]>
Commit | Line | Data |
---|---|---|
0ee75d02 | 1 | /* BFD backend for SunOS binaries. |
fe6fc35f | 2 | Copyright (C) 1990, 91, 92, 93, 94, 95, 1996 Free Software Foundation, Inc. |
0ee75d02 | 3 | Written by Cygnus Support. |
4a81b561 | 4 | |
0ee75d02 | 5 | This file is part of BFD, the Binary File Descriptor library. |
4a81b561 | 6 | |
0ee75d02 | 7 | This program is free software; you can redistribute it and/or modify |
4a81b561 | 8 | it under the terms of the GNU General Public License as published by |
0ee75d02 ILT |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
4a81b561 | 11 | |
0ee75d02 | 12 | This program is distributed in the hope that it will be useful, |
4a81b561 DHW |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
0ee75d02 | 18 | along with this program; if not, write to the Free Software |
943fbd5b | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
4a81b561 | 20 | |
0ee75d02 ILT |
21 | #define TARGETNAME "a.out-sunos-big" |
22 | #define MY(OP) CAT(sunos_big_,OP) | |
4a81b561 | 23 | |
4a81b561 | 24 | #include "bfd.h" |
e85e8bfe ILT |
25 | #include "bfdlink.h" |
26 | #include "libaout.h" | |
78aa64b1 | 27 | |
0ee75d02 | 28 | /* Static routines defined in this file. */ |
4a81b561 | 29 | |
0ee75d02 | 30 | static boolean sunos_read_dynamic_info PARAMS ((bfd *)); |
e85e8bfe | 31 | static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *)); |
396aaeb2 | 32 | static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *)); |
e85e8bfe ILT |
33 | static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **)); |
34 | static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *)); | |
35 | static long sunos_canonicalize_dynamic_reloc | |
36 | PARAMS ((bfd *, arelent **, asymbol **)); | |
37 | static struct bfd_hash_entry *sunos_link_hash_newfunc | |
38 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
39 | static struct bfd_link_hash_table *sunos_link_hash_table_create | |
40 | PARAMS ((bfd *)); | |
535c89f0 ILT |
41 | static boolean sunos_create_dynamic_sections |
42 | PARAMS ((bfd *, struct bfd_link_info *, boolean)); | |
e85e8bfe | 43 | static boolean sunos_add_dynamic_symbols |
396aaeb2 ILT |
44 | PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **, |
45 | bfd_size_type *, char **)); | |
e85e8bfe ILT |
46 | static boolean sunos_add_one_symbol |
47 | PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *, | |
48 | bfd_vma, const char *, boolean, boolean, | |
49 | struct bfd_link_hash_entry **)); | |
50 | static boolean sunos_scan_relocs | |
51 | PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type)); | |
52 | static boolean sunos_scan_std_relocs | |
53 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
54 | const struct reloc_std_external *, bfd_size_type)); | |
55 | static boolean sunos_scan_ext_relocs | |
56 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
57 | const struct reloc_ext_external *, bfd_size_type)); | |
58 | static boolean sunos_link_dynamic_object | |
59 | PARAMS ((struct bfd_link_info *, bfd *)); | |
60 | static boolean sunos_write_dynamic_symbol | |
61 | PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *)); | |
62 | static boolean sunos_check_dynamic_reloc | |
63 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
535c89f0 ILT |
64 | struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *, |
65 | bfd_vma *)); | |
e85e8bfe ILT |
66 | static boolean sunos_finish_dynamic_link |
67 | PARAMS ((bfd *, struct bfd_link_info *)); | |
4a81b561 | 68 | |
e85e8bfe ILT |
69 | #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound |
70 | #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab | |
71 | #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound | |
72 | #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc | |
73 | #define MY_bfd_link_hash_table_create sunos_link_hash_table_create | |
74 | #define MY_add_dynamic_symbols sunos_add_dynamic_symbols | |
75 | #define MY_add_one_symbol sunos_add_one_symbol | |
76 | #define MY_link_dynamic_object sunos_link_dynamic_object | |
77 | #define MY_write_dynamic_symbol sunos_write_dynamic_symbol | |
78 | #define MY_check_dynamic_reloc sunos_check_dynamic_reloc | |
79 | #define MY_finish_dynamic_link sunos_finish_dynamic_link | |
4a81b561 | 80 | |
d1f74cd2 DE |
81 | /* ??? Where should this go? */ |
82 | #define MACHTYPE_OK(mtype) \ | |
83 | (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \ | |
84 | || ((mtype) == M_SPARCLET \ | |
85 | && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \ | |
86 | || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \ | |
87 | && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL)) | |
88 | ||
0ee75d02 ILT |
89 | /* Include the usual a.out support. */ |
90 | #include "aoutf1.h" | |
4a81b561 | 91 | |
0ee75d02 ILT |
92 | /* SunOS shared library support. We store a pointer to this structure |
93 | in obj_aout_dynamic_info (abfd). */ | |
4a81b561 | 94 | |
0ee75d02 | 95 | struct sunos_dynamic_info |
78aa64b1 | 96 | { |
0ee75d02 ILT |
97 | /* Whether we found any dynamic information. */ |
98 | boolean valid; | |
99 | /* Dynamic information. */ | |
100 | struct internal_sun4_dynamic_link dyninfo; | |
101 | /* Number of dynamic symbols. */ | |
ae115e51 | 102 | unsigned long dynsym_count; |
0ee75d02 ILT |
103 | /* Read in nlists for dynamic symbols. */ |
104 | struct external_nlist *dynsym; | |
e85e8bfe ILT |
105 | /* asymbol structures for dynamic symbols. */ |
106 | aout_symbol_type *canonical_dynsym; | |
0ee75d02 ILT |
107 | /* Read in dynamic string table. */ |
108 | char *dynstr; | |
109 | /* Number of dynamic relocs. */ | |
ae115e51 | 110 | unsigned long dynrel_count; |
0ee75d02 ILT |
111 | /* Read in dynamic relocs. This may be reloc_std_external or |
112 | reloc_ext_external. */ | |
113 | PTR dynrel; | |
e85e8bfe ILT |
114 | /* arelent structures for dynamic relocs. */ |
115 | arelent *canonical_dynrel; | |
0ee75d02 | 116 | }; |
4a81b561 | 117 | |
e85e8bfe ILT |
118 | /* The hash table of dynamic symbols is composed of two word entries. |
119 | See include/aout/sun4.h for details. */ | |
120 | ||
121 | #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD) | |
122 | ||
0ee75d02 ILT |
123 | /* Read in the basic dynamic information. This locates the __DYNAMIC |
124 | structure and uses it to find the dynamic_link structure. It | |
125 | creates and saves a sunos_dynamic_info structure. If it can't find | |
126 | __DYNAMIC, it sets the valid field of the sunos_dynamic_info | |
127 | structure to false to avoid doing this work again. */ | |
4a81b561 | 128 | |
0ee75d02 ILT |
129 | static boolean |
130 | sunos_read_dynamic_info (abfd) | |
4a81b561 DHW |
131 | bfd *abfd; |
132 | { | |
0ee75d02 | 133 | struct sunos_dynamic_info *info; |
0ee75d02 | 134 | asection *dynsec; |
ae115e51 | 135 | bfd_vma dynoff; |
0ee75d02 ILT |
136 | struct external_sun4_dynamic dyninfo; |
137 | unsigned long dynver; | |
138 | struct external_sun4_dynamic_link linkinfo; | |
139 | ||
140 | if (obj_aout_dynamic_info (abfd) != (PTR) NULL) | |
141 | return true; | |
142 | ||
e85e8bfe ILT |
143 | if ((abfd->flags & DYNAMIC) == 0) |
144 | { | |
145 | bfd_set_error (bfd_error_invalid_operation); | |
146 | return false; | |
147 | } | |
148 | ||
0ee75d02 ILT |
149 | info = ((struct sunos_dynamic_info *) |
150 | bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info))); | |
9783e04a | 151 | if (!info) |
a9713b91 | 152 | return false; |
0ee75d02 ILT |
153 | info->valid = false; |
154 | info->dynsym = NULL; | |
155 | info->dynstr = NULL; | |
e85e8bfe | 156 | info->canonical_dynsym = NULL; |
0ee75d02 | 157 | info->dynrel = NULL; |
e85e8bfe | 158 | info->canonical_dynrel = NULL; |
0ee75d02 ILT |
159 | obj_aout_dynamic_info (abfd) = (PTR) info; |
160 | ||
3e0b5554 PS |
161 | /* This code used to look for the __DYNAMIC symbol to locate the dynamic |
162 | linking information. | |
163 | However this inhibits recovering the dynamic symbols from a | |
164 | stripped object file, so blindly assume that the dynamic linking | |
165 | information is located at the start of the data section. | |
166 | We could verify this assumption later by looking through the dynamic | |
167 | symbols for the __DYNAMIC symbol. */ | |
168 | if ((abfd->flags & DYNAMIC) == 0) | |
0ee75d02 | 169 | return true; |
3e0b5554 PS |
170 | if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo, |
171 | (file_ptr) 0, sizeof dyninfo)) | |
0ee75d02 ILT |
172 | return true; |
173 | ||
174 | dynver = GET_WORD (abfd, dyninfo.ld_version); | |
175 | if (dynver != 2 && dynver != 3) | |
176 | return true; | |
177 | ||
178 | dynoff = GET_WORD (abfd, dyninfo.ld); | |
179 | ||
180 | /* dynoff is a virtual address. It is probably always in the .data | |
181 | section, but this code should work even if it moves. */ | |
182 | if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd))) | |
183 | dynsec = obj_textsec (abfd); | |
184 | else | |
185 | dynsec = obj_datasec (abfd); | |
186 | dynoff -= bfd_get_section_vma (abfd, dynsec); | |
ae115e51 | 187 | if (dynoff > bfd_section_size (abfd, dynsec)) |
0ee75d02 ILT |
188 | return true; |
189 | ||
190 | /* This executable appears to be dynamically linked in a way that we | |
191 | can understand. */ | |
192 | if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff, | |
193 | (bfd_size_type) sizeof linkinfo)) | |
194 | return true; | |
195 | ||
196 | /* Swap in the dynamic link information. */ | |
197 | info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded); | |
198 | info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need); | |
199 | info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules); | |
200 | info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got); | |
201 | info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt); | |
202 | info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel); | |
203 | info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash); | |
204 | info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab); | |
205 | info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash); | |
206 | info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets); | |
207 | info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols); | |
208 | info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size); | |
209 | info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text); | |
210 | info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz); | |
211 | ||
641ac26a ILT |
212 | /* Reportedly the addresses need to be offset by the size of the |
213 | exec header in an NMAGIC file. */ | |
214 | if (adata (abfd).magic == n_magic) | |
215 | { | |
216 | unsigned long exec_bytes_size = adata (abfd).exec_bytes_size; | |
217 | ||
218 | info->dyninfo.ld_need += exec_bytes_size; | |
219 | info->dyninfo.ld_rules += exec_bytes_size; | |
220 | info->dyninfo.ld_rel += exec_bytes_size; | |
221 | info->dyninfo.ld_hash += exec_bytes_size; | |
222 | info->dyninfo.ld_stab += exec_bytes_size; | |
223 | info->dyninfo.ld_symbols += exec_bytes_size; | |
224 | } | |
225 | ||
0ee75d02 ILT |
226 | /* The only way to get the size of the symbol information appears to |
227 | be to determine the distance between it and the string table. */ | |
228 | info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab) | |
229 | / EXTERNAL_NLIST_SIZE); | |
230 | BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE | |
ae115e51 ILT |
231 | == (unsigned long) (info->dyninfo.ld_symbols |
232 | - info->dyninfo.ld_stab)); | |
0ee75d02 ILT |
233 | |
234 | /* Similarly, the relocs end at the hash table. */ | |
235 | info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel) | |
236 | / obj_reloc_entry_size (abfd)); | |
237 | BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd) | |
ae115e51 ILT |
238 | == (unsigned long) (info->dyninfo.ld_hash |
239 | - info->dyninfo.ld_rel)); | |
0ee75d02 ILT |
240 | |
241 | info->valid = true; | |
4a81b561 DHW |
242 | |
243 | return true; | |
244 | } | |
245 | ||
e85e8bfe ILT |
246 | /* Return the amount of memory required for the dynamic symbols. */ |
247 | ||
248 | static long | |
249 | sunos_get_dynamic_symtab_upper_bound (abfd) | |
250 | bfd *abfd; | |
251 | { | |
252 | struct sunos_dynamic_info *info; | |
253 | ||
254 | if (! sunos_read_dynamic_info (abfd)) | |
255 | return -1; | |
256 | ||
257 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
258 | if (! info->valid) | |
259 | { | |
260 | bfd_set_error (bfd_error_no_symbols); | |
261 | return -1; | |
262 | } | |
263 | ||
264 | return (info->dynsym_count + 1) * sizeof (asymbol *); | |
265 | } | |
266 | ||
396aaeb2 | 267 | /* Read the external dynamic symbols. */ |
4a81b561 | 268 | |
396aaeb2 ILT |
269 | static boolean |
270 | sunos_slurp_dynamic_symtab (abfd) | |
4a81b561 DHW |
271 | bfd *abfd; |
272 | { | |
0ee75d02 | 273 | struct sunos_dynamic_info *info; |
4a81b561 | 274 | |
e85e8bfe ILT |
275 | /* Get the general dynamic information. */ |
276 | if (obj_aout_dynamic_info (abfd) == NULL) | |
0ee75d02 ILT |
277 | { |
278 | if (! sunos_read_dynamic_info (abfd)) | |
396aaeb2 | 279 | return false; |
4a81b561 | 280 | } |
c93595dd | 281 | |
0ee75d02 | 282 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
283 | if (! info->valid) |
284 | { | |
285 | bfd_set_error (bfd_error_no_symbols); | |
396aaeb2 | 286 | return false; |
e85e8bfe | 287 | } |
10be52bf | 288 | |
e85e8bfe | 289 | /* Get the dynamic nlist structures. */ |
0ee75d02 ILT |
290 | if (info->dynsym == (struct external_nlist *) NULL) |
291 | { | |
292 | info->dynsym = ((struct external_nlist *) | |
293 | bfd_alloc (abfd, | |
294 | (info->dynsym_count | |
295 | * EXTERNAL_NLIST_SIZE))); | |
e85e8bfe | 296 | if (info->dynsym == NULL && info->dynsym_count != 0) |
a9713b91 | 297 | return false; |
0ee75d02 ILT |
298 | if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0 |
299 | || (bfd_read ((PTR) info->dynsym, info->dynsym_count, | |
300 | EXTERNAL_NLIST_SIZE, abfd) | |
e85e8bfe ILT |
301 | != info->dynsym_count * EXTERNAL_NLIST_SIZE)) |
302 | { | |
303 | if (info->dynsym != NULL) | |
304 | { | |
305 | bfd_release (abfd, info->dynsym); | |
306 | info->dynsym = NULL; | |
307 | } | |
396aaeb2 | 308 | return false; |
e85e8bfe ILT |
309 | } |
310 | } | |
311 | ||
312 | /* Get the dynamic strings. */ | |
313 | if (info->dynstr == (char *) NULL) | |
314 | { | |
315 | info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size); | |
316 | if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0) | |
a9713b91 | 317 | return false; |
e85e8bfe | 318 | if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0 |
0ee75d02 ILT |
319 | || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size, |
320 | abfd) | |
321 | != info->dyninfo.ld_symb_size)) | |
e85e8bfe ILT |
322 | { |
323 | if (info->dynstr != NULL) | |
324 | { | |
325 | bfd_release (abfd, info->dynstr); | |
326 | info->dynstr = NULL; | |
327 | } | |
396aaeb2 | 328 | return false; |
e85e8bfe | 329 | } |
0ee75d02 | 330 | } |
1a602d6e | 331 | |
396aaeb2 ILT |
332 | return true; |
333 | } | |
334 | ||
335 | /* Read in the dynamic symbols. */ | |
336 | ||
337 | static long | |
338 | sunos_canonicalize_dynamic_symtab (abfd, storage) | |
339 | bfd *abfd; | |
340 | asymbol **storage; | |
341 | { | |
342 | struct sunos_dynamic_info *info; | |
343 | unsigned long i; | |
344 | ||
345 | if (! sunos_slurp_dynamic_symtab (abfd)) | |
346 | return -1; | |
347 | ||
348 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
349 | ||
0ee75d02 ILT |
350 | #ifdef CHECK_DYNAMIC_HASH |
351 | /* Check my understanding of the dynamic hash table by making sure | |
352 | that each symbol can be located in the hash table. */ | |
353 | { | |
354 | bfd_size_type table_size; | |
355 | bfd_byte *table; | |
356 | bfd_size_type i; | |
357 | ||
358 | if (info->dyninfo.ld_buckets > info->dynsym_count) | |
359 | abort (); | |
360 | table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash; | |
58142f10 | 361 | table = (bfd_byte *) bfd_malloc (table_size); |
e85e8bfe | 362 | if (table == NULL && table_size != 0) |
d7fb4531 | 363 | abort (); |
0ee75d02 ILT |
364 | if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0 |
365 | || bfd_read ((PTR) table, 1, table_size, abfd) != table_size) | |
366 | abort (); | |
367 | for (i = 0; i < info->dynsym_count; i++) | |
9846338e | 368 | { |
0ee75d02 ILT |
369 | unsigned char *name; |
370 | unsigned long hash; | |
371 | ||
372 | name = ((unsigned char *) info->dynstr | |
373 | + GET_WORD (abfd, info->dynsym[i].e_strx)); | |
374 | hash = 0; | |
375 | while (*name != '\0') | |
376 | hash = (hash << 1) + *name++; | |
377 | hash &= 0x7fffffff; | |
378 | hash %= info->dyninfo.ld_buckets; | |
e85e8bfe | 379 | while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i) |
0ee75d02 | 380 | { |
e85e8bfe ILT |
381 | hash = GET_WORD (abfd, |
382 | table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
383 | if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE) | |
0ee75d02 ILT |
384 | abort (); |
385 | } | |
9846338e | 386 | } |
d7fb4531 | 387 | free (table); |
4a81b561 | 388 | } |
0ee75d02 | 389 | #endif /* CHECK_DYNAMIC_HASH */ |
4a81b561 | 390 | |
e85e8bfe ILT |
391 | /* Get the asymbol structures corresponding to the dynamic nlist |
392 | structures. */ | |
393 | if (info->canonical_dynsym == (aout_symbol_type *) NULL) | |
394 | { | |
395 | info->canonical_dynsym = ((aout_symbol_type *) | |
396 | bfd_alloc (abfd, | |
397 | (info->dynsym_count | |
398 | * sizeof (aout_symbol_type)))); | |
399 | if (info->canonical_dynsym == NULL && info->dynsym_count != 0) | |
a9713b91 | 400 | return -1; |
e85e8bfe ILT |
401 | |
402 | if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym, | |
403 | info->dynsym, info->dynsym_count, | |
404 | info->dynstr, | |
405 | info->dyninfo.ld_symb_size, | |
406 | true)) | |
407 | { | |
408 | if (info->canonical_dynsym != NULL) | |
409 | { | |
410 | bfd_release (abfd, info->canonical_dynsym); | |
411 | info->canonical_dynsym = NULL; | |
412 | } | |
413 | return -1; | |
414 | } | |
415 | } | |
416 | ||
417 | /* Return pointers to the dynamic asymbol structures. */ | |
418 | for (i = 0; i < info->dynsym_count; i++) | |
419 | *storage++ = (asymbol *) (info->canonical_dynsym + i); | |
420 | *storage = NULL; | |
421 | ||
0ee75d02 | 422 | return info->dynsym_count; |
4a81b561 | 423 | } |
4a81b561 | 424 | |
e85e8bfe ILT |
425 | /* Return the amount of memory required for the dynamic relocs. */ |
426 | ||
427 | static long | |
428 | sunos_get_dynamic_reloc_upper_bound (abfd) | |
429 | bfd *abfd; | |
430 | { | |
431 | struct sunos_dynamic_info *info; | |
432 | ||
433 | if (! sunos_read_dynamic_info (abfd)) | |
434 | return -1; | |
435 | ||
436 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
437 | if (! info->valid) | |
438 | { | |
439 | bfd_set_error (bfd_error_no_symbols); | |
440 | return -1; | |
441 | } | |
442 | ||
443 | return (info->dynrel_count + 1) * sizeof (arelent *); | |
444 | } | |
445 | ||
446 | /* Read in the dynamic relocs. */ | |
4a81b561 | 447 | |
e85e8bfe ILT |
448 | static long |
449 | sunos_canonicalize_dynamic_reloc (abfd, storage, syms) | |
4a81b561 | 450 | bfd *abfd; |
e85e8bfe ILT |
451 | arelent **storage; |
452 | asymbol **syms; | |
4a81b561 | 453 | { |
0ee75d02 | 454 | struct sunos_dynamic_info *info; |
ae115e51 | 455 | unsigned long i; |
4a81b561 | 456 | |
e85e8bfe | 457 | /* Get the general dynamic information. */ |
0ee75d02 ILT |
458 | if (obj_aout_dynamic_info (abfd) == (PTR) NULL) |
459 | { | |
460 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 461 | return -1; |
0ee75d02 | 462 | } |
4a81b561 | 463 | |
0ee75d02 | 464 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
465 | if (! info->valid) |
466 | { | |
467 | bfd_set_error (bfd_error_no_symbols); | |
468 | return -1; | |
469 | } | |
4a81b561 | 470 | |
e85e8bfe | 471 | /* Get the dynamic reloc information. */ |
9783e04a | 472 | if (info->dynrel == NULL) |
0ee75d02 ILT |
473 | { |
474 | info->dynrel = (PTR) bfd_alloc (abfd, | |
475 | (info->dynrel_count | |
476 | * obj_reloc_entry_size (abfd))); | |
e85e8bfe | 477 | if (info->dynrel == NULL && info->dynrel_count != 0) |
a9713b91 | 478 | return -1; |
0ee75d02 ILT |
479 | if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0 |
480 | || (bfd_read ((PTR) info->dynrel, info->dynrel_count, | |
481 | obj_reloc_entry_size (abfd), abfd) | |
482 | != info->dynrel_count * obj_reloc_entry_size (abfd))) | |
e85e8bfe ILT |
483 | { |
484 | if (info->dynrel != NULL) | |
485 | { | |
486 | bfd_release (abfd, info->dynrel); | |
487 | info->dynrel = NULL; | |
488 | } | |
489 | return -1; | |
490 | } | |
491 | } | |
492 | ||
493 | /* Get the arelent structures corresponding to the dynamic reloc | |
494 | information. */ | |
495 | if (info->canonical_dynrel == (arelent *) NULL) | |
496 | { | |
497 | arelent *to; | |
498 | ||
499 | info->canonical_dynrel = ((arelent *) | |
500 | bfd_alloc (abfd, | |
501 | (info->dynrel_count | |
502 | * sizeof (arelent)))); | |
503 | if (info->canonical_dynrel == NULL && info->dynrel_count != 0) | |
a9713b91 | 504 | return -1; |
e85e8bfe ILT |
505 | |
506 | to = info->canonical_dynrel; | |
507 | ||
508 | if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) | |
509 | { | |
510 | register struct reloc_ext_external *p; | |
511 | struct reloc_ext_external *pend; | |
512 | ||
513 | p = (struct reloc_ext_external *) info->dynrel; | |
514 | pend = p + info->dynrel_count; | |
515 | for (; p < pend; p++, to++) | |
943fbd5b KR |
516 | NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms, |
517 | info->dynsym_count); | |
e85e8bfe ILT |
518 | } |
519 | else | |
520 | { | |
521 | register struct reloc_std_external *p; | |
522 | struct reloc_std_external *pend; | |
523 | ||
524 | p = (struct reloc_std_external *) info->dynrel; | |
525 | pend = p + info->dynrel_count; | |
526 | for (; p < pend; p++, to++) | |
943fbd5b KR |
527 | NAME(aout,swap_std_reloc_in) (abfd, p, to, syms, |
528 | info->dynsym_count); | |
e85e8bfe | 529 | } |
0ee75d02 | 530 | } |
4a81b561 | 531 | |
e85e8bfe ILT |
532 | /* Return pointers to the dynamic arelent structures. */ |
533 | for (i = 0; i < info->dynrel_count; i++) | |
534 | *storage++ = info->canonical_dynrel + i; | |
535 | *storage = NULL; | |
4a81b561 | 536 | |
0ee75d02 | 537 | return info->dynrel_count; |
4a81b561 | 538 | } |
e85e8bfe ILT |
539 | \f |
540 | /* Code to handle linking of SunOS shared libraries. */ | |
541 | ||
542 | /* A SPARC procedure linkage table entry is 12 bytes. The first entry | |
543 | in the table is a jump which is filled in by the runtime linker. | |
544 | The remaining entries are branches back to the first entry, | |
545 | followed by an index into the relocation table encoded to look like | |
546 | a sethi of %g0. */ | |
547 | ||
548 | #define SPARC_PLT_ENTRY_SIZE (12) | |
549 | ||
04dc16b7 | 550 | static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] = |
e85e8bfe ILT |
551 | { |
552 | /* sethi %hi(0),%g1; address filled in by runtime linker. */ | |
553 | 0x3, 0, 0, 0, | |
554 | /* jmp %g1; offset filled in by runtime linker. */ | |
555 | 0x81, 0xc0, 0x60, 0, | |
556 | /* nop */ | |
557 | 0x1, 0, 0, 0 | |
558 | }; | |
559 | ||
560 | /* save %sp, -96, %sp */ | |
561 | #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0 | |
562 | /* call; address filled in later. */ | |
563 | #define SPARC_PLT_ENTRY_WORD1 0x40000000 | |
564 | /* sethi; reloc index filled in later. */ | |
565 | #define SPARC_PLT_ENTRY_WORD2 0x01000000 | |
566 | ||
535c89f0 ILT |
567 | /* This sequence is used when for the jump table entry to a defined |
568 | symbol in a complete executable. It is used when linking PIC | |
569 | compiled code which is not being put into a shared library. */ | |
570 | /* sethi <address to be filled in later>, %g1 */ | |
571 | #define SPARC_PLT_PIC_WORD0 0x03000000 | |
572 | /* jmp %g1 + <address to be filled in later> */ | |
573 | #define SPARC_PLT_PIC_WORD1 0x81c06000 | |
574 | /* nop */ | |
575 | #define SPARC_PLT_PIC_WORD2 0x01000000 | |
576 | ||
e85e8bfe ILT |
577 | /* An m68k procedure linkage table entry is 8 bytes. The first entry |
578 | in the table is a jump which is filled in the by the runtime | |
579 | linker. The remaining entries are branches back to the first | |
580 | entry, followed by a two byte index into the relocation table. */ | |
581 | ||
582 | #define M68K_PLT_ENTRY_SIZE (8) | |
583 | ||
04dc16b7 | 584 | static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] = |
e85e8bfe ILT |
585 | { |
586 | /* jmps @# */ | |
587 | 0x4e, 0xf9, | |
588 | /* Filled in by runtime linker with a magic address. */ | |
589 | 0, 0, 0, 0, | |
590 | /* Not used? */ | |
591 | 0, 0 | |
592 | }; | |
593 | ||
594 | /* bsrl */ | |
595 | #define M68K_PLT_ENTRY_WORD0 (0x61ff) | |
596 | /* Remaining words filled in later. */ | |
597 | ||
598 | /* An entry in the SunOS linker hash table. */ | |
599 | ||
600 | struct sunos_link_hash_entry | |
601 | { | |
602 | struct aout_link_hash_entry root; | |
603 | ||
604 | /* If this is a dynamic symbol, this is its index into the dynamic | |
605 | symbol table. This is initialized to -1. As the linker looks at | |
606 | the input files, it changes this to -2 if it will be added to the | |
607 | dynamic symbol table. After all the input files have been seen, | |
608 | the linker will know whether to build a dynamic symbol table; if | |
609 | it does build one, this becomes the index into the table. */ | |
610 | long dynindx; | |
611 | ||
612 | /* If this is a dynamic symbol, this is the index of the name in the | |
613 | dynamic symbol string table. */ | |
614 | long dynstr_index; | |
615 | ||
535c89f0 ILT |
616 | /* The offset into the global offset table used for this symbol. If |
617 | the symbol does not require a GOT entry, this is 0. */ | |
618 | bfd_vma got_offset; | |
619 | ||
620 | /* The offset into the procedure linkage table used for this symbol. | |
621 | If the symbol does not require a PLT entry, this is 0. */ | |
622 | bfd_vma plt_offset; | |
623 | ||
e85e8bfe ILT |
624 | /* Some linker flags. */ |
625 | unsigned char flags; | |
626 | /* Symbol is referenced by a regular object. */ | |
627 | #define SUNOS_REF_REGULAR 01 | |
628 | /* Symbol is defined by a regular object. */ | |
629 | #define SUNOS_DEF_REGULAR 02 | |
630 | /* Symbol is referenced by a dynamic object. */ | |
fe6fc35f | 631 | #define SUNOS_REF_DYNAMIC 04 |
e85e8bfe | 632 | /* Symbol is defined by a dynamic object. */ |
fe6fc35f ILT |
633 | #define SUNOS_DEF_DYNAMIC 010 |
634 | /* Symbol is a constructor symbol in a regular object. */ | |
635 | #define SUNOS_CONSTRUCTOR 020 | |
e85e8bfe ILT |
636 | }; |
637 | ||
638 | /* The SunOS linker hash table. */ | |
639 | ||
640 | struct sunos_link_hash_table | |
641 | { | |
642 | struct aout_link_hash_table root; | |
643 | ||
535c89f0 | 644 | /* The object which holds the dynamic sections. */ |
e85e8bfe ILT |
645 | bfd *dynobj; |
646 | ||
535c89f0 ILT |
647 | /* Whether we have created the dynamic sections. */ |
648 | boolean dynamic_sections_created; | |
649 | ||
650 | /* Whether we need the dynamic sections. */ | |
651 | boolean dynamic_sections_needed; | |
652 | ||
e85e8bfe ILT |
653 | /* The number of dynamic symbols. */ |
654 | size_t dynsymcount; | |
655 | ||
656 | /* The number of buckets in the hash table. */ | |
657 | size_t bucketcount; | |
11fa6636 ILT |
658 | |
659 | /* The list of dynamic objects needed by dynamic objects included in | |
660 | the link. */ | |
661 | struct bfd_link_needed_list *needed; | |
e85e8bfe ILT |
662 | }; |
663 | ||
664 | /* Routine to create an entry in an SunOS link hash table. */ | |
665 | ||
666 | static struct bfd_hash_entry * | |
667 | sunos_link_hash_newfunc (entry, table, string) | |
668 | struct bfd_hash_entry *entry; | |
669 | struct bfd_hash_table *table; | |
670 | const char *string; | |
671 | { | |
672 | struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry; | |
673 | ||
674 | /* Allocate the structure if it has not already been allocated by a | |
675 | subclass. */ | |
676 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
677 | ret = ((struct sunos_link_hash_entry *) | |
678 | bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry))); | |
679 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
a9713b91 | 680 | return (struct bfd_hash_entry *) ret; |
e85e8bfe ILT |
681 | |
682 | /* Call the allocation method of the superclass. */ | |
683 | ret = ((struct sunos_link_hash_entry *) | |
684 | NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret, | |
685 | table, string)); | |
686 | if (ret != NULL) | |
687 | { | |
688 | /* Set local fields. */ | |
689 | ret->dynindx = -1; | |
690 | ret->dynstr_index = -1; | |
535c89f0 ILT |
691 | ret->got_offset = 0; |
692 | ret->plt_offset = 0; | |
e85e8bfe ILT |
693 | ret->flags = 0; |
694 | } | |
695 | ||
696 | return (struct bfd_hash_entry *) ret; | |
697 | } | |
698 | ||
699 | /* Create a SunOS link hash table. */ | |
700 | ||
701 | static struct bfd_link_hash_table * | |
702 | sunos_link_hash_table_create (abfd) | |
703 | bfd *abfd; | |
704 | { | |
705 | struct sunos_link_hash_table *ret; | |
706 | ||
707 | ret = ((struct sunos_link_hash_table *) | |
535c89f0 | 708 | bfd_alloc (abfd, sizeof (struct sunos_link_hash_table))); |
e85e8bfe | 709 | if (ret == (struct sunos_link_hash_table *) NULL) |
a9713b91 | 710 | return (struct bfd_link_hash_table *) NULL; |
e85e8bfe ILT |
711 | if (! NAME(aout,link_hash_table_init) (&ret->root, abfd, |
712 | sunos_link_hash_newfunc)) | |
713 | { | |
11fa6636 | 714 | bfd_release (abfd, ret); |
e85e8bfe ILT |
715 | return (struct bfd_link_hash_table *) NULL; |
716 | } | |
717 | ||
718 | ret->dynobj = NULL; | |
535c89f0 ILT |
719 | ret->dynamic_sections_created = false; |
720 | ret->dynamic_sections_needed = false; | |
e85e8bfe ILT |
721 | ret->dynsymcount = 0; |
722 | ret->bucketcount = 0; | |
11fa6636 | 723 | ret->needed = NULL; |
e85e8bfe ILT |
724 | |
725 | return &ret->root.root; | |
726 | } | |
727 | ||
728 | /* Look up an entry in an SunOS link hash table. */ | |
729 | ||
730 | #define sunos_link_hash_lookup(table, string, create, copy, follow) \ | |
731 | ((struct sunos_link_hash_entry *) \ | |
732 | aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\ | |
733 | (follow))) | |
734 | ||
735 | /* Traverse a SunOS link hash table. */ | |
736 | ||
737 | #define sunos_link_hash_traverse(table, func, info) \ | |
738 | (aout_link_hash_traverse \ | |
739 | (&(table)->root, \ | |
740 | (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \ | |
741 | (info))) | |
742 | ||
743 | /* Get the SunOS link hash table from the info structure. This is | |
744 | just a cast. */ | |
745 | ||
746 | #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash)) | |
747 | ||
748 | static boolean sunos_scan_dynamic_symbol | |
749 | PARAMS ((struct sunos_link_hash_entry *, PTR)); | |
750 | ||
535c89f0 ILT |
751 | /* Create the dynamic sections needed if we are linking against a |
752 | dynamic object, or if we are linking PIC compiled code. ABFD is a | |
753 | bfd we can attach the dynamic sections to. The linker script will | |
754 | look for these special sections names and put them in the right | |
755 | place in the output file. See include/aout/sun4.h for more details | |
756 | of the dynamic linking information. */ | |
e85e8bfe ILT |
757 | |
758 | static boolean | |
535c89f0 | 759 | sunos_create_dynamic_sections (abfd, info, needed) |
e85e8bfe ILT |
760 | bfd *abfd; |
761 | struct bfd_link_info *info; | |
535c89f0 | 762 | boolean needed; |
e85e8bfe ILT |
763 | { |
764 | asection *s; | |
765 | ||
535c89f0 | 766 | if (! sunos_hash_table (info)->dynamic_sections_created) |
e85e8bfe ILT |
767 | { |
768 | flagword flags; | |
e85e8bfe ILT |
769 | |
770 | sunos_hash_table (info)->dynobj = abfd; | |
535c89f0 | 771 | |
e85e8bfe ILT |
772 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; |
773 | ||
774 | /* The .dynamic section holds the basic dynamic information: the | |
775 | sun4_dynamic structure, the dynamic debugger information, and | |
776 | the sun4_dynamic_link structure. */ | |
777 | s = bfd_make_section (abfd, ".dynamic"); | |
778 | if (s == NULL | |
779 | || ! bfd_set_section_flags (abfd, s, flags) | |
780 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
e85e8bfe ILT |
781 | return false; |
782 | ||
535c89f0 ILT |
783 | /* The .got section holds the global offset table. The address |
784 | is put in the ld_got field. */ | |
e85e8bfe ILT |
785 | s = bfd_make_section (abfd, ".got"); |
786 | if (s == NULL | |
787 | || ! bfd_set_section_flags (abfd, s, flags) | |
788 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
789 | return false; | |
e85e8bfe ILT |
790 | |
791 | /* The .plt section holds the procedure linkage table. The | |
792 | address is put in the ld_plt field. */ | |
793 | s = bfd_make_section (abfd, ".plt"); | |
794 | if (s == NULL | |
795 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
796 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
797 | return false; | |
798 | ||
799 | /* The .dynrel section holds the dynamic relocs. The address is | |
800 | put in the ld_rel field. */ | |
801 | s = bfd_make_section (abfd, ".dynrel"); | |
802 | if (s == NULL | |
803 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
804 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
805 | return false; | |
806 | ||
807 | /* The .hash section holds the dynamic hash table. The address | |
808 | is put in the ld_hash field. */ | |
809 | s = bfd_make_section (abfd, ".hash"); | |
810 | if (s == NULL | |
811 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
812 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
813 | return false; | |
814 | ||
815 | /* The .dynsym section holds the dynamic symbols. The address | |
816 | is put in the ld_stab field. */ | |
817 | s = bfd_make_section (abfd, ".dynsym"); | |
818 | if (s == NULL | |
819 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
820 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
821 | return false; | |
822 | ||
823 | /* The .dynstr section holds the dynamic symbol string table. | |
824 | The address is put in the ld_symbols field. */ | |
825 | s = bfd_make_section (abfd, ".dynstr"); | |
826 | if (s == NULL | |
827 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
828 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
829 | return false; | |
535c89f0 ILT |
830 | |
831 | sunos_hash_table (info)->dynamic_sections_created = true; | |
832 | } | |
833 | ||
834 | if (needed && ! sunos_hash_table (info)->dynamic_sections_needed) | |
835 | { | |
836 | bfd *dynobj; | |
837 | ||
838 | dynobj = sunos_hash_table (info)->dynobj; | |
839 | ||
840 | s = bfd_get_section_by_name (dynobj, ".got"); | |
841 | s->_raw_size = BYTES_IN_WORD; | |
842 | ||
843 | sunos_hash_table (info)->dynamic_sections_needed = true; | |
844 | } | |
845 | ||
846 | return true; | |
847 | } | |
848 | ||
849 | /* Add dynamic symbols during a link. This is called by the a.out | |
850 | backend linker when it encounters an object with the DYNAMIC flag | |
851 | set. */ | |
852 | ||
853 | static boolean | |
396aaeb2 | 854 | sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp) |
535c89f0 ILT |
855 | bfd *abfd; |
856 | struct bfd_link_info *info; | |
396aaeb2 ILT |
857 | struct external_nlist **symsp; |
858 | bfd_size_type *sym_countp; | |
859 | char **stringsp; | |
535c89f0 ILT |
860 | { |
861 | asection *s; | |
862 | bfd *dynobj; | |
396aaeb2 | 863 | struct sunos_dynamic_info *dinfo; |
11fa6636 | 864 | unsigned long need; |
535c89f0 ILT |
865 | |
866 | /* We do not want to include the sections in a dynamic object in the | |
867 | output file. We hack by simply clobbering the list of sections | |
868 | in the BFD. This could be handled more cleanly by, say, a new | |
869 | section flag; the existing SEC_NEVER_LOAD flag is not the one we | |
870 | want, because that one still implies that the section takes up | |
871 | space in the output file. */ | |
872 | abfd->sections = NULL; | |
873 | ||
874 | /* The native linker seems to just ignore dynamic objects when -r is | |
875 | used. */ | |
876 | if (info->relocateable) | |
877 | return true; | |
878 | ||
879 | /* There's no hope of using a dynamic object which does not exactly | |
880 | match the format of the output file. */ | |
881 | if (info->hash->creator != abfd->xvec) | |
882 | { | |
883 | bfd_set_error (bfd_error_invalid_operation); | |
884 | return false; | |
885 | } | |
886 | ||
887 | /* Make sure we have all the required information. */ | |
888 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
889 | return false; | |
890 | ||
891 | /* Make sure we have a .need and a .rules sections. These are only | |
892 | needed if there really is a dynamic object in the link, so they | |
893 | are not added by sunos_create_dynamic_sections. */ | |
894 | dynobj = sunos_hash_table (info)->dynobj; | |
895 | if (bfd_get_section_by_name (dynobj, ".need") == NULL) | |
896 | { | |
897 | /* The .need section holds the list of names of shared objets | |
898 | which must be included at runtime. The address of this | |
899 | section is put in the ld_need field. */ | |
900 | s = bfd_make_section (dynobj, ".need"); | |
901 | if (s == NULL | |
902 | || ! bfd_set_section_flags (dynobj, s, | |
903 | (SEC_ALLOC | |
904 | | SEC_LOAD | |
905 | | SEC_HAS_CONTENTS | |
906 | | SEC_IN_MEMORY | |
907 | | SEC_READONLY)) | |
908 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
909 | return false; | |
910 | } | |
911 | ||
912 | if (bfd_get_section_by_name (dynobj, ".rules") == NULL) | |
913 | { | |
914 | /* The .rules section holds the path to search for shared | |
915 | objects. The address of this section is put in the ld_rules | |
916 | field. */ | |
917 | s = bfd_make_section (dynobj, ".rules"); | |
918 | if (s == NULL | |
919 | || ! bfd_set_section_flags (dynobj, s, | |
920 | (SEC_ALLOC | |
921 | | SEC_LOAD | |
922 | | SEC_HAS_CONTENTS | |
923 | | SEC_IN_MEMORY | |
924 | | SEC_READONLY)) | |
925 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
926 | return false; | |
e85e8bfe ILT |
927 | } |
928 | ||
396aaeb2 ILT |
929 | /* Pick up the dynamic symbols and return them to the caller. */ |
930 | if (! sunos_slurp_dynamic_symtab (abfd)) | |
931 | return false; | |
932 | ||
933 | dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
934 | *symsp = dinfo->dynsym; | |
935 | *sym_countp = dinfo->dynsym_count; | |
936 | *stringsp = dinfo->dynstr; | |
937 | ||
11fa6636 ILT |
938 | /* Record information about any other objects needed by this one. */ |
939 | need = dinfo->dyninfo.ld_need; | |
940 | while (need != 0) | |
941 | { | |
942 | bfd_byte buf[16]; | |
943 | unsigned long name, flags; | |
1edd3a7b | 944 | unsigned short major_vno, minor_vno; |
11fa6636 ILT |
945 | struct bfd_link_needed_list *needed, **pp; |
946 | bfd_byte b; | |
947 | ||
948 | if (bfd_seek (abfd, need, SEEK_SET) != 0 | |
949 | || bfd_read (buf, 1, 16, abfd) != 16) | |
950 | return false; | |
951 | ||
952 | /* For the format of an ld_need entry, see aout/sun4.h. We | |
953 | should probably define structs for this manipulation. */ | |
954 | ||
955 | name = bfd_get_32 (abfd, buf); | |
956 | flags = bfd_get_32 (abfd, buf + 4); | |
1edd3a7b ILT |
957 | major_vno = bfd_get_16 (abfd, buf + 8); |
958 | minor_vno = bfd_get_16 (abfd, buf + 10); | |
11fa6636 ILT |
959 | need = bfd_get_32 (abfd, buf + 12); |
960 | ||
1edd3a7b | 961 | needed = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)); |
11fa6636 | 962 | if (needed == NULL) |
a9713b91 | 963 | return false; |
11fa6636 ILT |
964 | needed->by = abfd; |
965 | ||
966 | /* We return the name as [-l]name[.maj][.min]. */ | |
967 | ||
968 | if ((flags & 0x80000000) != 0) | |
969 | bfd_alloc_grow (abfd, "-l", 2); | |
970 | if (bfd_seek (abfd, name, SEEK_SET) != 0) | |
971 | return false; | |
972 | do | |
973 | { | |
974 | if (bfd_read (&b, 1, 1, abfd) != 1) | |
975 | return false; | |
976 | bfd_alloc_grow (abfd, &b, 1); | |
977 | } | |
978 | while (b != '\0'); | |
1edd3a7b | 979 | if (major_vno != 0) |
11fa6636 ILT |
980 | { |
981 | char verbuf[30]; | |
982 | ||
1edd3a7b | 983 | sprintf (verbuf, ".%d", major_vno); |
11fa6636 | 984 | bfd_alloc_grow (abfd, verbuf, strlen (verbuf)); |
1edd3a7b | 985 | if (minor_vno != 0) |
11fa6636 | 986 | { |
1edd3a7b | 987 | sprintf (verbuf, ".%d", minor_vno); |
11fa6636 ILT |
988 | bfd_alloc_grow (abfd, verbuf, strlen (verbuf)); |
989 | } | |
990 | } | |
991 | needed->name = bfd_alloc_finish (abfd); | |
992 | if (needed->name == NULL) | |
a9713b91 | 993 | return false; |
11fa6636 ILT |
994 | |
995 | needed->next = NULL; | |
996 | ||
997 | for (pp = &sunos_hash_table (info)->needed; | |
998 | *pp != NULL; | |
999 | pp = &(*pp)->next) | |
1000 | ; | |
1001 | *pp = needed; | |
1002 | } | |
1003 | ||
e85e8bfe ILT |
1004 | return true; |
1005 | } | |
1006 | ||
1007 | /* Function to add a single symbol to the linker hash table. This is | |
1008 | a wrapper around _bfd_generic_link_add_one_symbol which handles the | |
1009 | tweaking needed for dynamic linking support. */ | |
1010 | ||
1011 | static boolean | |
1012 | sunos_add_one_symbol (info, abfd, name, flags, section, value, string, | |
1013 | copy, collect, hashp) | |
1014 | struct bfd_link_info *info; | |
1015 | bfd *abfd; | |
1016 | const char *name; | |
1017 | flagword flags; | |
1018 | asection *section; | |
1019 | bfd_vma value; | |
1020 | const char *string; | |
1021 | boolean copy; | |
1022 | boolean collect; | |
1023 | struct bfd_link_hash_entry **hashp; | |
1024 | { | |
1025 | struct sunos_link_hash_entry *h; | |
1026 | int new_flag; | |
1027 | ||
535c89f0 ILT |
1028 | if (! sunos_hash_table (info)->dynamic_sections_created) |
1029 | { | |
1030 | /* We must create the dynamic sections while reading the input | |
1031 | files, even though at this point we don't know if any of the | |
1032 | sections will be needed. This will ensure that the dynamic | |
1033 | sections are mapped to the right output section. It does no | |
1034 | harm to create these sections if they are not needed. */ | |
11fa6636 | 1035 | if (! sunos_create_dynamic_sections (abfd, info, false)) |
535c89f0 ILT |
1036 | return false; |
1037 | } | |
1038 | ||
d1f74cd2 DE |
1039 | if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0 |
1040 | || ! bfd_is_und_section (section)) | |
1041 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy, | |
1042 | false); | |
1043 | else | |
1044 | h = ((struct sunos_link_hash_entry *) | |
1045 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false)); | |
e85e8bfe ILT |
1046 | if (h == NULL) |
1047 | return false; | |
1048 | ||
1049 | if (hashp != NULL) | |
1050 | *hashp = (struct bfd_link_hash_entry *) h; | |
1051 | ||
ec88c42e ILT |
1052 | /* Treat a common symbol in a dynamic object as defined in the .bss |
1053 | section of the dynamic object. We don't want to allocate space | |
1054 | for it in our process image. */ | |
e85e8bfe | 1055 | if ((abfd->flags & DYNAMIC) != 0 |
788d9436 | 1056 | && bfd_is_com_section (section)) |
ec88c42e | 1057 | section = obj_bsssec (abfd); |
e85e8bfe | 1058 | |
788d9436 | 1059 | if (! bfd_is_und_section (section) |
e85e8bfe | 1060 | && h->root.root.type != bfd_link_hash_new |
6c97aedf ILT |
1061 | && h->root.root.type != bfd_link_hash_undefined |
1062 | && h->root.root.type != bfd_link_hash_defweak) | |
e85e8bfe ILT |
1063 | { |
1064 | /* We are defining the symbol, and it is already defined. This | |
1065 | is a potential multiple definition error. */ | |
1066 | if ((abfd->flags & DYNAMIC) != 0) | |
1067 | { | |
1068 | /* The definition we are adding is from a dynamic object. | |
1069 | We do not want this new definition to override the | |
1070 | existing definition, so we pretend it is just a | |
1071 | reference. */ | |
788d9436 | 1072 | section = bfd_und_section_ptr; |
e85e8bfe | 1073 | } |
9db59230 ILT |
1074 | else if (h->root.root.type == bfd_link_hash_defined |
1075 | && h->root.root.u.def.section->owner != NULL | |
1076 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
e85e8bfe ILT |
1077 | { |
1078 | /* The existing definition is from a dynamic object. We | |
1079 | want to override it with the definition we just found. | |
1080 | Clobber the existing definition. */ | |
1081 | h->root.root.type = bfd_link_hash_new; | |
1082 | } | |
9db59230 ILT |
1083 | else if (h->root.root.type == bfd_link_hash_common |
1084 | && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0) | |
1085 | { | |
1086 | /* The existing definition is from a dynamic object. We | |
1087 | want to override it with the definition we just found. | |
1088 | Clobber the existing definition. We can't set it to new, | |
1089 | because it is on the undefined list. */ | |
1090 | h->root.root.type = bfd_link_hash_undefined; | |
1091 | h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner; | |
1092 | } | |
e85e8bfe ILT |
1093 | } |
1094 | ||
fe6fc35f ILT |
1095 | if ((abfd->flags & DYNAMIC) != 0 |
1096 | && abfd->xvec == info->hash->creator | |
1097 | && (h->flags & SUNOS_CONSTRUCTOR) != 0) | |
1098 | { | |
1099 | /* The existing symbol is a constructor symbol, and this symbol | |
1100 | is from a dynamic object. A constructor symbol is actually a | |
1101 | definition, although the type will be bfd_link_hash_undefined | |
1102 | at this point. We want to ignore the definition from the | |
1103 | dynamic object. */ | |
1104 | section = bfd_und_section_ptr; | |
1105 | } | |
1106 | else if ((flags & BSF_CONSTRUCTOR) != 0 | |
1107 | && (abfd->flags & DYNAMIC) == 0 | |
1108 | && h->root.root.type == bfd_link_hash_defined | |
1109 | && h->root.root.u.def.section->owner != NULL | |
1110 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1111 | { | |
1112 | /* The existing symbol is defined by a dynamic object, and this | |
1113 | is a constructor symbol. As above, we want to force the use | |
1114 | of the constructor symbol from the regular object. */ | |
1115 | h->root.root.type = bfd_link_hash_new; | |
1116 | } | |
1117 | ||
e85e8bfe ILT |
1118 | /* Do the usual procedure for adding a symbol. */ |
1119 | if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, | |
1120 | value, string, copy, collect, | |
1121 | hashp)) | |
1122 | return false; | |
1123 | ||
04dc16b7 | 1124 | if (abfd->xvec == info->hash->creator) |
e85e8bfe | 1125 | { |
04dc16b7 ILT |
1126 | /* Set a flag in the hash table entry indicating the type of |
1127 | reference or definition we just found. Keep a count of the | |
1128 | number of dynamic symbols we find. A dynamic symbol is one | |
1129 | which is referenced or defined by both a regular object and a | |
1130 | shared object. */ | |
1131 | if ((abfd->flags & DYNAMIC) == 0) | |
1132 | { | |
1133 | if (bfd_is_und_section (section)) | |
1134 | new_flag = SUNOS_REF_REGULAR; | |
1135 | else | |
1136 | new_flag = SUNOS_DEF_REGULAR; | |
1137 | } | |
e85e8bfe | 1138 | else |
04dc16b7 ILT |
1139 | { |
1140 | if (bfd_is_und_section (section)) | |
1141 | new_flag = SUNOS_REF_DYNAMIC; | |
1142 | else | |
1143 | new_flag = SUNOS_DEF_DYNAMIC; | |
1144 | } | |
1145 | h->flags |= new_flag; | |
e85e8bfe | 1146 | |
04dc16b7 ILT |
1147 | if (h->dynindx == -1 |
1148 | && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1149 | { | |
1150 | ++sunos_hash_table (info)->dynsymcount; | |
1151 | h->dynindx = -2; | |
1152 | } | |
fe6fc35f ILT |
1153 | |
1154 | if ((flags & BSF_CONSTRUCTOR) != 0 | |
1155 | && (abfd->flags & DYNAMIC) == 0) | |
1156 | h->flags |= SUNOS_CONSTRUCTOR; | |
e85e8bfe ILT |
1157 | } |
1158 | ||
1159 | return true; | |
1160 | } | |
1161 | ||
11fa6636 ILT |
1162 | /* Return the list of objects needed by BFD. */ |
1163 | ||
1164 | /*ARGSUSED*/ | |
1165 | struct bfd_link_needed_list * | |
1166 | bfd_sunos_get_needed_list (abfd, info) | |
1167 | bfd *abfd; | |
1168 | struct bfd_link_info *info; | |
1169 | { | |
fa63d1ef | 1170 | if (info->hash->creator != &MY(vec)) |
b2193cc5 | 1171 | return NULL; |
11fa6636 ILT |
1172 | return sunos_hash_table (info)->needed; |
1173 | } | |
1174 | ||
e85e8bfe ILT |
1175 | /* Record an assignment made to a symbol by a linker script. We need |
1176 | this in case some dynamic object refers to this symbol. */ | |
1177 | ||
1178 | boolean | |
1179 | bfd_sunos_record_link_assignment (output_bfd, info, name) | |
1180 | bfd *output_bfd; | |
1181 | struct bfd_link_info *info; | |
1182 | const char *name; | |
1183 | { | |
1184 | struct sunos_link_hash_entry *h; | |
1185 | ||
1edd3a7b ILT |
1186 | if (output_bfd->xvec != &MY(vec)) |
1187 | return true; | |
1188 | ||
e85e8bfe ILT |
1189 | /* This is called after we have examined all the input objects. If |
1190 | the symbol does not exist, it merely means that no object refers | |
1191 | to it, and we can just ignore it at this point. */ | |
1192 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, | |
1193 | false, false, false); | |
1194 | if (h == NULL) | |
1195 | return true; | |
1196 | ||
9db59230 ILT |
1197 | /* In a shared library, the __DYNAMIC symbol does not appear in the |
1198 | dynamic symbol table. */ | |
1199 | if (! info->shared || strcmp (name, "__DYNAMIC") != 0) | |
e85e8bfe | 1200 | { |
9db59230 ILT |
1201 | h->flags |= SUNOS_DEF_REGULAR; |
1202 | ||
1203 | if (h->dynindx == -1) | |
1204 | { | |
1205 | ++sunos_hash_table (info)->dynsymcount; | |
1206 | h->dynindx = -2; | |
1207 | } | |
e85e8bfe ILT |
1208 | } |
1209 | ||
1210 | return true; | |
1211 | } | |
1212 | ||
1213 | /* Set up the sizes and contents of the dynamic sections created in | |
1214 | sunos_add_dynamic_symbols. This is called by the SunOS linker | |
1215 | emulation before_allocation routine. We must set the sizes of the | |
1216 | sections before the linker sets the addresses of the various | |
1217 | sections. This unfortunately requires reading all the relocs so | |
1218 | that we can work out which ones need to become dynamic relocs. If | |
1219 | info->keep_memory is true, we keep the relocs in memory; otherwise, | |
1220 | we discard them, and will read them again later. */ | |
1221 | ||
1222 | boolean | |
1223 | bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr, | |
1224 | srulesptr) | |
1225 | bfd *output_bfd; | |
1226 | struct bfd_link_info *info; | |
1227 | asection **sdynptr; | |
1228 | asection **sneedptr; | |
1229 | asection **srulesptr; | |
1230 | { | |
1231 | bfd *dynobj; | |
1232 | size_t dynsymcount; | |
535c89f0 | 1233 | struct sunos_link_hash_entry *h; |
e85e8bfe ILT |
1234 | asection *s; |
1235 | size_t bucketcount; | |
1236 | size_t hashalloc; | |
1237 | size_t i; | |
1238 | bfd *sub; | |
1239 | ||
1240 | *sdynptr = NULL; | |
1241 | *sneedptr = NULL; | |
1242 | *srulesptr = NULL; | |
1243 | ||
1edd3a7b ILT |
1244 | if (output_bfd->xvec != &MY(vec)) |
1245 | return true; | |
1246 | ||
535c89f0 ILT |
1247 | /* Look through all the input BFD's and read their relocs. It would |
1248 | be better if we didn't have to do this, but there is no other way | |
1249 | to determine the number of dynamic relocs we need, and, more | |
1250 | importantly, there is no other way to know which symbols should | |
1251 | get an entry in the procedure linkage table. */ | |
1252 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
1253 | { | |
1edd3a7b ILT |
1254 | if ((sub->flags & DYNAMIC) == 0 |
1255 | && sub->xvec == output_bfd->xvec) | |
535c89f0 ILT |
1256 | { |
1257 | if (! sunos_scan_relocs (info, sub, obj_textsec (sub), | |
1258 | exec_hdr (sub)->a_trsize) | |
1259 | || ! sunos_scan_relocs (info, sub, obj_datasec (sub), | |
1260 | exec_hdr (sub)->a_drsize)) | |
1261 | return false; | |
1262 | } | |
1263 | } | |
1264 | ||
e85e8bfe ILT |
1265 | dynobj = sunos_hash_table (info)->dynobj; |
1266 | dynsymcount = sunos_hash_table (info)->dynsymcount; | |
1267 | ||
535c89f0 ILT |
1268 | /* If there were no dynamic objects in the link, and we don't need |
1269 | to build a global offset table, there is nothing to do here. */ | |
1270 | if (! sunos_hash_table (info)->dynamic_sections_needed) | |
e85e8bfe ILT |
1271 | return true; |
1272 | ||
535c89f0 ILT |
1273 | /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */ |
1274 | h = sunos_link_hash_lookup (sunos_hash_table (info), | |
1275 | "__GLOBAL_OFFSET_TABLE_", false, false, false); | |
1276 | if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1277 | { | |
1278 | h->flags |= SUNOS_DEF_REGULAR; | |
1279 | if (h->dynindx == -1) | |
1280 | { | |
1281 | ++sunos_hash_table (info)->dynsymcount; | |
1282 | h->dynindx = -2; | |
1283 | } | |
1284 | h->root.root.type = bfd_link_hash_defined; | |
1285 | h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got"); | |
1286 | h->root.root.u.def.value = 0; | |
1287 | } | |
1288 | ||
e85e8bfe ILT |
1289 | /* The .dynamic section is always the same size. */ |
1290 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1291 | BFD_ASSERT (s != NULL); | |
1292 | s->_raw_size = (sizeof (struct external_sun4_dynamic) | |
1293 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE | |
1294 | + sizeof (struct external_sun4_dynamic_link)); | |
1295 | ||
1296 | /* Set the size of the .dynsym and .hash sections. We counted the | |
1297 | number of dynamic symbols as we read the input files. We will | |
1298 | build the dynamic symbol table (.dynsym) and the hash table | |
1299 | (.hash) when we build the final symbol table, because until then | |
1300 | we do not know the correct value to give the symbols. We build | |
1301 | the dynamic symbol string table (.dynstr) in a traversal of the | |
1302 | symbol table using sunos_scan_dynamic_symbol. */ | |
1303 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1304 | BFD_ASSERT (s != NULL); | |
1305 | s->_raw_size = dynsymcount * sizeof (struct external_nlist); | |
1306 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1307 | if (s->contents == NULL && s->_raw_size != 0) | |
a9713b91 | 1308 | return false; |
e85e8bfe ILT |
1309 | |
1310 | /* The number of buckets is just the number of symbols divided by | |
535c89f0 | 1311 | four. To compute the final size of the hash table, we must |
e85e8bfe ILT |
1312 | actually compute the hash table. Normally we need exactly as |
1313 | many entries in the hash table as there are dynamic symbols, but | |
1314 | if some of the buckets are not used we will need additional | |
535c89f0 | 1315 | entries. In the worst case, every symbol will hash to the same |
e85e8bfe ILT |
1316 | bucket, and we will need BUCKETCOUNT - 1 extra entries. */ |
1317 | if (dynsymcount >= 4) | |
1318 | bucketcount = dynsymcount / 4; | |
1319 | else if (dynsymcount > 0) | |
1320 | bucketcount = dynsymcount; | |
1321 | else | |
1322 | bucketcount = 1; | |
1323 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1324 | BFD_ASSERT (s != NULL); | |
1325 | hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE; | |
a1ade84e | 1326 | s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc); |
e85e8bfe | 1327 | if (s->contents == NULL && dynsymcount > 0) |
a9713b91 | 1328 | return false; |
e85e8bfe ILT |
1329 | memset (s->contents, 0, hashalloc); |
1330 | for (i = 0; i < bucketcount; i++) | |
1331 | PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE); | |
1332 | s->_raw_size = bucketcount * HASH_ENTRY_SIZE; | |
1333 | ||
1334 | sunos_hash_table (info)->bucketcount = bucketcount; | |
1335 | ||
e85e8bfe ILT |
1336 | /* Scan all the symbols, place them in the dynamic symbol table, and |
1337 | build the dynamic hash table. We reuse dynsymcount as a counter | |
1338 | for the number of symbols we have added so far. */ | |
1339 | sunos_hash_table (info)->dynsymcount = 0; | |
1340 | sunos_link_hash_traverse (sunos_hash_table (info), | |
1341 | sunos_scan_dynamic_symbol, | |
1342 | (PTR) info); | |
1343 | BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount); | |
1344 | ||
1345 | /* The SunOS native linker seems to align the total size of the | |
1346 | symbol strings to a multiple of 8. I don't know if this is | |
1347 | important, but it can't hurt much. */ | |
1348 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1349 | BFD_ASSERT (s != NULL); | |
1350 | if ((s->_raw_size & 7) != 0) | |
1351 | { | |
1352 | bfd_size_type add; | |
1353 | bfd_byte *contents; | |
1354 | ||
1355 | add = 8 - (s->_raw_size & 7); | |
58142f10 ILT |
1356 | contents = (bfd_byte *) bfd_realloc (s->contents, |
1357 | (size_t) (s->_raw_size + add)); | |
e85e8bfe | 1358 | if (contents == NULL) |
58142f10 | 1359 | return false; |
535c89f0 | 1360 | memset (contents + s->_raw_size, 0, (size_t) add); |
e85e8bfe ILT |
1361 | s->contents = contents; |
1362 | s->_raw_size += add; | |
1363 | } | |
1364 | ||
1365 | /* Now that we have worked out the sizes of the procedure linkage | |
1366 | table and the dynamic relocs, allocate storage for them. */ | |
1367 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
1368 | BFD_ASSERT (s != NULL); | |
1369 | if (s->_raw_size != 0) | |
1370 | { | |
a1ade84e | 1371 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe | 1372 | if (s->contents == NULL) |
a9713b91 | 1373 | return false; |
e85e8bfe ILT |
1374 | |
1375 | /* Fill in the first entry in the table. */ | |
1376 | switch (bfd_get_arch (dynobj)) | |
1377 | { | |
1378 | case bfd_arch_sparc: | |
1379 | memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE); | |
1380 | break; | |
1381 | ||
1382 | case bfd_arch_m68k: | |
1383 | memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE); | |
1384 | break; | |
1385 | ||
1386 | default: | |
1387 | abort (); | |
1388 | } | |
1389 | } | |
1390 | ||
1391 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1392 | if (s->_raw_size != 0) | |
1393 | { | |
a1ade84e | 1394 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe | 1395 | if (s->contents == NULL) |
a9713b91 | 1396 | return false; |
e85e8bfe ILT |
1397 | } |
1398 | /* We use the reloc_count field to keep track of how many of the | |
1399 | relocs we have output so far. */ | |
1400 | s->reloc_count = 0; | |
1401 | ||
1402 | /* Make space for the global offset table. */ | |
1403 | s = bfd_get_section_by_name (dynobj, ".got"); | |
a1ade84e | 1404 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe | 1405 | if (s->contents == NULL) |
a9713b91 | 1406 | return false; |
e85e8bfe ILT |
1407 | |
1408 | *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1409 | *sneedptr = bfd_get_section_by_name (dynobj, ".need"); | |
1410 | *srulesptr = bfd_get_section_by_name (dynobj, ".rules"); | |
1411 | ||
1412 | return true; | |
1413 | } | |
1414 | ||
1415 | /* Scan the relocs for an input section. */ | |
1416 | ||
1417 | static boolean | |
1418 | sunos_scan_relocs (info, abfd, sec, rel_size) | |
1419 | struct bfd_link_info *info; | |
1420 | bfd *abfd; | |
1421 | asection *sec; | |
1422 | bfd_size_type rel_size; | |
1423 | { | |
1424 | PTR relocs; | |
1425 | PTR free_relocs = NULL; | |
1426 | ||
1427 | if (rel_size == 0) | |
1428 | return true; | |
1429 | ||
1430 | if (! info->keep_memory) | |
58142f10 | 1431 | relocs = free_relocs = bfd_malloc ((size_t) rel_size); |
e85e8bfe ILT |
1432 | else |
1433 | { | |
535c89f0 ILT |
1434 | struct aout_section_data_struct *n; |
1435 | ||
1436 | n = ((struct aout_section_data_struct *) | |
1437 | bfd_alloc (abfd, sizeof (struct aout_section_data_struct))); | |
1438 | if (n == NULL) | |
e85e8bfe ILT |
1439 | relocs = NULL; |
1440 | else | |
535c89f0 ILT |
1441 | { |
1442 | set_aout_section_data (sec, n); | |
58142f10 | 1443 | relocs = bfd_malloc ((size_t) rel_size); |
535c89f0 ILT |
1444 | aout_section_data (sec)->relocs = relocs; |
1445 | } | |
e85e8bfe ILT |
1446 | } |
1447 | if (relocs == NULL) | |
58142f10 | 1448 | return false; |
e85e8bfe ILT |
1449 | |
1450 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1451 | || bfd_read (relocs, 1, rel_size, abfd) != rel_size) | |
1452 | goto error_return; | |
1453 | ||
1454 | if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE) | |
1455 | { | |
1456 | if (! sunos_scan_std_relocs (info, abfd, sec, | |
1457 | (struct reloc_std_external *) relocs, | |
1458 | rel_size)) | |
1459 | goto error_return; | |
1460 | } | |
1461 | else | |
1462 | { | |
1463 | if (! sunos_scan_ext_relocs (info, abfd, sec, | |
1464 | (struct reloc_ext_external *) relocs, | |
1465 | rel_size)) | |
1466 | goto error_return; | |
1467 | } | |
1468 | ||
1469 | if (free_relocs != NULL) | |
1470 | free (free_relocs); | |
1471 | ||
1472 | return true; | |
1473 | ||
1474 | error_return: | |
1475 | if (free_relocs != NULL) | |
1476 | free (free_relocs); | |
1477 | return false; | |
1478 | } | |
1479 | ||
1480 | /* Scan the relocs for an input section using standard relocs. We | |
1481 | need to figure out what to do for each reloc against a dynamic | |
1482 | symbol. If the symbol is in the .text section, an entry is made in | |
1483 | the procedure linkage table. Note that this will do the wrong | |
1484 | thing if the symbol is actually data; I don't think the Sun 3 | |
1485 | native linker handles this case correctly either. If the symbol is | |
1486 | not in the .text section, we must preserve the reloc as a dynamic | |
1487 | reloc. FIXME: We should also handle the PIC relocs here by | |
1488 | building global offset table entries. */ | |
1489 | ||
1490 | static boolean | |
1491 | sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size) | |
1492 | struct bfd_link_info *info; | |
1493 | bfd *abfd; | |
1494 | asection *sec; | |
1495 | const struct reloc_std_external *relocs; | |
1496 | bfd_size_type rel_size; | |
1497 | { | |
1498 | bfd *dynobj; | |
535c89f0 ILT |
1499 | asection *splt = NULL; |
1500 | asection *srel = NULL; | |
e85e8bfe ILT |
1501 | struct sunos_link_hash_entry **sym_hashes; |
1502 | const struct reloc_std_external *rel, *relend; | |
1503 | ||
1504 | /* We only know how to handle m68k plt entries. */ | |
1505 | if (bfd_get_arch (abfd) != bfd_arch_m68k) | |
1506 | { | |
1507 | bfd_set_error (bfd_error_invalid_target); | |
1508 | return false; | |
1509 | } | |
1510 | ||
535c89f0 ILT |
1511 | dynobj = NULL; |
1512 | ||
e85e8bfe ILT |
1513 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); |
1514 | ||
1515 | relend = relocs + rel_size / RELOC_STD_SIZE; | |
1516 | for (rel = relocs; rel < relend; rel++) | |
1517 | { | |
1518 | int r_index; | |
1519 | struct sunos_link_hash_entry *h; | |
1520 | ||
1521 | /* We only want relocs against external symbols. */ | |
0a4ffa2d | 1522 | if (bfd_header_big_endian (abfd)) |
e85e8bfe ILT |
1523 | { |
1524 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0) | |
1525 | continue; | |
1526 | } | |
1527 | else | |
1528 | { | |
1529 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0) | |
1530 | continue; | |
1531 | } | |
1532 | ||
1533 | /* Get the symbol index. */ | |
0a4ffa2d | 1534 | if (bfd_header_big_endian (abfd)) |
535c89f0 ILT |
1535 | r_index = ((rel->r_index[0] << 16) |
1536 | | (rel->r_index[1] << 8) | |
1537 | | rel->r_index[2]); | |
e85e8bfe | 1538 | else |
535c89f0 ILT |
1539 | r_index = ((rel->r_index[2] << 16) |
1540 | | (rel->r_index[1] << 8) | |
1541 | | rel->r_index[0]); | |
e85e8bfe ILT |
1542 | |
1543 | /* Get the hash table entry. */ | |
1544 | h = sym_hashes[r_index]; | |
1545 | if (h == NULL) | |
1546 | { | |
1547 | /* This should not normally happen, but it will in any case | |
1548 | be caught in the relocation phase. */ | |
1549 | continue; | |
1550 | } | |
1551 | ||
1552 | /* At this point common symbols have already been allocated, so | |
1553 | we don't have to worry about them. We need to consider that | |
1554 | we may have already seen this symbol and marked it undefined; | |
6c97aedf | 1555 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC |
e85e8bfe ILT |
1556 | will be zero. */ |
1557 | if (h->root.root.type != bfd_link_hash_defined | |
6c97aedf | 1558 | && h->root.root.type != bfd_link_hash_defweak |
e85e8bfe ILT |
1559 | && h->root.root.type != bfd_link_hash_undefined) |
1560 | continue; | |
1561 | ||
1562 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1563 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1564 | continue; | |
1565 | ||
535c89f0 ILT |
1566 | if (dynobj == NULL) |
1567 | { | |
1568 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1569 | return false; | |
1570 | dynobj = sunos_hash_table (info)->dynobj; | |
1571 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1572 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1573 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1574 | } | |
1575 | ||
e85e8bfe | 1576 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); |
b088e4b2 ILT |
1577 | BFD_ASSERT (h->plt_offset != 0 |
1578 | || ((h->root.root.type == bfd_link_hash_defined | |
1579 | || h->root.root.type == bfd_link_hash_defweak) | |
1580 | ? (h->root.root.u.def.section->owner->flags | |
1581 | & DYNAMIC) != 0 | |
1582 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
e85e8bfe ILT |
1583 | |
1584 | /* This reloc is against a symbol defined only by a dynamic | |
1585 | object. */ | |
1586 | ||
1587 | if (h->root.root.type == bfd_link_hash_undefined) | |
1588 | { | |
1589 | /* Presumably this symbol was marked as being undefined by | |
1590 | an earlier reloc. */ | |
1591 | srel->_raw_size += RELOC_STD_SIZE; | |
1592 | } | |
1593 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1594 | { | |
1595 | bfd *sub; | |
1596 | ||
1597 | /* This reloc is not in the .text section. It must be | |
1598 | copied into the dynamic relocs. We mark the symbol as | |
1599 | being undefined. */ | |
1600 | srel->_raw_size += RELOC_STD_SIZE; | |
1601 | sub = h->root.root.u.def.section->owner; | |
1602 | h->root.root.type = bfd_link_hash_undefined; | |
1603 | h->root.root.u.undef.abfd = sub; | |
1604 | } | |
1605 | else | |
1606 | { | |
1607 | /* This symbol is in the .text section. We must give it an | |
1608 | entry in the procedure linkage table, if we have not | |
1609 | already done so. We change the definition of the symbol | |
1610 | to the .plt section; this will cause relocs against it to | |
1611 | be handled correctly. */ | |
535c89f0 | 1612 | if (h->plt_offset == 0) |
e85e8bfe ILT |
1613 | { |
1614 | if (splt->_raw_size == 0) | |
1615 | splt->_raw_size = M68K_PLT_ENTRY_SIZE; | |
535c89f0 ILT |
1616 | h->plt_offset = splt->_raw_size; |
1617 | ||
1618 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1619 | { | |
1620 | h->root.root.u.def.section = splt; | |
1621 | h->root.root.u.def.value = splt->_raw_size; | |
1622 | } | |
1623 | ||
e85e8bfe ILT |
1624 | splt->_raw_size += M68K_PLT_ENTRY_SIZE; |
1625 | ||
535c89f0 ILT |
1626 | /* We may also need a dynamic reloc entry. */ |
1627 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1628 | srel->_raw_size += RELOC_STD_SIZE; | |
e85e8bfe ILT |
1629 | } |
1630 | } | |
1631 | } | |
1632 | ||
1633 | return true; | |
1634 | } | |
1635 | ||
1636 | /* Scan the relocs for an input section using extended relocs. We | |
1637 | need to figure out what to do for each reloc against a dynamic | |
1638 | symbol. If the reloc is a WDISP30, and the symbol is in the .text | |
1639 | section, an entry is made in the procedure linkage table. | |
535c89f0 | 1640 | Otherwise, we must preserve the reloc as a dynamic reloc. */ |
e85e8bfe ILT |
1641 | |
1642 | static boolean | |
1643 | sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size) | |
1644 | struct bfd_link_info *info; | |
1645 | bfd *abfd; | |
1646 | asection *sec; | |
1647 | const struct reloc_ext_external *relocs; | |
1648 | bfd_size_type rel_size; | |
1649 | { | |
1650 | bfd *dynobj; | |
e85e8bfe ILT |
1651 | struct sunos_link_hash_entry **sym_hashes; |
1652 | const struct reloc_ext_external *rel, *relend; | |
535c89f0 ILT |
1653 | asection *splt = NULL; |
1654 | asection *sgot = NULL; | |
1655 | asection *srel = NULL; | |
e85e8bfe ILT |
1656 | |
1657 | /* We only know how to handle SPARC plt entries. */ | |
1658 | if (bfd_get_arch (abfd) != bfd_arch_sparc) | |
1659 | { | |
1660 | bfd_set_error (bfd_error_invalid_target); | |
1661 | return false; | |
1662 | } | |
1663 | ||
535c89f0 ILT |
1664 | dynobj = NULL; |
1665 | ||
e85e8bfe ILT |
1666 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); |
1667 | ||
1668 | relend = relocs + rel_size / RELOC_EXT_SIZE; | |
1669 | for (rel = relocs; rel < relend; rel++) | |
1670 | { | |
ae115e51 | 1671 | unsigned int r_index; |
535c89f0 | 1672 | int r_extern; |
e85e8bfe | 1673 | int r_type; |
535c89f0 | 1674 | struct sunos_link_hash_entry *h = NULL; |
e85e8bfe | 1675 | |
535c89f0 | 1676 | /* Swap in the reloc information. */ |
0a4ffa2d | 1677 | if (bfd_header_big_endian (abfd)) |
e85e8bfe | 1678 | { |
535c89f0 ILT |
1679 | r_index = ((rel->r_index[0] << 16) |
1680 | | (rel->r_index[1] << 8) | |
1681 | | rel->r_index[2]); | |
1682 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); | |
1683 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
1684 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
e85e8bfe ILT |
1685 | } |
1686 | else | |
1687 | { | |
535c89f0 ILT |
1688 | r_index = ((rel->r_index[2] << 16) |
1689 | | (rel->r_index[1] << 8) | |
1690 | | rel->r_index[0]); | |
1691 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); | |
1692 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
1693 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
e85e8bfe ILT |
1694 | } |
1695 | ||
535c89f0 | 1696 | if (r_extern) |
e85e8bfe | 1697 | { |
535c89f0 ILT |
1698 | h = sym_hashes[r_index]; |
1699 | if (h == NULL) | |
1700 | { | |
1701 | /* This should not normally happen, but it will in any | |
1702 | case be caught in the relocation phase. */ | |
1703 | continue; | |
1704 | } | |
e85e8bfe | 1705 | } |
e85e8bfe | 1706 | |
535c89f0 ILT |
1707 | /* If this is a base relative reloc, we need to make an entry in |
1708 | the .got section. */ | |
1709 | if (r_type == RELOC_BASE10 | |
1710 | || r_type == RELOC_BASE13 | |
1711 | || r_type == RELOC_BASE22) | |
e85e8bfe | 1712 | { |
535c89f0 ILT |
1713 | if (dynobj == NULL) |
1714 | { | |
1715 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1716 | return false; | |
1717 | dynobj = sunos_hash_table (info)->dynobj; | |
1718 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1719 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1720 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1721 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1722 | } | |
1723 | ||
1724 | if (r_extern) | |
1725 | { | |
1726 | if (h->got_offset != 0) | |
1727 | continue; | |
1728 | ||
1729 | h->got_offset = sgot->_raw_size; | |
1730 | } | |
1731 | else | |
1732 | { | |
baabeb74 ILT |
1733 | if (r_index >= bfd_get_symcount (abfd)) |
1734 | { | |
1735 | /* This is abnormal, but should be caught in the | |
1736 | relocation phase. */ | |
1737 | continue; | |
1738 | } | |
1739 | ||
535c89f0 ILT |
1740 | if (adata (abfd).local_got_offsets == NULL) |
1741 | { | |
1742 | adata (abfd).local_got_offsets = | |
1743 | (bfd_vma *) bfd_zalloc (abfd, | |
1744 | (bfd_get_symcount (abfd) | |
1745 | * sizeof (bfd_vma))); | |
1746 | if (adata (abfd).local_got_offsets == NULL) | |
a9713b91 | 1747 | return false; |
535c89f0 ILT |
1748 | } |
1749 | ||
1750 | if (adata (abfd).local_got_offsets[r_index] != 0) | |
1751 | continue; | |
1752 | ||
1753 | adata (abfd).local_got_offsets[r_index] = sgot->_raw_size; | |
1754 | } | |
1755 | ||
1756 | sgot->_raw_size += BYTES_IN_WORD; | |
1757 | ||
1758 | /* If we are making a shared library, or if the symbol is | |
1759 | defined by a dynamic object, we will need a dynamic reloc | |
1760 | entry. */ | |
1761 | if (info->shared | |
1762 | || (h != NULL | |
1763 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1764 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
1765 | srel->_raw_size += RELOC_EXT_SIZE; | |
1766 | ||
e85e8bfe ILT |
1767 | continue; |
1768 | } | |
1769 | ||
535c89f0 ILT |
1770 | /* Otherwise, we are only interested in relocs against symbols |
1771 | defined in dynamic objects but not in regular objects. We | |
1772 | only need to consider relocs against external symbols. */ | |
1773 | if (! r_extern) | |
9db59230 ILT |
1774 | { |
1775 | /* But, if we are creating a shared library, we need to | |
1776 | generate an absolute reloc. */ | |
1777 | if (info->shared) | |
1778 | { | |
9db59230 ILT |
1779 | if (dynobj == NULL) |
1780 | { | |
1781 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1782 | return false; | |
1783 | dynobj = sunos_hash_table (info)->dynobj; | |
1784 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1785 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1786 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1787 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1788 | } | |
1789 | ||
1790 | srel->_raw_size += RELOC_EXT_SIZE; | |
1791 | } | |
1792 | ||
1793 | continue; | |
1794 | } | |
535c89f0 | 1795 | |
e85e8bfe ILT |
1796 | /* At this point common symbols have already been allocated, so |
1797 | we don't have to worry about them. We need to consider that | |
1798 | we may have already seen this symbol and marked it undefined; | |
535c89f0 | 1799 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC |
e85e8bfe ILT |
1800 | will be zero. */ |
1801 | if (h->root.root.type != bfd_link_hash_defined | |
6c97aedf | 1802 | && h->root.root.type != bfd_link_hash_defweak |
e85e8bfe ILT |
1803 | && h->root.root.type != bfd_link_hash_undefined) |
1804 | continue; | |
1805 | ||
535c89f0 | 1806 | if (r_type != RELOC_JMP_TBL |
9db59230 | 1807 | && ! info->shared |
535c89f0 ILT |
1808 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 |
1809 | || (h->flags & SUNOS_DEF_REGULAR) != 0)) | |
e85e8bfe ILT |
1810 | continue; |
1811 | ||
d1f74cd2 DE |
1812 | if (r_type == RELOC_JMP_TBL |
1813 | && ! info->shared | |
1814 | && (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1815 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
1816 | { | |
1817 | /* This symbol is apparently undefined. Don't do anything | |
1818 | here; just let the relocation routine report an undefined | |
1819 | symbol. */ | |
1820 | continue; | |
1821 | } | |
1822 | ||
535c89f0 ILT |
1823 | if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0) |
1824 | continue; | |
1825 | ||
1826 | if (dynobj == NULL) | |
1827 | { | |
1828 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1829 | return false; | |
1830 | dynobj = sunos_hash_table (info)->dynobj; | |
1831 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1832 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1833 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1834 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1835 | } | |
1836 | ||
1837 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
0a4ffa2d | 1838 | || info->shared |
535c89f0 ILT |
1839 | || (h->flags & SUNOS_REF_REGULAR) != 0); |
1840 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
9db59230 | 1841 | || info->shared |
535c89f0 ILT |
1842 | || h->plt_offset != 0 |
1843 | || ((h->root.root.type == bfd_link_hash_defined | |
1844 | || h->root.root.type == bfd_link_hash_defweak) | |
1845 | ? (h->root.root.u.def.section->owner->flags | |
1846 | & DYNAMIC) != 0 | |
1847 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
e85e8bfe ILT |
1848 | |
1849 | /* This reloc is against a symbol defined only by a dynamic | |
535c89f0 | 1850 | object, or it is a jump table reloc from PIC compiled code. */ |
e85e8bfe | 1851 | |
9db59230 ILT |
1852 | if (r_type != RELOC_JMP_TBL |
1853 | && h->root.root.type == bfd_link_hash_undefined) | |
e85e8bfe ILT |
1854 | { |
1855 | /* Presumably this symbol was marked as being undefined by | |
1856 | an earlier reloc. */ | |
1857 | srel->_raw_size += RELOC_EXT_SIZE; | |
1858 | } | |
9db59230 ILT |
1859 | else if (r_type != RELOC_JMP_TBL |
1860 | && (h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
e85e8bfe ILT |
1861 | { |
1862 | bfd *sub; | |
1863 | ||
1864 | /* This reloc is not in the .text section. It must be | |
1865 | copied into the dynamic relocs. We mark the symbol as | |
1866 | being undefined. */ | |
1867 | srel->_raw_size += RELOC_EXT_SIZE; | |
9db59230 ILT |
1868 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) |
1869 | { | |
1870 | sub = h->root.root.u.def.section->owner; | |
1871 | h->root.root.type = bfd_link_hash_undefined; | |
1872 | h->root.root.u.undef.abfd = sub; | |
1873 | } | |
e85e8bfe ILT |
1874 | } |
1875 | else | |
1876 | { | |
1877 | /* This symbol is in the .text section. We must give it an | |
1878 | entry in the procedure linkage table, if we have not | |
1879 | already done so. We change the definition of the symbol | |
1880 | to the .plt section; this will cause relocs against it to | |
1881 | be handled correctly. */ | |
535c89f0 | 1882 | if (h->plt_offset == 0) |
e85e8bfe ILT |
1883 | { |
1884 | if (splt->_raw_size == 0) | |
1885 | splt->_raw_size = SPARC_PLT_ENTRY_SIZE; | |
535c89f0 ILT |
1886 | h->plt_offset = splt->_raw_size; |
1887 | ||
1888 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1889 | { | |
9db59230 ILT |
1890 | if (h->root.root.type == bfd_link_hash_undefined) |
1891 | h->root.root.type = bfd_link_hash_defined; | |
535c89f0 ILT |
1892 | h->root.root.u.def.section = splt; |
1893 | h->root.root.u.def.value = splt->_raw_size; | |
1894 | } | |
1895 | ||
e85e8bfe ILT |
1896 | splt->_raw_size += SPARC_PLT_ENTRY_SIZE; |
1897 | ||
535c89f0 ILT |
1898 | /* We will also need a dynamic reloc entry, unless this |
1899 | is a JMP_TBL reloc produced by linking PIC compiled | |
1900 | code, and we are not making a shared library. */ | |
1901 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
1902 | srel->_raw_size += RELOC_EXT_SIZE; | |
e85e8bfe | 1903 | } |
9db59230 ILT |
1904 | |
1905 | /* If we are creating a shared library, we need to copy over | |
1906 | any reloc other than a jump table reloc. */ | |
1907 | if (info->shared && r_type != RELOC_JMP_TBL) | |
1908 | srel->_raw_size += RELOC_EXT_SIZE; | |
e85e8bfe ILT |
1909 | } |
1910 | } | |
1911 | ||
1912 | return true; | |
1913 | } | |
1914 | ||
1915 | /* Build the hash table of dynamic symbols, and to mark as written all | |
1916 | symbols from dynamic objects which we do not plan to write out. */ | |
1917 | ||
1918 | static boolean | |
1919 | sunos_scan_dynamic_symbol (h, data) | |
1920 | struct sunos_link_hash_entry *h; | |
1921 | PTR data; | |
1922 | { | |
1923 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
1924 | ||
1925 | /* Set the written flag for symbols we do not want to write out as | |
1926 | part of the regular symbol table. This is all symbols which are | |
1927 | not defined in a regular object file. For some reason symbols | |
1928 | which are referenced by a regular object and defined by a dynamic | |
fa63d1ef ILT |
1929 | object do not seem to show up in the regular symbol table. It is |
1930 | possible for a symbol to have only SUNOS_REF_REGULAR set here, it | |
1931 | is an undefined symbol which was turned into a common symbol | |
1932 | because it was found in an archive object which was not included | |
1933 | in the link. */ | |
9db59230 | 1934 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 |
fa63d1ef | 1935 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 |
9db59230 | 1936 | && strcmp (h->root.root.root.string, "__DYNAMIC") != 0) |
4298e311 | 1937 | h->root.written = true; |
e85e8bfe ILT |
1938 | |
1939 | /* If this symbol is defined by a dynamic object and referenced by a | |
1940 | regular object, see whether we gave it a reasonable value while | |
1941 | scanning the relocs. */ | |
1942 | ||
1943 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
1944 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1945 | && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1946 | { | |
6c97aedf ILT |
1947 | if ((h->root.root.type == bfd_link_hash_defined |
1948 | || h->root.root.type == bfd_link_hash_defweak) | |
e85e8bfe ILT |
1949 | && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) |
1950 | && h->root.root.u.def.section->output_section == NULL) | |
1951 | { | |
1952 | bfd *sub; | |
1953 | ||
1954 | /* This symbol is currently defined in a dynamic section | |
1955 | which is not being put into the output file. This | |
1956 | implies that there is no reloc against the symbol. I'm | |
1957 | not sure why this case would ever occur. In any case, we | |
1958 | change the symbol to be undefined. */ | |
1959 | sub = h->root.root.u.def.section->owner; | |
1960 | h->root.root.type = bfd_link_hash_undefined; | |
1961 | h->root.root.u.undef.abfd = sub; | |
1962 | } | |
1963 | } | |
1964 | ||
1965 | /* If this symbol is defined or referenced by a regular file, add it | |
1966 | to the dynamic symbols. */ | |
1967 | if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1968 | { | |
1969 | asection *s; | |
1970 | size_t len; | |
1971 | bfd_byte *contents; | |
1972 | unsigned char *name; | |
1973 | unsigned long hash; | |
1974 | bfd *dynobj; | |
1975 | ||
1976 | BFD_ASSERT (h->dynindx == -2); | |
1977 | ||
535c89f0 ILT |
1978 | dynobj = sunos_hash_table (info)->dynobj; |
1979 | ||
e85e8bfe ILT |
1980 | h->dynindx = sunos_hash_table (info)->dynsymcount; |
1981 | ++sunos_hash_table (info)->dynsymcount; | |
1982 | ||
1983 | len = strlen (h->root.root.root.string); | |
1984 | ||
1985 | /* We don't bother to construct a BFD hash table for the strings | |
1986 | which are the names of the dynamic symbols. Using a hash | |
1987 | table for the regular symbols is beneficial, because the | |
1988 | regular symbols includes the debugging symbols, which have | |
1989 | long names and are often duplicated in several object files. | |
1990 | There are no debugging symbols in the dynamic symbols. */ | |
535c89f0 | 1991 | s = bfd_get_section_by_name (dynobj, ".dynstr"); |
e85e8bfe | 1992 | BFD_ASSERT (s != NULL); |
58142f10 ILT |
1993 | contents = (bfd_byte *) bfd_realloc (s->contents, |
1994 | s->_raw_size + len + 1); | |
e85e8bfe | 1995 | if (contents == NULL) |
58142f10 | 1996 | return false; |
e85e8bfe ILT |
1997 | s->contents = contents; |
1998 | ||
1999 | h->dynstr_index = s->_raw_size; | |
2000 | strcpy (contents + s->_raw_size, h->root.root.root.string); | |
2001 | s->_raw_size += len + 1; | |
2002 | ||
2003 | /* Add it to the dynamic hash table. */ | |
2004 | name = (unsigned char *) h->root.root.root.string; | |
2005 | hash = 0; | |
2006 | while (*name != '\0') | |
2007 | hash = (hash << 1) + *name++; | |
2008 | hash &= 0x7fffffff; | |
2009 | hash %= sunos_hash_table (info)->bucketcount; | |
2010 | ||
e85e8bfe ILT |
2011 | s = bfd_get_section_by_name (dynobj, ".hash"); |
2012 | BFD_ASSERT (s != NULL); | |
2013 | ||
2014 | if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1) | |
2015 | PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE); | |
2016 | else | |
2017 | { | |
2018 | bfd_vma next; | |
2019 | ||
2020 | next = GET_WORD (dynobj, | |
2021 | (s->contents | |
2022 | + hash * HASH_ENTRY_SIZE | |
2023 | + BYTES_IN_WORD)); | |
2024 | PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE, | |
2025 | s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
2026 | PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size); | |
2027 | PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD); | |
2028 | s->_raw_size += HASH_ENTRY_SIZE; | |
2029 | } | |
2030 | } | |
2031 | ||
2032 | return true; | |
2033 | } | |
2034 | ||
2035 | /* Link a dynamic object. We actually don't have anything to do at | |
2036 | this point. This entry point exists to prevent the regular linker | |
2037 | code from doing anything with the object. */ | |
2038 | ||
2039 | /*ARGSUSED*/ | |
2040 | static boolean | |
2041 | sunos_link_dynamic_object (info, abfd) | |
2042 | struct bfd_link_info *info; | |
2043 | bfd *abfd; | |
2044 | { | |
2045 | return true; | |
2046 | } | |
2047 | ||
e85e8bfe ILT |
2048 | /* Write out a dynamic symbol. This is called by the final traversal |
2049 | over the symbol table. */ | |
2050 | ||
2051 | static boolean | |
2052 | sunos_write_dynamic_symbol (output_bfd, info, harg) | |
2053 | bfd *output_bfd; | |
2054 | struct bfd_link_info *info; | |
2055 | struct aout_link_hash_entry *harg; | |
2056 | { | |
2057 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
e85e8bfe ILT |
2058 | int type; |
2059 | bfd_vma val; | |
2060 | asection *s; | |
2061 | struct external_nlist *outsym; | |
2062 | ||
2063 | if (h->dynindx < 0) | |
2064 | return true; | |
2065 | ||
e85e8bfe ILT |
2066 | switch (h->root.root.type) |
2067 | { | |
2068 | default: | |
2069 | case bfd_link_hash_new: | |
2070 | abort (); | |
2071 | /* Avoid variable not initialized warnings. */ | |
2072 | return true; | |
2073 | case bfd_link_hash_undefined: | |
2074 | type = N_UNDF | N_EXT; | |
2075 | val = 0; | |
2076 | break; | |
2077 | case bfd_link_hash_defined: | |
6c97aedf | 2078 | case bfd_link_hash_defweak: |
e85e8bfe ILT |
2079 | { |
2080 | asection *sec; | |
2081 | asection *output_section; | |
2082 | ||
2083 | sec = h->root.root.u.def.section; | |
2084 | output_section = sec->output_section; | |
788d9436 | 2085 | BFD_ASSERT (bfd_is_abs_section (output_section) |
e85e8bfe | 2086 | || output_section->owner == output_bfd); |
535c89f0 ILT |
2087 | if (h->plt_offset != 0 |
2088 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
e85e8bfe | 2089 | { |
e85e8bfe ILT |
2090 | type = N_UNDF | N_EXT; |
2091 | val = 0; | |
2092 | } | |
2093 | else | |
2094 | { | |
2095 | if (output_section == obj_textsec (output_bfd)) | |
6c97aedf ILT |
2096 | type = (h->root.root.type == bfd_link_hash_defined |
2097 | ? N_TEXT | |
2098 | : N_WEAKT); | |
e85e8bfe | 2099 | else if (output_section == obj_datasec (output_bfd)) |
6c97aedf ILT |
2100 | type = (h->root.root.type == bfd_link_hash_defined |
2101 | ? N_DATA | |
2102 | : N_WEAKD); | |
e85e8bfe | 2103 | else if (output_section == obj_bsssec (output_bfd)) |
6c97aedf ILT |
2104 | type = (h->root.root.type == bfd_link_hash_defined |
2105 | ? N_BSS | |
2106 | : N_WEAKB); | |
e85e8bfe | 2107 | else |
6c97aedf ILT |
2108 | type = (h->root.root.type == bfd_link_hash_defined |
2109 | ? N_ABS | |
2110 | : N_WEAKA); | |
2111 | type |= N_EXT; | |
e85e8bfe ILT |
2112 | val = (h->root.root.u.def.value |
2113 | + output_section->vma | |
2114 | + sec->output_offset); | |
2115 | } | |
2116 | } | |
2117 | break; | |
2118 | case bfd_link_hash_common: | |
2119 | type = N_UNDF | N_EXT; | |
2120 | val = h->root.root.u.c.size; | |
2121 | break; | |
6c97aedf | 2122 | case bfd_link_hash_undefweak: |
4298e311 ILT |
2123 | type = N_WEAKU; |
2124 | val = 0; | |
2125 | break; | |
e85e8bfe ILT |
2126 | case bfd_link_hash_indirect: |
2127 | case bfd_link_hash_warning: | |
2128 | /* FIXME: Ignore these for now. The circumstances under which | |
2129 | they should be written out are not clear to me. */ | |
2130 | return true; | |
2131 | } | |
2132 | ||
2133 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym"); | |
2134 | BFD_ASSERT (s != NULL); | |
2135 | outsym = ((struct external_nlist *) | |
2136 | (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE)); | |
2137 | ||
2138 | bfd_h_put_8 (output_bfd, type, outsym->e_type); | |
2139 | bfd_h_put_8 (output_bfd, 0, outsym->e_other); | |
2140 | ||
2141 | /* FIXME: The native linker doesn't use 0 for desc. It seems to use | |
2142 | one less than the desc value in the shared library, although that | |
2143 | seems unlikely. */ | |
2144 | bfd_h_put_16 (output_bfd, 0, outsym->e_desc); | |
2145 | ||
2146 | PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx); | |
2147 | PUT_WORD (output_bfd, val, outsym->e_value); | |
2148 | ||
2149 | /* If this symbol is in the procedure linkage table, fill in the | |
2150 | table entry. */ | |
535c89f0 | 2151 | if (h->plt_offset != 0) |
e85e8bfe | 2152 | { |
535c89f0 ILT |
2153 | bfd *dynobj; |
2154 | asection *splt; | |
e85e8bfe ILT |
2155 | bfd_byte *p; |
2156 | asection *s; | |
2157 | bfd_vma r_address; | |
2158 | ||
535c89f0 ILT |
2159 | dynobj = sunos_hash_table (info)->dynobj; |
2160 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2161 | p = splt->contents + h->plt_offset; | |
e85e8bfe | 2162 | |
535c89f0 | 2163 | s = bfd_get_section_by_name (dynobj, ".dynrel"); |
e85e8bfe | 2164 | |
9db59230 ILT |
2165 | r_address = (splt->output_section->vma |
2166 | + splt->output_offset | |
2167 | + h->plt_offset); | |
cd779d01 | 2168 | |
e85e8bfe ILT |
2169 | switch (bfd_get_arch (output_bfd)) |
2170 | { | |
2171 | case bfd_arch_sparc: | |
535c89f0 ILT |
2172 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) |
2173 | { | |
2174 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p); | |
2175 | bfd_put_32 (output_bfd, | |
2176 | (SPARC_PLT_ENTRY_WORD1 | |
2177 | + (((- (h->plt_offset + 4) >> 2) | |
2178 | & 0x3fffffff))), | |
2179 | p + 4); | |
2180 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count, | |
2181 | p + 8); | |
2182 | } | |
2183 | else | |
2184 | { | |
2185 | bfd_vma val; | |
2186 | ||
2187 | val = (h->root.root.u.def.section->output_section->vma | |
2188 | + h->root.root.u.def.section->output_offset | |
2189 | + h->root.root.u.def.value); | |
2190 | bfd_put_32 (output_bfd, | |
2191 | SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff), | |
2192 | p); | |
2193 | bfd_put_32 (output_bfd, | |
2194 | SPARC_PLT_PIC_WORD1 + (val & 0x3ff), | |
2195 | p + 4); | |
2196 | bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8); | |
2197 | } | |
e85e8bfe ILT |
2198 | break; |
2199 | ||
2200 | case bfd_arch_m68k: | |
535c89f0 ILT |
2201 | if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0) |
2202 | abort (); | |
e85e8bfe | 2203 | bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p); |
535c89f0 | 2204 | bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2); |
e85e8bfe | 2205 | bfd_put_16 (output_bfd, s->reloc_count, p + 6); |
cd779d01 | 2206 | r_address += 2; |
e85e8bfe ILT |
2207 | break; |
2208 | ||
2209 | default: | |
2210 | abort (); | |
2211 | } | |
2212 | ||
535c89f0 ILT |
2213 | /* We also need to add a jump table reloc, unless this is the |
2214 | result of a JMP_TBL reloc from PIC compiled code. */ | |
2215 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
e85e8bfe | 2216 | { |
9db59230 ILT |
2217 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) |
2218 | < s->_raw_size); | |
535c89f0 ILT |
2219 | p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd); |
2220 | if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE) | |
e85e8bfe | 2221 | { |
535c89f0 ILT |
2222 | struct reloc_std_external *srel; |
2223 | ||
2224 | srel = (struct reloc_std_external *) p; | |
2225 | PUT_WORD (output_bfd, r_address, srel->r_address); | |
0a4ffa2d | 2226 | if (bfd_header_big_endian (output_bfd)) |
535c89f0 ILT |
2227 | { |
2228 | srel->r_index[0] = h->dynindx >> 16; | |
2229 | srel->r_index[1] = h->dynindx >> 8; | |
2230 | srel->r_index[2] = h->dynindx; | |
2231 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG | |
2232 | | RELOC_STD_BITS_JMPTABLE_BIG); | |
2233 | } | |
2234 | else | |
2235 | { | |
2236 | srel->r_index[2] = h->dynindx >> 16; | |
2237 | srel->r_index[1] = h->dynindx >> 8; | |
2238 | srel->r_index[0] = h->dynindx; | |
2239 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE | |
2240 | | RELOC_STD_BITS_JMPTABLE_LITTLE); | |
2241 | } | |
e85e8bfe ILT |
2242 | } |
2243 | else | |
2244 | { | |
535c89f0 ILT |
2245 | struct reloc_ext_external *erel; |
2246 | ||
2247 | erel = (struct reloc_ext_external *) p; | |
2248 | PUT_WORD (output_bfd, r_address, erel->r_address); | |
0a4ffa2d | 2249 | if (bfd_header_big_endian (output_bfd)) |
535c89f0 ILT |
2250 | { |
2251 | erel->r_index[0] = h->dynindx >> 16; | |
2252 | erel->r_index[1] = h->dynindx >> 8; | |
2253 | erel->r_index[2] = h->dynindx; | |
9db59230 ILT |
2254 | erel->r_type[0] = |
2255 | (RELOC_EXT_BITS_EXTERN_BIG | |
2256 | | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
535c89f0 ILT |
2257 | } |
2258 | else | |
2259 | { | |
2260 | erel->r_index[2] = h->dynindx >> 16; | |
2261 | erel->r_index[1] = h->dynindx >> 8; | |
2262 | erel->r_index[0] = h->dynindx; | |
9db59230 ILT |
2263 | erel->r_type[0] = |
2264 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2265 | | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
535c89f0 ILT |
2266 | } |
2267 | PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend); | |
e85e8bfe | 2268 | } |
e85e8bfe | 2269 | |
535c89f0 | 2270 | ++s->reloc_count; |
e85e8bfe | 2271 | } |
e85e8bfe ILT |
2272 | } |
2273 | ||
2274 | return true; | |
2275 | } | |
2276 | ||
2277 | /* This is called for each reloc against an external symbol. If this | |
2278 | is a reloc which are are going to copy as a dynamic reloc, then | |
2279 | copy it over, and tell the caller to not bother processing this | |
2280 | reloc. */ | |
2281 | ||
2282 | /*ARGSUSED*/ | |
2283 | static boolean | |
535c89f0 ILT |
2284 | sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, |
2285 | contents, skip, relocationp) | |
e85e8bfe ILT |
2286 | struct bfd_link_info *info; |
2287 | bfd *input_bfd; | |
2288 | asection *input_section; | |
2289 | struct aout_link_hash_entry *harg; | |
2290 | PTR reloc; | |
535c89f0 | 2291 | bfd_byte *contents; |
e85e8bfe | 2292 | boolean *skip; |
535c89f0 | 2293 | bfd_vma *relocationp; |
e85e8bfe ILT |
2294 | { |
2295 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
2296 | bfd *dynobj; | |
535c89f0 | 2297 | boolean baserel; |
9db59230 | 2298 | boolean jmptbl; |
535c89f0 | 2299 | asection *s; |
e85e8bfe | 2300 | bfd_byte *p; |
9db59230 | 2301 | long indx; |
e85e8bfe ILT |
2302 | |
2303 | *skip = false; | |
2304 | ||
2305 | dynobj = sunos_hash_table (info)->dynobj; | |
2306 | ||
535c89f0 ILT |
2307 | if (h != NULL && h->plt_offset != 0) |
2308 | { | |
2309 | asection *splt; | |
2310 | ||
2311 | /* Redirect the relocation to the PLT entry. */ | |
2312 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2313 | *relocationp = (splt->output_section->vma | |
2314 | + splt->output_offset | |
2315 | + h->plt_offset); | |
2316 | } | |
2317 | ||
2318 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2319 | { | |
2320 | struct reloc_std_external *srel; | |
2321 | ||
2322 | srel = (struct reloc_std_external *) reloc; | |
0a4ffa2d | 2323 | if (bfd_header_big_endian (input_bfd)) |
9db59230 ILT |
2324 | { |
2325 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); | |
2326 | jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); | |
2327 | } | |
535c89f0 | 2328 | else |
9db59230 ILT |
2329 | { |
2330 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); | |
2331 | jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); | |
2332 | } | |
535c89f0 ILT |
2333 | } |
2334 | else | |
2335 | { | |
2336 | struct reloc_ext_external *erel; | |
2337 | int r_type; | |
2338 | ||
2339 | erel = (struct reloc_ext_external *) reloc; | |
0a4ffa2d | 2340 | if (bfd_header_big_endian (input_bfd)) |
535c89f0 ILT |
2341 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) |
2342 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
2343 | else | |
2344 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
2345 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
2346 | baserel = (r_type == RELOC_BASE10 | |
2347 | || r_type == RELOC_BASE13 | |
2348 | || r_type == RELOC_BASE22); | |
9db59230 | 2349 | jmptbl = r_type == RELOC_JMP_TBL; |
535c89f0 ILT |
2350 | } |
2351 | ||
2352 | if (baserel) | |
2353 | { | |
2354 | bfd_vma *got_offsetp; | |
2355 | asection *sgot; | |
2356 | ||
2357 | if (h != NULL) | |
2358 | got_offsetp = &h->got_offset; | |
2359 | else if (adata (input_bfd).local_got_offsets == NULL) | |
2360 | got_offsetp = NULL; | |
2361 | else | |
2362 | { | |
2363 | struct reloc_std_external *srel; | |
2364 | int r_index; | |
2365 | ||
2366 | srel = (struct reloc_std_external *) reloc; | |
2367 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2368 | { | |
0a4ffa2d | 2369 | if (bfd_header_big_endian (input_bfd)) |
535c89f0 ILT |
2370 | r_index = ((srel->r_index[0] << 16) |
2371 | | (srel->r_index[1] << 8) | |
2372 | | srel->r_index[2]); | |
2373 | else | |
2374 | r_index = ((srel->r_index[2] << 16) | |
2375 | | (srel->r_index[1] << 8) | |
2376 | | srel->r_index[0]); | |
2377 | } | |
2378 | else | |
2379 | { | |
2380 | struct reloc_ext_external *erel; | |
2381 | ||
2382 | erel = (struct reloc_ext_external *) reloc; | |
0a4ffa2d | 2383 | if (bfd_header_big_endian (input_bfd)) |
535c89f0 ILT |
2384 | r_index = ((erel->r_index[0] << 16) |
2385 | | (erel->r_index[1] << 8) | |
2386 | | erel->r_index[2]); | |
2387 | else | |
2388 | r_index = ((erel->r_index[2] << 16) | |
2389 | | (erel->r_index[1] << 8) | |
2390 | | erel->r_index[0]); | |
2391 | } | |
2392 | ||
2393 | got_offsetp = adata (input_bfd).local_got_offsets + r_index; | |
2394 | } | |
2395 | ||
2396 | BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0); | |
2397 | ||
2398 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2399 | ||
2400 | /* We set the least significant bit to indicate whether we have | |
2401 | already initialized the GOT entry. */ | |
2402 | if ((*got_offsetp & 1) == 0) | |
2403 | { | |
9db59230 ILT |
2404 | if (h == NULL |
2405 | || (! info->shared | |
2406 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2407 | || (h->flags & SUNOS_DEF_REGULAR) != 0))) | |
2408 | PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp); | |
2409 | else | |
2410 | PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp); | |
535c89f0 | 2411 | |
9db59230 ILT |
2412 | if (info->shared |
2413 | || (h != NULL | |
2414 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
2415 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
535c89f0 | 2416 | { |
9db59230 | 2417 | /* We need to create a GLOB_DAT or 32 reloc to tell the |
535c89f0 ILT |
2418 | dynamic linker to fill in this entry in the table. */ |
2419 | ||
2420 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2421 | BFD_ASSERT (s != NULL); | |
9db59230 ILT |
2422 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) |
2423 | < s->_raw_size); | |
535c89f0 ILT |
2424 | |
2425 | p = (s->contents | |
2426 | + s->reloc_count * obj_reloc_entry_size (dynobj)); | |
2427 | ||
9db59230 ILT |
2428 | if (h != NULL) |
2429 | indx = h->dynindx; | |
2430 | else | |
2431 | indx = 0; | |
2432 | ||
535c89f0 ILT |
2433 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) |
2434 | { | |
2435 | struct reloc_std_external *srel; | |
2436 | ||
2437 | srel = (struct reloc_std_external *) p; | |
2438 | PUT_WORD (dynobj, | |
2439 | (*got_offsetp | |
2440 | + sgot->output_section->vma | |
2441 | + sgot->output_offset), | |
2442 | srel->r_address); | |
0a4ffa2d | 2443 | if (bfd_header_big_endian (dynobj)) |
535c89f0 | 2444 | { |
9db59230 ILT |
2445 | srel->r_index[0] = indx >> 16; |
2446 | srel->r_index[1] = indx >> 8; | |
2447 | srel->r_index[2] = indx; | |
2448 | if (h == NULL) | |
2449 | srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG; | |
2450 | else | |
2451 | srel->r_type[0] = | |
2452 | (RELOC_STD_BITS_EXTERN_BIG | |
2453 | | RELOC_STD_BITS_BASEREL_BIG | |
2454 | | RELOC_STD_BITS_RELATIVE_BIG | |
2455 | | (2 << RELOC_STD_BITS_LENGTH_SH_BIG)); | |
535c89f0 ILT |
2456 | } |
2457 | else | |
2458 | { | |
9db59230 ILT |
2459 | srel->r_index[2] = indx >> 16; |
2460 | srel->r_index[1] = indx >> 8; | |
2461 | srel->r_index[0] = indx; | |
2462 | if (h == NULL) | |
2463 | srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE; | |
2464 | else | |
2465 | srel->r_type[0] = | |
2466 | (RELOC_STD_BITS_EXTERN_LITTLE | |
2467 | | RELOC_STD_BITS_BASEREL_LITTLE | |
2468 | | RELOC_STD_BITS_RELATIVE_LITTLE | |
2469 | | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE)); | |
535c89f0 ILT |
2470 | } |
2471 | } | |
2472 | else | |
2473 | { | |
2474 | struct reloc_ext_external *erel; | |
2475 | ||
2476 | erel = (struct reloc_ext_external *) p; | |
2477 | PUT_WORD (dynobj, | |
2478 | (*got_offsetp | |
2479 | + sgot->output_section->vma | |
2480 | + sgot->output_offset), | |
2481 | erel->r_address); | |
0a4ffa2d | 2482 | if (bfd_header_big_endian (dynobj)) |
535c89f0 | 2483 | { |
9db59230 ILT |
2484 | erel->r_index[0] = indx >> 16; |
2485 | erel->r_index[1] = indx >> 8; | |
2486 | erel->r_index[2] = indx; | |
2487 | if (h == NULL) | |
2488 | erel->r_type[0] = | |
2489 | RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG; | |
2490 | else | |
2491 | erel->r_type[0] = | |
2492 | (RELOC_EXT_BITS_EXTERN_BIG | |
2493 | | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
535c89f0 ILT |
2494 | } |
2495 | else | |
2496 | { | |
9db59230 ILT |
2497 | erel->r_index[2] = indx >> 16; |
2498 | erel->r_index[1] = indx >> 8; | |
2499 | erel->r_index[0] = indx; | |
2500 | if (h == NULL) | |
2501 | erel->r_type[0] = | |
2502 | RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE; | |
2503 | else | |
2504 | erel->r_type[0] = | |
2505 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2506 | | (RELOC_GLOB_DAT | |
2507 | << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
535c89f0 ILT |
2508 | } |
2509 | PUT_WORD (dynobj, 0, erel->r_addend); | |
2510 | } | |
2511 | ||
2512 | ++s->reloc_count; | |
2513 | } | |
2514 | ||
2515 | *got_offsetp |= 1; | |
2516 | } | |
2517 | ||
2518 | *relocationp = sgot->vma + (*got_offsetp &~ 1); | |
2519 | ||
2520 | /* There is nothing else to do for a base relative reloc. */ | |
2521 | return true; | |
2522 | } | |
2523 | ||
9db59230 | 2524 | if (! sunos_hash_table (info)->dynamic_sections_needed) |
e85e8bfe | 2525 | return true; |
9db59230 ILT |
2526 | if (! info->shared) |
2527 | { | |
2528 | if (h == NULL | |
2529 | || h->dynindx == -1 | |
2530 | || h->root.root.type != bfd_link_hash_undefined | |
2531 | || (h->flags & SUNOS_DEF_REGULAR) != 0 | |
2532 | || (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2533 | || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0) | |
2534 | return true; | |
2535 | } | |
2536 | else | |
2537 | { | |
2538 | if (h != NULL | |
2539 | && (h->dynindx == -1 | |
2540 | || jmptbl | |
2541 | || strcmp (h->root.root.root.string, | |
2542 | "__GLOBAL_OFFSET_TABLE_") == 0)) | |
2543 | return true; | |
9db59230 | 2544 | } |
e85e8bfe | 2545 | |
535c89f0 | 2546 | /* It looks like this is a reloc we are supposed to copy. */ |
e85e8bfe | 2547 | |
535c89f0 ILT |
2548 | s = bfd_get_section_by_name (dynobj, ".dynrel"); |
2549 | BFD_ASSERT (s != NULL); | |
9db59230 | 2550 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size); |
e85e8bfe | 2551 | |
535c89f0 | 2552 | p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj); |
e85e8bfe ILT |
2553 | |
2554 | /* Copy the reloc over. */ | |
2555 | memcpy (p, reloc, obj_reloc_entry_size (dynobj)); | |
2556 | ||
9db59230 ILT |
2557 | if (h != NULL) |
2558 | indx = h->dynindx; | |
2559 | else | |
2560 | indx = 0; | |
2561 | ||
e85e8bfe ILT |
2562 | /* Adjust the address and symbol index. */ |
2563 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2564 | { | |
2565 | struct reloc_std_external *srel; | |
2566 | ||
2567 | srel = (struct reloc_std_external *) p; | |
2568 | PUT_WORD (dynobj, | |
2569 | (GET_WORD (dynobj, srel->r_address) | |
2570 | + input_section->output_section->vma | |
2571 | + input_section->output_offset), | |
2572 | srel->r_address); | |
0a4ffa2d | 2573 | if (bfd_header_big_endian (dynobj)) |
e85e8bfe | 2574 | { |
9db59230 ILT |
2575 | srel->r_index[0] = indx >> 16; |
2576 | srel->r_index[1] = indx >> 8; | |
2577 | srel->r_index[2] = indx; | |
e85e8bfe ILT |
2578 | } |
2579 | else | |
2580 | { | |
9db59230 ILT |
2581 | srel->r_index[2] = indx >> 16; |
2582 | srel->r_index[1] = indx >> 8; | |
2583 | srel->r_index[0] = indx; | |
e85e8bfe ILT |
2584 | } |
2585 | } | |
2586 | else | |
2587 | { | |
2588 | struct reloc_ext_external *erel; | |
2589 | ||
2590 | erel = (struct reloc_ext_external *) p; | |
2591 | PUT_WORD (dynobj, | |
2592 | (GET_WORD (dynobj, erel->r_address) | |
2593 | + input_section->output_section->vma | |
2594 | + input_section->output_offset), | |
2595 | erel->r_address); | |
0a4ffa2d | 2596 | if (bfd_header_big_endian (dynobj)) |
e85e8bfe | 2597 | { |
9db59230 ILT |
2598 | erel->r_index[0] = indx >> 16; |
2599 | erel->r_index[1] = indx >> 8; | |
2600 | erel->r_index[2] = indx; | |
e85e8bfe ILT |
2601 | } |
2602 | else | |
2603 | { | |
9db59230 ILT |
2604 | erel->r_index[2] = indx >> 16; |
2605 | erel->r_index[1] = indx >> 8; | |
2606 | erel->r_index[0] = indx; | |
e85e8bfe ILT |
2607 | } |
2608 | } | |
2609 | ||
535c89f0 | 2610 | ++s->reloc_count; |
e85e8bfe | 2611 | |
9db59230 ILT |
2612 | if (h != NULL) |
2613 | *skip = true; | |
e85e8bfe ILT |
2614 | |
2615 | return true; | |
2616 | } | |
2617 | ||
2618 | /* Finish up the dynamic linking information. */ | |
2619 | ||
2620 | static boolean | |
2621 | sunos_finish_dynamic_link (abfd, info) | |
2622 | bfd *abfd; | |
2623 | struct bfd_link_info *info; | |
2624 | { | |
2625 | bfd *dynobj; | |
2626 | asection *o; | |
2627 | asection *s; | |
2628 | asection *sdyn; | |
2629 | struct external_sun4_dynamic esd; | |
2630 | struct external_sun4_dynamic_link esdl; | |
2631 | ||
535c89f0 | 2632 | if (! sunos_hash_table (info)->dynamic_sections_needed) |
e85e8bfe ILT |
2633 | return true; |
2634 | ||
535c89f0 ILT |
2635 | dynobj = sunos_hash_table (info)->dynobj; |
2636 | ||
e85e8bfe ILT |
2637 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2638 | BFD_ASSERT (sdyn != NULL); | |
2639 | ||
2640 | /* Finish up the .need section. The linker emulation code filled it | |
2641 | in, but with offsets from the start of the section instead of | |
2642 | real addresses. Now that we know the section location, we can | |
2643 | fill in the final values. */ | |
2644 | s = bfd_get_section_by_name (dynobj, ".need"); | |
535c89f0 | 2645 | if (s != NULL && s->_raw_size != 0) |
e85e8bfe ILT |
2646 | { |
2647 | file_ptr filepos; | |
2648 | bfd_byte *p; | |
2649 | ||
2650 | filepos = s->output_section->filepos + s->output_offset; | |
2651 | p = s->contents; | |
2652 | while (1) | |
2653 | { | |
2654 | bfd_vma val; | |
2655 | ||
2656 | PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p); | |
2657 | val = GET_WORD (dynobj, p + 12); | |
2658 | if (val == 0) | |
2659 | break; | |
2660 | PUT_WORD (dynobj, val + filepos, p + 12); | |
2661 | p += 16; | |
2662 | } | |
2663 | } | |
2664 | ||
9db59230 ILT |
2665 | /* The first entry in the .got section is the address of the |
2666 | dynamic information, unless this is a shared library. */ | |
e85e8bfe ILT |
2667 | s = bfd_get_section_by_name (dynobj, ".got"); |
2668 | BFD_ASSERT (s != NULL); | |
9db59230 ILT |
2669 | if (info->shared) |
2670 | PUT_WORD (dynobj, 0, s->contents); | |
2671 | else | |
2672 | PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset, | |
2673 | s->contents); | |
e85e8bfe ILT |
2674 | |
2675 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2676 | { | |
2677 | if ((o->flags & SEC_HAS_CONTENTS) != 0 | |
2678 | && o->contents != NULL) | |
2679 | { | |
2680 | BFD_ASSERT (o->output_section != NULL | |
2681 | && o->output_section->owner == abfd); | |
2682 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2683 | o->contents, o->output_offset, | |
2684 | o->_raw_size)) | |
2685 | return false; | |
2686 | } | |
2687 | } | |
2688 | ||
2689 | /* Finish up the dynamic link information. */ | |
2690 | PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version); | |
2691 | PUT_WORD (dynobj, | |
2692 | sdyn->output_section->vma + sdyn->output_offset + sizeof esd, | |
2693 | esd.ldd); | |
2694 | PUT_WORD (dynobj, | |
2695 | (sdyn->output_section->vma | |
2696 | + sdyn->output_offset | |
2697 | + sizeof esd | |
2698 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2699 | esd.ld); | |
2700 | ||
2701 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd, | |
2702 | sdyn->output_offset, sizeof esd)) | |
2703 | return false; | |
2704 | ||
2705 | ||
2706 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded); | |
2707 | ||
2708 | s = bfd_get_section_by_name (dynobj, ".need"); | |
535c89f0 | 2709 | if (s == NULL || s->_raw_size == 0) |
e85e8bfe ILT |
2710 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need); |
2711 | else | |
2712 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2713 | esdl.ld_need); | |
2714 | ||
2715 | s = bfd_get_section_by_name (dynobj, ".rules"); | |
535c89f0 | 2716 | if (s == NULL || s->_raw_size == 0) |
e85e8bfe ILT |
2717 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules); |
2718 | else | |
2719 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2720 | esdl.ld_rules); | |
2721 | ||
2722 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2723 | BFD_ASSERT (s != NULL); | |
2724 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got); | |
2725 | ||
2726 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2727 | BFD_ASSERT (s != NULL); | |
2728 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt); | |
2729 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz); | |
2730 | ||
2731 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2732 | BFD_ASSERT (s != NULL); | |
2733 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size); | |
2734 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2735 | esdl.ld_rel); | |
2736 | ||
2737 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2738 | BFD_ASSERT (s != NULL); | |
2739 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2740 | esdl.ld_hash); | |
2741 | ||
2742 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
2743 | BFD_ASSERT (s != NULL); | |
2744 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2745 | esdl.ld_stab); | |
2746 | ||
2747 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash); | |
2748 | ||
2749 | PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount, | |
2750 | esdl.ld_buckets); | |
2751 | ||
2752 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2753 | BFD_ASSERT (s != NULL); | |
2754 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2755 | esdl.ld_symbols); | |
2756 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size); | |
2757 | ||
2758 | /* The size of the text area is the size of the .text section | |
2759 | rounded up to a page boundary. FIXME: Should the page size be | |
2760 | conditional on something? */ | |
2761 | PUT_WORD (dynobj, | |
2762 | BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000), | |
2763 | esdl.ld_text); | |
2764 | ||
2765 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl, | |
2766 | (sdyn->output_offset | |
2767 | + sizeof esd | |
2768 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2769 | sizeof esdl)) | |
2770 | return false; | |
2771 | ||
2772 | abfd->flags |= DYNAMIC; | |
2773 | ||
2774 | return true; | |
2775 | } |