]>
Commit | Line | Data |
---|---|---|
b352eebf | 1 | /* Support for HPPA 64-bit ELF |
ae9a127f | 2 | Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
15bda425 | 3 | |
ae9a127f | 4 | This file is part of BFD, the Binary File Descriptor library. |
15bda425 | 5 | |
ae9a127f NC |
6 | This program is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
15bda425 | 10 | |
ae9a127f NC |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15bda425 | 15 | |
ae9a127f NC |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
15bda425 | 19 | |
3ef20aaa | 20 | #include "alloca-conf.h" |
15bda425 JL |
21 | #include "bfd.h" |
22 | #include "sysdep.h" | |
23 | #include "libbfd.h" | |
24 | #include "elf-bfd.h" | |
25 | #include "elf/hppa.h" | |
26 | #include "libhppa.h" | |
27 | #include "elf64-hppa.h" | |
28 | #define ARCH_SIZE 64 | |
29 | ||
30 | #define PLT_ENTRY_SIZE 0x10 | |
31 | #define DLT_ENTRY_SIZE 0x8 | |
32 | #define OPD_ENTRY_SIZE 0x20 | |
fe8bc63d | 33 | |
15bda425 JL |
34 | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" |
35 | ||
36 | /* The stub is supposed to load the target address and target's DP | |
37 | value out of the PLT, then do an external branch to the target | |
38 | address. | |
39 | ||
40 | LDD PLTOFF(%r27),%r1 | |
41 | BVE (%r1) | |
42 | LDD PLTOFF+8(%r27),%r27 | |
43 | ||
44 | Note that we must use the LDD with a 14 bit displacement, not the one | |
45 | with a 5 bit displacement. */ | |
46 | static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, | |
47 | 0x53, 0x7b, 0x00, 0x00 }; | |
48 | ||
49 | struct elf64_hppa_dyn_hash_entry | |
50 | { | |
51 | struct bfd_hash_entry root; | |
52 | ||
53 | /* Offsets for this symbol in various linker sections. */ | |
54 | bfd_vma dlt_offset; | |
55 | bfd_vma plt_offset; | |
56 | bfd_vma opd_offset; | |
57 | bfd_vma stub_offset; | |
58 | ||
edd21aca | 59 | /* The symbol table entry, if any, that this was derived from. */ |
15bda425 JL |
60 | struct elf_link_hash_entry *h; |
61 | ||
62 | /* The index of the (possibly local) symbol in the input bfd and its | |
63 | associated BFD. Needed so that we can have relocs against local | |
64 | symbols in shared libraries. */ | |
dc810e39 | 65 | long sym_indx; |
15bda425 JL |
66 | bfd *owner; |
67 | ||
68 | /* Dynamic symbols may need to have two different values. One for | |
69 | the dynamic symbol table, one for the normal symbol table. | |
70 | ||
71 | In such cases we store the symbol's real value and section | |
72 | index here so we can restore the real value before we write | |
73 | the normal symbol table. */ | |
74 | bfd_vma st_value; | |
75 | int st_shndx; | |
76 | ||
77 | /* Used to count non-got, non-plt relocations for delayed sizing | |
78 | of relocation sections. */ | |
79 | struct elf64_hppa_dyn_reloc_entry | |
80 | { | |
81 | /* Next relocation in the chain. */ | |
82 | struct elf64_hppa_dyn_reloc_entry *next; | |
83 | ||
84 | /* The type of the relocation. */ | |
85 | int type; | |
86 | ||
87 | /* The input section of the relocation. */ | |
88 | asection *sec; | |
89 | ||
90 | /* The index of the section symbol for the input section of | |
91 | the relocation. Only needed when building shared libraries. */ | |
92 | int sec_symndx; | |
93 | ||
94 | /* The offset within the input section of the relocation. */ | |
95 | bfd_vma offset; | |
96 | ||
97 | /* The addend for the relocation. */ | |
98 | bfd_vma addend; | |
99 | ||
100 | } *reloc_entries; | |
101 | ||
102 | /* Nonzero if this symbol needs an entry in one of the linker | |
103 | sections. */ | |
104 | unsigned want_dlt; | |
105 | unsigned want_plt; | |
106 | unsigned want_opd; | |
107 | unsigned want_stub; | |
108 | }; | |
109 | ||
110 | struct elf64_hppa_dyn_hash_table | |
111 | { | |
112 | struct bfd_hash_table root; | |
113 | }; | |
114 | ||
115 | struct elf64_hppa_link_hash_table | |
116 | { | |
117 | struct elf_link_hash_table root; | |
118 | ||
119 | /* Shortcuts to get to the various linker defined sections. */ | |
120 | asection *dlt_sec; | |
121 | asection *dlt_rel_sec; | |
122 | asection *plt_sec; | |
123 | asection *plt_rel_sec; | |
124 | asection *opd_sec; | |
125 | asection *opd_rel_sec; | |
126 | asection *other_rel_sec; | |
127 | ||
128 | /* Offset of __gp within .plt section. When the PLT gets large we want | |
129 | to slide __gp into the PLT section so that we can continue to use | |
130 | single DP relative instructions to load values out of the PLT. */ | |
131 | bfd_vma gp_offset; | |
132 | ||
133 | /* Note this is not strictly correct. We should create a stub section for | |
134 | each input section with calls. The stub section should be placed before | |
135 | the section with the call. */ | |
136 | asection *stub_sec; | |
137 | ||
138 | bfd_vma text_segment_base; | |
139 | bfd_vma data_segment_base; | |
140 | ||
141 | struct elf64_hppa_dyn_hash_table dyn_hash_table; | |
142 | ||
143 | /* We build tables to map from an input section back to its | |
144 | symbol index. This is the BFD for which we currently have | |
145 | a map. */ | |
146 | bfd *section_syms_bfd; | |
147 | ||
148 | /* Array of symbol numbers for each input section attached to the | |
149 | current BFD. */ | |
150 | int *section_syms; | |
151 | }; | |
152 | ||
153 | #define elf64_hppa_hash_table(p) \ | |
154 | ((struct elf64_hppa_link_hash_table *) ((p)->hash)) | |
155 | ||
156 | typedef struct bfd_hash_entry *(*new_hash_entry_func) | |
157 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
158 | ||
b34976b6 | 159 | static bfd_boolean elf64_hppa_dyn_hash_table_init |
15bda425 JL |
160 | PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd, |
161 | new_hash_entry_func new)); | |
162 | static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry | |
163 | PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table, | |
164 | const char *string)); | |
165 | static struct bfd_link_hash_table *elf64_hppa_hash_table_create | |
166 | PARAMS ((bfd *abfd)); | |
167 | static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup | |
168 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string, | |
b34976b6 | 169 | bfd_boolean create, bfd_boolean copy)); |
15bda425 JL |
170 | static void elf64_hppa_dyn_hash_traverse |
171 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, | |
b34976b6 | 172 | bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR), |
15bda425 JL |
173 | PTR info)); |
174 | ||
175 | static const char *get_dyn_name | |
0ba2a60e AM |
176 | PARAMS ((asection *, struct elf_link_hash_entry *, |
177 | const Elf_Internal_Rela *, char **, size_t *)); | |
15bda425 | 178 | |
15bda425 JL |
179 | /* This must follow the definitions of the various derived linker |
180 | hash tables and shared functions. */ | |
181 | #include "elf-hppa.h" | |
182 | ||
b34976b6 | 183 | static bfd_boolean elf64_hppa_object_p |
15bda425 JL |
184 | PARAMS ((bfd *)); |
185 | ||
b34976b6 | 186 | static bfd_boolean elf64_hppa_section_from_shdr |
947216bf | 187 | PARAMS ((bfd *, Elf_Internal_Shdr *, const char *)); |
15bda425 JL |
188 | |
189 | static void elf64_hppa_post_process_headers | |
190 | PARAMS ((bfd *, struct bfd_link_info *)); | |
191 | ||
b34976b6 | 192 | static bfd_boolean elf64_hppa_create_dynamic_sections |
15bda425 JL |
193 | PARAMS ((bfd *, struct bfd_link_info *)); |
194 | ||
b34976b6 | 195 | static bfd_boolean elf64_hppa_adjust_dynamic_symbol |
15bda425 JL |
196 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); |
197 | ||
b34976b6 | 198 | static bfd_boolean elf64_hppa_mark_milli_and_exported_functions |
47b7c2db AM |
199 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
200 | ||
b34976b6 | 201 | static bfd_boolean elf64_hppa_size_dynamic_sections |
15bda425 JL |
202 | PARAMS ((bfd *, struct bfd_link_info *)); |
203 | ||
b34976b6 AM |
204 | static bfd_boolean elf64_hppa_link_output_symbol_hook |
205 | PARAMS ((bfd *abfd, struct bfd_link_info *, const char *, | |
206 | Elf_Internal_Sym *, asection *input_sec)); | |
99c79b2e | 207 | |
b34976b6 | 208 | static bfd_boolean elf64_hppa_finish_dynamic_symbol |
15bda425 JL |
209 | PARAMS ((bfd *, struct bfd_link_info *, |
210 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
fe8bc63d | 211 | |
b34976b6 AM |
212 | static int elf64_hppa_additional_program_headers |
213 | PARAMS ((bfd *)); | |
99c79b2e | 214 | |
b34976b6 AM |
215 | static bfd_boolean elf64_hppa_modify_segment_map |
216 | PARAMS ((bfd *)); | |
99c79b2e | 217 | |
5ac81c74 JL |
218 | static enum elf_reloc_type_class elf64_hppa_reloc_type_class |
219 | PARAMS ((const Elf_Internal_Rela *)); | |
220 | ||
b34976b6 | 221 | static bfd_boolean elf64_hppa_finish_dynamic_sections |
15bda425 JL |
222 | PARAMS ((bfd *, struct bfd_link_info *)); |
223 | ||
b34976b6 | 224 | static bfd_boolean elf64_hppa_check_relocs |
15bda425 JL |
225 | PARAMS ((bfd *, struct bfd_link_info *, |
226 | asection *, const Elf_Internal_Rela *)); | |
227 | ||
b34976b6 | 228 | static bfd_boolean elf64_hppa_dynamic_symbol_p |
15bda425 JL |
229 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); |
230 | ||
b34976b6 | 231 | static bfd_boolean elf64_hppa_mark_exported_functions |
15bda425 JL |
232 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
233 | ||
b34976b6 | 234 | static bfd_boolean elf64_hppa_finalize_opd |
15bda425 JL |
235 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
236 | ||
b34976b6 | 237 | static bfd_boolean elf64_hppa_finalize_dlt |
15bda425 JL |
238 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
239 | ||
b34976b6 | 240 | static bfd_boolean allocate_global_data_dlt |
15bda425 JL |
241 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
242 | ||
b34976b6 | 243 | static bfd_boolean allocate_global_data_plt |
15bda425 JL |
244 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
245 | ||
b34976b6 | 246 | static bfd_boolean allocate_global_data_stub |
15bda425 JL |
247 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
248 | ||
b34976b6 | 249 | static bfd_boolean allocate_global_data_opd |
15bda425 JL |
250 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
251 | ||
b34976b6 | 252 | static bfd_boolean get_reloc_section |
15bda425 JL |
253 | PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *)); |
254 | ||
b34976b6 | 255 | static bfd_boolean count_dyn_reloc |
15bda425 JL |
256 | PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *, |
257 | int, asection *, int, bfd_vma, bfd_vma)); | |
258 | ||
b34976b6 | 259 | static bfd_boolean allocate_dynrel_entries |
15bda425 JL |
260 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
261 | ||
b34976b6 | 262 | static bfd_boolean elf64_hppa_finalize_dynreloc |
15bda425 JL |
263 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
264 | ||
b34976b6 | 265 | static bfd_boolean get_opd |
15bda425 JL |
266 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
267 | ||
b34976b6 | 268 | static bfd_boolean get_plt |
15bda425 JL |
269 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
270 | ||
b34976b6 | 271 | static bfd_boolean get_dlt |
15bda425 JL |
272 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
273 | ||
b34976b6 | 274 | static bfd_boolean get_stub |
15bda425 JL |
275 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
276 | ||
3fab46d0 AM |
277 | static int elf64_hppa_elf_get_symbol_type |
278 | PARAMS ((Elf_Internal_Sym *, int)); | |
279 | ||
b34976b6 | 280 | static bfd_boolean |
15bda425 JL |
281 | elf64_hppa_dyn_hash_table_init (ht, abfd, new) |
282 | struct elf64_hppa_dyn_hash_table *ht; | |
edd21aca | 283 | bfd *abfd ATTRIBUTE_UNUSED; |
15bda425 JL |
284 | new_hash_entry_func new; |
285 | { | |
fe8bc63d | 286 | memset (ht, 0, sizeof (*ht)); |
15bda425 JL |
287 | return bfd_hash_table_init (&ht->root, new); |
288 | } | |
289 | ||
290 | static struct bfd_hash_entry* | |
291 | elf64_hppa_new_dyn_hash_entry (entry, table, string) | |
292 | struct bfd_hash_entry *entry; | |
293 | struct bfd_hash_table *table; | |
294 | const char *string; | |
295 | { | |
296 | struct elf64_hppa_dyn_hash_entry *ret; | |
297 | ret = (struct elf64_hppa_dyn_hash_entry *) entry; | |
298 | ||
299 | /* Allocate the structure if it has not already been allocated by a | |
300 | subclass. */ | |
301 | if (!ret) | |
302 | ret = bfd_hash_allocate (table, sizeof (*ret)); | |
303 | ||
304 | if (!ret) | |
305 | return 0; | |
306 | ||
307 | /* Initialize our local data. All zeros, and definitely easier | |
308 | than setting 8 bit fields. */ | |
fe8bc63d | 309 | memset (ret, 0, sizeof (*ret)); |
15bda425 JL |
310 | |
311 | /* Call the allocation method of the superclass. */ | |
312 | ret = ((struct elf64_hppa_dyn_hash_entry *) | |
313 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); | |
314 | ||
315 | return &ret->root; | |
316 | } | |
317 | ||
318 | /* Create the derived linker hash table. The PA64 ELF port uses this | |
319 | derived hash table to keep information specific to the PA ElF | |
320 | linker (without using static variables). */ | |
321 | ||
322 | static struct bfd_link_hash_table* | |
323 | elf64_hppa_hash_table_create (abfd) | |
324 | bfd *abfd; | |
325 | { | |
326 | struct elf64_hppa_link_hash_table *ret; | |
327 | ||
dc810e39 | 328 | ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret)); |
15bda425 JL |
329 | if (!ret) |
330 | return 0; | |
331 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | |
332 | _bfd_elf_link_hash_newfunc)) | |
333 | { | |
334 | bfd_release (abfd, ret); | |
335 | return 0; | |
336 | } | |
337 | ||
338 | if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd, | |
339 | elf64_hppa_new_dyn_hash_entry)) | |
340 | return 0; | |
341 | return &ret->root.root; | |
342 | } | |
343 | ||
344 | /* Look up an entry in a PA64 ELF linker hash table. */ | |
345 | ||
346 | static struct elf64_hppa_dyn_hash_entry * | |
347 | elf64_hppa_dyn_hash_lookup(table, string, create, copy) | |
348 | struct elf64_hppa_dyn_hash_table *table; | |
349 | const char *string; | |
b34976b6 | 350 | bfd_boolean create, copy; |
15bda425 JL |
351 | { |
352 | return ((struct elf64_hppa_dyn_hash_entry *) | |
353 | bfd_hash_lookup (&table->root, string, create, copy)); | |
354 | } | |
355 | ||
356 | /* Traverse a PA64 ELF linker hash table. */ | |
357 | ||
358 | static void | |
359 | elf64_hppa_dyn_hash_traverse (table, func, info) | |
360 | struct elf64_hppa_dyn_hash_table *table; | |
b34976b6 | 361 | bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
15bda425 JL |
362 | PTR info; |
363 | { | |
364 | (bfd_hash_traverse | |
365 | (&table->root, | |
b34976b6 | 366 | (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func, |
15bda425 JL |
367 | info)); |
368 | } | |
369 | \f | |
370 | /* Return nonzero if ABFD represents a PA2.0 ELF64 file. | |
371 | ||
372 | Additionally we set the default architecture and machine. */ | |
b34976b6 | 373 | static bfd_boolean |
15bda425 JL |
374 | elf64_hppa_object_p (abfd) |
375 | bfd *abfd; | |
376 | { | |
24a5e751 L |
377 | Elf_Internal_Ehdr * i_ehdrp; |
378 | unsigned int flags; | |
d9634ba1 | 379 | |
24a5e751 L |
380 | i_ehdrp = elf_elfheader (abfd); |
381 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) | |
382 | { | |
383 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX) | |
b34976b6 | 384 | return FALSE; |
24a5e751 L |
385 | } |
386 | else | |
387 | { | |
388 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) | |
b34976b6 | 389 | return FALSE; |
24a5e751 L |
390 | } |
391 | ||
392 | flags = i_ehdrp->e_flags; | |
d9634ba1 AM |
393 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
394 | { | |
395 | case EFA_PARISC_1_0: | |
396 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | |
397 | case EFA_PARISC_1_1: | |
398 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | |
399 | case EFA_PARISC_2_0: | |
400 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | |
401 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: | |
402 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
403 | } | |
404 | /* Don't be fussy. */ | |
b34976b6 | 405 | return TRUE; |
15bda425 JL |
406 | } |
407 | ||
408 | /* Given section type (hdr->sh_type), return a boolean indicating | |
409 | whether or not the section is an elf64-hppa specific section. */ | |
b34976b6 | 410 | static bfd_boolean |
15bda425 JL |
411 | elf64_hppa_section_from_shdr (abfd, hdr, name) |
412 | bfd *abfd; | |
947216bf | 413 | Elf_Internal_Shdr *hdr; |
90937f86 | 414 | const char *name; |
15bda425 JL |
415 | { |
416 | asection *newsect; | |
417 | ||
418 | switch (hdr->sh_type) | |
419 | { | |
420 | case SHT_PARISC_EXT: | |
421 | if (strcmp (name, ".PARISC.archext") != 0) | |
b34976b6 | 422 | return FALSE; |
15bda425 JL |
423 | break; |
424 | case SHT_PARISC_UNWIND: | |
425 | if (strcmp (name, ".PARISC.unwind") != 0) | |
b34976b6 | 426 | return FALSE; |
15bda425 JL |
427 | break; |
428 | case SHT_PARISC_DOC: | |
429 | case SHT_PARISC_ANNOT: | |
430 | default: | |
b34976b6 | 431 | return FALSE; |
15bda425 JL |
432 | } |
433 | ||
434 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
b34976b6 | 435 | return FALSE; |
15bda425 JL |
436 | newsect = hdr->bfd_section; |
437 | ||
b34976b6 | 438 | return TRUE; |
15bda425 JL |
439 | } |
440 | ||
15bda425 | 441 | /* Construct a string for use in the elf64_hppa_dyn_hash_table. The |
fe8bc63d | 442 | name describes what was once potentially anonymous memory. We |
15bda425 JL |
443 | allocate memory as necessary, possibly reusing PBUF/PLEN. */ |
444 | ||
445 | static const char * | |
0ba2a60e AM |
446 | get_dyn_name (sec, h, rel, pbuf, plen) |
447 | asection *sec; | |
15bda425 JL |
448 | struct elf_link_hash_entry *h; |
449 | const Elf_Internal_Rela *rel; | |
450 | char **pbuf; | |
451 | size_t *plen; | |
452 | { | |
453 | size_t nlen, tlen; | |
454 | char *buf; | |
455 | size_t len; | |
456 | ||
457 | if (h && rel->r_addend == 0) | |
458 | return h->root.root.string; | |
459 | ||
460 | if (h) | |
461 | nlen = strlen (h->root.root.string); | |
462 | else | |
0ba2a60e AM |
463 | nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8; |
464 | tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1; | |
15bda425 JL |
465 | |
466 | len = *plen; | |
467 | buf = *pbuf; | |
468 | if (len < tlen) | |
469 | { | |
470 | if (buf) | |
471 | free (buf); | |
472 | *pbuf = buf = malloc (tlen); | |
473 | *plen = len = tlen; | |
474 | if (!buf) | |
475 | return NULL; | |
476 | } | |
477 | ||
478 | if (h) | |
479 | { | |
480 | memcpy (buf, h->root.root.string, nlen); | |
0ba2a60e | 481 | buf[nlen++] = '+'; |
15bda425 JL |
482 | sprintf_vma (buf + nlen, rel->r_addend); |
483 | } | |
484 | else | |
485 | { | |
0ba2a60e AM |
486 | nlen = sprintf (buf, "%x:%lx", |
487 | sec->id & 0xffffffff, | |
488 | (long) ELF64_R_SYM (rel->r_info)); | |
15bda425 JL |
489 | if (rel->r_addend) |
490 | { | |
491 | buf[nlen++] = '+'; | |
492 | sprintf_vma (buf + nlen, rel->r_addend); | |
493 | } | |
494 | } | |
495 | ||
496 | return buf; | |
497 | } | |
498 | ||
499 | /* SEC is a section containing relocs for an input BFD when linking; return | |
500 | a suitable section for holding relocs in the output BFD for a link. */ | |
501 | ||
b34976b6 | 502 | static bfd_boolean |
15bda425 JL |
503 | get_reloc_section (abfd, hppa_info, sec) |
504 | bfd *abfd; | |
505 | struct elf64_hppa_link_hash_table *hppa_info; | |
506 | asection *sec; | |
507 | { | |
508 | const char *srel_name; | |
509 | asection *srel; | |
510 | bfd *dynobj; | |
511 | ||
512 | srel_name = (bfd_elf_string_from_elf_section | |
513 | (abfd, elf_elfheader(abfd)->e_shstrndx, | |
514 | elf_section_data(sec)->rel_hdr.sh_name)); | |
515 | if (srel_name == NULL) | |
b34976b6 | 516 | return FALSE; |
15bda425 JL |
517 | |
518 | BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0 | |
519 | && strcmp (bfd_get_section_name (abfd, sec), | |
520 | srel_name+5) == 0) | |
521 | || (strncmp (srel_name, ".rel", 4) == 0 | |
522 | && strcmp (bfd_get_section_name (abfd, sec), | |
523 | srel_name+4) == 0)); | |
524 | ||
525 | dynobj = hppa_info->root.dynobj; | |
526 | if (!dynobj) | |
527 | hppa_info->root.dynobj = dynobj = abfd; | |
528 | ||
529 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
530 | if (srel == NULL) | |
531 | { | |
532 | srel = bfd_make_section (dynobj, srel_name); | |
533 | if (srel == NULL | |
534 | || !bfd_set_section_flags (dynobj, srel, | |
535 | (SEC_ALLOC | |
536 | | SEC_LOAD | |
537 | | SEC_HAS_CONTENTS | |
538 | | SEC_IN_MEMORY | |
539 | | SEC_LINKER_CREATED | |
540 | | SEC_READONLY)) | |
541 | || !bfd_set_section_alignment (dynobj, srel, 3)) | |
b34976b6 | 542 | return FALSE; |
15bda425 JL |
543 | } |
544 | ||
545 | hppa_info->other_rel_sec = srel; | |
b34976b6 | 546 | return TRUE; |
15bda425 JL |
547 | } |
548 | ||
fe8bc63d | 549 | /* Add a new entry to the list of dynamic relocations against DYN_H. |
15bda425 JL |
550 | |
551 | We use this to keep a record of all the FPTR relocations against a | |
552 | particular symbol so that we can create FPTR relocations in the | |
553 | output file. */ | |
554 | ||
b34976b6 | 555 | static bfd_boolean |
15bda425 JL |
556 | count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend) |
557 | bfd *abfd; | |
558 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
559 | int type; | |
560 | asection *sec; | |
561 | int sec_symndx; | |
562 | bfd_vma offset; | |
563 | bfd_vma addend; | |
564 | { | |
565 | struct elf64_hppa_dyn_reloc_entry *rent; | |
566 | ||
567 | rent = (struct elf64_hppa_dyn_reloc_entry *) | |
dc810e39 | 568 | bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); |
15bda425 | 569 | if (!rent) |
b34976b6 | 570 | return FALSE; |
15bda425 JL |
571 | |
572 | rent->next = dyn_h->reloc_entries; | |
573 | rent->type = type; | |
574 | rent->sec = sec; | |
575 | rent->sec_symndx = sec_symndx; | |
576 | rent->offset = offset; | |
577 | rent->addend = addend; | |
578 | dyn_h->reloc_entries = rent; | |
579 | ||
b34976b6 | 580 | return TRUE; |
15bda425 JL |
581 | } |
582 | ||
583 | /* Scan the RELOCS and record the type of dynamic entries that each | |
584 | referenced symbol needs. */ | |
585 | ||
b34976b6 | 586 | static bfd_boolean |
15bda425 JL |
587 | elf64_hppa_check_relocs (abfd, info, sec, relocs) |
588 | bfd *abfd; | |
589 | struct bfd_link_info *info; | |
590 | asection *sec; | |
591 | const Elf_Internal_Rela *relocs; | |
592 | { | |
593 | struct elf64_hppa_link_hash_table *hppa_info; | |
594 | const Elf_Internal_Rela *relend; | |
595 | Elf_Internal_Shdr *symtab_hdr; | |
596 | const Elf_Internal_Rela *rel; | |
597 | asection *dlt, *plt, *stubs; | |
598 | char *buf; | |
599 | size_t buf_len; | |
600 | int sec_symndx; | |
601 | ||
602 | if (info->relocateable) | |
b34976b6 | 603 | return TRUE; |
15bda425 JL |
604 | |
605 | /* If this is the first dynamic object found in the link, create | |
606 | the special sections required for dynamic linking. */ | |
607 | if (! elf_hash_table (info)->dynamic_sections_created) | |
608 | { | |
45d6a902 | 609 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) |
b34976b6 | 610 | return FALSE; |
15bda425 JL |
611 | } |
612 | ||
613 | hppa_info = elf64_hppa_hash_table (info); | |
614 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
615 | ||
616 | /* If necessary, build a new table holding section symbols indices | |
6cdc0ccc | 617 | for this BFD. */ |
fe8bc63d | 618 | |
15bda425 JL |
619 | if (info->shared && hppa_info->section_syms_bfd != abfd) |
620 | { | |
832d951b | 621 | unsigned long i; |
9ad5cbcf | 622 | unsigned int highest_shndx; |
6cdc0ccc AM |
623 | Elf_Internal_Sym *local_syms = NULL; |
624 | Elf_Internal_Sym *isym, *isymend; | |
dc810e39 | 625 | bfd_size_type amt; |
15bda425 JL |
626 | |
627 | /* We're done with the old cache of section index to section symbol | |
628 | index information. Free it. | |
629 | ||
630 | ?!? Note we leak the last section_syms array. Presumably we | |
631 | could free it in one of the later routines in this file. */ | |
632 | if (hppa_info->section_syms) | |
633 | free (hppa_info->section_syms); | |
634 | ||
6cdc0ccc AM |
635 | /* Read this BFD's local symbols. */ |
636 | if (symtab_hdr->sh_info != 0) | |
47b7c2db | 637 | { |
6cdc0ccc AM |
638 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
639 | if (local_syms == NULL) | |
640 | local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
641 | symtab_hdr->sh_info, 0, | |
642 | NULL, NULL, NULL); | |
643 | if (local_syms == NULL) | |
b34976b6 | 644 | return FALSE; |
9ad5cbcf AM |
645 | } |
646 | ||
6cdc0ccc | 647 | /* Record the highest section index referenced by the local symbols. */ |
15bda425 | 648 | highest_shndx = 0; |
6cdc0ccc AM |
649 | isymend = local_syms + symtab_hdr->sh_info; |
650 | for (isym = local_syms; isym < isymend; isym++) | |
15bda425 | 651 | { |
15bda425 JL |
652 | if (isym->st_shndx > highest_shndx) |
653 | highest_shndx = isym->st_shndx; | |
654 | } | |
655 | ||
15bda425 JL |
656 | /* Allocate an array to hold the section index to section symbol index |
657 | mapping. Bump by one since we start counting at zero. */ | |
658 | highest_shndx++; | |
dc810e39 AM |
659 | amt = highest_shndx; |
660 | amt *= sizeof (int); | |
661 | hppa_info->section_syms = (int *) bfd_malloc (amt); | |
15bda425 JL |
662 | |
663 | /* Now walk the local symbols again. If we find a section symbol, | |
664 | record the index of the symbol into the section_syms array. */ | |
6cdc0ccc | 665 | for (i = 0, isym = local_syms; isym < isymend; i++, isym++) |
15bda425 JL |
666 | { |
667 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
668 | hppa_info->section_syms[isym->st_shndx] = i; | |
669 | } | |
670 | ||
6cdc0ccc AM |
671 | /* We are finished with the local symbols. */ |
672 | if (local_syms != NULL | |
673 | && symtab_hdr->contents != (unsigned char *) local_syms) | |
674 | { | |
675 | if (! info->keep_memory) | |
676 | free (local_syms); | |
677 | else | |
678 | { | |
679 | /* Cache the symbols for elf_link_input_bfd. */ | |
680 | symtab_hdr->contents = (unsigned char *) local_syms; | |
681 | } | |
682 | } | |
15bda425 JL |
683 | |
684 | /* Record which BFD we built the section_syms mapping for. */ | |
685 | hppa_info->section_syms_bfd = abfd; | |
686 | } | |
687 | ||
688 | /* Record the symbol index for this input section. We may need it for | |
689 | relocations when building shared libraries. When not building shared | |
690 | libraries this value is never really used, but assign it to zero to | |
691 | prevent out of bounds memory accesses in other routines. */ | |
692 | if (info->shared) | |
693 | { | |
694 | sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
695 | ||
696 | /* If we did not find a section symbol for this section, then | |
697 | something went terribly wrong above. */ | |
698 | if (sec_symndx == -1) | |
b34976b6 | 699 | return FALSE; |
15bda425 JL |
700 | |
701 | sec_symndx = hppa_info->section_syms[sec_symndx]; | |
702 | } | |
703 | else | |
704 | sec_symndx = 0; | |
fe8bc63d | 705 | |
15bda425 JL |
706 | dlt = plt = stubs = NULL; |
707 | buf = NULL; | |
708 | buf_len = 0; | |
709 | ||
710 | relend = relocs + sec->reloc_count; | |
711 | for (rel = relocs; rel < relend; ++rel) | |
712 | { | |
713 | enum { | |
714 | NEED_DLT = 1, | |
715 | NEED_PLT = 2, | |
716 | NEED_STUB = 4, | |
717 | NEED_OPD = 8, | |
718 | NEED_DYNREL = 16, | |
719 | }; | |
720 | ||
721 | struct elf_link_hash_entry *h = NULL; | |
722 | unsigned long r_symndx = ELF64_R_SYM (rel->r_info); | |
723 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
724 | int need_entry; | |
725 | const char *addr_name; | |
b34976b6 | 726 | bfd_boolean maybe_dynamic; |
15bda425 JL |
727 | int dynrel_type = R_PARISC_NONE; |
728 | static reloc_howto_type *howto; | |
729 | ||
730 | if (r_symndx >= symtab_hdr->sh_info) | |
731 | { | |
732 | /* We're dealing with a global symbol -- find its hash entry | |
733 | and mark it as being referenced. */ | |
734 | long indx = r_symndx - symtab_hdr->sh_info; | |
735 | h = elf_sym_hashes (abfd)[indx]; | |
736 | while (h->root.type == bfd_link_hash_indirect | |
737 | || h->root.type == bfd_link_hash_warning) | |
738 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
739 | ||
740 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
741 | } | |
742 | ||
743 | /* We can only get preliminary data on whether a symbol is | |
744 | locally or externally defined, as not all of the input files | |
745 | have yet been processed. Do something with what we know, as | |
746 | this may help reduce memory usage and processing time later. */ | |
b34976b6 | 747 | maybe_dynamic = FALSE; |
671bae9c NC |
748 | if (h && ((info->shared |
749 | && (!info->symbolic || info->allow_shlib_undefined) ) | |
15bda425 JL |
750 | || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) |
751 | || h->root.type == bfd_link_hash_defweak)) | |
b34976b6 | 752 | maybe_dynamic = TRUE; |
15bda425 JL |
753 | |
754 | howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); | |
755 | need_entry = 0; | |
756 | switch (howto->type) | |
757 | { | |
758 | /* These are simple indirect references to symbols through the | |
759 | DLT. We need to create a DLT entry for any symbols which | |
760 | appears in a DLTIND relocation. */ | |
761 | case R_PARISC_DLTIND21L: | |
762 | case R_PARISC_DLTIND14R: | |
763 | case R_PARISC_DLTIND14F: | |
764 | case R_PARISC_DLTIND14WR: | |
765 | case R_PARISC_DLTIND14DR: | |
766 | need_entry = NEED_DLT; | |
767 | break; | |
768 | ||
769 | /* ?!? These need a DLT entry. But I have no idea what to do with | |
770 | the "link time TP value. */ | |
771 | case R_PARISC_LTOFF_TP21L: | |
772 | case R_PARISC_LTOFF_TP14R: | |
773 | case R_PARISC_LTOFF_TP14F: | |
774 | case R_PARISC_LTOFF_TP64: | |
775 | case R_PARISC_LTOFF_TP14WR: | |
776 | case R_PARISC_LTOFF_TP14DR: | |
777 | case R_PARISC_LTOFF_TP16F: | |
778 | case R_PARISC_LTOFF_TP16WF: | |
779 | case R_PARISC_LTOFF_TP16DF: | |
780 | need_entry = NEED_DLT; | |
781 | break; | |
782 | ||
783 | /* These are function calls. Depending on their precise target we | |
784 | may need to make a stub for them. The stub uses the PLT, so we | |
785 | need to create PLT entries for these symbols too. */ | |
832d951b | 786 | case R_PARISC_PCREL12F: |
15bda425 JL |
787 | case R_PARISC_PCREL17F: |
788 | case R_PARISC_PCREL22F: | |
789 | case R_PARISC_PCREL32: | |
790 | case R_PARISC_PCREL64: | |
791 | case R_PARISC_PCREL21L: | |
792 | case R_PARISC_PCREL17R: | |
793 | case R_PARISC_PCREL17C: | |
794 | case R_PARISC_PCREL14R: | |
795 | case R_PARISC_PCREL14F: | |
796 | case R_PARISC_PCREL22C: | |
797 | case R_PARISC_PCREL14WR: | |
798 | case R_PARISC_PCREL14DR: | |
799 | case R_PARISC_PCREL16F: | |
800 | case R_PARISC_PCREL16WF: | |
801 | case R_PARISC_PCREL16DF: | |
802 | need_entry = (NEED_PLT | NEED_STUB); | |
803 | break; | |
804 | ||
805 | case R_PARISC_PLTOFF21L: | |
806 | case R_PARISC_PLTOFF14R: | |
807 | case R_PARISC_PLTOFF14F: | |
808 | case R_PARISC_PLTOFF14WR: | |
809 | case R_PARISC_PLTOFF14DR: | |
810 | case R_PARISC_PLTOFF16F: | |
811 | case R_PARISC_PLTOFF16WF: | |
812 | case R_PARISC_PLTOFF16DF: | |
813 | need_entry = (NEED_PLT); | |
814 | break; | |
815 | ||
816 | case R_PARISC_DIR64: | |
817 | if (info->shared || maybe_dynamic) | |
818 | need_entry = (NEED_DYNREL); | |
819 | dynrel_type = R_PARISC_DIR64; | |
820 | break; | |
821 | ||
822 | /* This is an indirect reference through the DLT to get the address | |
823 | of a OPD descriptor. Thus we need to make a DLT entry that points | |
824 | to an OPD entry. */ | |
825 | case R_PARISC_LTOFF_FPTR21L: | |
826 | case R_PARISC_LTOFF_FPTR14R: | |
827 | case R_PARISC_LTOFF_FPTR14WR: | |
828 | case R_PARISC_LTOFF_FPTR14DR: | |
829 | case R_PARISC_LTOFF_FPTR32: | |
830 | case R_PARISC_LTOFF_FPTR64: | |
831 | case R_PARISC_LTOFF_FPTR16F: | |
832 | case R_PARISC_LTOFF_FPTR16WF: | |
833 | case R_PARISC_LTOFF_FPTR16DF: | |
834 | if (info->shared || maybe_dynamic) | |
835 | need_entry = (NEED_DLT | NEED_OPD); | |
836 | else | |
837 | need_entry = (NEED_DLT | NEED_OPD); | |
838 | dynrel_type = R_PARISC_FPTR64; | |
839 | break; | |
840 | ||
841 | /* This is a simple OPD entry. */ | |
842 | case R_PARISC_FPTR64: | |
843 | if (info->shared || maybe_dynamic) | |
844 | need_entry = (NEED_OPD | NEED_DYNREL); | |
845 | else | |
846 | need_entry = (NEED_OPD); | |
847 | dynrel_type = R_PARISC_FPTR64; | |
848 | break; | |
849 | ||
850 | /* Add more cases as needed. */ | |
851 | } | |
852 | ||
853 | if (!need_entry) | |
854 | continue; | |
855 | ||
856 | /* Collect a canonical name for this address. */ | |
0ba2a60e | 857 | addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len); |
15bda425 JL |
858 | |
859 | /* Collect the canonical entry data for this address. */ | |
860 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 861 | addr_name, TRUE, TRUE); |
15bda425 JL |
862 | BFD_ASSERT (dyn_h); |
863 | ||
864 | /* Stash away enough information to be able to find this symbol | |
865 | regardless of whether or not it is local or global. */ | |
866 | dyn_h->h = h; | |
867 | dyn_h->owner = abfd; | |
868 | dyn_h->sym_indx = r_symndx; | |
869 | ||
870 | /* ?!? We may need to do some error checking in here. */ | |
871 | /* Create what's needed. */ | |
872 | if (need_entry & NEED_DLT) | |
873 | { | |
874 | if (! hppa_info->dlt_sec | |
875 | && ! get_dlt (abfd, info, hppa_info)) | |
876 | goto err_out; | |
877 | dyn_h->want_dlt = 1; | |
878 | } | |
879 | ||
880 | if (need_entry & NEED_PLT) | |
881 | { | |
882 | if (! hppa_info->plt_sec | |
883 | && ! get_plt (abfd, info, hppa_info)) | |
884 | goto err_out; | |
885 | dyn_h->want_plt = 1; | |
886 | } | |
887 | ||
888 | if (need_entry & NEED_STUB) | |
889 | { | |
890 | if (! hppa_info->stub_sec | |
891 | && ! get_stub (abfd, info, hppa_info)) | |
892 | goto err_out; | |
893 | dyn_h->want_stub = 1; | |
894 | } | |
895 | ||
896 | if (need_entry & NEED_OPD) | |
897 | { | |
898 | if (! hppa_info->opd_sec | |
899 | && ! get_opd (abfd, info, hppa_info)) | |
900 | goto err_out; | |
901 | ||
902 | dyn_h->want_opd = 1; | |
903 | ||
904 | /* FPTRs are not allocated by the dynamic linker for PA64, though | |
905 | it is possible that will change in the future. */ | |
fe8bc63d | 906 | |
15bda425 JL |
907 | /* This could be a local function that had its address taken, in |
908 | which case H will be NULL. */ | |
909 | if (h) | |
910 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
911 | } | |
912 | ||
913 | /* Add a new dynamic relocation to the chain of dynamic | |
914 | relocations for this symbol. */ | |
915 | if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) | |
916 | { | |
917 | if (! hppa_info->other_rel_sec | |
918 | && ! get_reloc_section (abfd, hppa_info, sec)) | |
919 | goto err_out; | |
920 | ||
921 | if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec, | |
922 | sec_symndx, rel->r_offset, rel->r_addend)) | |
923 | goto err_out; | |
924 | ||
925 | /* If we are building a shared library and we just recorded | |
926 | a dynamic R_PARISC_FPTR64 relocation, then make sure the | |
927 | section symbol for this section ends up in the dynamic | |
928 | symbol table. */ | |
929 | if (info->shared && dynrel_type == R_PARISC_FPTR64 | |
930 | && ! (_bfd_elf64_link_record_local_dynamic_symbol | |
931 | (info, abfd, sec_symndx))) | |
b34976b6 | 932 | return FALSE; |
15bda425 JL |
933 | } |
934 | } | |
935 | ||
936 | if (buf) | |
937 | free (buf); | |
b34976b6 | 938 | return TRUE; |
15bda425 JL |
939 | |
940 | err_out: | |
941 | if (buf) | |
942 | free (buf); | |
b34976b6 | 943 | return FALSE; |
15bda425 JL |
944 | } |
945 | ||
946 | struct elf64_hppa_allocate_data | |
947 | { | |
948 | struct bfd_link_info *info; | |
949 | bfd_size_type ofs; | |
950 | }; | |
951 | ||
952 | /* Should we do dynamic things to this symbol? */ | |
953 | ||
b34976b6 | 954 | static bfd_boolean |
15bda425 JL |
955 | elf64_hppa_dynamic_symbol_p (h, info) |
956 | struct elf_link_hash_entry *h; | |
957 | struct bfd_link_info *info; | |
958 | { | |
959 | if (h == NULL) | |
b34976b6 | 960 | return FALSE; |
15bda425 JL |
961 | |
962 | while (h->root.type == bfd_link_hash_indirect | |
963 | || h->root.type == bfd_link_hash_warning) | |
964 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
965 | ||
966 | if (h->dynindx == -1) | |
b34976b6 | 967 | return FALSE; |
15bda425 JL |
968 | |
969 | if (h->root.type == bfd_link_hash_undefweak | |
970 | || h->root.type == bfd_link_hash_defweak) | |
b34976b6 | 971 | return TRUE; |
15bda425 JL |
972 | |
973 | if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$') | |
b34976b6 | 974 | return FALSE; |
15bda425 | 975 | |
671bae9c | 976 | if ((info->shared && (!info->symbolic || info->allow_shlib_undefined)) |
15bda425 JL |
977 | || ((h->elf_link_hash_flags |
978 | & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)) | |
979 | == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))) | |
b34976b6 | 980 | return TRUE; |
15bda425 | 981 | |
b34976b6 | 982 | return FALSE; |
15bda425 JL |
983 | } |
984 | ||
985 | /* Mark all funtions exported by this file so that we can later allocate | |
986 | entries in .opd for them. */ | |
987 | ||
b34976b6 | 988 | static bfd_boolean |
15bda425 JL |
989 | elf64_hppa_mark_exported_functions (h, data) |
990 | struct elf_link_hash_entry *h; | |
991 | PTR data; | |
992 | { | |
993 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
994 | struct elf64_hppa_link_hash_table *hppa_info; | |
995 | ||
996 | hppa_info = elf64_hppa_hash_table (info); | |
997 | ||
e92d460e AM |
998 | if (h->root.type == bfd_link_hash_warning) |
999 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1000 | ||
15bda425 JL |
1001 | if (h |
1002 | && (h->root.type == bfd_link_hash_defined | |
1003 | || h->root.type == bfd_link_hash_defweak) | |
1004 | && h->root.u.def.section->output_section != NULL | |
1005 | && h->type == STT_FUNC) | |
1006 | { | |
1007 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1008 | ||
1009 | /* Add this symbol to the PA64 linker hash table. */ | |
1010 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1011 | h->root.root.string, TRUE, TRUE); |
15bda425 JL |
1012 | BFD_ASSERT (dyn_h); |
1013 | dyn_h->h = h; | |
1014 | ||
1015 | if (! hppa_info->opd_sec | |
1016 | && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) | |
b34976b6 | 1017 | return FALSE; |
15bda425 JL |
1018 | |
1019 | dyn_h->want_opd = 1; | |
832d951b AM |
1020 | /* Put a flag here for output_symbol_hook. */ |
1021 | dyn_h->st_shndx = -1; | |
15bda425 JL |
1022 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; |
1023 | } | |
1024 | ||
b34976b6 | 1025 | return TRUE; |
15bda425 JL |
1026 | } |
1027 | ||
1028 | /* Allocate space for a DLT entry. */ | |
1029 | ||
b34976b6 | 1030 | static bfd_boolean |
15bda425 JL |
1031 | allocate_global_data_dlt (dyn_h, data) |
1032 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1033 | PTR data; | |
1034 | { | |
1035 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1036 | ||
1037 | if (dyn_h->want_dlt) | |
1038 | { | |
1039 | struct elf_link_hash_entry *h = dyn_h->h; | |
1040 | ||
1041 | if (x->info->shared) | |
1042 | { | |
1043 | /* Possibly add the symbol to the local dynamic symbol | |
1044 | table since we might need to create a dynamic relocation | |
1045 | against it. */ | |
1046 | if (! h | |
47b7c2db | 1047 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)) |
15bda425 JL |
1048 | { |
1049 | bfd *owner; | |
1050 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1051 | ||
dc810e39 AM |
1052 | if (! (_bfd_elf64_link_record_local_dynamic_symbol |
1053 | (x->info, owner, dyn_h->sym_indx))) | |
b34976b6 | 1054 | return FALSE; |
15bda425 JL |
1055 | } |
1056 | } | |
1057 | ||
1058 | dyn_h->dlt_offset = x->ofs; | |
1059 | x->ofs += DLT_ENTRY_SIZE; | |
1060 | } | |
b34976b6 | 1061 | return TRUE; |
15bda425 JL |
1062 | } |
1063 | ||
1064 | /* Allocate space for a DLT.PLT entry. */ | |
1065 | ||
b34976b6 | 1066 | static bfd_boolean |
15bda425 JL |
1067 | allocate_global_data_plt (dyn_h, data) |
1068 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1069 | PTR data; | |
1070 | { | |
1071 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1072 | ||
1073 | if (dyn_h->want_plt | |
1074 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1075 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1076 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1077 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1078 | { | |
1079 | dyn_h->plt_offset = x->ofs; | |
1080 | x->ofs += PLT_ENTRY_SIZE; | |
1081 | if (dyn_h->plt_offset < 0x2000) | |
1082 | elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset; | |
1083 | } | |
1084 | else | |
1085 | dyn_h->want_plt = 0; | |
1086 | ||
b34976b6 | 1087 | return TRUE; |
15bda425 JL |
1088 | } |
1089 | ||
1090 | /* Allocate space for a STUB entry. */ | |
1091 | ||
b34976b6 | 1092 | static bfd_boolean |
15bda425 JL |
1093 | allocate_global_data_stub (dyn_h, data) |
1094 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1095 | PTR data; | |
1096 | { | |
1097 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1098 | ||
1099 | if (dyn_h->want_stub | |
1100 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1101 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1102 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1103 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1104 | { | |
1105 | dyn_h->stub_offset = x->ofs; | |
1106 | x->ofs += sizeof (plt_stub); | |
1107 | } | |
1108 | else | |
1109 | dyn_h->want_stub = 0; | |
b34976b6 | 1110 | return TRUE; |
15bda425 JL |
1111 | } |
1112 | ||
1113 | /* Allocate space for a FPTR entry. */ | |
1114 | ||
b34976b6 | 1115 | static bfd_boolean |
15bda425 JL |
1116 | allocate_global_data_opd (dyn_h, data) |
1117 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1118 | PTR data; | |
1119 | { | |
1120 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1121 | ||
1122 | if (dyn_h->want_opd) | |
1123 | { | |
1124 | struct elf_link_hash_entry *h = dyn_h->h; | |
fe8bc63d | 1125 | |
15bda425 JL |
1126 | if (h) |
1127 | while (h->root.type == bfd_link_hash_indirect | |
1128 | || h->root.type == bfd_link_hash_warning) | |
1129 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1130 | ||
1131 | /* We never need an opd entry for a symbol which is not | |
1132 | defined by this output file. */ | |
3db4b612 JL |
1133 | if (h && (h->root.type == bfd_link_hash_undefined |
1134 | || h->root.u.def.section->output_section == NULL)) | |
15bda425 JL |
1135 | dyn_h->want_opd = 0; |
1136 | ||
1137 | /* If we are creating a shared library, took the address of a local | |
1138 | function or might export this function from this object file, then | |
1139 | we have to create an opd descriptor. */ | |
1140 | else if (x->info->shared | |
1141 | || h == NULL | |
47b7c2db | 1142 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI) |
3db4b612 JL |
1143 | || (h->root.type == bfd_link_hash_defined |
1144 | || h->root.type == bfd_link_hash_defweak)) | |
15bda425 JL |
1145 | { |
1146 | /* If we are creating a shared library, then we will have to | |
1147 | create a runtime relocation for the symbol to properly | |
1148 | initialize the .opd entry. Make sure the symbol gets | |
1149 | added to the dynamic symbol table. */ | |
1150 | if (x->info->shared | |
1151 | && (h == NULL || (h->dynindx == -1))) | |
1152 | { | |
1153 | bfd *owner; | |
1154 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1155 | ||
1156 | if (!_bfd_elf64_link_record_local_dynamic_symbol | |
1157 | (x->info, owner, dyn_h->sym_indx)) | |
b34976b6 | 1158 | return FALSE; |
15bda425 JL |
1159 | } |
1160 | ||
1161 | /* This may not be necessary or desirable anymore now that | |
1162 | we have some support for dealing with section symbols | |
1163 | in dynamic relocs. But name munging does make the result | |
1164 | much easier to debug. ie, the EPLT reloc will reference | |
1165 | a symbol like .foobar, instead of .text + offset. */ | |
1166 | if (x->info->shared && h) | |
1167 | { | |
1168 | char *new_name; | |
1169 | struct elf_link_hash_entry *nh; | |
1170 | ||
1171 | new_name = alloca (strlen (h->root.root.string) + 2); | |
1172 | new_name[0] = '.'; | |
1173 | strcpy (new_name + 1, h->root.root.string); | |
1174 | ||
1175 | nh = elf_link_hash_lookup (elf_hash_table (x->info), | |
b34976b6 | 1176 | new_name, TRUE, TRUE, TRUE); |
15bda425 JL |
1177 | |
1178 | nh->root.type = h->root.type; | |
1179 | nh->root.u.def.value = h->root.u.def.value; | |
1180 | nh->root.u.def.section = h->root.u.def.section; | |
1181 | ||
1182 | if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh)) | |
b34976b6 | 1183 | return FALSE; |
15bda425 JL |
1184 | |
1185 | } | |
1186 | dyn_h->opd_offset = x->ofs; | |
1187 | x->ofs += OPD_ENTRY_SIZE; | |
1188 | } | |
1189 | ||
1190 | /* Otherwise we do not need an opd entry. */ | |
1191 | else | |
1192 | dyn_h->want_opd = 0; | |
1193 | } | |
b34976b6 | 1194 | return TRUE; |
15bda425 JL |
1195 | } |
1196 | ||
1197 | /* HP requires the EI_OSABI field to be filled in. The assignment to | |
1198 | EI_ABIVERSION may not be strictly necessary. */ | |
1199 | ||
1200 | static void | |
1201 | elf64_hppa_post_process_headers (abfd, link_info) | |
1202 | bfd * abfd; | |
1203 | struct bfd_link_info * link_info ATTRIBUTE_UNUSED; | |
1204 | { | |
1205 | Elf_Internal_Ehdr * i_ehdrp; | |
1206 | ||
1207 | i_ehdrp = elf_elfheader (abfd); | |
1208 | ||
d952f17a AM |
1209 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) |
1210 | { | |
1211 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; | |
1212 | } | |
1213 | else | |
1214 | { | |
1215 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX; | |
1216 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
1217 | } | |
15bda425 JL |
1218 | } |
1219 | ||
1220 | /* Create function descriptor section (.opd). This section is called .opd | |
1221 | because it contains "official prodecure descriptors". The "official" | |
1222 | refers to the fact that these descriptors are used when taking the address | |
1223 | of a procedure, thus ensuring a unique address for each procedure. */ | |
1224 | ||
b34976b6 | 1225 | static bfd_boolean |
15bda425 JL |
1226 | get_opd (abfd, info, hppa_info) |
1227 | bfd *abfd; | |
edd21aca | 1228 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1229 | struct elf64_hppa_link_hash_table *hppa_info; |
1230 | { | |
1231 | asection *opd; | |
1232 | bfd *dynobj; | |
1233 | ||
1234 | opd = hppa_info->opd_sec; | |
1235 | if (!opd) | |
1236 | { | |
1237 | dynobj = hppa_info->root.dynobj; | |
1238 | if (!dynobj) | |
1239 | hppa_info->root.dynobj = dynobj = abfd; | |
1240 | ||
1241 | opd = bfd_make_section (dynobj, ".opd"); | |
1242 | if (!opd | |
1243 | || !bfd_set_section_flags (dynobj, opd, | |
1244 | (SEC_ALLOC | |
1245 | | SEC_LOAD | |
1246 | | SEC_HAS_CONTENTS | |
1247 | | SEC_IN_MEMORY | |
1248 | | SEC_LINKER_CREATED)) | |
1249 | || !bfd_set_section_alignment (abfd, opd, 3)) | |
1250 | { | |
1251 | BFD_ASSERT (0); | |
b34976b6 | 1252 | return FALSE; |
15bda425 JL |
1253 | } |
1254 | ||
1255 | hppa_info->opd_sec = opd; | |
1256 | } | |
1257 | ||
b34976b6 | 1258 | return TRUE; |
15bda425 JL |
1259 | } |
1260 | ||
1261 | /* Create the PLT section. */ | |
1262 | ||
b34976b6 | 1263 | static bfd_boolean |
15bda425 JL |
1264 | get_plt (abfd, info, hppa_info) |
1265 | bfd *abfd; | |
edd21aca | 1266 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1267 | struct elf64_hppa_link_hash_table *hppa_info; |
1268 | { | |
1269 | asection *plt; | |
1270 | bfd *dynobj; | |
1271 | ||
1272 | plt = hppa_info->plt_sec; | |
1273 | if (!plt) | |
1274 | { | |
1275 | dynobj = hppa_info->root.dynobj; | |
1276 | if (!dynobj) | |
1277 | hppa_info->root.dynobj = dynobj = abfd; | |
1278 | ||
1279 | plt = bfd_make_section (dynobj, ".plt"); | |
1280 | if (!plt | |
1281 | || !bfd_set_section_flags (dynobj, plt, | |
1282 | (SEC_ALLOC | |
1283 | | SEC_LOAD | |
1284 | | SEC_HAS_CONTENTS | |
1285 | | SEC_IN_MEMORY | |
1286 | | SEC_LINKER_CREATED)) | |
1287 | || !bfd_set_section_alignment (abfd, plt, 3)) | |
1288 | { | |
1289 | BFD_ASSERT (0); | |
b34976b6 | 1290 | return FALSE; |
15bda425 JL |
1291 | } |
1292 | ||
1293 | hppa_info->plt_sec = plt; | |
1294 | } | |
1295 | ||
b34976b6 | 1296 | return TRUE; |
15bda425 JL |
1297 | } |
1298 | ||
1299 | /* Create the DLT section. */ | |
1300 | ||
b34976b6 | 1301 | static bfd_boolean |
15bda425 JL |
1302 | get_dlt (abfd, info, hppa_info) |
1303 | bfd *abfd; | |
edd21aca | 1304 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1305 | struct elf64_hppa_link_hash_table *hppa_info; |
1306 | { | |
1307 | asection *dlt; | |
1308 | bfd *dynobj; | |
1309 | ||
1310 | dlt = hppa_info->dlt_sec; | |
1311 | if (!dlt) | |
1312 | { | |
1313 | dynobj = hppa_info->root.dynobj; | |
1314 | if (!dynobj) | |
1315 | hppa_info->root.dynobj = dynobj = abfd; | |
1316 | ||
1317 | dlt = bfd_make_section (dynobj, ".dlt"); | |
1318 | if (!dlt | |
1319 | || !bfd_set_section_flags (dynobj, dlt, | |
1320 | (SEC_ALLOC | |
1321 | | SEC_LOAD | |
1322 | | SEC_HAS_CONTENTS | |
1323 | | SEC_IN_MEMORY | |
1324 | | SEC_LINKER_CREATED)) | |
1325 | || !bfd_set_section_alignment (abfd, dlt, 3)) | |
1326 | { | |
1327 | BFD_ASSERT (0); | |
b34976b6 | 1328 | return FALSE; |
15bda425 JL |
1329 | } |
1330 | ||
1331 | hppa_info->dlt_sec = dlt; | |
1332 | } | |
1333 | ||
b34976b6 | 1334 | return TRUE; |
15bda425 JL |
1335 | } |
1336 | ||
1337 | /* Create the stubs section. */ | |
1338 | ||
b34976b6 | 1339 | static bfd_boolean |
15bda425 JL |
1340 | get_stub (abfd, info, hppa_info) |
1341 | bfd *abfd; | |
edd21aca | 1342 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1343 | struct elf64_hppa_link_hash_table *hppa_info; |
1344 | { | |
1345 | asection *stub; | |
1346 | bfd *dynobj; | |
1347 | ||
1348 | stub = hppa_info->stub_sec; | |
1349 | if (!stub) | |
1350 | { | |
1351 | dynobj = hppa_info->root.dynobj; | |
1352 | if (!dynobj) | |
1353 | hppa_info->root.dynobj = dynobj = abfd; | |
1354 | ||
1355 | stub = bfd_make_section (dynobj, ".stub"); | |
1356 | if (!stub | |
1357 | || !bfd_set_section_flags (dynobj, stub, | |
1358 | (SEC_ALLOC | |
1359 | | SEC_LOAD | |
1360 | | SEC_HAS_CONTENTS | |
1361 | | SEC_IN_MEMORY | |
1362 | | SEC_READONLY | |
1363 | | SEC_LINKER_CREATED)) | |
1364 | || !bfd_set_section_alignment (abfd, stub, 3)) | |
1365 | { | |
1366 | BFD_ASSERT (0); | |
b34976b6 | 1367 | return FALSE; |
15bda425 JL |
1368 | } |
1369 | ||
1370 | hppa_info->stub_sec = stub; | |
1371 | } | |
1372 | ||
b34976b6 | 1373 | return TRUE; |
15bda425 JL |
1374 | } |
1375 | ||
1376 | /* Create sections necessary for dynamic linking. This is only a rough | |
1377 | cut and will likely change as we learn more about the somewhat | |
1378 | unusual dynamic linking scheme HP uses. | |
1379 | ||
1380 | .stub: | |
1381 | Contains code to implement cross-space calls. The first time one | |
1382 | of the stubs is used it will call into the dynamic linker, later | |
1383 | calls will go straight to the target. | |
1384 | ||
1385 | The only stub we support right now looks like | |
1386 | ||
1387 | ldd OFFSET(%dp),%r1 | |
1388 | bve %r0(%r1) | |
1389 | ldd OFFSET+8(%dp),%dp | |
1390 | ||
1391 | Other stubs may be needed in the future. We may want the remove | |
1392 | the break/nop instruction. It is only used right now to keep the | |
1393 | offset of a .plt entry and a .stub entry in sync. | |
1394 | ||
1395 | .dlt: | |
1396 | This is what most people call the .got. HP used a different name. | |
1397 | Losers. | |
1398 | ||
1399 | .rela.dlt: | |
1400 | Relocations for the DLT. | |
1401 | ||
1402 | .plt: | |
1403 | Function pointers as address,gp pairs. | |
1404 | ||
1405 | .rela.plt: | |
1406 | Should contain dynamic IPLT (and EPLT?) relocations. | |
1407 | ||
1408 | .opd: | |
fe8bc63d | 1409 | FPTRS |
15bda425 JL |
1410 | |
1411 | .rela.opd: | |
1412 | EPLT relocations for symbols exported from shared libraries. */ | |
1413 | ||
b34976b6 | 1414 | static bfd_boolean |
15bda425 JL |
1415 | elf64_hppa_create_dynamic_sections (abfd, info) |
1416 | bfd *abfd; | |
1417 | struct bfd_link_info *info; | |
1418 | { | |
1419 | asection *s; | |
1420 | ||
1421 | if (! get_stub (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1422 | return FALSE; |
15bda425 JL |
1423 | |
1424 | if (! get_dlt (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1425 | return FALSE; |
15bda425 JL |
1426 | |
1427 | if (! get_plt (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1428 | return FALSE; |
15bda425 JL |
1429 | |
1430 | if (! get_opd (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1431 | return FALSE; |
15bda425 JL |
1432 | |
1433 | s = bfd_make_section(abfd, ".rela.dlt"); | |
1434 | if (s == NULL | |
1435 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1436 | | SEC_HAS_CONTENTS | |
1437 | | SEC_IN_MEMORY | |
1438 | | SEC_READONLY | |
1439 | | SEC_LINKER_CREATED)) | |
1440 | || !bfd_set_section_alignment (abfd, s, 3)) | |
b34976b6 | 1441 | return FALSE; |
15bda425 JL |
1442 | elf64_hppa_hash_table (info)->dlt_rel_sec = s; |
1443 | ||
1444 | s = bfd_make_section(abfd, ".rela.plt"); | |
1445 | if (s == NULL | |
1446 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1447 | | SEC_HAS_CONTENTS | |
1448 | | SEC_IN_MEMORY | |
1449 | | SEC_READONLY | |
1450 | | SEC_LINKER_CREATED)) | |
1451 | || !bfd_set_section_alignment (abfd, s, 3)) | |
b34976b6 | 1452 | return FALSE; |
15bda425 JL |
1453 | elf64_hppa_hash_table (info)->plt_rel_sec = s; |
1454 | ||
1455 | s = bfd_make_section(abfd, ".rela.data"); | |
1456 | if (s == NULL | |
1457 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1458 | | SEC_HAS_CONTENTS | |
1459 | | SEC_IN_MEMORY | |
1460 | | SEC_READONLY | |
1461 | | SEC_LINKER_CREATED)) | |
1462 | || !bfd_set_section_alignment (abfd, s, 3)) | |
b34976b6 | 1463 | return FALSE; |
15bda425 JL |
1464 | elf64_hppa_hash_table (info)->other_rel_sec = s; |
1465 | ||
1466 | s = bfd_make_section(abfd, ".rela.opd"); | |
1467 | if (s == NULL | |
1468 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1469 | | SEC_HAS_CONTENTS | |
1470 | | SEC_IN_MEMORY | |
1471 | | SEC_READONLY | |
1472 | | SEC_LINKER_CREATED)) | |
1473 | || !bfd_set_section_alignment (abfd, s, 3)) | |
b34976b6 | 1474 | return FALSE; |
15bda425 JL |
1475 | elf64_hppa_hash_table (info)->opd_rel_sec = s; |
1476 | ||
b34976b6 | 1477 | return TRUE; |
15bda425 JL |
1478 | } |
1479 | ||
1480 | /* Allocate dynamic relocations for those symbols that turned out | |
1481 | to be dynamic. */ | |
1482 | ||
b34976b6 | 1483 | static bfd_boolean |
15bda425 JL |
1484 | allocate_dynrel_entries (dyn_h, data) |
1485 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1486 | PTR data; | |
1487 | { | |
1488 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1489 | struct elf64_hppa_link_hash_table *hppa_info; | |
1490 | struct elf64_hppa_dyn_reloc_entry *rent; | |
b34976b6 | 1491 | bfd_boolean dynamic_symbol, shared; |
15bda425 JL |
1492 | |
1493 | hppa_info = elf64_hppa_hash_table (x->info); | |
1494 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info); | |
1495 | shared = x->info->shared; | |
1496 | ||
1497 | /* We may need to allocate relocations for a non-dynamic symbol | |
1498 | when creating a shared library. */ | |
1499 | if (!dynamic_symbol && !shared) | |
b34976b6 | 1500 | return TRUE; |
15bda425 JL |
1501 | |
1502 | /* Take care of the normal data relocations. */ | |
1503 | ||
1504 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
1505 | { | |
d663e1cd JL |
1506 | /* Allocate one iff we are building a shared library, the relocation |
1507 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
1508 | if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
1509 | continue; | |
1510 | ||
15bda425 JL |
1511 | hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela); |
1512 | ||
1513 | /* Make sure this symbol gets into the dynamic symbol table if it is | |
1514 | not already recorded. ?!? This should not be in the loop since | |
1515 | the symbol need only be added once. */ | |
47b7c2db AM |
1516 | if (dyn_h->h == 0 |
1517 | || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI)) | |
15bda425 JL |
1518 | if (!_bfd_elf64_link_record_local_dynamic_symbol |
1519 | (x->info, rent->sec->owner, dyn_h->sym_indx)) | |
b34976b6 | 1520 | return FALSE; |
15bda425 JL |
1521 | } |
1522 | ||
1523 | /* Take care of the GOT and PLT relocations. */ | |
1524 | ||
1525 | if ((dynamic_symbol || shared) && dyn_h->want_dlt) | |
1526 | hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela); | |
1527 | ||
1528 | /* If we are building a shared library, then every symbol that has an | |
1529 | opd entry will need an EPLT relocation to relocate the symbol's address | |
1530 | and __gp value based on the runtime load address. */ | |
1531 | if (shared && dyn_h->want_opd) | |
1532 | hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela); | |
1533 | ||
1534 | if (dyn_h->want_plt && dynamic_symbol) | |
1535 | { | |
1536 | bfd_size_type t = 0; | |
1537 | ||
1538 | /* Dynamic symbols get one IPLT relocation. Local symbols in | |
1539 | shared libraries get two REL relocations. Local symbols in | |
1540 | main applications get nothing. */ | |
1541 | if (dynamic_symbol) | |
1542 | t = sizeof (Elf64_External_Rela); | |
1543 | else if (shared) | |
1544 | t = 2 * sizeof (Elf64_External_Rela); | |
1545 | ||
1546 | hppa_info->plt_rel_sec->_raw_size += t; | |
1547 | } | |
1548 | ||
b34976b6 | 1549 | return TRUE; |
15bda425 JL |
1550 | } |
1551 | ||
1552 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1553 | regular object. */ | |
1554 | ||
b34976b6 | 1555 | static bfd_boolean |
15bda425 | 1556 | elf64_hppa_adjust_dynamic_symbol (info, h) |
edd21aca | 1557 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1558 | struct elf_link_hash_entry *h; |
1559 | { | |
1560 | /* ??? Undefined symbols with PLT entries should be re-defined | |
1561 | to be the PLT entry. */ | |
1562 | ||
1563 | /* If this is a weak symbol, and there is a real definition, the | |
1564 | processor independent code will have arranged for us to see the | |
1565 | real definition first, and we can just use the same value. */ | |
1566 | if (h->weakdef != NULL) | |
1567 | { | |
1568 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
1569 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
1570 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
1571 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
b34976b6 | 1572 | return TRUE; |
15bda425 JL |
1573 | } |
1574 | ||
1575 | /* If this is a reference to a symbol defined by a dynamic object which | |
1576 | is not a function, we might allocate the symbol in our .dynbss section | |
1577 | and allocate a COPY dynamic relocation. | |
1578 | ||
1579 | But PA64 code is canonically PIC, so as a rule we can avoid this sort | |
1580 | of hackery. */ | |
1581 | ||
b34976b6 | 1582 | return TRUE; |
15bda425 JL |
1583 | } |
1584 | ||
47b7c2db AM |
1585 | /* This function is called via elf_link_hash_traverse to mark millicode |
1586 | symbols with a dynindx of -1 and to remove the string table reference | |
1587 | from the dynamic symbol table. If the symbol is not a millicode symbol, | |
1588 | elf64_hppa_mark_exported_functions is called. */ | |
1589 | ||
b34976b6 | 1590 | static bfd_boolean |
47b7c2db AM |
1591 | elf64_hppa_mark_milli_and_exported_functions (h, data) |
1592 | struct elf_link_hash_entry *h; | |
1593 | PTR data; | |
1594 | { | |
1595 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
1596 | struct elf_link_hash_entry *elf = h; | |
1597 | ||
1598 | if (elf->root.type == bfd_link_hash_warning) | |
1599 | elf = (struct elf_link_hash_entry *) elf->root.u.i.link; | |
1600 | ||
1601 | if (elf->type == STT_PARISC_MILLI) | |
1602 | { | |
1603 | if (elf->dynindx != -1) | |
1604 | { | |
1605 | elf->dynindx = -1; | |
1606 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
1607 | elf->dynstr_index); | |
1608 | } | |
b34976b6 | 1609 | return TRUE; |
47b7c2db AM |
1610 | } |
1611 | ||
1612 | return elf64_hppa_mark_exported_functions (h, data); | |
1613 | } | |
1614 | ||
15bda425 JL |
1615 | /* Set the final sizes of the dynamic sections and allocate memory for |
1616 | the contents of our special sections. */ | |
1617 | ||
b34976b6 | 1618 | static bfd_boolean |
15bda425 JL |
1619 | elf64_hppa_size_dynamic_sections (output_bfd, info) |
1620 | bfd *output_bfd; | |
1621 | struct bfd_link_info *info; | |
1622 | { | |
1623 | bfd *dynobj; | |
1624 | asection *s; | |
b34976b6 AM |
1625 | bfd_boolean plt; |
1626 | bfd_boolean relocs; | |
1627 | bfd_boolean reltext; | |
15bda425 JL |
1628 | struct elf64_hppa_allocate_data data; |
1629 | struct elf64_hppa_link_hash_table *hppa_info; | |
1630 | ||
1631 | hppa_info = elf64_hppa_hash_table (info); | |
1632 | ||
1633 | dynobj = elf_hash_table (info)->dynobj; | |
1634 | BFD_ASSERT (dynobj != NULL); | |
1635 | ||
47b7c2db AM |
1636 | /* Mark each function this program exports so that we will allocate |
1637 | space in the .opd section for each function's FPTR. If we are | |
1638 | creating dynamic sections, change the dynamic index of millicode | |
1639 | symbols to -1 and remove them from the string table for .dynstr. | |
1640 | ||
1641 | We have to traverse the main linker hash table since we have to | |
1642 | find functions which may not have been mentioned in any relocs. */ | |
1643 | elf_link_hash_traverse (elf_hash_table (info), | |
1644 | (elf_hash_table (info)->dynamic_sections_created | |
1645 | ? elf64_hppa_mark_milli_and_exported_functions | |
1646 | : elf64_hppa_mark_exported_functions), | |
1647 | info); | |
1648 | ||
15bda425 JL |
1649 | if (elf_hash_table (info)->dynamic_sections_created) |
1650 | { | |
1651 | /* Set the contents of the .interp section to the interpreter. */ | |
1652 | if (! info->shared) | |
1653 | { | |
1654 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1655 | BFD_ASSERT (s != NULL); | |
1656 | s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; | |
1657 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | |
1658 | } | |
1659 | } | |
1660 | else | |
1661 | { | |
1662 | /* We may have created entries in the .rela.got section. | |
1663 | However, if we are not creating the dynamic sections, we will | |
1664 | not actually use these entries. Reset the size of .rela.dlt, | |
1665 | which will cause it to get stripped from the output file | |
1666 | below. */ | |
1667 | s = bfd_get_section_by_name (dynobj, ".rela.dlt"); | |
1668 | if (s != NULL) | |
1669 | s->_raw_size = 0; | |
1670 | } | |
1671 | ||
1672 | /* Allocate the GOT entries. */ | |
1673 | ||
1674 | data.info = info; | |
1675 | if (elf64_hppa_hash_table (info)->dlt_sec) | |
1676 | { | |
1677 | data.ofs = 0x0; | |
1678 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1679 | allocate_global_data_dlt, &data); | |
1680 | hppa_info->dlt_sec->_raw_size = data.ofs; | |
1681 | ||
1682 | data.ofs = 0x0; | |
1683 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1684 | allocate_global_data_plt, &data); | |
1685 | hppa_info->plt_sec->_raw_size = data.ofs; | |
1686 | ||
1687 | data.ofs = 0x0; | |
1688 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1689 | allocate_global_data_stub, &data); | |
1690 | hppa_info->stub_sec->_raw_size = data.ofs; | |
1691 | } | |
1692 | ||
15bda425 JL |
1693 | /* Allocate space for entries in the .opd section. */ |
1694 | if (elf64_hppa_hash_table (info)->opd_sec) | |
1695 | { | |
1696 | data.ofs = 0; | |
1697 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1698 | allocate_global_data_opd, &data); | |
1699 | hppa_info->opd_sec->_raw_size = data.ofs; | |
1700 | } | |
1701 | ||
1702 | /* Now allocate space for dynamic relocations, if necessary. */ | |
1703 | if (hppa_info->root.dynamic_sections_created) | |
1704 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1705 | allocate_dynrel_entries, &data); | |
1706 | ||
1707 | /* The sizes of all the sections are set. Allocate memory for them. */ | |
b34976b6 AM |
1708 | plt = FALSE; |
1709 | relocs = FALSE; | |
1710 | reltext = FALSE; | |
15bda425 JL |
1711 | for (s = dynobj->sections; s != NULL; s = s->next) |
1712 | { | |
1713 | const char *name; | |
b34976b6 | 1714 | bfd_boolean strip; |
15bda425 JL |
1715 | |
1716 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1717 | continue; | |
1718 | ||
1719 | /* It's OK to base decisions on the section name, because none | |
1720 | of the dynobj section names depend upon the input files. */ | |
1721 | name = bfd_get_section_name (dynobj, s); | |
1722 | ||
1723 | strip = 0; | |
1724 | ||
1725 | if (strcmp (name, ".plt") == 0) | |
1726 | { | |
d663e1cd | 1727 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 JL |
1728 | if (s->_raw_size == 0) |
1729 | { | |
b34976b6 | 1730 | strip = TRUE; |
15bda425 JL |
1731 | } |
1732 | else | |
1733 | { | |
1734 | /* Remember whether there is a PLT. */ | |
b34976b6 | 1735 | plt = TRUE; |
15bda425 JL |
1736 | } |
1737 | } | |
1738 | else if (strcmp (name, ".dlt") == 0) | |
1739 | { | |
d663e1cd | 1740 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 JL |
1741 | if (s->_raw_size == 0) |
1742 | { | |
b34976b6 | 1743 | strip = TRUE; |
15bda425 JL |
1744 | } |
1745 | } | |
1746 | else if (strcmp (name, ".opd") == 0) | |
1747 | { | |
d663e1cd | 1748 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 JL |
1749 | if (s->_raw_size == 0) |
1750 | { | |
b34976b6 | 1751 | strip = TRUE; |
15bda425 JL |
1752 | } |
1753 | } | |
d663e1cd | 1754 | else if (strncmp (name, ".rela", 5) == 0) |
15bda425 | 1755 | { |
d663e1cd JL |
1756 | /* If we don't need this section, strip it from the output file. |
1757 | This is mostly to handle .rela.bss and .rela.plt. We must | |
1758 | create both sections in create_dynamic_sections, because they | |
1759 | must be created before the linker maps input sections to output | |
1760 | sections. The linker does that before adjust_dynamic_symbol | |
1761 | is called, and it is that function which decides whether | |
1762 | anything needs to go into these sections. */ | |
15bda425 JL |
1763 | if (s->_raw_size == 0) |
1764 | { | |
1765 | /* If we don't need this section, strip it from the | |
1766 | output file. This is mostly to handle .rela.bss and | |
1767 | .rela.plt. We must create both sections in | |
1768 | create_dynamic_sections, because they must be created | |
1769 | before the linker maps input sections to output | |
1770 | sections. The linker does that before | |
1771 | adjust_dynamic_symbol is called, and it is that | |
1772 | function which decides whether anything needs to go | |
1773 | into these sections. */ | |
b34976b6 | 1774 | strip = TRUE; |
15bda425 JL |
1775 | } |
1776 | else | |
1777 | { | |
1778 | asection *target; | |
1779 | ||
1780 | /* Remember whether there are any reloc sections other | |
1781 | than .rela.plt. */ | |
1782 | if (strcmp (name, ".rela.plt") != 0) | |
1783 | { | |
1784 | const char *outname; | |
1785 | ||
b34976b6 | 1786 | relocs = TRUE; |
15bda425 JL |
1787 | |
1788 | /* If this relocation section applies to a read only | |
1789 | section, then we probably need a DT_TEXTREL | |
1790 | entry. The entries in the .rela.plt section | |
1791 | really apply to the .got section, which we | |
1792 | created ourselves and so know is not readonly. */ | |
1793 | outname = bfd_get_section_name (output_bfd, | |
1794 | s->output_section); | |
1795 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
1796 | if (target != NULL | |
1797 | && (target->flags & SEC_READONLY) != 0 | |
1798 | && (target->flags & SEC_ALLOC) != 0) | |
b34976b6 | 1799 | reltext = TRUE; |
15bda425 JL |
1800 | } |
1801 | ||
1802 | /* We use the reloc_count field as a counter if we need | |
1803 | to copy relocs into the output file. */ | |
1804 | s->reloc_count = 0; | |
1805 | } | |
1806 | } | |
1807 | else if (strncmp (name, ".dlt", 4) != 0 | |
1808 | && strcmp (name, ".stub") != 0 | |
1809 | && strcmp (name, ".got") != 0) | |
1810 | { | |
1811 | /* It's not one of our sections, so don't allocate space. */ | |
1812 | continue; | |
1813 | } | |
1814 | ||
1815 | if (strip) | |
1816 | { | |
1817 | _bfd_strip_section_from_output (info, s); | |
1818 | continue; | |
1819 | } | |
1820 | ||
1821 | /* Allocate memory for the section contents if it has not | |
832d951b AM |
1822 | been allocated already. We use bfd_zalloc here in case |
1823 | unused entries are not reclaimed before the section's | |
1824 | contents are written out. This should not happen, but this | |
1825 | way if it does, we get a R_PARISC_NONE reloc instead of | |
1826 | garbage. */ | |
15bda425 JL |
1827 | if (s->contents == NULL) |
1828 | { | |
7a9af8c4 | 1829 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); |
15bda425 | 1830 | if (s->contents == NULL && s->_raw_size != 0) |
b34976b6 | 1831 | return FALSE; |
15bda425 JL |
1832 | } |
1833 | } | |
1834 | ||
1835 | if (elf_hash_table (info)->dynamic_sections_created) | |
1836 | { | |
1837 | /* Always create a DT_PLTGOT. It actually has nothing to do with | |
1838 | the PLT, it is how we communicate the __gp value of a load | |
1839 | module to the dynamic linker. */ | |
dc810e39 AM |
1840 | #define add_dynamic_entry(TAG, VAL) \ |
1841 | bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL)) | |
1842 | ||
1843 | if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) | |
1844 | || !add_dynamic_entry (DT_PLTGOT, 0)) | |
b34976b6 | 1845 | return FALSE; |
15bda425 JL |
1846 | |
1847 | /* Add some entries to the .dynamic section. We fill in the | |
1848 | values later, in elf64_hppa_finish_dynamic_sections, but we | |
1849 | must add the entries now so that we get the correct size for | |
1850 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1851 | dynamic linker and used by the debugger. */ | |
1852 | if (! info->shared) | |
1853 | { | |
dc810e39 AM |
1854 | if (!add_dynamic_entry (DT_DEBUG, 0) |
1855 | || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) | |
1856 | || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) | |
b34976b6 | 1857 | return FALSE; |
15bda425 JL |
1858 | } |
1859 | ||
f2482cb2 NC |
1860 | /* Force DT_FLAGS to always be set. |
1861 | Required by HPUX 11.00 patch PHSS_26559. */ | |
1862 | if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) | |
b34976b6 | 1863 | return FALSE; |
f2482cb2 | 1864 | |
15bda425 JL |
1865 | if (plt) |
1866 | { | |
dc810e39 AM |
1867 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
1868 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1869 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
b34976b6 | 1870 | return FALSE; |
15bda425 JL |
1871 | } |
1872 | ||
1873 | if (relocs) | |
1874 | { | |
dc810e39 AM |
1875 | if (!add_dynamic_entry (DT_RELA, 0) |
1876 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1877 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) | |
b34976b6 | 1878 | return FALSE; |
15bda425 JL |
1879 | } |
1880 | ||
1881 | if (reltext) | |
1882 | { | |
dc810e39 | 1883 | if (!add_dynamic_entry (DT_TEXTREL, 0)) |
b34976b6 | 1884 | return FALSE; |
d6cf2879 | 1885 | info->flags |= DF_TEXTREL; |
15bda425 JL |
1886 | } |
1887 | } | |
dc810e39 | 1888 | #undef add_dynamic_entry |
15bda425 | 1889 | |
b34976b6 | 1890 | return TRUE; |
15bda425 JL |
1891 | } |
1892 | ||
1893 | /* Called after we have output the symbol into the dynamic symbol | |
1894 | table, but before we output the symbol into the normal symbol | |
1895 | table. | |
1896 | ||
1897 | For some symbols we had to change their address when outputting | |
1898 | the dynamic symbol table. We undo that change here so that | |
1899 | the symbols have their expected value in the normal symbol | |
1900 | table. Ick. */ | |
1901 | ||
b34976b6 | 1902 | static bfd_boolean |
15bda425 | 1903 | elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec) |
edd21aca | 1904 | bfd *abfd ATTRIBUTE_UNUSED; |
15bda425 JL |
1905 | struct bfd_link_info *info; |
1906 | const char *name; | |
1907 | Elf_Internal_Sym *sym; | |
edd21aca | 1908 | asection *input_sec ATTRIBUTE_UNUSED; |
15bda425 JL |
1909 | { |
1910 | struct elf64_hppa_link_hash_table *hppa_info; | |
1911 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1912 | ||
1913 | /* We may be called with the file symbol or section symbols. | |
1914 | They never need munging, so it is safe to ignore them. */ | |
1915 | if (!name) | |
b34976b6 | 1916 | return TRUE; |
15bda425 JL |
1917 | |
1918 | /* Get the PA dyn_symbol (if any) associated with NAME. */ | |
1919 | hppa_info = elf64_hppa_hash_table (info); | |
1920 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1921 | name, FALSE, FALSE); |
15bda425 | 1922 | |
832d951b AM |
1923 | /* Function symbols for which we created .opd entries *may* have been |
1924 | munged by finish_dynamic_symbol and have to be un-munged here. | |
1925 | ||
1926 | Note that finish_dynamic_symbol sometimes turns dynamic symbols | |
1927 | into non-dynamic ones, so we initialize st_shndx to -1 in | |
1928 | mark_exported_functions and check to see if it was overwritten | |
1929 | here instead of just checking dyn_h->h->dynindx. */ | |
1930 | if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1) | |
15bda425 JL |
1931 | { |
1932 | /* Restore the saved value and section index. */ | |
1933 | sym->st_value = dyn_h->st_value; | |
fe8bc63d | 1934 | sym->st_shndx = dyn_h->st_shndx; |
15bda425 JL |
1935 | } |
1936 | ||
b34976b6 | 1937 | return TRUE; |
15bda425 JL |
1938 | } |
1939 | ||
1940 | /* Finish up dynamic symbol handling. We set the contents of various | |
1941 | dynamic sections here. */ | |
1942 | ||
b34976b6 | 1943 | static bfd_boolean |
15bda425 JL |
1944 | elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym) |
1945 | bfd *output_bfd; | |
1946 | struct bfd_link_info *info; | |
1947 | struct elf_link_hash_entry *h; | |
1948 | Elf_Internal_Sym *sym; | |
1949 | { | |
1950 | asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel; | |
1951 | struct elf64_hppa_link_hash_table *hppa_info; | |
1952 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1953 | ||
1954 | hppa_info = elf64_hppa_hash_table (info); | |
1955 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1956 | h->root.root.string, FALSE, FALSE); |
15bda425 JL |
1957 | |
1958 | stub = hppa_info->stub_sec; | |
1959 | splt = hppa_info->plt_sec; | |
1960 | sdlt = hppa_info->dlt_sec; | |
1961 | sopd = hppa_info->opd_sec; | |
1962 | spltrel = hppa_info->plt_rel_sec; | |
1963 | sdltrel = hppa_info->dlt_rel_sec; | |
1964 | ||
15bda425 JL |
1965 | /* Incredible. It is actually necessary to NOT use the symbol's real |
1966 | value when building the dynamic symbol table for a shared library. | |
1967 | At least for symbols that refer to functions. | |
1968 | ||
1969 | We will store a new value and section index into the symbol long | |
1970 | enough to output it into the dynamic symbol table, then we restore | |
1971 | the original values (in elf64_hppa_link_output_symbol_hook). */ | |
1972 | if (dyn_h && dyn_h->want_opd) | |
1973 | { | |
d663e1cd JL |
1974 | BFD_ASSERT (sopd != NULL) |
1975 | ||
15bda425 JL |
1976 | /* Save away the original value and section index so that we |
1977 | can restore them later. */ | |
1978 | dyn_h->st_value = sym->st_value; | |
1979 | dyn_h->st_shndx = sym->st_shndx; | |
1980 | ||
1981 | /* For the dynamic symbol table entry, we want the value to be | |
1982 | address of this symbol's entry within the .opd section. */ | |
1983 | sym->st_value = (dyn_h->opd_offset | |
1984 | + sopd->output_offset | |
1985 | + sopd->output_section->vma); | |
1986 | sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
1987 | sopd->output_section); | |
1988 | } | |
1989 | ||
1990 | /* Initialize a .plt entry if requested. */ | |
1991 | if (dyn_h && dyn_h->want_plt | |
1992 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
1993 | { | |
1994 | bfd_vma value; | |
1995 | Elf_Internal_Rela rel; | |
947216bf | 1996 | bfd_byte *loc; |
15bda425 | 1997 | |
d663e1cd JL |
1998 | BFD_ASSERT (splt != NULL && spltrel != NULL) |
1999 | ||
15bda425 JL |
2000 | /* We do not actually care about the value in the PLT entry |
2001 | if we are creating a shared library and the symbol is | |
2002 | still undefined, we create a dynamic relocation to fill | |
2003 | in the correct value. */ | |
2004 | if (info->shared && h->root.type == bfd_link_hash_undefined) | |
2005 | value = 0; | |
2006 | else | |
2007 | value = (h->root.u.def.value + h->root.u.def.section->vma); | |
2008 | ||
fe8bc63d | 2009 | /* Fill in the entry in the procedure linkage table. |
15bda425 JL |
2010 | |
2011 | The format of a plt entry is | |
fe8bc63d | 2012 | <funcaddr> <__gp>. |
15bda425 JL |
2013 | |
2014 | plt_offset is the offset within the PLT section at which to | |
fe8bc63d | 2015 | install the PLT entry. |
15bda425 JL |
2016 | |
2017 | We are modifying the in-memory PLT contents here, so we do not add | |
2018 | in the output_offset of the PLT section. */ | |
2019 | ||
2020 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset); | |
2021 | value = _bfd_get_gp_value (splt->output_section->owner); | |
2022 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8); | |
2023 | ||
2024 | /* Create a dynamic IPLT relocation for this entry. | |
2025 | ||
2026 | We are creating a relocation in the output file's PLT section, | |
2027 | which is included within the DLT secton. So we do need to include | |
2028 | the PLT's output_offset in the computation of the relocation's | |
2029 | address. */ | |
2030 | rel.r_offset = (dyn_h->plt_offset + splt->output_offset | |
2031 | + splt->output_section->vma); | |
2032 | rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT); | |
2033 | rel.r_addend = 0; | |
2034 | ||
947216bf AM |
2035 | loc = spltrel->contents; |
2036 | loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2037 | bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); | |
15bda425 JL |
2038 | } |
2039 | ||
2040 | /* Initialize an external call stub entry if requested. */ | |
2041 | if (dyn_h && dyn_h->want_stub | |
2042 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
2043 | { | |
2044 | bfd_vma value; | |
2045 | int insn; | |
b352eebf | 2046 | unsigned int max_offset; |
15bda425 | 2047 | |
d663e1cd JL |
2048 | BFD_ASSERT (stub != NULL) |
2049 | ||
15bda425 JL |
2050 | /* Install the generic stub template. |
2051 | ||
2052 | We are modifying the contents of the stub section, so we do not | |
2053 | need to include the stub section's output_offset here. */ | |
2054 | memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub)); | |
2055 | ||
2056 | /* Fix up the first ldd instruction. | |
2057 | ||
2058 | We are modifying the contents of the STUB section in memory, | |
fe8bc63d | 2059 | so we do not need to include its output offset in this computation. |
15bda425 JL |
2060 | |
2061 | Note the plt_offset value is the value of the PLT entry relative to | |
2062 | the start of the PLT section. These instructions will reference | |
2063 | data relative to the value of __gp, which may not necessarily have | |
2064 | the same address as the start of the PLT section. | |
2065 | ||
2066 | gp_offset contains the offset of __gp within the PLT section. */ | |
2067 | value = dyn_h->plt_offset - hppa_info->gp_offset; | |
fe8bc63d | 2068 | |
15bda425 | 2069 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset); |
b352eebf AM |
2070 | if (output_bfd->arch_info->mach >= 25) |
2071 | { | |
2072 | /* Wide mode allows 16 bit offsets. */ | |
2073 | max_offset = 32768; | |
2074 | insn &= ~ 0xfff1; | |
dc810e39 | 2075 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2076 | } |
2077 | else | |
2078 | { | |
2079 | max_offset = 8192; | |
2080 | insn &= ~ 0x3ff1; | |
dc810e39 | 2081 | insn |= re_assemble_14 ((int) value); |
b352eebf AM |
2082 | } |
2083 | ||
2084 | if ((value & 7) || value + max_offset >= 2*max_offset - 8) | |
2085 | { | |
2086 | (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), | |
2087 | dyn_h->root.string, | |
2088 | (long) value); | |
b34976b6 | 2089 | return FALSE; |
b352eebf AM |
2090 | } |
2091 | ||
dc810e39 | 2092 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2093 | stub->contents + dyn_h->stub_offset); |
2094 | ||
2095 | /* Fix up the second ldd instruction. */ | |
b352eebf | 2096 | value += 8; |
15bda425 | 2097 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8); |
b352eebf AM |
2098 | if (output_bfd->arch_info->mach >= 25) |
2099 | { | |
2100 | insn &= ~ 0xfff1; | |
dc810e39 | 2101 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2102 | } |
2103 | else | |
2104 | { | |
2105 | insn &= ~ 0x3ff1; | |
dc810e39 | 2106 | insn |= re_assemble_14 ((int) value); |
b352eebf | 2107 | } |
dc810e39 | 2108 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2109 | stub->contents + dyn_h->stub_offset + 8); |
2110 | } | |
2111 | ||
b34976b6 | 2112 | return TRUE; |
15bda425 JL |
2113 | } |
2114 | ||
2115 | /* The .opd section contains FPTRs for each function this file | |
2116 | exports. Initialize the FPTR entries. */ | |
2117 | ||
b34976b6 | 2118 | static bfd_boolean |
15bda425 JL |
2119 | elf64_hppa_finalize_opd (dyn_h, data) |
2120 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2121 | PTR data; | |
2122 | { | |
2123 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2124 | struct elf64_hppa_link_hash_table *hppa_info; | |
3db4b612 | 2125 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2126 | asection *sopd; |
2127 | asection *sopdrel; | |
2128 | ||
2129 | hppa_info = elf64_hppa_hash_table (info); | |
2130 | sopd = hppa_info->opd_sec; | |
2131 | sopdrel = hppa_info->opd_rel_sec; | |
2132 | ||
3db4b612 | 2133 | if (h && dyn_h->want_opd) |
15bda425 JL |
2134 | { |
2135 | bfd_vma value; | |
2136 | ||
fe8bc63d | 2137 | /* The first two words of an .opd entry are zero. |
15bda425 JL |
2138 | |
2139 | We are modifying the contents of the OPD section in memory, so we | |
2140 | do not need to include its output offset in this computation. */ | |
2141 | memset (sopd->contents + dyn_h->opd_offset, 0, 16); | |
2142 | ||
2143 | value = (h->root.u.def.value | |
2144 | + h->root.u.def.section->output_section->vma | |
2145 | + h->root.u.def.section->output_offset); | |
2146 | ||
2147 | /* The next word is the address of the function. */ | |
2148 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16); | |
2149 | ||
2150 | /* The last word is our local __gp value. */ | |
2151 | value = _bfd_get_gp_value (sopd->output_section->owner); | |
2152 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24); | |
2153 | } | |
2154 | ||
2155 | /* If we are generating a shared library, we must generate EPLT relocations | |
2156 | for each entry in the .opd, even for static functions (they may have | |
2157 | had their address taken). */ | |
2158 | if (info->shared && dyn_h && dyn_h->want_opd) | |
2159 | { | |
947216bf AM |
2160 | Elf_Internal_Rela rel; |
2161 | bfd_byte *loc; | |
15bda425 JL |
2162 | int dynindx; |
2163 | ||
2164 | /* We may need to do a relocation against a local symbol, in | |
2165 | which case we have to look up it's dynamic symbol index off | |
2166 | the local symbol hash table. */ | |
2167 | if (h && h->dynindx != -1) | |
2168 | dynindx = h->dynindx; | |
2169 | else | |
2170 | dynindx | |
2171 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2172 | dyn_h->sym_indx); | |
2173 | ||
2174 | /* The offset of this relocation is the absolute address of the | |
2175 | .opd entry for this symbol. */ | |
2176 | rel.r_offset = (dyn_h->opd_offset + sopd->output_offset | |
2177 | + sopd->output_section->vma); | |
2178 | ||
2179 | /* If H is non-null, then we have an external symbol. | |
2180 | ||
2181 | It is imperative that we use a different dynamic symbol for the | |
2182 | EPLT relocation if the symbol has global scope. | |
2183 | ||
2184 | In the dynamic symbol table, the function symbol will have a value | |
2185 | which is address of the function's .opd entry. | |
2186 | ||
2187 | Thus, we can not use that dynamic symbol for the EPLT relocation | |
2188 | (if we did, the data in the .opd would reference itself rather | |
2189 | than the actual address of the function). Instead we have to use | |
2190 | a new dynamic symbol which has the same value as the original global | |
fe8bc63d | 2191 | function symbol. |
15bda425 JL |
2192 | |
2193 | We prefix the original symbol with a "." and use the new symbol in | |
2194 | the EPLT relocation. This new symbol has already been recorded in | |
2195 | the symbol table, we just have to look it up and use it. | |
2196 | ||
2197 | We do not have such problems with static functions because we do | |
2198 | not make their addresses in the dynamic symbol table point to | |
2199 | the .opd entry. Ultimately this should be safe since a static | |
2200 | function can not be directly referenced outside of its shared | |
2201 | library. | |
2202 | ||
2203 | We do have to play similar games for FPTR relocations in shared | |
2204 | libraries, including those for static symbols. See the FPTR | |
2205 | handling in elf64_hppa_finalize_dynreloc. */ | |
2206 | if (h) | |
2207 | { | |
2208 | char *new_name; | |
2209 | struct elf_link_hash_entry *nh; | |
2210 | ||
2211 | new_name = alloca (strlen (h->root.root.string) + 2); | |
2212 | new_name[0] = '.'; | |
2213 | strcpy (new_name + 1, h->root.root.string); | |
2214 | ||
2215 | nh = elf_link_hash_lookup (elf_hash_table (info), | |
b34976b6 | 2216 | new_name, FALSE, FALSE, FALSE); |
15bda425 JL |
2217 | |
2218 | /* All we really want from the new symbol is its dynamic | |
2219 | symbol index. */ | |
2220 | dynindx = nh->dynindx; | |
2221 | } | |
2222 | ||
2223 | rel.r_addend = 0; | |
2224 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); | |
2225 | ||
947216bf AM |
2226 | loc = sopdrel->contents; |
2227 | loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2228 | bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); | |
15bda425 | 2229 | } |
b34976b6 | 2230 | return TRUE; |
15bda425 JL |
2231 | } |
2232 | ||
2233 | /* The .dlt section contains addresses for items referenced through the | |
2234 | dlt. Note that we can have a DLTIND relocation for a local symbol, thus | |
2235 | we can not depend on finish_dynamic_symbol to initialize the .dlt. */ | |
2236 | ||
b34976b6 | 2237 | static bfd_boolean |
15bda425 JL |
2238 | elf64_hppa_finalize_dlt (dyn_h, data) |
2239 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2240 | PTR data; | |
2241 | { | |
2242 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2243 | struct elf64_hppa_link_hash_table *hppa_info; | |
2244 | asection *sdlt, *sdltrel; | |
3db4b612 | 2245 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2246 | |
2247 | hppa_info = elf64_hppa_hash_table (info); | |
2248 | ||
2249 | sdlt = hppa_info->dlt_sec; | |
2250 | sdltrel = hppa_info->dlt_rel_sec; | |
2251 | ||
2252 | /* H/DYN_H may refer to a local variable and we know it's | |
2253 | address, so there is no need to create a relocation. Just install | |
2254 | the proper value into the DLT, note this shortcut can not be | |
2255 | skipped when building a shared library. */ | |
3db4b612 | 2256 | if (! info->shared && h && dyn_h->want_dlt) |
15bda425 JL |
2257 | { |
2258 | bfd_vma value; | |
2259 | ||
2260 | /* If we had an LTOFF_FPTR style relocation we want the DLT entry | |
fe8bc63d | 2261 | to point to the FPTR entry in the .opd section. |
15bda425 JL |
2262 | |
2263 | We include the OPD's output offset in this computation as | |
2264 | we are referring to an absolute address in the resulting | |
2265 | object file. */ | |
2266 | if (dyn_h->want_opd) | |
2267 | { | |
2268 | value = (dyn_h->opd_offset | |
2269 | + hppa_info->opd_sec->output_offset | |
2270 | + hppa_info->opd_sec->output_section->vma); | |
2271 | } | |
3db4b612 | 2272 | else if (h->root.u.def.section) |
15bda425 | 2273 | { |
3db4b612 | 2274 | value = h->root.u.def.value + h->root.u.def.section->output_offset; |
15bda425 JL |
2275 | if (h->root.u.def.section->output_section) |
2276 | value += h->root.u.def.section->output_section->vma; | |
2277 | else | |
2278 | value += h->root.u.def.section->vma; | |
2279 | } | |
3db4b612 JL |
2280 | else |
2281 | /* We have an undefined function reference. */ | |
2282 | value = 0; | |
15bda425 JL |
2283 | |
2284 | /* We do not need to include the output offset of the DLT section | |
2285 | here because we are modifying the in-memory contents. */ | |
2286 | bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset); | |
2287 | } | |
2288 | ||
2289 | /* Create a relocation for the DLT entry assocated with this symbol. | |
2290 | When building a shared library the symbol does not have to be dynamic. */ | |
2291 | if (dyn_h->want_dlt | |
2292 | && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared)) | |
2293 | { | |
947216bf AM |
2294 | Elf_Internal_Rela rel; |
2295 | bfd_byte *loc; | |
15bda425 JL |
2296 | int dynindx; |
2297 | ||
2298 | /* We may need to do a relocation against a local symbol, in | |
2299 | which case we have to look up it's dynamic symbol index off | |
2300 | the local symbol hash table. */ | |
2301 | if (h && h->dynindx != -1) | |
2302 | dynindx = h->dynindx; | |
2303 | else | |
2304 | dynindx | |
2305 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2306 | dyn_h->sym_indx); | |
2307 | ||
15bda425 JL |
2308 | /* Create a dynamic relocation for this entry. Do include the output |
2309 | offset of the DLT entry since we need an absolute address in the | |
2310 | resulting object file. */ | |
2311 | rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset | |
2312 | + sdlt->output_section->vma); | |
2313 | if (h && h->type == STT_FUNC) | |
2314 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); | |
2315 | else | |
2316 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); | |
2317 | rel.r_addend = 0; | |
2318 | ||
947216bf AM |
2319 | loc = sdltrel->contents; |
2320 | loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2321 | bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); | |
15bda425 | 2322 | } |
b34976b6 | 2323 | return TRUE; |
15bda425 JL |
2324 | } |
2325 | ||
2326 | /* Finalize the dynamic relocations. Specifically the FPTR relocations | |
2327 | for dynamic functions used to initialize static data. */ | |
2328 | ||
b34976b6 | 2329 | static bfd_boolean |
15bda425 JL |
2330 | elf64_hppa_finalize_dynreloc (dyn_h, data) |
2331 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2332 | PTR data; | |
2333 | { | |
2334 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2335 | struct elf64_hppa_link_hash_table *hppa_info; | |
2336 | struct elf_link_hash_entry *h; | |
2337 | int dynamic_symbol; | |
2338 | ||
2339 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info); | |
2340 | ||
2341 | if (!dynamic_symbol && !info->shared) | |
b34976b6 | 2342 | return TRUE; |
15bda425 JL |
2343 | |
2344 | if (dyn_h->reloc_entries) | |
2345 | { | |
2346 | struct elf64_hppa_dyn_reloc_entry *rent; | |
2347 | int dynindx; | |
2348 | ||
2349 | hppa_info = elf64_hppa_hash_table (info); | |
2350 | h = dyn_h->h; | |
2351 | ||
2352 | /* We may need to do a relocation against a local symbol, in | |
2353 | which case we have to look up it's dynamic symbol index off | |
2354 | the local symbol hash table. */ | |
2355 | if (h && h->dynindx != -1) | |
2356 | dynindx = h->dynindx; | |
2357 | else | |
2358 | dynindx | |
2359 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2360 | dyn_h->sym_indx); | |
2361 | ||
2362 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
2363 | { | |
947216bf AM |
2364 | Elf_Internal_Rela rel; |
2365 | bfd_byte *loc; | |
15bda425 | 2366 | |
d663e1cd JL |
2367 | /* Allocate one iff we are building a shared library, the relocation |
2368 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
2369 | if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
2370 | continue; | |
15bda425 | 2371 | |
fe8bc63d | 2372 | /* Create a dynamic relocation for this entry. |
15bda425 JL |
2373 | |
2374 | We need the output offset for the reloc's section because | |
2375 | we are creating an absolute address in the resulting object | |
2376 | file. */ | |
2377 | rel.r_offset = (rent->offset + rent->sec->output_offset | |
2378 | + rent->sec->output_section->vma); | |
2379 | ||
2380 | /* An FPTR64 relocation implies that we took the address of | |
2381 | a function and that the function has an entry in the .opd | |
2382 | section. We want the FPTR64 relocation to reference the | |
2383 | entry in .opd. | |
2384 | ||
2385 | We could munge the symbol value in the dynamic symbol table | |
2386 | (in fact we already do for functions with global scope) to point | |
2387 | to the .opd entry. Then we could use that dynamic symbol in | |
2388 | this relocation. | |
2389 | ||
2390 | Or we could do something sensible, not munge the symbol's | |
2391 | address and instead just use a different symbol to reference | |
2392 | the .opd entry. At least that seems sensible until you | |
2393 | realize there's no local dynamic symbols we can use for that | |
2394 | purpose. Thus the hair in the check_relocs routine. | |
fe8bc63d | 2395 | |
15bda425 JL |
2396 | We use a section symbol recorded by check_relocs as the |
2397 | base symbol for the relocation. The addend is the difference | |
2398 | between the section symbol and the address of the .opd entry. */ | |
3db4b612 | 2399 | if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) |
15bda425 JL |
2400 | { |
2401 | bfd_vma value, value2; | |
15bda425 JL |
2402 | |
2403 | /* First compute the address of the opd entry for this symbol. */ | |
2404 | value = (dyn_h->opd_offset | |
2405 | + hppa_info->opd_sec->output_section->vma | |
2406 | + hppa_info->opd_sec->output_offset); | |
2407 | ||
2408 | /* Compute the value of the start of the section with | |
2409 | the relocation. */ | |
2410 | value2 = (rent->sec->output_section->vma | |
2411 | + rent->sec->output_offset); | |
2412 | ||
2413 | /* Compute the difference between the start of the section | |
2414 | with the relocation and the opd entry. */ | |
2415 | value -= value2; | |
fe8bc63d | 2416 | |
15bda425 JL |
2417 | /* The result becomes the addend of the relocation. */ |
2418 | rel.r_addend = value; | |
2419 | ||
2420 | /* The section symbol becomes the symbol for the dynamic | |
2421 | relocation. */ | |
2422 | dynindx | |
2423 | = _bfd_elf_link_lookup_local_dynindx (info, | |
2424 | rent->sec->owner, | |
2425 | rent->sec_symndx); | |
2426 | } | |
2427 | else | |
2428 | rel.r_addend = rent->addend; | |
2429 | ||
2430 | rel.r_info = ELF64_R_INFO (dynindx, rent->type); | |
2431 | ||
947216bf AM |
2432 | loc = hppa_info->other_rel_sec->contents; |
2433 | loc += (hppa_info->other_rel_sec->reloc_count++ | |
2434 | * sizeof (Elf64_External_Rela)); | |
15bda425 | 2435 | bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, |
947216bf | 2436 | &rel, loc); |
15bda425 JL |
2437 | } |
2438 | } | |
2439 | ||
b34976b6 | 2440 | return TRUE; |
15bda425 JL |
2441 | } |
2442 | ||
5ac81c74 JL |
2443 | /* Used to decide how to sort relocs in an optimal manner for the |
2444 | dynamic linker, before writing them out. */ | |
2445 | ||
2446 | static enum elf_reloc_type_class | |
2447 | elf64_hppa_reloc_type_class (rela) | |
2448 | const Elf_Internal_Rela *rela; | |
2449 | { | |
2450 | if (ELF64_R_SYM (rela->r_info) == 0) | |
2451 | return reloc_class_relative; | |
2452 | ||
2453 | switch ((int) ELF64_R_TYPE (rela->r_info)) | |
2454 | { | |
2455 | case R_PARISC_IPLT: | |
2456 | return reloc_class_plt; | |
2457 | case R_PARISC_COPY: | |
2458 | return reloc_class_copy; | |
2459 | default: | |
2460 | return reloc_class_normal; | |
2461 | } | |
2462 | } | |
2463 | ||
15bda425 JL |
2464 | /* Finish up the dynamic sections. */ |
2465 | ||
b34976b6 | 2466 | static bfd_boolean |
15bda425 JL |
2467 | elf64_hppa_finish_dynamic_sections (output_bfd, info) |
2468 | bfd *output_bfd; | |
2469 | struct bfd_link_info *info; | |
2470 | { | |
2471 | bfd *dynobj; | |
2472 | asection *sdyn; | |
2473 | struct elf64_hppa_link_hash_table *hppa_info; | |
2474 | ||
2475 | hppa_info = elf64_hppa_hash_table (info); | |
2476 | ||
2477 | /* Finalize the contents of the .opd section. */ | |
2478 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2479 | elf64_hppa_finalize_opd, | |
2480 | info); | |
2481 | ||
2482 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2483 | elf64_hppa_finalize_dynreloc, | |
2484 | info); | |
2485 | ||
2486 | /* Finalize the contents of the .dlt section. */ | |
2487 | dynobj = elf_hash_table (info)->dynobj; | |
2488 | /* Finalize the contents of the .dlt section. */ | |
2489 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2490 | elf64_hppa_finalize_dlt, | |
2491 | info); | |
2492 | ||
15bda425 JL |
2493 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2494 | ||
2495 | if (elf_hash_table (info)->dynamic_sections_created) | |
2496 | { | |
2497 | Elf64_External_Dyn *dyncon, *dynconend; | |
15bda425 JL |
2498 | |
2499 | BFD_ASSERT (sdyn != NULL); | |
2500 | ||
2501 | dyncon = (Elf64_External_Dyn *) sdyn->contents; | |
2502 | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size); | |
2503 | for (; dyncon < dynconend; dyncon++) | |
2504 | { | |
2505 | Elf_Internal_Dyn dyn; | |
2506 | asection *s; | |
2507 | ||
2508 | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | |
2509 | ||
2510 | switch (dyn.d_tag) | |
2511 | { | |
2512 | default: | |
2513 | break; | |
2514 | ||
2515 | case DT_HP_LOAD_MAP: | |
2516 | /* Compute the absolute address of 16byte scratchpad area | |
2517 | for the dynamic linker. | |
2518 | ||
2519 | By convention the linker script will allocate the scratchpad | |
2520 | area at the start of the .data section. So all we have to | |
2521 | to is find the start of the .data section. */ | |
2522 | s = bfd_get_section_by_name (output_bfd, ".data"); | |
2523 | dyn.d_un.d_ptr = s->vma; | |
2524 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2525 | break; | |
2526 | ||
2527 | case DT_PLTGOT: | |
2528 | /* HP's use PLTGOT to set the GOT register. */ | |
2529 | dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); | |
2530 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2531 | break; | |
2532 | ||
2533 | case DT_JMPREL: | |
2534 | s = hppa_info->plt_rel_sec; | |
2535 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2536 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2537 | break; | |
2538 | ||
2539 | case DT_PLTRELSZ: | |
2540 | s = hppa_info->plt_rel_sec; | |
2541 | dyn.d_un.d_val = s->_raw_size; | |
2542 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2543 | break; | |
2544 | ||
2545 | case DT_RELA: | |
2546 | s = hppa_info->other_rel_sec; | |
5ac81c74 | 2547 | if (! s || ! s->_raw_size) |
15bda425 | 2548 | s = hppa_info->dlt_rel_sec; |
5ac81c74 JL |
2549 | if (! s || ! s->_raw_size) |
2550 | s = hppa_info->opd_rel_sec; | |
15bda425 JL |
2551 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2552 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2553 | break; | |
2554 | ||
2555 | case DT_RELASZ: | |
2556 | s = hppa_info->other_rel_sec; | |
2557 | dyn.d_un.d_val = s->_raw_size; | |
2558 | s = hppa_info->dlt_rel_sec; | |
2559 | dyn.d_un.d_val += s->_raw_size; | |
2560 | s = hppa_info->opd_rel_sec; | |
2561 | dyn.d_un.d_val += s->_raw_size; | |
2562 | /* There is some question about whether or not the size of | |
2563 | the PLT relocs should be included here. HP's tools do | |
2564 | it, so we'll emulate them. */ | |
2565 | s = hppa_info->plt_rel_sec; | |
2566 | dyn.d_un.d_val += s->_raw_size; | |
2567 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2568 | break; | |
2569 | ||
2570 | } | |
2571 | } | |
2572 | } | |
2573 | ||
b34976b6 | 2574 | return TRUE; |
15bda425 JL |
2575 | } |
2576 | ||
15bda425 JL |
2577 | /* Return the number of additional phdrs we will need. |
2578 | ||
2579 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2580 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2581 | |
2582 | This routine indicates that the backend needs one additional program | |
2583 | header for that case. | |
2584 | ||
2585 | Note we do not have access to the link info structure here, so we have | |
2586 | to guess whether or not we are building a shared library based on the | |
2587 | existence of a .interp section. */ | |
2588 | ||
2589 | static int | |
2590 | elf64_hppa_additional_program_headers (abfd) | |
2591 | bfd *abfd; | |
2592 | { | |
2593 | asection *s; | |
2594 | ||
2595 | /* If we are creating a shared library, then we have to create a | |
2596 | PT_PHDR segment. HP's dynamic linker chokes without it. */ | |
2597 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2598 | if (! s) | |
2599 | return 1; | |
2600 | return 0; | |
2601 | } | |
2602 | ||
2603 | /* Allocate and initialize any program headers required by this | |
2604 | specific backend. | |
2605 | ||
2606 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2607 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2608 | |
2609 | This allocates the PT_PHDR and initializes it in a manner suitable | |
fe8bc63d | 2610 | for the HP linker. |
15bda425 JL |
2611 | |
2612 | Note we do not have access to the link info structure here, so we have | |
2613 | to guess whether or not we are building a shared library based on the | |
2614 | existence of a .interp section. */ | |
2615 | ||
b34976b6 | 2616 | static bfd_boolean |
15bda425 JL |
2617 | elf64_hppa_modify_segment_map (abfd) |
2618 | bfd *abfd; | |
2619 | { | |
edd21aca | 2620 | struct elf_segment_map *m; |
15bda425 JL |
2621 | asection *s; |
2622 | ||
2623 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2624 | if (! s) | |
2625 | { | |
2626 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2627 | if (m->p_type == PT_PHDR) | |
2628 | break; | |
2629 | if (m == NULL) | |
2630 | { | |
dc810e39 AM |
2631 | m = ((struct elf_segment_map *) |
2632 | bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); | |
15bda425 | 2633 | if (m == NULL) |
b34976b6 | 2634 | return FALSE; |
15bda425 JL |
2635 | |
2636 | m->p_type = PT_PHDR; | |
2637 | m->p_flags = PF_R | PF_X; | |
2638 | m->p_flags_valid = 1; | |
2639 | m->p_paddr_valid = 1; | |
2640 | m->includes_phdrs = 1; | |
2641 | ||
2642 | m->next = elf_tdata (abfd)->segment_map; | |
2643 | elf_tdata (abfd)->segment_map = m; | |
2644 | } | |
2645 | } | |
2646 | ||
2647 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2648 | if (m->p_type == PT_LOAD) | |
2649 | { | |
0ba2a60e | 2650 | unsigned int i; |
15bda425 JL |
2651 | |
2652 | for (i = 0; i < m->count; i++) | |
2653 | { | |
2654 | /* The code "hint" is not really a hint. It is a requirement | |
2655 | for certain versions of the HP dynamic linker. Worse yet, | |
2656 | it must be set even if the shared library does not have | |
2657 | any code in its "text" segment (thus the check for .hash | |
2658 | to catch this situation). */ | |
2659 | if (m->sections[i]->flags & SEC_CODE | |
2660 | || (strcmp (m->sections[i]->name, ".hash") == 0)) | |
2661 | m->p_flags |= (PF_X | PF_HP_CODE); | |
2662 | } | |
2663 | } | |
2664 | ||
b34976b6 | 2665 | return TRUE; |
15bda425 JL |
2666 | } |
2667 | ||
3fab46d0 AM |
2668 | /* Called when writing out an object file to decide the type of a |
2669 | symbol. */ | |
2670 | static int | |
2671 | elf64_hppa_elf_get_symbol_type (elf_sym, type) | |
2672 | Elf_Internal_Sym *elf_sym; | |
2673 | int type; | |
2674 | { | |
2675 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | |
2676 | return STT_PARISC_MILLI; | |
2677 | else | |
2678 | return type; | |
2679 | } | |
2680 | ||
15bda425 JL |
2681 | /* The hash bucket size is the standard one, namely 4. */ |
2682 | ||
2683 | const struct elf_size_info hppa64_elf_size_info = | |
2684 | { | |
2685 | sizeof (Elf64_External_Ehdr), | |
2686 | sizeof (Elf64_External_Phdr), | |
2687 | sizeof (Elf64_External_Shdr), | |
2688 | sizeof (Elf64_External_Rel), | |
2689 | sizeof (Elf64_External_Rela), | |
2690 | sizeof (Elf64_External_Sym), | |
2691 | sizeof (Elf64_External_Dyn), | |
2692 | sizeof (Elf_External_Note), | |
2693 | 4, | |
2694 | 1, | |
45d6a902 | 2695 | 64, 3, |
15bda425 JL |
2696 | ELFCLASS64, EV_CURRENT, |
2697 | bfd_elf64_write_out_phdrs, | |
2698 | bfd_elf64_write_shdrs_and_ehdr, | |
2699 | bfd_elf64_write_relocs, | |
73ff0d56 | 2700 | bfd_elf64_swap_symbol_in, |
15bda425 JL |
2701 | bfd_elf64_swap_symbol_out, |
2702 | bfd_elf64_slurp_reloc_table, | |
2703 | bfd_elf64_slurp_symbol_table, | |
2704 | bfd_elf64_swap_dyn_in, | |
2705 | bfd_elf64_swap_dyn_out, | |
947216bf AM |
2706 | bfd_elf64_swap_reloc_in, |
2707 | bfd_elf64_swap_reloc_out, | |
2708 | bfd_elf64_swap_reloca_in, | |
2709 | bfd_elf64_swap_reloca_out | |
15bda425 JL |
2710 | }; |
2711 | ||
2712 | #define TARGET_BIG_SYM bfd_elf64_hppa_vec | |
2713 | #define TARGET_BIG_NAME "elf64-hppa" | |
2714 | #define ELF_ARCH bfd_arch_hppa | |
2715 | #define ELF_MACHINE_CODE EM_PARISC | |
2716 | /* This is not strictly correct. The maximum page size for PA2.0 is | |
2717 | 64M. But everything still uses 4k. */ | |
2718 | #define ELF_MAXPAGESIZE 0x1000 | |
2719 | #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup | |
2720 | #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name | |
2721 | #define elf_info_to_howto elf_hppa_info_to_howto | |
2722 | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel | |
2723 | ||
2724 | #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr | |
2725 | #define elf_backend_object_p elf64_hppa_object_p | |
2726 | #define elf_backend_final_write_processing \ | |
2727 | elf_hppa_final_write_processing | |
99c79b2e | 2728 | #define elf_backend_fake_sections elf_hppa_fake_sections |
15bda425 JL |
2729 | #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook |
2730 | ||
f0fe0e16 | 2731 | #define elf_backend_relocate_section elf_hppa_relocate_section |
15bda425 JL |
2732 | |
2733 | #define bfd_elf64_bfd_final_link elf_hppa_final_link | |
2734 | ||
2735 | #define elf_backend_create_dynamic_sections \ | |
2736 | elf64_hppa_create_dynamic_sections | |
2737 | #define elf_backend_post_process_headers elf64_hppa_post_process_headers | |
2738 | ||
2739 | #define elf_backend_adjust_dynamic_symbol \ | |
2740 | elf64_hppa_adjust_dynamic_symbol | |
2741 | ||
2742 | #define elf_backend_size_dynamic_sections \ | |
2743 | elf64_hppa_size_dynamic_sections | |
2744 | ||
2745 | #define elf_backend_finish_dynamic_symbol \ | |
2746 | elf64_hppa_finish_dynamic_symbol | |
2747 | #define elf_backend_finish_dynamic_sections \ | |
2748 | elf64_hppa_finish_dynamic_sections | |
2749 | ||
2750 | /* Stuff for the BFD linker: */ | |
2751 | #define bfd_elf64_bfd_link_hash_table_create \ | |
2752 | elf64_hppa_hash_table_create | |
2753 | ||
2754 | #define elf_backend_check_relocs \ | |
2755 | elf64_hppa_check_relocs | |
2756 | ||
2757 | #define elf_backend_size_info \ | |
2758 | hppa64_elf_size_info | |
2759 | ||
2760 | #define elf_backend_additional_program_headers \ | |
2761 | elf64_hppa_additional_program_headers | |
2762 | ||
2763 | #define elf_backend_modify_segment_map \ | |
2764 | elf64_hppa_modify_segment_map | |
2765 | ||
2766 | #define elf_backend_link_output_symbol_hook \ | |
2767 | elf64_hppa_link_output_symbol_hook | |
2768 | ||
15bda425 JL |
2769 | #define elf_backend_want_got_plt 0 |
2770 | #define elf_backend_plt_readonly 0 | |
2771 | #define elf_backend_want_plt_sym 0 | |
2772 | #define elf_backend_got_header_size 0 | |
2773 | #define elf_backend_plt_header_size 0 | |
b34976b6 AM |
2774 | #define elf_backend_type_change_ok TRUE |
2775 | #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type | |
2776 | #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class | |
2777 | #define elf_backend_rela_normal 1 | |
15bda425 JL |
2778 | |
2779 | #include "elf64-target.h" | |
d952f17a AM |
2780 | |
2781 | #undef TARGET_BIG_SYM | |
2782 | #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec | |
2783 | #undef TARGET_BIG_NAME | |
2784 | #define TARGET_BIG_NAME "elf64-hppa-linux" | |
2785 | ||
2786 | #define INCLUDED_TARGET_FILE 1 | |
2787 | #include "elf64-target.h" |