]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
72a5efb3 DJ |
2 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, |
3 | 2002, 2003 | |
b6ba6518 | 4 | Free Software Foundation, Inc. |
c906108c SS |
5 | Contributed by Cygnus Support, using pieces from other GDB modules. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | ||
25 | /* This file contains support routines for creating, manipulating, and | |
26 | destroying minimal symbol tables. | |
27 | ||
28 | Minimal symbol tables are used to hold some very basic information about | |
29 | all defined global symbols (text, data, bss, abs, etc). The only two | |
30 | required pieces of information are the symbol's name and the address | |
31 | associated with that symbol. | |
32 | ||
33 | In many cases, even if a file was compiled with no special options for | |
34 | debugging at all, as long as was not stripped it will contain sufficient | |
35 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 36 | |
c906108c SS |
37 | Even when a file contains enough debugging information to build a full |
38 | symbol table, these minimal symbols are still useful for quickly mapping | |
39 | between names and addresses, and vice versa. They are also sometimes used | |
40 | to figure out what full symbol table entries need to be read in. */ | |
41 | ||
42 | ||
43 | #include "defs.h" | |
9227b5eb | 44 | #include <ctype.h> |
c906108c SS |
45 | #include "gdb_string.h" |
46 | #include "symtab.h" | |
47 | #include "bfd.h" | |
48 | #include "symfile.h" | |
49 | #include "objfiles.h" | |
50 | #include "demangle.h" | |
7ed49443 JB |
51 | #include "value.h" |
52 | #include "cp-abi.h" | |
c906108c SS |
53 | |
54 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
55 | At the end, copy them all into one newly allocated location on an objfile's | |
56 | symbol obstack. */ | |
57 | ||
58 | #define BUNCH_SIZE 127 | |
59 | ||
60 | struct msym_bunch | |
c5aa993b JM |
61 | { |
62 | struct msym_bunch *next; | |
63 | struct minimal_symbol contents[BUNCH_SIZE]; | |
64 | }; | |
c906108c SS |
65 | |
66 | /* Bunch currently being filled up. | |
67 | The next field points to chain of filled bunches. */ | |
68 | ||
69 | static struct msym_bunch *msym_bunch; | |
70 | ||
71 | /* Number of slots filled in current bunch. */ | |
72 | ||
73 | static int msym_bunch_index; | |
74 | ||
75 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
76 | ||
77 | static int msym_count; | |
78 | ||
9227b5eb JB |
79 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
80 | ||
81 | unsigned int | |
82 | msymbol_hash_iw (const char *string) | |
83 | { | |
84 | unsigned int hash = 0; | |
85 | while (*string && *string != '(') | |
86 | { | |
87 | while (isspace (*string)) | |
88 | ++string; | |
89 | if (*string && *string != '(') | |
375f3d86 DJ |
90 | { |
91 | hash = hash * 67 + *string - 113; | |
92 | ++string; | |
93 | } | |
9227b5eb | 94 | } |
261397f8 | 95 | return hash; |
9227b5eb JB |
96 | } |
97 | ||
98 | /* Compute a hash code for a string. */ | |
99 | ||
100 | unsigned int | |
101 | msymbol_hash (const char *string) | |
102 | { | |
103 | unsigned int hash = 0; | |
104 | for (; *string; ++string) | |
375f3d86 | 105 | hash = hash * 67 + *string - 113; |
261397f8 | 106 | return hash; |
9227b5eb JB |
107 | } |
108 | ||
109 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
110 | void | |
111 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
112 | struct minimal_symbol **table) | |
113 | { | |
114 | if (sym->hash_next == NULL) | |
115 | { | |
f56f77c1 DC |
116 | unsigned int hash |
117 | = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb JB |
118 | sym->hash_next = table[hash]; |
119 | table[hash] = sym; | |
120 | } | |
121 | } | |
122 | ||
0729fd50 DB |
123 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
124 | TABLE. */ | |
125 | static void | |
126 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
127 | struct minimal_symbol **table) | |
128 | { | |
129 | if (sym->demangled_hash_next == NULL) | |
130 | { | |
261397f8 | 131 | unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; |
0729fd50 DB |
132 | sym->demangled_hash_next = table[hash]; |
133 | table[hash] = sym; | |
134 | } | |
135 | } | |
136 | ||
c906108c SS |
137 | |
138 | /* Look through all the current minimal symbol tables and find the | |
139 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
72a5efb3 DJ |
140 | the search to that objfile. If SFILE is non-NULL, the only file-scope |
141 | symbols considered will be from that source file (global symbols are | |
142 | still preferred). Returns a pointer to the minimal symbol that | |
c906108c SS |
143 | matches, or NULL if no match is found. |
144 | ||
145 | Note: One instance where there may be duplicate minimal symbols with | |
146 | the same name is when the symbol tables for a shared library and the | |
147 | symbol tables for an executable contain global symbols with the same | |
72a5efb3 | 148 | names (the dynamic linker deals with the duplication). */ |
c906108c SS |
149 | |
150 | struct minimal_symbol * | |
aa1ee363 | 151 | lookup_minimal_symbol (const char *name, const char *sfile, |
fba45db2 | 152 | struct objfile *objf) |
c906108c SS |
153 | { |
154 | struct objfile *objfile; | |
155 | struct minimal_symbol *msymbol; | |
156 | struct minimal_symbol *found_symbol = NULL; | |
157 | struct minimal_symbol *found_file_symbol = NULL; | |
158 | struct minimal_symbol *trampoline_symbol = NULL; | |
159 | ||
261397f8 DJ |
160 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
161 | unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb | 162 | |
c906108c SS |
163 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
164 | if (sfile != NULL) | |
165 | { | |
166 | char *p = strrchr (sfile, '/'); | |
167 | if (p != NULL) | |
168 | sfile = p + 1; | |
169 | } | |
170 | #endif | |
171 | ||
172 | for (objfile = object_files; | |
173 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 174 | objfile = objfile->next) |
c906108c SS |
175 | { |
176 | if (objf == NULL || objf == objfile) | |
177 | { | |
9227b5eb JB |
178 | /* Do two passes: the first over the ordinary hash table, |
179 | and the second over the demangled hash table. */ | |
0729fd50 | 180 | int pass; |
9227b5eb | 181 | |
0729fd50 | 182 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 183 | { |
0729fd50 DB |
184 | /* Select hash list according to pass. */ |
185 | if (pass == 1) | |
186 | msymbol = objfile->msymbol_hash[hash]; | |
187 | else | |
188 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
189 | ||
190 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 191 | { |
e06963ff AC |
192 | /* FIXME: carlton/2003-02-27: This is an unholy |
193 | mixture of linkage names and natural names. If | |
194 | you want to test the linkage names with strcmp, | |
195 | do that. If you want to test the natural names | |
196 | with strcmp_iw, use SYMBOL_MATCHES_NATURAL_NAME. */ | |
197 | if (strcmp (DEPRECATED_SYMBOL_NAME (msymbol), (name)) == 0 | |
198 | || (SYMBOL_DEMANGLED_NAME (msymbol) != NULL | |
199 | && strcmp_iw (SYMBOL_DEMANGLED_NAME (msymbol), | |
200 | (name)) == 0)) | |
c906108c | 201 | { |
0729fd50 DB |
202 | switch (MSYMBOL_TYPE (msymbol)) |
203 | { | |
204 | case mst_file_text: | |
205 | case mst_file_data: | |
206 | case mst_file_bss: | |
c906108c | 207 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
0729fd50 DB |
208 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) |
209 | found_file_symbol = msymbol; | |
c906108c | 210 | #else |
0729fd50 DB |
211 | /* We have neither the ability nor the need to |
212 | deal with the SFILE parameter. If we find | |
213 | more than one symbol, just return the latest | |
214 | one (the user can't expect useful behavior in | |
215 | that case). */ | |
216 | found_file_symbol = msymbol; | |
c906108c | 217 | #endif |
0729fd50 DB |
218 | break; |
219 | ||
220 | case mst_solib_trampoline: | |
221 | ||
222 | /* If a trampoline symbol is found, we prefer to | |
223 | keep looking for the *real* symbol. If the | |
224 | actual symbol is not found, then we'll use the | |
225 | trampoline entry. */ | |
226 | if (trampoline_symbol == NULL) | |
227 | trampoline_symbol = msymbol; | |
228 | break; | |
229 | ||
230 | case mst_unknown: | |
231 | default: | |
232 | found_symbol = msymbol; | |
233 | break; | |
234 | } | |
c906108c | 235 | } |
9227b5eb | 236 | |
0729fd50 DB |
237 | /* Find the next symbol on the hash chain. */ |
238 | if (pass == 1) | |
239 | msymbol = msymbol->hash_next; | |
240 | else | |
241 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 242 | } |
c906108c SS |
243 | } |
244 | } | |
245 | } | |
246 | /* External symbols are best. */ | |
247 | if (found_symbol) | |
248 | return found_symbol; | |
249 | ||
250 | /* File-local symbols are next best. */ | |
251 | if (found_file_symbol) | |
252 | return found_file_symbol; | |
253 | ||
254 | /* Symbols for shared library trampolines are next best. */ | |
255 | if (trampoline_symbol) | |
256 | return trampoline_symbol; | |
257 | ||
258 | return NULL; | |
259 | } | |
260 | ||
261 | /* Look through all the current minimal symbol tables and find the | |
72a5efb3 | 262 | first minimal symbol that matches NAME and has text type. If OBJF |
5520a790 EZ |
263 | is non-NULL, limit the search to that objfile. Returns a pointer |
264 | to the minimal symbol that matches, or NULL if no match is found. | |
72a5efb3 DJ |
265 | |
266 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 267 | |
c906108c | 268 | struct minimal_symbol * |
5520a790 | 269 | lookup_minimal_symbol_text (const char *name, struct objfile *objf) |
c906108c SS |
270 | { |
271 | struct objfile *objfile; | |
272 | struct minimal_symbol *msymbol; | |
273 | struct minimal_symbol *found_symbol = NULL; | |
274 | struct minimal_symbol *found_file_symbol = NULL; | |
275 | ||
72a5efb3 DJ |
276 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
277 | ||
c906108c SS |
278 | for (objfile = object_files; |
279 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 280 | objfile = objfile->next) |
c906108c SS |
281 | { |
282 | if (objf == NULL || objf == objfile) | |
283 | { | |
72a5efb3 DJ |
284 | for (msymbol = objfile->msymbol_hash[hash]; |
285 | msymbol != NULL && found_symbol == NULL; | |
286 | msymbol = msymbol->hash_next) | |
c906108c | 287 | { |
f56f77c1 | 288 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
289 | (MSYMBOL_TYPE (msymbol) == mst_text || |
290 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
291 | { | |
292 | switch (MSYMBOL_TYPE (msymbol)) | |
293 | { | |
294 | case mst_file_text: | |
c906108c | 295 | found_file_symbol = msymbol; |
c906108c SS |
296 | break; |
297 | default: | |
298 | found_symbol = msymbol; | |
299 | break; | |
300 | } | |
301 | } | |
302 | } | |
303 | } | |
304 | } | |
305 | /* External symbols are best. */ | |
306 | if (found_symbol) | |
307 | return found_symbol; | |
308 | ||
309 | /* File-local symbols are next best. */ | |
310 | if (found_file_symbol) | |
311 | return found_file_symbol; | |
312 | ||
313 | return NULL; | |
314 | } | |
315 | ||
316 | /* Look through all the current minimal symbol tables and find the | |
5520a790 EZ |
317 | first minimal symbol that matches NAME and is a solib trampoline. |
318 | If OBJF is non-NULL, limit the search to that objfile. Returns a | |
319 | pointer to the minimal symbol that matches, or NULL if no match is | |
320 | found. | |
72a5efb3 DJ |
321 | |
322 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 323 | |
c906108c | 324 | struct minimal_symbol * |
aa1ee363 | 325 | lookup_minimal_symbol_solib_trampoline (const char *name, |
aa1ee363 | 326 | struct objfile *objf) |
c906108c SS |
327 | { |
328 | struct objfile *objfile; | |
329 | struct minimal_symbol *msymbol; | |
330 | struct minimal_symbol *found_symbol = NULL; | |
331 | ||
72a5efb3 DJ |
332 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
333 | ||
c906108c SS |
334 | for (objfile = object_files; |
335 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 336 | objfile = objfile->next) |
c906108c SS |
337 | { |
338 | if (objf == NULL || objf == objfile) | |
339 | { | |
72a5efb3 DJ |
340 | for (msymbol = objfile->msymbol_hash[hash]; |
341 | msymbol != NULL && found_symbol == NULL; | |
342 | msymbol = msymbol->hash_next) | |
c906108c | 343 | { |
f56f77c1 | 344 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
345 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
346 | return msymbol; | |
347 | } | |
348 | } | |
349 | } | |
350 | ||
351 | return NULL; | |
352 | } | |
353 | ||
354 | ||
355 | /* Search through the minimal symbol table for each objfile and find | |
356 | the symbol whose address is the largest address that is still less | |
357 | than or equal to PC, and matches SECTION (if non-null). Returns a | |
358 | pointer to the minimal symbol if such a symbol is found, or NULL if | |
359 | PC is not in a suitable range. Note that we need to look through | |
360 | ALL the minimal symbol tables before deciding on the symbol that | |
361 | comes closest to the specified PC. This is because objfiles can | |
362 | overlap, for example objfile A has .text at 0x100 and .data at | |
363 | 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ | |
364 | ||
365 | struct minimal_symbol * | |
fba45db2 | 366 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section) |
c906108c SS |
367 | { |
368 | int lo; | |
369 | int hi; | |
370 | int new; | |
371 | struct objfile *objfile; | |
372 | struct minimal_symbol *msymbol; | |
373 | struct minimal_symbol *best_symbol = NULL; | |
64ae9269 | 374 | struct obj_section *pc_section; |
c906108c SS |
375 | |
376 | /* pc has to be in a known section. This ensures that anything beyond | |
377 | the end of the last segment doesn't appear to be part of the last | |
378 | function in the last segment. */ | |
64ae9269 DJ |
379 | pc_section = find_pc_section (pc); |
380 | if (pc_section == NULL) | |
c906108c SS |
381 | return NULL; |
382 | ||
64ae9269 DJ |
383 | /* If no section was specified, then just make sure that the PC is in |
384 | the same section as the minimal symbol we find. */ | |
385 | if (section == NULL) | |
386 | section = pc_section->the_bfd_section; | |
387 | ||
388 | /* FIXME drow/2003-07-19: Should we also check that PC is in SECTION | |
389 | if we were passed a non-NULL SECTION argument? */ | |
390 | ||
c906108c SS |
391 | for (objfile = object_files; |
392 | objfile != NULL; | |
c5aa993b | 393 | objfile = objfile->next) |
c906108c SS |
394 | { |
395 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
396 | a binary search. Note that a minimal symbol table always consists |
397 | of at least two symbols, a "real" symbol and the terminating | |
398 | "null symbol". If there are no real symbols, then there is no | |
399 | minimal symbol table at all. */ | |
c906108c | 400 | |
15831452 | 401 | if (objfile->minimal_symbol_count > 0) |
c906108c | 402 | { |
15831452 | 403 | msymbol = objfile->msymbols; |
c906108c | 404 | lo = 0; |
c5aa993b | 405 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
406 | |
407 | /* This code assumes that the minimal symbols are sorted by | |
408 | ascending address values. If the pc value is greater than or | |
409 | equal to the first symbol's address, then some symbol in this | |
410 | minimal symbol table is a suitable candidate for being the | |
411 | "best" symbol. This includes the last real symbol, for cases | |
412 | where the pc value is larger than any address in this vector. | |
413 | ||
414 | By iterating until the address associated with the current | |
415 | hi index (the endpoint of the test interval) is less than | |
416 | or equal to the desired pc value, we accomplish two things: | |
417 | (1) the case where the pc value is larger than any minimal | |
418 | symbol address is trivially solved, (2) the address associated | |
419 | with the hi index is always the one we want when the interation | |
420 | terminates. In essence, we are iterating the test interval | |
421 | down until the pc value is pushed out of it from the high end. | |
422 | ||
423 | Warning: this code is trickier than it would appear at first. */ | |
424 | ||
425 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
426 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
427 | { | |
428 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
429 | { | |
430 | /* pc is still strictly less than highest address */ | |
431 | /* Note "new" will always be >= lo */ | |
432 | new = (lo + hi) / 2; | |
433 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
434 | (lo == new)) | |
435 | { | |
436 | hi = new; | |
437 | } | |
438 | else | |
439 | { | |
440 | lo = new; | |
441 | } | |
442 | } | |
443 | ||
444 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
445 | hi to point to the last one. That way we can find the |
446 | right symbol if it has an index greater than hi. */ | |
447 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 448 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 449 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
450 | hi++; |
451 | ||
452 | /* The minimal symbol indexed by hi now is the best one in this | |
c5aa993b JM |
453 | objfile's minimal symbol table. See if it is the best one |
454 | overall. */ | |
c906108c SS |
455 | |
456 | /* Skip any absolute symbols. This is apparently what adb | |
c5aa993b JM |
457 | and dbx do, and is needed for the CM-5. There are two |
458 | known possible problems: (1) on ELF, apparently end, edata, | |
459 | etc. are absolute. Not sure ignoring them here is a big | |
460 | deal, but if we want to use them, the fix would go in | |
461 | elfread.c. (2) I think shared library entry points on the | |
462 | NeXT are absolute. If we want special handling for this | |
463 | it probably should be triggered by a special | |
464 | mst_abs_or_lib or some such. */ | |
c906108c SS |
465 | while (hi >= 0 |
466 | && msymbol[hi].type == mst_abs) | |
467 | --hi; | |
468 | ||
469 | /* If "section" specified, skip any symbol from wrong section */ | |
470 | /* This is the new code that distinguishes it from the old function */ | |
471 | if (section) | |
472 | while (hi >= 0 | |
65d5a54a EZ |
473 | /* Some types of debug info, such as COFF, |
474 | don't fill the bfd_section member, so don't | |
475 | throw away symbols on those platforms. */ | |
476 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL | |
c906108c SS |
477 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != section) |
478 | --hi; | |
479 | ||
480 | if (hi >= 0 | |
481 | && ((best_symbol == NULL) || | |
c5aa993b | 482 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
483 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
484 | { | |
485 | best_symbol = &msymbol[hi]; | |
486 | } | |
487 | } | |
488 | } | |
489 | } | |
490 | return (best_symbol); | |
491 | } | |
492 | ||
493 | /* Backward compatibility: search through the minimal symbol table | |
494 | for a matching PC (no section given) */ | |
495 | ||
496 | struct minimal_symbol * | |
fba45db2 | 497 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
498 | { |
499 | return lookup_minimal_symbol_by_pc_section (pc, find_pc_mapped_section (pc)); | |
500 | } | |
c906108c | 501 | \f |
c5aa993b | 502 | |
c906108c SS |
503 | /* Return leading symbol character for a BFD. If BFD is NULL, |
504 | return the leading symbol character from the main objfile. */ | |
505 | ||
a14ed312 | 506 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
507 | |
508 | static int | |
fba45db2 | 509 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
510 | { |
511 | if (abfd != NULL) | |
512 | return bfd_get_symbol_leading_char (abfd); | |
513 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
514 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
515 | return 0; | |
516 | } | |
517 | ||
518 | /* Prepare to start collecting minimal symbols. Note that presetting | |
519 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
520 | symbol to allocate the memory for the first bunch. */ | |
521 | ||
522 | void | |
fba45db2 | 523 | init_minimal_symbol_collection (void) |
c906108c SS |
524 | { |
525 | msym_count = 0; | |
526 | msym_bunch = NULL; | |
527 | msym_bunch_index = BUNCH_SIZE; | |
528 | } | |
529 | ||
530 | void | |
fba45db2 KB |
531 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
532 | enum minimal_symbol_type ms_type, | |
533 | struct objfile *objfile) | |
c906108c SS |
534 | { |
535 | int section; | |
536 | ||
537 | switch (ms_type) | |
538 | { | |
539 | case mst_text: | |
540 | case mst_file_text: | |
541 | case mst_solib_trampoline: | |
b8fbeb18 | 542 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
543 | break; |
544 | case mst_data: | |
545 | case mst_file_data: | |
b8fbeb18 | 546 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
547 | break; |
548 | case mst_bss: | |
549 | case mst_file_bss: | |
b8fbeb18 | 550 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
551 | break; |
552 | default: | |
553 | section = -1; | |
554 | } | |
555 | ||
556 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
557 | NULL, section, NULL, objfile); | |
558 | } | |
559 | ||
560 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
561 | newly created. */ | |
562 | ||
563 | struct minimal_symbol * | |
fba45db2 KB |
564 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, |
565 | enum minimal_symbol_type ms_type, | |
566 | char *info, int section, | |
567 | asection *bfd_section, | |
568 | struct objfile *objfile) | |
c906108c | 569 | { |
52f0bd74 AC |
570 | struct msym_bunch *new; |
571 | struct minimal_symbol *msymbol; | |
c906108c SS |
572 | |
573 | if (ms_type == mst_file_text) | |
574 | { | |
575 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into | |
c5aa993b JM |
576 | the minimal symbols, because if there is also another symbol |
577 | at the same address (e.g. the first function of the file), | |
578 | lookup_minimal_symbol_by_pc would have no way of getting the | |
579 | right one. */ | |
c906108c SS |
580 | if (name[0] == 'g' |
581 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
582 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
583 | return (NULL); | |
584 | ||
585 | { | |
586 | const char *tempstring = name; | |
587 | if (tempstring[0] == get_symbol_leading_char (objfile->obfd)) | |
588 | ++tempstring; | |
bf896cb0 | 589 | if (strncmp (tempstring, "__gnu_compiled", 14) == 0) |
c906108c SS |
590 | return (NULL); |
591 | } | |
592 | } | |
593 | ||
594 | if (msym_bunch_index == BUNCH_SIZE) | |
595 | { | |
596 | new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); | |
597 | msym_bunch_index = 0; | |
c5aa993b | 598 | new->next = msym_bunch; |
c906108c SS |
599 | msym_bunch = new; |
600 | } | |
c5aa993b | 601 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c | 602 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); |
2de7ced7 DJ |
603 | SYMBOL_LANGUAGE (msymbol) = language_auto; |
604 | SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile); | |
605 | ||
c906108c SS |
606 | SYMBOL_VALUE_ADDRESS (msymbol) = address; |
607 | SYMBOL_SECTION (msymbol) = section; | |
608 | SYMBOL_BFD_SECTION (msymbol) = bfd_section; | |
609 | ||
610 | MSYMBOL_TYPE (msymbol) = ms_type; | |
611 | /* FIXME: This info, if it remains, needs its own field. */ | |
c5aa993b | 612 | MSYMBOL_INFO (msymbol) = info; /* FIXME! */ |
9227b5eb | 613 | |
a79dea61 | 614 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 615 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
616 | msymbol->hash_next = NULL; |
617 | msymbol->demangled_hash_next = NULL; | |
618 | ||
c906108c SS |
619 | msym_bunch_index++; |
620 | msym_count++; | |
621 | OBJSTAT (objfile, n_minsyms++); | |
622 | return msymbol; | |
623 | } | |
624 | ||
625 | /* Compare two minimal symbols by address and return a signed result based | |
626 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
627 | Within groups with the same address, sort by name. */ | |
628 | ||
629 | static int | |
12b9c64f | 630 | compare_minimal_symbols (const void *fn1p, const void *fn2p) |
c906108c | 631 | { |
52f0bd74 AC |
632 | const struct minimal_symbol *fn1; |
633 | const struct minimal_symbol *fn2; | |
c906108c SS |
634 | |
635 | fn1 = (const struct minimal_symbol *) fn1p; | |
636 | fn2 = (const struct minimal_symbol *) fn2p; | |
637 | ||
638 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
639 | { | |
c5aa993b | 640 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
641 | } |
642 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
643 | { | |
c5aa993b | 644 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 645 | } |
c5aa993b JM |
646 | else |
647 | /* addrs are equal: sort by name */ | |
c906108c | 648 | { |
f56f77c1 DC |
649 | char *name1 = SYMBOL_LINKAGE_NAME (fn1); |
650 | char *name2 = SYMBOL_LINKAGE_NAME (fn2); | |
c906108c SS |
651 | |
652 | if (name1 && name2) /* both have names */ | |
653 | return strcmp (name1, name2); | |
654 | else if (name2) | |
c5aa993b JM |
655 | return 1; /* fn1 has no name, so it is "less" */ |
656 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
657 | return -1; |
658 | else | |
c5aa993b | 659 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
660 | } |
661 | } | |
662 | ||
663 | /* Discard the currently collected minimal symbols, if any. If we wish | |
664 | to save them for later use, we must have already copied them somewhere | |
665 | else before calling this function. | |
666 | ||
667 | FIXME: We could allocate the minimal symbol bunches on their own | |
668 | obstack and then simply blow the obstack away when we are done with | |
669 | it. Is it worth the extra trouble though? */ | |
670 | ||
56e290f4 AC |
671 | static void |
672 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c | 673 | { |
52f0bd74 | 674 | struct msym_bunch *next; |
c906108c SS |
675 | |
676 | while (msym_bunch != NULL) | |
677 | { | |
c5aa993b | 678 | next = msym_bunch->next; |
b8c9b27d | 679 | xfree (msym_bunch); |
c906108c SS |
680 | msym_bunch = next; |
681 | } | |
682 | } | |
683 | ||
56e290f4 AC |
684 | struct cleanup * |
685 | make_cleanup_discard_minimal_symbols (void) | |
686 | { | |
687 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
688 | } | |
689 | ||
690 | ||
9227b5eb | 691 | |
c906108c SS |
692 | /* Compact duplicate entries out of a minimal symbol table by walking |
693 | through the table and compacting out entries with duplicate addresses | |
694 | and matching names. Return the number of entries remaining. | |
695 | ||
696 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
697 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
698 | ||
699 | When files contain multiple sources of symbol information, it is | |
700 | possible for the minimal symbol table to contain many duplicate entries. | |
701 | As an example, SVR4 systems use ELF formatted object files, which | |
702 | usually contain at least two different types of symbol tables (a | |
703 | standard ELF one and a smaller dynamic linking table), as well as | |
704 | DWARF debugging information for files compiled with -g. | |
705 | ||
706 | Without compacting, the minimal symbol table for gdb itself contains | |
707 | over a 1000 duplicates, about a third of the total table size. Aside | |
708 | from the potential trap of not noticing that two successive entries | |
709 | identify the same location, this duplication impacts the time required | |
710 | to linearly scan the table, which is done in a number of places. So we | |
711 | just do one linear scan here and toss out the duplicates. | |
712 | ||
713 | Note that we are not concerned here about recovering the space that | |
714 | is potentially freed up, because the strings themselves are allocated | |
715 | on the symbol_obstack, and will get automatically freed when the symbol | |
716 | table is freed. The caller can free up the unused minimal symbols at | |
717 | the end of the compacted region if their allocation strategy allows it. | |
718 | ||
719 | Also note we only go up to the next to last entry within the loop | |
720 | and then copy the last entry explicitly after the loop terminates. | |
721 | ||
722 | Since the different sources of information for each symbol may | |
723 | have different levels of "completeness", we may have duplicates | |
724 | that have one entry with type "mst_unknown" and the other with a | |
725 | known type. So if the one we are leaving alone has type mst_unknown, | |
726 | overwrite its type with the type from the one we are compacting out. */ | |
727 | ||
728 | static int | |
fba45db2 KB |
729 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
730 | struct objfile *objfile) | |
c906108c SS |
731 | { |
732 | struct minimal_symbol *copyfrom; | |
733 | struct minimal_symbol *copyto; | |
734 | ||
735 | if (mcount > 0) | |
736 | { | |
737 | copyfrom = copyto = msymbol; | |
738 | while (copyfrom < msymbol + mcount - 1) | |
739 | { | |
c5aa993b | 740 | if (SYMBOL_VALUE_ADDRESS (copyfrom) == |
c906108c | 741 | SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) && |
f56f77c1 DC |
742 | (STREQ (SYMBOL_LINKAGE_NAME (copyfrom), |
743 | SYMBOL_LINKAGE_NAME ((copyfrom + 1))))) | |
c906108c | 744 | { |
c5aa993b | 745 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
746 | { |
747 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
748 | } | |
749 | copyfrom++; | |
750 | } | |
751 | else | |
afbb8d7a | 752 | *copyto++ = *copyfrom++; |
c906108c SS |
753 | } |
754 | *copyto++ = *copyfrom++; | |
755 | mcount = copyto - msymbol; | |
756 | } | |
757 | return (mcount); | |
758 | } | |
759 | ||
afbb8d7a KB |
760 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
761 | after compacting or sorting the table since the entries move around | |
762 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
763 | ||
764 | static void | |
765 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
766 | { | |
767 | int i; | |
768 | struct minimal_symbol *msym; | |
769 | ||
770 | /* Clear the hash tables. */ | |
771 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
772 | { | |
773 | objfile->msymbol_hash[i] = 0; | |
774 | objfile->msymbol_demangled_hash[i] = 0; | |
775 | } | |
776 | ||
777 | /* Now, (re)insert the actual entries. */ | |
778 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
779 | i > 0; | |
780 | i--, msym++) | |
781 | { | |
782 | msym->hash_next = 0; | |
783 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
784 | ||
785 | msym->demangled_hash_next = 0; | |
786 | if (SYMBOL_DEMANGLED_NAME (msym) != NULL) | |
787 | add_minsym_to_demangled_hash_table (msym, | |
788 | objfile->msymbol_demangled_hash); | |
789 | } | |
790 | } | |
791 | ||
c906108c SS |
792 | /* Add the minimal symbols in the existing bunches to the objfile's official |
793 | minimal symbol table. In most cases there is no minimal symbol table yet | |
794 | for this objfile, and the existing bunches are used to create one. Once | |
795 | in a while (for shared libraries for example), we add symbols (e.g. common | |
796 | symbols) to an existing objfile. | |
797 | ||
798 | Because of the way minimal symbols are collected, we generally have no way | |
799 | of knowing what source language applies to any particular minimal symbol. | |
800 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
801 | C++ compilation unit or not. So for the sake of supporting cached | |
802 | demangled C++ names, we have no choice but to try and demangle each new one | |
803 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
804 | symbol and set the symbol's language and demangled name fields | |
805 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
806 | allocating obstack space that subsequently can't be freed for the demangled | |
807 | names, we mark all newly added symbols with language_auto. After | |
808 | compaction of the minimal symbols, we go back and scan the entire minimal | |
809 | symbol table looking for these new symbols. For each new symbol we attempt | |
810 | to demangle it, and if successful, record it as a language_cplus symbol | |
811 | and cache the demangled form on the symbol obstack. Symbols which don't | |
812 | demangle are marked as language_unknown symbols, which inhibits future | |
813 | attempts to demangle them if we later add more minimal symbols. */ | |
814 | ||
815 | void | |
fba45db2 | 816 | install_minimal_symbols (struct objfile *objfile) |
c906108c | 817 | { |
52f0bd74 AC |
818 | int bindex; |
819 | int mcount; | |
820 | struct msym_bunch *bunch; | |
821 | struct minimal_symbol *msymbols; | |
c906108c | 822 | int alloc_count; |
52f0bd74 | 823 | char leading_char; |
c906108c SS |
824 | |
825 | if (msym_count > 0) | |
826 | { | |
827 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
828 | bunches of new and existing minimal symbols, sort them, and then |
829 | compact out the duplicate entries. Once we have a final table, | |
830 | we will give back the excess space. */ | |
c906108c SS |
831 | |
832 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
833 | obstack_blank (&objfile->symbol_obstack, | |
834 | alloc_count * sizeof (struct minimal_symbol)); | |
835 | msymbols = (struct minimal_symbol *) | |
c5aa993b | 836 | obstack_base (&objfile->symbol_obstack); |
c906108c SS |
837 | |
838 | /* Copy in the existing minimal symbols, if there are any. */ | |
839 | ||
840 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
841 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
842 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
843 | |
844 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
845 | to the new contiguous array of symbols. Note that we start with the |
846 | current, possibly partially filled bunch (thus we use the current | |
847 | msym_bunch_index for the first bunch we copy over), and thereafter | |
848 | each bunch is full. */ | |
849 | ||
c906108c SS |
850 | mcount = objfile->minimal_symbol_count; |
851 | leading_char = get_symbol_leading_char (objfile->obfd); | |
c5aa993b JM |
852 | |
853 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
854 | { |
855 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
856 | { | |
c5aa993b | 857 | msymbols[mcount] = bunch->contents[bindex]; |
f56f77c1 | 858 | if (SYMBOL_LINKAGE_NAME (&msymbols[mcount])[0] == leading_char) |
c906108c | 859 | { |
f56f77c1 | 860 | SYMBOL_LINKAGE_NAME (&msymbols[mcount])++; |
c906108c SS |
861 | } |
862 | } | |
863 | msym_bunch_index = BUNCH_SIZE; | |
864 | } | |
865 | ||
866 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 867 | |
c906108c SS |
868 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
869 | compare_minimal_symbols); | |
c5aa993b | 870 | |
c906108c | 871 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
872 | no longer using. */ |
873 | ||
9227b5eb | 874 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c SS |
875 | |
876 | obstack_blank (&objfile->symbol_obstack, | |
c5aa993b | 877 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c SS |
878 | msymbols = (struct minimal_symbol *) |
879 | obstack_finish (&objfile->symbol_obstack); | |
880 | ||
881 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
882 | which is *not* included in the size of the table. This makes it |
883 | easier to find the end of the table when we are handed a pointer | |
884 | to some symbol in the middle of it. Zero out the fields in the | |
885 | "null symbol" allocated at the end of the array. Note that the | |
886 | symbol count does *not* include this null symbol, which is why it | |
887 | is indexed by mcount and not mcount-1. */ | |
c906108c | 888 | |
f56f77c1 | 889 | SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL; |
c906108c SS |
890 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; |
891 | MSYMBOL_INFO (&msymbols[mcount]) = NULL; | |
892 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; | |
893 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
894 | ||
895 | /* Attach the minimal symbol table to the specified objfile. | |
c5aa993b JM |
896 | The strings themselves are also located in the symbol_obstack |
897 | of this objfile. */ | |
c906108c | 898 | |
c5aa993b JM |
899 | objfile->minimal_symbol_count = mcount; |
900 | objfile->msymbols = msymbols; | |
c906108c | 901 | |
7ed49443 JB |
902 | /* Try to guess the appropriate C++ ABI by looking at the names |
903 | of the minimal symbols in the table. */ | |
904 | { | |
905 | int i; | |
906 | ||
907 | for (i = 0; i < mcount; i++) | |
908 | { | |
6aca59a3 DJ |
909 | /* If a symbol's name starts with _Z and was successfully |
910 | demangled, then we can assume we've found a GNU v3 symbol. | |
911 | For now we set the C++ ABI globally; if the user is | |
912 | mixing ABIs then the user will need to "set cp-abi" | |
913 | manually. */ | |
f56f77c1 | 914 | const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]); |
6aca59a3 DJ |
915 | if (name[0] == '_' && name[1] == 'Z' |
916 | && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL) | |
7ed49443 | 917 | { |
fe1f4a5e | 918 | set_cp_abi_as_auto_default ("gnu-v3"); |
7ed49443 JB |
919 | break; |
920 | } | |
921 | } | |
922 | } | |
afbb8d7a KB |
923 | |
924 | /* Now build the hash tables; we can't do this incrementally | |
925 | at an earlier point since we weren't finished with the obstack | |
926 | yet. (And if the msymbol obstack gets moved, all the internal | |
927 | pointers to other msymbols need to be adjusted.) */ | |
928 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
929 | } |
930 | } | |
931 | ||
932 | /* Sort all the minimal symbols in OBJFILE. */ | |
933 | ||
934 | void | |
fba45db2 | 935 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
936 | { |
937 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
938 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 939 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
940 | } |
941 | ||
942 | /* Check if PC is in a shared library trampoline code stub. | |
943 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
944 | in a trampoline code stub. */ | |
945 | ||
946 | struct minimal_symbol * | |
fba45db2 | 947 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
948 | { |
949 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
950 | ||
951 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
952 | return msymbol; | |
953 | return NULL; | |
954 | } | |
955 | ||
956 | /* If PC is in a shared library trampoline code stub, return the | |
957 | address of the `real' function belonging to the stub. | |
958 | Return 0 if PC is not in a trampoline code stub or if the real | |
959 | function is not found in the minimal symbol table. | |
960 | ||
961 | We may fail to find the right function if a function with the | |
962 | same name is defined in more than one shared library, but this | |
963 | is considered bad programming style. We could return 0 if we find | |
964 | a duplicate function in case this matters someday. */ | |
965 | ||
966 | CORE_ADDR | |
fba45db2 | 967 | find_solib_trampoline_target (CORE_ADDR pc) |
c906108c SS |
968 | { |
969 | struct objfile *objfile; | |
970 | struct minimal_symbol *msymbol; | |
971 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
972 | ||
973 | if (tsymbol != NULL) | |
974 | { | |
975 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
976 | { |
977 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
f56f77c1 DC |
978 | && STREQ (SYMBOL_LINKAGE_NAME (msymbol), |
979 | SYMBOL_LINKAGE_NAME (tsymbol))) | |
c5aa993b JM |
980 | return SYMBOL_VALUE_ADDRESS (msymbol); |
981 | } | |
c906108c SS |
982 | } |
983 | return 0; | |
984 | } |