]>
Commit | Line | Data |
---|---|---|
0ee75d02 | 1 | /* BFD backend for SunOS binaries. |
e85e8bfe | 2 | Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc. |
0ee75d02 | 3 | Written by Cygnus Support. |
4a81b561 | 4 | |
0ee75d02 | 5 | This file is part of BFD, the Binary File Descriptor library. |
4a81b561 | 6 | |
0ee75d02 | 7 | This program is free software; you can redistribute it and/or modify |
4a81b561 | 8 | it under the terms of the GNU General Public License as published by |
0ee75d02 ILT |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
4a81b561 | 11 | |
0ee75d02 | 12 | This program is distributed in the hope that it will be useful, |
4a81b561 DHW |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
0ee75d02 ILT |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
4a81b561 | 20 | |
0ee75d02 ILT |
21 | #define TARGETNAME "a.out-sunos-big" |
22 | #define MY(OP) CAT(sunos_big_,OP) | |
4a81b561 | 23 | |
4a81b561 | 24 | #include "bfd.h" |
e85e8bfe ILT |
25 | #include "bfdlink.h" |
26 | #include "libaout.h" | |
78aa64b1 | 27 | |
0ee75d02 | 28 | /* Static routines defined in this file. */ |
4a81b561 | 29 | |
0ee75d02 | 30 | static boolean sunos_read_dynamic_info PARAMS ((bfd *)); |
e85e8bfe ILT |
31 | static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *)); |
32 | static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **)); | |
33 | static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *)); | |
34 | static long sunos_canonicalize_dynamic_reloc | |
35 | PARAMS ((bfd *, arelent **, asymbol **)); | |
36 | static struct bfd_hash_entry *sunos_link_hash_newfunc | |
37 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
38 | static struct bfd_link_hash_table *sunos_link_hash_table_create | |
39 | PARAMS ((bfd *)); | |
40 | static boolean sunos_add_dynamic_symbols | |
41 | PARAMS ((bfd *, struct bfd_link_info *)); | |
42 | static boolean sunos_add_one_symbol | |
43 | PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *, | |
44 | bfd_vma, const char *, boolean, boolean, | |
45 | struct bfd_link_hash_entry **)); | |
46 | static boolean sunos_scan_relocs | |
47 | PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type)); | |
48 | static boolean sunos_scan_std_relocs | |
49 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
50 | const struct reloc_std_external *, bfd_size_type)); | |
51 | static boolean sunos_scan_ext_relocs | |
52 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
53 | const struct reloc_ext_external *, bfd_size_type)); | |
54 | static boolean sunos_link_dynamic_object | |
55 | PARAMS ((struct bfd_link_info *, bfd *)); | |
56 | static boolean sunos_write_dynamic_symbol | |
57 | PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *)); | |
58 | static boolean sunos_check_dynamic_reloc | |
59 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
60 | struct aout_link_hash_entry *, PTR, boolean *)); | |
61 | static boolean sunos_finish_dynamic_link | |
62 | PARAMS ((bfd *, struct bfd_link_info *)); | |
4a81b561 | 63 | |
e85e8bfe ILT |
64 | #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound |
65 | #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab | |
66 | #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound | |
67 | #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc | |
68 | #define MY_bfd_link_hash_table_create sunos_link_hash_table_create | |
69 | #define MY_add_dynamic_symbols sunos_add_dynamic_symbols | |
70 | #define MY_add_one_symbol sunos_add_one_symbol | |
71 | #define MY_link_dynamic_object sunos_link_dynamic_object | |
72 | #define MY_write_dynamic_symbol sunos_write_dynamic_symbol | |
73 | #define MY_check_dynamic_reloc sunos_check_dynamic_reloc | |
74 | #define MY_finish_dynamic_link sunos_finish_dynamic_link | |
4a81b561 | 75 | |
0ee75d02 ILT |
76 | /* Include the usual a.out support. */ |
77 | #include "aoutf1.h" | |
4a81b561 | 78 | |
0ee75d02 ILT |
79 | /* SunOS shared library support. We store a pointer to this structure |
80 | in obj_aout_dynamic_info (abfd). */ | |
4a81b561 | 81 | |
0ee75d02 | 82 | struct sunos_dynamic_info |
78aa64b1 | 83 | { |
0ee75d02 ILT |
84 | /* Whether we found any dynamic information. */ |
85 | boolean valid; | |
86 | /* Dynamic information. */ | |
87 | struct internal_sun4_dynamic_link dyninfo; | |
88 | /* Number of dynamic symbols. */ | |
e85e8bfe | 89 | long dynsym_count; |
0ee75d02 ILT |
90 | /* Read in nlists for dynamic symbols. */ |
91 | struct external_nlist *dynsym; | |
e85e8bfe ILT |
92 | /* asymbol structures for dynamic symbols. */ |
93 | aout_symbol_type *canonical_dynsym; | |
0ee75d02 ILT |
94 | /* Read in dynamic string table. */ |
95 | char *dynstr; | |
96 | /* Number of dynamic relocs. */ | |
e85e8bfe | 97 | long dynrel_count; |
0ee75d02 ILT |
98 | /* Read in dynamic relocs. This may be reloc_std_external or |
99 | reloc_ext_external. */ | |
100 | PTR dynrel; | |
e85e8bfe ILT |
101 | /* arelent structures for dynamic relocs. */ |
102 | arelent *canonical_dynrel; | |
0ee75d02 | 103 | }; |
4a81b561 | 104 | |
e85e8bfe ILT |
105 | /* The hash table of dynamic symbols is composed of two word entries. |
106 | See include/aout/sun4.h for details. */ | |
107 | ||
108 | #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD) | |
109 | ||
0ee75d02 ILT |
110 | /* Read in the basic dynamic information. This locates the __DYNAMIC |
111 | structure and uses it to find the dynamic_link structure. It | |
112 | creates and saves a sunos_dynamic_info structure. If it can't find | |
113 | __DYNAMIC, it sets the valid field of the sunos_dynamic_info | |
114 | structure to false to avoid doing this work again. */ | |
4a81b561 | 115 | |
0ee75d02 ILT |
116 | static boolean |
117 | sunos_read_dynamic_info (abfd) | |
4a81b561 DHW |
118 | bfd *abfd; |
119 | { | |
0ee75d02 | 120 | struct sunos_dynamic_info *info; |
0ee75d02 ILT |
121 | asection *dynsec; |
122 | file_ptr dynoff; | |
123 | struct external_sun4_dynamic dyninfo; | |
124 | unsigned long dynver; | |
125 | struct external_sun4_dynamic_link linkinfo; | |
126 | ||
127 | if (obj_aout_dynamic_info (abfd) != (PTR) NULL) | |
128 | return true; | |
129 | ||
e85e8bfe ILT |
130 | if ((abfd->flags & DYNAMIC) == 0) |
131 | { | |
132 | bfd_set_error (bfd_error_invalid_operation); | |
133 | return false; | |
134 | } | |
135 | ||
0ee75d02 ILT |
136 | info = ((struct sunos_dynamic_info *) |
137 | bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info))); | |
9783e04a DM |
138 | if (!info) |
139 | { | |
d7fb4531 | 140 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
141 | return false; |
142 | } | |
0ee75d02 ILT |
143 | info->valid = false; |
144 | info->dynsym = NULL; | |
145 | info->dynstr = NULL; | |
e85e8bfe | 146 | info->canonical_dynsym = NULL; |
0ee75d02 | 147 | info->dynrel = NULL; |
e85e8bfe | 148 | info->canonical_dynrel = NULL; |
0ee75d02 ILT |
149 | obj_aout_dynamic_info (abfd) = (PTR) info; |
150 | ||
3e0b5554 PS |
151 | /* This code used to look for the __DYNAMIC symbol to locate the dynamic |
152 | linking information. | |
153 | However this inhibits recovering the dynamic symbols from a | |
154 | stripped object file, so blindly assume that the dynamic linking | |
155 | information is located at the start of the data section. | |
156 | We could verify this assumption later by looking through the dynamic | |
157 | symbols for the __DYNAMIC symbol. */ | |
158 | if ((abfd->flags & DYNAMIC) == 0) | |
0ee75d02 | 159 | return true; |
3e0b5554 PS |
160 | if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo, |
161 | (file_ptr) 0, sizeof dyninfo)) | |
0ee75d02 ILT |
162 | return true; |
163 | ||
164 | dynver = GET_WORD (abfd, dyninfo.ld_version); | |
165 | if (dynver != 2 && dynver != 3) | |
166 | return true; | |
167 | ||
168 | dynoff = GET_WORD (abfd, dyninfo.ld); | |
169 | ||
170 | /* dynoff is a virtual address. It is probably always in the .data | |
171 | section, but this code should work even if it moves. */ | |
172 | if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd))) | |
173 | dynsec = obj_textsec (abfd); | |
174 | else | |
175 | dynsec = obj_datasec (abfd); | |
176 | dynoff -= bfd_get_section_vma (abfd, dynsec); | |
177 | if (dynoff < 0 || dynoff > bfd_section_size (abfd, dynsec)) | |
178 | return true; | |
179 | ||
180 | /* This executable appears to be dynamically linked in a way that we | |
181 | can understand. */ | |
182 | if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff, | |
183 | (bfd_size_type) sizeof linkinfo)) | |
184 | return true; | |
185 | ||
186 | /* Swap in the dynamic link information. */ | |
187 | info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded); | |
188 | info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need); | |
189 | info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules); | |
190 | info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got); | |
191 | info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt); | |
192 | info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel); | |
193 | info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash); | |
194 | info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab); | |
195 | info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash); | |
196 | info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets); | |
197 | info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols); | |
198 | info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size); | |
199 | info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text); | |
200 | info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz); | |
201 | ||
202 | /* The only way to get the size of the symbol information appears to | |
203 | be to determine the distance between it and the string table. */ | |
204 | info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab) | |
205 | / EXTERNAL_NLIST_SIZE); | |
206 | BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE | |
207 | == info->dyninfo.ld_symbols - info->dyninfo.ld_stab); | |
208 | ||
209 | /* Similarly, the relocs end at the hash table. */ | |
210 | info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel) | |
211 | / obj_reloc_entry_size (abfd)); | |
212 | BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd) | |
213 | == info->dyninfo.ld_hash - info->dyninfo.ld_rel); | |
214 | ||
215 | info->valid = true; | |
4a81b561 DHW |
216 | |
217 | return true; | |
218 | } | |
219 | ||
e85e8bfe ILT |
220 | /* Return the amount of memory required for the dynamic symbols. */ |
221 | ||
222 | static long | |
223 | sunos_get_dynamic_symtab_upper_bound (abfd) | |
224 | bfd *abfd; | |
225 | { | |
226 | struct sunos_dynamic_info *info; | |
227 | ||
228 | if (! sunos_read_dynamic_info (abfd)) | |
229 | return -1; | |
230 | ||
231 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
232 | if (! info->valid) | |
233 | { | |
234 | bfd_set_error (bfd_error_no_symbols); | |
235 | return -1; | |
236 | } | |
237 | ||
238 | return (info->dynsym_count + 1) * sizeof (asymbol *); | |
239 | } | |
240 | ||
0ee75d02 | 241 | /* Read in the dynamic symbols. */ |
4a81b561 | 242 | |
e85e8bfe ILT |
243 | static long |
244 | sunos_canonicalize_dynamic_symtab (abfd, storage) | |
4a81b561 | 245 | bfd *abfd; |
e85e8bfe | 246 | asymbol **storage; |
4a81b561 | 247 | { |
0ee75d02 | 248 | struct sunos_dynamic_info *info; |
e85e8bfe | 249 | long i; |
4a81b561 | 250 | |
e85e8bfe ILT |
251 | /* Get the general dynamic information. */ |
252 | if (obj_aout_dynamic_info (abfd) == NULL) | |
0ee75d02 ILT |
253 | { |
254 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 255 | return -1; |
4a81b561 | 256 | } |
c93595dd | 257 | |
0ee75d02 | 258 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
259 | if (! info->valid) |
260 | { | |
261 | bfd_set_error (bfd_error_no_symbols); | |
262 | return -1; | |
263 | } | |
10be52bf | 264 | |
e85e8bfe | 265 | /* Get the dynamic nlist structures. */ |
0ee75d02 ILT |
266 | if (info->dynsym == (struct external_nlist *) NULL) |
267 | { | |
268 | info->dynsym = ((struct external_nlist *) | |
269 | bfd_alloc (abfd, | |
270 | (info->dynsym_count | |
271 | * EXTERNAL_NLIST_SIZE))); | |
e85e8bfe | 272 | if (info->dynsym == NULL && info->dynsym_count != 0) |
9783e04a | 273 | { |
d7fb4531 | 274 | bfd_set_error (bfd_error_no_memory); |
e85e8bfe | 275 | return -1; |
9783e04a | 276 | } |
0ee75d02 ILT |
277 | if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0 |
278 | || (bfd_read ((PTR) info->dynsym, info->dynsym_count, | |
279 | EXTERNAL_NLIST_SIZE, abfd) | |
e85e8bfe ILT |
280 | != info->dynsym_count * EXTERNAL_NLIST_SIZE)) |
281 | { | |
282 | if (info->dynsym != NULL) | |
283 | { | |
284 | bfd_release (abfd, info->dynsym); | |
285 | info->dynsym = NULL; | |
286 | } | |
287 | return -1; | |
288 | } | |
289 | } | |
290 | ||
291 | /* Get the dynamic strings. */ | |
292 | if (info->dynstr == (char *) NULL) | |
293 | { | |
294 | info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size); | |
295 | if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0) | |
296 | { | |
297 | bfd_set_error (bfd_error_no_memory); | |
298 | return -1; | |
299 | } | |
300 | if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0 | |
0ee75d02 ILT |
301 | || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size, |
302 | abfd) | |
303 | != info->dyninfo.ld_symb_size)) | |
e85e8bfe ILT |
304 | { |
305 | if (info->dynstr != NULL) | |
306 | { | |
307 | bfd_release (abfd, info->dynstr); | |
308 | info->dynstr = NULL; | |
309 | } | |
310 | return -1; | |
311 | } | |
0ee75d02 | 312 | } |
1a602d6e | 313 | |
0ee75d02 ILT |
314 | #ifdef CHECK_DYNAMIC_HASH |
315 | /* Check my understanding of the dynamic hash table by making sure | |
316 | that each symbol can be located in the hash table. */ | |
317 | { | |
318 | bfd_size_type table_size; | |
319 | bfd_byte *table; | |
320 | bfd_size_type i; | |
321 | ||
322 | if (info->dyninfo.ld_buckets > info->dynsym_count) | |
323 | abort (); | |
324 | table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash; | |
d7fb4531 | 325 | table = (bfd_byte *) malloc (table_size); |
e85e8bfe | 326 | if (table == NULL && table_size != 0) |
d7fb4531 | 327 | abort (); |
0ee75d02 ILT |
328 | if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0 |
329 | || bfd_read ((PTR) table, 1, table_size, abfd) != table_size) | |
330 | abort (); | |
331 | for (i = 0; i < info->dynsym_count; i++) | |
9846338e | 332 | { |
0ee75d02 ILT |
333 | unsigned char *name; |
334 | unsigned long hash; | |
335 | ||
336 | name = ((unsigned char *) info->dynstr | |
337 | + GET_WORD (abfd, info->dynsym[i].e_strx)); | |
338 | hash = 0; | |
339 | while (*name != '\0') | |
340 | hash = (hash << 1) + *name++; | |
341 | hash &= 0x7fffffff; | |
342 | hash %= info->dyninfo.ld_buckets; | |
e85e8bfe | 343 | while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i) |
0ee75d02 | 344 | { |
e85e8bfe ILT |
345 | hash = GET_WORD (abfd, |
346 | table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
347 | if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE) | |
0ee75d02 ILT |
348 | abort (); |
349 | } | |
9846338e | 350 | } |
d7fb4531 | 351 | free (table); |
4a81b561 | 352 | } |
0ee75d02 | 353 | #endif /* CHECK_DYNAMIC_HASH */ |
4a81b561 | 354 | |
e85e8bfe ILT |
355 | /* Get the asymbol structures corresponding to the dynamic nlist |
356 | structures. */ | |
357 | if (info->canonical_dynsym == (aout_symbol_type *) NULL) | |
358 | { | |
359 | info->canonical_dynsym = ((aout_symbol_type *) | |
360 | bfd_alloc (abfd, | |
361 | (info->dynsym_count | |
362 | * sizeof (aout_symbol_type)))); | |
363 | if (info->canonical_dynsym == NULL && info->dynsym_count != 0) | |
364 | { | |
365 | bfd_set_error (bfd_error_no_memory); | |
366 | return -1; | |
367 | } | |
368 | ||
369 | if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym, | |
370 | info->dynsym, info->dynsym_count, | |
371 | info->dynstr, | |
372 | info->dyninfo.ld_symb_size, | |
373 | true)) | |
374 | { | |
375 | if (info->canonical_dynsym != NULL) | |
376 | { | |
377 | bfd_release (abfd, info->canonical_dynsym); | |
378 | info->canonical_dynsym = NULL; | |
379 | } | |
380 | return -1; | |
381 | } | |
382 | } | |
383 | ||
384 | /* Return pointers to the dynamic asymbol structures. */ | |
385 | for (i = 0; i < info->dynsym_count; i++) | |
386 | *storage++ = (asymbol *) (info->canonical_dynsym + i); | |
387 | *storage = NULL; | |
388 | ||
0ee75d02 | 389 | return info->dynsym_count; |
4a81b561 | 390 | } |
4a81b561 | 391 | |
e85e8bfe ILT |
392 | /* Return the amount of memory required for the dynamic relocs. */ |
393 | ||
394 | static long | |
395 | sunos_get_dynamic_reloc_upper_bound (abfd) | |
396 | bfd *abfd; | |
397 | { | |
398 | struct sunos_dynamic_info *info; | |
399 | ||
400 | if (! sunos_read_dynamic_info (abfd)) | |
401 | return -1; | |
402 | ||
403 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
404 | if (! info->valid) | |
405 | { | |
406 | bfd_set_error (bfd_error_no_symbols); | |
407 | return -1; | |
408 | } | |
409 | ||
410 | return (info->dynrel_count + 1) * sizeof (arelent *); | |
411 | } | |
412 | ||
413 | /* Read in the dynamic relocs. */ | |
4a81b561 | 414 | |
e85e8bfe ILT |
415 | static long |
416 | sunos_canonicalize_dynamic_reloc (abfd, storage, syms) | |
4a81b561 | 417 | bfd *abfd; |
e85e8bfe ILT |
418 | arelent **storage; |
419 | asymbol **syms; | |
4a81b561 | 420 | { |
0ee75d02 | 421 | struct sunos_dynamic_info *info; |
e85e8bfe | 422 | long i; |
4a81b561 | 423 | |
e85e8bfe | 424 | /* Get the general dynamic information. */ |
0ee75d02 ILT |
425 | if (obj_aout_dynamic_info (abfd) == (PTR) NULL) |
426 | { | |
427 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 428 | return -1; |
0ee75d02 | 429 | } |
4a81b561 | 430 | |
0ee75d02 | 431 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
432 | if (! info->valid) |
433 | { | |
434 | bfd_set_error (bfd_error_no_symbols); | |
435 | return -1; | |
436 | } | |
4a81b561 | 437 | |
e85e8bfe | 438 | /* Get the dynamic reloc information. */ |
9783e04a | 439 | if (info->dynrel == NULL) |
0ee75d02 ILT |
440 | { |
441 | info->dynrel = (PTR) bfd_alloc (abfd, | |
442 | (info->dynrel_count | |
443 | * obj_reloc_entry_size (abfd))); | |
e85e8bfe | 444 | if (info->dynrel == NULL && info->dynrel_count != 0) |
9783e04a | 445 | { |
d7fb4531 | 446 | bfd_set_error (bfd_error_no_memory); |
e85e8bfe | 447 | return -1; |
9783e04a | 448 | } |
0ee75d02 ILT |
449 | if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0 |
450 | || (bfd_read ((PTR) info->dynrel, info->dynrel_count, | |
451 | obj_reloc_entry_size (abfd), abfd) | |
452 | != info->dynrel_count * obj_reloc_entry_size (abfd))) | |
e85e8bfe ILT |
453 | { |
454 | if (info->dynrel != NULL) | |
455 | { | |
456 | bfd_release (abfd, info->dynrel); | |
457 | info->dynrel = NULL; | |
458 | } | |
459 | return -1; | |
460 | } | |
461 | } | |
462 | ||
463 | /* Get the arelent structures corresponding to the dynamic reloc | |
464 | information. */ | |
465 | if (info->canonical_dynrel == (arelent *) NULL) | |
466 | { | |
467 | arelent *to; | |
468 | ||
469 | info->canonical_dynrel = ((arelent *) | |
470 | bfd_alloc (abfd, | |
471 | (info->dynrel_count | |
472 | * sizeof (arelent)))); | |
473 | if (info->canonical_dynrel == NULL && info->dynrel_count != 0) | |
474 | { | |
475 | bfd_set_error (bfd_error_no_memory); | |
476 | return -1; | |
477 | } | |
478 | ||
479 | to = info->canonical_dynrel; | |
480 | ||
481 | if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) | |
482 | { | |
483 | register struct reloc_ext_external *p; | |
484 | struct reloc_ext_external *pend; | |
485 | ||
486 | p = (struct reloc_ext_external *) info->dynrel; | |
487 | pend = p + info->dynrel_count; | |
488 | for (; p < pend; p++, to++) | |
489 | NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms); | |
490 | } | |
491 | else | |
492 | { | |
493 | register struct reloc_std_external *p; | |
494 | struct reloc_std_external *pend; | |
495 | ||
496 | p = (struct reloc_std_external *) info->dynrel; | |
497 | pend = p + info->dynrel_count; | |
498 | for (; p < pend; p++, to++) | |
499 | NAME(aout,swap_std_reloc_in) (abfd, p, to, syms); | |
500 | } | |
0ee75d02 | 501 | } |
4a81b561 | 502 | |
e85e8bfe ILT |
503 | /* Return pointers to the dynamic arelent structures. */ |
504 | for (i = 0; i < info->dynrel_count; i++) | |
505 | *storage++ = info->canonical_dynrel + i; | |
506 | *storage = NULL; | |
4a81b561 | 507 | |
0ee75d02 | 508 | return info->dynrel_count; |
4a81b561 | 509 | } |
e85e8bfe ILT |
510 | \f |
511 | /* Code to handle linking of SunOS shared libraries. */ | |
512 | ||
513 | /* A SPARC procedure linkage table entry is 12 bytes. The first entry | |
514 | in the table is a jump which is filled in by the runtime linker. | |
515 | The remaining entries are branches back to the first entry, | |
516 | followed by an index into the relocation table encoded to look like | |
517 | a sethi of %g0. */ | |
518 | ||
519 | #define SPARC_PLT_ENTRY_SIZE (12) | |
520 | ||
04dc16b7 | 521 | static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] = |
e85e8bfe ILT |
522 | { |
523 | /* sethi %hi(0),%g1; address filled in by runtime linker. */ | |
524 | 0x3, 0, 0, 0, | |
525 | /* jmp %g1; offset filled in by runtime linker. */ | |
526 | 0x81, 0xc0, 0x60, 0, | |
527 | /* nop */ | |
528 | 0x1, 0, 0, 0 | |
529 | }; | |
530 | ||
531 | /* save %sp, -96, %sp */ | |
532 | #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0 | |
533 | /* call; address filled in later. */ | |
534 | #define SPARC_PLT_ENTRY_WORD1 0x40000000 | |
535 | /* sethi; reloc index filled in later. */ | |
536 | #define SPARC_PLT_ENTRY_WORD2 0x01000000 | |
537 | ||
538 | /* An m68k procedure linkage table entry is 8 bytes. The first entry | |
539 | in the table is a jump which is filled in the by the runtime | |
540 | linker. The remaining entries are branches back to the first | |
541 | entry, followed by a two byte index into the relocation table. */ | |
542 | ||
543 | #define M68K_PLT_ENTRY_SIZE (8) | |
544 | ||
04dc16b7 | 545 | static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] = |
e85e8bfe ILT |
546 | { |
547 | /* jmps @# */ | |
548 | 0x4e, 0xf9, | |
549 | /* Filled in by runtime linker with a magic address. */ | |
550 | 0, 0, 0, 0, | |
551 | /* Not used? */ | |
552 | 0, 0 | |
553 | }; | |
554 | ||
555 | /* bsrl */ | |
556 | #define M68K_PLT_ENTRY_WORD0 (0x61ff) | |
557 | /* Remaining words filled in later. */ | |
558 | ||
559 | /* An entry in the SunOS linker hash table. */ | |
560 | ||
561 | struct sunos_link_hash_entry | |
562 | { | |
563 | struct aout_link_hash_entry root; | |
564 | ||
565 | /* If this is a dynamic symbol, this is its index into the dynamic | |
566 | symbol table. This is initialized to -1. As the linker looks at | |
567 | the input files, it changes this to -2 if it will be added to the | |
568 | dynamic symbol table. After all the input files have been seen, | |
569 | the linker will know whether to build a dynamic symbol table; if | |
570 | it does build one, this becomes the index into the table. */ | |
571 | long dynindx; | |
572 | ||
573 | /* If this is a dynamic symbol, this is the index of the name in the | |
574 | dynamic symbol string table. */ | |
575 | long dynstr_index; | |
576 | ||
577 | /* Some linker flags. */ | |
578 | unsigned char flags; | |
579 | /* Symbol is referenced by a regular object. */ | |
580 | #define SUNOS_REF_REGULAR 01 | |
581 | /* Symbol is defined by a regular object. */ | |
582 | #define SUNOS_DEF_REGULAR 02 | |
583 | /* Symbol is referenced by a dynamic object. */ | |
584 | #define SUNOS_REF_DYNAMIC 010 | |
585 | /* Symbol is defined by a dynamic object. */ | |
586 | #define SUNOS_DEF_DYNAMIC 020 | |
587 | }; | |
588 | ||
589 | /* The SunOS linker hash table. */ | |
590 | ||
591 | struct sunos_link_hash_table | |
592 | { | |
593 | struct aout_link_hash_table root; | |
594 | ||
595 | /* The first dynamic object found during the link. */ | |
596 | bfd *dynobj; | |
597 | ||
598 | /* The number of dynamic symbols. */ | |
599 | size_t dynsymcount; | |
600 | ||
601 | /* The number of buckets in the hash table. */ | |
602 | size_t bucketcount; | |
603 | }; | |
604 | ||
605 | /* Routine to create an entry in an SunOS link hash table. */ | |
606 | ||
607 | static struct bfd_hash_entry * | |
608 | sunos_link_hash_newfunc (entry, table, string) | |
609 | struct bfd_hash_entry *entry; | |
610 | struct bfd_hash_table *table; | |
611 | const char *string; | |
612 | { | |
613 | struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry; | |
614 | ||
615 | /* Allocate the structure if it has not already been allocated by a | |
616 | subclass. */ | |
617 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
618 | ret = ((struct sunos_link_hash_entry *) | |
619 | bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry))); | |
620 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
621 | { | |
622 | bfd_set_error (bfd_error_no_memory); | |
623 | return (struct bfd_hash_entry *) ret; | |
624 | } | |
625 | ||
626 | /* Call the allocation method of the superclass. */ | |
627 | ret = ((struct sunos_link_hash_entry *) | |
628 | NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret, | |
629 | table, string)); | |
630 | if (ret != NULL) | |
631 | { | |
632 | /* Set local fields. */ | |
633 | ret->dynindx = -1; | |
634 | ret->dynstr_index = -1; | |
635 | ret->flags = 0; | |
636 | } | |
637 | ||
638 | return (struct bfd_hash_entry *) ret; | |
639 | } | |
640 | ||
641 | /* Create a SunOS link hash table. */ | |
642 | ||
643 | static struct bfd_link_hash_table * | |
644 | sunos_link_hash_table_create (abfd) | |
645 | bfd *abfd; | |
646 | { | |
647 | struct sunos_link_hash_table *ret; | |
648 | ||
649 | ret = ((struct sunos_link_hash_table *) | |
650 | malloc (sizeof (struct sunos_link_hash_table))); | |
651 | if (ret == (struct sunos_link_hash_table *) NULL) | |
652 | { | |
653 | bfd_set_error (bfd_error_no_memory); | |
654 | return (struct bfd_link_hash_table *) NULL; | |
655 | } | |
656 | if (! NAME(aout,link_hash_table_init) (&ret->root, abfd, | |
657 | sunos_link_hash_newfunc)) | |
658 | { | |
659 | free (ret); | |
660 | return (struct bfd_link_hash_table *) NULL; | |
661 | } | |
662 | ||
663 | ret->dynobj = NULL; | |
664 | ret->dynsymcount = 0; | |
665 | ret->bucketcount = 0; | |
666 | ||
667 | return &ret->root.root; | |
668 | } | |
669 | ||
670 | /* Look up an entry in an SunOS link hash table. */ | |
671 | ||
672 | #define sunos_link_hash_lookup(table, string, create, copy, follow) \ | |
673 | ((struct sunos_link_hash_entry *) \ | |
674 | aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\ | |
675 | (follow))) | |
676 | ||
677 | /* Traverse a SunOS link hash table. */ | |
678 | ||
679 | #define sunos_link_hash_traverse(table, func, info) \ | |
680 | (aout_link_hash_traverse \ | |
681 | (&(table)->root, \ | |
682 | (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \ | |
683 | (info))) | |
684 | ||
685 | /* Get the SunOS link hash table from the info structure. This is | |
686 | just a cast. */ | |
687 | ||
688 | #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash)) | |
689 | ||
690 | static boolean sunos_scan_dynamic_symbol | |
691 | PARAMS ((struct sunos_link_hash_entry *, PTR)); | |
692 | ||
693 | /* Add dynamic symbols during a link. This is called by the a.out | |
694 | backend linker when it encounters an object with the DYNAMIC flag | |
695 | set. */ | |
696 | ||
697 | static boolean | |
698 | sunos_add_dynamic_symbols (abfd, info) | |
699 | bfd *abfd; | |
700 | struct bfd_link_info *info; | |
701 | { | |
702 | asection *s; | |
703 | ||
704 | /* We do not want to include the sections in a dynamic object in the | |
705 | output file. We hack by simply clobbering the list of sections | |
706 | in the BFD. This could be handled more cleanly by, say, a new | |
707 | section flag; the existing SEC_NEVER_LOAD flag is not the one we | |
708 | want, because that one still implies that the section takes up | |
709 | space in the output file. */ | |
710 | abfd->sections = NULL; | |
711 | ||
712 | /* The native linker seems to just ignore dynamic objects when -r is | |
713 | used. */ | |
714 | if (info->relocateable) | |
715 | return true; | |
716 | ||
717 | /* There's no hope of using a dynamic object which does not exactly | |
718 | match the format of the output file. */ | |
719 | if (info->hash->creator != abfd->xvec) | |
720 | { | |
721 | bfd_set_error (bfd_error_invalid_operation); | |
722 | return false; | |
723 | } | |
724 | ||
725 | /* If this is the first dynamic object, create some new sections to | |
726 | hold dynamic linking information. We need to put these sections | |
727 | somewhere, and the first dynamic object is as good a place as | |
728 | any. The linker script will look for these special section names | |
729 | and put them in the right place in the output file. See | |
730 | include/aout/sun4.h for more details of the dynamic linking | |
731 | information. */ | |
732 | if (sunos_hash_table (info)->dynobj == NULL) | |
733 | { | |
734 | flagword flags; | |
735 | asection *sdyn; | |
736 | ||
737 | sunos_hash_table (info)->dynobj = abfd; | |
738 | ||
739 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
740 | ||
741 | /* The .dynamic section holds the basic dynamic information: the | |
742 | sun4_dynamic structure, the dynamic debugger information, and | |
743 | the sun4_dynamic_link structure. */ | |
744 | s = bfd_make_section (abfd, ".dynamic"); | |
745 | if (s == NULL | |
746 | || ! bfd_set_section_flags (abfd, s, flags) | |
747 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
748 | return false; | |
749 | sdyn = s; | |
750 | ||
751 | /* The .need section holds the list of names of shared objets | |
752 | which must be included at runtime. The address of this | |
753 | section is put in the ld_need field. */ | |
754 | s = bfd_make_section (abfd, ".need"); | |
755 | if (s == NULL | |
756 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
757 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
758 | return false; | |
759 | ||
760 | /* The .rules section holds the path to search for shared | |
761 | objects. The address of this section is put in the ld_rules | |
762 | field. */ | |
763 | s = bfd_make_section (abfd, ".rules"); | |
764 | if (s == NULL | |
765 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
766 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
767 | return false; | |
768 | ||
769 | /* The .got section holds the global offset table. I don't | |
770 | really know how this works, actually. It seems to only be | |
771 | used for PIC code. The address minus four is put in the | |
772 | ld_got field. */ | |
773 | s = bfd_make_section (abfd, ".got"); | |
774 | if (s == NULL | |
775 | || ! bfd_set_section_flags (abfd, s, flags) | |
776 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
777 | return false; | |
778 | s->_raw_size = BYTES_IN_WORD; | |
779 | ||
780 | /* The .plt section holds the procedure linkage table. The | |
781 | address is put in the ld_plt field. */ | |
782 | s = bfd_make_section (abfd, ".plt"); | |
783 | if (s == NULL | |
784 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
785 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
786 | return false; | |
787 | ||
788 | /* The .dynrel section holds the dynamic relocs. The address is | |
789 | put in the ld_rel field. */ | |
790 | s = bfd_make_section (abfd, ".dynrel"); | |
791 | if (s == NULL | |
792 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
793 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
794 | return false; | |
795 | ||
796 | /* The .hash section holds the dynamic hash table. The address | |
797 | is put in the ld_hash field. */ | |
798 | s = bfd_make_section (abfd, ".hash"); | |
799 | if (s == NULL | |
800 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
801 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
802 | return false; | |
803 | ||
804 | /* The .dynsym section holds the dynamic symbols. The address | |
805 | is put in the ld_stab field. */ | |
806 | s = bfd_make_section (abfd, ".dynsym"); | |
807 | if (s == NULL | |
808 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
809 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
810 | return false; | |
811 | ||
812 | /* The .dynstr section holds the dynamic symbol string table. | |
813 | The address is put in the ld_symbols field. */ | |
814 | s = bfd_make_section (abfd, ".dynstr"); | |
815 | if (s == NULL | |
816 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
817 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
818 | return false; | |
819 | } | |
820 | ||
821 | return true; | |
822 | } | |
823 | ||
824 | /* Function to add a single symbol to the linker hash table. This is | |
825 | a wrapper around _bfd_generic_link_add_one_symbol which handles the | |
826 | tweaking needed for dynamic linking support. */ | |
827 | ||
828 | static boolean | |
829 | sunos_add_one_symbol (info, abfd, name, flags, section, value, string, | |
830 | copy, collect, hashp) | |
831 | struct bfd_link_info *info; | |
832 | bfd *abfd; | |
833 | const char *name; | |
834 | flagword flags; | |
835 | asection *section; | |
836 | bfd_vma value; | |
837 | const char *string; | |
838 | boolean copy; | |
839 | boolean collect; | |
840 | struct bfd_link_hash_entry **hashp; | |
841 | { | |
842 | struct sunos_link_hash_entry *h; | |
843 | int new_flag; | |
844 | ||
845 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy, | |
846 | false); | |
847 | if (h == NULL) | |
848 | return false; | |
849 | ||
850 | if (hashp != NULL) | |
851 | *hashp = (struct bfd_link_hash_entry *) h; | |
852 | ||
ec88c42e ILT |
853 | /* Treat a common symbol in a dynamic object as defined in the .bss |
854 | section of the dynamic object. We don't want to allocate space | |
855 | for it in our process image. */ | |
e85e8bfe | 856 | if ((abfd->flags & DYNAMIC) != 0 |
788d9436 | 857 | && bfd_is_com_section (section)) |
ec88c42e | 858 | section = obj_bsssec (abfd); |
e85e8bfe | 859 | |
788d9436 | 860 | if (! bfd_is_und_section (section) |
e85e8bfe ILT |
861 | && h->root.root.type != bfd_link_hash_new |
862 | && h->root.root.type != bfd_link_hash_undefined) | |
863 | { | |
864 | /* We are defining the symbol, and it is already defined. This | |
865 | is a potential multiple definition error. */ | |
866 | if ((abfd->flags & DYNAMIC) != 0) | |
867 | { | |
868 | /* The definition we are adding is from a dynamic object. | |
869 | We do not want this new definition to override the | |
870 | existing definition, so we pretend it is just a | |
871 | reference. */ | |
788d9436 | 872 | section = bfd_und_section_ptr; |
e85e8bfe ILT |
873 | } |
874 | else if ((h->root.root.type == bfd_link_hash_defined | |
788d9436 | 875 | && h->root.root.u.def.section->owner != NULL |
e85e8bfe ILT |
876 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) |
877 | || (h->root.root.type == bfd_link_hash_common | |
878 | && ((h->root.root.u.c.section->owner->flags & DYNAMIC) | |
879 | != 0))) | |
880 | { | |
881 | /* The existing definition is from a dynamic object. We | |
882 | want to override it with the definition we just found. | |
883 | Clobber the existing definition. */ | |
884 | h->root.root.type = bfd_link_hash_new; | |
885 | } | |
886 | } | |
887 | ||
888 | /* Do the usual procedure for adding a symbol. */ | |
889 | if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, | |
890 | value, string, copy, collect, | |
891 | hashp)) | |
892 | return false; | |
893 | ||
04dc16b7 | 894 | if (abfd->xvec == info->hash->creator) |
e85e8bfe | 895 | { |
04dc16b7 ILT |
896 | /* Set a flag in the hash table entry indicating the type of |
897 | reference or definition we just found. Keep a count of the | |
898 | number of dynamic symbols we find. A dynamic symbol is one | |
899 | which is referenced or defined by both a regular object and a | |
900 | shared object. */ | |
901 | if ((abfd->flags & DYNAMIC) == 0) | |
902 | { | |
903 | if (bfd_is_und_section (section)) | |
904 | new_flag = SUNOS_REF_REGULAR; | |
905 | else | |
906 | new_flag = SUNOS_DEF_REGULAR; | |
907 | } | |
e85e8bfe | 908 | else |
04dc16b7 ILT |
909 | { |
910 | if (bfd_is_und_section (section)) | |
911 | new_flag = SUNOS_REF_DYNAMIC; | |
912 | else | |
913 | new_flag = SUNOS_DEF_DYNAMIC; | |
914 | } | |
915 | h->flags |= new_flag; | |
e85e8bfe | 916 | |
04dc16b7 ILT |
917 | if (h->dynindx == -1 |
918 | && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
919 | { | |
920 | ++sunos_hash_table (info)->dynsymcount; | |
921 | h->dynindx = -2; | |
922 | } | |
e85e8bfe ILT |
923 | } |
924 | ||
925 | return true; | |
926 | } | |
927 | ||
928 | /* Record an assignment made to a symbol by a linker script. We need | |
929 | this in case some dynamic object refers to this symbol. */ | |
930 | ||
931 | boolean | |
932 | bfd_sunos_record_link_assignment (output_bfd, info, name) | |
933 | bfd *output_bfd; | |
934 | struct bfd_link_info *info; | |
935 | const char *name; | |
936 | { | |
937 | struct sunos_link_hash_entry *h; | |
938 | ||
939 | /* This is called after we have examined all the input objects. If | |
940 | the symbol does not exist, it merely means that no object refers | |
941 | to it, and we can just ignore it at this point. */ | |
942 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, | |
943 | false, false, false); | |
944 | if (h == NULL) | |
945 | return true; | |
946 | ||
947 | h->flags |= SUNOS_DEF_REGULAR; | |
948 | ||
949 | if (h->dynindx == -1) | |
950 | { | |
951 | ++sunos_hash_table (info)->dynsymcount; | |
952 | h->dynindx = -2; | |
953 | } | |
954 | ||
955 | return true; | |
956 | } | |
957 | ||
958 | /* Set up the sizes and contents of the dynamic sections created in | |
959 | sunos_add_dynamic_symbols. This is called by the SunOS linker | |
960 | emulation before_allocation routine. We must set the sizes of the | |
961 | sections before the linker sets the addresses of the various | |
962 | sections. This unfortunately requires reading all the relocs so | |
963 | that we can work out which ones need to become dynamic relocs. If | |
964 | info->keep_memory is true, we keep the relocs in memory; otherwise, | |
965 | we discard them, and will read them again later. */ | |
966 | ||
967 | boolean | |
968 | bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr, | |
969 | srulesptr) | |
970 | bfd *output_bfd; | |
971 | struct bfd_link_info *info; | |
972 | asection **sdynptr; | |
973 | asection **sneedptr; | |
974 | asection **srulesptr; | |
975 | { | |
976 | bfd *dynobj; | |
977 | size_t dynsymcount; | |
978 | asection *s; | |
979 | size_t bucketcount; | |
980 | size_t hashalloc; | |
981 | size_t i; | |
982 | bfd *sub; | |
983 | ||
984 | *sdynptr = NULL; | |
985 | *sneedptr = NULL; | |
986 | *srulesptr = NULL; | |
987 | ||
988 | dynobj = sunos_hash_table (info)->dynobj; | |
989 | dynsymcount = sunos_hash_table (info)->dynsymcount; | |
990 | ||
991 | /* If there were no dynamic objects in the link, there is nothing to | |
992 | do here. */ | |
993 | if (dynobj == NULL) | |
994 | return true; | |
995 | ||
996 | /* The .dynamic section is always the same size. */ | |
997 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
998 | BFD_ASSERT (s != NULL); | |
999 | s->_raw_size = (sizeof (struct external_sun4_dynamic) | |
1000 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE | |
1001 | + sizeof (struct external_sun4_dynamic_link)); | |
1002 | ||
1003 | /* Set the size of the .dynsym and .hash sections. We counted the | |
1004 | number of dynamic symbols as we read the input files. We will | |
1005 | build the dynamic symbol table (.dynsym) and the hash table | |
1006 | (.hash) when we build the final symbol table, because until then | |
1007 | we do not know the correct value to give the symbols. We build | |
1008 | the dynamic symbol string table (.dynstr) in a traversal of the | |
1009 | symbol table using sunos_scan_dynamic_symbol. */ | |
1010 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1011 | BFD_ASSERT (s != NULL); | |
1012 | s->_raw_size = dynsymcount * sizeof (struct external_nlist); | |
1013 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1014 | if (s->contents == NULL && s->_raw_size != 0) | |
1015 | { | |
1016 | bfd_set_error (bfd_error_no_memory); | |
1017 | return false; | |
1018 | } | |
1019 | ||
1020 | /* The number of buckets is just the number of symbols divided by | |
1021 | four. The compute the final size of the hash table, we must | |
1022 | actually compute the hash table. Normally we need exactly as | |
1023 | many entries in the hash table as there are dynamic symbols, but | |
1024 | if some of the buckets are not used we will need additional | |
1025 | entries. In the worse case, every symbol will hash to the same | |
1026 | bucket, and we will need BUCKETCOUNT - 1 extra entries. */ | |
1027 | if (dynsymcount >= 4) | |
1028 | bucketcount = dynsymcount / 4; | |
1029 | else if (dynsymcount > 0) | |
1030 | bucketcount = dynsymcount; | |
1031 | else | |
1032 | bucketcount = 1; | |
1033 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1034 | BFD_ASSERT (s != NULL); | |
1035 | hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE; | |
a1ade84e | 1036 | s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc); |
e85e8bfe ILT |
1037 | if (s->contents == NULL && dynsymcount > 0) |
1038 | { | |
1039 | bfd_set_error (bfd_error_no_memory); | |
1040 | return false; | |
1041 | } | |
1042 | memset (s->contents, 0, hashalloc); | |
1043 | for (i = 0; i < bucketcount; i++) | |
1044 | PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE); | |
1045 | s->_raw_size = bucketcount * HASH_ENTRY_SIZE; | |
1046 | ||
1047 | sunos_hash_table (info)->bucketcount = bucketcount; | |
1048 | ||
1049 | /* Look through all the input BFD's and read their relocs. It would | |
1050 | be better if we didn't have to do this, but there is no other way | |
1051 | to determine the number of dynamic relocs we need, and, more | |
1052 | importantly, there is no other way to know which symbols should | |
1053 | get an entry in the procedure linkage table. */ | |
1054 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
1055 | { | |
1056 | if ((sub->flags & DYNAMIC) == 0) | |
1057 | { | |
1058 | if (! sunos_scan_relocs (info, sub, obj_textsec (sub), | |
1059 | exec_hdr (sub)->a_trsize) | |
1060 | || ! sunos_scan_relocs (info, sub, obj_datasec (sub), | |
1061 | exec_hdr (sub)->a_drsize)) | |
1062 | return false; | |
1063 | } | |
1064 | } | |
1065 | ||
1066 | /* Scan all the symbols, place them in the dynamic symbol table, and | |
1067 | build the dynamic hash table. We reuse dynsymcount as a counter | |
1068 | for the number of symbols we have added so far. */ | |
1069 | sunos_hash_table (info)->dynsymcount = 0; | |
1070 | sunos_link_hash_traverse (sunos_hash_table (info), | |
1071 | sunos_scan_dynamic_symbol, | |
1072 | (PTR) info); | |
1073 | BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount); | |
1074 | ||
1075 | /* The SunOS native linker seems to align the total size of the | |
1076 | symbol strings to a multiple of 8. I don't know if this is | |
1077 | important, but it can't hurt much. */ | |
1078 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1079 | BFD_ASSERT (s != NULL); | |
1080 | if ((s->_raw_size & 7) != 0) | |
1081 | { | |
1082 | bfd_size_type add; | |
1083 | bfd_byte *contents; | |
1084 | ||
1085 | add = 8 - (s->_raw_size & 7); | |
a1ade84e | 1086 | contents = (bfd_byte *) realloc (s->contents, s->_raw_size + add); |
e85e8bfe ILT |
1087 | if (contents == NULL) |
1088 | { | |
1089 | bfd_set_error (bfd_error_no_memory); | |
1090 | return false; | |
1091 | } | |
1092 | memset (contents + s->_raw_size, 0, add); | |
1093 | s->contents = contents; | |
1094 | s->_raw_size += add; | |
1095 | } | |
1096 | ||
1097 | /* Now that we have worked out the sizes of the procedure linkage | |
1098 | table and the dynamic relocs, allocate storage for them. */ | |
1099 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
1100 | BFD_ASSERT (s != NULL); | |
1101 | if (s->_raw_size != 0) | |
1102 | { | |
a1ade84e | 1103 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1104 | if (s->contents == NULL) |
1105 | { | |
1106 | bfd_set_error (bfd_error_no_memory); | |
1107 | return false; | |
1108 | } | |
1109 | ||
1110 | /* Fill in the first entry in the table. */ | |
1111 | switch (bfd_get_arch (dynobj)) | |
1112 | { | |
1113 | case bfd_arch_sparc: | |
1114 | memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE); | |
1115 | break; | |
1116 | ||
1117 | case bfd_arch_m68k: | |
1118 | memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE); | |
1119 | break; | |
1120 | ||
1121 | default: | |
1122 | abort (); | |
1123 | } | |
1124 | } | |
1125 | ||
1126 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1127 | if (s->_raw_size != 0) | |
1128 | { | |
a1ade84e | 1129 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1130 | if (s->contents == NULL) |
1131 | { | |
1132 | bfd_set_error (bfd_error_no_memory); | |
1133 | return false; | |
1134 | } | |
1135 | } | |
1136 | /* We use the reloc_count field to keep track of how many of the | |
1137 | relocs we have output so far. */ | |
1138 | s->reloc_count = 0; | |
1139 | ||
1140 | /* Make space for the global offset table. */ | |
1141 | s = bfd_get_section_by_name (dynobj, ".got"); | |
a1ade84e | 1142 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1143 | if (s->contents == NULL) |
1144 | { | |
1145 | bfd_set_error (bfd_error_no_memory); | |
1146 | return false; | |
1147 | } | |
1148 | ||
1149 | *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1150 | *sneedptr = bfd_get_section_by_name (dynobj, ".need"); | |
1151 | *srulesptr = bfd_get_section_by_name (dynobj, ".rules"); | |
1152 | ||
1153 | return true; | |
1154 | } | |
1155 | ||
1156 | /* Scan the relocs for an input section. */ | |
1157 | ||
1158 | static boolean | |
1159 | sunos_scan_relocs (info, abfd, sec, rel_size) | |
1160 | struct bfd_link_info *info; | |
1161 | bfd *abfd; | |
1162 | asection *sec; | |
1163 | bfd_size_type rel_size; | |
1164 | { | |
1165 | PTR relocs; | |
1166 | PTR free_relocs = NULL; | |
1167 | ||
1168 | if (rel_size == 0) | |
1169 | return true; | |
1170 | ||
1171 | if (! info->keep_memory) | |
1172 | relocs = free_relocs = malloc (rel_size); | |
1173 | else | |
1174 | { | |
1175 | aout_section_data (sec) = | |
1176 | ((struct aout_section_data_struct *) | |
1177 | bfd_alloc (abfd, sizeof (struct aout_section_data_struct))); | |
1178 | if (aout_section_data (sec) == NULL) | |
1179 | relocs = NULL; | |
1180 | else | |
1181 | relocs = aout_section_data (sec)->relocs = malloc (rel_size); | |
1182 | } | |
1183 | if (relocs == NULL) | |
1184 | { | |
1185 | bfd_set_error (bfd_error_no_memory); | |
1186 | return false; | |
1187 | } | |
1188 | ||
1189 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1190 | || bfd_read (relocs, 1, rel_size, abfd) != rel_size) | |
1191 | goto error_return; | |
1192 | ||
1193 | if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE) | |
1194 | { | |
1195 | if (! sunos_scan_std_relocs (info, abfd, sec, | |
1196 | (struct reloc_std_external *) relocs, | |
1197 | rel_size)) | |
1198 | goto error_return; | |
1199 | } | |
1200 | else | |
1201 | { | |
1202 | if (! sunos_scan_ext_relocs (info, abfd, sec, | |
1203 | (struct reloc_ext_external *) relocs, | |
1204 | rel_size)) | |
1205 | goto error_return; | |
1206 | } | |
1207 | ||
1208 | if (free_relocs != NULL) | |
1209 | free (free_relocs); | |
1210 | ||
1211 | return true; | |
1212 | ||
1213 | error_return: | |
1214 | if (free_relocs != NULL) | |
1215 | free (free_relocs); | |
1216 | return false; | |
1217 | } | |
1218 | ||
1219 | /* Scan the relocs for an input section using standard relocs. We | |
1220 | need to figure out what to do for each reloc against a dynamic | |
1221 | symbol. If the symbol is in the .text section, an entry is made in | |
1222 | the procedure linkage table. Note that this will do the wrong | |
1223 | thing if the symbol is actually data; I don't think the Sun 3 | |
1224 | native linker handles this case correctly either. If the symbol is | |
1225 | not in the .text section, we must preserve the reloc as a dynamic | |
1226 | reloc. FIXME: We should also handle the PIC relocs here by | |
1227 | building global offset table entries. */ | |
1228 | ||
1229 | static boolean | |
1230 | sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size) | |
1231 | struct bfd_link_info *info; | |
1232 | bfd *abfd; | |
1233 | asection *sec; | |
1234 | const struct reloc_std_external *relocs; | |
1235 | bfd_size_type rel_size; | |
1236 | { | |
1237 | bfd *dynobj; | |
1238 | asection *splt; | |
1239 | asection *srel; | |
1240 | struct sunos_link_hash_entry **sym_hashes; | |
1241 | const struct reloc_std_external *rel, *relend; | |
1242 | ||
1243 | /* We only know how to handle m68k plt entries. */ | |
1244 | if (bfd_get_arch (abfd) != bfd_arch_m68k) | |
1245 | { | |
1246 | bfd_set_error (bfd_error_invalid_target); | |
1247 | return false; | |
1248 | } | |
1249 | ||
1250 | dynobj = sunos_hash_table (info)->dynobj; | |
1251 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1252 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1253 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1254 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1255 | ||
1256 | relend = relocs + rel_size / RELOC_STD_SIZE; | |
1257 | for (rel = relocs; rel < relend; rel++) | |
1258 | { | |
1259 | int r_index; | |
1260 | struct sunos_link_hash_entry *h; | |
1261 | ||
1262 | /* We only want relocs against external symbols. */ | |
1263 | if (abfd->xvec->header_byteorder_big_p) | |
1264 | { | |
1265 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0) | |
1266 | continue; | |
1267 | } | |
1268 | else | |
1269 | { | |
1270 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0) | |
1271 | continue; | |
1272 | } | |
1273 | ||
1274 | /* Get the symbol index. */ | |
1275 | if (abfd->xvec->header_byteorder_big_p) | |
1276 | { | |
1277 | r_index = ((rel->r_index[0] << 16) | |
1278 | | (rel->r_index[1] << 8) | |
1279 | | rel->r_index[2]); | |
1280 | } | |
1281 | else | |
1282 | { | |
1283 | r_index = ((rel->r_index[2] << 16) | |
1284 | | (rel->r_index[1] << 8) | |
1285 | | rel->r_index[0]); | |
1286 | } | |
1287 | ||
1288 | /* Get the hash table entry. */ | |
1289 | h = sym_hashes[r_index]; | |
1290 | if (h == NULL) | |
1291 | { | |
1292 | /* This should not normally happen, but it will in any case | |
1293 | be caught in the relocation phase. */ | |
1294 | continue; | |
1295 | } | |
1296 | ||
1297 | /* At this point common symbols have already been allocated, so | |
1298 | we don't have to worry about them. We need to consider that | |
1299 | we may have already seen this symbol and marked it undefined; | |
1300 | if the symbols is really undefined, then SUNOS_DEF_DYNAMIC | |
1301 | will be zero. */ | |
1302 | if (h->root.root.type != bfd_link_hash_defined | |
1303 | && h->root.root.type != bfd_link_hash_undefined) | |
1304 | continue; | |
1305 | ||
1306 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1307 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1308 | continue; | |
1309 | ||
1310 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); | |
1311 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1312 | ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0 | |
1313 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0); | |
1314 | ||
1315 | /* This reloc is against a symbol defined only by a dynamic | |
1316 | object. */ | |
1317 | ||
1318 | if (h->root.root.type == bfd_link_hash_undefined) | |
1319 | { | |
1320 | /* Presumably this symbol was marked as being undefined by | |
1321 | an earlier reloc. */ | |
1322 | srel->_raw_size += RELOC_STD_SIZE; | |
1323 | } | |
1324 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1325 | { | |
1326 | bfd *sub; | |
1327 | ||
1328 | /* This reloc is not in the .text section. It must be | |
1329 | copied into the dynamic relocs. We mark the symbol as | |
1330 | being undefined. */ | |
1331 | srel->_raw_size += RELOC_STD_SIZE; | |
1332 | sub = h->root.root.u.def.section->owner; | |
1333 | h->root.root.type = bfd_link_hash_undefined; | |
1334 | h->root.root.u.undef.abfd = sub; | |
1335 | } | |
1336 | else | |
1337 | { | |
1338 | /* This symbol is in the .text section. We must give it an | |
1339 | entry in the procedure linkage table, if we have not | |
1340 | already done so. We change the definition of the symbol | |
1341 | to the .plt section; this will cause relocs against it to | |
1342 | be handled correctly. */ | |
1343 | if (h->root.root.u.def.section != splt) | |
1344 | { | |
1345 | if (splt->_raw_size == 0) | |
1346 | splt->_raw_size = M68K_PLT_ENTRY_SIZE; | |
1347 | h->root.root.u.def.section = splt; | |
1348 | h->root.root.u.def.value = splt->_raw_size; | |
1349 | splt->_raw_size += M68K_PLT_ENTRY_SIZE; | |
1350 | ||
1351 | /* We will also need a dynamic reloc entry. */ | |
1352 | srel->_raw_size += RELOC_STD_SIZE; | |
1353 | } | |
1354 | } | |
1355 | } | |
1356 | ||
1357 | return true; | |
1358 | } | |
1359 | ||
1360 | /* Scan the relocs for an input section using extended relocs. We | |
1361 | need to figure out what to do for each reloc against a dynamic | |
1362 | symbol. If the reloc is a WDISP30, and the symbol is in the .text | |
1363 | section, an entry is made in the procedure linkage table. | |
1364 | Otherwise, we must preserve the reloc as a dynamic reloc. FIXME: | |
1365 | We should also handle the PIC relocs here by building global offset | |
1366 | table entries. */ | |
1367 | ||
1368 | static boolean | |
1369 | sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size) | |
1370 | struct bfd_link_info *info; | |
1371 | bfd *abfd; | |
1372 | asection *sec; | |
1373 | const struct reloc_ext_external *relocs; | |
1374 | bfd_size_type rel_size; | |
1375 | { | |
1376 | bfd *dynobj; | |
1377 | asection *splt; | |
1378 | asection *srel; | |
1379 | struct sunos_link_hash_entry **sym_hashes; | |
1380 | const struct reloc_ext_external *rel, *relend; | |
1381 | ||
1382 | /* We only know how to handle SPARC plt entries. */ | |
1383 | if (bfd_get_arch (abfd) != bfd_arch_sparc) | |
1384 | { | |
1385 | bfd_set_error (bfd_error_invalid_target); | |
1386 | return false; | |
1387 | } | |
1388 | ||
1389 | dynobj = sunos_hash_table (info)->dynobj; | |
1390 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1391 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1392 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1393 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1394 | ||
1395 | relend = relocs + rel_size / RELOC_EXT_SIZE; | |
1396 | for (rel = relocs; rel < relend; rel++) | |
1397 | { | |
1398 | int r_index; | |
1399 | int r_type; | |
1400 | struct sunos_link_hash_entry *h; | |
1401 | ||
1402 | /* We only want relocs against external symbols. */ | |
1403 | if (abfd->xvec->header_byteorder_big_p) | |
1404 | { | |
1405 | if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG) == 0) | |
1406 | continue; | |
1407 | } | |
1408 | else | |
1409 | { | |
1410 | if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE) == 0) | |
1411 | continue; | |
1412 | } | |
1413 | ||
1414 | /* Get the symbol index and reloc type. */ | |
1415 | if (abfd->xvec->header_byteorder_big_p) | |
1416 | { | |
1417 | r_index = ((rel->r_index[0] << 16) | |
1418 | | (rel->r_index[1] << 8) | |
1419 | | rel->r_index[2]); | |
1420 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
1421 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
1422 | } | |
1423 | else | |
1424 | { | |
1425 | r_index = ((rel->r_index[2] << 16) | |
1426 | | (rel->r_index[1] << 8) | |
1427 | | rel->r_index[0]); | |
1428 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
1429 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
1430 | } | |
1431 | ||
1432 | /* Get the hash table entry. */ | |
1433 | h = sym_hashes[r_index]; | |
1434 | if (h == NULL) | |
1435 | { | |
1436 | /* This should not normally happen, but it will in any case | |
1437 | be caught in the relocation phase. */ | |
1438 | continue; | |
1439 | } | |
1440 | ||
1441 | /* At this point common symbols have already been allocated, so | |
1442 | we don't have to worry about them. We need to consider that | |
1443 | we may have already seen this symbol and marked it undefined; | |
1444 | if the symbols is really undefined, then SUNOS_DEF_DYNAMIC | |
1445 | will be zero. */ | |
1446 | if (h->root.root.type != bfd_link_hash_defined | |
1447 | && h->root.root.type != bfd_link_hash_undefined) | |
1448 | continue; | |
1449 | ||
1450 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1451 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1452 | continue; | |
1453 | ||
1454 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); | |
1455 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1456 | ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0 | |
1457 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0); | |
1458 | ||
1459 | /* This reloc is against a symbol defined only by a dynamic | |
1460 | object. */ | |
1461 | ||
1462 | if (h->root.root.type == bfd_link_hash_undefined) | |
1463 | { | |
1464 | /* Presumably this symbol was marked as being undefined by | |
1465 | an earlier reloc. */ | |
1466 | srel->_raw_size += RELOC_EXT_SIZE; | |
1467 | } | |
1468 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1469 | { | |
1470 | bfd *sub; | |
1471 | ||
1472 | /* This reloc is not in the .text section. It must be | |
1473 | copied into the dynamic relocs. We mark the symbol as | |
1474 | being undefined. */ | |
1475 | srel->_raw_size += RELOC_EXT_SIZE; | |
1476 | sub = h->root.root.u.def.section->owner; | |
1477 | h->root.root.type = bfd_link_hash_undefined; | |
1478 | h->root.root.u.undef.abfd = sub; | |
1479 | } | |
1480 | else | |
1481 | { | |
1482 | /* This symbol is in the .text section. We must give it an | |
1483 | entry in the procedure linkage table, if we have not | |
1484 | already done so. We change the definition of the symbol | |
1485 | to the .plt section; this will cause relocs against it to | |
1486 | be handled correctly. */ | |
1487 | if (h->root.root.u.def.section != splt) | |
1488 | { | |
1489 | if (splt->_raw_size == 0) | |
1490 | splt->_raw_size = SPARC_PLT_ENTRY_SIZE; | |
1491 | h->root.root.u.def.section = splt; | |
1492 | h->root.root.u.def.value = splt->_raw_size; | |
1493 | splt->_raw_size += SPARC_PLT_ENTRY_SIZE; | |
1494 | ||
1495 | /* We will also need a dynamic reloc entry. */ | |
1496 | srel->_raw_size += RELOC_EXT_SIZE; | |
1497 | } | |
1498 | } | |
1499 | } | |
1500 | ||
1501 | return true; | |
1502 | } | |
1503 | ||
1504 | /* Build the hash table of dynamic symbols, and to mark as written all | |
1505 | symbols from dynamic objects which we do not plan to write out. */ | |
1506 | ||
1507 | static boolean | |
1508 | sunos_scan_dynamic_symbol (h, data) | |
1509 | struct sunos_link_hash_entry *h; | |
1510 | PTR data; | |
1511 | { | |
1512 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
1513 | ||
1514 | /* Set the written flag for symbols we do not want to write out as | |
1515 | part of the regular symbol table. This is all symbols which are | |
1516 | not defined in a regular object file. For some reason symbols | |
1517 | which are referenced by a regular object and defined by a dynamic | |
1518 | object do not seem to show up in the regular symbol table. */ | |
1519 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
4298e311 | 1520 | h->root.written = true; |
e85e8bfe ILT |
1521 | |
1522 | /* If this symbol is defined by a dynamic object and referenced by a | |
1523 | regular object, see whether we gave it a reasonable value while | |
1524 | scanning the relocs. */ | |
1525 | ||
1526 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
1527 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1528 | && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1529 | { | |
1530 | if (h->root.root.type == bfd_link_hash_defined | |
1531 | && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1532 | && h->root.root.u.def.section->output_section == NULL) | |
1533 | { | |
1534 | bfd *sub; | |
1535 | ||
1536 | /* This symbol is currently defined in a dynamic section | |
1537 | which is not being put into the output file. This | |
1538 | implies that there is no reloc against the symbol. I'm | |
1539 | not sure why this case would ever occur. In any case, we | |
1540 | change the symbol to be undefined. */ | |
1541 | sub = h->root.root.u.def.section->owner; | |
1542 | h->root.root.type = bfd_link_hash_undefined; | |
1543 | h->root.root.u.undef.abfd = sub; | |
1544 | } | |
1545 | } | |
1546 | ||
1547 | /* If this symbol is defined or referenced by a regular file, add it | |
1548 | to the dynamic symbols. */ | |
1549 | if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1550 | { | |
1551 | asection *s; | |
1552 | size_t len; | |
1553 | bfd_byte *contents; | |
1554 | unsigned char *name; | |
1555 | unsigned long hash; | |
1556 | bfd *dynobj; | |
1557 | ||
1558 | BFD_ASSERT (h->dynindx == -2); | |
1559 | ||
1560 | h->dynindx = sunos_hash_table (info)->dynsymcount; | |
1561 | ++sunos_hash_table (info)->dynsymcount; | |
1562 | ||
1563 | len = strlen (h->root.root.root.string); | |
1564 | ||
1565 | /* We don't bother to construct a BFD hash table for the strings | |
1566 | which are the names of the dynamic symbols. Using a hash | |
1567 | table for the regular symbols is beneficial, because the | |
1568 | regular symbols includes the debugging symbols, which have | |
1569 | long names and are often duplicated in several object files. | |
1570 | There are no debugging symbols in the dynamic symbols. */ | |
1571 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, | |
1572 | ".dynstr"); | |
1573 | BFD_ASSERT (s != NULL); | |
1574 | if (s->contents == NULL) | |
a1ade84e | 1575 | contents = (bfd_byte *) malloc (len + 1); |
e85e8bfe | 1576 | else |
a1ade84e | 1577 | contents = (bfd_byte *) realloc (s->contents, s->_raw_size + len + 1); |
e85e8bfe ILT |
1578 | if (contents == NULL) |
1579 | { | |
1580 | bfd_set_error (bfd_error_no_memory); | |
1581 | return false; | |
1582 | } | |
1583 | s->contents = contents; | |
1584 | ||
1585 | h->dynstr_index = s->_raw_size; | |
1586 | strcpy (contents + s->_raw_size, h->root.root.root.string); | |
1587 | s->_raw_size += len + 1; | |
1588 | ||
1589 | /* Add it to the dynamic hash table. */ | |
1590 | name = (unsigned char *) h->root.root.root.string; | |
1591 | hash = 0; | |
1592 | while (*name != '\0') | |
1593 | hash = (hash << 1) + *name++; | |
1594 | hash &= 0x7fffffff; | |
1595 | hash %= sunos_hash_table (info)->bucketcount; | |
1596 | ||
1597 | dynobj = sunos_hash_table (info)->dynobj; | |
1598 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1599 | BFD_ASSERT (s != NULL); | |
1600 | ||
1601 | if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1) | |
1602 | PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE); | |
1603 | else | |
1604 | { | |
1605 | bfd_vma next; | |
1606 | ||
1607 | next = GET_WORD (dynobj, | |
1608 | (s->contents | |
1609 | + hash * HASH_ENTRY_SIZE | |
1610 | + BYTES_IN_WORD)); | |
1611 | PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE, | |
1612 | s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
1613 | PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size); | |
1614 | PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD); | |
1615 | s->_raw_size += HASH_ENTRY_SIZE; | |
1616 | } | |
1617 | } | |
1618 | ||
1619 | return true; | |
1620 | } | |
1621 | ||
1622 | /* Link a dynamic object. We actually don't have anything to do at | |
1623 | this point. This entry point exists to prevent the regular linker | |
1624 | code from doing anything with the object. */ | |
1625 | ||
1626 | /*ARGSUSED*/ | |
1627 | static boolean | |
1628 | sunos_link_dynamic_object (info, abfd) | |
1629 | struct bfd_link_info *info; | |
1630 | bfd *abfd; | |
1631 | { | |
1632 | return true; | |
1633 | } | |
1634 | ||
1635 | ||
1636 | /* Write out a dynamic symbol. This is called by the final traversal | |
1637 | over the symbol table. */ | |
1638 | ||
1639 | static boolean | |
1640 | sunos_write_dynamic_symbol (output_bfd, info, harg) | |
1641 | bfd *output_bfd; | |
1642 | struct bfd_link_info *info; | |
1643 | struct aout_link_hash_entry *harg; | |
1644 | { | |
1645 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
1646 | boolean plt; | |
1647 | int type; | |
1648 | bfd_vma val; | |
1649 | asection *s; | |
1650 | struct external_nlist *outsym; | |
1651 | ||
1652 | if (h->dynindx < 0) | |
1653 | return true; | |
1654 | ||
1655 | plt = false; | |
1656 | switch (h->root.root.type) | |
1657 | { | |
1658 | default: | |
1659 | case bfd_link_hash_new: | |
1660 | abort (); | |
1661 | /* Avoid variable not initialized warnings. */ | |
1662 | return true; | |
1663 | case bfd_link_hash_undefined: | |
1664 | type = N_UNDF | N_EXT; | |
1665 | val = 0; | |
1666 | break; | |
1667 | case bfd_link_hash_defined: | |
1668 | { | |
1669 | asection *sec; | |
1670 | asection *output_section; | |
1671 | ||
1672 | sec = h->root.root.u.def.section; | |
1673 | output_section = sec->output_section; | |
788d9436 | 1674 | BFD_ASSERT (bfd_is_abs_section (output_section) |
e85e8bfe ILT |
1675 | || output_section->owner == output_bfd); |
1676 | if (strcmp (sec->name, ".plt") == 0) | |
1677 | { | |
1678 | plt = true; | |
1679 | type = N_UNDF | N_EXT; | |
1680 | val = 0; | |
1681 | } | |
1682 | else | |
1683 | { | |
1684 | if (output_section == obj_textsec (output_bfd)) | |
1685 | type = N_TEXT | N_EXT; | |
1686 | else if (output_section == obj_datasec (output_bfd)) | |
1687 | type = N_DATA | N_EXT; | |
1688 | else if (output_section == obj_bsssec (output_bfd)) | |
1689 | type = N_BSS | N_EXT; | |
1690 | else | |
1691 | type = N_ABS | N_EXT; | |
1692 | val = (h->root.root.u.def.value | |
1693 | + output_section->vma | |
1694 | + sec->output_offset); | |
1695 | } | |
1696 | } | |
1697 | break; | |
1698 | case bfd_link_hash_common: | |
1699 | type = N_UNDF | N_EXT; | |
1700 | val = h->root.root.u.c.size; | |
1701 | break; | |
4298e311 ILT |
1702 | case bfd_link_hash_weak: |
1703 | type = N_WEAKU; | |
1704 | val = 0; | |
1705 | break; | |
e85e8bfe ILT |
1706 | case bfd_link_hash_indirect: |
1707 | case bfd_link_hash_warning: | |
1708 | /* FIXME: Ignore these for now. The circumstances under which | |
1709 | they should be written out are not clear to me. */ | |
1710 | return true; | |
1711 | } | |
1712 | ||
1713 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym"); | |
1714 | BFD_ASSERT (s != NULL); | |
1715 | outsym = ((struct external_nlist *) | |
1716 | (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE)); | |
1717 | ||
1718 | bfd_h_put_8 (output_bfd, type, outsym->e_type); | |
1719 | bfd_h_put_8 (output_bfd, 0, outsym->e_other); | |
1720 | ||
1721 | /* FIXME: The native linker doesn't use 0 for desc. It seems to use | |
1722 | one less than the desc value in the shared library, although that | |
1723 | seems unlikely. */ | |
1724 | bfd_h_put_16 (output_bfd, 0, outsym->e_desc); | |
1725 | ||
1726 | PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx); | |
1727 | PUT_WORD (output_bfd, val, outsym->e_value); | |
1728 | ||
1729 | /* If this symbol is in the procedure linkage table, fill in the | |
1730 | table entry. */ | |
1731 | if (plt) | |
1732 | { | |
1733 | bfd_byte *p; | |
1734 | asection *s; | |
1735 | bfd_vma r_address; | |
1736 | ||
1737 | p = h->root.root.u.def.section->contents + h->root.root.u.def.value; | |
1738 | ||
1739 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynrel"); | |
1740 | BFD_ASSERT (s != NULL); | |
1741 | ||
cd779d01 ILT |
1742 | r_address = (h->root.root.u.def.section->output_section->vma |
1743 | + h->root.root.u.def.section->output_offset | |
1744 | + h->root.root.u.def.value); | |
1745 | ||
e85e8bfe ILT |
1746 | switch (bfd_get_arch (output_bfd)) |
1747 | { | |
1748 | case bfd_arch_sparc: | |
1749 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p); | |
1750 | bfd_put_32 (output_bfd, | |
1751 | (SPARC_PLT_ENTRY_WORD1 | |
1752 | + (((- (h->root.root.u.def.value + 4) >> 2) | |
1753 | & 0x3fffffff))), | |
1754 | p + 4); | |
1755 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count, | |
1756 | p + 8); | |
1757 | break; | |
1758 | ||
1759 | case bfd_arch_m68k: | |
1760 | bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p); | |
1761 | bfd_put_32 (output_bfd, (- (h->root.root.u.def.value + 2)), p + 2); | |
1762 | bfd_put_16 (output_bfd, s->reloc_count, p + 6); | |
cd779d01 | 1763 | r_address += 2; |
e85e8bfe ILT |
1764 | break; |
1765 | ||
1766 | default: | |
1767 | abort (); | |
1768 | } | |
1769 | ||
1770 | /* We also need to add a jump table reloc. */ | |
1771 | p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd); | |
e85e8bfe ILT |
1772 | if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE) |
1773 | { | |
1774 | struct reloc_std_external *srel; | |
1775 | ||
1776 | srel = (struct reloc_std_external *) p; | |
1777 | PUT_WORD (output_bfd, r_address, srel->r_address); | |
1778 | if (output_bfd->xvec->header_byteorder_big_p) | |
1779 | { | |
1780 | srel->r_index[0] = h->dynindx >> 16; | |
1781 | srel->r_index[1] = h->dynindx >> 8; | |
1782 | srel->r_index[2] = h->dynindx; | |
1783 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG | |
1784 | | RELOC_STD_BITS_JMPTABLE_BIG); | |
1785 | } | |
1786 | else | |
1787 | { | |
1788 | srel->r_index[2] = h->dynindx >> 16; | |
1789 | srel->r_index[1] = h->dynindx >> 8; | |
1790 | srel->r_index[0] = h->dynindx; | |
1791 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE | |
1792 | | RELOC_STD_BITS_JMPTABLE_LITTLE); | |
1793 | } | |
1794 | } | |
1795 | else | |
1796 | { | |
1797 | struct reloc_ext_external *erel; | |
1798 | ||
1799 | erel = (struct reloc_ext_external *) p; | |
1800 | PUT_WORD (output_bfd, r_address, erel->r_address); | |
1801 | if (output_bfd->xvec->header_byteorder_big_p) | |
1802 | { | |
1803 | erel->r_index[0] = h->dynindx >> 16; | |
1804 | erel->r_index[1] = h->dynindx >> 8; | |
1805 | erel->r_index[2] = h->dynindx; | |
1806 | erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG | |
1807 | | (22 << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
1808 | } | |
1809 | else | |
1810 | { | |
1811 | erel->r_index[2] = h->dynindx >> 16; | |
1812 | erel->r_index[1] = h->dynindx >> 8; | |
1813 | erel->r_index[0] = h->dynindx; | |
1814 | erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE | |
1815 | | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
1816 | } | |
1817 | PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend); | |
1818 | } | |
1819 | ||
1820 | ++s->reloc_count; | |
1821 | } | |
1822 | ||
1823 | return true; | |
1824 | } | |
1825 | ||
1826 | /* This is called for each reloc against an external symbol. If this | |
1827 | is a reloc which are are going to copy as a dynamic reloc, then | |
1828 | copy it over, and tell the caller to not bother processing this | |
1829 | reloc. */ | |
1830 | ||
1831 | /*ARGSUSED*/ | |
1832 | static boolean | |
1833 | sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, skip) | |
1834 | struct bfd_link_info *info; | |
1835 | bfd *input_bfd; | |
1836 | asection *input_section; | |
1837 | struct aout_link_hash_entry *harg; | |
1838 | PTR reloc; | |
1839 | boolean *skip; | |
1840 | { | |
1841 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
1842 | bfd *dynobj; | |
1843 | asection *srel; | |
1844 | bfd_byte *p; | |
1845 | ||
1846 | *skip = false; | |
1847 | ||
1848 | dynobj = sunos_hash_table (info)->dynobj; | |
1849 | ||
1850 | if (dynobj == NULL | |
1851 | || h->dynindx == -1 | |
1852 | || h->root.root.type != bfd_link_hash_undefined | |
1853 | || (h->flags & SUNOS_DEF_REGULAR) != 0 | |
1854 | || (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1855 | || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0) | |
1856 | return true; | |
1857 | ||
1858 | /* It looks this is a reloc we are supposed to copy. */ | |
1859 | ||
1860 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1861 | BFD_ASSERT (srel != NULL); | |
1862 | ||
1863 | p = srel->contents + srel->reloc_count * obj_reloc_entry_size (dynobj); | |
1864 | ||
1865 | /* Copy the reloc over. */ | |
1866 | memcpy (p, reloc, obj_reloc_entry_size (dynobj)); | |
1867 | ||
1868 | /* Adjust the address and symbol index. */ | |
1869 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
1870 | { | |
1871 | struct reloc_std_external *srel; | |
1872 | ||
1873 | srel = (struct reloc_std_external *) p; | |
1874 | PUT_WORD (dynobj, | |
1875 | (GET_WORD (dynobj, srel->r_address) | |
1876 | + input_section->output_section->vma | |
1877 | + input_section->output_offset), | |
1878 | srel->r_address); | |
1879 | if (dynobj->xvec->header_byteorder_big_p) | |
1880 | { | |
1881 | srel->r_index[0] = h->dynindx >> 16; | |
1882 | srel->r_index[1] = h->dynindx >> 8; | |
1883 | srel->r_index[2] = h->dynindx; | |
1884 | } | |
1885 | else | |
1886 | { | |
1887 | srel->r_index[2] = h->dynindx >> 16; | |
1888 | srel->r_index[1] = h->dynindx >> 8; | |
1889 | srel->r_index[0] = h->dynindx; | |
1890 | } | |
1891 | } | |
1892 | else | |
1893 | { | |
1894 | struct reloc_ext_external *erel; | |
1895 | ||
1896 | erel = (struct reloc_ext_external *) p; | |
1897 | PUT_WORD (dynobj, | |
1898 | (GET_WORD (dynobj, erel->r_address) | |
1899 | + input_section->output_section->vma | |
1900 | + input_section->output_offset), | |
1901 | erel->r_address); | |
1902 | if (dynobj->xvec->header_byteorder_big_p) | |
1903 | { | |
1904 | erel->r_index[0] = h->dynindx >> 16; | |
1905 | erel->r_index[1] = h->dynindx >> 8; | |
1906 | erel->r_index[2] = h->dynindx; | |
1907 | } | |
1908 | else | |
1909 | { | |
1910 | erel->r_index[2] = h->dynindx >> 16; | |
1911 | erel->r_index[1] = h->dynindx >> 8; | |
1912 | erel->r_index[0] = h->dynindx; | |
1913 | } | |
1914 | } | |
1915 | ||
1916 | ++srel->reloc_count; | |
1917 | ||
1918 | *skip = true; | |
1919 | ||
1920 | return true; | |
1921 | } | |
1922 | ||
1923 | /* Finish up the dynamic linking information. */ | |
1924 | ||
1925 | static boolean | |
1926 | sunos_finish_dynamic_link (abfd, info) | |
1927 | bfd *abfd; | |
1928 | struct bfd_link_info *info; | |
1929 | { | |
1930 | bfd *dynobj; | |
1931 | asection *o; | |
1932 | asection *s; | |
1933 | asection *sdyn; | |
1934 | struct external_sun4_dynamic esd; | |
1935 | struct external_sun4_dynamic_link esdl; | |
1936 | ||
1937 | dynobj = sunos_hash_table (info)->dynobj; | |
1938 | if (dynobj == NULL) | |
1939 | return true; | |
1940 | ||
1941 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1942 | BFD_ASSERT (sdyn != NULL); | |
1943 | ||
1944 | /* Finish up the .need section. The linker emulation code filled it | |
1945 | in, but with offsets from the start of the section instead of | |
1946 | real addresses. Now that we know the section location, we can | |
1947 | fill in the final values. */ | |
1948 | s = bfd_get_section_by_name (dynobj, ".need"); | |
1949 | BFD_ASSERT (s != NULL); | |
1950 | if (s->_raw_size != 0) | |
1951 | { | |
1952 | file_ptr filepos; | |
1953 | bfd_byte *p; | |
1954 | ||
1955 | filepos = s->output_section->filepos + s->output_offset; | |
1956 | p = s->contents; | |
1957 | while (1) | |
1958 | { | |
1959 | bfd_vma val; | |
1960 | ||
1961 | PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p); | |
1962 | val = GET_WORD (dynobj, p + 12); | |
1963 | if (val == 0) | |
1964 | break; | |
1965 | PUT_WORD (dynobj, val + filepos, p + 12); | |
1966 | p += 16; | |
1967 | } | |
1968 | } | |
1969 | ||
1970 | /* The first entry in the .got section is the address of the dynamic | |
1971 | information. */ | |
1972 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1973 | BFD_ASSERT (s != NULL); | |
1974 | PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset, | |
1975 | s->contents); | |
1976 | ||
1977 | for (o = dynobj->sections; o != NULL; o = o->next) | |
1978 | { | |
1979 | if ((o->flags & SEC_HAS_CONTENTS) != 0 | |
1980 | && o->contents != NULL) | |
1981 | { | |
1982 | BFD_ASSERT (o->output_section != NULL | |
1983 | && o->output_section->owner == abfd); | |
1984 | if (! bfd_set_section_contents (abfd, o->output_section, | |
1985 | o->contents, o->output_offset, | |
1986 | o->_raw_size)) | |
1987 | return false; | |
1988 | } | |
1989 | } | |
1990 | ||
1991 | /* Finish up the dynamic link information. */ | |
1992 | PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version); | |
1993 | PUT_WORD (dynobj, | |
1994 | sdyn->output_section->vma + sdyn->output_offset + sizeof esd, | |
1995 | esd.ldd); | |
1996 | PUT_WORD (dynobj, | |
1997 | (sdyn->output_section->vma | |
1998 | + sdyn->output_offset | |
1999 | + sizeof esd | |
2000 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2001 | esd.ld); | |
2002 | ||
2003 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd, | |
2004 | sdyn->output_offset, sizeof esd)) | |
2005 | return false; | |
2006 | ||
2007 | ||
2008 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded); | |
2009 | ||
2010 | s = bfd_get_section_by_name (dynobj, ".need"); | |
2011 | BFD_ASSERT (s != NULL); | |
2012 | if (s->_raw_size == 0) | |
2013 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need); | |
2014 | else | |
2015 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2016 | esdl.ld_need); | |
2017 | ||
2018 | s = bfd_get_section_by_name (dynobj, ".rules"); | |
2019 | BFD_ASSERT (s != NULL); | |
2020 | if (s->_raw_size == 0) | |
2021 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules); | |
2022 | else | |
2023 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2024 | esdl.ld_rules); | |
2025 | ||
2026 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2027 | BFD_ASSERT (s != NULL); | |
2028 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got); | |
2029 | ||
2030 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2031 | BFD_ASSERT (s != NULL); | |
2032 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt); | |
2033 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz); | |
2034 | ||
2035 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2036 | BFD_ASSERT (s != NULL); | |
2037 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size); | |
2038 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2039 | esdl.ld_rel); | |
2040 | ||
2041 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2042 | BFD_ASSERT (s != NULL); | |
2043 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2044 | esdl.ld_hash); | |
2045 | ||
2046 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
2047 | BFD_ASSERT (s != NULL); | |
2048 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2049 | esdl.ld_stab); | |
2050 | ||
2051 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash); | |
2052 | ||
2053 | PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount, | |
2054 | esdl.ld_buckets); | |
2055 | ||
2056 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2057 | BFD_ASSERT (s != NULL); | |
2058 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2059 | esdl.ld_symbols); | |
2060 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size); | |
2061 | ||
2062 | /* The size of the text area is the size of the .text section | |
2063 | rounded up to a page boundary. FIXME: Should the page size be | |
2064 | conditional on something? */ | |
2065 | PUT_WORD (dynobj, | |
2066 | BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000), | |
2067 | esdl.ld_text); | |
2068 | ||
2069 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl, | |
2070 | (sdyn->output_offset | |
2071 | + sizeof esd | |
2072 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2073 | sizeof esdl)) | |
2074 | return false; | |
2075 | ||
2076 | abfd->flags |= DYNAMIC; | |
2077 | ||
2078 | return true; | |
2079 | } |