (lookup_name.ada ().wild_match_p ()) | |
12814 | return do_wild_match; | |
a2cd4f14 JB |
12815 | else if (lookup_name.ada ().verbatim_p ()) |
12816 | return do_exact_match; | |
b5ec771e PA |
12817 | else |
12818 | return do_full_match; | |
12819 | } | |
74ccd7f5 JB |
12820 | } |
12821 | ||
0874fd07 AB |
12822 | /* Class representing the Ada language. */ |
12823 | ||
12824 | class ada_language : public language_defn | |
12825 | { | |
12826 | public: | |
12827 | ada_language () | |
0e25e767 | 12828 | : language_defn (language_ada) |
0874fd07 | 12829 | { /* Nothing. */ } |
5bd40f2a | 12830 | |
6f7664a9 AB |
12831 | /* See language.h. */ |
12832 | ||
12833 | const char *name () const override | |
12834 | { return "ada"; } | |
12835 | ||
12836 | /* See language.h. */ | |
12837 | ||
12838 | const char *natural_name () const override | |
12839 | { return "Ada"; } | |
12840 | ||
e171d6f1 AB |
12841 | /* See language.h. */ |
12842 | ||
12843 | const std::vector<const char *> &filename_extensions () const override | |
12844 | { | |
12845 | static const std::vector<const char *> extensions | |
12846 | = { ".adb", ".ads", ".a", ".ada", ".dg" }; | |
12847 | return extensions; | |
12848 | } | |
12849 | ||
5bd40f2a AB |
12850 | /* Print an array element index using the Ada syntax. */ |
12851 | ||
12852 | void print_array_index (struct type *index_type, | |
12853 | LONGEST index, | |
12854 | struct ui_file *stream, | |
12855 | const value_print_options *options) const override | |
12856 | { | |
12857 | struct value *index_value = val_atr (index_type, index); | |
12858 | ||
00c696a6 | 12859 | value_print (index_value, stream, options); |
5bd40f2a AB |
12860 | fprintf_filtered (stream, " => "); |
12861 | } | |
15e5fd35 AB |
12862 | |
12863 | /* Implement the "read_var_value" language_defn method for Ada. */ | |
12864 | ||
12865 | struct value *read_var_value (struct symbol *var, | |
12866 | const struct block *var_block, | |
12867 | struct frame_info *frame) const override | |
12868 | { | |
12869 | /* The only case where default_read_var_value is not sufficient | |
12870 | is when VAR is a renaming... */ | |
12871 | if (frame != nullptr) | |
12872 | { | |
12873 | const struct block *frame_block = get_frame_block (frame, NULL); | |
12874 | if (frame_block != nullptr && ada_is_renaming_symbol (var)) | |
12875 | return ada_read_renaming_var_value (var, frame_block); | |
12876 | } | |
12877 | ||
12878 | /* This is a typical case where we expect the default_read_var_value | |
12879 | function to work. */ | |
12880 | return language_defn::read_var_value (var, var_block, frame); | |
12881 | } | |
1fb314aa AB |
12882 | |
12883 | /* See language.h. */ | |
12884 | void language_arch_info (struct gdbarch *gdbarch, | |
12885 | struct language_arch_info *lai) const override | |
12886 | { | |
12887 | const struct builtin_type *builtin = builtin_type (gdbarch); | |
12888 | ||
7bea47f0 AB |
12889 | /* Helper function to allow shorter lines below. */ |
12890 | auto add = [&] (struct type *t) | |
12891 | { | |
12892 | lai->add_primitive_type (t); | |
12893 | }; | |
12894 | ||
12895 | add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12896 | 0, "integer")); | |
12897 | add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12898 | 0, "long_integer")); | |
12899 | add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12900 | 0, "short_integer")); | |
12901 | struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT, | |
12902 | 0, "character"); | |
12903 | lai->set_string_char_type (char_type); | |
12904 | add (char_type); | |
12905 | add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12906 | "float", gdbarch_float_format (gdbarch))); | |
12907 | add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12908 | "long_float", gdbarch_double_format (gdbarch))); | |
12909 | add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12910 | 0, "long_long_integer")); | |
12911 | add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), | |
12912 | "long_long_float", | |
12913 | gdbarch_long_double_format (gdbarch))); | |
12914 | add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12915 | 0, "natural")); | |
12916 | add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12917 | 0, "positive")); | |
12918 | add (builtin->builtin_void); | |
12919 | ||
12920 | struct type *system_addr_ptr | |
1fb314aa AB |
12921 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
12922 | "void")); | |
7bea47f0 AB |
12923 | system_addr_ptr->set_name ("system__address"); |
12924 | add (system_addr_ptr); | |
1fb314aa AB |
12925 | |
12926 | /* Create the equivalent of the System.Storage_Elements.Storage_Offset | |
12927 | type. This is a signed integral type whose size is the same as | |
12928 | the size of addresses. */ | |
7bea47f0 AB |
12929 | unsigned int addr_length = TYPE_LENGTH (system_addr_ptr); |
12930 | add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0, | |
12931 | "storage_offset")); | |
1fb314aa | 12932 | |
7bea47f0 | 12933 | lai->set_bool_type (builtin->builtin_bool); |
1fb314aa | 12934 | } |
4009ee92 AB |
12935 | |
12936 | /* See language.h. */ | |
12937 | ||
12938 | bool iterate_over_symbols | |
12939 | (const struct block *block, const lookup_name_info &name, | |
12940 | domain_enum domain, | |
12941 | gdb::function_view<symbol_found_callback_ftype> callback) const override | |
12942 | { | |
d1183b06 TT |
12943 | std::vector<struct block_symbol> results |
12944 | = ada_lookup_symbol_list_worker (name, block, domain, 0); | |
4009ee92 AB |
12945 | for (block_symbol &sym : results) |
12946 | { | |
12947 | if (!callback (&sym)) | |
12948 | return false; | |
12949 | } | |
12950 | ||
12951 | return true; | |
12952 | } | |
6f827019 AB |
12953 | |
12954 | /* See language.h. */ | |
12955 | bool sniff_from_mangled_name (const char *mangled, | |
12956 | char **out) const override | |
12957 | { | |
12958 | std::string demangled = ada_decode (mangled); | |
12959 | ||
12960 | *out = NULL; | |
12961 | ||
12962 | if (demangled != mangled && demangled[0] != '<') | |
12963 | { | |
12964 | /* Set the gsymbol language to Ada, but still return 0. | |
12965 | Two reasons for that: | |
12966 | ||
12967 | 1. For Ada, we prefer computing the symbol's decoded name | |
12968 | on the fly rather than pre-compute it, in order to save | |
12969 | memory (Ada projects are typically very large). | |
12970 | ||
12971 | 2. There are some areas in the definition of the GNAT | |
12972 | encoding where, with a bit of bad luck, we might be able | |
12973 | to decode a non-Ada symbol, generating an incorrect | |
12974 | demangled name (Eg: names ending with "TB" for instance | |
12975 | are identified as task bodies and so stripped from | |
12976 | the decoded name returned). | |
12977 | ||
12978 | Returning true, here, but not setting *DEMANGLED, helps us get | |
12979 | a little bit of the best of both worlds. Because we're last, | |
12980 | we should not affect any of the other languages that were | |
12981 | able to demangle the symbol before us; we get to correctly | |
12982 | tag Ada symbols as such; and even if we incorrectly tagged a | |
12983 | non-Ada symbol, which should be rare, any routing through the | |
12984 | Ada language should be transparent (Ada tries to behave much | |
12985 | like C/C++ with non-Ada symbols). */ | |
12986 | return true; | |
12987 | } | |
12988 | ||
12989 | return false; | |
12990 | } | |
fbfb0a46 AB |
12991 | |
12992 | /* See language.h. */ | |
12993 | ||
5399db93 | 12994 | char *demangle_symbol (const char *mangled, int options) const override |
0a50df5d AB |
12995 | { |
12996 | return ada_la_decode (mangled, options); | |
12997 | } | |
12998 | ||
12999 | /* See language.h. */ | |
13000 | ||
fbfb0a46 AB |
13001 | void print_type (struct type *type, const char *varstring, |
13002 | struct ui_file *stream, int show, int level, | |
13003 | const struct type_print_options *flags) const override | |
13004 | { | |
13005 | ada_print_type (type, varstring, stream, show, level, flags); | |
13006 | } | |
c9debfb9 | 13007 | |
53fc67f8 AB |
13008 | /* See language.h. */ |
13009 | ||
13010 | const char *word_break_characters (void) const override | |
13011 | { | |
13012 | return ada_completer_word_break_characters; | |
13013 | } | |
13014 | ||
7e56227d AB |
13015 | /* See language.h. */ |
13016 | ||
13017 | void collect_symbol_completion_matches (completion_tracker &tracker, | |
13018 | complete_symbol_mode mode, | |
13019 | symbol_name_match_type name_match_type, | |
13020 | const char *text, const char *word, | |
13021 | enum type_code code) const override | |
13022 | { | |
13023 | struct symbol *sym; | |
13024 | const struct block *b, *surrounding_static_block = 0; | |
13025 | struct block_iterator iter; | |
13026 | ||
13027 | gdb_assert (code == TYPE_CODE_UNDEF); | |
13028 | ||
13029 | lookup_name_info lookup_name (text, name_match_type, true); | |
13030 | ||
13031 | /* First, look at the partial symtab symbols. */ | |
13032 | expand_symtabs_matching (NULL, | |
13033 | lookup_name, | |
13034 | NULL, | |
13035 | NULL, | |
13036 | ALL_DOMAIN); | |
13037 | ||
13038 | /* At this point scan through the misc symbol vectors and add each | |
13039 | symbol you find to the list. Eventually we want to ignore | |
13040 | anything that isn't a text symbol (everything else will be | |
13041 | handled by the psymtab code above). */ | |
13042 | ||
13043 | for (objfile *objfile : current_program_space->objfiles ()) | |
13044 | { | |
13045 | for (minimal_symbol *msymbol : objfile->msymbols ()) | |
13046 | { | |
13047 | QUIT; | |
13048 | ||
13049 | if (completion_skip_symbol (mode, msymbol)) | |
13050 | continue; | |
13051 | ||
13052 | language symbol_language = msymbol->language (); | |
13053 | ||
13054 | /* Ada minimal symbols won't have their language set to Ada. If | |
13055 | we let completion_list_add_name compare using the | |
13056 | default/C-like matcher, then when completing e.g., symbols in a | |
13057 | package named "pck", we'd match internal Ada symbols like | |
13058 | "pckS", which are invalid in an Ada expression, unless you wrap | |
13059 | them in '<' '>' to request a verbatim match. | |
13060 | ||
13061 | Unfortunately, some Ada encoded names successfully demangle as | |
13062 | C++ symbols (using an old mangling scheme), such as "name__2Xn" | |
13063 | -> "Xn::name(void)" and thus some Ada minimal symbols end up | |
13064 | with the wrong language set. Paper over that issue here. */ | |
13065 | if (symbol_language == language_auto | |
13066 | || symbol_language == language_cplus) | |
13067 | symbol_language = language_ada; | |
13068 | ||
13069 | completion_list_add_name (tracker, | |
13070 | symbol_language, | |
13071 | msymbol->linkage_name (), | |
13072 | lookup_name, text, word); | |
13073 | } | |
13074 | } | |
13075 | ||
13076 | /* Search upwards from currently selected frame (so that we can | |
13077 | complete on local vars. */ | |
13078 | ||
13079 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
13080 | { | |
13081 | if (!BLOCK_SUPERBLOCK (b)) | |
13082 | surrounding_static_block = b; /* For elmin of dups */ | |
13083 | ||
13084 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13085 | { | |
13086 | if (completion_skip_symbol (mode, sym)) | |
13087 | continue; | |
13088 | ||
13089 | completion_list_add_name (tracker, | |
13090 | sym->language (), | |
13091 | sym->linkage_name (), | |
13092 | lookup_name, text, word); | |
13093 | } | |
13094 | } | |
13095 | ||
13096 | /* Go through the symtabs and check the externs and statics for | |
13097 | symbols which match. */ | |
13098 | ||
13099 | for (objfile *objfile : current_program_space->objfiles ()) | |
13100 | { | |
13101 | for (compunit_symtab *s : objfile->compunits ()) | |
13102 | { | |
13103 | QUIT; | |
13104 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); | |
13105 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13106 | { | |
13107 | if (completion_skip_symbol (mode, sym)) | |
13108 | continue; | |
13109 | ||
13110 | completion_list_add_name (tracker, | |
13111 | sym->language (), | |
13112 | sym->linkage_name (), | |
13113 | lookup_name, text, word); | |
13114 | } | |
13115 | } | |
13116 | } | |
13117 | ||
13118 | for (objfile *objfile : current_program_space->objfiles ()) | |
13119 | { | |
13120 | for (compunit_symtab *s : objfile->compunits ()) | |
13121 | { | |
13122 | QUIT; | |
13123 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); | |
13124 | /* Don't do this block twice. */ | |
13125 | if (b == surrounding_static_block) | |
13126 | continue; | |
13127 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13128 | { | |
13129 | if (completion_skip_symbol (mode, sym)) | |
13130 | continue; | |
13131 | ||
13132 | completion_list_add_name (tracker, | |
13133 | sym->language (), | |
13134 | sym->linkage_name (), | |
13135 | lookup_name, text, word); | |
13136 | } | |
13137 | } | |
13138 | } | |
13139 | } | |
13140 | ||
f16a9f57 AB |
13141 | /* See language.h. */ |
13142 | ||
13143 | gdb::unique_xmalloc_ptr<char> watch_location_expression | |
13144 | (struct type *type, CORE_ADDR addr) const override | |
13145 | { | |
13146 | type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type))); | |
13147 | std::string name = type_to_string (type); | |
13148 | return gdb::unique_xmalloc_ptr<char> | |
13149 | (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr))); | |
13150 | } | |
13151 | ||
a1d1fa3e AB |
13152 | /* See language.h. */ |
13153 | ||
13154 | void value_print (struct value *val, struct ui_file *stream, | |
13155 | const struct value_print_options *options) const override | |
13156 | { | |
13157 | return ada_value_print (val, stream, options); | |
13158 | } | |
13159 | ||
ebe2334e AB |
13160 | /* See language.h. */ |
13161 | ||
13162 | void value_print_inner | |
13163 | (struct value *val, struct ui_file *stream, int recurse, | |
13164 | const struct value_print_options *options) const override | |
13165 | { | |
13166 | return ada_value_print_inner (val, stream, recurse, options); | |
13167 | } | |
13168 | ||
a78a19b1 AB |
13169 | /* See language.h. */ |
13170 | ||
13171 | struct block_symbol lookup_symbol_nonlocal | |
13172 | (const char *name, const struct block *block, | |
13173 | const domain_enum domain) const override | |
13174 | { | |
13175 | struct block_symbol sym; | |
13176 | ||
13177 | sym = ada_lookup_symbol (name, block_static_block (block), domain); | |
13178 | if (sym.symbol != NULL) | |
13179 | return sym; | |
13180 | ||
13181 | /* If we haven't found a match at this point, try the primitive | |
13182 | types. In other languages, this search is performed before | |
13183 | searching for global symbols in order to short-circuit that | |
13184 | global-symbol search if it happens that the name corresponds | |
13185 | to a primitive type. But we cannot do the same in Ada, because | |
13186 | it is perfectly legitimate for a program to declare a type which | |
13187 | has the same name as a standard type. If looking up a type in | |
13188 | that situation, we have traditionally ignored the primitive type | |
13189 | in favor of user-defined types. This is why, unlike most other | |
13190 | languages, we search the primitive types this late and only after | |
13191 | having searched the global symbols without success. */ | |
13192 | ||
13193 | if (domain == VAR_DOMAIN) | |
13194 | { | |
13195 | struct gdbarch *gdbarch; | |
13196 | ||
13197 | if (block == NULL) | |
13198 | gdbarch = target_gdbarch (); | |
13199 | else | |
13200 | gdbarch = block_gdbarch (block); | |
13201 | sym.symbol | |
13202 | = language_lookup_primitive_type_as_symbol (this, gdbarch, name); | |
13203 | if (sym.symbol != NULL) | |
13204 | return sym; | |
13205 | } | |
13206 | ||
13207 | return {}; | |
13208 | } | |
13209 | ||
87afa652 AB |
13210 | /* See language.h. */ |
13211 | ||
13212 | int parser (struct parser_state *ps) const override | |
13213 | { | |
13214 | warnings_issued = 0; | |
13215 | return ada_parse (ps); | |
13216 | } | |
13217 | ||
ec8cec5b AB |
13218 | /* See language.h. */ |
13219 | ||
13220 | void emitchar (int ch, struct type *chtype, | |
13221 | struct ui_file *stream, int quoter) const override | |
13222 | { | |
13223 | ada_emit_char (ch, chtype, stream, quoter, 1); | |
13224 | } | |
13225 | ||
52b50f2c AB |
13226 | /* See language.h. */ |
13227 | ||
13228 | void printchar (int ch, struct type *chtype, | |
13229 | struct ui_file *stream) const override | |
13230 | { | |
13231 | ada_printchar (ch, chtype, stream); | |
13232 | } | |
13233 | ||
d711ee67 AB |
13234 | /* See language.h. */ |
13235 | ||
13236 | void printstr (struct ui_file *stream, struct type *elttype, | |
13237 | const gdb_byte *string, unsigned int length, | |
13238 | const char *encoding, int force_ellipses, | |
13239 | const struct value_print_options *options) const override | |
13240 | { | |
13241 | ada_printstr (stream, elttype, string, length, encoding, | |
13242 | force_ellipses, options); | |
13243 | } | |
13244 | ||
4ffc13fb AB |
13245 | /* See language.h. */ |
13246 | ||
13247 | void print_typedef (struct type *type, struct symbol *new_symbol, | |
13248 | struct ui_file *stream) const override | |
13249 | { | |
13250 | ada_print_typedef (type, new_symbol, stream); | |
13251 | } | |
13252 | ||
39e7ecca AB |
13253 | /* See language.h. */ |
13254 | ||
13255 | bool is_string_type_p (struct type *type) const override | |
13256 | { | |
13257 | return ada_is_string_type (type); | |
13258 | } | |
13259 | ||
22e3f3ed AB |
13260 | /* See language.h. */ |
13261 | ||
13262 | const char *struct_too_deep_ellipsis () const override | |
13263 | { return "(...)"; } | |
39e7ecca | 13264 | |
67bd3fd5 AB |
13265 | /* See language.h. */ |
13266 | ||
13267 | bool c_style_arrays_p () const override | |
13268 | { return false; } | |
13269 | ||
d3355e4d AB |
13270 | /* See language.h. */ |
13271 | ||
13272 | bool store_sym_names_in_linkage_form_p () const override | |
13273 | { return true; } | |
13274 | ||
b63a3f3f AB |
13275 | /* See language.h. */ |
13276 | ||
13277 | const struct lang_varobj_ops *varobj_ops () const override | |
13278 | { return &ada_varobj_ops; } | |
13279 | ||
c9debfb9 AB |
13280 | protected: |
13281 | /* See language.h. */ | |
13282 | ||
13283 | symbol_name_matcher_ftype *get_symbol_name_matcher_inner | |
13284 | (const lookup_name_info &lookup_name) const override | |
13285 | { | |
13286 | return ada_get_symbol_name_matcher (lookup_name); | |
13287 | } | |
0874fd07 AB |
13288 | }; |
13289 | ||
13290 | /* Single instance of the Ada language class. */ | |
13291 | ||
13292 | static ada_language ada_language_defn; | |
13293 | ||
5bf03f13 JB |
13294 | /* Command-list for the "set/show ada" prefix command. */ |
13295 | static struct cmd_list_element *set_ada_list; | |
13296 | static struct cmd_list_element *show_ada_list; | |
13297 | ||
2060206e PA |
13298 | static void |
13299 | initialize_ada_catchpoint_ops (void) | |
13300 | { | |
13301 | struct breakpoint_ops *ops; | |
13302 | ||
13303 | initialize_breakpoint_ops (); | |
13304 | ||
13305 | ops = &catch_exception_breakpoint_ops; | |
13306 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
13307 | ops->allocate_location = allocate_location_exception; |
13308 | ops->re_set = re_set_exception; | |
13309 | ops->check_status = check_status_exception; | |
13310 | ops->print_it = print_it_exception; | |
13311 | ops->print_one = print_one_exception; | |
13312 | ops->print_mention = print_mention_exception; | |
13313 | ops->print_recreate = print_recreate_exception; | |
2060206e PA |
13314 | |
13315 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13316 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
13317 | ops->allocate_location = allocate_location_exception; |
13318 | ops->re_set = re_set_exception; | |
13319 | ops->check_status = check_status_exception; | |
13320 | ops->print_it = print_it_exception; | |
13321 | ops->print_one = print_one_exception; | |
13322 | ops->print_mention = print_mention_exception; | |
13323 | ops->print_recreate = print_recreate_exception; | |
2060206e PA |
13324 | |
13325 | ops = &catch_assert_breakpoint_ops; | |
13326 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
13327 | ops->allocate_location = allocate_location_exception; |
13328 | ops->re_set = re_set_exception; | |
13329 | ops->check_status = check_status_exception; | |
13330 | ops->print_it = print_it_exception; | |
13331 | ops->print_one = print_one_exception; | |
13332 | ops->print_mention = print_mention_exception; | |
13333 | ops->print_recreate = print_recreate_exception; | |
9f757bf7 XR |
13334 | |
13335 | ops = &catch_handlers_breakpoint_ops; | |
13336 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
13337 | ops->allocate_location = allocate_location_exception; |
13338 | ops->re_set = re_set_exception; | |
13339 | ops->check_status = check_status_exception; | |
13340 | ops->print_it = print_it_exception; | |
13341 | ops->print_one = print_one_exception; | |
13342 | ops->print_mention = print_mention_exception; | |
13343 | ops->print_recreate = print_recreate_exception; | |
2060206e PA |
13344 | } |
13345 | ||
3d9434b5 JB |
13346 | /* This module's 'new_objfile' observer. */ |
13347 | ||
13348 | static void | |
13349 | ada_new_objfile_observer (struct objfile *objfile) | |
13350 | { | |
13351 | ada_clear_symbol_cache (); | |
13352 | } | |
13353 | ||
13354 | /* This module's 'free_objfile' observer. */ | |
13355 | ||
13356 | static void | |
13357 | ada_free_objfile_observer (struct objfile *objfile) | |
13358 | { | |
13359 | ada_clear_symbol_cache (); | |
13360 | } | |
13361 | ||
6c265988 | 13362 | void _initialize_ada_language (); |
d2e4a39e | 13363 | void |
6c265988 | 13364 | _initialize_ada_language () |
14f9c5c9 | 13365 | { |
2060206e PA |
13366 | initialize_ada_catchpoint_ops (); |
13367 | ||
0743fc83 TT |
13368 | add_basic_prefix_cmd ("ada", no_class, |
13369 | _("Prefix command for changing Ada-specific settings."), | |
13370 | &set_ada_list, "set ada ", 0, &setlist); | |
5bf03f13 | 13371 | |
0743fc83 TT |
13372 | add_show_prefix_cmd ("ada", no_class, |
13373 | _("Generic command for showing Ada-specific settings."), | |
13374 | &show_ada_list, "show ada ", 0, &showlist); | |
5bf03f13 JB |
13375 | |
13376 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
dda83cd7 | 13377 | &trust_pad_over_xvs, _("\ |
590042fc PW |
13378 | Enable or disable an optimization trusting PAD types over XVS types."), _("\ |
13379 | Show whether an optimization trusting PAD types over XVS types is activated."), | |
dda83cd7 | 13380 | _("\ |
5bf03f13 JB |
13381 | This is related to the encoding used by the GNAT compiler. The debugger\n\ |
13382 | should normally trust the contents of PAD types, but certain older versions\n\ | |
13383 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
13384 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
13385 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
13386 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
13387 | this option to \"off\" unless necessary."), | |
dda83cd7 | 13388 | NULL, NULL, &set_ada_list, &show_ada_list); |
5bf03f13 | 13389 | |
d72413e6 PMR |
13390 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
13391 | &print_signatures, _("\ | |
13392 | Enable or disable the output of formal and return types for functions in the \ | |
590042fc | 13393 | overloads selection menu."), _("\ |
d72413e6 | 13394 | Show whether the output of formal and return types for functions in the \ |
590042fc | 13395 | overloads selection menu is activated."), |
d72413e6 PMR |
13396 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); |
13397 | ||
9ac4176b PA |
13398 | add_catch_command ("exception", _("\ |
13399 | Catch Ada exceptions, when raised.\n\ | |
9bf7038b | 13400 | Usage: catch exception [ARG] [if CONDITION]\n\ |
60a90376 JB |
13401 | Without any argument, stop when any Ada exception is raised.\n\ |
13402 | If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\ | |
13403 | being raised does not have a handler (and will therefore lead to the task's\n\ | |
13404 | termination).\n\ | |
13405 | Otherwise, the catchpoint only stops when the name of the exception being\n\ | |
9bf7038b TT |
13406 | raised is the same as ARG.\n\ |
13407 | CONDITION is a boolean expression that is evaluated to see whether the\n\ | |
13408 | exception should cause a stop."), | |
9ac4176b | 13409 | catch_ada_exception_command, |
71bed2db | 13410 | catch_ada_completer, |
9ac4176b PA |
13411 | CATCH_PERMANENT, |
13412 | CATCH_TEMPORARY); | |
9f757bf7 XR |
13413 | |
13414 | add_catch_command ("handlers", _("\ | |
13415 | Catch Ada exceptions, when handled.\n\ | |
9bf7038b TT |
13416 | Usage: catch handlers [ARG] [if CONDITION]\n\ |
13417 | Without any argument, stop when any Ada exception is handled.\n\ | |
13418 | With an argument, catch only exceptions with the given name.\n\ | |
13419 | CONDITION is a boolean expression that is evaluated to see whether the\n\ | |
13420 | exception should cause a stop."), | |
9f757bf7 | 13421 | catch_ada_handlers_command, |
dda83cd7 | 13422 | catch_ada_completer, |
9f757bf7 XR |
13423 | CATCH_PERMANENT, |
13424 | CATCH_TEMPORARY); | |
9ac4176b PA |
13425 | add_catch_command ("assert", _("\ |
13426 | Catch failed Ada assertions, when raised.\n\ | |
9bf7038b TT |
13427 | Usage: catch assert [if CONDITION]\n\ |
13428 | CONDITION is a boolean expression that is evaluated to see whether the\n\ | |
13429 | exception should cause a stop."), | |
9ac4176b | 13430 | catch_assert_command, |
dda83cd7 | 13431 | NULL, |
9ac4176b PA |
13432 | CATCH_PERMANENT, |
13433 | CATCH_TEMPORARY); | |
13434 | ||
6c038f32 | 13435 | varsize_limit = 65536; |
3fcded8f JB |
13436 | add_setshow_uinteger_cmd ("varsize-limit", class_support, |
13437 | &varsize_limit, _("\ | |
13438 | Set the maximum number of bytes allowed in a variable-size object."), _("\ | |
13439 | Show the maximum number of bytes allowed in a variable-size object."), _("\ | |
13440 | Attempts to access an object whose size is not a compile-time constant\n\ | |
13441 | and exceeds this limit will cause an error."), | |
13442 | NULL, NULL, &setlist, &showlist); | |
6c038f32 | 13443 | |
778865d3 JB |
13444 | add_info ("exceptions", info_exceptions_command, |
13445 | _("\ | |
13446 | List all Ada exception names.\n\ | |
9bf7038b | 13447 | Usage: info exceptions [REGEXP]\n\ |
778865d3 JB |
13448 | If a regular expression is passed as an argument, only those matching\n\ |
13449 | the regular expression are listed.")); | |
13450 | ||
0743fc83 TT |
13451 | add_basic_prefix_cmd ("ada", class_maintenance, |
13452 | _("Set Ada maintenance-related variables."), | |
13453 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
13454 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
c6044dd1 | 13455 | |
0743fc83 TT |
13456 | add_show_prefix_cmd ("ada", class_maintenance, |
13457 | _("Show Ada maintenance-related variables."), | |
13458 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
13459 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
c6044dd1 JB |
13460 | |
13461 | add_setshow_boolean_cmd | |
13462 | ("ignore-descriptive-types", class_maintenance, | |
13463 | &ada_ignore_descriptive_types_p, | |
13464 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
13465 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
13466 | _("\ | |
13467 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
13468 | DWARF attribute."), | |
13469 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
13470 | ||
459a2e4c TT |
13471 | decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash, |
13472 | NULL, xcalloc, xfree); | |
6b69afc4 | 13473 | |
3d9434b5 | 13474 | /* The ada-lang observers. */ |
76727919 TT |
13475 | gdb::observers::new_objfile.attach (ada_new_objfile_observer); |
13476 | gdb::observers::free_objfile.attach (ada_free_objfile_observer); | |
13477 | gdb::observers::inferior_exit.attach (ada_inferior_exit); | |
14f9c5c9 | 13478 | } |