]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
197e01b6 | 2 | Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, |
9b254dd1 | 3 | 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc. |
c906108c SS |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | ||
22 | /* This file contains support routines for creating, manipulating, and | |
23 | destroying minimal symbol tables. | |
24 | ||
25 | Minimal symbol tables are used to hold some very basic information about | |
26 | all defined global symbols (text, data, bss, abs, etc). The only two | |
27 | required pieces of information are the symbol's name and the address | |
28 | associated with that symbol. | |
29 | ||
30 | In many cases, even if a file was compiled with no special options for | |
31 | debugging at all, as long as was not stripped it will contain sufficient | |
32 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 33 | |
c906108c SS |
34 | Even when a file contains enough debugging information to build a full |
35 | symbol table, these minimal symbols are still useful for quickly mapping | |
36 | between names and addresses, and vice versa. They are also sometimes used | |
37 | to figure out what full symbol table entries need to be read in. */ | |
38 | ||
39 | ||
40 | #include "defs.h" | |
9227b5eb | 41 | #include <ctype.h> |
c906108c SS |
42 | #include "gdb_string.h" |
43 | #include "symtab.h" | |
44 | #include "bfd.h" | |
45 | #include "symfile.h" | |
46 | #include "objfiles.h" | |
47 | #include "demangle.h" | |
7ed49443 JB |
48 | #include "value.h" |
49 | #include "cp-abi.h" | |
c906108c SS |
50 | |
51 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
52 | At the end, copy them all into one newly allocated location on an objfile's | |
53 | symbol obstack. */ | |
54 | ||
55 | #define BUNCH_SIZE 127 | |
56 | ||
57 | struct msym_bunch | |
c5aa993b JM |
58 | { |
59 | struct msym_bunch *next; | |
60 | struct minimal_symbol contents[BUNCH_SIZE]; | |
61 | }; | |
c906108c SS |
62 | |
63 | /* Bunch currently being filled up. | |
64 | The next field points to chain of filled bunches. */ | |
65 | ||
66 | static struct msym_bunch *msym_bunch; | |
67 | ||
68 | /* Number of slots filled in current bunch. */ | |
69 | ||
70 | static int msym_bunch_index; | |
71 | ||
72 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
73 | ||
74 | static int msym_count; | |
75 | ||
9227b5eb JB |
76 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
77 | ||
78 | unsigned int | |
79 | msymbol_hash_iw (const char *string) | |
80 | { | |
81 | unsigned int hash = 0; | |
82 | while (*string && *string != '(') | |
83 | { | |
84 | while (isspace (*string)) | |
85 | ++string; | |
86 | if (*string && *string != '(') | |
375f3d86 DJ |
87 | { |
88 | hash = hash * 67 + *string - 113; | |
89 | ++string; | |
90 | } | |
9227b5eb | 91 | } |
261397f8 | 92 | return hash; |
9227b5eb JB |
93 | } |
94 | ||
95 | /* Compute a hash code for a string. */ | |
96 | ||
97 | unsigned int | |
98 | msymbol_hash (const char *string) | |
99 | { | |
100 | unsigned int hash = 0; | |
101 | for (; *string; ++string) | |
375f3d86 | 102 | hash = hash * 67 + *string - 113; |
261397f8 | 103 | return hash; |
9227b5eb JB |
104 | } |
105 | ||
106 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
107 | void | |
108 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
109 | struct minimal_symbol **table) | |
110 | { | |
111 | if (sym->hash_next == NULL) | |
112 | { | |
f56f77c1 DC |
113 | unsigned int hash |
114 | = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb JB |
115 | sym->hash_next = table[hash]; |
116 | table[hash] = sym; | |
117 | } | |
118 | } | |
119 | ||
0729fd50 DB |
120 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
121 | TABLE. */ | |
122 | static void | |
123 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
124 | struct minimal_symbol **table) | |
125 | { | |
126 | if (sym->demangled_hash_next == NULL) | |
127 | { | |
261397f8 | 128 | unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; |
0729fd50 DB |
129 | sym->demangled_hash_next = table[hash]; |
130 | table[hash] = sym; | |
131 | } | |
132 | } | |
133 | ||
c906108c | 134 | |
bccdca4a UW |
135 | /* Return OBJFILE where minimal symbol SYM is defined. */ |
136 | struct objfile * | |
137 | msymbol_objfile (struct minimal_symbol *sym) | |
138 | { | |
139 | struct objfile *objf; | |
140 | struct minimal_symbol *tsym; | |
141 | ||
142 | unsigned int hash | |
143 | = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
144 | ||
145 | for (objf = object_files; objf; objf = objf->next) | |
146 | for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next) | |
147 | if (tsym == sym) | |
148 | return objf; | |
149 | ||
150 | /* We should always be able to find the objfile ... */ | |
151 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); | |
152 | } | |
153 | ||
154 | ||
c906108c SS |
155 | /* Look through all the current minimal symbol tables and find the |
156 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
72a5efb3 DJ |
157 | the search to that objfile. If SFILE is non-NULL, the only file-scope |
158 | symbols considered will be from that source file (global symbols are | |
159 | still preferred). Returns a pointer to the minimal symbol that | |
c906108c SS |
160 | matches, or NULL if no match is found. |
161 | ||
162 | Note: One instance where there may be duplicate minimal symbols with | |
163 | the same name is when the symbol tables for a shared library and the | |
164 | symbol tables for an executable contain global symbols with the same | |
d73f140a JB |
165 | names (the dynamic linker deals with the duplication). |
166 | ||
167 | It's also possible to have minimal symbols with different mangled | |
168 | names, but identical demangled names. For example, the GNU C++ v3 | |
169 | ABI requires the generation of two (or perhaps three) copies of | |
170 | constructor functions --- "in-charge", "not-in-charge", and | |
171 | "allocate" copies; destructors may be duplicated as well. | |
172 | Obviously, there must be distinct mangled names for each of these, | |
173 | but the demangled names are all the same: S::S or S::~S. */ | |
c906108c SS |
174 | |
175 | struct minimal_symbol * | |
aa1ee363 | 176 | lookup_minimal_symbol (const char *name, const char *sfile, |
fba45db2 | 177 | struct objfile *objf) |
c906108c SS |
178 | { |
179 | struct objfile *objfile; | |
180 | struct minimal_symbol *msymbol; | |
181 | struct minimal_symbol *found_symbol = NULL; | |
182 | struct minimal_symbol *found_file_symbol = NULL; | |
183 | struct minimal_symbol *trampoline_symbol = NULL; | |
184 | ||
261397f8 DJ |
185 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
186 | unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb | 187 | |
c906108c SS |
188 | if (sfile != NULL) |
189 | { | |
190 | char *p = strrchr (sfile, '/'); | |
191 | if (p != NULL) | |
192 | sfile = p + 1; | |
193 | } | |
c906108c SS |
194 | |
195 | for (objfile = object_files; | |
196 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 197 | objfile = objfile->next) |
c906108c | 198 | { |
56e3f43c DJ |
199 | if (objf == NULL || objf == objfile |
200 | || objf->separate_debug_objfile == objfile) | |
c906108c | 201 | { |
9227b5eb JB |
202 | /* Do two passes: the first over the ordinary hash table, |
203 | and the second over the demangled hash table. */ | |
0729fd50 | 204 | int pass; |
9227b5eb | 205 | |
0729fd50 | 206 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 207 | { |
0729fd50 DB |
208 | /* Select hash list according to pass. */ |
209 | if (pass == 1) | |
210 | msymbol = objfile->msymbol_hash[hash]; | |
211 | else | |
212 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
213 | ||
214 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 215 | { |
e06963ff AC |
216 | /* FIXME: carlton/2003-02-27: This is an unholy |
217 | mixture of linkage names and natural names. If | |
218 | you want to test the linkage names with strcmp, | |
219 | do that. If you want to test the natural names | |
220 | with strcmp_iw, use SYMBOL_MATCHES_NATURAL_NAME. */ | |
221 | if (strcmp (DEPRECATED_SYMBOL_NAME (msymbol), (name)) == 0 | |
222 | || (SYMBOL_DEMANGLED_NAME (msymbol) != NULL | |
223 | && strcmp_iw (SYMBOL_DEMANGLED_NAME (msymbol), | |
224 | (name)) == 0)) | |
c906108c | 225 | { |
0729fd50 DB |
226 | switch (MSYMBOL_TYPE (msymbol)) |
227 | { | |
228 | case mst_file_text: | |
229 | case mst_file_data: | |
230 | case mst_file_bss: | |
6314a349 AC |
231 | if (sfile == NULL |
232 | || strcmp (msymbol->filename, sfile) == 0) | |
0729fd50 | 233 | found_file_symbol = msymbol; |
0729fd50 DB |
234 | break; |
235 | ||
236 | case mst_solib_trampoline: | |
237 | ||
238 | /* If a trampoline symbol is found, we prefer to | |
239 | keep looking for the *real* symbol. If the | |
240 | actual symbol is not found, then we'll use the | |
241 | trampoline entry. */ | |
242 | if (trampoline_symbol == NULL) | |
243 | trampoline_symbol = msymbol; | |
244 | break; | |
245 | ||
246 | case mst_unknown: | |
247 | default: | |
248 | found_symbol = msymbol; | |
249 | break; | |
250 | } | |
c906108c | 251 | } |
9227b5eb | 252 | |
0729fd50 DB |
253 | /* Find the next symbol on the hash chain. */ |
254 | if (pass == 1) | |
255 | msymbol = msymbol->hash_next; | |
256 | else | |
257 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 258 | } |
c906108c SS |
259 | } |
260 | } | |
261 | } | |
262 | /* External symbols are best. */ | |
263 | if (found_symbol) | |
264 | return found_symbol; | |
265 | ||
266 | /* File-local symbols are next best. */ | |
267 | if (found_file_symbol) | |
268 | return found_file_symbol; | |
269 | ||
270 | /* Symbols for shared library trampolines are next best. */ | |
271 | if (trampoline_symbol) | |
272 | return trampoline_symbol; | |
273 | ||
274 | return NULL; | |
275 | } | |
276 | ||
277 | /* Look through all the current minimal symbol tables and find the | |
72a5efb3 | 278 | first minimal symbol that matches NAME and has text type. If OBJF |
5520a790 EZ |
279 | is non-NULL, limit the search to that objfile. Returns a pointer |
280 | to the minimal symbol that matches, or NULL if no match is found. | |
72a5efb3 DJ |
281 | |
282 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 283 | |
c906108c | 284 | struct minimal_symbol * |
5520a790 | 285 | lookup_minimal_symbol_text (const char *name, struct objfile *objf) |
c906108c SS |
286 | { |
287 | struct objfile *objfile; | |
288 | struct minimal_symbol *msymbol; | |
289 | struct minimal_symbol *found_symbol = NULL; | |
290 | struct minimal_symbol *found_file_symbol = NULL; | |
291 | ||
72a5efb3 DJ |
292 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
293 | ||
c906108c SS |
294 | for (objfile = object_files; |
295 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 296 | objfile = objfile->next) |
c906108c | 297 | { |
56e3f43c DJ |
298 | if (objf == NULL || objf == objfile |
299 | || objf->separate_debug_objfile == objfile) | |
c906108c | 300 | { |
72a5efb3 DJ |
301 | for (msymbol = objfile->msymbol_hash[hash]; |
302 | msymbol != NULL && found_symbol == NULL; | |
303 | msymbol = msymbol->hash_next) | |
c906108c | 304 | { |
f56f77c1 | 305 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
306 | (MSYMBOL_TYPE (msymbol) == mst_text || |
307 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
308 | { | |
309 | switch (MSYMBOL_TYPE (msymbol)) | |
310 | { | |
311 | case mst_file_text: | |
c906108c | 312 | found_file_symbol = msymbol; |
c906108c SS |
313 | break; |
314 | default: | |
315 | found_symbol = msymbol; | |
316 | break; | |
317 | } | |
318 | } | |
319 | } | |
320 | } | |
321 | } | |
322 | /* External symbols are best. */ | |
323 | if (found_symbol) | |
324 | return found_symbol; | |
325 | ||
326 | /* File-local symbols are next best. */ | |
327 | if (found_file_symbol) | |
328 | return found_file_symbol; | |
329 | ||
330 | return NULL; | |
331 | } | |
332 | ||
333 | /* Look through all the current minimal symbol tables and find the | |
5520a790 EZ |
334 | first minimal symbol that matches NAME and is a solib trampoline. |
335 | If OBJF is non-NULL, limit the search to that objfile. Returns a | |
336 | pointer to the minimal symbol that matches, or NULL if no match is | |
337 | found. | |
72a5efb3 DJ |
338 | |
339 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 340 | |
c906108c | 341 | struct minimal_symbol * |
aa1ee363 | 342 | lookup_minimal_symbol_solib_trampoline (const char *name, |
aa1ee363 | 343 | struct objfile *objf) |
c906108c SS |
344 | { |
345 | struct objfile *objfile; | |
346 | struct minimal_symbol *msymbol; | |
347 | struct minimal_symbol *found_symbol = NULL; | |
348 | ||
72a5efb3 DJ |
349 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
350 | ||
c906108c SS |
351 | for (objfile = object_files; |
352 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 353 | objfile = objfile->next) |
c906108c | 354 | { |
56e3f43c DJ |
355 | if (objf == NULL || objf == objfile |
356 | || objf->separate_debug_objfile == objfile) | |
c906108c | 357 | { |
72a5efb3 DJ |
358 | for (msymbol = objfile->msymbol_hash[hash]; |
359 | msymbol != NULL && found_symbol == NULL; | |
360 | msymbol = msymbol->hash_next) | |
c906108c | 361 | { |
f56f77c1 | 362 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
363 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
364 | return msymbol; | |
365 | } | |
366 | } | |
367 | } | |
368 | ||
369 | return NULL; | |
370 | } | |
371 | ||
c906108c SS |
372 | /* Search through the minimal symbol table for each objfile and find |
373 | the symbol whose address is the largest address that is still less | |
43b54b88 | 374 | than or equal to PC, and matches SECTION (if non-NULL). Returns a |
c906108c SS |
375 | pointer to the minimal symbol if such a symbol is found, or NULL if |
376 | PC is not in a suitable range. Note that we need to look through | |
377 | ALL the minimal symbol tables before deciding on the symbol that | |
378 | comes closest to the specified PC. This is because objfiles can | |
379 | overlap, for example objfile A has .text at 0x100 and .data at | |
380 | 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ | |
381 | ||
382 | struct minimal_symbol * | |
fba45db2 | 383 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section) |
c906108c SS |
384 | { |
385 | int lo; | |
386 | int hi; | |
387 | int new; | |
388 | struct objfile *objfile; | |
389 | struct minimal_symbol *msymbol; | |
390 | struct minimal_symbol *best_symbol = NULL; | |
64ae9269 | 391 | struct obj_section *pc_section; |
c906108c | 392 | |
43b54b88 AC |
393 | /* PC has to be in a known section. This ensures that anything |
394 | beyond the end of the last segment doesn't appear to be part of | |
395 | the last function in the last segment. */ | |
64ae9269 DJ |
396 | pc_section = find_pc_section (pc); |
397 | if (pc_section == NULL) | |
c906108c SS |
398 | return NULL; |
399 | ||
96225718 DJ |
400 | /* We can not require the symbol found to be in pc_section, because |
401 | e.g. IRIX 6.5 mdebug relies on this code returning an absolute | |
402 | symbol - but find_pc_section won't return an absolute section and | |
403 | hence the code below would skip over absolute symbols. We can | |
404 | still take advantage of the call to find_pc_section, though - the | |
405 | object file still must match. In case we have separate debug | |
406 | files, search both the file and its separate debug file. There's | |
407 | no telling which one will have the minimal symbols. */ | |
408 | ||
409 | objfile = pc_section->objfile; | |
410 | if (objfile->separate_debug_objfile) | |
411 | objfile = objfile->separate_debug_objfile; | |
412 | ||
413 | for (; objfile != NULL; objfile = objfile->separate_debug_objfile_backlink) | |
c906108c SS |
414 | { |
415 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
416 | a binary search. Note that a minimal symbol table always consists |
417 | of at least two symbols, a "real" symbol and the terminating | |
418 | "null symbol". If there are no real symbols, then there is no | |
419 | minimal symbol table at all. */ | |
c906108c | 420 | |
15831452 | 421 | if (objfile->minimal_symbol_count > 0) |
c906108c | 422 | { |
29e8a844 DJ |
423 | int best_zero_sized = -1; |
424 | ||
15831452 | 425 | msymbol = objfile->msymbols; |
c906108c | 426 | lo = 0; |
c5aa993b | 427 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
428 | |
429 | /* This code assumes that the minimal symbols are sorted by | |
430 | ascending address values. If the pc value is greater than or | |
431 | equal to the first symbol's address, then some symbol in this | |
432 | minimal symbol table is a suitable candidate for being the | |
433 | "best" symbol. This includes the last real symbol, for cases | |
434 | where the pc value is larger than any address in this vector. | |
435 | ||
436 | By iterating until the address associated with the current | |
437 | hi index (the endpoint of the test interval) is less than | |
438 | or equal to the desired pc value, we accomplish two things: | |
439 | (1) the case where the pc value is larger than any minimal | |
440 | symbol address is trivially solved, (2) the address associated | |
441 | with the hi index is always the one we want when the interation | |
442 | terminates. In essence, we are iterating the test interval | |
443 | down until the pc value is pushed out of it from the high end. | |
444 | ||
445 | Warning: this code is trickier than it would appear at first. */ | |
446 | ||
447 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
448 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
449 | { | |
450 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
451 | { | |
452 | /* pc is still strictly less than highest address */ | |
453 | /* Note "new" will always be >= lo */ | |
454 | new = (lo + hi) / 2; | |
455 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
456 | (lo == new)) | |
457 | { | |
458 | hi = new; | |
459 | } | |
460 | else | |
461 | { | |
462 | lo = new; | |
463 | } | |
464 | } | |
465 | ||
466 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
467 | hi to point to the last one. That way we can find the |
468 | right symbol if it has an index greater than hi. */ | |
469 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 470 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 471 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
472 | hi++; |
473 | ||
29e8a844 DJ |
474 | /* Skip various undesirable symbols. */ |
475 | while (hi >= 0) | |
476 | { | |
477 | /* Skip any absolute symbols. This is apparently | |
478 | what adb and dbx do, and is needed for the CM-5. | |
479 | There are two known possible problems: (1) on | |
480 | ELF, apparently end, edata, etc. are absolute. | |
481 | Not sure ignoring them here is a big deal, but if | |
482 | we want to use them, the fix would go in | |
483 | elfread.c. (2) I think shared library entry | |
484 | points on the NeXT are absolute. If we want | |
485 | special handling for this it probably should be | |
486 | triggered by a special mst_abs_or_lib or some | |
487 | such. */ | |
488 | ||
489 | if (msymbol[hi].type == mst_abs) | |
490 | { | |
491 | hi--; | |
492 | continue; | |
493 | } | |
494 | ||
495 | /* If SECTION was specified, skip any symbol from | |
496 | wrong section. */ | |
497 | if (section | |
498 | /* Some types of debug info, such as COFF, | |
499 | don't fill the bfd_section member, so don't | |
500 | throw away symbols on those platforms. */ | |
501 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL | |
94277a38 DJ |
502 | && (!matching_bfd_sections |
503 | (SYMBOL_BFD_SECTION (&msymbol[hi]), section))) | |
29e8a844 DJ |
504 | { |
505 | hi--; | |
506 | continue; | |
507 | } | |
508 | ||
509 | /* If the minimal symbol has a zero size, save it | |
510 | but keep scanning backwards looking for one with | |
511 | a non-zero size. A zero size may mean that the | |
512 | symbol isn't an object or function (e.g. a | |
513 | label), or it may just mean that the size was not | |
514 | specified. */ | |
515 | if (MSYMBOL_SIZE (&msymbol[hi]) == 0 | |
516 | && best_zero_sized == -1) | |
517 | { | |
518 | best_zero_sized = hi; | |
519 | hi--; | |
520 | continue; | |
521 | } | |
522 | ||
f7a6bb70 DJ |
523 | /* If we are past the end of the current symbol, try |
524 | the previous symbol if it has a larger overlapping | |
525 | size. This happens on i686-pc-linux-gnu with glibc; | |
526 | the nocancel variants of system calls are inside | |
527 | the cancellable variants, but both have sizes. */ | |
528 | if (hi > 0 | |
529 | && MSYMBOL_SIZE (&msymbol[hi]) != 0 | |
530 | && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) | |
531 | + MSYMBOL_SIZE (&msymbol[hi])) | |
532 | && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]) | |
533 | + MSYMBOL_SIZE (&msymbol[hi - 1]))) | |
534 | { | |
535 | hi--; | |
536 | continue; | |
537 | } | |
538 | ||
29e8a844 DJ |
539 | /* Otherwise, this symbol must be as good as we're going |
540 | to get. */ | |
541 | break; | |
542 | } | |
543 | ||
544 | /* If HI has a zero size, and best_zero_sized is set, | |
545 | then we had two or more zero-sized symbols; prefer | |
546 | the first one we found (which may have a higher | |
547 | address). Also, if we ran off the end, be sure | |
548 | to back up. */ | |
549 | if (best_zero_sized != -1 | |
550 | && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0)) | |
551 | hi = best_zero_sized; | |
552 | ||
553 | /* If the minimal symbol has a non-zero size, and this | |
554 | PC appears to be outside the symbol's contents, then | |
555 | refuse to use this symbol. If we found a zero-sized | |
556 | symbol with an address greater than this symbol's, | |
557 | use that instead. We assume that if symbols have | |
558 | specified sizes, they do not overlap. */ | |
559 | ||
560 | if (hi >= 0 | |
561 | && MSYMBOL_SIZE (&msymbol[hi]) != 0 | |
562 | && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) | |
563 | + MSYMBOL_SIZE (&msymbol[hi]))) | |
564 | { | |
565 | if (best_zero_sized != -1) | |
566 | hi = best_zero_sized; | |
567 | else | |
568 | /* Go on to the next object file. */ | |
569 | continue; | |
570 | } | |
571 | ||
c906108c | 572 | /* The minimal symbol indexed by hi now is the best one in this |
c5aa993b JM |
573 | objfile's minimal symbol table. See if it is the best one |
574 | overall. */ | |
c906108c | 575 | |
c906108c SS |
576 | if (hi >= 0 |
577 | && ((best_symbol == NULL) || | |
c5aa993b | 578 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
579 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
580 | { | |
581 | best_symbol = &msymbol[hi]; | |
582 | } | |
583 | } | |
584 | } | |
585 | } | |
586 | return (best_symbol); | |
587 | } | |
588 | ||
589 | /* Backward compatibility: search through the minimal symbol table | |
590 | for a matching PC (no section given) */ | |
591 | ||
592 | struct minimal_symbol * | |
fba45db2 | 593 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c | 594 | { |
43b54b88 AC |
595 | /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to |
596 | force the section but that (well unless you're doing overlay | |
597 | debugging) always returns NULL making the call somewhat useless. */ | |
598 | struct obj_section *section = find_pc_section (pc); | |
599 | if (section == NULL) | |
600 | return NULL; | |
601 | return lookup_minimal_symbol_by_pc_section (pc, section->the_bfd_section); | |
c906108c | 602 | } |
c906108c | 603 | \f |
c5aa993b | 604 | |
c906108c SS |
605 | /* Return leading symbol character for a BFD. If BFD is NULL, |
606 | return the leading symbol character from the main objfile. */ | |
607 | ||
a14ed312 | 608 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
609 | |
610 | static int | |
fba45db2 | 611 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
612 | { |
613 | if (abfd != NULL) | |
614 | return bfd_get_symbol_leading_char (abfd); | |
615 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
616 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
617 | return 0; | |
618 | } | |
619 | ||
620 | /* Prepare to start collecting minimal symbols. Note that presetting | |
621 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
622 | symbol to allocate the memory for the first bunch. */ | |
623 | ||
624 | void | |
fba45db2 | 625 | init_minimal_symbol_collection (void) |
c906108c SS |
626 | { |
627 | msym_count = 0; | |
628 | msym_bunch = NULL; | |
629 | msym_bunch_index = BUNCH_SIZE; | |
630 | } | |
631 | ||
632 | void | |
fba45db2 KB |
633 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
634 | enum minimal_symbol_type ms_type, | |
635 | struct objfile *objfile) | |
c906108c SS |
636 | { |
637 | int section; | |
638 | ||
639 | switch (ms_type) | |
640 | { | |
641 | case mst_text: | |
642 | case mst_file_text: | |
643 | case mst_solib_trampoline: | |
b8fbeb18 | 644 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
645 | break; |
646 | case mst_data: | |
647 | case mst_file_data: | |
b8fbeb18 | 648 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
649 | break; |
650 | case mst_bss: | |
651 | case mst_file_bss: | |
b8fbeb18 | 652 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
653 | break; |
654 | default: | |
655 | section = -1; | |
656 | } | |
657 | ||
658 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
659 | NULL, section, NULL, objfile); | |
660 | } | |
661 | ||
662 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
663 | newly created. */ | |
664 | ||
665 | struct minimal_symbol * | |
fba45db2 KB |
666 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, |
667 | enum minimal_symbol_type ms_type, | |
668 | char *info, int section, | |
669 | asection *bfd_section, | |
670 | struct objfile *objfile) | |
c906108c | 671 | { |
52f0bd74 AC |
672 | struct msym_bunch *new; |
673 | struct minimal_symbol *msymbol; | |
c906108c | 674 | |
66337bb1 CV |
675 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into |
676 | the minimal symbols, because if there is also another symbol | |
677 | at the same address (e.g. the first function of the file), | |
678 | lookup_minimal_symbol_by_pc would have no way of getting the | |
679 | right one. */ | |
680 | if (ms_type == mst_file_text && name[0] == 'g' | |
681 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
682 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
683 | return (NULL); | |
684 | ||
685 | /* It's safe to strip the leading char here once, since the name | |
686 | is also stored stripped in the minimal symbol table. */ | |
687 | if (name[0] == get_symbol_leading_char (objfile->obfd)) | |
688 | ++name; | |
689 | ||
690 | if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0) | |
691 | return (NULL); | |
c906108c SS |
692 | |
693 | if (msym_bunch_index == BUNCH_SIZE) | |
694 | { | |
695 | new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); | |
696 | msym_bunch_index = 0; | |
c5aa993b | 697 | new->next = msym_bunch; |
c906108c SS |
698 | msym_bunch = new; |
699 | } | |
c5aa993b | 700 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c | 701 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); |
2de7ced7 DJ |
702 | SYMBOL_LANGUAGE (msymbol) = language_auto; |
703 | SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile); | |
704 | ||
c906108c SS |
705 | SYMBOL_VALUE_ADDRESS (msymbol) = address; |
706 | SYMBOL_SECTION (msymbol) = section; | |
707 | SYMBOL_BFD_SECTION (msymbol) = bfd_section; | |
708 | ||
709 | MSYMBOL_TYPE (msymbol) = ms_type; | |
710 | /* FIXME: This info, if it remains, needs its own field. */ | |
c5aa993b | 711 | MSYMBOL_INFO (msymbol) = info; /* FIXME! */ |
f594e5e9 | 712 | MSYMBOL_SIZE (msymbol) = 0; |
9227b5eb | 713 | |
a79dea61 | 714 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 715 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
716 | msymbol->hash_next = NULL; |
717 | msymbol->demangled_hash_next = NULL; | |
718 | ||
c906108c SS |
719 | msym_bunch_index++; |
720 | msym_count++; | |
721 | OBJSTAT (objfile, n_minsyms++); | |
722 | return msymbol; | |
723 | } | |
724 | ||
725 | /* Compare two minimal symbols by address and return a signed result based | |
726 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
727 | Within groups with the same address, sort by name. */ | |
728 | ||
729 | static int | |
12b9c64f | 730 | compare_minimal_symbols (const void *fn1p, const void *fn2p) |
c906108c | 731 | { |
52f0bd74 AC |
732 | const struct minimal_symbol *fn1; |
733 | const struct minimal_symbol *fn2; | |
c906108c SS |
734 | |
735 | fn1 = (const struct minimal_symbol *) fn1p; | |
736 | fn2 = (const struct minimal_symbol *) fn2p; | |
737 | ||
738 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
739 | { | |
c5aa993b | 740 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
741 | } |
742 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
743 | { | |
c5aa993b | 744 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 745 | } |
c5aa993b JM |
746 | else |
747 | /* addrs are equal: sort by name */ | |
c906108c | 748 | { |
f56f77c1 DC |
749 | char *name1 = SYMBOL_LINKAGE_NAME (fn1); |
750 | char *name2 = SYMBOL_LINKAGE_NAME (fn2); | |
c906108c SS |
751 | |
752 | if (name1 && name2) /* both have names */ | |
753 | return strcmp (name1, name2); | |
754 | else if (name2) | |
c5aa993b JM |
755 | return 1; /* fn1 has no name, so it is "less" */ |
756 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
757 | return -1; |
758 | else | |
c5aa993b | 759 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
760 | } |
761 | } | |
762 | ||
763 | /* Discard the currently collected minimal symbols, if any. If we wish | |
764 | to save them for later use, we must have already copied them somewhere | |
765 | else before calling this function. | |
766 | ||
767 | FIXME: We could allocate the minimal symbol bunches on their own | |
768 | obstack and then simply blow the obstack away when we are done with | |
769 | it. Is it worth the extra trouble though? */ | |
770 | ||
56e290f4 AC |
771 | static void |
772 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c | 773 | { |
52f0bd74 | 774 | struct msym_bunch *next; |
c906108c SS |
775 | |
776 | while (msym_bunch != NULL) | |
777 | { | |
c5aa993b | 778 | next = msym_bunch->next; |
b8c9b27d | 779 | xfree (msym_bunch); |
c906108c SS |
780 | msym_bunch = next; |
781 | } | |
782 | } | |
783 | ||
56e290f4 AC |
784 | struct cleanup * |
785 | make_cleanup_discard_minimal_symbols (void) | |
786 | { | |
787 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
788 | } | |
789 | ||
790 | ||
9227b5eb | 791 | |
c906108c SS |
792 | /* Compact duplicate entries out of a minimal symbol table by walking |
793 | through the table and compacting out entries with duplicate addresses | |
794 | and matching names. Return the number of entries remaining. | |
795 | ||
796 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
797 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
798 | ||
799 | When files contain multiple sources of symbol information, it is | |
800 | possible for the minimal symbol table to contain many duplicate entries. | |
801 | As an example, SVR4 systems use ELF formatted object files, which | |
802 | usually contain at least two different types of symbol tables (a | |
803 | standard ELF one and a smaller dynamic linking table), as well as | |
804 | DWARF debugging information for files compiled with -g. | |
805 | ||
806 | Without compacting, the minimal symbol table for gdb itself contains | |
807 | over a 1000 duplicates, about a third of the total table size. Aside | |
808 | from the potential trap of not noticing that two successive entries | |
809 | identify the same location, this duplication impacts the time required | |
810 | to linearly scan the table, which is done in a number of places. So we | |
811 | just do one linear scan here and toss out the duplicates. | |
812 | ||
813 | Note that we are not concerned here about recovering the space that | |
814 | is potentially freed up, because the strings themselves are allocated | |
4a146b47 | 815 | on the objfile_obstack, and will get automatically freed when the symbol |
c906108c SS |
816 | table is freed. The caller can free up the unused minimal symbols at |
817 | the end of the compacted region if their allocation strategy allows it. | |
818 | ||
819 | Also note we only go up to the next to last entry within the loop | |
820 | and then copy the last entry explicitly after the loop terminates. | |
821 | ||
822 | Since the different sources of information for each symbol may | |
823 | have different levels of "completeness", we may have duplicates | |
824 | that have one entry with type "mst_unknown" and the other with a | |
825 | known type. So if the one we are leaving alone has type mst_unknown, | |
826 | overwrite its type with the type from the one we are compacting out. */ | |
827 | ||
828 | static int | |
fba45db2 KB |
829 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
830 | struct objfile *objfile) | |
c906108c SS |
831 | { |
832 | struct minimal_symbol *copyfrom; | |
833 | struct minimal_symbol *copyto; | |
834 | ||
835 | if (mcount > 0) | |
836 | { | |
837 | copyfrom = copyto = msymbol; | |
838 | while (copyfrom < msymbol + mcount - 1) | |
839 | { | |
6314a349 AC |
840 | if (SYMBOL_VALUE_ADDRESS (copyfrom) |
841 | == SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) | |
842 | && strcmp (SYMBOL_LINKAGE_NAME (copyfrom), | |
843 | SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0) | |
c906108c | 844 | { |
c5aa993b | 845 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
846 | { |
847 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
848 | } | |
849 | copyfrom++; | |
850 | } | |
851 | else | |
afbb8d7a | 852 | *copyto++ = *copyfrom++; |
c906108c SS |
853 | } |
854 | *copyto++ = *copyfrom++; | |
855 | mcount = copyto - msymbol; | |
856 | } | |
857 | return (mcount); | |
858 | } | |
859 | ||
afbb8d7a KB |
860 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
861 | after compacting or sorting the table since the entries move around | |
862 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
863 | ||
864 | static void | |
865 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
866 | { | |
867 | int i; | |
868 | struct minimal_symbol *msym; | |
869 | ||
870 | /* Clear the hash tables. */ | |
871 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
872 | { | |
873 | objfile->msymbol_hash[i] = 0; | |
874 | objfile->msymbol_demangled_hash[i] = 0; | |
875 | } | |
876 | ||
877 | /* Now, (re)insert the actual entries. */ | |
878 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
879 | i > 0; | |
880 | i--, msym++) | |
881 | { | |
882 | msym->hash_next = 0; | |
883 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
884 | ||
885 | msym->demangled_hash_next = 0; | |
4725b721 | 886 | if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym)) |
afbb8d7a KB |
887 | add_minsym_to_demangled_hash_table (msym, |
888 | objfile->msymbol_demangled_hash); | |
889 | } | |
890 | } | |
891 | ||
c906108c SS |
892 | /* Add the minimal symbols in the existing bunches to the objfile's official |
893 | minimal symbol table. In most cases there is no minimal symbol table yet | |
894 | for this objfile, and the existing bunches are used to create one. Once | |
895 | in a while (for shared libraries for example), we add symbols (e.g. common | |
896 | symbols) to an existing objfile. | |
897 | ||
898 | Because of the way minimal symbols are collected, we generally have no way | |
899 | of knowing what source language applies to any particular minimal symbol. | |
900 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
901 | C++ compilation unit or not. So for the sake of supporting cached | |
902 | demangled C++ names, we have no choice but to try and demangle each new one | |
903 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
904 | symbol and set the symbol's language and demangled name fields | |
905 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
906 | allocating obstack space that subsequently can't be freed for the demangled | |
907 | names, we mark all newly added symbols with language_auto. After | |
908 | compaction of the minimal symbols, we go back and scan the entire minimal | |
909 | symbol table looking for these new symbols. For each new symbol we attempt | |
910 | to demangle it, and if successful, record it as a language_cplus symbol | |
911 | and cache the demangled form on the symbol obstack. Symbols which don't | |
912 | demangle are marked as language_unknown symbols, which inhibits future | |
913 | attempts to demangle them if we later add more minimal symbols. */ | |
914 | ||
915 | void | |
fba45db2 | 916 | install_minimal_symbols (struct objfile *objfile) |
c906108c | 917 | { |
52f0bd74 AC |
918 | int bindex; |
919 | int mcount; | |
920 | struct msym_bunch *bunch; | |
921 | struct minimal_symbol *msymbols; | |
c906108c | 922 | int alloc_count; |
c906108c SS |
923 | |
924 | if (msym_count > 0) | |
925 | { | |
926 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
927 | bunches of new and existing minimal symbols, sort them, and then |
928 | compact out the duplicate entries. Once we have a final table, | |
929 | we will give back the excess space. */ | |
c906108c SS |
930 | |
931 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
4a146b47 | 932 | obstack_blank (&objfile->objfile_obstack, |
c906108c SS |
933 | alloc_count * sizeof (struct minimal_symbol)); |
934 | msymbols = (struct minimal_symbol *) | |
4a146b47 | 935 | obstack_base (&objfile->objfile_obstack); |
c906108c SS |
936 | |
937 | /* Copy in the existing minimal symbols, if there are any. */ | |
938 | ||
939 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
940 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
941 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
942 | |
943 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
944 | to the new contiguous array of symbols. Note that we start with the |
945 | current, possibly partially filled bunch (thus we use the current | |
946 | msym_bunch_index for the first bunch we copy over), and thereafter | |
947 | each bunch is full. */ | |
948 | ||
c906108c | 949 | mcount = objfile->minimal_symbol_count; |
c5aa993b JM |
950 | |
951 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
952 | { |
953 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
66337bb1 | 954 | msymbols[mcount] = bunch->contents[bindex]; |
c906108c SS |
955 | msym_bunch_index = BUNCH_SIZE; |
956 | } | |
957 | ||
958 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 959 | |
c906108c SS |
960 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
961 | compare_minimal_symbols); | |
c5aa993b | 962 | |
c906108c | 963 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
964 | no longer using. */ |
965 | ||
9227b5eb | 966 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c | 967 | |
4a146b47 | 968 | obstack_blank (&objfile->objfile_obstack, |
c5aa993b | 969 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c | 970 | msymbols = (struct minimal_symbol *) |
4a146b47 | 971 | obstack_finish (&objfile->objfile_obstack); |
c906108c SS |
972 | |
973 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
974 | which is *not* included in the size of the table. This makes it |
975 | easier to find the end of the table when we are handed a pointer | |
976 | to some symbol in the middle of it. Zero out the fields in the | |
977 | "null symbol" allocated at the end of the array. Note that the | |
978 | symbol count does *not* include this null symbol, which is why it | |
979 | is indexed by mcount and not mcount-1. */ | |
c906108c | 980 | |
f56f77c1 | 981 | SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL; |
c906108c SS |
982 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; |
983 | MSYMBOL_INFO (&msymbols[mcount]) = NULL; | |
f594e5e9 | 984 | MSYMBOL_SIZE (&msymbols[mcount]) = 0; |
c906108c SS |
985 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; |
986 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
987 | ||
988 | /* Attach the minimal symbol table to the specified objfile. | |
4a146b47 | 989 | The strings themselves are also located in the objfile_obstack |
c5aa993b | 990 | of this objfile. */ |
c906108c | 991 | |
c5aa993b JM |
992 | objfile->minimal_symbol_count = mcount; |
993 | objfile->msymbols = msymbols; | |
c906108c | 994 | |
7ed49443 JB |
995 | /* Try to guess the appropriate C++ ABI by looking at the names |
996 | of the minimal symbols in the table. */ | |
997 | { | |
998 | int i; | |
999 | ||
1000 | for (i = 0; i < mcount; i++) | |
1001 | { | |
6aca59a3 DJ |
1002 | /* If a symbol's name starts with _Z and was successfully |
1003 | demangled, then we can assume we've found a GNU v3 symbol. | |
1004 | For now we set the C++ ABI globally; if the user is | |
1005 | mixing ABIs then the user will need to "set cp-abi" | |
1006 | manually. */ | |
f56f77c1 | 1007 | const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]); |
6aca59a3 DJ |
1008 | if (name[0] == '_' && name[1] == 'Z' |
1009 | && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL) | |
7ed49443 | 1010 | { |
fe1f4a5e | 1011 | set_cp_abi_as_auto_default ("gnu-v3"); |
7ed49443 JB |
1012 | break; |
1013 | } | |
1014 | } | |
1015 | } | |
afbb8d7a KB |
1016 | |
1017 | /* Now build the hash tables; we can't do this incrementally | |
1018 | at an earlier point since we weren't finished with the obstack | |
1019 | yet. (And if the msymbol obstack gets moved, all the internal | |
1020 | pointers to other msymbols need to be adjusted.) */ | |
1021 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
1022 | } |
1023 | } | |
1024 | ||
1025 | /* Sort all the minimal symbols in OBJFILE. */ | |
1026 | ||
1027 | void | |
fba45db2 | 1028 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
1029 | { |
1030 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
1031 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 1032 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
1033 | } |
1034 | ||
1035 | /* Check if PC is in a shared library trampoline code stub. | |
1036 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
1037 | in a trampoline code stub. */ | |
1038 | ||
1039 | struct minimal_symbol * | |
fba45db2 | 1040 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
1041 | { |
1042 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
1043 | ||
1044 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
1045 | return msymbol; | |
1046 | return NULL; | |
1047 | } | |
1048 | ||
1049 | /* If PC is in a shared library trampoline code stub, return the | |
1050 | address of the `real' function belonging to the stub. | |
1051 | Return 0 if PC is not in a trampoline code stub or if the real | |
1052 | function is not found in the minimal symbol table. | |
1053 | ||
1054 | We may fail to find the right function if a function with the | |
1055 | same name is defined in more than one shared library, but this | |
1056 | is considered bad programming style. We could return 0 if we find | |
1057 | a duplicate function in case this matters someday. */ | |
1058 | ||
1059 | CORE_ADDR | |
52f729a7 | 1060 | find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc) |
c906108c SS |
1061 | { |
1062 | struct objfile *objfile; | |
1063 | struct minimal_symbol *msymbol; | |
1064 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
1065 | ||
1066 | if (tsymbol != NULL) | |
1067 | { | |
1068 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
1069 | { |
1070 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
6314a349 AC |
1071 | && strcmp (SYMBOL_LINKAGE_NAME (msymbol), |
1072 | SYMBOL_LINKAGE_NAME (tsymbol)) == 0) | |
c5aa993b JM |
1073 | return SYMBOL_VALUE_ADDRESS (msymbol); |
1074 | } | |
c906108c SS |
1075 | } |
1076 | return 0; | |
1077 | } |