]>
Commit | Line | Data |
---|---|---|
b352eebf | 1 | /* Support for HPPA 64-bit ELF |
157090f7 | 2 | Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 |
5a580b3a | 3 | Free Software Foundation, Inc. |
15bda425 | 4 | |
ae9a127f | 5 | This file is part of BFD, the Binary File Descriptor library. |
15bda425 | 6 | |
ae9a127f NC |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 9 | the Free Software Foundation; either version 3 of the License, or |
ae9a127f | 10 | (at your option) any later version. |
15bda425 | 11 | |
ae9a127f NC |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
15bda425 | 16 | |
ae9a127f NC |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
19 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
20 | MA 02110-1301, USA. */ | |
15bda425 | 21 | |
3ef20aaa | 22 | #include "alloca-conf.h" |
15bda425 | 23 | #include "sysdep.h" |
3db64b00 | 24 | #include "bfd.h" |
15bda425 JL |
25 | #include "libbfd.h" |
26 | #include "elf-bfd.h" | |
27 | #include "elf/hppa.h" | |
28 | #include "libhppa.h" | |
29 | #include "elf64-hppa.h" | |
30 | #define ARCH_SIZE 64 | |
31 | ||
32 | #define PLT_ENTRY_SIZE 0x10 | |
33 | #define DLT_ENTRY_SIZE 0x8 | |
34 | #define OPD_ENTRY_SIZE 0x20 | |
fe8bc63d | 35 | |
15bda425 JL |
36 | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" |
37 | ||
38 | /* The stub is supposed to load the target address and target's DP | |
39 | value out of the PLT, then do an external branch to the target | |
40 | address. | |
41 | ||
42 | LDD PLTOFF(%r27),%r1 | |
43 | BVE (%r1) | |
44 | LDD PLTOFF+8(%r27),%r27 | |
45 | ||
46 | Note that we must use the LDD with a 14 bit displacement, not the one | |
47 | with a 5 bit displacement. */ | |
48 | static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, | |
49 | 0x53, 0x7b, 0x00, 0x00 }; | |
50 | ||
51 | struct elf64_hppa_dyn_hash_entry | |
52 | { | |
53 | struct bfd_hash_entry root; | |
54 | ||
55 | /* Offsets for this symbol in various linker sections. */ | |
56 | bfd_vma dlt_offset; | |
57 | bfd_vma plt_offset; | |
58 | bfd_vma opd_offset; | |
59 | bfd_vma stub_offset; | |
60 | ||
edd21aca | 61 | /* The symbol table entry, if any, that this was derived from. */ |
15bda425 JL |
62 | struct elf_link_hash_entry *h; |
63 | ||
64 | /* The index of the (possibly local) symbol in the input bfd and its | |
65 | associated BFD. Needed so that we can have relocs against local | |
66 | symbols in shared libraries. */ | |
dc810e39 | 67 | long sym_indx; |
15bda425 JL |
68 | bfd *owner; |
69 | ||
70 | /* Dynamic symbols may need to have two different values. One for | |
71 | the dynamic symbol table, one for the normal symbol table. | |
72 | ||
73 | In such cases we store the symbol's real value and section | |
74 | index here so we can restore the real value before we write | |
75 | the normal symbol table. */ | |
76 | bfd_vma st_value; | |
77 | int st_shndx; | |
78 | ||
79 | /* Used to count non-got, non-plt relocations for delayed sizing | |
80 | of relocation sections. */ | |
81 | struct elf64_hppa_dyn_reloc_entry | |
82 | { | |
83 | /* Next relocation in the chain. */ | |
84 | struct elf64_hppa_dyn_reloc_entry *next; | |
85 | ||
86 | /* The type of the relocation. */ | |
87 | int type; | |
88 | ||
89 | /* The input section of the relocation. */ | |
90 | asection *sec; | |
91 | ||
92 | /* The index of the section symbol for the input section of | |
93 | the relocation. Only needed when building shared libraries. */ | |
94 | int sec_symndx; | |
95 | ||
96 | /* The offset within the input section of the relocation. */ | |
97 | bfd_vma offset; | |
98 | ||
99 | /* The addend for the relocation. */ | |
100 | bfd_vma addend; | |
101 | ||
102 | } *reloc_entries; | |
103 | ||
104 | /* Nonzero if this symbol needs an entry in one of the linker | |
105 | sections. */ | |
106 | unsigned want_dlt; | |
107 | unsigned want_plt; | |
108 | unsigned want_opd; | |
109 | unsigned want_stub; | |
110 | }; | |
111 | ||
112 | struct elf64_hppa_dyn_hash_table | |
113 | { | |
114 | struct bfd_hash_table root; | |
115 | }; | |
116 | ||
117 | struct elf64_hppa_link_hash_table | |
118 | { | |
119 | struct elf_link_hash_table root; | |
120 | ||
121 | /* Shortcuts to get to the various linker defined sections. */ | |
122 | asection *dlt_sec; | |
123 | asection *dlt_rel_sec; | |
124 | asection *plt_sec; | |
125 | asection *plt_rel_sec; | |
126 | asection *opd_sec; | |
127 | asection *opd_rel_sec; | |
128 | asection *other_rel_sec; | |
129 | ||
130 | /* Offset of __gp within .plt section. When the PLT gets large we want | |
131 | to slide __gp into the PLT section so that we can continue to use | |
132 | single DP relative instructions to load values out of the PLT. */ | |
133 | bfd_vma gp_offset; | |
134 | ||
135 | /* Note this is not strictly correct. We should create a stub section for | |
136 | each input section with calls. The stub section should be placed before | |
137 | the section with the call. */ | |
138 | asection *stub_sec; | |
139 | ||
140 | bfd_vma text_segment_base; | |
141 | bfd_vma data_segment_base; | |
142 | ||
143 | struct elf64_hppa_dyn_hash_table dyn_hash_table; | |
144 | ||
145 | /* We build tables to map from an input section back to its | |
146 | symbol index. This is the BFD for which we currently have | |
147 | a map. */ | |
148 | bfd *section_syms_bfd; | |
149 | ||
150 | /* Array of symbol numbers for each input section attached to the | |
151 | current BFD. */ | |
152 | int *section_syms; | |
153 | }; | |
154 | ||
155 | #define elf64_hppa_hash_table(p) \ | |
156 | ((struct elf64_hppa_link_hash_table *) ((p)->hash)) | |
157 | ||
158 | typedef struct bfd_hash_entry *(*new_hash_entry_func) | |
159 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
160 | ||
15bda425 JL |
161 | static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry |
162 | PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table, | |
163 | const char *string)); | |
164 | static struct bfd_link_hash_table *elf64_hppa_hash_table_create | |
165 | PARAMS ((bfd *abfd)); | |
166 | static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup | |
167 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string, | |
b34976b6 | 168 | bfd_boolean create, bfd_boolean copy)); |
15bda425 JL |
169 | static void elf64_hppa_dyn_hash_traverse |
170 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, | |
b34976b6 | 171 | bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR), |
15bda425 JL |
172 | PTR info)); |
173 | ||
174 | static const char *get_dyn_name | |
d63b5ed9 | 175 | PARAMS ((bfd *, struct elf_link_hash_entry *, |
0ba2a60e | 176 | const Elf_Internal_Rela *, char **, size_t *)); |
15bda425 | 177 | |
15bda425 JL |
178 | /* This must follow the definitions of the various derived linker |
179 | hash tables and shared functions. */ | |
180 | #include "elf-hppa.h" | |
181 | ||
b34976b6 | 182 | static bfd_boolean elf64_hppa_object_p |
15bda425 JL |
183 | PARAMS ((bfd *)); |
184 | ||
15bda425 JL |
185 | static void elf64_hppa_post_process_headers |
186 | PARAMS ((bfd *, struct bfd_link_info *)); | |
187 | ||
b34976b6 | 188 | static bfd_boolean elf64_hppa_create_dynamic_sections |
15bda425 JL |
189 | PARAMS ((bfd *, struct bfd_link_info *)); |
190 | ||
b34976b6 | 191 | static bfd_boolean elf64_hppa_adjust_dynamic_symbol |
15bda425 JL |
192 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); |
193 | ||
b34976b6 | 194 | static bfd_boolean elf64_hppa_mark_milli_and_exported_functions |
47b7c2db AM |
195 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
196 | ||
b34976b6 | 197 | static bfd_boolean elf64_hppa_size_dynamic_sections |
15bda425 JL |
198 | PARAMS ((bfd *, struct bfd_link_info *)); |
199 | ||
b34976b6 | 200 | static bfd_boolean elf64_hppa_link_output_symbol_hook |
754021d0 AM |
201 | PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *, |
202 | asection *, struct elf_link_hash_entry *)); | |
99c79b2e | 203 | |
b34976b6 | 204 | static bfd_boolean elf64_hppa_finish_dynamic_symbol |
15bda425 JL |
205 | PARAMS ((bfd *, struct bfd_link_info *, |
206 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
fe8bc63d | 207 | |
5ac81c74 JL |
208 | static enum elf_reloc_type_class elf64_hppa_reloc_type_class |
209 | PARAMS ((const Elf_Internal_Rela *)); | |
210 | ||
b34976b6 | 211 | static bfd_boolean elf64_hppa_finish_dynamic_sections |
15bda425 JL |
212 | PARAMS ((bfd *, struct bfd_link_info *)); |
213 | ||
b34976b6 | 214 | static bfd_boolean elf64_hppa_check_relocs |
15bda425 JL |
215 | PARAMS ((bfd *, struct bfd_link_info *, |
216 | asection *, const Elf_Internal_Rela *)); | |
217 | ||
b34976b6 | 218 | static bfd_boolean elf64_hppa_dynamic_symbol_p |
15bda425 JL |
219 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); |
220 | ||
b34976b6 | 221 | static bfd_boolean elf64_hppa_mark_exported_functions |
15bda425 JL |
222 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
223 | ||
b34976b6 | 224 | static bfd_boolean elf64_hppa_finalize_opd |
15bda425 JL |
225 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
226 | ||
b34976b6 | 227 | static bfd_boolean elf64_hppa_finalize_dlt |
15bda425 JL |
228 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
229 | ||
b34976b6 | 230 | static bfd_boolean allocate_global_data_dlt |
15bda425 JL |
231 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
232 | ||
b34976b6 | 233 | static bfd_boolean allocate_global_data_plt |
15bda425 JL |
234 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
235 | ||
b34976b6 | 236 | static bfd_boolean allocate_global_data_stub |
15bda425 JL |
237 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
238 | ||
b34976b6 | 239 | static bfd_boolean allocate_global_data_opd |
15bda425 JL |
240 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
241 | ||
b34976b6 | 242 | static bfd_boolean get_reloc_section |
15bda425 JL |
243 | PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *)); |
244 | ||
b34976b6 | 245 | static bfd_boolean count_dyn_reloc |
15bda425 JL |
246 | PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *, |
247 | int, asection *, int, bfd_vma, bfd_vma)); | |
248 | ||
b34976b6 | 249 | static bfd_boolean allocate_dynrel_entries |
15bda425 JL |
250 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
251 | ||
b34976b6 | 252 | static bfd_boolean elf64_hppa_finalize_dynreloc |
15bda425 JL |
253 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
254 | ||
b34976b6 | 255 | static bfd_boolean get_opd |
15bda425 JL |
256 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
257 | ||
b34976b6 | 258 | static bfd_boolean get_plt |
15bda425 JL |
259 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
260 | ||
b34976b6 | 261 | static bfd_boolean get_dlt |
15bda425 JL |
262 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
263 | ||
b34976b6 | 264 | static bfd_boolean get_stub |
15bda425 JL |
265 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
266 | ||
3fab46d0 AM |
267 | static int elf64_hppa_elf_get_symbol_type |
268 | PARAMS ((Elf_Internal_Sym *, int)); | |
269 | ||
b34976b6 | 270 | static bfd_boolean |
66eb6687 AM |
271 | elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht, |
272 | bfd *abfd ATTRIBUTE_UNUSED, | |
273 | new_hash_entry_func new, | |
274 | unsigned int entsize) | |
15bda425 | 275 | { |
fe8bc63d | 276 | memset (ht, 0, sizeof (*ht)); |
66eb6687 | 277 | return bfd_hash_table_init (&ht->root, new, entsize); |
15bda425 JL |
278 | } |
279 | ||
280 | static struct bfd_hash_entry* | |
281 | elf64_hppa_new_dyn_hash_entry (entry, table, string) | |
282 | struct bfd_hash_entry *entry; | |
283 | struct bfd_hash_table *table; | |
284 | const char *string; | |
285 | { | |
286 | struct elf64_hppa_dyn_hash_entry *ret; | |
287 | ret = (struct elf64_hppa_dyn_hash_entry *) entry; | |
288 | ||
289 | /* Allocate the structure if it has not already been allocated by a | |
290 | subclass. */ | |
291 | if (!ret) | |
292 | ret = bfd_hash_allocate (table, sizeof (*ret)); | |
293 | ||
294 | if (!ret) | |
295 | return 0; | |
296 | ||
15bda425 JL |
297 | /* Call the allocation method of the superclass. */ |
298 | ret = ((struct elf64_hppa_dyn_hash_entry *) | |
299 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); | |
300 | ||
336549c1 AM |
301 | /* Initialize our local data. All zeros. */ |
302 | memset (&ret->dlt_offset, 0, | |
303 | (sizeof (struct elf64_hppa_dyn_hash_entry) | |
304 | - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset))); | |
305 | ||
15bda425 JL |
306 | return &ret->root; |
307 | } | |
308 | ||
309 | /* Create the derived linker hash table. The PA64 ELF port uses this | |
310 | derived hash table to keep information specific to the PA ElF | |
311 | linker (without using static variables). */ | |
312 | ||
313 | static struct bfd_link_hash_table* | |
314 | elf64_hppa_hash_table_create (abfd) | |
315 | bfd *abfd; | |
316 | { | |
317 | struct elf64_hppa_link_hash_table *ret; | |
318 | ||
dc810e39 | 319 | ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret)); |
15bda425 JL |
320 | if (!ret) |
321 | return 0; | |
322 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | |
66eb6687 AM |
323 | _bfd_elf_link_hash_newfunc, |
324 | sizeof (struct elf_link_hash_entry))) | |
15bda425 JL |
325 | { |
326 | bfd_release (abfd, ret); | |
327 | return 0; | |
328 | } | |
329 | ||
330 | if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd, | |
66eb6687 AM |
331 | elf64_hppa_new_dyn_hash_entry, |
332 | sizeof (struct elf64_hppa_dyn_hash_entry))) | |
15bda425 JL |
333 | return 0; |
334 | return &ret->root.root; | |
335 | } | |
336 | ||
337 | /* Look up an entry in a PA64 ELF linker hash table. */ | |
338 | ||
339 | static struct elf64_hppa_dyn_hash_entry * | |
340 | elf64_hppa_dyn_hash_lookup(table, string, create, copy) | |
341 | struct elf64_hppa_dyn_hash_table *table; | |
342 | const char *string; | |
b34976b6 | 343 | bfd_boolean create, copy; |
15bda425 JL |
344 | { |
345 | return ((struct elf64_hppa_dyn_hash_entry *) | |
346 | bfd_hash_lookup (&table->root, string, create, copy)); | |
347 | } | |
348 | ||
349 | /* Traverse a PA64 ELF linker hash table. */ | |
350 | ||
351 | static void | |
352 | elf64_hppa_dyn_hash_traverse (table, func, info) | |
353 | struct elf64_hppa_dyn_hash_table *table; | |
b34976b6 | 354 | bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
15bda425 JL |
355 | PTR info; |
356 | { | |
357 | (bfd_hash_traverse | |
358 | (&table->root, | |
b34976b6 | 359 | (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func, |
15bda425 JL |
360 | info)); |
361 | } | |
362 | \f | |
363 | /* Return nonzero if ABFD represents a PA2.0 ELF64 file. | |
364 | ||
365 | Additionally we set the default architecture and machine. */ | |
b34976b6 | 366 | static bfd_boolean |
15bda425 JL |
367 | elf64_hppa_object_p (abfd) |
368 | bfd *abfd; | |
369 | { | |
24a5e751 L |
370 | Elf_Internal_Ehdr * i_ehdrp; |
371 | unsigned int flags; | |
d9634ba1 | 372 | |
24a5e751 L |
373 | i_ehdrp = elf_elfheader (abfd); |
374 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) | |
375 | { | |
6c21aa76 NC |
376 | /* GCC on hppa-linux produces binaries with OSABI=Linux, |
377 | but the kernel produces corefiles with OSABI=SysV. */ | |
d97a8924 DA |
378 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX |
379 | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | |
b34976b6 | 380 | return FALSE; |
24a5e751 L |
381 | } |
382 | else | |
383 | { | |
d97a8924 DA |
384 | /* HPUX produces binaries with OSABI=HPUX, |
385 | but the kernel produces corefiles with OSABI=SysV. */ | |
386 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX | |
387 | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | |
b34976b6 | 388 | return FALSE; |
24a5e751 L |
389 | } |
390 | ||
391 | flags = i_ehdrp->e_flags; | |
d9634ba1 AM |
392 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
393 | { | |
394 | case EFA_PARISC_1_0: | |
395 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | |
396 | case EFA_PARISC_1_1: | |
397 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | |
398 | case EFA_PARISC_2_0: | |
d97a8924 DA |
399 | if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) |
400 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
401 | else | |
402 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | |
d9634ba1 AM |
403 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: |
404 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
405 | } | |
406 | /* Don't be fussy. */ | |
b34976b6 | 407 | return TRUE; |
15bda425 JL |
408 | } |
409 | ||
410 | /* Given section type (hdr->sh_type), return a boolean indicating | |
411 | whether or not the section is an elf64-hppa specific section. */ | |
b34976b6 | 412 | static bfd_boolean |
6dc132d9 L |
413 | elf64_hppa_section_from_shdr (bfd *abfd, |
414 | Elf_Internal_Shdr *hdr, | |
415 | const char *name, | |
416 | int shindex) | |
15bda425 JL |
417 | { |
418 | asection *newsect; | |
419 | ||
420 | switch (hdr->sh_type) | |
421 | { | |
422 | case SHT_PARISC_EXT: | |
423 | if (strcmp (name, ".PARISC.archext") != 0) | |
b34976b6 | 424 | return FALSE; |
15bda425 JL |
425 | break; |
426 | case SHT_PARISC_UNWIND: | |
427 | if (strcmp (name, ".PARISC.unwind") != 0) | |
b34976b6 | 428 | return FALSE; |
15bda425 JL |
429 | break; |
430 | case SHT_PARISC_DOC: | |
431 | case SHT_PARISC_ANNOT: | |
432 | default: | |
b34976b6 | 433 | return FALSE; |
15bda425 JL |
434 | } |
435 | ||
6dc132d9 | 436 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 437 | return FALSE; |
15bda425 JL |
438 | newsect = hdr->bfd_section; |
439 | ||
b34976b6 | 440 | return TRUE; |
15bda425 JL |
441 | } |
442 | ||
15bda425 | 443 | /* Construct a string for use in the elf64_hppa_dyn_hash_table. The |
fe8bc63d | 444 | name describes what was once potentially anonymous memory. We |
15bda425 JL |
445 | allocate memory as necessary, possibly reusing PBUF/PLEN. */ |
446 | ||
447 | static const char * | |
d63b5ed9 DA |
448 | get_dyn_name (abfd, h, rel, pbuf, plen) |
449 | bfd *abfd; | |
15bda425 JL |
450 | struct elf_link_hash_entry *h; |
451 | const Elf_Internal_Rela *rel; | |
452 | char **pbuf; | |
453 | size_t *plen; | |
454 | { | |
d63b5ed9 | 455 | asection *sec = abfd->sections; |
15bda425 JL |
456 | size_t nlen, tlen; |
457 | char *buf; | |
458 | size_t len; | |
459 | ||
460 | if (h && rel->r_addend == 0) | |
461 | return h->root.root.string; | |
462 | ||
463 | if (h) | |
464 | nlen = strlen (h->root.root.string); | |
465 | else | |
0ba2a60e AM |
466 | nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8; |
467 | tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1; | |
15bda425 JL |
468 | |
469 | len = *plen; | |
470 | buf = *pbuf; | |
471 | if (len < tlen) | |
472 | { | |
473 | if (buf) | |
474 | free (buf); | |
475 | *pbuf = buf = malloc (tlen); | |
476 | *plen = len = tlen; | |
477 | if (!buf) | |
478 | return NULL; | |
479 | } | |
480 | ||
481 | if (h) | |
482 | { | |
483 | memcpy (buf, h->root.root.string, nlen); | |
0ba2a60e | 484 | buf[nlen++] = '+'; |
15bda425 JL |
485 | sprintf_vma (buf + nlen, rel->r_addend); |
486 | } | |
487 | else | |
488 | { | |
0ba2a60e AM |
489 | nlen = sprintf (buf, "%x:%lx", |
490 | sec->id & 0xffffffff, | |
491 | (long) ELF64_R_SYM (rel->r_info)); | |
15bda425 JL |
492 | if (rel->r_addend) |
493 | { | |
494 | buf[nlen++] = '+'; | |
495 | sprintf_vma (buf + nlen, rel->r_addend); | |
496 | } | |
497 | } | |
498 | ||
499 | return buf; | |
500 | } | |
501 | ||
502 | /* SEC is a section containing relocs for an input BFD when linking; return | |
503 | a suitable section for holding relocs in the output BFD for a link. */ | |
504 | ||
b34976b6 | 505 | static bfd_boolean |
15bda425 JL |
506 | get_reloc_section (abfd, hppa_info, sec) |
507 | bfd *abfd; | |
508 | struct elf64_hppa_link_hash_table *hppa_info; | |
509 | asection *sec; | |
510 | { | |
511 | const char *srel_name; | |
512 | asection *srel; | |
513 | bfd *dynobj; | |
514 | ||
515 | srel_name = (bfd_elf_string_from_elf_section | |
516 | (abfd, elf_elfheader(abfd)->e_shstrndx, | |
517 | elf_section_data(sec)->rel_hdr.sh_name)); | |
518 | if (srel_name == NULL) | |
b34976b6 | 519 | return FALSE; |
15bda425 | 520 | |
0112cd26 | 521 | BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela") |
15bda425 | 522 | && strcmp (bfd_get_section_name (abfd, sec), |
0112cd26 NC |
523 | srel_name + 5) == 0) |
524 | || (CONST_STRNEQ (srel_name, ".rel") | |
15bda425 | 525 | && strcmp (bfd_get_section_name (abfd, sec), |
0112cd26 | 526 | srel_name + 4) == 0)); |
15bda425 JL |
527 | |
528 | dynobj = hppa_info->root.dynobj; | |
529 | if (!dynobj) | |
530 | hppa_info->root.dynobj = dynobj = abfd; | |
531 | ||
532 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
533 | if (srel == NULL) | |
534 | { | |
3496cb2a L |
535 | srel = bfd_make_section_with_flags (dynobj, srel_name, |
536 | (SEC_ALLOC | |
537 | | SEC_LOAD | |
538 | | SEC_HAS_CONTENTS | |
539 | | SEC_IN_MEMORY | |
540 | | SEC_LINKER_CREATED | |
541 | | SEC_READONLY)); | |
15bda425 | 542 | if (srel == NULL |
15bda425 | 543 | || !bfd_set_section_alignment (dynobj, srel, 3)) |
b34976b6 | 544 | return FALSE; |
15bda425 JL |
545 | } |
546 | ||
547 | hppa_info->other_rel_sec = srel; | |
b34976b6 | 548 | return TRUE; |
15bda425 JL |
549 | } |
550 | ||
fe8bc63d | 551 | /* Add a new entry to the list of dynamic relocations against DYN_H. |
15bda425 JL |
552 | |
553 | We use this to keep a record of all the FPTR relocations against a | |
554 | particular symbol so that we can create FPTR relocations in the | |
555 | output file. */ | |
556 | ||
b34976b6 | 557 | static bfd_boolean |
15bda425 JL |
558 | count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend) |
559 | bfd *abfd; | |
560 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
561 | int type; | |
562 | asection *sec; | |
563 | int sec_symndx; | |
564 | bfd_vma offset; | |
565 | bfd_vma addend; | |
566 | { | |
567 | struct elf64_hppa_dyn_reloc_entry *rent; | |
568 | ||
569 | rent = (struct elf64_hppa_dyn_reloc_entry *) | |
dc810e39 | 570 | bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); |
15bda425 | 571 | if (!rent) |
b34976b6 | 572 | return FALSE; |
15bda425 JL |
573 | |
574 | rent->next = dyn_h->reloc_entries; | |
575 | rent->type = type; | |
576 | rent->sec = sec; | |
577 | rent->sec_symndx = sec_symndx; | |
578 | rent->offset = offset; | |
579 | rent->addend = addend; | |
580 | dyn_h->reloc_entries = rent; | |
581 | ||
b34976b6 | 582 | return TRUE; |
15bda425 JL |
583 | } |
584 | ||
585 | /* Scan the RELOCS and record the type of dynamic entries that each | |
586 | referenced symbol needs. */ | |
587 | ||
b34976b6 | 588 | static bfd_boolean |
15bda425 JL |
589 | elf64_hppa_check_relocs (abfd, info, sec, relocs) |
590 | bfd *abfd; | |
591 | struct bfd_link_info *info; | |
592 | asection *sec; | |
593 | const Elf_Internal_Rela *relocs; | |
594 | { | |
595 | struct elf64_hppa_link_hash_table *hppa_info; | |
596 | const Elf_Internal_Rela *relend; | |
597 | Elf_Internal_Shdr *symtab_hdr; | |
598 | const Elf_Internal_Rela *rel; | |
599 | asection *dlt, *plt, *stubs; | |
600 | char *buf; | |
601 | size_t buf_len; | |
602 | int sec_symndx; | |
603 | ||
1049f94e | 604 | if (info->relocatable) |
b34976b6 | 605 | return TRUE; |
15bda425 JL |
606 | |
607 | /* If this is the first dynamic object found in the link, create | |
608 | the special sections required for dynamic linking. */ | |
609 | if (! elf_hash_table (info)->dynamic_sections_created) | |
610 | { | |
45d6a902 | 611 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) |
b34976b6 | 612 | return FALSE; |
15bda425 JL |
613 | } |
614 | ||
615 | hppa_info = elf64_hppa_hash_table (info); | |
616 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
617 | ||
618 | /* If necessary, build a new table holding section symbols indices | |
6cdc0ccc | 619 | for this BFD. */ |
fe8bc63d | 620 | |
15bda425 JL |
621 | if (info->shared && hppa_info->section_syms_bfd != abfd) |
622 | { | |
832d951b | 623 | unsigned long i; |
9ad5cbcf | 624 | unsigned int highest_shndx; |
6cdc0ccc AM |
625 | Elf_Internal_Sym *local_syms = NULL; |
626 | Elf_Internal_Sym *isym, *isymend; | |
dc810e39 | 627 | bfd_size_type amt; |
15bda425 JL |
628 | |
629 | /* We're done with the old cache of section index to section symbol | |
630 | index information. Free it. | |
631 | ||
632 | ?!? Note we leak the last section_syms array. Presumably we | |
633 | could free it in one of the later routines in this file. */ | |
634 | if (hppa_info->section_syms) | |
635 | free (hppa_info->section_syms); | |
636 | ||
6cdc0ccc AM |
637 | /* Read this BFD's local symbols. */ |
638 | if (symtab_hdr->sh_info != 0) | |
47b7c2db | 639 | { |
6cdc0ccc AM |
640 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
641 | if (local_syms == NULL) | |
642 | local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
643 | symtab_hdr->sh_info, 0, | |
644 | NULL, NULL, NULL); | |
645 | if (local_syms == NULL) | |
b34976b6 | 646 | return FALSE; |
9ad5cbcf AM |
647 | } |
648 | ||
6cdc0ccc | 649 | /* Record the highest section index referenced by the local symbols. */ |
15bda425 | 650 | highest_shndx = 0; |
6cdc0ccc AM |
651 | isymend = local_syms + symtab_hdr->sh_info; |
652 | for (isym = local_syms; isym < isymend; isym++) | |
15bda425 | 653 | { |
15bda425 JL |
654 | if (isym->st_shndx > highest_shndx) |
655 | highest_shndx = isym->st_shndx; | |
656 | } | |
657 | ||
15bda425 JL |
658 | /* Allocate an array to hold the section index to section symbol index |
659 | mapping. Bump by one since we start counting at zero. */ | |
660 | highest_shndx++; | |
dc810e39 AM |
661 | amt = highest_shndx; |
662 | amt *= sizeof (int); | |
663 | hppa_info->section_syms = (int *) bfd_malloc (amt); | |
15bda425 JL |
664 | |
665 | /* Now walk the local symbols again. If we find a section symbol, | |
666 | record the index of the symbol into the section_syms array. */ | |
6cdc0ccc | 667 | for (i = 0, isym = local_syms; isym < isymend; i++, isym++) |
15bda425 JL |
668 | { |
669 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
670 | hppa_info->section_syms[isym->st_shndx] = i; | |
671 | } | |
672 | ||
6cdc0ccc AM |
673 | /* We are finished with the local symbols. */ |
674 | if (local_syms != NULL | |
675 | && symtab_hdr->contents != (unsigned char *) local_syms) | |
676 | { | |
677 | if (! info->keep_memory) | |
678 | free (local_syms); | |
679 | else | |
680 | { | |
681 | /* Cache the symbols for elf_link_input_bfd. */ | |
682 | symtab_hdr->contents = (unsigned char *) local_syms; | |
683 | } | |
684 | } | |
15bda425 JL |
685 | |
686 | /* Record which BFD we built the section_syms mapping for. */ | |
687 | hppa_info->section_syms_bfd = abfd; | |
688 | } | |
689 | ||
690 | /* Record the symbol index for this input section. We may need it for | |
691 | relocations when building shared libraries. When not building shared | |
692 | libraries this value is never really used, but assign it to zero to | |
693 | prevent out of bounds memory accesses in other routines. */ | |
694 | if (info->shared) | |
695 | { | |
696 | sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
697 | ||
698 | /* If we did not find a section symbol for this section, then | |
699 | something went terribly wrong above. */ | |
700 | if (sec_symndx == -1) | |
b34976b6 | 701 | return FALSE; |
15bda425 JL |
702 | |
703 | sec_symndx = hppa_info->section_syms[sec_symndx]; | |
704 | } | |
705 | else | |
706 | sec_symndx = 0; | |
fe8bc63d | 707 | |
15bda425 JL |
708 | dlt = plt = stubs = NULL; |
709 | buf = NULL; | |
710 | buf_len = 0; | |
711 | ||
712 | relend = relocs + sec->reloc_count; | |
713 | for (rel = relocs; rel < relend; ++rel) | |
714 | { | |
560e09e9 NC |
715 | enum |
716 | { | |
717 | NEED_DLT = 1, | |
718 | NEED_PLT = 2, | |
719 | NEED_STUB = 4, | |
720 | NEED_OPD = 8, | |
721 | NEED_DYNREL = 16, | |
722 | }; | |
15bda425 JL |
723 | |
724 | struct elf_link_hash_entry *h = NULL; | |
725 | unsigned long r_symndx = ELF64_R_SYM (rel->r_info); | |
726 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
727 | int need_entry; | |
728 | const char *addr_name; | |
b34976b6 | 729 | bfd_boolean maybe_dynamic; |
15bda425 JL |
730 | int dynrel_type = R_PARISC_NONE; |
731 | static reloc_howto_type *howto; | |
732 | ||
733 | if (r_symndx >= symtab_hdr->sh_info) | |
734 | { | |
735 | /* We're dealing with a global symbol -- find its hash entry | |
736 | and mark it as being referenced. */ | |
737 | long indx = r_symndx - symtab_hdr->sh_info; | |
738 | h = elf_sym_hashes (abfd)[indx]; | |
739 | while (h->root.type == bfd_link_hash_indirect | |
740 | || h->root.type == bfd_link_hash_warning) | |
741 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
742 | ||
f5385ebf | 743 | h->ref_regular = 1; |
15bda425 JL |
744 | } |
745 | ||
746 | /* We can only get preliminary data on whether a symbol is | |
747 | locally or externally defined, as not all of the input files | |
748 | have yet been processed. Do something with what we know, as | |
749 | this may help reduce memory usage and processing time later. */ | |
b34976b6 | 750 | maybe_dynamic = FALSE; |
671bae9c | 751 | if (h && ((info->shared |
f5385ebf AM |
752 | && (!info->symbolic |
753 | || info->unresolved_syms_in_shared_libs == RM_IGNORE)) | |
754 | || !h->def_regular | |
15bda425 | 755 | || h->root.type == bfd_link_hash_defweak)) |
b34976b6 | 756 | maybe_dynamic = TRUE; |
15bda425 JL |
757 | |
758 | howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); | |
759 | need_entry = 0; | |
760 | switch (howto->type) | |
761 | { | |
762 | /* These are simple indirect references to symbols through the | |
763 | DLT. We need to create a DLT entry for any symbols which | |
764 | appears in a DLTIND relocation. */ | |
765 | case R_PARISC_DLTIND21L: | |
766 | case R_PARISC_DLTIND14R: | |
767 | case R_PARISC_DLTIND14F: | |
768 | case R_PARISC_DLTIND14WR: | |
769 | case R_PARISC_DLTIND14DR: | |
770 | need_entry = NEED_DLT; | |
771 | break; | |
772 | ||
773 | /* ?!? These need a DLT entry. But I have no idea what to do with | |
774 | the "link time TP value. */ | |
775 | case R_PARISC_LTOFF_TP21L: | |
776 | case R_PARISC_LTOFF_TP14R: | |
777 | case R_PARISC_LTOFF_TP14F: | |
778 | case R_PARISC_LTOFF_TP64: | |
779 | case R_PARISC_LTOFF_TP14WR: | |
780 | case R_PARISC_LTOFF_TP14DR: | |
781 | case R_PARISC_LTOFF_TP16F: | |
782 | case R_PARISC_LTOFF_TP16WF: | |
783 | case R_PARISC_LTOFF_TP16DF: | |
784 | need_entry = NEED_DLT; | |
785 | break; | |
786 | ||
787 | /* These are function calls. Depending on their precise target we | |
788 | may need to make a stub for them. The stub uses the PLT, so we | |
789 | need to create PLT entries for these symbols too. */ | |
832d951b | 790 | case R_PARISC_PCREL12F: |
15bda425 JL |
791 | case R_PARISC_PCREL17F: |
792 | case R_PARISC_PCREL22F: | |
793 | case R_PARISC_PCREL32: | |
794 | case R_PARISC_PCREL64: | |
795 | case R_PARISC_PCREL21L: | |
796 | case R_PARISC_PCREL17R: | |
797 | case R_PARISC_PCREL17C: | |
798 | case R_PARISC_PCREL14R: | |
799 | case R_PARISC_PCREL14F: | |
800 | case R_PARISC_PCREL22C: | |
801 | case R_PARISC_PCREL14WR: | |
802 | case R_PARISC_PCREL14DR: | |
803 | case R_PARISC_PCREL16F: | |
804 | case R_PARISC_PCREL16WF: | |
805 | case R_PARISC_PCREL16DF: | |
806 | need_entry = (NEED_PLT | NEED_STUB); | |
807 | break; | |
808 | ||
809 | case R_PARISC_PLTOFF21L: | |
810 | case R_PARISC_PLTOFF14R: | |
811 | case R_PARISC_PLTOFF14F: | |
812 | case R_PARISC_PLTOFF14WR: | |
813 | case R_PARISC_PLTOFF14DR: | |
814 | case R_PARISC_PLTOFF16F: | |
815 | case R_PARISC_PLTOFF16WF: | |
816 | case R_PARISC_PLTOFF16DF: | |
817 | need_entry = (NEED_PLT); | |
818 | break; | |
819 | ||
820 | case R_PARISC_DIR64: | |
821 | if (info->shared || maybe_dynamic) | |
822 | need_entry = (NEED_DYNREL); | |
823 | dynrel_type = R_PARISC_DIR64; | |
824 | break; | |
825 | ||
826 | /* This is an indirect reference through the DLT to get the address | |
827 | of a OPD descriptor. Thus we need to make a DLT entry that points | |
828 | to an OPD entry. */ | |
829 | case R_PARISC_LTOFF_FPTR21L: | |
830 | case R_PARISC_LTOFF_FPTR14R: | |
831 | case R_PARISC_LTOFF_FPTR14WR: | |
832 | case R_PARISC_LTOFF_FPTR14DR: | |
833 | case R_PARISC_LTOFF_FPTR32: | |
834 | case R_PARISC_LTOFF_FPTR64: | |
835 | case R_PARISC_LTOFF_FPTR16F: | |
836 | case R_PARISC_LTOFF_FPTR16WF: | |
837 | case R_PARISC_LTOFF_FPTR16DF: | |
838 | if (info->shared || maybe_dynamic) | |
839 | need_entry = (NEED_DLT | NEED_OPD); | |
840 | else | |
841 | need_entry = (NEED_DLT | NEED_OPD); | |
842 | dynrel_type = R_PARISC_FPTR64; | |
843 | break; | |
844 | ||
845 | /* This is a simple OPD entry. */ | |
846 | case R_PARISC_FPTR64: | |
847 | if (info->shared || maybe_dynamic) | |
848 | need_entry = (NEED_OPD | NEED_DYNREL); | |
849 | else | |
850 | need_entry = (NEED_OPD); | |
851 | dynrel_type = R_PARISC_FPTR64; | |
852 | break; | |
853 | ||
854 | /* Add more cases as needed. */ | |
855 | } | |
856 | ||
857 | if (!need_entry) | |
858 | continue; | |
859 | ||
860 | /* Collect a canonical name for this address. */ | |
d63b5ed9 | 861 | addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len); |
15bda425 JL |
862 | |
863 | /* Collect the canonical entry data for this address. */ | |
864 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 865 | addr_name, TRUE, TRUE); |
15bda425 JL |
866 | BFD_ASSERT (dyn_h); |
867 | ||
868 | /* Stash away enough information to be able to find this symbol | |
869 | regardless of whether or not it is local or global. */ | |
870 | dyn_h->h = h; | |
871 | dyn_h->owner = abfd; | |
872 | dyn_h->sym_indx = r_symndx; | |
873 | ||
874 | /* ?!? We may need to do some error checking in here. */ | |
875 | /* Create what's needed. */ | |
876 | if (need_entry & NEED_DLT) | |
877 | { | |
878 | if (! hppa_info->dlt_sec | |
879 | && ! get_dlt (abfd, info, hppa_info)) | |
880 | goto err_out; | |
881 | dyn_h->want_dlt = 1; | |
882 | } | |
883 | ||
884 | if (need_entry & NEED_PLT) | |
885 | { | |
886 | if (! hppa_info->plt_sec | |
887 | && ! get_plt (abfd, info, hppa_info)) | |
888 | goto err_out; | |
889 | dyn_h->want_plt = 1; | |
890 | } | |
891 | ||
892 | if (need_entry & NEED_STUB) | |
893 | { | |
894 | if (! hppa_info->stub_sec | |
895 | && ! get_stub (abfd, info, hppa_info)) | |
896 | goto err_out; | |
897 | dyn_h->want_stub = 1; | |
898 | } | |
899 | ||
900 | if (need_entry & NEED_OPD) | |
901 | { | |
902 | if (! hppa_info->opd_sec | |
903 | && ! get_opd (abfd, info, hppa_info)) | |
904 | goto err_out; | |
905 | ||
906 | dyn_h->want_opd = 1; | |
907 | ||
908 | /* FPTRs are not allocated by the dynamic linker for PA64, though | |
909 | it is possible that will change in the future. */ | |
fe8bc63d | 910 | |
15bda425 JL |
911 | /* This could be a local function that had its address taken, in |
912 | which case H will be NULL. */ | |
913 | if (h) | |
f5385ebf | 914 | h->needs_plt = 1; |
15bda425 JL |
915 | } |
916 | ||
917 | /* Add a new dynamic relocation to the chain of dynamic | |
918 | relocations for this symbol. */ | |
919 | if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) | |
920 | { | |
921 | if (! hppa_info->other_rel_sec | |
922 | && ! get_reloc_section (abfd, hppa_info, sec)) | |
923 | goto err_out; | |
924 | ||
925 | if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec, | |
926 | sec_symndx, rel->r_offset, rel->r_addend)) | |
927 | goto err_out; | |
928 | ||
929 | /* If we are building a shared library and we just recorded | |
930 | a dynamic R_PARISC_FPTR64 relocation, then make sure the | |
931 | section symbol for this section ends up in the dynamic | |
932 | symbol table. */ | |
933 | if (info->shared && dynrel_type == R_PARISC_FPTR64 | |
c152c796 | 934 | && ! (bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 935 | (info, abfd, sec_symndx))) |
b34976b6 | 936 | return FALSE; |
15bda425 JL |
937 | } |
938 | } | |
939 | ||
940 | if (buf) | |
941 | free (buf); | |
b34976b6 | 942 | return TRUE; |
15bda425 JL |
943 | |
944 | err_out: | |
945 | if (buf) | |
946 | free (buf); | |
b34976b6 | 947 | return FALSE; |
15bda425 JL |
948 | } |
949 | ||
950 | struct elf64_hppa_allocate_data | |
951 | { | |
952 | struct bfd_link_info *info; | |
953 | bfd_size_type ofs; | |
954 | }; | |
955 | ||
956 | /* Should we do dynamic things to this symbol? */ | |
957 | ||
b34976b6 | 958 | static bfd_boolean |
15bda425 JL |
959 | elf64_hppa_dynamic_symbol_p (h, info) |
960 | struct elf_link_hash_entry *h; | |
961 | struct bfd_link_info *info; | |
962 | { | |
986a241f RH |
963 | /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols |
964 | and relocations that retrieve a function descriptor? Assume the | |
965 | worst for now. */ | |
966 | if (_bfd_elf_dynamic_symbol_p (h, info, 1)) | |
967 | { | |
968 | /* ??? Why is this here and not elsewhere is_local_label_name. */ | |
969 | if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$') | |
970 | return FALSE; | |
15bda425 | 971 | |
986a241f RH |
972 | return TRUE; |
973 | } | |
974 | else | |
b34976b6 | 975 | return FALSE; |
15bda425 JL |
976 | } |
977 | ||
4cc11e76 | 978 | /* Mark all functions exported by this file so that we can later allocate |
15bda425 JL |
979 | entries in .opd for them. */ |
980 | ||
b34976b6 | 981 | static bfd_boolean |
15bda425 JL |
982 | elf64_hppa_mark_exported_functions (h, data) |
983 | struct elf_link_hash_entry *h; | |
984 | PTR data; | |
985 | { | |
986 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
987 | struct elf64_hppa_link_hash_table *hppa_info; | |
988 | ||
989 | hppa_info = elf64_hppa_hash_table (info); | |
990 | ||
e92d460e AM |
991 | if (h->root.type == bfd_link_hash_warning) |
992 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
993 | ||
15bda425 JL |
994 | if (h |
995 | && (h->root.type == bfd_link_hash_defined | |
996 | || h->root.type == bfd_link_hash_defweak) | |
997 | && h->root.u.def.section->output_section != NULL | |
998 | && h->type == STT_FUNC) | |
999 | { | |
1000 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1001 | ||
1002 | /* Add this symbol to the PA64 linker hash table. */ | |
1003 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1004 | h->root.root.string, TRUE, TRUE); |
15bda425 JL |
1005 | BFD_ASSERT (dyn_h); |
1006 | dyn_h->h = h; | |
1007 | ||
1008 | if (! hppa_info->opd_sec | |
1009 | && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) | |
b34976b6 | 1010 | return FALSE; |
15bda425 JL |
1011 | |
1012 | dyn_h->want_opd = 1; | |
832d951b AM |
1013 | /* Put a flag here for output_symbol_hook. */ |
1014 | dyn_h->st_shndx = -1; | |
f5385ebf | 1015 | h->needs_plt = 1; |
15bda425 JL |
1016 | } |
1017 | ||
b34976b6 | 1018 | return TRUE; |
15bda425 JL |
1019 | } |
1020 | ||
1021 | /* Allocate space for a DLT entry. */ | |
1022 | ||
b34976b6 | 1023 | static bfd_boolean |
15bda425 JL |
1024 | allocate_global_data_dlt (dyn_h, data) |
1025 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1026 | PTR data; | |
1027 | { | |
1028 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1029 | ||
1030 | if (dyn_h->want_dlt) | |
1031 | { | |
1032 | struct elf_link_hash_entry *h = dyn_h->h; | |
1033 | ||
1034 | if (x->info->shared) | |
1035 | { | |
1036 | /* Possibly add the symbol to the local dynamic symbol | |
1037 | table since we might need to create a dynamic relocation | |
1038 | against it. */ | |
1039 | if (! h | |
47b7c2db | 1040 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)) |
15bda425 JL |
1041 | { |
1042 | bfd *owner; | |
1043 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1044 | ||
c152c796 | 1045 | if (! (bfd_elf_link_record_local_dynamic_symbol |
dc810e39 | 1046 | (x->info, owner, dyn_h->sym_indx))) |
b34976b6 | 1047 | return FALSE; |
15bda425 JL |
1048 | } |
1049 | } | |
1050 | ||
1051 | dyn_h->dlt_offset = x->ofs; | |
1052 | x->ofs += DLT_ENTRY_SIZE; | |
1053 | } | |
b34976b6 | 1054 | return TRUE; |
15bda425 JL |
1055 | } |
1056 | ||
1057 | /* Allocate space for a DLT.PLT entry. */ | |
1058 | ||
b34976b6 | 1059 | static bfd_boolean |
15bda425 JL |
1060 | allocate_global_data_plt (dyn_h, data) |
1061 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1062 | PTR data; | |
1063 | { | |
1064 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1065 | ||
1066 | if (dyn_h->want_plt | |
1067 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1068 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1069 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1070 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1071 | { | |
1072 | dyn_h->plt_offset = x->ofs; | |
1073 | x->ofs += PLT_ENTRY_SIZE; | |
1074 | if (dyn_h->plt_offset < 0x2000) | |
1075 | elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset; | |
1076 | } | |
1077 | else | |
1078 | dyn_h->want_plt = 0; | |
1079 | ||
b34976b6 | 1080 | return TRUE; |
15bda425 JL |
1081 | } |
1082 | ||
1083 | /* Allocate space for a STUB entry. */ | |
1084 | ||
b34976b6 | 1085 | static bfd_boolean |
15bda425 JL |
1086 | allocate_global_data_stub (dyn_h, data) |
1087 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1088 | PTR data; | |
1089 | { | |
1090 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1091 | ||
1092 | if (dyn_h->want_stub | |
1093 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1094 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1095 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1096 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1097 | { | |
1098 | dyn_h->stub_offset = x->ofs; | |
1099 | x->ofs += sizeof (plt_stub); | |
1100 | } | |
1101 | else | |
1102 | dyn_h->want_stub = 0; | |
b34976b6 | 1103 | return TRUE; |
15bda425 JL |
1104 | } |
1105 | ||
1106 | /* Allocate space for a FPTR entry. */ | |
1107 | ||
b34976b6 | 1108 | static bfd_boolean |
15bda425 JL |
1109 | allocate_global_data_opd (dyn_h, data) |
1110 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1111 | PTR data; | |
1112 | { | |
1113 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1114 | ||
1115 | if (dyn_h->want_opd) | |
1116 | { | |
1117 | struct elf_link_hash_entry *h = dyn_h->h; | |
fe8bc63d | 1118 | |
15bda425 JL |
1119 | if (h) |
1120 | while (h->root.type == bfd_link_hash_indirect | |
1121 | || h->root.type == bfd_link_hash_warning) | |
1122 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1123 | ||
1124 | /* We never need an opd entry for a symbol which is not | |
1125 | defined by this output file. */ | |
3db4b612 | 1126 | if (h && (h->root.type == bfd_link_hash_undefined |
af7cfa33 | 1127 | || h->root.type == bfd_link_hash_undefweak |
3db4b612 | 1128 | || h->root.u.def.section->output_section == NULL)) |
15bda425 JL |
1129 | dyn_h->want_opd = 0; |
1130 | ||
1131 | /* If we are creating a shared library, took the address of a local | |
1132 | function or might export this function from this object file, then | |
1133 | we have to create an opd descriptor. */ | |
1134 | else if (x->info->shared | |
1135 | || h == NULL | |
47b7c2db | 1136 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI) |
3db4b612 JL |
1137 | || (h->root.type == bfd_link_hash_defined |
1138 | || h->root.type == bfd_link_hash_defweak)) | |
15bda425 JL |
1139 | { |
1140 | /* If we are creating a shared library, then we will have to | |
1141 | create a runtime relocation for the symbol to properly | |
1142 | initialize the .opd entry. Make sure the symbol gets | |
1143 | added to the dynamic symbol table. */ | |
1144 | if (x->info->shared | |
1145 | && (h == NULL || (h->dynindx == -1))) | |
1146 | { | |
1147 | bfd *owner; | |
1148 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1149 | ||
c152c796 | 1150 | if (!bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 1151 | (x->info, owner, dyn_h->sym_indx)) |
b34976b6 | 1152 | return FALSE; |
15bda425 JL |
1153 | } |
1154 | ||
1155 | /* This may not be necessary or desirable anymore now that | |
1156 | we have some support for dealing with section symbols | |
1157 | in dynamic relocs. But name munging does make the result | |
1158 | much easier to debug. ie, the EPLT reloc will reference | |
1159 | a symbol like .foobar, instead of .text + offset. */ | |
1160 | if (x->info->shared && h) | |
1161 | { | |
1162 | char *new_name; | |
1163 | struct elf_link_hash_entry *nh; | |
1164 | ||
1165 | new_name = alloca (strlen (h->root.root.string) + 2); | |
1166 | new_name[0] = '.'; | |
1167 | strcpy (new_name + 1, h->root.root.string); | |
1168 | ||
1169 | nh = elf_link_hash_lookup (elf_hash_table (x->info), | |
b34976b6 | 1170 | new_name, TRUE, TRUE, TRUE); |
15bda425 JL |
1171 | |
1172 | nh->root.type = h->root.type; | |
1173 | nh->root.u.def.value = h->root.u.def.value; | |
1174 | nh->root.u.def.section = h->root.u.def.section; | |
1175 | ||
c152c796 | 1176 | if (! bfd_elf_link_record_dynamic_symbol (x->info, nh)) |
b34976b6 | 1177 | return FALSE; |
15bda425 JL |
1178 | |
1179 | } | |
1180 | dyn_h->opd_offset = x->ofs; | |
1181 | x->ofs += OPD_ENTRY_SIZE; | |
1182 | } | |
1183 | ||
1184 | /* Otherwise we do not need an opd entry. */ | |
1185 | else | |
1186 | dyn_h->want_opd = 0; | |
1187 | } | |
b34976b6 | 1188 | return TRUE; |
15bda425 JL |
1189 | } |
1190 | ||
1191 | /* HP requires the EI_OSABI field to be filled in. The assignment to | |
1192 | EI_ABIVERSION may not be strictly necessary. */ | |
1193 | ||
1194 | static void | |
1195 | elf64_hppa_post_process_headers (abfd, link_info) | |
1196 | bfd * abfd; | |
1197 | struct bfd_link_info * link_info ATTRIBUTE_UNUSED; | |
1198 | { | |
1199 | Elf_Internal_Ehdr * i_ehdrp; | |
1200 | ||
1201 | i_ehdrp = elf_elfheader (abfd); | |
d1036acb L |
1202 | |
1203 | i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; | |
1204 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
15bda425 JL |
1205 | } |
1206 | ||
1207 | /* Create function descriptor section (.opd). This section is called .opd | |
4cc11e76 | 1208 | because it contains "official procedure descriptors". The "official" |
15bda425 JL |
1209 | refers to the fact that these descriptors are used when taking the address |
1210 | of a procedure, thus ensuring a unique address for each procedure. */ | |
1211 | ||
b34976b6 | 1212 | static bfd_boolean |
15bda425 JL |
1213 | get_opd (abfd, info, hppa_info) |
1214 | bfd *abfd; | |
edd21aca | 1215 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1216 | struct elf64_hppa_link_hash_table *hppa_info; |
1217 | { | |
1218 | asection *opd; | |
1219 | bfd *dynobj; | |
1220 | ||
1221 | opd = hppa_info->opd_sec; | |
1222 | if (!opd) | |
1223 | { | |
1224 | dynobj = hppa_info->root.dynobj; | |
1225 | if (!dynobj) | |
1226 | hppa_info->root.dynobj = dynobj = abfd; | |
1227 | ||
3496cb2a L |
1228 | opd = bfd_make_section_with_flags (dynobj, ".opd", |
1229 | (SEC_ALLOC | |
1230 | | SEC_LOAD | |
1231 | | SEC_HAS_CONTENTS | |
1232 | | SEC_IN_MEMORY | |
1233 | | SEC_LINKER_CREATED)); | |
15bda425 | 1234 | if (!opd |
15bda425 JL |
1235 | || !bfd_set_section_alignment (abfd, opd, 3)) |
1236 | { | |
1237 | BFD_ASSERT (0); | |
b34976b6 | 1238 | return FALSE; |
15bda425 JL |
1239 | } |
1240 | ||
1241 | hppa_info->opd_sec = opd; | |
1242 | } | |
1243 | ||
b34976b6 | 1244 | return TRUE; |
15bda425 JL |
1245 | } |
1246 | ||
1247 | /* Create the PLT section. */ | |
1248 | ||
b34976b6 | 1249 | static bfd_boolean |
15bda425 JL |
1250 | get_plt (abfd, info, hppa_info) |
1251 | bfd *abfd; | |
edd21aca | 1252 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1253 | struct elf64_hppa_link_hash_table *hppa_info; |
1254 | { | |
1255 | asection *plt; | |
1256 | bfd *dynobj; | |
1257 | ||
1258 | plt = hppa_info->plt_sec; | |
1259 | if (!plt) | |
1260 | { | |
1261 | dynobj = hppa_info->root.dynobj; | |
1262 | if (!dynobj) | |
1263 | hppa_info->root.dynobj = dynobj = abfd; | |
1264 | ||
3496cb2a L |
1265 | plt = bfd_make_section_with_flags (dynobj, ".plt", |
1266 | (SEC_ALLOC | |
1267 | | SEC_LOAD | |
1268 | | SEC_HAS_CONTENTS | |
1269 | | SEC_IN_MEMORY | |
1270 | | SEC_LINKER_CREATED)); | |
15bda425 | 1271 | if (!plt |
15bda425 JL |
1272 | || !bfd_set_section_alignment (abfd, plt, 3)) |
1273 | { | |
1274 | BFD_ASSERT (0); | |
b34976b6 | 1275 | return FALSE; |
15bda425 JL |
1276 | } |
1277 | ||
1278 | hppa_info->plt_sec = plt; | |
1279 | } | |
1280 | ||
b34976b6 | 1281 | return TRUE; |
15bda425 JL |
1282 | } |
1283 | ||
1284 | /* Create the DLT section. */ | |
1285 | ||
b34976b6 | 1286 | static bfd_boolean |
15bda425 JL |
1287 | get_dlt (abfd, info, hppa_info) |
1288 | bfd *abfd; | |
edd21aca | 1289 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1290 | struct elf64_hppa_link_hash_table *hppa_info; |
1291 | { | |
1292 | asection *dlt; | |
1293 | bfd *dynobj; | |
1294 | ||
1295 | dlt = hppa_info->dlt_sec; | |
1296 | if (!dlt) | |
1297 | { | |
1298 | dynobj = hppa_info->root.dynobj; | |
1299 | if (!dynobj) | |
1300 | hppa_info->root.dynobj = dynobj = abfd; | |
1301 | ||
3496cb2a L |
1302 | dlt = bfd_make_section_with_flags (dynobj, ".dlt", |
1303 | (SEC_ALLOC | |
1304 | | SEC_LOAD | |
1305 | | SEC_HAS_CONTENTS | |
1306 | | SEC_IN_MEMORY | |
1307 | | SEC_LINKER_CREATED)); | |
15bda425 | 1308 | if (!dlt |
15bda425 JL |
1309 | || !bfd_set_section_alignment (abfd, dlt, 3)) |
1310 | { | |
1311 | BFD_ASSERT (0); | |
b34976b6 | 1312 | return FALSE; |
15bda425 JL |
1313 | } |
1314 | ||
1315 | hppa_info->dlt_sec = dlt; | |
1316 | } | |
1317 | ||
b34976b6 | 1318 | return TRUE; |
15bda425 JL |
1319 | } |
1320 | ||
1321 | /* Create the stubs section. */ | |
1322 | ||
b34976b6 | 1323 | static bfd_boolean |
15bda425 JL |
1324 | get_stub (abfd, info, hppa_info) |
1325 | bfd *abfd; | |
edd21aca | 1326 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1327 | struct elf64_hppa_link_hash_table *hppa_info; |
1328 | { | |
1329 | asection *stub; | |
1330 | bfd *dynobj; | |
1331 | ||
1332 | stub = hppa_info->stub_sec; | |
1333 | if (!stub) | |
1334 | { | |
1335 | dynobj = hppa_info->root.dynobj; | |
1336 | if (!dynobj) | |
1337 | hppa_info->root.dynobj = dynobj = abfd; | |
1338 | ||
3496cb2a L |
1339 | stub = bfd_make_section_with_flags (dynobj, ".stub", |
1340 | (SEC_ALLOC | SEC_LOAD | |
1341 | | SEC_HAS_CONTENTS | |
1342 | | SEC_IN_MEMORY | |
1343 | | SEC_READONLY | |
1344 | | SEC_LINKER_CREATED)); | |
15bda425 | 1345 | if (!stub |
15bda425 JL |
1346 | || !bfd_set_section_alignment (abfd, stub, 3)) |
1347 | { | |
1348 | BFD_ASSERT (0); | |
b34976b6 | 1349 | return FALSE; |
15bda425 JL |
1350 | } |
1351 | ||
1352 | hppa_info->stub_sec = stub; | |
1353 | } | |
1354 | ||
b34976b6 | 1355 | return TRUE; |
15bda425 JL |
1356 | } |
1357 | ||
1358 | /* Create sections necessary for dynamic linking. This is only a rough | |
1359 | cut and will likely change as we learn more about the somewhat | |
1360 | unusual dynamic linking scheme HP uses. | |
1361 | ||
1362 | .stub: | |
1363 | Contains code to implement cross-space calls. The first time one | |
1364 | of the stubs is used it will call into the dynamic linker, later | |
1365 | calls will go straight to the target. | |
1366 | ||
1367 | The only stub we support right now looks like | |
1368 | ||
1369 | ldd OFFSET(%dp),%r1 | |
1370 | bve %r0(%r1) | |
1371 | ldd OFFSET+8(%dp),%dp | |
1372 | ||
1373 | Other stubs may be needed in the future. We may want the remove | |
1374 | the break/nop instruction. It is only used right now to keep the | |
1375 | offset of a .plt entry and a .stub entry in sync. | |
1376 | ||
1377 | .dlt: | |
1378 | This is what most people call the .got. HP used a different name. | |
1379 | Losers. | |
1380 | ||
1381 | .rela.dlt: | |
1382 | Relocations for the DLT. | |
1383 | ||
1384 | .plt: | |
1385 | Function pointers as address,gp pairs. | |
1386 | ||
1387 | .rela.plt: | |
1388 | Should contain dynamic IPLT (and EPLT?) relocations. | |
1389 | ||
1390 | .opd: | |
fe8bc63d | 1391 | FPTRS |
15bda425 JL |
1392 | |
1393 | .rela.opd: | |
1394 | EPLT relocations for symbols exported from shared libraries. */ | |
1395 | ||
b34976b6 | 1396 | static bfd_boolean |
15bda425 JL |
1397 | elf64_hppa_create_dynamic_sections (abfd, info) |
1398 | bfd *abfd; | |
1399 | struct bfd_link_info *info; | |
1400 | { | |
1401 | asection *s; | |
1402 | ||
1403 | if (! get_stub (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1404 | return FALSE; |
15bda425 JL |
1405 | |
1406 | if (! get_dlt (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1407 | return FALSE; |
15bda425 JL |
1408 | |
1409 | if (! get_plt (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1410 | return FALSE; |
15bda425 JL |
1411 | |
1412 | if (! get_opd (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1413 | return FALSE; |
15bda425 | 1414 | |
3496cb2a L |
1415 | s = bfd_make_section_with_flags (abfd, ".rela.dlt", |
1416 | (SEC_ALLOC | SEC_LOAD | |
1417 | | SEC_HAS_CONTENTS | |
1418 | | SEC_IN_MEMORY | |
1419 | | SEC_READONLY | |
1420 | | SEC_LINKER_CREATED)); | |
15bda425 | 1421 | if (s == NULL |
15bda425 | 1422 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1423 | return FALSE; |
15bda425 JL |
1424 | elf64_hppa_hash_table (info)->dlt_rel_sec = s; |
1425 | ||
3496cb2a L |
1426 | s = bfd_make_section_with_flags (abfd, ".rela.plt", |
1427 | (SEC_ALLOC | SEC_LOAD | |
1428 | | SEC_HAS_CONTENTS | |
1429 | | SEC_IN_MEMORY | |
1430 | | SEC_READONLY | |
1431 | | SEC_LINKER_CREATED)); | |
15bda425 | 1432 | if (s == NULL |
15bda425 | 1433 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1434 | return FALSE; |
15bda425 JL |
1435 | elf64_hppa_hash_table (info)->plt_rel_sec = s; |
1436 | ||
3496cb2a L |
1437 | s = bfd_make_section_with_flags (abfd, ".rela.data", |
1438 | (SEC_ALLOC | SEC_LOAD | |
1439 | | SEC_HAS_CONTENTS | |
1440 | | SEC_IN_MEMORY | |
1441 | | SEC_READONLY | |
1442 | | SEC_LINKER_CREATED)); | |
15bda425 | 1443 | if (s == NULL |
15bda425 | 1444 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1445 | return FALSE; |
15bda425 JL |
1446 | elf64_hppa_hash_table (info)->other_rel_sec = s; |
1447 | ||
3496cb2a L |
1448 | s = bfd_make_section_with_flags (abfd, ".rela.opd", |
1449 | (SEC_ALLOC | SEC_LOAD | |
1450 | | SEC_HAS_CONTENTS | |
1451 | | SEC_IN_MEMORY | |
1452 | | SEC_READONLY | |
1453 | | SEC_LINKER_CREATED)); | |
15bda425 | 1454 | if (s == NULL |
15bda425 | 1455 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1456 | return FALSE; |
15bda425 JL |
1457 | elf64_hppa_hash_table (info)->opd_rel_sec = s; |
1458 | ||
b34976b6 | 1459 | return TRUE; |
15bda425 JL |
1460 | } |
1461 | ||
1462 | /* Allocate dynamic relocations for those symbols that turned out | |
1463 | to be dynamic. */ | |
1464 | ||
b34976b6 | 1465 | static bfd_boolean |
15bda425 JL |
1466 | allocate_dynrel_entries (dyn_h, data) |
1467 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1468 | PTR data; | |
1469 | { | |
1470 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1471 | struct elf64_hppa_link_hash_table *hppa_info; | |
1472 | struct elf64_hppa_dyn_reloc_entry *rent; | |
b34976b6 | 1473 | bfd_boolean dynamic_symbol, shared; |
15bda425 JL |
1474 | |
1475 | hppa_info = elf64_hppa_hash_table (x->info); | |
1476 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info); | |
1477 | shared = x->info->shared; | |
1478 | ||
1479 | /* We may need to allocate relocations for a non-dynamic symbol | |
1480 | when creating a shared library. */ | |
1481 | if (!dynamic_symbol && !shared) | |
b34976b6 | 1482 | return TRUE; |
15bda425 JL |
1483 | |
1484 | /* Take care of the normal data relocations. */ | |
1485 | ||
1486 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
1487 | { | |
d663e1cd JL |
1488 | /* Allocate one iff we are building a shared library, the relocation |
1489 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
1490 | if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
1491 | continue; | |
1492 | ||
eea6121a | 1493 | hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1494 | |
1495 | /* Make sure this symbol gets into the dynamic symbol table if it is | |
1496 | not already recorded. ?!? This should not be in the loop since | |
1497 | the symbol need only be added once. */ | |
47b7c2db AM |
1498 | if (dyn_h->h == 0 |
1499 | || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI)) | |
c152c796 | 1500 | if (!bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 1501 | (x->info, rent->sec->owner, dyn_h->sym_indx)) |
b34976b6 | 1502 | return FALSE; |
15bda425 JL |
1503 | } |
1504 | ||
1505 | /* Take care of the GOT and PLT relocations. */ | |
1506 | ||
1507 | if ((dynamic_symbol || shared) && dyn_h->want_dlt) | |
eea6121a | 1508 | hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1509 | |
1510 | /* If we are building a shared library, then every symbol that has an | |
1511 | opd entry will need an EPLT relocation to relocate the symbol's address | |
1512 | and __gp value based on the runtime load address. */ | |
1513 | if (shared && dyn_h->want_opd) | |
eea6121a | 1514 | hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1515 | |
1516 | if (dyn_h->want_plt && dynamic_symbol) | |
1517 | { | |
1518 | bfd_size_type t = 0; | |
1519 | ||
1520 | /* Dynamic symbols get one IPLT relocation. Local symbols in | |
1521 | shared libraries get two REL relocations. Local symbols in | |
1522 | main applications get nothing. */ | |
1523 | if (dynamic_symbol) | |
1524 | t = sizeof (Elf64_External_Rela); | |
1525 | else if (shared) | |
1526 | t = 2 * sizeof (Elf64_External_Rela); | |
1527 | ||
eea6121a | 1528 | hppa_info->plt_rel_sec->size += t; |
15bda425 JL |
1529 | } |
1530 | ||
b34976b6 | 1531 | return TRUE; |
15bda425 JL |
1532 | } |
1533 | ||
1534 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1535 | regular object. */ | |
1536 | ||
b34976b6 | 1537 | static bfd_boolean |
15bda425 | 1538 | elf64_hppa_adjust_dynamic_symbol (info, h) |
edd21aca | 1539 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1540 | struct elf_link_hash_entry *h; |
1541 | { | |
1542 | /* ??? Undefined symbols with PLT entries should be re-defined | |
1543 | to be the PLT entry. */ | |
1544 | ||
1545 | /* If this is a weak symbol, and there is a real definition, the | |
1546 | processor independent code will have arranged for us to see the | |
1547 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 1548 | if (h->u.weakdef != NULL) |
15bda425 | 1549 | { |
f6e332e6 AM |
1550 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1551 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1552 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1553 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 1554 | return TRUE; |
15bda425 JL |
1555 | } |
1556 | ||
1557 | /* If this is a reference to a symbol defined by a dynamic object which | |
1558 | is not a function, we might allocate the symbol in our .dynbss section | |
1559 | and allocate a COPY dynamic relocation. | |
1560 | ||
1561 | But PA64 code is canonically PIC, so as a rule we can avoid this sort | |
1562 | of hackery. */ | |
1563 | ||
b34976b6 | 1564 | return TRUE; |
15bda425 JL |
1565 | } |
1566 | ||
47b7c2db AM |
1567 | /* This function is called via elf_link_hash_traverse to mark millicode |
1568 | symbols with a dynindx of -1 and to remove the string table reference | |
1569 | from the dynamic symbol table. If the symbol is not a millicode symbol, | |
1570 | elf64_hppa_mark_exported_functions is called. */ | |
1571 | ||
b34976b6 | 1572 | static bfd_boolean |
47b7c2db AM |
1573 | elf64_hppa_mark_milli_and_exported_functions (h, data) |
1574 | struct elf_link_hash_entry *h; | |
1575 | PTR data; | |
1576 | { | |
1577 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
1578 | struct elf_link_hash_entry *elf = h; | |
1579 | ||
1580 | if (elf->root.type == bfd_link_hash_warning) | |
1581 | elf = (struct elf_link_hash_entry *) elf->root.u.i.link; | |
1582 | ||
1583 | if (elf->type == STT_PARISC_MILLI) | |
1584 | { | |
1585 | if (elf->dynindx != -1) | |
1586 | { | |
1587 | elf->dynindx = -1; | |
1588 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
1589 | elf->dynstr_index); | |
1590 | } | |
b34976b6 | 1591 | return TRUE; |
47b7c2db AM |
1592 | } |
1593 | ||
1594 | return elf64_hppa_mark_exported_functions (h, data); | |
1595 | } | |
1596 | ||
15bda425 JL |
1597 | /* Set the final sizes of the dynamic sections and allocate memory for |
1598 | the contents of our special sections. */ | |
1599 | ||
b34976b6 | 1600 | static bfd_boolean |
15bda425 JL |
1601 | elf64_hppa_size_dynamic_sections (output_bfd, info) |
1602 | bfd *output_bfd; | |
1603 | struct bfd_link_info *info; | |
1604 | { | |
1605 | bfd *dynobj; | |
1606 | asection *s; | |
b34976b6 AM |
1607 | bfd_boolean plt; |
1608 | bfd_boolean relocs; | |
1609 | bfd_boolean reltext; | |
15bda425 JL |
1610 | struct elf64_hppa_allocate_data data; |
1611 | struct elf64_hppa_link_hash_table *hppa_info; | |
1612 | ||
1613 | hppa_info = elf64_hppa_hash_table (info); | |
1614 | ||
1615 | dynobj = elf_hash_table (info)->dynobj; | |
1616 | BFD_ASSERT (dynobj != NULL); | |
1617 | ||
47b7c2db AM |
1618 | /* Mark each function this program exports so that we will allocate |
1619 | space in the .opd section for each function's FPTR. If we are | |
1620 | creating dynamic sections, change the dynamic index of millicode | |
1621 | symbols to -1 and remove them from the string table for .dynstr. | |
1622 | ||
1623 | We have to traverse the main linker hash table since we have to | |
1624 | find functions which may not have been mentioned in any relocs. */ | |
1625 | elf_link_hash_traverse (elf_hash_table (info), | |
1626 | (elf_hash_table (info)->dynamic_sections_created | |
1627 | ? elf64_hppa_mark_milli_and_exported_functions | |
1628 | : elf64_hppa_mark_exported_functions), | |
1629 | info); | |
1630 | ||
15bda425 JL |
1631 | if (elf_hash_table (info)->dynamic_sections_created) |
1632 | { | |
1633 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 1634 | if (info->executable) |
15bda425 JL |
1635 | { |
1636 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1637 | BFD_ASSERT (s != NULL); | |
eea6121a | 1638 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
15bda425 JL |
1639 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1640 | } | |
1641 | } | |
1642 | else | |
1643 | { | |
1644 | /* We may have created entries in the .rela.got section. | |
1645 | However, if we are not creating the dynamic sections, we will | |
1646 | not actually use these entries. Reset the size of .rela.dlt, | |
1647 | which will cause it to get stripped from the output file | |
1648 | below. */ | |
1649 | s = bfd_get_section_by_name (dynobj, ".rela.dlt"); | |
1650 | if (s != NULL) | |
eea6121a | 1651 | s->size = 0; |
15bda425 JL |
1652 | } |
1653 | ||
1654 | /* Allocate the GOT entries. */ | |
1655 | ||
1656 | data.info = info; | |
1657 | if (elf64_hppa_hash_table (info)->dlt_sec) | |
1658 | { | |
1659 | data.ofs = 0x0; | |
1660 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1661 | allocate_global_data_dlt, &data); | |
eea6121a | 1662 | hppa_info->dlt_sec->size = data.ofs; |
15bda425 JL |
1663 | |
1664 | data.ofs = 0x0; | |
1665 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1666 | allocate_global_data_plt, &data); | |
eea6121a | 1667 | hppa_info->plt_sec->size = data.ofs; |
15bda425 JL |
1668 | |
1669 | data.ofs = 0x0; | |
1670 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1671 | allocate_global_data_stub, &data); | |
eea6121a | 1672 | hppa_info->stub_sec->size = data.ofs; |
15bda425 JL |
1673 | } |
1674 | ||
15bda425 JL |
1675 | /* Allocate space for entries in the .opd section. */ |
1676 | if (elf64_hppa_hash_table (info)->opd_sec) | |
1677 | { | |
1678 | data.ofs = 0; | |
1679 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1680 | allocate_global_data_opd, &data); | |
eea6121a | 1681 | hppa_info->opd_sec->size = data.ofs; |
15bda425 JL |
1682 | } |
1683 | ||
1684 | /* Now allocate space for dynamic relocations, if necessary. */ | |
1685 | if (hppa_info->root.dynamic_sections_created) | |
1686 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1687 | allocate_dynrel_entries, &data); | |
1688 | ||
1689 | /* The sizes of all the sections are set. Allocate memory for them. */ | |
b34976b6 AM |
1690 | plt = FALSE; |
1691 | relocs = FALSE; | |
1692 | reltext = FALSE; | |
15bda425 JL |
1693 | for (s = dynobj->sections; s != NULL; s = s->next) |
1694 | { | |
1695 | const char *name; | |
15bda425 JL |
1696 | |
1697 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1698 | continue; | |
1699 | ||
1700 | /* It's OK to base decisions on the section name, because none | |
1701 | of the dynobj section names depend upon the input files. */ | |
1702 | name = bfd_get_section_name (dynobj, s); | |
1703 | ||
15bda425 JL |
1704 | if (strcmp (name, ".plt") == 0) |
1705 | { | |
c456f082 AM |
1706 | /* Remember whether there is a PLT. */ |
1707 | plt = s->size != 0; | |
15bda425 | 1708 | } |
c456f082 | 1709 | else if (strcmp (name, ".opd") == 0 |
0112cd26 | 1710 | || CONST_STRNEQ (name, ".dlt") |
c456f082 AM |
1711 | || strcmp (name, ".stub") == 0 |
1712 | || strcmp (name, ".got") == 0) | |
15bda425 | 1713 | { |
d663e1cd | 1714 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 | 1715 | } |
0112cd26 | 1716 | else if (CONST_STRNEQ (name, ".rela")) |
15bda425 | 1717 | { |
c456f082 | 1718 | if (s->size != 0) |
15bda425 JL |
1719 | { |
1720 | asection *target; | |
1721 | ||
1722 | /* Remember whether there are any reloc sections other | |
1723 | than .rela.plt. */ | |
1724 | if (strcmp (name, ".rela.plt") != 0) | |
1725 | { | |
1726 | const char *outname; | |
1727 | ||
b34976b6 | 1728 | relocs = TRUE; |
15bda425 JL |
1729 | |
1730 | /* If this relocation section applies to a read only | |
1731 | section, then we probably need a DT_TEXTREL | |
1732 | entry. The entries in the .rela.plt section | |
1733 | really apply to the .got section, which we | |
1734 | created ourselves and so know is not readonly. */ | |
1735 | outname = bfd_get_section_name (output_bfd, | |
1736 | s->output_section); | |
1737 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
1738 | if (target != NULL | |
1739 | && (target->flags & SEC_READONLY) != 0 | |
1740 | && (target->flags & SEC_ALLOC) != 0) | |
b34976b6 | 1741 | reltext = TRUE; |
15bda425 JL |
1742 | } |
1743 | ||
1744 | /* We use the reloc_count field as a counter if we need | |
1745 | to copy relocs into the output file. */ | |
1746 | s->reloc_count = 0; | |
1747 | } | |
1748 | } | |
c456f082 | 1749 | else |
15bda425 JL |
1750 | { |
1751 | /* It's not one of our sections, so don't allocate space. */ | |
1752 | continue; | |
1753 | } | |
1754 | ||
c456f082 | 1755 | if (s->size == 0) |
15bda425 | 1756 | { |
c456f082 AM |
1757 | /* If we don't need this section, strip it from the |
1758 | output file. This is mostly to handle .rela.bss and | |
1759 | .rela.plt. We must create both sections in | |
1760 | create_dynamic_sections, because they must be created | |
1761 | before the linker maps input sections to output | |
1762 | sections. The linker does that before | |
1763 | adjust_dynamic_symbol is called, and it is that | |
1764 | function which decides whether anything needs to go | |
1765 | into these sections. */ | |
8423293d | 1766 | s->flags |= SEC_EXCLUDE; |
15bda425 JL |
1767 | continue; |
1768 | } | |
1769 | ||
c456f082 AM |
1770 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
1771 | continue; | |
1772 | ||
15bda425 | 1773 | /* Allocate memory for the section contents if it has not |
832d951b AM |
1774 | been allocated already. We use bfd_zalloc here in case |
1775 | unused entries are not reclaimed before the section's | |
1776 | contents are written out. This should not happen, but this | |
1777 | way if it does, we get a R_PARISC_NONE reloc instead of | |
1778 | garbage. */ | |
15bda425 JL |
1779 | if (s->contents == NULL) |
1780 | { | |
eea6121a | 1781 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1782 | if (s->contents == NULL) |
b34976b6 | 1783 | return FALSE; |
15bda425 JL |
1784 | } |
1785 | } | |
1786 | ||
1787 | if (elf_hash_table (info)->dynamic_sections_created) | |
1788 | { | |
1789 | /* Always create a DT_PLTGOT. It actually has nothing to do with | |
1790 | the PLT, it is how we communicate the __gp value of a load | |
1791 | module to the dynamic linker. */ | |
dc810e39 | 1792 | #define add_dynamic_entry(TAG, VAL) \ |
5a580b3a | 1793 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
dc810e39 AM |
1794 | |
1795 | if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) | |
1796 | || !add_dynamic_entry (DT_PLTGOT, 0)) | |
b34976b6 | 1797 | return FALSE; |
15bda425 JL |
1798 | |
1799 | /* Add some entries to the .dynamic section. We fill in the | |
1800 | values later, in elf64_hppa_finish_dynamic_sections, but we | |
1801 | must add the entries now so that we get the correct size for | |
1802 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1803 | dynamic linker and used by the debugger. */ | |
1804 | if (! info->shared) | |
1805 | { | |
dc810e39 AM |
1806 | if (!add_dynamic_entry (DT_DEBUG, 0) |
1807 | || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) | |
1808 | || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) | |
b34976b6 | 1809 | return FALSE; |
15bda425 JL |
1810 | } |
1811 | ||
f2482cb2 NC |
1812 | /* Force DT_FLAGS to always be set. |
1813 | Required by HPUX 11.00 patch PHSS_26559. */ | |
1814 | if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) | |
b34976b6 | 1815 | return FALSE; |
f2482cb2 | 1816 | |
15bda425 JL |
1817 | if (plt) |
1818 | { | |
dc810e39 AM |
1819 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
1820 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1821 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
b34976b6 | 1822 | return FALSE; |
15bda425 JL |
1823 | } |
1824 | ||
1825 | if (relocs) | |
1826 | { | |
dc810e39 AM |
1827 | if (!add_dynamic_entry (DT_RELA, 0) |
1828 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1829 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) | |
b34976b6 | 1830 | return FALSE; |
15bda425 JL |
1831 | } |
1832 | ||
1833 | if (reltext) | |
1834 | { | |
dc810e39 | 1835 | if (!add_dynamic_entry (DT_TEXTREL, 0)) |
b34976b6 | 1836 | return FALSE; |
d6cf2879 | 1837 | info->flags |= DF_TEXTREL; |
15bda425 JL |
1838 | } |
1839 | } | |
dc810e39 | 1840 | #undef add_dynamic_entry |
15bda425 | 1841 | |
b34976b6 | 1842 | return TRUE; |
15bda425 JL |
1843 | } |
1844 | ||
1845 | /* Called after we have output the symbol into the dynamic symbol | |
1846 | table, but before we output the symbol into the normal symbol | |
1847 | table. | |
1848 | ||
1849 | For some symbols we had to change their address when outputting | |
1850 | the dynamic symbol table. We undo that change here so that | |
1851 | the symbols have their expected value in the normal symbol | |
1852 | table. Ick. */ | |
1853 | ||
b34976b6 | 1854 | static bfd_boolean |
754021d0 | 1855 | elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h) |
15bda425 JL |
1856 | struct bfd_link_info *info; |
1857 | const char *name; | |
1858 | Elf_Internal_Sym *sym; | |
edd21aca | 1859 | asection *input_sec ATTRIBUTE_UNUSED; |
754021d0 | 1860 | struct elf_link_hash_entry *h; |
15bda425 JL |
1861 | { |
1862 | struct elf64_hppa_link_hash_table *hppa_info; | |
1863 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1864 | ||
1865 | /* We may be called with the file symbol or section symbols. | |
1866 | They never need munging, so it is safe to ignore them. */ | |
1867 | if (!name) | |
b34976b6 | 1868 | return TRUE; |
15bda425 JL |
1869 | |
1870 | /* Get the PA dyn_symbol (if any) associated with NAME. */ | |
1871 | hppa_info = elf64_hppa_hash_table (info); | |
1872 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1873 | name, FALSE, FALSE); |
ac7bbf74 | 1874 | if (!dyn_h || dyn_h->h != h) |
754021d0 | 1875 | return TRUE; |
15bda425 | 1876 | |
832d951b AM |
1877 | /* Function symbols for which we created .opd entries *may* have been |
1878 | munged by finish_dynamic_symbol and have to be un-munged here. | |
1879 | ||
1880 | Note that finish_dynamic_symbol sometimes turns dynamic symbols | |
1881 | into non-dynamic ones, so we initialize st_shndx to -1 in | |
1882 | mark_exported_functions and check to see if it was overwritten | |
1883 | here instead of just checking dyn_h->h->dynindx. */ | |
ac7bbf74 | 1884 | if (dyn_h->want_opd && dyn_h->st_shndx != -1) |
15bda425 JL |
1885 | { |
1886 | /* Restore the saved value and section index. */ | |
1887 | sym->st_value = dyn_h->st_value; | |
fe8bc63d | 1888 | sym->st_shndx = dyn_h->st_shndx; |
15bda425 JL |
1889 | } |
1890 | ||
b34976b6 | 1891 | return TRUE; |
15bda425 JL |
1892 | } |
1893 | ||
1894 | /* Finish up dynamic symbol handling. We set the contents of various | |
1895 | dynamic sections here. */ | |
1896 | ||
b34976b6 | 1897 | static bfd_boolean |
15bda425 JL |
1898 | elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym) |
1899 | bfd *output_bfd; | |
1900 | struct bfd_link_info *info; | |
1901 | struct elf_link_hash_entry *h; | |
1902 | Elf_Internal_Sym *sym; | |
1903 | { | |
1904 | asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel; | |
1905 | struct elf64_hppa_link_hash_table *hppa_info; | |
1906 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1907 | ||
1908 | hppa_info = elf64_hppa_hash_table (info); | |
1909 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1910 | h->root.root.string, FALSE, FALSE); |
15bda425 JL |
1911 | |
1912 | stub = hppa_info->stub_sec; | |
1913 | splt = hppa_info->plt_sec; | |
1914 | sdlt = hppa_info->dlt_sec; | |
1915 | sopd = hppa_info->opd_sec; | |
1916 | spltrel = hppa_info->plt_rel_sec; | |
1917 | sdltrel = hppa_info->dlt_rel_sec; | |
1918 | ||
15bda425 JL |
1919 | /* Incredible. It is actually necessary to NOT use the symbol's real |
1920 | value when building the dynamic symbol table for a shared library. | |
1921 | At least for symbols that refer to functions. | |
1922 | ||
1923 | We will store a new value and section index into the symbol long | |
1924 | enough to output it into the dynamic symbol table, then we restore | |
1925 | the original values (in elf64_hppa_link_output_symbol_hook). */ | |
1926 | if (dyn_h && dyn_h->want_opd) | |
1927 | { | |
f12123c0 | 1928 | BFD_ASSERT (sopd != NULL); |
d663e1cd | 1929 | |
15bda425 JL |
1930 | /* Save away the original value and section index so that we |
1931 | can restore them later. */ | |
1932 | dyn_h->st_value = sym->st_value; | |
1933 | dyn_h->st_shndx = sym->st_shndx; | |
1934 | ||
1935 | /* For the dynamic symbol table entry, we want the value to be | |
1936 | address of this symbol's entry within the .opd section. */ | |
1937 | sym->st_value = (dyn_h->opd_offset | |
1938 | + sopd->output_offset | |
1939 | + sopd->output_section->vma); | |
1940 | sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
1941 | sopd->output_section); | |
1942 | } | |
1943 | ||
1944 | /* Initialize a .plt entry if requested. */ | |
1945 | if (dyn_h && dyn_h->want_plt | |
1946 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
1947 | { | |
1948 | bfd_vma value; | |
1949 | Elf_Internal_Rela rel; | |
947216bf | 1950 | bfd_byte *loc; |
15bda425 | 1951 | |
f12123c0 | 1952 | BFD_ASSERT (splt != NULL && spltrel != NULL); |
d663e1cd | 1953 | |
15bda425 JL |
1954 | /* We do not actually care about the value in the PLT entry |
1955 | if we are creating a shared library and the symbol is | |
1956 | still undefined, we create a dynamic relocation to fill | |
1957 | in the correct value. */ | |
1958 | if (info->shared && h->root.type == bfd_link_hash_undefined) | |
1959 | value = 0; | |
1960 | else | |
1961 | value = (h->root.u.def.value + h->root.u.def.section->vma); | |
1962 | ||
fe8bc63d | 1963 | /* Fill in the entry in the procedure linkage table. |
15bda425 JL |
1964 | |
1965 | The format of a plt entry is | |
fe8bc63d | 1966 | <funcaddr> <__gp>. |
15bda425 JL |
1967 | |
1968 | plt_offset is the offset within the PLT section at which to | |
fe8bc63d | 1969 | install the PLT entry. |
15bda425 JL |
1970 | |
1971 | We are modifying the in-memory PLT contents here, so we do not add | |
1972 | in the output_offset of the PLT section. */ | |
1973 | ||
1974 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset); | |
1975 | value = _bfd_get_gp_value (splt->output_section->owner); | |
1976 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8); | |
1977 | ||
1978 | /* Create a dynamic IPLT relocation for this entry. | |
1979 | ||
1980 | We are creating a relocation in the output file's PLT section, | |
1981 | which is included within the DLT secton. So we do need to include | |
1982 | the PLT's output_offset in the computation of the relocation's | |
1983 | address. */ | |
1984 | rel.r_offset = (dyn_h->plt_offset + splt->output_offset | |
1985 | + splt->output_section->vma); | |
1986 | rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT); | |
1987 | rel.r_addend = 0; | |
1988 | ||
947216bf AM |
1989 | loc = spltrel->contents; |
1990 | loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
1991 | bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); | |
15bda425 JL |
1992 | } |
1993 | ||
1994 | /* Initialize an external call stub entry if requested. */ | |
1995 | if (dyn_h && dyn_h->want_stub | |
1996 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
1997 | { | |
1998 | bfd_vma value; | |
1999 | int insn; | |
b352eebf | 2000 | unsigned int max_offset; |
15bda425 | 2001 | |
f12123c0 | 2002 | BFD_ASSERT (stub != NULL); |
d663e1cd | 2003 | |
15bda425 JL |
2004 | /* Install the generic stub template. |
2005 | ||
2006 | We are modifying the contents of the stub section, so we do not | |
2007 | need to include the stub section's output_offset here. */ | |
2008 | memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub)); | |
2009 | ||
2010 | /* Fix up the first ldd instruction. | |
2011 | ||
2012 | We are modifying the contents of the STUB section in memory, | |
fe8bc63d | 2013 | so we do not need to include its output offset in this computation. |
15bda425 JL |
2014 | |
2015 | Note the plt_offset value is the value of the PLT entry relative to | |
2016 | the start of the PLT section. These instructions will reference | |
2017 | data relative to the value of __gp, which may not necessarily have | |
2018 | the same address as the start of the PLT section. | |
2019 | ||
2020 | gp_offset contains the offset of __gp within the PLT section. */ | |
2021 | value = dyn_h->plt_offset - hppa_info->gp_offset; | |
fe8bc63d | 2022 | |
15bda425 | 2023 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset); |
b352eebf AM |
2024 | if (output_bfd->arch_info->mach >= 25) |
2025 | { | |
2026 | /* Wide mode allows 16 bit offsets. */ | |
2027 | max_offset = 32768; | |
2028 | insn &= ~ 0xfff1; | |
dc810e39 | 2029 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2030 | } |
2031 | else | |
2032 | { | |
2033 | max_offset = 8192; | |
2034 | insn &= ~ 0x3ff1; | |
dc810e39 | 2035 | insn |= re_assemble_14 ((int) value); |
b352eebf AM |
2036 | } |
2037 | ||
2038 | if ((value & 7) || value + max_offset >= 2*max_offset - 8) | |
2039 | { | |
2040 | (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), | |
2041 | dyn_h->root.string, | |
2042 | (long) value); | |
b34976b6 | 2043 | return FALSE; |
b352eebf AM |
2044 | } |
2045 | ||
dc810e39 | 2046 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2047 | stub->contents + dyn_h->stub_offset); |
2048 | ||
2049 | /* Fix up the second ldd instruction. */ | |
b352eebf | 2050 | value += 8; |
15bda425 | 2051 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8); |
b352eebf AM |
2052 | if (output_bfd->arch_info->mach >= 25) |
2053 | { | |
2054 | insn &= ~ 0xfff1; | |
dc810e39 | 2055 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2056 | } |
2057 | else | |
2058 | { | |
2059 | insn &= ~ 0x3ff1; | |
dc810e39 | 2060 | insn |= re_assemble_14 ((int) value); |
b352eebf | 2061 | } |
dc810e39 | 2062 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2063 | stub->contents + dyn_h->stub_offset + 8); |
2064 | } | |
2065 | ||
b34976b6 | 2066 | return TRUE; |
15bda425 JL |
2067 | } |
2068 | ||
2069 | /* The .opd section contains FPTRs for each function this file | |
2070 | exports. Initialize the FPTR entries. */ | |
2071 | ||
b34976b6 | 2072 | static bfd_boolean |
15bda425 JL |
2073 | elf64_hppa_finalize_opd (dyn_h, data) |
2074 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2075 | PTR data; | |
2076 | { | |
2077 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2078 | struct elf64_hppa_link_hash_table *hppa_info; | |
3db4b612 | 2079 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2080 | asection *sopd; |
2081 | asection *sopdrel; | |
2082 | ||
2083 | hppa_info = elf64_hppa_hash_table (info); | |
2084 | sopd = hppa_info->opd_sec; | |
2085 | sopdrel = hppa_info->opd_rel_sec; | |
2086 | ||
3db4b612 | 2087 | if (h && dyn_h->want_opd) |
15bda425 JL |
2088 | { |
2089 | bfd_vma value; | |
2090 | ||
fe8bc63d | 2091 | /* The first two words of an .opd entry are zero. |
15bda425 JL |
2092 | |
2093 | We are modifying the contents of the OPD section in memory, so we | |
2094 | do not need to include its output offset in this computation. */ | |
2095 | memset (sopd->contents + dyn_h->opd_offset, 0, 16); | |
2096 | ||
2097 | value = (h->root.u.def.value | |
2098 | + h->root.u.def.section->output_section->vma | |
2099 | + h->root.u.def.section->output_offset); | |
2100 | ||
2101 | /* The next word is the address of the function. */ | |
2102 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16); | |
2103 | ||
2104 | /* The last word is our local __gp value. */ | |
2105 | value = _bfd_get_gp_value (sopd->output_section->owner); | |
2106 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24); | |
2107 | } | |
2108 | ||
2109 | /* If we are generating a shared library, we must generate EPLT relocations | |
2110 | for each entry in the .opd, even for static functions (they may have | |
2111 | had their address taken). */ | |
2112 | if (info->shared && dyn_h && dyn_h->want_opd) | |
2113 | { | |
947216bf AM |
2114 | Elf_Internal_Rela rel; |
2115 | bfd_byte *loc; | |
15bda425 JL |
2116 | int dynindx; |
2117 | ||
2118 | /* We may need to do a relocation against a local symbol, in | |
2119 | which case we have to look up it's dynamic symbol index off | |
2120 | the local symbol hash table. */ | |
2121 | if (h && h->dynindx != -1) | |
2122 | dynindx = h->dynindx; | |
2123 | else | |
2124 | dynindx | |
2125 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2126 | dyn_h->sym_indx); | |
2127 | ||
2128 | /* The offset of this relocation is the absolute address of the | |
2129 | .opd entry for this symbol. */ | |
2130 | rel.r_offset = (dyn_h->opd_offset + sopd->output_offset | |
2131 | + sopd->output_section->vma); | |
2132 | ||
2133 | /* If H is non-null, then we have an external symbol. | |
2134 | ||
2135 | It is imperative that we use a different dynamic symbol for the | |
2136 | EPLT relocation if the symbol has global scope. | |
2137 | ||
2138 | In the dynamic symbol table, the function symbol will have a value | |
2139 | which is address of the function's .opd entry. | |
2140 | ||
2141 | Thus, we can not use that dynamic symbol for the EPLT relocation | |
2142 | (if we did, the data in the .opd would reference itself rather | |
2143 | than the actual address of the function). Instead we have to use | |
2144 | a new dynamic symbol which has the same value as the original global | |
fe8bc63d | 2145 | function symbol. |
15bda425 JL |
2146 | |
2147 | We prefix the original symbol with a "." and use the new symbol in | |
2148 | the EPLT relocation. This new symbol has already been recorded in | |
2149 | the symbol table, we just have to look it up and use it. | |
2150 | ||
2151 | We do not have such problems with static functions because we do | |
2152 | not make their addresses in the dynamic symbol table point to | |
2153 | the .opd entry. Ultimately this should be safe since a static | |
2154 | function can not be directly referenced outside of its shared | |
2155 | library. | |
2156 | ||
2157 | We do have to play similar games for FPTR relocations in shared | |
2158 | libraries, including those for static symbols. See the FPTR | |
2159 | handling in elf64_hppa_finalize_dynreloc. */ | |
2160 | if (h) | |
2161 | { | |
2162 | char *new_name; | |
2163 | struct elf_link_hash_entry *nh; | |
2164 | ||
2165 | new_name = alloca (strlen (h->root.root.string) + 2); | |
2166 | new_name[0] = '.'; | |
2167 | strcpy (new_name + 1, h->root.root.string); | |
2168 | ||
2169 | nh = elf_link_hash_lookup (elf_hash_table (info), | |
b34976b6 | 2170 | new_name, FALSE, FALSE, FALSE); |
15bda425 JL |
2171 | |
2172 | /* All we really want from the new symbol is its dynamic | |
2173 | symbol index. */ | |
2174 | dynindx = nh->dynindx; | |
2175 | } | |
2176 | ||
2177 | rel.r_addend = 0; | |
2178 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); | |
2179 | ||
947216bf AM |
2180 | loc = sopdrel->contents; |
2181 | loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2182 | bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); | |
15bda425 | 2183 | } |
b34976b6 | 2184 | return TRUE; |
15bda425 JL |
2185 | } |
2186 | ||
2187 | /* The .dlt section contains addresses for items referenced through the | |
2188 | dlt. Note that we can have a DLTIND relocation for a local symbol, thus | |
2189 | we can not depend on finish_dynamic_symbol to initialize the .dlt. */ | |
2190 | ||
b34976b6 | 2191 | static bfd_boolean |
15bda425 JL |
2192 | elf64_hppa_finalize_dlt (dyn_h, data) |
2193 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2194 | PTR data; | |
2195 | { | |
2196 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2197 | struct elf64_hppa_link_hash_table *hppa_info; | |
2198 | asection *sdlt, *sdltrel; | |
3db4b612 | 2199 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2200 | |
2201 | hppa_info = elf64_hppa_hash_table (info); | |
2202 | ||
2203 | sdlt = hppa_info->dlt_sec; | |
2204 | sdltrel = hppa_info->dlt_rel_sec; | |
2205 | ||
2206 | /* H/DYN_H may refer to a local variable and we know it's | |
2207 | address, so there is no need to create a relocation. Just install | |
2208 | the proper value into the DLT, note this shortcut can not be | |
2209 | skipped when building a shared library. */ | |
3db4b612 | 2210 | if (! info->shared && h && dyn_h->want_dlt) |
15bda425 JL |
2211 | { |
2212 | bfd_vma value; | |
2213 | ||
2214 | /* If we had an LTOFF_FPTR style relocation we want the DLT entry | |
fe8bc63d | 2215 | to point to the FPTR entry in the .opd section. |
15bda425 JL |
2216 | |
2217 | We include the OPD's output offset in this computation as | |
2218 | we are referring to an absolute address in the resulting | |
2219 | object file. */ | |
2220 | if (dyn_h->want_opd) | |
2221 | { | |
2222 | value = (dyn_h->opd_offset | |
2223 | + hppa_info->opd_sec->output_offset | |
2224 | + hppa_info->opd_sec->output_section->vma); | |
2225 | } | |
37f4508b AM |
2226 | else if ((h->root.type == bfd_link_hash_defined |
2227 | || h->root.type == bfd_link_hash_defweak) | |
2228 | && h->root.u.def.section) | |
15bda425 | 2229 | { |
3db4b612 | 2230 | value = h->root.u.def.value + h->root.u.def.section->output_offset; |
15bda425 JL |
2231 | if (h->root.u.def.section->output_section) |
2232 | value += h->root.u.def.section->output_section->vma; | |
2233 | else | |
2234 | value += h->root.u.def.section->vma; | |
2235 | } | |
3db4b612 JL |
2236 | else |
2237 | /* We have an undefined function reference. */ | |
2238 | value = 0; | |
15bda425 JL |
2239 | |
2240 | /* We do not need to include the output offset of the DLT section | |
2241 | here because we are modifying the in-memory contents. */ | |
2242 | bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset); | |
2243 | } | |
2244 | ||
4cc11e76 | 2245 | /* Create a relocation for the DLT entry associated with this symbol. |
15bda425 JL |
2246 | When building a shared library the symbol does not have to be dynamic. */ |
2247 | if (dyn_h->want_dlt | |
2248 | && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared)) | |
2249 | { | |
947216bf AM |
2250 | Elf_Internal_Rela rel; |
2251 | bfd_byte *loc; | |
15bda425 JL |
2252 | int dynindx; |
2253 | ||
2254 | /* We may need to do a relocation against a local symbol, in | |
2255 | which case we have to look up it's dynamic symbol index off | |
2256 | the local symbol hash table. */ | |
2257 | if (h && h->dynindx != -1) | |
2258 | dynindx = h->dynindx; | |
2259 | else | |
2260 | dynindx | |
2261 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2262 | dyn_h->sym_indx); | |
2263 | ||
15bda425 JL |
2264 | /* Create a dynamic relocation for this entry. Do include the output |
2265 | offset of the DLT entry since we need an absolute address in the | |
2266 | resulting object file. */ | |
2267 | rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset | |
2268 | + sdlt->output_section->vma); | |
2269 | if (h && h->type == STT_FUNC) | |
2270 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); | |
2271 | else | |
2272 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); | |
2273 | rel.r_addend = 0; | |
2274 | ||
947216bf AM |
2275 | loc = sdltrel->contents; |
2276 | loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2277 | bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); | |
15bda425 | 2278 | } |
b34976b6 | 2279 | return TRUE; |
15bda425 JL |
2280 | } |
2281 | ||
2282 | /* Finalize the dynamic relocations. Specifically the FPTR relocations | |
2283 | for dynamic functions used to initialize static data. */ | |
2284 | ||
b34976b6 | 2285 | static bfd_boolean |
15bda425 JL |
2286 | elf64_hppa_finalize_dynreloc (dyn_h, data) |
2287 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2288 | PTR data; | |
2289 | { | |
2290 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2291 | struct elf64_hppa_link_hash_table *hppa_info; | |
2292 | struct elf_link_hash_entry *h; | |
2293 | int dynamic_symbol; | |
2294 | ||
2295 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info); | |
2296 | ||
2297 | if (!dynamic_symbol && !info->shared) | |
b34976b6 | 2298 | return TRUE; |
15bda425 JL |
2299 | |
2300 | if (dyn_h->reloc_entries) | |
2301 | { | |
2302 | struct elf64_hppa_dyn_reloc_entry *rent; | |
2303 | int dynindx; | |
2304 | ||
2305 | hppa_info = elf64_hppa_hash_table (info); | |
2306 | h = dyn_h->h; | |
2307 | ||
2308 | /* We may need to do a relocation against a local symbol, in | |
2309 | which case we have to look up it's dynamic symbol index off | |
2310 | the local symbol hash table. */ | |
2311 | if (h && h->dynindx != -1) | |
2312 | dynindx = h->dynindx; | |
2313 | else | |
2314 | dynindx | |
2315 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2316 | dyn_h->sym_indx); | |
2317 | ||
2318 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
2319 | { | |
947216bf AM |
2320 | Elf_Internal_Rela rel; |
2321 | bfd_byte *loc; | |
15bda425 | 2322 | |
d663e1cd JL |
2323 | /* Allocate one iff we are building a shared library, the relocation |
2324 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
2325 | if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
2326 | continue; | |
15bda425 | 2327 | |
fe8bc63d | 2328 | /* Create a dynamic relocation for this entry. |
15bda425 JL |
2329 | |
2330 | We need the output offset for the reloc's section because | |
2331 | we are creating an absolute address in the resulting object | |
2332 | file. */ | |
2333 | rel.r_offset = (rent->offset + rent->sec->output_offset | |
2334 | + rent->sec->output_section->vma); | |
2335 | ||
2336 | /* An FPTR64 relocation implies that we took the address of | |
2337 | a function and that the function has an entry in the .opd | |
2338 | section. We want the FPTR64 relocation to reference the | |
2339 | entry in .opd. | |
2340 | ||
2341 | We could munge the symbol value in the dynamic symbol table | |
2342 | (in fact we already do for functions with global scope) to point | |
2343 | to the .opd entry. Then we could use that dynamic symbol in | |
2344 | this relocation. | |
2345 | ||
2346 | Or we could do something sensible, not munge the symbol's | |
2347 | address and instead just use a different symbol to reference | |
2348 | the .opd entry. At least that seems sensible until you | |
2349 | realize there's no local dynamic symbols we can use for that | |
2350 | purpose. Thus the hair in the check_relocs routine. | |
fe8bc63d | 2351 | |
15bda425 JL |
2352 | We use a section symbol recorded by check_relocs as the |
2353 | base symbol for the relocation. The addend is the difference | |
2354 | between the section symbol and the address of the .opd entry. */ | |
3db4b612 | 2355 | if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) |
15bda425 JL |
2356 | { |
2357 | bfd_vma value, value2; | |
15bda425 JL |
2358 | |
2359 | /* First compute the address of the opd entry for this symbol. */ | |
2360 | value = (dyn_h->opd_offset | |
2361 | + hppa_info->opd_sec->output_section->vma | |
2362 | + hppa_info->opd_sec->output_offset); | |
2363 | ||
2364 | /* Compute the value of the start of the section with | |
2365 | the relocation. */ | |
2366 | value2 = (rent->sec->output_section->vma | |
2367 | + rent->sec->output_offset); | |
2368 | ||
2369 | /* Compute the difference between the start of the section | |
2370 | with the relocation and the opd entry. */ | |
2371 | value -= value2; | |
fe8bc63d | 2372 | |
15bda425 JL |
2373 | /* The result becomes the addend of the relocation. */ |
2374 | rel.r_addend = value; | |
2375 | ||
2376 | /* The section symbol becomes the symbol for the dynamic | |
2377 | relocation. */ | |
2378 | dynindx | |
2379 | = _bfd_elf_link_lookup_local_dynindx (info, | |
2380 | rent->sec->owner, | |
2381 | rent->sec_symndx); | |
2382 | } | |
2383 | else | |
2384 | rel.r_addend = rent->addend; | |
2385 | ||
2386 | rel.r_info = ELF64_R_INFO (dynindx, rent->type); | |
2387 | ||
947216bf AM |
2388 | loc = hppa_info->other_rel_sec->contents; |
2389 | loc += (hppa_info->other_rel_sec->reloc_count++ | |
2390 | * sizeof (Elf64_External_Rela)); | |
15bda425 | 2391 | bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, |
947216bf | 2392 | &rel, loc); |
15bda425 JL |
2393 | } |
2394 | } | |
2395 | ||
b34976b6 | 2396 | return TRUE; |
15bda425 JL |
2397 | } |
2398 | ||
5ac81c74 JL |
2399 | /* Used to decide how to sort relocs in an optimal manner for the |
2400 | dynamic linker, before writing them out. */ | |
2401 | ||
2402 | static enum elf_reloc_type_class | |
2403 | elf64_hppa_reloc_type_class (rela) | |
2404 | const Elf_Internal_Rela *rela; | |
2405 | { | |
2406 | if (ELF64_R_SYM (rela->r_info) == 0) | |
2407 | return reloc_class_relative; | |
2408 | ||
2409 | switch ((int) ELF64_R_TYPE (rela->r_info)) | |
2410 | { | |
2411 | case R_PARISC_IPLT: | |
2412 | return reloc_class_plt; | |
2413 | case R_PARISC_COPY: | |
2414 | return reloc_class_copy; | |
2415 | default: | |
2416 | return reloc_class_normal; | |
2417 | } | |
2418 | } | |
2419 | ||
15bda425 JL |
2420 | /* Finish up the dynamic sections. */ |
2421 | ||
b34976b6 | 2422 | static bfd_boolean |
15bda425 JL |
2423 | elf64_hppa_finish_dynamic_sections (output_bfd, info) |
2424 | bfd *output_bfd; | |
2425 | struct bfd_link_info *info; | |
2426 | { | |
2427 | bfd *dynobj; | |
2428 | asection *sdyn; | |
2429 | struct elf64_hppa_link_hash_table *hppa_info; | |
2430 | ||
2431 | hppa_info = elf64_hppa_hash_table (info); | |
2432 | ||
2433 | /* Finalize the contents of the .opd section. */ | |
2434 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2435 | elf64_hppa_finalize_opd, | |
2436 | info); | |
2437 | ||
2438 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2439 | elf64_hppa_finalize_dynreloc, | |
2440 | info); | |
2441 | ||
2442 | /* Finalize the contents of the .dlt section. */ | |
2443 | dynobj = elf_hash_table (info)->dynobj; | |
2444 | /* Finalize the contents of the .dlt section. */ | |
2445 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2446 | elf64_hppa_finalize_dlt, | |
2447 | info); | |
2448 | ||
15bda425 JL |
2449 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2450 | ||
2451 | if (elf_hash_table (info)->dynamic_sections_created) | |
2452 | { | |
2453 | Elf64_External_Dyn *dyncon, *dynconend; | |
15bda425 JL |
2454 | |
2455 | BFD_ASSERT (sdyn != NULL); | |
2456 | ||
2457 | dyncon = (Elf64_External_Dyn *) sdyn->contents; | |
eea6121a | 2458 | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); |
15bda425 JL |
2459 | for (; dyncon < dynconend; dyncon++) |
2460 | { | |
2461 | Elf_Internal_Dyn dyn; | |
2462 | asection *s; | |
2463 | ||
2464 | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | |
2465 | ||
2466 | switch (dyn.d_tag) | |
2467 | { | |
2468 | default: | |
2469 | break; | |
2470 | ||
2471 | case DT_HP_LOAD_MAP: | |
2472 | /* Compute the absolute address of 16byte scratchpad area | |
2473 | for the dynamic linker. | |
2474 | ||
2475 | By convention the linker script will allocate the scratchpad | |
2476 | area at the start of the .data section. So all we have to | |
2477 | to is find the start of the .data section. */ | |
2478 | s = bfd_get_section_by_name (output_bfd, ".data"); | |
2479 | dyn.d_un.d_ptr = s->vma; | |
2480 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2481 | break; | |
2482 | ||
2483 | case DT_PLTGOT: | |
2484 | /* HP's use PLTGOT to set the GOT register. */ | |
2485 | dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); | |
2486 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2487 | break; | |
2488 | ||
2489 | case DT_JMPREL: | |
2490 | s = hppa_info->plt_rel_sec; | |
2491 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2492 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2493 | break; | |
2494 | ||
2495 | case DT_PLTRELSZ: | |
2496 | s = hppa_info->plt_rel_sec; | |
eea6121a | 2497 | dyn.d_un.d_val = s->size; |
15bda425 JL |
2498 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); |
2499 | break; | |
2500 | ||
2501 | case DT_RELA: | |
2502 | s = hppa_info->other_rel_sec; | |
eea6121a | 2503 | if (! s || ! s->size) |
15bda425 | 2504 | s = hppa_info->dlt_rel_sec; |
eea6121a | 2505 | if (! s || ! s->size) |
5ac81c74 | 2506 | s = hppa_info->opd_rel_sec; |
15bda425 JL |
2507 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2508 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2509 | break; | |
2510 | ||
2511 | case DT_RELASZ: | |
2512 | s = hppa_info->other_rel_sec; | |
eea6121a | 2513 | dyn.d_un.d_val = s->size; |
15bda425 | 2514 | s = hppa_info->dlt_rel_sec; |
eea6121a | 2515 | dyn.d_un.d_val += s->size; |
15bda425 | 2516 | s = hppa_info->opd_rel_sec; |
eea6121a | 2517 | dyn.d_un.d_val += s->size; |
15bda425 JL |
2518 | /* There is some question about whether or not the size of |
2519 | the PLT relocs should be included here. HP's tools do | |
2520 | it, so we'll emulate them. */ | |
2521 | s = hppa_info->plt_rel_sec; | |
eea6121a | 2522 | dyn.d_un.d_val += s->size; |
15bda425 JL |
2523 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); |
2524 | break; | |
2525 | ||
2526 | } | |
2527 | } | |
2528 | } | |
2529 | ||
b34976b6 | 2530 | return TRUE; |
15bda425 JL |
2531 | } |
2532 | ||
235ecfbc NC |
2533 | /* Support for core dump NOTE sections. */ |
2534 | ||
2535 | static bfd_boolean | |
2536 | elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | |
2537 | { | |
2538 | int offset; | |
2539 | size_t size; | |
2540 | ||
2541 | switch (note->descsz) | |
2542 | { | |
2543 | default: | |
2544 | return FALSE; | |
2545 | ||
2546 | case 760: /* Linux/hppa */ | |
2547 | /* pr_cursig */ | |
2548 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
2549 | ||
2550 | /* pr_pid */ | |
2551 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32); | |
2552 | ||
2553 | /* pr_reg */ | |
2554 | offset = 112; | |
2555 | size = 640; | |
2556 | ||
2557 | break; | |
2558 | } | |
2559 | ||
2560 | /* Make a ".reg/999" section. */ | |
2561 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
2562 | size, note->descpos + offset); | |
2563 | } | |
2564 | ||
2565 | static bfd_boolean | |
2566 | elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | |
2567 | { | |
2568 | char * command; | |
2569 | int n; | |
2570 | ||
2571 | switch (note->descsz) | |
2572 | { | |
2573 | default: | |
2574 | return FALSE; | |
2575 | ||
2576 | case 136: /* Linux/hppa elf_prpsinfo. */ | |
2577 | elf_tdata (abfd)->core_program | |
2578 | = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); | |
2579 | elf_tdata (abfd)->core_command | |
2580 | = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); | |
2581 | } | |
2582 | ||
2583 | /* Note that for some reason, a spurious space is tacked | |
2584 | onto the end of the args in some (at least one anyway) | |
2585 | implementations, so strip it off if it exists. */ | |
2586 | command = elf_tdata (abfd)->core_command; | |
2587 | n = strlen (command); | |
2588 | ||
2589 | if (0 < n && command[n - 1] == ' ') | |
2590 | command[n - 1] = '\0'; | |
2591 | ||
2592 | return TRUE; | |
2593 | } | |
2594 | ||
15bda425 JL |
2595 | /* Return the number of additional phdrs we will need. |
2596 | ||
2597 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2598 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2599 | |
2600 | This routine indicates that the backend needs one additional program | |
2601 | header for that case. | |
2602 | ||
2603 | Note we do not have access to the link info structure here, so we have | |
2604 | to guess whether or not we are building a shared library based on the | |
2605 | existence of a .interp section. */ | |
2606 | ||
2607 | static int | |
a6b96beb AM |
2608 | elf64_hppa_additional_program_headers (bfd *abfd, |
2609 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
15bda425 JL |
2610 | { |
2611 | asection *s; | |
2612 | ||
2613 | /* If we are creating a shared library, then we have to create a | |
2614 | PT_PHDR segment. HP's dynamic linker chokes without it. */ | |
2615 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2616 | if (! s) | |
2617 | return 1; | |
2618 | return 0; | |
2619 | } | |
2620 | ||
2621 | /* Allocate and initialize any program headers required by this | |
2622 | specific backend. | |
2623 | ||
2624 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2625 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2626 | |
2627 | This allocates the PT_PHDR and initializes it in a manner suitable | |
fe8bc63d | 2628 | for the HP linker. |
15bda425 JL |
2629 | |
2630 | Note we do not have access to the link info structure here, so we have | |
2631 | to guess whether or not we are building a shared library based on the | |
2632 | existence of a .interp section. */ | |
2633 | ||
b34976b6 | 2634 | static bfd_boolean |
8ded5a0f AM |
2635 | elf64_hppa_modify_segment_map (bfd *abfd, |
2636 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
15bda425 | 2637 | { |
edd21aca | 2638 | struct elf_segment_map *m; |
15bda425 JL |
2639 | asection *s; |
2640 | ||
2641 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2642 | if (! s) | |
2643 | { | |
2644 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2645 | if (m->p_type == PT_PHDR) | |
2646 | break; | |
2647 | if (m == NULL) | |
2648 | { | |
dc810e39 AM |
2649 | m = ((struct elf_segment_map *) |
2650 | bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); | |
15bda425 | 2651 | if (m == NULL) |
b34976b6 | 2652 | return FALSE; |
15bda425 JL |
2653 | |
2654 | m->p_type = PT_PHDR; | |
2655 | m->p_flags = PF_R | PF_X; | |
2656 | m->p_flags_valid = 1; | |
2657 | m->p_paddr_valid = 1; | |
2658 | m->includes_phdrs = 1; | |
2659 | ||
2660 | m->next = elf_tdata (abfd)->segment_map; | |
2661 | elf_tdata (abfd)->segment_map = m; | |
2662 | } | |
2663 | } | |
2664 | ||
2665 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2666 | if (m->p_type == PT_LOAD) | |
2667 | { | |
0ba2a60e | 2668 | unsigned int i; |
15bda425 JL |
2669 | |
2670 | for (i = 0; i < m->count; i++) | |
2671 | { | |
2672 | /* The code "hint" is not really a hint. It is a requirement | |
2673 | for certain versions of the HP dynamic linker. Worse yet, | |
2674 | it must be set even if the shared library does not have | |
2675 | any code in its "text" segment (thus the check for .hash | |
2676 | to catch this situation). */ | |
2677 | if (m->sections[i]->flags & SEC_CODE | |
2678 | || (strcmp (m->sections[i]->name, ".hash") == 0)) | |
2679 | m->p_flags |= (PF_X | PF_HP_CODE); | |
2680 | } | |
2681 | } | |
2682 | ||
b34976b6 | 2683 | return TRUE; |
15bda425 JL |
2684 | } |
2685 | ||
3fab46d0 AM |
2686 | /* Called when writing out an object file to decide the type of a |
2687 | symbol. */ | |
2688 | static int | |
2689 | elf64_hppa_elf_get_symbol_type (elf_sym, type) | |
2690 | Elf_Internal_Sym *elf_sym; | |
2691 | int type; | |
2692 | { | |
2693 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | |
2694 | return STT_PARISC_MILLI; | |
2695 | else | |
2696 | return type; | |
2697 | } | |
2698 | ||
d97a8924 DA |
2699 | /* Support HP specific sections for core files. */ |
2700 | static bfd_boolean | |
2701 | elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index, | |
2702 | const char *typename) | |
2703 | { | |
927e625f MK |
2704 | if (hdr->p_type == PT_HP_CORE_KERNEL) |
2705 | { | |
2706 | asection *sect; | |
2707 | ||
2708 | if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)) | |
2709 | return FALSE; | |
2710 | ||
2711 | sect = bfd_make_section_anyway (abfd, ".kernel"); | |
2712 | if (sect == NULL) | |
2713 | return FALSE; | |
2714 | sect->size = hdr->p_filesz; | |
2715 | sect->filepos = hdr->p_offset; | |
2716 | sect->flags = SEC_HAS_CONTENTS | SEC_READONLY; | |
2717 | return TRUE; | |
2718 | } | |
2719 | ||
d97a8924 DA |
2720 | if (hdr->p_type == PT_HP_CORE_PROC) |
2721 | { | |
2722 | int sig; | |
2723 | ||
2724 | if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0) | |
2725 | return FALSE; | |
2726 | if (bfd_bread (&sig, 4, abfd) != 4) | |
2727 | return FALSE; | |
2728 | ||
2729 | elf_tdata (abfd)->core_signal = sig; | |
2730 | ||
927e625f | 2731 | if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)) |
d97a8924 | 2732 | return FALSE; |
927e625f MK |
2733 | |
2734 | /* GDB uses the ".reg" section to read register contents. */ | |
2735 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz, | |
2736 | hdr->p_offset); | |
d97a8924 DA |
2737 | } |
2738 | ||
2739 | if (hdr->p_type == PT_HP_CORE_LOADABLE | |
2740 | || hdr->p_type == PT_HP_CORE_STACK | |
2741 | || hdr->p_type == PT_HP_CORE_MMF) | |
2742 | hdr->p_type = PT_LOAD; | |
2743 | ||
2744 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename); | |
2745 | } | |
2746 | ||
b35d266b | 2747 | static const struct bfd_elf_special_section elf64_hppa_special_sections[] = |
2f89ff8d | 2748 | { |
0112cd26 NC |
2749 | { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
2750 | { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | |
2751 | { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2752 | { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2753 | { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2754 | { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2755 | { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS }, | |
2756 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d L |
2757 | }; |
2758 | ||
15bda425 JL |
2759 | /* The hash bucket size is the standard one, namely 4. */ |
2760 | ||
2761 | const struct elf_size_info hppa64_elf_size_info = | |
2762 | { | |
2763 | sizeof (Elf64_External_Ehdr), | |
2764 | sizeof (Elf64_External_Phdr), | |
2765 | sizeof (Elf64_External_Shdr), | |
2766 | sizeof (Elf64_External_Rel), | |
2767 | sizeof (Elf64_External_Rela), | |
2768 | sizeof (Elf64_External_Sym), | |
2769 | sizeof (Elf64_External_Dyn), | |
2770 | sizeof (Elf_External_Note), | |
2771 | 4, | |
2772 | 1, | |
45d6a902 | 2773 | 64, 3, |
15bda425 JL |
2774 | ELFCLASS64, EV_CURRENT, |
2775 | bfd_elf64_write_out_phdrs, | |
2776 | bfd_elf64_write_shdrs_and_ehdr, | |
2777 | bfd_elf64_write_relocs, | |
73ff0d56 | 2778 | bfd_elf64_swap_symbol_in, |
15bda425 JL |
2779 | bfd_elf64_swap_symbol_out, |
2780 | bfd_elf64_slurp_reloc_table, | |
2781 | bfd_elf64_slurp_symbol_table, | |
2782 | bfd_elf64_swap_dyn_in, | |
2783 | bfd_elf64_swap_dyn_out, | |
947216bf AM |
2784 | bfd_elf64_swap_reloc_in, |
2785 | bfd_elf64_swap_reloc_out, | |
2786 | bfd_elf64_swap_reloca_in, | |
2787 | bfd_elf64_swap_reloca_out | |
15bda425 JL |
2788 | }; |
2789 | ||
2790 | #define TARGET_BIG_SYM bfd_elf64_hppa_vec | |
2791 | #define TARGET_BIG_NAME "elf64-hppa" | |
2792 | #define ELF_ARCH bfd_arch_hppa | |
2793 | #define ELF_MACHINE_CODE EM_PARISC | |
2794 | /* This is not strictly correct. The maximum page size for PA2.0 is | |
2795 | 64M. But everything still uses 4k. */ | |
2796 | #define ELF_MAXPAGESIZE 0x1000 | |
d1036acb L |
2797 | #define ELF_OSABI ELFOSABI_HPUX |
2798 | ||
15bda425 | 2799 | #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup |
157090f7 | 2800 | #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup |
15bda425 JL |
2801 | #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name |
2802 | #define elf_info_to_howto elf_hppa_info_to_howto | |
2803 | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel | |
2804 | ||
2805 | #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr | |
2806 | #define elf_backend_object_p elf64_hppa_object_p | |
2807 | #define elf_backend_final_write_processing \ | |
2808 | elf_hppa_final_write_processing | |
99c79b2e | 2809 | #define elf_backend_fake_sections elf_hppa_fake_sections |
15bda425 JL |
2810 | #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook |
2811 | ||
f0fe0e16 | 2812 | #define elf_backend_relocate_section elf_hppa_relocate_section |
15bda425 JL |
2813 | |
2814 | #define bfd_elf64_bfd_final_link elf_hppa_final_link | |
2815 | ||
2816 | #define elf_backend_create_dynamic_sections \ | |
2817 | elf64_hppa_create_dynamic_sections | |
2818 | #define elf_backend_post_process_headers elf64_hppa_post_process_headers | |
2819 | ||
74541ad4 AM |
2820 | #define elf_backend_omit_section_dynsym \ |
2821 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
15bda425 JL |
2822 | #define elf_backend_adjust_dynamic_symbol \ |
2823 | elf64_hppa_adjust_dynamic_symbol | |
2824 | ||
2825 | #define elf_backend_size_dynamic_sections \ | |
2826 | elf64_hppa_size_dynamic_sections | |
2827 | ||
2828 | #define elf_backend_finish_dynamic_symbol \ | |
2829 | elf64_hppa_finish_dynamic_symbol | |
2830 | #define elf_backend_finish_dynamic_sections \ | |
2831 | elf64_hppa_finish_dynamic_sections | |
235ecfbc NC |
2832 | #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus |
2833 | #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo | |
2834 | ||
15bda425 JL |
2835 | /* Stuff for the BFD linker: */ |
2836 | #define bfd_elf64_bfd_link_hash_table_create \ | |
2837 | elf64_hppa_hash_table_create | |
2838 | ||
2839 | #define elf_backend_check_relocs \ | |
2840 | elf64_hppa_check_relocs | |
2841 | ||
2842 | #define elf_backend_size_info \ | |
2843 | hppa64_elf_size_info | |
2844 | ||
2845 | #define elf_backend_additional_program_headers \ | |
2846 | elf64_hppa_additional_program_headers | |
2847 | ||
2848 | #define elf_backend_modify_segment_map \ | |
2849 | elf64_hppa_modify_segment_map | |
2850 | ||
2851 | #define elf_backend_link_output_symbol_hook \ | |
2852 | elf64_hppa_link_output_symbol_hook | |
2853 | ||
15bda425 JL |
2854 | #define elf_backend_want_got_plt 0 |
2855 | #define elf_backend_plt_readonly 0 | |
2856 | #define elf_backend_want_plt_sym 0 | |
2857 | #define elf_backend_got_header_size 0 | |
b34976b6 AM |
2858 | #define elf_backend_type_change_ok TRUE |
2859 | #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type | |
2860 | #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class | |
2861 | #define elf_backend_rela_normal 1 | |
29ef7005 | 2862 | #define elf_backend_special_sections elf64_hppa_special_sections |
8a696751 | 2863 | #define elf_backend_action_discarded elf_hppa_action_discarded |
d97a8924 | 2864 | #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr |
15bda425 | 2865 | |
83d1651b L |
2866 | #define elf64_bed elf64_hppa_hpux_bed |
2867 | ||
15bda425 | 2868 | #include "elf64-target.h" |
d952f17a AM |
2869 | |
2870 | #undef TARGET_BIG_SYM | |
2871 | #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec | |
2872 | #undef TARGET_BIG_NAME | |
2873 | #define TARGET_BIG_NAME "elf64-hppa-linux" | |
d1036acb L |
2874 | #undef ELF_OSABI |
2875 | #define ELF_OSABI ELFOSABI_LINUX | |
2876 | #undef elf_backend_post_process_headers | |
2877 | #define elf_backend_post_process_headers _bfd_elf_set_osabi | |
83d1651b L |
2878 | #undef elf64_bed |
2879 | #define elf64_bed elf64_hppa_linux_bed | |
d952f17a | 2880 | |
d952f17a | 2881 | #include "elf64-target.h" |