]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
32d0add0 | 3 | Copyright (C) 1991-2015 Free Software Foundation, Inc. |
1bac305b | 4 | |
c906108c SS |
5 | Written by Fred Fish at Cygnus Support. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "bfd.h" | |
c906108c | 24 | #include "elf-bfd.h" |
31d99776 DJ |
25 | #include "elf/common.h" |
26 | #include "elf/internal.h" | |
c906108c SS |
27 | #include "elf/mips.h" |
28 | #include "symtab.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "buildsym.h" | |
32 | #include "stabsread.h" | |
33 | #include "gdb-stabs.h" | |
34 | #include "complaints.h" | |
35 | #include "demangle.h" | |
ccefe4c4 | 36 | #include "psympriv.h" |
0ba1096a | 37 | #include "filenames.h" |
55aa24fb SDJ |
38 | #include "probe.h" |
39 | #include "arch-utils.h" | |
07be84bf JK |
40 | #include "gdbtypes.h" |
41 | #include "value.h" | |
42 | #include "infcall.h" | |
0e30163f JK |
43 | #include "gdbthread.h" |
44 | #include "regcache.h" | |
0af1e9a5 | 45 | #include "bcache.h" |
cbb099e8 | 46 | #include "gdb_bfd.h" |
dc294be5 | 47 | #include "build-id.h" |
c906108c | 48 | |
a14ed312 | 49 | extern void _initialize_elfread (void); |
392a587b | 50 | |
b11896a5 | 51 | /* Forward declarations. */ |
e36122e9 TT |
52 | extern const struct sym_fns elf_sym_fns_gdb_index; |
53 | extern const struct sym_fns elf_sym_fns_lazy_psyms; | |
9291a0cd | 54 | |
c906108c | 55 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 56 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
57 | It's local to elf_symfile_read. */ |
58 | ||
c5aa993b JM |
59 | struct elfinfo |
60 | { | |
c5aa993b | 61 | asection *stabsect; /* Section pointer for .stab section */ |
c5aa993b JM |
62 | asection *mdebugsect; /* Section pointer for .mdebug section */ |
63 | }; | |
c906108c | 64 | |
5d9cf8a4 | 65 | /* Per-BFD data for probe info. */ |
55aa24fb | 66 | |
5d9cf8a4 | 67 | static const struct bfd_data *probe_key = NULL; |
55aa24fb | 68 | |
12b9c64f | 69 | static void free_elfinfo (void *); |
c906108c | 70 | |
07be84bf JK |
71 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
72 | pointer where the given entry will jump to. It gets updated by the real | |
73 | function address during lazy ld.so resolving in the inferior. These | |
74 | minimal symbols are indexed for <tab>-completion. */ | |
75 | ||
76 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
77 | ||
31d99776 DJ |
78 | /* Locate the segments in ABFD. */ |
79 | ||
80 | static struct symfile_segment_data * | |
81 | elf_symfile_segments (bfd *abfd) | |
82 | { | |
83 | Elf_Internal_Phdr *phdrs, **segments; | |
84 | long phdrs_size; | |
85 | int num_phdrs, num_segments, num_sections, i; | |
86 | asection *sect; | |
87 | struct symfile_segment_data *data; | |
88 | ||
89 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
90 | if (phdrs_size == -1) | |
91 | return NULL; | |
92 | ||
93 | phdrs = alloca (phdrs_size); | |
94 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); | |
95 | if (num_phdrs == -1) | |
96 | return NULL; | |
97 | ||
98 | num_segments = 0; | |
99 | segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); | |
100 | for (i = 0; i < num_phdrs; i++) | |
101 | if (phdrs[i].p_type == PT_LOAD) | |
102 | segments[num_segments++] = &phdrs[i]; | |
103 | ||
104 | if (num_segments == 0) | |
105 | return NULL; | |
106 | ||
41bf6aca | 107 | data = XCNEW (struct symfile_segment_data); |
31d99776 | 108 | data->num_segments = num_segments; |
fc270c35 TT |
109 | data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments); |
110 | data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments); | |
31d99776 DJ |
111 | |
112 | for (i = 0; i < num_segments; i++) | |
113 | { | |
114 | data->segment_bases[i] = segments[i]->p_vaddr; | |
115 | data->segment_sizes[i] = segments[i]->p_memsz; | |
116 | } | |
117 | ||
118 | num_sections = bfd_count_sections (abfd); | |
fc270c35 | 119 | data->segment_info = XCNEWVEC (int, num_sections); |
31d99776 DJ |
120 | |
121 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
122 | { | |
123 | int j; | |
124 | CORE_ADDR vma; | |
125 | ||
126 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
127 | continue; | |
128 | ||
129 | vma = bfd_get_section_vma (abfd, sect); | |
130 | ||
131 | for (j = 0; j < num_segments; j++) | |
132 | if (segments[j]->p_memsz > 0 | |
133 | && vma >= segments[j]->p_vaddr | |
a366c65a | 134 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
31d99776 DJ |
135 | { |
136 | data->segment_info[i] = j + 1; | |
137 | break; | |
138 | } | |
139 | ||
ad09a548 DJ |
140 | /* We should have found a segment for every non-empty section. |
141 | If we haven't, we will not relocate this section by any | |
142 | offsets we apply to the segments. As an exception, do not | |
143 | warn about SHT_NOBITS sections; in normal ELF execution | |
144 | environments, SHT_NOBITS means zero-initialized and belongs | |
145 | in a segment, but in no-OS environments some tools (e.g. ARM | |
146 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
147 | uninitialized, it doesn't need a program header. Such | |
148 | binaries are not relocatable. */ | |
149 | if (bfd_get_section_size (sect) > 0 && j == num_segments | |
150 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) | |
28ee876a | 151 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
31d99776 DJ |
152 | bfd_section_name (abfd, sect)); |
153 | } | |
154 | ||
155 | return data; | |
156 | } | |
157 | ||
c906108c SS |
158 | /* We are called once per section from elf_symfile_read. We |
159 | need to examine each section we are passed, check to see | |
160 | if it is something we are interested in processing, and | |
161 | if so, stash away some access information for the section. | |
162 | ||
163 | For now we recognize the dwarf debug information sections and | |
164 | line number sections from matching their section names. The | |
165 | ELF definition is no real help here since it has no direct | |
166 | knowledge of DWARF (by design, so any debugging format can be | |
167 | used). | |
168 | ||
169 | We also recognize the ".stab" sections used by the Sun compilers | |
170 | released with Solaris 2. | |
171 | ||
172 | FIXME: The section names should not be hardwired strings (what | |
173 | should they be? I don't think most object file formats have enough | |
0963b4bd | 174 | section flags to specify what kind of debug section it is. |
c906108c SS |
175 | -kingdon). */ |
176 | ||
177 | static void | |
12b9c64f | 178 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
c906108c | 179 | { |
52f0bd74 | 180 | struct elfinfo *ei; |
c906108c SS |
181 | |
182 | ei = (struct elfinfo *) eip; | |
7ce59000 | 183 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 184 | { |
c5aa993b | 185 | ei->stabsect = sectp; |
c906108c | 186 | } |
6314a349 | 187 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 188 | { |
c5aa993b | 189 | ei->mdebugsect = sectp; |
c906108c SS |
190 | } |
191 | } | |
192 | ||
c906108c | 193 | static struct minimal_symbol * |
04a679b8 TT |
194 | record_minimal_symbol (const char *name, int name_len, int copy_name, |
195 | CORE_ADDR address, | |
f594e5e9 MC |
196 | enum minimal_symbol_type ms_type, |
197 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 198 | { |
5e2b427d UW |
199 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
200 | ||
0875794a JK |
201 | if (ms_type == mst_text || ms_type == mst_file_text |
202 | || ms_type == mst_text_gnu_ifunc) | |
85ddcc70 | 203 | address = gdbarch_addr_bits_remove (gdbarch, address); |
c906108c | 204 | |
04a679b8 | 205 | return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
65cf3563 TT |
206 | ms_type, |
207 | gdb_bfd_section_index (objfile->obfd, | |
208 | bfd_section), | |
e6dc44a8 | 209 | objfile); |
c906108c SS |
210 | } |
211 | ||
7f86f058 | 212 | /* Read the symbol table of an ELF file. |
c906108c | 213 | |
62553543 | 214 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
215 | symbol table contains regular, dynamic, or synthetic symbols, add all |
216 | the global function and data symbols to the minimal symbol table. | |
c906108c | 217 | |
c5aa993b JM |
218 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
219 | defined in the ELF symbol table, which can be used to locate | |
220 | the beginnings of sections from each ".o" file that was linked to | |
221 | form the executable objfile. We gather any such info and record it | |
7f86f058 | 222 | in data structures hung off the objfile's private data. */ |
c906108c | 223 | |
6f610d07 UW |
224 | #define ST_REGULAR 0 |
225 | #define ST_DYNAMIC 1 | |
226 | #define ST_SYNTHETIC 2 | |
227 | ||
c906108c | 228 | static void |
6f610d07 | 229 | elf_symtab_read (struct objfile *objfile, int type, |
04a679b8 TT |
230 | long number_of_symbols, asymbol **symbol_table, |
231 | int copy_names) | |
c906108c | 232 | { |
5e2b427d | 233 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c | 234 | asymbol *sym; |
c906108c | 235 | long i; |
c906108c | 236 | CORE_ADDR symaddr; |
d4f3574e | 237 | CORE_ADDR offset; |
c906108c SS |
238 | enum minimal_symbol_type ms_type; |
239 | /* If sectinfo is nonNULL, it contains section info that should end up | |
240 | filed in the objfile. */ | |
241 | struct stab_section_info *sectinfo = NULL; | |
242 | /* If filesym is nonzero, it points to a file symbol, but we haven't | |
243 | seen any section info for it yet. */ | |
244 | asymbol *filesym = 0; | |
1c9e8358 | 245 | /* Name of filesym. This is either a constant string or is saved on |
0af1e9a5 TT |
246 | the objfile's filename cache. */ |
247 | const char *filesymname = ""; | |
d2f4b8fe | 248 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
d4f3574e | 249 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
3e29f34a MR |
250 | int elf_make_msymbol_special_p |
251 | = gdbarch_elf_make_msymbol_special_p (gdbarch); | |
c5aa993b | 252 | |
0cc7b392 | 253 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 254 | { |
0cc7b392 DJ |
255 | sym = symbol_table[i]; |
256 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 257 | { |
0cc7b392 | 258 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 259 | that are null strings (may happen). */ |
0cc7b392 DJ |
260 | continue; |
261 | } | |
c906108c | 262 | |
74763737 DJ |
263 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
264 | symbols which do not correspond to objects in the symbol table, | |
265 | but have some other target-specific meaning. */ | |
266 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
267 | { |
268 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
269 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
270 | continue; | |
271 | } | |
74763737 | 272 | |
65cf3563 TT |
273 | offset = ANOFFSET (objfile->section_offsets, |
274 | gdb_bfd_section_index (objfile->obfd, sym->section)); | |
6f610d07 | 275 | if (type == ST_DYNAMIC |
45dfa85a | 276 | && sym->section == bfd_und_section_ptr |
0cc7b392 DJ |
277 | && (sym->flags & BSF_FUNCTION)) |
278 | { | |
279 | struct minimal_symbol *msym; | |
02c75f72 | 280 | bfd *abfd = objfile->obfd; |
dea91a5c | 281 | asection *sect; |
0cc7b392 DJ |
282 | |
283 | /* Symbol is a reference to a function defined in | |
284 | a shared library. | |
285 | If its value is non zero then it is usually the address | |
286 | of the corresponding entry in the procedure linkage table, | |
287 | plus the desired section offset. | |
288 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 289 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
290 | for this symbol in the executable file, so we skip it. */ |
291 | symaddr = sym->value; | |
292 | if (symaddr == 0) | |
293 | continue; | |
02c75f72 UW |
294 | |
295 | /* sym->section is the undefined section. However, we want to | |
296 | record the section where the PLT stub resides with the | |
297 | minimal symbol. Search the section table for the one that | |
298 | covers the stub's address. */ | |
299 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
300 | { | |
301 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
302 | continue; | |
303 | ||
304 | if (symaddr >= bfd_get_section_vma (abfd, sect) | |
305 | && symaddr < bfd_get_section_vma (abfd, sect) | |
306 | + bfd_get_section_size (sect)) | |
307 | break; | |
308 | } | |
309 | if (!sect) | |
310 | continue; | |
311 | ||
828cfa8d JB |
312 | /* On ia64-hpux, we have discovered that the system linker |
313 | adds undefined symbols with nonzero addresses that cannot | |
314 | be right (their address points inside the code of another | |
315 | function in the .text section). This creates problems | |
316 | when trying to determine which symbol corresponds to | |
317 | a given address. | |
318 | ||
319 | We try to detect those buggy symbols by checking which | |
320 | section we think they correspond to. Normally, PLT symbols | |
321 | are stored inside their own section, and the typical name | |
322 | for that section is ".plt". So, if there is a ".plt" | |
323 | section, and yet the section name of our symbol does not | |
324 | start with ".plt", we ignore that symbol. */ | |
61012eef | 325 | if (!startswith (sect->name, ".plt") |
828cfa8d JB |
326 | && bfd_get_section_by_name (abfd, ".plt") != NULL) |
327 | continue; | |
328 | ||
0cc7b392 | 329 | msym = record_minimal_symbol |
04a679b8 TT |
330 | (sym->name, strlen (sym->name), copy_names, |
331 | symaddr, mst_solib_trampoline, sect, objfile); | |
0cc7b392 | 332 | if (msym != NULL) |
9b807e7b MR |
333 | { |
334 | msym->filename = filesymname; | |
3e29f34a MR |
335 | if (elf_make_msymbol_special_p) |
336 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
9b807e7b | 337 | } |
0cc7b392 DJ |
338 | continue; |
339 | } | |
c906108c | 340 | |
0cc7b392 DJ |
341 | /* If it is a nonstripped executable, do not enter dynamic |
342 | symbols, as the dynamic symbol table is usually a subset | |
343 | of the main symbol table. */ | |
6f610d07 | 344 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
345 | continue; |
346 | if (sym->flags & BSF_FILE) | |
347 | { | |
348 | /* STT_FILE debugging symbol that helps stabs-in-elf debugging. | |
349 | Chain any old one onto the objfile; remember new sym. */ | |
350 | if (sectinfo != NULL) | |
c906108c | 351 | { |
0cc7b392 DJ |
352 | sectinfo->next = dbx->stab_section_info; |
353 | dbx->stab_section_info = sectinfo; | |
354 | sectinfo = NULL; | |
355 | } | |
356 | filesym = sym; | |
0af1e9a5 | 357 | filesymname = bcache (filesym->name, strlen (filesym->name) + 1, |
706e3705 | 358 | objfile->per_bfd->filename_cache); |
0cc7b392 DJ |
359 | } |
360 | else if (sym->flags & BSF_SECTION_SYM) | |
361 | continue; | |
bb869963 SDJ |
362 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK |
363 | | BSF_GNU_UNIQUE)) | |
0cc7b392 DJ |
364 | { |
365 | struct minimal_symbol *msym; | |
366 | ||
367 | /* Select global/local/weak symbols. Note that bfd puts abs | |
368 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
369 | interested in will have a section. */ |
370 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 371 | symaddr = sym->value + sym->section->vma; |
0cc7b392 DJ |
372 | /* For non-absolute symbols, use the type of the section |
373 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 374 | no way of figuring this out for absolute symbols. */ |
45dfa85a | 375 | if (sym->section == bfd_abs_section_ptr) |
c906108c | 376 | { |
0cc7b392 DJ |
377 | /* This is a hack to get the minimal symbol type |
378 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
379 | with special section indices for dynamic symbols. |
380 | ||
381 | NOTE: uweigand-20071112: Synthetic symbols do not | |
382 | have an ELF-private part, so do not touch those. */ | |
dea91a5c | 383 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
384 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
385 | ||
386 | switch (shndx) | |
c906108c | 387 | { |
0cc7b392 DJ |
388 | case SHN_MIPS_TEXT: |
389 | ms_type = mst_text; | |
390 | break; | |
391 | case SHN_MIPS_DATA: | |
392 | ms_type = mst_data; | |
393 | break; | |
394 | case SHN_MIPS_ACOMMON: | |
395 | ms_type = mst_bss; | |
396 | break; | |
397 | default: | |
398 | ms_type = mst_abs; | |
399 | } | |
400 | ||
401 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 402 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
403 | if (ms_type != mst_abs) |
404 | { | |
405 | if (sym->name[0] == '.') | |
406 | continue; | |
c906108c | 407 | } |
0cc7b392 DJ |
408 | } |
409 | else if (sym->section->flags & SEC_CODE) | |
410 | { | |
bb869963 | 411 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 412 | { |
0875794a JK |
413 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
414 | ms_type = mst_text_gnu_ifunc; | |
415 | else | |
416 | ms_type = mst_text; | |
0cc7b392 | 417 | } |
90359a16 JK |
418 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
419 | descriptors mistaken for static functions starting with 'L'. | |
420 | */ | |
421 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' | |
422 | && (sym->flags & BSF_SYNTHETIC) == 0) | |
0cc7b392 DJ |
423 | || ((sym->flags & BSF_LOCAL) |
424 | && sym->name[0] == '$' | |
425 | && sym->name[1] == 'L')) | |
426 | /* Looks like a compiler-generated label. Skip | |
427 | it. The assembler should be skipping these (to | |
428 | keep executables small), but apparently with | |
429 | gcc on the (deleted) delta m88k SVR4, it loses. | |
430 | So to have us check too should be harmless (but | |
431 | I encourage people to fix this in the assembler | |
432 | instead of adding checks here). */ | |
433 | continue; | |
434 | else | |
435 | { | |
436 | ms_type = mst_file_text; | |
c906108c | 437 | } |
0cc7b392 DJ |
438 | } |
439 | else if (sym->section->flags & SEC_ALLOC) | |
440 | { | |
bb869963 | 441 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 442 | { |
0cc7b392 | 443 | if (sym->section->flags & SEC_LOAD) |
c906108c | 444 | { |
0cc7b392 | 445 | ms_type = mst_data; |
c906108c | 446 | } |
c906108c SS |
447 | else |
448 | { | |
0cc7b392 | 449 | ms_type = mst_bss; |
c906108c SS |
450 | } |
451 | } | |
0cc7b392 | 452 | else if (sym->flags & BSF_LOCAL) |
c906108c | 453 | { |
0cc7b392 DJ |
454 | /* Named Local variable in a Data section. |
455 | Check its name for stabs-in-elf. */ | |
456 | int special_local_sect; | |
d7f9d729 | 457 | |
0cc7b392 DJ |
458 | if (strcmp ("Bbss.bss", sym->name) == 0) |
459 | special_local_sect = SECT_OFF_BSS (objfile); | |
460 | else if (strcmp ("Ddata.data", sym->name) == 0) | |
461 | special_local_sect = SECT_OFF_DATA (objfile); | |
462 | else if (strcmp ("Drodata.rodata", sym->name) == 0) | |
463 | special_local_sect = SECT_OFF_RODATA (objfile); | |
464 | else | |
465 | special_local_sect = -1; | |
466 | if (special_local_sect >= 0) | |
c906108c | 467 | { |
0cc7b392 DJ |
468 | /* Found a special local symbol. Allocate a |
469 | sectinfo, if needed, and fill it in. */ | |
470 | if (sectinfo == NULL) | |
c906108c | 471 | { |
0cc7b392 DJ |
472 | int max_index; |
473 | size_t size; | |
474 | ||
25c2f6ab PP |
475 | max_index = SECT_OFF_BSS (objfile); |
476 | if (objfile->sect_index_data > max_index) | |
477 | max_index = objfile->sect_index_data; | |
478 | if (objfile->sect_index_rodata > max_index) | |
479 | max_index = objfile->sect_index_rodata; | |
0cc7b392 DJ |
480 | |
481 | /* max_index is the largest index we'll | |
482 | use into this array, so we must | |
483 | allocate max_index+1 elements for it. | |
484 | However, 'struct stab_section_info' | |
485 | already includes one element, so we | |
486 | need to allocate max_index aadditional | |
487 | elements. */ | |
dea91a5c | 488 | size = (sizeof (struct stab_section_info) |
c05d19c5 | 489 | + (sizeof (CORE_ADDR) * max_index)); |
0cc7b392 DJ |
490 | sectinfo = (struct stab_section_info *) |
491 | xmalloc (size); | |
492 | memset (sectinfo, 0, size); | |
493 | sectinfo->num_sections = max_index; | |
494 | if (filesym == NULL) | |
c906108c | 495 | { |
0cc7b392 | 496 | complaint (&symfile_complaints, |
3e43a32a MS |
497 | _("elf/stab section information %s " |
498 | "without a preceding file symbol"), | |
0cc7b392 DJ |
499 | sym->name); |
500 | } | |
501 | else | |
502 | { | |
503 | sectinfo->filename = | |
504 | (char *) filesym->name; | |
c906108c | 505 | } |
c906108c | 506 | } |
0cc7b392 DJ |
507 | if (sectinfo->sections[special_local_sect] != 0) |
508 | complaint (&symfile_complaints, | |
3e43a32a MS |
509 | _("duplicated elf/stab section " |
510 | "information for %s"), | |
0cc7b392 DJ |
511 | sectinfo->filename); |
512 | /* BFD symbols are section relative. */ | |
513 | symaddr = sym->value + sym->section->vma; | |
514 | /* Relocate non-absolute symbols by the | |
515 | section offset. */ | |
45dfa85a | 516 | if (sym->section != bfd_abs_section_ptr) |
0cc7b392 DJ |
517 | symaddr += offset; |
518 | sectinfo->sections[special_local_sect] = symaddr; | |
519 | /* The special local symbols don't go in the | |
520 | minimal symbol table, so ignore this one. */ | |
521 | continue; | |
522 | } | |
523 | /* Not a special stabs-in-elf symbol, do regular | |
524 | symbol processing. */ | |
525 | if (sym->section->flags & SEC_LOAD) | |
526 | { | |
527 | ms_type = mst_file_data; | |
c906108c SS |
528 | } |
529 | else | |
530 | { | |
0cc7b392 | 531 | ms_type = mst_file_bss; |
c906108c SS |
532 | } |
533 | } | |
534 | else | |
535 | { | |
0cc7b392 | 536 | ms_type = mst_unknown; |
c906108c | 537 | } |
0cc7b392 DJ |
538 | } |
539 | else | |
540 | { | |
541 | /* FIXME: Solaris2 shared libraries include lots of | |
dea91a5c | 542 | odd "absolute" and "undefined" symbols, that play |
0cc7b392 DJ |
543 | hob with actions like finding what function the PC |
544 | is in. Ignore them if they aren't text, data, or bss. */ | |
545 | /* ms_type = mst_unknown; */ | |
0963b4bd | 546 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
547 | } |
548 | msym = record_minimal_symbol | |
04a679b8 | 549 | (sym->name, strlen (sym->name), copy_names, symaddr, |
0cc7b392 | 550 | ms_type, sym->section, objfile); |
6f610d07 | 551 | |
0cc7b392 DJ |
552 | if (msym) |
553 | { | |
6f610d07 | 554 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
24c274a1 | 555 | ELF-private part. */ |
6f610d07 | 556 | if (type != ST_SYNTHETIC) |
24c274a1 AM |
557 | { |
558 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
559 | elf_symbol_type *elf_sym = (elf_symbol_type *) sym; | |
560 | SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size); | |
561 | } | |
dea91a5c | 562 | |
a103a963 | 563 | msym->filename = filesymname; |
3e29f34a MR |
564 | if (elf_make_msymbol_special_p) |
565 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 566 | } |
2eaf8d2a | 567 | |
715c6909 TT |
568 | /* If we see a default versioned symbol, install it under |
569 | its version-less name. */ | |
570 | if (msym != NULL) | |
571 | { | |
572 | const char *atsign = strchr (sym->name, '@'); | |
573 | ||
574 | if (atsign != NULL && atsign[1] == '@' && atsign > sym->name) | |
575 | { | |
576 | int len = atsign - sym->name; | |
577 | ||
578 | record_minimal_symbol (sym->name, len, 1, symaddr, | |
579 | ms_type, sym->section, objfile); | |
580 | } | |
581 | } | |
582 | ||
2eaf8d2a DJ |
583 | /* For @plt symbols, also record a trampoline to the |
584 | destination symbol. The @plt symbol will be used in | |
585 | disassembly, and the trampoline will be used when we are | |
586 | trying to find the target. */ | |
587 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
588 | { | |
589 | int len = strlen (sym->name); | |
590 | ||
591 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
592 | { | |
2eaf8d2a DJ |
593 | struct minimal_symbol *mtramp; |
594 | ||
04a679b8 TT |
595 | mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
596 | symaddr, | |
2eaf8d2a DJ |
597 | mst_solib_trampoline, |
598 | sym->section, objfile); | |
599 | if (mtramp) | |
600 | { | |
d9eaeb59 | 601 | SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym)); |
422d65e7 | 602 | mtramp->created_by_gdb = 1; |
2eaf8d2a | 603 | mtramp->filename = filesymname; |
3e29f34a MR |
604 | if (elf_make_msymbol_special_p) |
605 | gdbarch_elf_make_msymbol_special (gdbarch, | |
606 | sym, mtramp); | |
2eaf8d2a DJ |
607 | } |
608 | } | |
609 | } | |
c906108c | 610 | } |
c906108c SS |
611 | } |
612 | } | |
613 | ||
07be84bf JK |
614 | /* Build minimal symbols named `[email protected]' (see SYMBOL_GOT_PLT_SUFFIX) |
615 | for later look ups of which function to call when user requests | |
616 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
617 | library defining `function' we cannot yet know while reading OBJFILE which | |
618 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
619 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
620 | ||
621 | static void | |
622 | elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table) | |
623 | { | |
624 | bfd *obfd = objfile->obfd; | |
625 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
626 | asection *plt, *relplt, *got_plt; | |
07be84bf JK |
627 | int plt_elf_idx; |
628 | bfd_size_type reloc_count, reloc; | |
629 | char *string_buffer = NULL; | |
630 | size_t string_buffer_size = 0; | |
631 | struct cleanup *back_to; | |
df6d5441 | 632 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
633 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
634 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
635 | ||
636 | if (objfile->separate_debug_objfile_backlink) | |
637 | return; | |
638 | ||
639 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
640 | if (plt == NULL) | |
641 | return; | |
642 | plt_elf_idx = elf_section_data (plt)->this_idx; | |
643 | ||
644 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); | |
645 | if (got_plt == NULL) | |
4b7d1f7f WN |
646 | { |
647 | /* For platforms where there is no separate .got.plt. */ | |
648 | got_plt = bfd_get_section_by_name (obfd, ".got"); | |
649 | if (got_plt == NULL) | |
650 | return; | |
651 | } | |
07be84bf JK |
652 | |
653 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ | |
654 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
655 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx | |
656 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL | |
657 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) | |
658 | break; | |
659 | if (relplt == NULL) | |
660 | return; | |
661 | ||
662 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
663 | return; | |
664 | ||
665 | back_to = make_cleanup (free_current_contents, &string_buffer); | |
666 | ||
667 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; | |
668 | for (reloc = 0; reloc < reloc_count; reloc++) | |
669 | { | |
22e048c9 | 670 | const char *name; |
07be84bf JK |
671 | struct minimal_symbol *msym; |
672 | CORE_ADDR address; | |
673 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
674 | size_t name_len; | |
675 | ||
676 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
677 | name_len = strlen (name); | |
678 | address = relplt->relocation[reloc].address; | |
679 | ||
680 | /* Does the pointer reside in the .got.plt section? */ | |
681 | if (!(bfd_get_section_vma (obfd, got_plt) <= address | |
682 | && address < bfd_get_section_vma (obfd, got_plt) | |
683 | + bfd_get_section_size (got_plt))) | |
684 | continue; | |
685 | ||
686 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in | |
687 | OBJFILE the symbol is undefined and the objfile having NAME defined | |
688 | may not yet have been loaded. */ | |
689 | ||
3807f613 | 690 | if (string_buffer_size < name_len + got_suffix_len + 1) |
07be84bf JK |
691 | { |
692 | string_buffer_size = 2 * (name_len + got_suffix_len); | |
693 | string_buffer = xrealloc (string_buffer, string_buffer_size); | |
694 | } | |
695 | memcpy (string_buffer, name, name_len); | |
696 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, | |
3807f613 | 697 | got_suffix_len + 1); |
07be84bf JK |
698 | |
699 | msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len, | |
700 | 1, address, mst_slot_got_plt, got_plt, | |
701 | objfile); | |
702 | if (msym) | |
d9eaeb59 | 703 | SET_MSYMBOL_SIZE (msym, ptr_size); |
07be84bf JK |
704 | } |
705 | ||
706 | do_cleanups (back_to); | |
707 | } | |
708 | ||
709 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
710 | ||
711 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; | |
712 | ||
713 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
714 | ||
715 | struct elf_gnu_ifunc_cache | |
716 | { | |
717 | /* This is always a function entry address, not a function descriptor. */ | |
718 | CORE_ADDR addr; | |
719 | ||
720 | char name[1]; | |
721 | }; | |
722 | ||
723 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
724 | ||
725 | static hashval_t | |
726 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
727 | { | |
728 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
729 | ||
730 | return htab_hash_string (a->name); | |
731 | } | |
732 | ||
733 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
734 | ||
735 | static int | |
736 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
737 | { | |
738 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
739 | const struct elf_gnu_ifunc_cache *b = b_voidp; | |
740 | ||
741 | return strcmp (a->name, b->name) == 0; | |
742 | } | |
743 | ||
744 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
745 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
746 | valid and therefore they were successfully recorded, return 0 otherwise. | |
747 | ||
748 | Function does not expect a duplicate entry. Use | |
749 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
750 | exists. */ | |
751 | ||
752 | static int | |
753 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
754 | { | |
7cbd4a93 | 755 | struct bound_minimal_symbol msym; |
07be84bf JK |
756 | asection *sect; |
757 | struct objfile *objfile; | |
758 | htab_t htab; | |
759 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
760 | void **slot; | |
761 | ||
762 | msym = lookup_minimal_symbol_by_pc (addr); | |
7cbd4a93 | 763 | if (msym.minsym == NULL) |
07be84bf | 764 | return 0; |
77e371c0 | 765 | if (BMSYMBOL_VALUE_ADDRESS (msym) != addr) |
07be84bf JK |
766 | return 0; |
767 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ | |
efd66ac6 | 768 | sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section; |
e27d198c | 769 | objfile = msym.objfile; |
07be84bf JK |
770 | |
771 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
772 | resolution and it has no use for GDB. Besides ".text" this symbol can | |
773 | reside also in ".opd" for ppc64 function descriptor. */ | |
774 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) | |
775 | return 0; | |
776 | ||
777 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
778 | if (htab == NULL) | |
779 | { | |
780 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, | |
781 | elf_gnu_ifunc_cache_eq, | |
782 | NULL, &objfile->objfile_obstack, | |
783 | hashtab_obstack_allocate, | |
784 | dummy_obstack_deallocate); | |
785 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); | |
786 | } | |
787 | ||
788 | entry_local.addr = addr; | |
789 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
790 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
791 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
792 | entry_p = obstack_finish (&objfile->objfile_obstack); | |
793 | ||
794 | slot = htab_find_slot (htab, entry_p, INSERT); | |
795 | if (*slot != NULL) | |
796 | { | |
797 | struct elf_gnu_ifunc_cache *entry_found_p = *slot; | |
df6d5441 | 798 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
799 | |
800 | if (entry_found_p->addr != addr) | |
801 | { | |
802 | /* This case indicates buggy inferior program, the resolved address | |
803 | should never change. */ | |
804 | ||
805 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
806 | "function_address from %s to %s"), | |
807 | name, paddress (gdbarch, entry_found_p->addr), | |
808 | paddress (gdbarch, addr)); | |
809 | } | |
810 | ||
811 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
812 | } | |
813 | *slot = entry_p; | |
814 | ||
815 | return 1; | |
816 | } | |
817 | ||
818 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
819 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
820 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
821 | ||
822 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
823 | function. */ | |
824 | ||
825 | static int | |
826 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
827 | { | |
828 | struct objfile *objfile; | |
829 | ||
830 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
831 | { | |
832 | htab_t htab; | |
833 | struct elf_gnu_ifunc_cache *entry_p; | |
834 | void **slot; | |
835 | ||
836 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
837 | if (htab == NULL) | |
838 | continue; | |
839 | ||
840 | entry_p = alloca (sizeof (*entry_p) + strlen (name)); | |
841 | strcpy (entry_p->name, name); | |
842 | ||
843 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
844 | if (slot == NULL) | |
845 | continue; | |
846 | entry_p = *slot; | |
847 | gdb_assert (entry_p != NULL); | |
848 | ||
849 | if (addr_p) | |
850 | *addr_p = entry_p->addr; | |
851 | return 1; | |
852 | } | |
853 | ||
854 | return 0; | |
855 | } | |
856 | ||
857 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
858 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
859 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
860 | ||
861 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
862 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
863 | prevent cache entries duplicates. */ | |
864 | ||
865 | static int | |
866 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
867 | { | |
868 | char *name_got_plt; | |
869 | struct objfile *objfile; | |
870 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
871 | ||
872 | name_got_plt = alloca (strlen (name) + got_suffix_len + 1); | |
873 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); | |
874 | ||
875 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
876 | { | |
877 | bfd *obfd = objfile->obfd; | |
df6d5441 | 878 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
879 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
880 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
881 | CORE_ADDR pointer_address, addr; | |
882 | asection *plt; | |
883 | gdb_byte *buf = alloca (ptr_size); | |
3b7344d5 | 884 | struct bound_minimal_symbol msym; |
07be84bf JK |
885 | |
886 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
3b7344d5 | 887 | if (msym.minsym == NULL) |
07be84bf | 888 | continue; |
3b7344d5 | 889 | if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt) |
07be84bf | 890 | continue; |
77e371c0 | 891 | pointer_address = BMSYMBOL_VALUE_ADDRESS (msym); |
07be84bf JK |
892 | |
893 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
894 | if (plt == NULL) | |
895 | continue; | |
896 | ||
3b7344d5 | 897 | if (MSYMBOL_SIZE (msym.minsym) != ptr_size) |
07be84bf JK |
898 | continue; |
899 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
900 | continue; | |
901 | addr = extract_typed_address (buf, ptr_type); | |
902 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, | |
903 | ¤t_target); | |
4b7d1f7f | 904 | addr = gdbarch_addr_bits_remove (gdbarch, addr); |
07be84bf JK |
905 | |
906 | if (addr_p) | |
907 | *addr_p = addr; | |
908 | if (elf_gnu_ifunc_record_cache (name, addr)) | |
909 | return 1; | |
910 | } | |
911 | ||
912 | return 0; | |
913 | } | |
914 | ||
915 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
916 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
917 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
918 | ||
919 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
920 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
921 | ||
922 | static int | |
923 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) | |
924 | { | |
925 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
926 | return 1; | |
dea91a5c | 927 | |
07be84bf JK |
928 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
929 | return 1; | |
930 | ||
931 | return 0; | |
932 | } | |
933 | ||
934 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
935 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
936 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
937 | */ | |
938 | ||
939 | static CORE_ADDR | |
940 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
941 | { | |
2c02bd72 | 942 | const char *name_at_pc; |
07be84bf JK |
943 | CORE_ADDR start_at_pc, address; |
944 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
945 | struct value *function, *address_val; | |
946 | ||
947 | /* Try first any non-intrusive methods without an inferior call. */ | |
948 | ||
949 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
950 | && start_at_pc == pc) | |
951 | { | |
952 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
953 | return address; | |
954 | } | |
955 | else | |
956 | name_at_pc = NULL; | |
957 | ||
958 | function = allocate_value (func_func_type); | |
959 | set_value_address (function, pc); | |
960 | ||
961 | /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the | |
962 | function entry address. ADDRESS may be a function descriptor. */ | |
963 | ||
964 | address_val = call_function_by_hand (function, 0, NULL); | |
965 | address = value_as_address (address_val); | |
966 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
967 | ¤t_target); | |
4b7d1f7f | 968 | address = gdbarch_addr_bits_remove (gdbarch, address); |
07be84bf JK |
969 | |
970 | if (name_at_pc) | |
971 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
972 | ||
973 | return address; | |
974 | } | |
975 | ||
0e30163f JK |
976 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
977 | ||
978 | static void | |
979 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) | |
980 | { | |
981 | struct breakpoint *b_return; | |
982 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); | |
983 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); | |
984 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); | |
985 | int thread_id = pid_to_thread_id (inferior_ptid); | |
986 | ||
987 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
988 | ||
989 | for (b_return = b->related_breakpoint; b_return != b; | |
990 | b_return = b_return->related_breakpoint) | |
991 | { | |
992 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); | |
993 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); | |
994 | gdb_assert (frame_id_p (b_return->frame_id)); | |
995 | ||
996 | if (b_return->thread == thread_id | |
997 | && b_return->loc->requested_address == prev_pc | |
998 | && frame_id_eq (b_return->frame_id, prev_frame_id)) | |
999 | break; | |
1000 | } | |
1001 | ||
1002 | if (b_return == b) | |
1003 | { | |
1004 | struct symtab_and_line sal; | |
1005 | ||
1006 | /* No need to call find_pc_line for symbols resolving as this is only | |
1007 | a helper breakpointer never shown to the user. */ | |
1008 | ||
1009 | init_sal (&sal); | |
1010 | sal.pspace = current_inferior ()->pspace; | |
1011 | sal.pc = prev_pc; | |
1012 | sal.section = find_pc_overlay (sal.pc); | |
1013 | sal.explicit_pc = 1; | |
1014 | b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, | |
1015 | prev_frame_id, | |
1016 | bp_gnu_ifunc_resolver_return); | |
1017 | ||
c70a6932 JK |
1018 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
1019 | prev_frame = NULL; | |
1020 | ||
0e30163f JK |
1021 | /* Add new b_return to the ring list b->related_breakpoint. */ |
1022 | gdb_assert (b_return->related_breakpoint == b_return); | |
1023 | b_return->related_breakpoint = b->related_breakpoint; | |
1024 | b->related_breakpoint = b_return; | |
1025 | } | |
1026 | } | |
1027 | ||
1028 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ | |
1029 | ||
1030 | static void | |
1031 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) | |
1032 | { | |
1033 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); | |
1034 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
1035 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); | |
1036 | struct regcache *regcache = get_thread_regcache (inferior_ptid); | |
6a3a010b | 1037 | struct value *func_func; |
0e30163f JK |
1038 | struct value *value; |
1039 | CORE_ADDR resolved_address, resolved_pc; | |
1040 | struct symtab_and_line sal; | |
f1310107 | 1041 | struct symtabs_and_lines sals, sals_end; |
0e30163f JK |
1042 | |
1043 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); | |
1044 | ||
0e30163f JK |
1045 | while (b->related_breakpoint != b) |
1046 | { | |
1047 | struct breakpoint *b_next = b->related_breakpoint; | |
1048 | ||
1049 | switch (b->type) | |
1050 | { | |
1051 | case bp_gnu_ifunc_resolver: | |
1052 | break; | |
1053 | case bp_gnu_ifunc_resolver_return: | |
1054 | delete_breakpoint (b); | |
1055 | break; | |
1056 | default: | |
1057 | internal_error (__FILE__, __LINE__, | |
1058 | _("handle_inferior_event: Invalid " | |
1059 | "gnu-indirect-function breakpoint type %d"), | |
1060 | (int) b->type); | |
1061 | } | |
1062 | b = b_next; | |
1063 | } | |
1064 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
6a3a010b MR |
1065 | gdb_assert (b->loc->next == NULL); |
1066 | ||
1067 | func_func = allocate_value (func_func_type); | |
1068 | set_value_address (func_func, b->loc->related_address); | |
1069 | ||
1070 | value = allocate_value (value_type); | |
1071 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, | |
1072 | value_contents_raw (value), NULL); | |
1073 | resolved_address = value_as_address (value); | |
1074 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1075 | resolved_address, | |
1076 | ¤t_target); | |
4b7d1f7f | 1077 | resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc); |
0e30163f | 1078 | |
f8eba3c6 | 1079 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
0e30163f JK |
1080 | elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc); |
1081 | ||
1082 | sal = find_pc_line (resolved_pc, 0); | |
1083 | sals.nelts = 1; | |
1084 | sals.sals = &sal; | |
f1310107 | 1085 | sals_end.nelts = 0; |
0e30163f JK |
1086 | |
1087 | b->type = bp_breakpoint; | |
f1310107 | 1088 | update_breakpoint_locations (b, sals, sals_end); |
0e30163f JK |
1089 | } |
1090 | ||
2750ef27 TT |
1091 | /* A helper function for elf_symfile_read that reads the minimal |
1092 | symbols. */ | |
c906108c SS |
1093 | |
1094 | static void | |
5f6cac40 TT |
1095 | elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags, |
1096 | const struct elfinfo *ei) | |
c906108c | 1097 | { |
63524580 | 1098 | bfd *synth_abfd, *abfd = objfile->obfd; |
c906108c | 1099 | struct cleanup *back_to; |
62553543 EZ |
1100 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1101 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1102 | asymbol *synthsyms; | |
d2f4b8fe | 1103 | struct dbx_symfile_info *dbx; |
c906108c | 1104 | |
45cfd468 DE |
1105 | if (symtab_create_debug) |
1106 | { | |
1107 | fprintf_unfiltered (gdb_stdlog, | |
1108 | "Reading minimal symbols of objfile %s ...\n", | |
4262abfb | 1109 | objfile_name (objfile)); |
45cfd468 DE |
1110 | } |
1111 | ||
5f6cac40 TT |
1112 | /* If we already have minsyms, then we can skip some work here. |
1113 | However, if there were stabs or mdebug sections, we go ahead and | |
1114 | redo all the work anyway, because the psym readers for those | |
1115 | kinds of debuginfo need extra information found here. This can | |
1116 | go away once all types of symbols are in the per-BFD object. */ | |
1117 | if (objfile->per_bfd->minsyms_read | |
1118 | && ei->stabsect == NULL | |
1119 | && ei->mdebugsect == NULL) | |
1120 | { | |
1121 | if (symtab_create_debug) | |
1122 | fprintf_unfiltered (gdb_stdlog, | |
1123 | "... minimal symbols previously read\n"); | |
1124 | return; | |
1125 | } | |
1126 | ||
c906108c | 1127 | init_minimal_symbol_collection (); |
56e290f4 | 1128 | back_to = make_cleanup_discard_minimal_symbols (); |
c906108c | 1129 | |
0963b4bd | 1130 | /* Allocate struct to keep track of the symfile. */ |
d2f4b8fe TT |
1131 | dbx = XCNEW (struct dbx_symfile_info); |
1132 | set_objfile_data (objfile, dbx_objfile_data_key, dbx); | |
12b9c64f | 1133 | make_cleanup (free_elfinfo, (void *) objfile); |
c906108c | 1134 | |
3e43a32a | 1135 | /* Process the normal ELF symbol table first. This may write some |
d2f4b8fe TT |
1136 | chain of info into the dbx_symfile_info of the objfile, which can |
1137 | later be used by elfstab_offset_sections. */ | |
c906108c | 1138 | |
62553543 EZ |
1139 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1140 | if (storage_needed < 0) | |
3e43a32a MS |
1141 | error (_("Can't read symbols from %s: %s"), |
1142 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1143 | bfd_errmsg (bfd_get_error ())); |
1144 | ||
1145 | if (storage_needed > 0) | |
1146 | { | |
80c57053 JK |
1147 | /* Memory gets permanently referenced from ABFD after |
1148 | bfd_canonicalize_symtab so it must not get freed before ABFD gets. */ | |
1149 | ||
1150 | symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1151 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); |
1152 | ||
1153 | if (symcount < 0) | |
3e43a32a MS |
1154 | error (_("Can't read symbols from %s: %s"), |
1155 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1156 | bfd_errmsg (bfd_get_error ())); |
1157 | ||
04a679b8 | 1158 | elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
62553543 | 1159 | } |
c906108c SS |
1160 | |
1161 | /* Add the dynamic symbols. */ | |
1162 | ||
62553543 EZ |
1163 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1164 | ||
1165 | if (storage_needed > 0) | |
1166 | { | |
3f1eff0a JK |
1167 | /* Memory gets permanently referenced from ABFD after |
1168 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1169 | It happens only in the case when elf_slurp_reloc_table sees | |
1170 | asection->relocation NULL. Determining which section is asection is | |
1171 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1172 | implementation detail, though. */ | |
1173 | ||
1174 | dyn_symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1175 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1176 | dyn_symbol_table); | |
1177 | ||
1178 | if (dynsymcount < 0) | |
3e43a32a MS |
1179 | error (_("Can't read symbols from %s: %s"), |
1180 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1181 | bfd_errmsg (bfd_get_error ())); |
1182 | ||
04a679b8 | 1183 | elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
07be84bf JK |
1184 | |
1185 | elf_rel_plt_read (objfile, dyn_symbol_table); | |
62553543 EZ |
1186 | } |
1187 | ||
63524580 JK |
1188 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
1189 | elfutils (eu-strip) moves even the .symtab section into the .debug file. | |
1190 | ||
1191 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol | |
1192 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code | |
1193 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to | |
1194 | read the code address from .opd while it reads the .symtab section from | |
1195 | a separate debug info file as the .opd section is SHT_NOBITS there. | |
1196 | ||
1197 | With SYNTH_ABFD the .opd section will be read from the original | |
1198 | backlinked binary where it is valid. */ | |
1199 | ||
1200 | if (objfile->separate_debug_objfile_backlink) | |
1201 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; | |
1202 | else | |
1203 | synth_abfd = abfd; | |
1204 | ||
62553543 EZ |
1205 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
1206 | ||
63524580 | 1207 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
62553543 EZ |
1208 | dynsymcount, dyn_symbol_table, |
1209 | &synthsyms); | |
1210 | if (synthcount > 0) | |
1211 | { | |
1212 | asymbol **synth_symbol_table; | |
1213 | long i; | |
1214 | ||
1215 | make_cleanup (xfree, synthsyms); | |
1216 | synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); | |
1217 | for (i = 0; i < synthcount; i++) | |
9f20e3da | 1218 | synth_symbol_table[i] = synthsyms + i; |
62553543 | 1219 | make_cleanup (xfree, synth_symbol_table); |
3e43a32a MS |
1220 | elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, |
1221 | synth_symbol_table, 1); | |
62553543 | 1222 | } |
c906108c | 1223 | |
7134143f DJ |
1224 | /* Install any minimal symbols that have been collected as the current |
1225 | minimal symbols for this objfile. The debug readers below this point | |
1226 | should not generate new minimal symbols; if they do it's their | |
1227 | responsibility to install them. "mdebug" appears to be the only one | |
1228 | which will do this. */ | |
1229 | ||
1230 | install_minimal_symbols (objfile); | |
1231 | do_cleanups (back_to); | |
1232 | ||
4f00dda3 DE |
1233 | if (symtab_create_debug) |
1234 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); | |
2750ef27 TT |
1235 | } |
1236 | ||
1237 | /* Scan and build partial symbols for a symbol file. | |
1238 | We have been initialized by a call to elf_symfile_init, which | |
1239 | currently does nothing. | |
1240 | ||
2750ef27 TT |
1241 | This function only does the minimum work necessary for letting the |
1242 | user "name" things symbolically; it does not read the entire symtab. | |
1243 | Instead, it reads the external and static symbols and puts them in partial | |
1244 | symbol tables. When more extensive information is requested of a | |
1245 | file, the corresponding partial symbol table is mutated into a full | |
1246 | fledged symbol table by going back and reading the symbols | |
1247 | for real. | |
1248 | ||
1249 | We look for sections with specific names, to tell us what debug | |
1250 | format to look for: FIXME!!! | |
1251 | ||
1252 | elfstab_build_psymtabs() handles STABS symbols; | |
1253 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1254 | ||
1255 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1256 | like a COFF symbol table, but has only the minimal information necessary | |
1257 | for linking. We process this also, and use the information to | |
1258 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1259 | capability even for files compiled without -g. */ | |
1260 | ||
1261 | static void | |
1262 | elf_symfile_read (struct objfile *objfile, int symfile_flags) | |
1263 | { | |
1264 | bfd *abfd = objfile->obfd; | |
1265 | struct elfinfo ei; | |
1266 | ||
2750ef27 | 1267 | memset ((char *) &ei, 0, sizeof (ei)); |
12b9c64f | 1268 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
c906108c | 1269 | |
5f6cac40 TT |
1270 | elf_read_minimal_symbols (objfile, symfile_flags, &ei); |
1271 | ||
c906108c SS |
1272 | /* ELF debugging information is inserted into the psymtab in the |
1273 | order of least informative first - most informative last. Since | |
1274 | the psymtab table is searched `most recent insertion first' this | |
1275 | increases the probability that more detailed debug information | |
1276 | for a section is found. | |
1277 | ||
1278 | For instance, an object file might contain both .mdebug (XCOFF) | |
1279 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1280 | (searched last) and DWARF2 is inserted last (searched first). If | |
1281 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1282 | an included file XCOFF info is useless. */ |
c906108c SS |
1283 | |
1284 | if (ei.mdebugsect) | |
1285 | { | |
1286 | const struct ecoff_debug_swap *swap; | |
1287 | ||
1288 | /* .mdebug section, presumably holding ECOFF debugging | |
c5aa993b | 1289 | information. */ |
c906108c SS |
1290 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1291 | if (swap) | |
d4f3574e | 1292 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1293 | } |
1294 | if (ei.stabsect) | |
1295 | { | |
1296 | asection *str_sect; | |
1297 | ||
1298 | /* Stab sections have an associated string table that looks like | |
c5aa993b | 1299 | a separate section. */ |
c906108c SS |
1300 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1301 | ||
1302 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1303 | if (str_sect) | |
1304 | elfstab_build_psymtabs (objfile, | |
086df311 | 1305 | ei.stabsect, |
c906108c SS |
1306 | str_sect->filepos, |
1307 | bfd_section_size (abfd, str_sect)); | |
1308 | } | |
9291a0cd | 1309 | |
251d32d9 | 1310 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 | 1311 | { |
3e03848b JK |
1312 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug |
1313 | information present in OBJFILE. If there is such debug info present | |
1314 | never use .gdb_index. */ | |
1315 | ||
1316 | if (!objfile_has_partial_symbols (objfile) | |
1317 | && dwarf2_initialize_objfile (objfile)) | |
8fb8eb5c | 1318 | objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index); |
b11896a5 TT |
1319 | else |
1320 | { | |
1321 | /* It is ok to do this even if the stabs reader made some | |
1322 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1323 | set, and so our lazy reader function will still be called | |
1324 | when needed. */ | |
8fb8eb5c | 1325 | objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms); |
b11896a5 TT |
1326 | } |
1327 | } | |
3e43a32a MS |
1328 | /* If the file has its own symbol tables it has no separate debug |
1329 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1330 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
8a92335b JK |
1331 | `.note.gnu.build-id'. |
1332 | ||
1333 | .gnu_debugdata is !objfile_has_partial_symbols because it contains only | |
1334 | .symtab, not .debug_* section. But if we already added .gnu_debugdata as | |
1335 | an objfile via find_separate_debug_file_in_section there was no separate | |
1336 | debug info available. Therefore do not attempt to search for another one, | |
1337 | objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to | |
1338 | be NULL and we would possibly violate it. */ | |
1339 | ||
1340 | else if (!objfile_has_partial_symbols (objfile) | |
1341 | && objfile->separate_debug_objfile == NULL | |
1342 | && objfile->separate_debug_objfile_backlink == NULL) | |
9cce227f TG |
1343 | { |
1344 | char *debugfile; | |
1345 | ||
1346 | debugfile = find_separate_debug_file_by_buildid (objfile); | |
1347 | ||
1348 | if (debugfile == NULL) | |
1349 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
1350 | ||
1351 | if (debugfile) | |
1352 | { | |
8ac244b4 | 1353 | struct cleanup *cleanup = make_cleanup (xfree, debugfile); |
9cce227f | 1354 | bfd *abfd = symfile_bfd_open (debugfile); |
d7f9d729 | 1355 | |
8ac244b4 | 1356 | make_cleanup_bfd_unref (abfd); |
24ba069a | 1357 | symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile); |
8ac244b4 | 1358 | do_cleanups (cleanup); |
9cce227f TG |
1359 | } |
1360 | } | |
c906108c SS |
1361 | } |
1362 | ||
b11896a5 TT |
1363 | /* Callback to lazily read psymtabs. */ |
1364 | ||
1365 | static void | |
1366 | read_psyms (struct objfile *objfile) | |
1367 | { | |
251d32d9 | 1368 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 TT |
1369 | dwarf2_build_psymtabs (objfile); |
1370 | } | |
1371 | ||
d2f4b8fe TT |
1372 | /* This cleans up the objfile's dbx symfile info, and the chain of |
1373 | stab_section_info's, that might be dangling from it. */ | |
c906108c SS |
1374 | |
1375 | static void | |
12b9c64f | 1376 | free_elfinfo (void *objp) |
c906108c | 1377 | { |
c5aa993b | 1378 | struct objfile *objfile = (struct objfile *) objp; |
d2f4b8fe | 1379 | struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile); |
c906108c SS |
1380 | struct stab_section_info *ssi, *nssi; |
1381 | ||
1382 | ssi = dbxinfo->stab_section_info; | |
1383 | while (ssi) | |
1384 | { | |
1385 | nssi = ssi->next; | |
2dc74dc1 | 1386 | xfree (ssi); |
c906108c SS |
1387 | ssi = nssi; |
1388 | } | |
1389 | ||
1390 | dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */ | |
1391 | } | |
1392 | ||
1393 | ||
1394 | /* Initialize anything that needs initializing when a completely new symbol | |
1395 | file is specified (not just adding some symbols from another file, e.g. a | |
1396 | shared library). | |
1397 | ||
3e43a32a MS |
1398 | We reinitialize buildsym, since we may be reading stabs from an ELF |
1399 | file. */ | |
c906108c SS |
1400 | |
1401 | static void | |
fba45db2 | 1402 | elf_new_init (struct objfile *ignore) |
c906108c SS |
1403 | { |
1404 | stabsread_new_init (); | |
1405 | buildsym_new_init (); | |
1406 | } | |
1407 | ||
1408 | /* Perform any local cleanups required when we are done with a particular | |
1409 | objfile. I.E, we are in the process of discarding all symbol information | |
1410 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1411 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1412 | |
1413 | static void | |
fba45db2 | 1414 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1415 | { |
fe3e1990 | 1416 | dwarf2_free_objfile (objfile); |
c906108c SS |
1417 | } |
1418 | ||
db7a9bcd | 1419 | /* ELF specific initialization routine for reading symbols. */ |
c906108c SS |
1420 | |
1421 | static void | |
fba45db2 | 1422 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1423 | { |
1424 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1425 | find this causes a significant slowdown in gdb then we could | |
1426 | set it in the debug symbol readers only when necessary. */ | |
1427 | objfile->flags |= OBJF_REORDERED; | |
1428 | } | |
1429 | ||
1430 | /* When handling an ELF file that contains Sun STABS debug info, | |
1431 | some of the debug info is relative to the particular chunk of the | |
1432 | section that was generated in its individual .o file. E.g. | |
1433 | offsets to static variables are relative to the start of the data | |
1434 | segment *for that module before linking*. This information is | |
1435 | painfully squirreled away in the ELF symbol table as local symbols | |
1436 | with wierd names. Go get 'em when needed. */ | |
1437 | ||
1438 | void | |
fba45db2 | 1439 | elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst) |
c906108c | 1440 | { |
72b9f47f | 1441 | const char *filename = pst->filename; |
d2f4b8fe | 1442 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
c906108c SS |
1443 | struct stab_section_info *maybe = dbx->stab_section_info; |
1444 | struct stab_section_info *questionable = 0; | |
1445 | int i; | |
c906108c SS |
1446 | |
1447 | /* The ELF symbol info doesn't include path names, so strip the path | |
1448 | (if any) from the psymtab filename. */ | |
0ba1096a | 1449 | filename = lbasename (filename); |
c906108c SS |
1450 | |
1451 | /* FIXME: This linear search could speed up significantly | |
1452 | if it was chained in the right order to match how we search it, | |
0963b4bd | 1453 | and if we unchained when we found a match. */ |
c906108c SS |
1454 | for (; maybe; maybe = maybe->next) |
1455 | { | |
1456 | if (filename[0] == maybe->filename[0] | |
0ba1096a | 1457 | && filename_cmp (filename, maybe->filename) == 0) |
c906108c SS |
1458 | { |
1459 | /* We found a match. But there might be several source files | |
1460 | (from different directories) with the same name. */ | |
1461 | if (0 == maybe->found) | |
1462 | break; | |
c5aa993b | 1463 | questionable = maybe; /* Might use it later. */ |
c906108c SS |
1464 | } |
1465 | } | |
1466 | ||
1467 | if (maybe == 0 && questionable != 0) | |
1468 | { | |
23136709 | 1469 | complaint (&symfile_complaints, |
3e43a32a MS |
1470 | _("elf/stab section information questionable for %s"), |
1471 | filename); | |
c906108c SS |
1472 | maybe = questionable; |
1473 | } | |
1474 | ||
1475 | if (maybe) | |
1476 | { | |
1477 | /* Found it! Allocate a new psymtab struct, and fill it in. */ | |
1478 | maybe->found++; | |
1479 | pst->section_offsets = (struct section_offsets *) | |
dea91a5c | 1480 | obstack_alloc (&objfile->objfile_obstack, |
a39a16c4 MM |
1481 | SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
1482 | for (i = 0; i < maybe->num_sections; i++) | |
a4c8257b | 1483 | (pst->section_offsets)->offsets[i] = maybe->sections[i]; |
c906108c SS |
1484 | return; |
1485 | } | |
1486 | ||
1487 | /* We were unable to find any offsets for this file. Complain. */ | |
c5aa993b | 1488 | if (dbx->stab_section_info) /* If there *is* any info, */ |
23136709 | 1489 | complaint (&symfile_complaints, |
e2e0b3e5 | 1490 | _("elf/stab section information missing for %s"), filename); |
c906108c | 1491 | } |
55aa24fb SDJ |
1492 | |
1493 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ | |
1494 | ||
1495 | static VEC (probe_p) * | |
1496 | elf_get_probes (struct objfile *objfile) | |
1497 | { | |
5d9cf8a4 | 1498 | VEC (probe_p) *probes_per_bfd; |
55aa24fb SDJ |
1499 | |
1500 | /* Have we parsed this objfile's probes already? */ | |
5d9cf8a4 | 1501 | probes_per_bfd = bfd_data (objfile->obfd, probe_key); |
55aa24fb | 1502 | |
5d9cf8a4 | 1503 | if (!probes_per_bfd) |
55aa24fb SDJ |
1504 | { |
1505 | int ix; | |
1506 | const struct probe_ops *probe_ops; | |
1507 | ||
1508 | /* Here we try to gather information about all types of probes from the | |
1509 | objfile. */ | |
1510 | for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops); | |
1511 | ix++) | |
5d9cf8a4 | 1512 | probe_ops->get_probes (&probes_per_bfd, objfile); |
55aa24fb | 1513 | |
5d9cf8a4 | 1514 | if (probes_per_bfd == NULL) |
55aa24fb | 1515 | { |
5d9cf8a4 TT |
1516 | VEC_reserve (probe_p, probes_per_bfd, 1); |
1517 | gdb_assert (probes_per_bfd != NULL); | |
55aa24fb SDJ |
1518 | } |
1519 | ||
5d9cf8a4 | 1520 | set_bfd_data (objfile->obfd, probe_key, probes_per_bfd); |
55aa24fb SDJ |
1521 | } |
1522 | ||
5d9cf8a4 | 1523 | return probes_per_bfd; |
55aa24fb SDJ |
1524 | } |
1525 | ||
55aa24fb SDJ |
1526 | /* Helper function used to free the space allocated for storing SystemTap |
1527 | probe information. */ | |
1528 | ||
1529 | static void | |
5d9cf8a4 | 1530 | probe_key_free (bfd *abfd, void *d) |
55aa24fb SDJ |
1531 | { |
1532 | int ix; | |
1533 | VEC (probe_p) *probes = d; | |
1534 | struct probe *probe; | |
1535 | ||
1536 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1537 | probe->pops->destroy (probe); | |
1538 | ||
1539 | VEC_free (probe_p, probes); | |
1540 | } | |
1541 | ||
c906108c | 1542 | \f |
55aa24fb SDJ |
1543 | |
1544 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ | |
1545 | ||
1546 | static const struct sym_probe_fns elf_probe_fns = | |
1547 | { | |
25f9533e | 1548 | elf_get_probes, /* sym_get_probes */ |
55aa24fb SDJ |
1549 | }; |
1550 | ||
c906108c SS |
1551 | /* Register that we are able to handle ELF object file formats. */ |
1552 | ||
00b5771c | 1553 | static const struct sym_fns elf_sym_fns = |
c906108c | 1554 | { |
3e43a32a MS |
1555 | elf_new_init, /* init anything gbl to entire symtab */ |
1556 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1557 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1558 | NULL, /* sym_read_psymbols */ |
1559 | elf_symfile_finish, /* finished with file, cleanup */ | |
1560 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1561 | elf_symfile_segments, /* Get segment information from a file. */ | |
1562 | NULL, | |
1563 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1564 | &elf_probe_fns, /* sym_probe_fns */ |
b11896a5 TT |
1565 | &psym_functions |
1566 | }; | |
1567 | ||
1568 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1569 | psymbols. */ | |
1570 | ||
e36122e9 | 1571 | const struct sym_fns elf_sym_fns_lazy_psyms = |
b11896a5 | 1572 | { |
b11896a5 TT |
1573 | elf_new_init, /* init anything gbl to entire symtab */ |
1574 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1575 | elf_symfile_read, /* read a symbol file into symtab */ | |
1576 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1577 | elf_symfile_finish, /* finished with file, cleanup */ |
1578 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1579 | elf_symfile_segments, /* Get segment information from a file. */ | |
1580 | NULL, | |
1581 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1582 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1583 | &psym_functions |
c906108c SS |
1584 | }; |
1585 | ||
9291a0cd TT |
1586 | /* The same as elf_sym_fns, but not registered and uses the |
1587 | DWARF-specific GNU index rather than psymtab. */ | |
e36122e9 | 1588 | const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd | 1589 | { |
3e43a32a MS |
1590 | elf_new_init, /* init anything gbl to entire symab */ |
1591 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1592 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1593 | NULL, /* sym_read_psymbols */ |
3e43a32a MS |
1594 | elf_symfile_finish, /* finished with file, cleanup */ |
1595 | default_symfile_offsets, /* Translate ext. to int. relocatin */ | |
1596 | elf_symfile_segments, /* Get segment information from a file. */ | |
1597 | NULL, | |
1598 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1599 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1600 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1601 | }; |
1602 | ||
07be84bf JK |
1603 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1604 | ||
1605 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1606 | { | |
1607 | elf_gnu_ifunc_resolve_addr, | |
1608 | elf_gnu_ifunc_resolve_name, | |
0e30163f JK |
1609 | elf_gnu_ifunc_resolver_stop, |
1610 | elf_gnu_ifunc_resolver_return_stop | |
07be84bf JK |
1611 | }; |
1612 | ||
c906108c | 1613 | void |
fba45db2 | 1614 | _initialize_elfread (void) |
c906108c | 1615 | { |
5d9cf8a4 | 1616 | probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free); |
c256e171 | 1617 | add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); |
07be84bf JK |
1618 | |
1619 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); | |
1620 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; | |
c906108c | 1621 | } |