]>
Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
ca557f44 | 2 | |
9b254dd1 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
13547ab6 | 4 | Free Software Foundation, Inc. |
16461d7d KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
16461d7d KB |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
16461d7d KB |
20 | |
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
16461d7d | 23 | #include "gdbcore.h" |
8064c6ae | 24 | #include "arch-utils.h" |
16461d7d | 25 | #include "floatformat.h" |
e6bb342a | 26 | #include "gdbtypes.h" |
4e052eda | 27 | #include "regcache.h" |
004d836a JJ |
28 | #include "reggroups.h" |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
d16aafd8 | 32 | #include "doublest.h" |
fd0407d6 | 33 | #include "value.h" |
bd1ce8ba | 34 | #include "gdb_assert.h" |
16461d7d KB |
35 | #include "objfiles.h" |
36 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 37 | #include "elf-bfd.h" |
a89aa300 | 38 | #include "dis-asm.h" |
7d9b040b | 39 | #include "infcall.h" |
b33e8514 | 40 | #include "osabi.h" |
9fc9f5e2 | 41 | #include "ia64-tdep.h" |
0d5de010 | 42 | #include "cp-abi.h" |
16461d7d | 43 | |
968d1cb4 | 44 | #ifdef HAVE_LIBUNWIND_IA64_H |
8973ff21 | 45 | #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
968d1cb4 JJ |
46 | #include "libunwind-frame.h" |
47 | #include "libunwind-ia64.h" | |
c5a27d9c JJ |
48 | |
49 | /* Note: KERNEL_START is supposed to be an address which is not going | |
50 | to ever contain any valid unwind info. For ia64 linux, the choice | |
51 | of 0xc000000000000000 is fairly safe since that's uncached space. | |
52 | ||
53 | We use KERNEL_START as follows: after obtaining the kernel's | |
54 | unwind table via getunwind(), we project its unwind data into | |
55 | address-range KERNEL_START-(KERNEL_START+ktab_size) and then | |
56 | when ia64_access_mem() sees a memory access to this | |
57 | address-range, we redirect it to ktab instead. | |
58 | ||
59 | None of this hackery is needed with a modern kernel/libcs | |
60 | which uses the kernel virtual DSO to provide access to the | |
61 | kernel's unwind info. In that case, ktab_size remains 0 and | |
62 | hence the value of KERNEL_START doesn't matter. */ | |
63 | ||
64 | #define KERNEL_START 0xc000000000000000ULL | |
65 | ||
66 | static size_t ktab_size = 0; | |
67 | struct ia64_table_entry | |
68 | { | |
69 | uint64_t start_offset; | |
70 | uint64_t end_offset; | |
71 | uint64_t info_offset; | |
72 | }; | |
73 | ||
74 | static struct ia64_table_entry *ktab = NULL; | |
75 | ||
968d1cb4 JJ |
76 | #endif |
77 | ||
698cb3f0 KB |
78 | /* An enumeration of the different IA-64 instruction types. */ |
79 | ||
16461d7d KB |
80 | typedef enum instruction_type |
81 | { | |
82 | A, /* Integer ALU ; I-unit or M-unit */ | |
83 | I, /* Non-ALU integer; I-unit */ | |
84 | M, /* Memory ; M-unit */ | |
85 | F, /* Floating-point ; F-unit */ | |
86 | B, /* Branch ; B-unit */ | |
87 | L, /* Extended (L+X) ; I-unit */ | |
88 | X, /* Extended (L+X) ; I-unit */ | |
89 | undefined /* undefined or reserved */ | |
90 | } instruction_type; | |
91 | ||
92 | /* We represent IA-64 PC addresses as the value of the instruction | |
93 | pointer or'd with some bit combination in the low nibble which | |
94 | represents the slot number in the bundle addressed by the | |
95 | instruction pointer. The problem is that the Linux kernel | |
96 | multiplies its slot numbers (for exceptions) by one while the | |
97 | disassembler multiplies its slot numbers by 6. In addition, I've | |
98 | heard it said that the simulator uses 1 as the multiplier. | |
99 | ||
100 | I've fixed the disassembler so that the bytes_per_line field will | |
101 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
102 | is set to six (which is how it was set up initially). -- objdump | |
103 | displays pretty disassembly dumps with this value. For our purposes, | |
104 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
105 | never want to also display the raw bytes the way objdump does. */ | |
106 | ||
107 | #define SLOT_MULTIPLIER 1 | |
108 | ||
109 | /* Length in bytes of an instruction bundle */ | |
110 | ||
111 | #define BUNDLE_LEN 16 | |
112 | ||
16461d7d KB |
113 | static gdbarch_init_ftype ia64_gdbarch_init; |
114 | ||
115 | static gdbarch_register_name_ftype ia64_register_name; | |
004d836a | 116 | static gdbarch_register_type_ftype ia64_register_type; |
16461d7d | 117 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
16461d7d | 118 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
64a5b29c | 119 | static struct type *is_float_or_hfa_type (struct type *t); |
b33e8514 | 120 | static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr); |
16461d7d | 121 | |
004d836a JJ |
122 | static struct type *builtin_type_ia64_ext; |
123 | ||
124 | #define NUM_IA64_RAW_REGS 462 | |
16461d7d | 125 | |
16461d7d KB |
126 | static int sp_regnum = IA64_GR12_REGNUM; |
127 | static int fp_regnum = IA64_VFP_REGNUM; | |
128 | static int lr_regnum = IA64_VRAP_REGNUM; | |
129 | ||
004d836a | 130 | /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because |
4afcc598 | 131 | they may not be accessible via the ptrace register get/set interfaces. */ |
004d836a JJ |
132 | enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
133 | V127_REGNUM = V32_REGNUM + 95, | |
134 | VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; | |
16461d7d KB |
135 | |
136 | /* Array of register names; There should be ia64_num_regs strings in | |
137 | the initializer. */ | |
138 | ||
139 | static char *ia64_register_names[] = | |
140 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
141 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
142 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
143 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
004d836a JJ |
144 | "", "", "", "", "", "", "", "", |
145 | "", "", "", "", "", "", "", "", | |
146 | "", "", "", "", "", "", "", "", | |
147 | "", "", "", "", "", "", "", "", | |
148 | "", "", "", "", "", "", "", "", | |
149 | "", "", "", "", "", "", "", "", | |
150 | "", "", "", "", "", "", "", "", | |
151 | "", "", "", "", "", "", "", "", | |
152 | "", "", "", "", "", "", "", "", | |
153 | "", "", "", "", "", "", "", "", | |
154 | "", "", "", "", "", "", "", "", | |
155 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
156 | |
157 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
158 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
159 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
160 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
161 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
162 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
163 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
164 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
165 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
166 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
167 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
168 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
169 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
170 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
171 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
172 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
173 | ||
004d836a JJ |
174 | "", "", "", "", "", "", "", "", |
175 | "", "", "", "", "", "", "", "", | |
176 | "", "", "", "", "", "", "", "", | |
177 | "", "", "", "", "", "", "", "", | |
178 | "", "", "", "", "", "", "", "", | |
179 | "", "", "", "", "", "", "", "", | |
180 | "", "", "", "", "", "", "", "", | |
181 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
182 | |
183 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
184 | ||
185 | "vfp", "vrap", | |
186 | ||
187 | "pr", "ip", "psr", "cfm", | |
188 | ||
189 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
190 | "", "", "", "", "", "", "", "", | |
191 | "rsc", "bsp", "bspstore", "rnat", | |
192 | "", "fcr", "", "", | |
193 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
194 | "ccv", "", "", "", "unat", "", "", "", | |
195 | "fpsr", "", "", "", "itc", | |
196 | "", "", "", "", "", "", "", "", "", "", | |
197 | "", "", "", "", "", "", "", "", "", | |
198 | "pfs", "lc", "ec", | |
199 | "", "", "", "", "", "", "", "", "", "", | |
200 | "", "", "", "", "", "", "", "", "", "", | |
201 | "", "", "", "", "", "", "", "", "", "", | |
202 | "", "", "", "", "", "", "", "", "", "", | |
203 | "", "", "", "", "", "", "", "", "", "", | |
204 | "", "", "", "", "", "", "", "", "", "", | |
205 | "", | |
206 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
207 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
208 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
209 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
210 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
211 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
212 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
213 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
214 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
215 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
216 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
217 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
218 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
219 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
220 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
221 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
004d836a JJ |
222 | |
223 | "bof", | |
224 | ||
225 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
226 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
227 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
228 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
229 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
230 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
231 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
232 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
233 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
234 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
235 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
236 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
237 | ||
238 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
239 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
240 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
241 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
242 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
243 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
244 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
245 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
16461d7d KB |
246 | }; |
247 | ||
004d836a JJ |
248 | struct ia64_frame_cache |
249 | { | |
250 | CORE_ADDR base; /* frame pointer base for frame */ | |
251 | CORE_ADDR pc; /* function start pc for frame */ | |
252 | CORE_ADDR saved_sp; /* stack pointer for frame */ | |
253 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
254 | CORE_ADDR cfm; /* cfm value for current frame */ | |
4afcc598 | 255 | CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
004d836a JJ |
256 | int frameless; |
257 | int sof; /* Size of frame (decoded from cfm value) */ | |
258 | int sol; /* Size of locals (decoded from cfm value) */ | |
259 | int sor; /* Number of rotating registers. (decoded from cfm value) */ | |
260 | CORE_ADDR after_prologue; | |
261 | /* Address of first instruction after the last | |
262 | prologue instruction; Note that there may | |
263 | be instructions from the function's body | |
264 | intermingled with the prologue. */ | |
265 | int mem_stack_frame_size; | |
266 | /* Size of the memory stack frame (may be zero), | |
267 | or -1 if it has not been determined yet. */ | |
268 | int fp_reg; /* Register number (if any) used a frame pointer | |
244bc108 | 269 | for this frame. 0 if no register is being used |
16461d7d | 270 | as the frame pointer. */ |
004d836a JJ |
271 | |
272 | /* Saved registers. */ | |
273 | CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; | |
274 | ||
275 | }; | |
244bc108 | 276 | |
004d836a JJ |
277 | int |
278 | ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
279 | struct reggroup *group) | |
16461d7d | 280 | { |
004d836a JJ |
281 | int vector_p; |
282 | int float_p; | |
283 | int raw_p; | |
284 | if (group == all_reggroup) | |
285 | return 1; | |
286 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
287 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
288 | raw_p = regnum < NUM_IA64_RAW_REGS; | |
289 | if (group == float_reggroup) | |
290 | return float_p; | |
291 | if (group == vector_reggroup) | |
292 | return vector_p; | |
293 | if (group == general_reggroup) | |
294 | return (!vector_p && !float_p); | |
295 | if (group == save_reggroup || group == restore_reggroup) | |
296 | return raw_p; | |
297 | return 0; | |
16461d7d KB |
298 | } |
299 | ||
004d836a | 300 | static const char * |
d93859e2 | 301 | ia64_register_name (struct gdbarch *gdbarch, int reg) |
16461d7d | 302 | { |
004d836a | 303 | return ia64_register_names[reg]; |
16461d7d KB |
304 | } |
305 | ||
004d836a JJ |
306 | struct type * |
307 | ia64_register_type (struct gdbarch *arch, int reg) | |
16461d7d | 308 | { |
004d836a JJ |
309 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
310 | return builtin_type_ia64_ext; | |
311 | else | |
312 | return builtin_type_long; | |
16461d7d KB |
313 | } |
314 | ||
a78f21af | 315 | static int |
d3f73121 | 316 | ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
16461d7d | 317 | { |
004d836a JJ |
318 | if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
319 | return V32_REGNUM + (reg - IA64_GR32_REGNUM); | |
320 | return reg; | |
16461d7d KB |
321 | } |
322 | ||
4afcc598 | 323 | static int |
2fda21a6 | 324 | floatformat_valid (const struct floatformat *fmt, const void *from) |
4afcc598 JJ |
325 | { |
326 | return 1; | |
327 | } | |
328 | ||
16461d7d KB |
329 | const struct floatformat floatformat_ia64_ext = |
330 | { | |
331 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
b14d30e1 | 332 | floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL |
16461d7d KB |
333 | }; |
334 | ||
8da61cc4 DJ |
335 | const struct floatformat *floatformats_ia64_ext[2] = |
336 | { | |
337 | &floatformat_ia64_ext, | |
338 | &floatformat_ia64_ext | |
339 | }; | |
340 | ||
16461d7d KB |
341 | |
342 | /* Extract ``len'' bits from an instruction bundle starting at | |
343 | bit ``from''. */ | |
344 | ||
244bc108 | 345 | static long long |
16461d7d KB |
346 | extract_bit_field (char *bundle, int from, int len) |
347 | { | |
348 | long long result = 0LL; | |
349 | int to = from + len; | |
350 | int from_byte = from / 8; | |
351 | int to_byte = to / 8; | |
352 | unsigned char *b = (unsigned char *) bundle; | |
353 | unsigned char c; | |
354 | int lshift; | |
355 | int i; | |
356 | ||
357 | c = b[from_byte]; | |
358 | if (from_byte == to_byte) | |
359 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
360 | result = c >> (from % 8); | |
361 | lshift = 8 - (from % 8); | |
362 | ||
363 | for (i = from_byte+1; i < to_byte; i++) | |
364 | { | |
365 | result |= ((long long) b[i]) << lshift; | |
366 | lshift += 8; | |
367 | } | |
368 | ||
369 | if (from_byte < to_byte && (to % 8 != 0)) | |
370 | { | |
371 | c = b[to_byte]; | |
372 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
373 | result |= ((long long) c) << lshift; | |
374 | } | |
375 | ||
376 | return result; | |
377 | } | |
378 | ||
379 | /* Replace the specified bits in an instruction bundle */ | |
380 | ||
244bc108 | 381 | static void |
16461d7d KB |
382 | replace_bit_field (char *bundle, long long val, int from, int len) |
383 | { | |
384 | int to = from + len; | |
385 | int from_byte = from / 8; | |
386 | int to_byte = to / 8; | |
387 | unsigned char *b = (unsigned char *) bundle; | |
388 | unsigned char c; | |
389 | ||
390 | if (from_byte == to_byte) | |
391 | { | |
392 | unsigned char left, right; | |
393 | c = b[from_byte]; | |
394 | left = (c >> (to % 8)) << (to % 8); | |
395 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
396 | c = (unsigned char) (val & 0xff); | |
397 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
398 | c |= right | left; | |
399 | b[from_byte] = c; | |
400 | } | |
401 | else | |
402 | { | |
403 | int i; | |
404 | c = b[from_byte]; | |
405 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
406 | c = c | (val << (from % 8)); | |
407 | b[from_byte] = c; | |
408 | val >>= 8 - from % 8; | |
409 | ||
410 | for (i = from_byte+1; i < to_byte; i++) | |
411 | { | |
412 | c = val & 0xff; | |
413 | val >>= 8; | |
414 | b[i] = c; | |
415 | } | |
416 | ||
417 | if (to % 8 != 0) | |
418 | { | |
419 | unsigned char cv = (unsigned char) val; | |
420 | c = b[to_byte]; | |
421 | c = c >> (to % 8) << (to % 8); | |
422 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
423 | b[to_byte] = c; | |
424 | } | |
425 | } | |
426 | } | |
427 | ||
428 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
429 | and instruction bundle */ | |
430 | ||
244bc108 | 431 | static long long |
2fc3ac7e | 432 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
433 | { |
434 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
435 | } | |
436 | ||
437 | /* Store an instruction in an instruction bundle */ | |
438 | ||
244bc108 | 439 | static void |
2fc3ac7e | 440 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
441 | { |
442 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
443 | } | |
444 | ||
64a5b29c | 445 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
446 | { |
447 | { M, I, I }, /* 00 */ | |
448 | { M, I, I }, /* 01 */ | |
449 | { M, I, I }, /* 02 */ | |
450 | { M, I, I }, /* 03 */ | |
451 | { M, L, X }, /* 04 */ | |
452 | { M, L, X }, /* 05 */ | |
453 | { undefined, undefined, undefined }, /* 06 */ | |
454 | { undefined, undefined, undefined }, /* 07 */ | |
455 | { M, M, I }, /* 08 */ | |
456 | { M, M, I }, /* 09 */ | |
457 | { M, M, I }, /* 0A */ | |
458 | { M, M, I }, /* 0B */ | |
459 | { M, F, I }, /* 0C */ | |
460 | { M, F, I }, /* 0D */ | |
461 | { M, M, F }, /* 0E */ | |
462 | { M, M, F }, /* 0F */ | |
463 | { M, I, B }, /* 10 */ | |
464 | { M, I, B }, /* 11 */ | |
465 | { M, B, B }, /* 12 */ | |
466 | { M, B, B }, /* 13 */ | |
467 | { undefined, undefined, undefined }, /* 14 */ | |
468 | { undefined, undefined, undefined }, /* 15 */ | |
469 | { B, B, B }, /* 16 */ | |
470 | { B, B, B }, /* 17 */ | |
471 | { M, M, B }, /* 18 */ | |
472 | { M, M, B }, /* 19 */ | |
473 | { undefined, undefined, undefined }, /* 1A */ | |
474 | { undefined, undefined, undefined }, /* 1B */ | |
475 | { M, F, B }, /* 1C */ | |
476 | { M, F, B }, /* 1D */ | |
477 | { undefined, undefined, undefined }, /* 1E */ | |
478 | { undefined, undefined, undefined }, /* 1F */ | |
479 | }; | |
480 | ||
481 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
482 | address of the next instruction to fetch. */ | |
483 | ||
484 | static CORE_ADDR | |
485 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
486 | { | |
487 | char bundle[BUNDLE_LEN]; | |
488 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
489 | long long template; | |
490 | int val; | |
491 | ||
c26e1c2b KB |
492 | /* Warn about slot numbers greater than 2. We used to generate |
493 | an error here on the assumption that the user entered an invalid | |
494 | address. But, sometimes GDB itself requests an invalid address. | |
495 | This can (easily) happen when execution stops in a function for | |
496 | which there are no symbols. The prologue scanner will attempt to | |
497 | find the beginning of the function - if the nearest symbol | |
498 | happens to not be aligned on a bundle boundary (16 bytes), the | |
499 | resulting starting address will cause GDB to think that the slot | |
500 | number is too large. | |
501 | ||
502 | So we warn about it and set the slot number to zero. It is | |
503 | not necessarily a fatal condition, particularly if debugging | |
504 | at the assembly language level. */ | |
16461d7d | 505 | if (slotnum > 2) |
c26e1c2b | 506 | { |
8a3fe4f8 AC |
507 | warning (_("Can't fetch instructions for slot numbers greater than 2.\n" |
508 | "Using slot 0 instead")); | |
c26e1c2b KB |
509 | slotnum = 0; |
510 | } | |
16461d7d KB |
511 | |
512 | addr &= ~0x0f; | |
513 | ||
514 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
515 | ||
516 | if (val != 0) | |
517 | return 0; | |
518 | ||
519 | *instr = slotN_contents (bundle, slotnum); | |
520 | template = extract_bit_field (bundle, 0, 5); | |
521 | *it = template_encoding_table[(int)template][slotnum]; | |
522 | ||
64a5b29c | 523 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
524 | addr += 16; |
525 | else | |
526 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
527 | ||
528 | return addr; | |
529 | } | |
530 | ||
531 | /* There are 5 different break instructions (break.i, break.b, | |
532 | break.m, break.f, and break.x), but they all have the same | |
533 | encoding. (The five bit template in the low five bits of the | |
534 | instruction bundle distinguishes one from another.) | |
535 | ||
536 | The runtime architecture manual specifies that break instructions | |
537 | used for debugging purposes must have the upper two bits of the 21 | |
538 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
539 | instruction encodes the most significant bit of its 21 bit | |
540 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
541 | is at bit 25 which leads to the pattern below. | |
542 | ||
543 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
544 | it turns out that 0x80000 was used as the syscall break in the early | |
545 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
546 | instead. But that didn't work either (I later found out that this | |
547 | pattern was used by the simulator that I was using.) So I ended up | |
548 | using the pattern seen below. */ | |
549 | ||
550 | #if 0 | |
aaab4dba | 551 | #define IA64_BREAKPOINT 0x00002000040LL |
16461d7d | 552 | #endif |
aaab4dba | 553 | #define IA64_BREAKPOINT 0x00003333300LL |
16461d7d KB |
554 | |
555 | static int | |
ae4b2284 MD |
556 | ia64_memory_insert_breakpoint (struct gdbarch *gdbarch, |
557 | struct bp_target_info *bp_tgt) | |
16461d7d | 558 | { |
8181d85f | 559 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
560 | char bundle[BUNDLE_LEN]; |
561 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
562 | long long instr; | |
563 | int val; | |
126fa72d | 564 | int template; |
16461d7d KB |
565 | |
566 | if (slotnum > 2) | |
8a3fe4f8 | 567 | error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
16461d7d KB |
568 | |
569 | addr &= ~0x0f; | |
570 | ||
571 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
572 | |
573 | /* Check for L type instruction in 2nd slot, if present then | |
574 | bump up the slot number to the 3rd slot */ | |
575 | template = extract_bit_field (bundle, 0, 5); | |
576 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
577 | { | |
578 | slotnum = 2; | |
579 | } | |
580 | ||
16461d7d | 581 | instr = slotN_contents (bundle, slotnum); |
8181d85f DJ |
582 | memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr)); |
583 | bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr); | |
aaab4dba | 584 | replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
16461d7d KB |
585 | if (val == 0) |
586 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
587 | ||
588 | return val; | |
589 | } | |
590 | ||
591 | static int | |
ae4b2284 MD |
592 | ia64_memory_remove_breakpoint (struct gdbarch *gdbarch, |
593 | struct bp_target_info *bp_tgt) | |
16461d7d | 594 | { |
8181d85f | 595 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
596 | char bundle[BUNDLE_LEN]; |
597 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
598 | long long instr; | |
599 | int val; | |
126fa72d | 600 | int template; |
16461d7d KB |
601 | |
602 | addr &= ~0x0f; | |
603 | ||
604 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
605 | |
606 | /* Check for L type instruction in 2nd slot, if present then | |
607 | bump up the slot number to the 3rd slot */ | |
608 | template = extract_bit_field (bundle, 0, 5); | |
609 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
610 | { | |
611 | slotnum = 2; | |
612 | } | |
613 | ||
8181d85f | 614 | memcpy (&instr, bp_tgt->shadow_contents, sizeof instr); |
16461d7d KB |
615 | replace_slotN_contents (bundle, instr, slotnum); |
616 | if (val == 0) | |
617 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
618 | ||
619 | return val; | |
620 | } | |
621 | ||
622 | /* We don't really want to use this, but remote.c needs to call it in order | |
623 | to figure out if Z-packets are supported or not. Oh, well. */ | |
f4f9705a | 624 | const unsigned char * |
67d57894 | 625 | ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) |
16461d7d KB |
626 | { |
627 | static unsigned char breakpoint[] = | |
628 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
629 | *lenptr = sizeof (breakpoint); | |
630 | #if 0 | |
631 | *pcptr &= ~0x0f; | |
632 | #endif | |
633 | return breakpoint; | |
634 | } | |
635 | ||
a78f21af | 636 | static CORE_ADDR |
61a1198a | 637 | ia64_read_pc (struct regcache *regcache) |
16461d7d | 638 | { |
61a1198a UW |
639 | ULONGEST psr_value, pc_value; |
640 | int slot_num; | |
641 | ||
642 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
643 | regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value); | |
644 | slot_num = (psr_value >> 41) & 3; | |
16461d7d KB |
645 | |
646 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
647 | } | |
648 | ||
54a5c8d8 | 649 | void |
61a1198a | 650 | ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc) |
16461d7d KB |
651 | { |
652 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
61a1198a UW |
653 | ULONGEST psr_value; |
654 | ||
655 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
16461d7d | 656 | psr_value &= ~(3LL << 41); |
61a1198a | 657 | psr_value |= (ULONGEST)(slot_num & 0x3) << 41; |
16461d7d KB |
658 | |
659 | new_pc &= ~0xfLL; | |
660 | ||
61a1198a UW |
661 | regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value); |
662 | regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc); | |
16461d7d KB |
663 | } |
664 | ||
665 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
666 | ||
667 | /* Returns the address of the slot that's NSLOTS slots away from | |
668 | the address ADDR. NSLOTS may be positive or negative. */ | |
669 | static CORE_ADDR | |
670 | rse_address_add(CORE_ADDR addr, int nslots) | |
671 | { | |
672 | CORE_ADDR new_addr; | |
673 | int mandatory_nat_slots = nslots / 63; | |
674 | int direction = nslots < 0 ? -1 : 1; | |
675 | ||
676 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
677 | ||
678 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
679 | new_addr += 8 * direction; | |
680 | ||
681 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
682 | new_addr += 8 * direction; | |
683 | ||
684 | return new_addr; | |
685 | } | |
686 | ||
004d836a JJ |
687 | static void |
688 | ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 689 | int regnum, gdb_byte *buf) |
16461d7d | 690 | { |
004d836a | 691 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 692 | { |
88d82102 | 693 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c JJ |
694 | /* First try and use the libunwind special reg accessor, otherwise fallback to |
695 | standard logic. */ | |
696 | if (!libunwind_is_initialized () | |
45ecac4b | 697 | || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0) |
88d82102 | 698 | #endif |
004d836a | 699 | { |
c5a27d9c JJ |
700 | /* The fallback position is to assume that r32-r127 are found sequentially |
701 | in memory starting at $bof. This isn't always true, but without libunwind, | |
702 | this is the best we can do. */ | |
703 | ULONGEST cfm; | |
704 | ULONGEST bsp; | |
705 | CORE_ADDR reg; | |
706 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
707 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
708 | ||
709 | /* The bsp points at the end of the register frame so we | |
710 | subtract the size of frame from it to get start of register frame. */ | |
711 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
712 | ||
713 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
714 | { | |
715 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
716 | reg = read_memory_integer ((CORE_ADDR)reg_addr, 8); | |
088568da | 717 | store_unsigned_integer (buf, register_size (gdbarch, regnum), reg); |
c5a27d9c JJ |
718 | } |
719 | else | |
088568da | 720 | store_unsigned_integer (buf, register_size (gdbarch, regnum), 0); |
004d836a | 721 | } |
004d836a JJ |
722 | } |
723 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
724 | { | |
725 | ULONGEST unatN_val; | |
726 | ULONGEST unat; | |
727 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
728 | unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; | |
088568da | 729 | store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val); |
004d836a JJ |
730 | } |
731 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
732 | { | |
733 | ULONGEST natN_val = 0; | |
734 | ULONGEST bsp; | |
735 | ULONGEST cfm; | |
736 | CORE_ADDR gr_addr = 0; | |
737 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
738 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
739 | ||
740 | /* The bsp points at the end of the register frame so we | |
741 | subtract the size of frame from it to get start of register frame. */ | |
742 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
743 | ||
744 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
745 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
746 | ||
747 | if (gr_addr != 0) | |
748 | { | |
749 | /* Compute address of nat collection bits. */ | |
750 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
751 | CORE_ADDR nat_collection; | |
752 | int nat_bit; | |
753 | /* If our nat collection address is bigger than bsp, we have to get | |
754 | the nat collection from rnat. Otherwise, we fetch the nat | |
755 | collection from the computed address. */ | |
756 | if (nat_addr >= bsp) | |
757 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
758 | else | |
759 | nat_collection = read_memory_integer (nat_addr, 8); | |
760 | nat_bit = (gr_addr >> 3) & 0x3f; | |
761 | natN_val = (nat_collection >> nat_bit) & 1; | |
762 | } | |
763 | ||
088568da | 764 | store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val); |
244bc108 | 765 | } |
004d836a JJ |
766 | else if (regnum == VBOF_REGNUM) |
767 | { | |
768 | /* A virtual register frame start is provided for user convenience. | |
769 | It can be calculated as the bsp - sof (sizeof frame). */ | |
770 | ULONGEST bsp, vbsp; | |
771 | ULONGEST cfm; | |
772 | CORE_ADDR reg; | |
773 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
774 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
775 | ||
776 | /* The bsp points at the end of the register frame so we | |
777 | subtract the size of frame from it to get beginning of frame. */ | |
778 | vbsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
088568da | 779 | store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp); |
004d836a JJ |
780 | } |
781 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
782 | { | |
783 | ULONGEST pr; | |
784 | ULONGEST cfm; | |
785 | ULONGEST prN_val; | |
786 | CORE_ADDR reg; | |
787 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
788 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
789 | ||
790 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
791 | { | |
792 | /* Fetch predicate register rename base from current frame | |
793 | marker for this frame. */ | |
794 | int rrb_pr = (cfm >> 32) & 0x3f; | |
795 | ||
796 | /* Adjust the register number to account for register rotation. */ | |
797 | regnum = VP16_REGNUM | |
798 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
799 | } | |
800 | prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; | |
088568da | 801 | store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val); |
004d836a JJ |
802 | } |
803 | else | |
088568da | 804 | memset (buf, 0, register_size (gdbarch, regnum)); |
16461d7d KB |
805 | } |
806 | ||
004d836a JJ |
807 | static void |
808 | ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 809 | int regnum, const gdb_byte *buf) |
16461d7d | 810 | { |
004d836a | 811 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 812 | { |
004d836a JJ |
813 | ULONGEST bsp; |
814 | ULONGEST cfm; | |
815 | CORE_ADDR reg; | |
816 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
817 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
818 | ||
819 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
820 | ||
821 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
822 | { | |
823 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
824 | write_memory (reg_addr, (void *)buf, 8); | |
825 | } | |
826 | } | |
827 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
828 | { | |
829 | ULONGEST unatN_val, unat, unatN_mask; | |
830 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
088568da | 831 | unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
832 | unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
833 | if (unatN_val == 0) | |
834 | unat &= ~unatN_mask; | |
835 | else if (unatN_val == 1) | |
836 | unat |= unatN_mask; | |
837 | regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); | |
838 | } | |
839 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
840 | { | |
841 | ULONGEST natN_val; | |
842 | ULONGEST bsp; | |
843 | ULONGEST cfm; | |
844 | CORE_ADDR gr_addr = 0; | |
845 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
846 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
847 | ||
848 | /* The bsp points at the end of the register frame so we | |
849 | subtract the size of frame from it to get start of register frame. */ | |
850 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
851 | ||
852 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
853 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
854 | ||
088568da | 855 | natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
856 | |
857 | if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) | |
858 | { | |
859 | /* Compute address of nat collection bits. */ | |
860 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
861 | CORE_ADDR nat_collection; | |
862 | int natN_bit = (gr_addr >> 3) & 0x3f; | |
863 | ULONGEST natN_mask = (1LL << natN_bit); | |
864 | /* If our nat collection address is bigger than bsp, we have to get | |
865 | the nat collection from rnat. Otherwise, we fetch the nat | |
866 | collection from the computed address. */ | |
867 | if (nat_addr >= bsp) | |
868 | { | |
869 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
870 | if (natN_val) | |
871 | nat_collection |= natN_mask; | |
872 | else | |
873 | nat_collection &= ~natN_mask; | |
874 | regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); | |
875 | } | |
876 | else | |
877 | { | |
878 | char nat_buf[8]; | |
879 | nat_collection = read_memory_integer (nat_addr, 8); | |
880 | if (natN_val) | |
881 | nat_collection |= natN_mask; | |
882 | else | |
883 | nat_collection &= ~natN_mask; | |
088568da | 884 | store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection); |
004d836a JJ |
885 | write_memory (nat_addr, nat_buf, 8); |
886 | } | |
887 | } | |
888 | } | |
889 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
890 | { | |
891 | ULONGEST pr; | |
892 | ULONGEST cfm; | |
893 | ULONGEST prN_val; | |
894 | ULONGEST prN_mask; | |
895 | ||
896 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
897 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
898 | ||
899 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
900 | { | |
901 | /* Fetch predicate register rename base from current frame | |
902 | marker for this frame. */ | |
903 | int rrb_pr = (cfm >> 32) & 0x3f; | |
904 | ||
905 | /* Adjust the register number to account for register rotation. */ | |
906 | regnum = VP16_REGNUM | |
907 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
908 | } | |
088568da | 909 | prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
910 | prN_mask = (1LL << (regnum - VP0_REGNUM)); |
911 | if (prN_val == 0) | |
912 | pr &= ~prN_mask; | |
913 | else if (prN_val == 1) | |
914 | pr |= prN_mask; | |
915 | regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); | |
244bc108 | 916 | } |
16461d7d KB |
917 | } |
918 | ||
004d836a JJ |
919 | /* The ia64 needs to convert between various ieee floating-point formats |
920 | and the special ia64 floating point register format. */ | |
921 | ||
922 | static int | |
0abe36f5 | 923 | ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type) |
004d836a | 924 | { |
83acabca DJ |
925 | return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM |
926 | && type != builtin_type_ia64_ext); | |
004d836a JJ |
927 | } |
928 | ||
929 | static void | |
930 | ia64_register_to_value (struct frame_info *frame, int regnum, | |
88d82102 | 931 | struct type *valtype, gdb_byte *out) |
004d836a JJ |
932 | { |
933 | char in[MAX_REGISTER_SIZE]; | |
934 | frame_register_read (frame, regnum, in); | |
935 | convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); | |
936 | } | |
937 | ||
938 | static void | |
939 | ia64_value_to_register (struct frame_info *frame, int regnum, | |
88d82102 | 940 | struct type *valtype, const gdb_byte *in) |
004d836a JJ |
941 | { |
942 | char out[MAX_REGISTER_SIZE]; | |
943 | convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); | |
944 | put_frame_register (frame, regnum, out); | |
945 | } | |
946 | ||
947 | ||
58ab00f9 KB |
948 | /* Limit the number of skipped non-prologue instructions since examining |
949 | of the prologue is expensive. */ | |
5ea2bd7f | 950 | static int max_skip_non_prologue_insns = 40; |
58ab00f9 KB |
951 | |
952 | /* Given PC representing the starting address of a function, and | |
953 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
954 | for a prologue, attempt to further refine this limit by using | |
955 | the line data in the symbol table. If successful, a better guess | |
956 | on where the prologue ends is returned, otherwise the previous | |
957 | value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag | |
958 | which will be set to indicate whether the returned limit may be | |
959 | used with no further scanning in the event that the function is | |
960 | frameless. */ | |
961 | ||
634aa483 AC |
962 | /* FIXME: cagney/2004-02-14: This function and logic have largely been |
963 | superseded by skip_prologue_using_sal. */ | |
964 | ||
58ab00f9 KB |
965 | static CORE_ADDR |
966 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) | |
967 | { | |
968 | struct symtab_and_line prologue_sal; | |
969 | CORE_ADDR start_pc = pc; | |
39312971 JB |
970 | CORE_ADDR end_pc; |
971 | ||
972 | /* The prologue can not possibly go past the function end itself, | |
973 | so we can already adjust LIM_PC accordingly. */ | |
974 | if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc) | |
975 | lim_pc = end_pc; | |
58ab00f9 KB |
976 | |
977 | /* Start off not trusting the limit. */ | |
978 | *trust_limit = 0; | |
979 | ||
980 | prologue_sal = find_pc_line (pc, 0); | |
981 | if (prologue_sal.line != 0) | |
982 | { | |
983 | int i; | |
984 | CORE_ADDR addr = prologue_sal.end; | |
985 | ||
986 | /* Handle the case in which compiler's optimizer/scheduler | |
987 | has moved instructions into the prologue. We scan ahead | |
988 | in the function looking for address ranges whose corresponding | |
989 | line number is less than or equal to the first one that we | |
990 | found for the function. (It can be less than when the | |
991 | scheduler puts a body instruction before the first prologue | |
992 | instruction.) */ | |
993 | for (i = 2 * max_skip_non_prologue_insns; | |
994 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
995 | i--) | |
996 | { | |
997 | struct symtab_and_line sal; | |
998 | ||
999 | sal = find_pc_line (addr, 0); | |
1000 | if (sal.line == 0) | |
1001 | break; | |
1002 | if (sal.line <= prologue_sal.line | |
1003 | && sal.symtab == prologue_sal.symtab) | |
1004 | { | |
1005 | prologue_sal = sal; | |
1006 | } | |
1007 | addr = sal.end; | |
1008 | } | |
1009 | ||
1010 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
1011 | { | |
1012 | lim_pc = prologue_sal.end; | |
1013 | if (start_pc == get_pc_function_start (lim_pc)) | |
1014 | *trust_limit = 1; | |
1015 | } | |
1016 | } | |
1017 | return lim_pc; | |
1018 | } | |
1019 | ||
16461d7d KB |
1020 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
1021 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
1022 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
1023 | #define imm9(_instr_) \ | |
1024 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
1025 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
1026 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
1027 | ||
004d836a JJ |
1028 | /* Allocate and initialize a frame cache. */ |
1029 | ||
1030 | static struct ia64_frame_cache * | |
1031 | ia64_alloc_frame_cache (void) | |
1032 | { | |
1033 | struct ia64_frame_cache *cache; | |
1034 | int i; | |
1035 | ||
1036 | cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); | |
1037 | ||
1038 | /* Base address. */ | |
1039 | cache->base = 0; | |
1040 | cache->pc = 0; | |
1041 | cache->cfm = 0; | |
4afcc598 | 1042 | cache->prev_cfm = 0; |
004d836a JJ |
1043 | cache->sof = 0; |
1044 | cache->sol = 0; | |
1045 | cache->sor = 0; | |
1046 | cache->bsp = 0; | |
1047 | cache->fp_reg = 0; | |
1048 | cache->frameless = 1; | |
1049 | ||
1050 | for (i = 0; i < NUM_IA64_RAW_REGS; i++) | |
1051 | cache->saved_regs[i] = 0; | |
1052 | ||
1053 | return cache; | |
1054 | } | |
1055 | ||
16461d7d | 1056 | static CORE_ADDR |
004d836a | 1057 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache) |
16461d7d KB |
1058 | { |
1059 | CORE_ADDR next_pc; | |
1060 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
1061 | instruction_type it; |
1062 | long long instr; | |
16461d7d KB |
1063 | int cfm_reg = 0; |
1064 | int ret_reg = 0; | |
1065 | int fp_reg = 0; | |
1066 | int unat_save_reg = 0; | |
1067 | int pr_save_reg = 0; | |
1068 | int mem_stack_frame_size = 0; | |
1069 | int spill_reg = 0; | |
1070 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
1071 | char instores[8]; |
1072 | char infpstores[8]; | |
5ea2bd7f | 1073 | char reg_contents[256]; |
58ab00f9 | 1074 | int trust_limit; |
004d836a JJ |
1075 | int frameless = 1; |
1076 | int i; | |
1077 | CORE_ADDR addr; | |
1078 | char buf[8]; | |
1079 | CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; | |
0927a22b KB |
1080 | |
1081 | memset (instores, 0, sizeof instores); | |
1082 | memset (infpstores, 0, sizeof infpstores); | |
5ea2bd7f | 1083 | memset (reg_contents, 0, sizeof reg_contents); |
16461d7d | 1084 | |
004d836a JJ |
1085 | if (cache->after_prologue != 0 |
1086 | && cache->after_prologue <= lim_pc) | |
1087 | return cache->after_prologue; | |
16461d7d | 1088 | |
58ab00f9 | 1089 | lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
16461d7d | 1090 | next_pc = fetch_instruction (pc, &it, &instr); |
5ea2bd7f JJ |
1091 | |
1092 | /* We want to check if we have a recognizable function start before we | |
1093 | look ahead for a prologue. */ | |
16461d7d KB |
1094 | if (pc < lim_pc && next_pc |
1095 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
1096 | { | |
5ea2bd7f | 1097 | /* alloc - start of a regular function. */ |
16461d7d KB |
1098 | int sor = (int) ((instr & 0x00078000000LL) >> 27); |
1099 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
1100 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
16461d7d | 1101 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
004d836a JJ |
1102 | |
1103 | /* Verify that the current cfm matches what we think is the | |
1104 | function start. If we have somehow jumped within a function, | |
1105 | we do not want to interpret the prologue and calculate the | |
1106 | addresses of various registers such as the return address. | |
1107 | We will instead treat the frame as frameless. */ | |
1108 | if (!next_frame || | |
1109 | (sof == (cache->cfm & 0x7f) && | |
1110 | sol == ((cache->cfm >> 7) & 0x7f))) | |
1111 | frameless = 0; | |
1112 | ||
16461d7d KB |
1113 | cfm_reg = rN; |
1114 | last_prologue_pc = next_pc; | |
1115 | pc = next_pc; | |
1116 | } | |
1117 | else | |
58ab00f9 | 1118 | { |
5ea2bd7f JJ |
1119 | /* Look for a leaf routine. */ |
1120 | if (pc < lim_pc && next_pc | |
1121 | && (it == I || it == M) | |
1122 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1123 | { | |
1124 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1125 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1126 | | ((instr & 0x001f8000000LL) >> 20) | |
1127 | | ((instr & 0x000000fe000LL) >> 13)); | |
1128 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1129 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1130 | int qp = (int) (instr & 0x0000000003fLL); | |
1131 | if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) | |
1132 | { | |
1133 | /* mov r2, r12 - beginning of leaf routine */ | |
1134 | fp_reg = rN; | |
5ea2bd7f JJ |
1135 | last_prologue_pc = next_pc; |
1136 | } | |
1137 | } | |
1138 | ||
1139 | /* If we don't recognize a regular function or leaf routine, we are | |
1140 | done. */ | |
1141 | if (!fp_reg) | |
1142 | { | |
1143 | pc = lim_pc; | |
1144 | if (trust_limit) | |
1145 | last_prologue_pc = lim_pc; | |
1146 | } | |
58ab00f9 | 1147 | } |
16461d7d KB |
1148 | |
1149 | /* Loop, looking for prologue instructions, keeping track of | |
1150 | where preserved registers were spilled. */ | |
1151 | while (pc < lim_pc) | |
1152 | { | |
1153 | next_pc = fetch_instruction (pc, &it, &instr); | |
1154 | if (next_pc == 0) | |
1155 | break; | |
1156 | ||
594706e6 | 1157 | if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
0927a22b | 1158 | { |
102d615a JJ |
1159 | /* Exit loop upon hitting a non-nop branch instruction. */ |
1160 | if (trust_limit) | |
1161 | lim_pc = pc; | |
1162 | break; | |
1163 | } | |
1164 | else if (((instr & 0x3fLL) != 0LL) && | |
1165 | (frameless || ret_reg != 0)) | |
1166 | { | |
1167 | /* Exit loop upon hitting a predicated instruction if | |
1168 | we already have the return register or if we are frameless. */ | |
5ea2bd7f JJ |
1169 | if (trust_limit) |
1170 | lim_pc = pc; | |
0927a22b KB |
1171 | break; |
1172 | } | |
1173 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
1174 | { |
1175 | /* Move from BR */ | |
1176 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
1177 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1178 | int qp = (int) (instr & 0x0000000003f); | |
1179 | ||
1180 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
1181 | { | |
1182 | ret_reg = rN; | |
1183 | last_prologue_pc = next_pc; | |
1184 | } | |
1185 | } | |
1186 | else if ((it == I || it == M) | |
1187 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1188 | { | |
1189 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1190 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1191 | | ((instr & 0x001f8000000LL) >> 20) | |
1192 | | ((instr & 0x000000fe000LL) >> 13)); | |
1193 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1194 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1195 | int qp = (int) (instr & 0x0000000003fLL); | |
1196 | ||
1197 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
1198 | { | |
1199 | /* mov rN, r12 */ | |
1200 | fp_reg = rN; | |
1201 | last_prologue_pc = next_pc; | |
1202 | } | |
1203 | else if (qp == 0 && rN == 12 && rM == 12) | |
1204 | { | |
1205 | /* adds r12, -mem_stack_frame_size, r12 */ | |
1206 | mem_stack_frame_size -= imm; | |
1207 | last_prologue_pc = next_pc; | |
1208 | } | |
1209 | else if (qp == 0 && rN == 2 | |
1210 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
1211 | { | |
004d836a JJ |
1212 | char buf[MAX_REGISTER_SIZE]; |
1213 | CORE_ADDR saved_sp = 0; | |
16461d7d KB |
1214 | /* adds r2, spilloffset, rFramePointer |
1215 | or | |
1216 | adds r2, spilloffset, r12 | |
1217 | ||
1218 | Get ready for stf.spill or st8.spill instructions. | |
1219 | The address to start spilling at is loaded into r2. | |
1220 | FIXME: Why r2? That's what gcc currently uses; it | |
1221 | could well be different for other compilers. */ | |
1222 | ||
1223 | /* Hmm... whether or not this will work will depend on | |
1224 | where the pc is. If it's still early in the prologue | |
1225 | this'll be wrong. FIXME */ | |
004d836a JJ |
1226 | if (next_frame) |
1227 | { | |
1228 | frame_unwind_register (next_frame, sp_regnum, buf); | |
1229 | saved_sp = extract_unsigned_integer (buf, 8); | |
1230 | } | |
1231 | spill_addr = saved_sp | |
16461d7d KB |
1232 | + (rM == 12 ? 0 : mem_stack_frame_size) |
1233 | + imm; | |
1234 | spill_reg = rN; | |
1235 | last_prologue_pc = next_pc; | |
1236 | } | |
b7d038ae | 1237 | else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] && |
5ea2bd7f JJ |
1238 | rN < 256 && imm == 0) |
1239 | { | |
1240 | /* mov rN, rM where rM is an input register */ | |
1241 | reg_contents[rN] = rM; | |
1242 | last_prologue_pc = next_pc; | |
1243 | } | |
1244 | else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && | |
1245 | rM == 2) | |
1246 | { | |
1247 | /* mov r12, r2 */ | |
1248 | last_prologue_pc = next_pc; | |
1249 | break; | |
1250 | } | |
16461d7d KB |
1251 | } |
1252 | else if (it == M | |
1253 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
1254 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
1255 | { | |
1256 | /* stf.spill [rN] = fM, imm9 | |
1257 | or | |
1258 | stf.spill [rN] = fM */ | |
1259 | ||
1260 | int imm = imm9(instr); | |
1261 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1262 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1263 | int qp = (int) (instr & 0x0000000003fLL); | |
1264 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
1265 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
1266 | { | |
004d836a | 1267 | cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
16461d7d | 1268 | |
594706e6 | 1269 | if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
16461d7d KB |
1270 | spill_addr += imm; |
1271 | else | |
1272 | spill_addr = 0; /* last one; must be done */ | |
1273 | last_prologue_pc = next_pc; | |
1274 | } | |
1275 | } | |
1276 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
1277 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
1278 | { | |
1279 | /* mov.m rN = arM | |
1280 | or | |
1281 | mov.i rN = arM */ | |
1282 | ||
1283 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1284 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1285 | int qp = (int) (instr & 0x0000000003fLL); | |
1286 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
1287 | { | |
1288 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
1289 | r3 (or whatever) and watch for a store of this register... */ | |
1290 | unat_save_reg = rN; | |
1291 | last_prologue_pc = next_pc; | |
1292 | } | |
1293 | } | |
1294 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
1295 | { | |
1296 | /* mov rN = pr */ | |
1297 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1298 | int qp = (int) (instr & 0x0000000003fLL); | |
1299 | if (qp == 0 && isScratch (rN)) | |
1300 | { | |
1301 | pr_save_reg = rN; | |
1302 | last_prologue_pc = next_pc; | |
1303 | } | |
1304 | } | |
1305 | else if (it == M | |
1306 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
1307 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
1308 | { | |
1309 | /* st8 [rN] = rM | |
1310 | or | |
1311 | st8 [rN] = rM, imm9 */ | |
1312 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1313 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1314 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1315 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
16461d7d KB |
1316 | if (qp == 0 && rN == spill_reg && spill_addr != 0 |
1317 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
1318 | { | |
1319 | /* We've found a spill of either the UNAT register or the PR | |
1320 | register. (Well, not exactly; what we've actually found is | |
1321 | a spill of the register that UNAT or PR was moved to). | |
1322 | Record that fact and move on... */ | |
1323 | if (rM == unat_save_reg) | |
1324 | { | |
1325 | /* Track UNAT register */ | |
004d836a | 1326 | cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
16461d7d KB |
1327 | unat_save_reg = 0; |
1328 | } | |
1329 | else | |
1330 | { | |
1331 | /* Track PR register */ | |
004d836a | 1332 | cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
16461d7d KB |
1333 | pr_save_reg = 0; |
1334 | } | |
1335 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
1336 | /* st8 [rN] = rM, imm9 */ | |
1337 | spill_addr += imm9(instr); | |
1338 | else | |
1339 | spill_addr = 0; /* must be done spilling */ | |
1340 | last_prologue_pc = next_pc; | |
1341 | } | |
0927a22b KB |
1342 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1343 | { | |
1344 | /* Allow up to one store of each input register. */ | |
1345 | instores[rM-32] = 1; | |
1346 | last_prologue_pc = next_pc; | |
1347 | } | |
5ea2bd7f JJ |
1348 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1349 | !instores[indirect-32]) | |
1350 | { | |
1351 | /* Allow an indirect store of an input register. */ | |
1352 | instores[indirect-32] = 1; | |
1353 | last_prologue_pc = next_pc; | |
1354 | } | |
0927a22b KB |
1355 | } |
1356 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
1357 | { | |
1358 | /* One of | |
1359 | st1 [rN] = rM | |
1360 | st2 [rN] = rM | |
1361 | st4 [rN] = rM | |
1362 | st8 [rN] = rM | |
1363 | Note that the st8 case is handled in the clause above. | |
1364 | ||
1365 | Advance over stores of input registers. One store per input | |
1366 | register is permitted. */ | |
1367 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1368 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1369 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
0927a22b KB |
1370 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1371 | { | |
1372 | instores[rM-32] = 1; | |
1373 | last_prologue_pc = next_pc; | |
1374 | } | |
5ea2bd7f JJ |
1375 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1376 | !instores[indirect-32]) | |
1377 | { | |
1378 | /* Allow an indirect store of an input register. */ | |
1379 | instores[indirect-32] = 1; | |
1380 | last_prologue_pc = next_pc; | |
1381 | } | |
0927a22b KB |
1382 | } |
1383 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
1384 | { | |
1385 | /* Either | |
1386 | stfs [rN] = fM | |
1387 | or | |
1388 | stfd [rN] = fM | |
1389 | ||
1390 | Advance over stores of floating point input registers. Again | |
1391 | one store per register is permitted */ | |
1392 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1393 | int qp = (int) (instr & 0x0000000003fLL); | |
1394 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
1395 | { | |
1396 | infpstores[fM-8] = 1; | |
1397 | last_prologue_pc = next_pc; | |
1398 | } | |
16461d7d KB |
1399 | } |
1400 | else if (it == M | |
1401 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
1402 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
1403 | { | |
1404 | /* st8.spill [rN] = rM | |
1405 | or | |
1406 | st8.spill [rN] = rM, imm9 */ | |
1407 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1408 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1409 | int qp = (int) (instr & 0x0000000003fLL); | |
1410 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1411 | { | |
1412 | /* We've found a spill of one of the preserved general purpose | |
1413 | regs. Record the spill address and advance the spill | |
1414 | register if appropriate. */ | |
004d836a | 1415 | cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
16461d7d KB |
1416 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
1417 | /* st8.spill [rN] = rM, imm9 */ | |
1418 | spill_addr += imm9(instr); | |
1419 | else | |
1420 | spill_addr = 0; /* Done spilling */ | |
1421 | last_prologue_pc = next_pc; | |
1422 | } | |
1423 | } | |
16461d7d KB |
1424 | |
1425 | pc = next_pc; | |
1426 | } | |
1427 | ||
004d836a JJ |
1428 | /* If not frameless and we aren't called by skip_prologue, then we need to calculate |
1429 | registers for the previous frame which will be needed later. */ | |
16461d7d | 1430 | |
004d836a | 1431 | if (!frameless && next_frame) |
da50a4b7 | 1432 | { |
004d836a JJ |
1433 | /* Extract the size of the rotating portion of the stack |
1434 | frame and the register rename base from the current | |
1435 | frame marker. */ | |
1436 | cfm = cache->cfm; | |
1437 | sor = cache->sor; | |
1438 | sof = cache->sof; | |
1439 | sol = cache->sol; | |
1440 | rrb_gr = (cfm >> 18) & 0x7f; | |
1441 | ||
1442 | /* Find the bof (beginning of frame). */ | |
1443 | bof = rse_address_add (cache->bsp, -sof); | |
1444 | ||
1445 | for (i = 0, addr = bof; | |
1446 | i < sof; | |
1447 | i++, addr += 8) | |
1448 | { | |
1449 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1450 | { | |
1451 | addr += 8; | |
1452 | } | |
1453 | if (i+32 == cfm_reg) | |
1454 | cache->saved_regs[IA64_CFM_REGNUM] = addr; | |
1455 | if (i+32 == ret_reg) | |
1456 | cache->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1457 | if (i+32 == fp_reg) | |
1458 | cache->saved_regs[IA64_VFP_REGNUM] = addr; | |
1459 | } | |
16461d7d | 1460 | |
004d836a JJ |
1461 | /* For the previous argument registers we require the previous bof. |
1462 | If we can't find the previous cfm, then we can do nothing. */ | |
4afcc598 | 1463 | cfm = 0; |
004d836a JJ |
1464 | if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
1465 | { | |
1466 | cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8); | |
4afcc598 JJ |
1467 | } |
1468 | else if (cfm_reg != 0) | |
1469 | { | |
1470 | frame_unwind_register (next_frame, cfm_reg, buf); | |
1471 | cfm = extract_unsigned_integer (buf, 8); | |
1472 | } | |
1473 | cache->prev_cfm = cfm; | |
1474 | ||
1475 | if (cfm != 0) | |
1476 | { | |
004d836a JJ |
1477 | sor = ((cfm >> 14) & 0xf) * 8; |
1478 | sof = (cfm & 0x7f); | |
1479 | sol = (cfm >> 7) & 0x7f; | |
1480 | rrb_gr = (cfm >> 18) & 0x7f; | |
1481 | ||
1482 | /* The previous bof only requires subtraction of the sol (size of locals) | |
1483 | due to the overlap between output and input of subsequent frames. */ | |
1484 | bof = rse_address_add (bof, -sol); | |
1485 | ||
1486 | for (i = 0, addr = bof; | |
1487 | i < sof; | |
1488 | i++, addr += 8) | |
1489 | { | |
1490 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1491 | { | |
1492 | addr += 8; | |
1493 | } | |
1494 | if (i < sor) | |
1495 | cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1496 | = addr; | |
1497 | else | |
1498 | cache->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
1499 | } | |
1500 | ||
1501 | } | |
1502 | } | |
1503 | ||
5ea2bd7f JJ |
1504 | /* Try and trust the lim_pc value whenever possible. */ |
1505 | if (trust_limit && lim_pc >= last_prologue_pc) | |
004d836a JJ |
1506 | last_prologue_pc = lim_pc; |
1507 | ||
1508 | cache->frameless = frameless; | |
1509 | cache->after_prologue = last_prologue_pc; | |
1510 | cache->mem_stack_frame_size = mem_stack_frame_size; | |
1511 | cache->fp_reg = fp_reg; | |
5ea2bd7f | 1512 | |
16461d7d KB |
1513 | return last_prologue_pc; |
1514 | } | |
1515 | ||
1516 | CORE_ADDR | |
6093d2eb | 1517 | ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
16461d7d | 1518 | { |
004d836a JJ |
1519 | struct ia64_frame_cache cache; |
1520 | cache.base = 0; | |
1521 | cache.after_prologue = 0; | |
1522 | cache.cfm = 0; | |
1523 | cache.bsp = 0; | |
1524 | ||
1525 | /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ | |
1526 | return examine_prologue (pc, pc+1024, 0, &cache); | |
16461d7d KB |
1527 | } |
1528 | ||
004d836a JJ |
1529 | |
1530 | /* Normal frames. */ | |
1531 | ||
1532 | static struct ia64_frame_cache * | |
1533 | ia64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
16461d7d | 1534 | { |
004d836a JJ |
1535 | struct ia64_frame_cache *cache; |
1536 | char buf[8]; | |
1537 | CORE_ADDR cfm, sof, sol, bsp, psr; | |
1538 | int i; | |
16461d7d | 1539 | |
004d836a JJ |
1540 | if (*this_cache) |
1541 | return *this_cache; | |
16461d7d | 1542 | |
004d836a JJ |
1543 | cache = ia64_alloc_frame_cache (); |
1544 | *this_cache = cache; | |
16461d7d | 1545 | |
004d836a JJ |
1546 | frame_unwind_register (next_frame, sp_regnum, buf); |
1547 | cache->saved_sp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1548 | |
004d836a JJ |
1549 | /* We always want the bsp to point to the end of frame. |
1550 | This way, we can always get the beginning of frame (bof) | |
1551 | by subtracting frame size. */ | |
1552 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1553 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1554 | ||
1555 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1556 | psr = extract_unsigned_integer (buf, 8); | |
1557 | ||
1558 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1559 | cfm = extract_unsigned_integer (buf, 8); | |
1560 | ||
1561 | cache->sof = (cfm & 0x7f); | |
1562 | cache->sol = (cfm >> 7) & 0x7f; | |
1563 | cache->sor = ((cfm >> 14) & 0xf) * 8; | |
1564 | ||
1565 | cache->cfm = cfm; | |
1566 | ||
93d42b30 | 1567 | cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME); |
004d836a JJ |
1568 | |
1569 | if (cache->pc != 0) | |
1570 | examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache); | |
1571 | ||
1572 | cache->base = cache->saved_sp + cache->mem_stack_frame_size; | |
1573 | ||
1574 | return cache; | |
16461d7d KB |
1575 | } |
1576 | ||
a78f21af | 1577 | static void |
004d836a JJ |
1578 | ia64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
1579 | struct frame_id *this_id) | |
16461d7d | 1580 | { |
004d836a JJ |
1581 | struct ia64_frame_cache *cache = |
1582 | ia64_frame_cache (next_frame, this_cache); | |
16461d7d | 1583 | |
c5a27d9c | 1584 | /* If outermost frame, mark with null frame id. */ |
004d836a | 1585 | if (cache->base == 0) |
c5a27d9c JJ |
1586 | (*this_id) = null_frame_id; |
1587 | else | |
1588 | (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); | |
4afcc598 JJ |
1589 | if (gdbarch_debug >= 1) |
1590 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1591 | "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1592 | paddr_nz (this_id->code_addr), | |
1593 | paddr_nz (this_id->stack_addr), | |
1594 | paddr_nz (cache->bsp), next_frame); | |
004d836a | 1595 | } |
244bc108 | 1596 | |
004d836a JJ |
1597 | static void |
1598 | ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
1599 | int regnum, int *optimizedp, | |
1600 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 1601 | int *realnump, gdb_byte *valuep) |
004d836a | 1602 | { |
088568da | 1603 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
004d836a JJ |
1604 | struct ia64_frame_cache *cache = |
1605 | ia64_frame_cache (next_frame, this_cache); | |
1606 | char dummy_valp[MAX_REGISTER_SIZE]; | |
1607 | char buf[8]; | |
1608 | ||
1609 | gdb_assert (regnum >= 0); | |
244bc108 | 1610 | |
004d836a | 1611 | if (!target_has_registers) |
8a3fe4f8 | 1612 | error (_("No registers.")); |
244bc108 | 1613 | |
004d836a JJ |
1614 | *optimizedp = 0; |
1615 | *addrp = 0; | |
1616 | *lvalp = not_lval; | |
1617 | *realnump = -1; | |
244bc108 | 1618 | |
004d836a JJ |
1619 | /* Rather than check each time if valuep is non-null, supply a dummy buffer |
1620 | when valuep is not supplied. */ | |
1621 | if (!valuep) | |
1622 | valuep = dummy_valp; | |
1623 | ||
088568da | 1624 | memset (valuep, 0, register_size (gdbarch, regnum)); |
004d836a | 1625 | |
088568da | 1626 | if (regnum == gdbarch_sp_regnum (gdbarch)) |
16461d7d KB |
1627 | { |
1628 | /* Handle SP values for all frames but the topmost. */ | |
088568da | 1629 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
004d836a | 1630 | cache->base); |
16461d7d KB |
1631 | } |
1632 | else if (regnum == IA64_BSP_REGNUM) | |
1633 | { | |
004d836a JJ |
1634 | char cfm_valuep[MAX_REGISTER_SIZE]; |
1635 | int cfm_optim; | |
1636 | int cfm_realnum; | |
1637 | enum lval_type cfm_lval; | |
1638 | CORE_ADDR cfm_addr; | |
1639 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
1640 | ||
1641 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
1642 | This corresponds to what the hardware bsp register will be if we pop the frame | |
1643 | back which is why we might have been called. We know the beginning of the current | |
aa2a9a3c | 1644 | frame is cache->bsp - cache->sof. This value in the previous frame points to |
004d836a JJ |
1645 | the start of the output registers. We can calculate the end of that frame by adding |
1646 | the size of output (sof (size of frame) - sol (size of locals)). */ | |
1647 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1648 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
1649 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
1650 | ||
1651 | bsp = rse_address_add (cache->bsp, -(cache->sof)); | |
1652 | prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); | |
1653 | ||
088568da | 1654 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
004d836a JJ |
1655 | prev_bsp); |
1656 | } | |
1657 | else if (regnum == IA64_CFM_REGNUM) | |
1658 | { | |
4afcc598 JJ |
1659 | CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
1660 | ||
1661 | if (addr != 0) | |
004d836a | 1662 | { |
4afcc598 JJ |
1663 | *lvalp = lval_memory; |
1664 | *addrp = addr; | |
088568da | 1665 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
004d836a | 1666 | } |
4afcc598 | 1667 | else if (cache->prev_cfm) |
088568da | 1668 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), cache->prev_cfm); |
4afcc598 | 1669 | else if (cache->frameless) |
004d836a | 1670 | { |
4afcc598 JJ |
1671 | CORE_ADDR cfm = 0; |
1672 | frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep); | |
004d836a | 1673 | } |
16461d7d KB |
1674 | } |
1675 | else if (regnum == IA64_VFP_REGNUM) | |
1676 | { | |
1677 | /* If the function in question uses an automatic register (r32-r127) | |
1678 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1679 | above. If the function lacks one of these frame pointers, we can | |
004d836a JJ |
1680 | still provide a value since we know the size of the frame. */ |
1681 | CORE_ADDR vfp = cache->base; | |
088568da | 1682 | store_unsigned_integer (valuep, register_size (gdbarch, IA64_VFP_REGNUM), vfp); |
16461d7d | 1683 | } |
004d836a | 1684 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
16461d7d | 1685 | { |
004d836a | 1686 | char pr_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1687 | int pr_optim; |
004d836a | 1688 | int pr_realnum; |
16461d7d KB |
1689 | enum lval_type pr_lval; |
1690 | CORE_ADDR pr_addr; | |
004d836a JJ |
1691 | ULONGEST prN_val; |
1692 | ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM, | |
1693 | &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep); | |
1694 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
3a854e23 KB |
1695 | { |
1696 | /* Fetch predicate register rename base from current frame | |
004d836a JJ |
1697 | marker for this frame. */ |
1698 | int rrb_pr = (cache->cfm >> 32) & 0x3f; | |
3a854e23 | 1699 | |
004d836a JJ |
1700 | /* Adjust the register number to account for register rotation. */ |
1701 | regnum = VP16_REGNUM | |
1702 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
3a854e23 | 1703 | } |
004d836a JJ |
1704 | prN_val = extract_bit_field ((unsigned char *) pr_valuep, |
1705 | regnum - VP0_REGNUM, 1); | |
088568da | 1706 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), prN_val); |
16461d7d KB |
1707 | } |
1708 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1709 | { | |
004d836a | 1710 | char unat_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1711 | int unat_optim; |
004d836a | 1712 | int unat_realnum; |
16461d7d KB |
1713 | enum lval_type unat_lval; |
1714 | CORE_ADDR unat_addr; | |
004d836a JJ |
1715 | ULONGEST unatN_val; |
1716 | ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM, | |
1717 | &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep); | |
1718 | unatN_val = extract_bit_field ((unsigned char *) unat_valuep, | |
16461d7d | 1719 | regnum - IA64_NAT0_REGNUM, 1); |
088568da | 1720 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
16461d7d | 1721 | unatN_val); |
16461d7d KB |
1722 | } |
1723 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1724 | { | |
1725 | int natval = 0; | |
1726 | /* Find address of general register corresponding to nat bit we're | |
004d836a JJ |
1727 | interested in. */ |
1728 | CORE_ADDR gr_addr; | |
244bc108 | 1729 | |
004d836a JJ |
1730 | gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM |
1731 | + IA64_GR0_REGNUM]; | |
1732 | if (gr_addr != 0) | |
244bc108 | 1733 | { |
004d836a | 1734 | /* Compute address of nat collection bits. */ |
16461d7d | 1735 | CORE_ADDR nat_addr = gr_addr | 0x1f8; |
004d836a | 1736 | CORE_ADDR bsp; |
16461d7d KB |
1737 | CORE_ADDR nat_collection; |
1738 | int nat_bit; | |
1739 | /* If our nat collection address is bigger than bsp, we have to get | |
1740 | the nat collection from rnat. Otherwise, we fetch the nat | |
004d836a JJ |
1741 | collection from the computed address. */ |
1742 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1743 | bsp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1744 | if (nat_addr >= bsp) |
004d836a JJ |
1745 | { |
1746 | frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf); | |
1747 | nat_collection = extract_unsigned_integer (buf, 8); | |
1748 | } | |
16461d7d KB |
1749 | else |
1750 | nat_collection = read_memory_integer (nat_addr, 8); | |
1751 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1752 | natval = (nat_collection >> nat_bit) & 1; | |
1753 | } | |
004d836a | 1754 | |
088568da | 1755 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), natval); |
244bc108 KB |
1756 | } |
1757 | else if (regnum == IA64_IP_REGNUM) | |
1758 | { | |
004d836a | 1759 | CORE_ADDR pc = 0; |
4afcc598 | 1760 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1761 | |
4afcc598 | 1762 | if (addr != 0) |
004d836a | 1763 | { |
4afcc598 JJ |
1764 | *lvalp = lval_memory; |
1765 | *addrp = addr; | |
088568da | 1766 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
004d836a JJ |
1767 | pc = extract_unsigned_integer (buf, 8); |
1768 | } | |
4afcc598 | 1769 | else if (cache->frameless) |
004d836a | 1770 | { |
4afcc598 JJ |
1771 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); |
1772 | pc = extract_unsigned_integer (buf, 8); | |
244bc108 | 1773 | } |
004d836a JJ |
1774 | pc &= ~0xf; |
1775 | store_unsigned_integer (valuep, 8, pc); | |
244bc108 | 1776 | } |
004d836a | 1777 | else if (regnum == IA64_PSR_REGNUM) |
244bc108 | 1778 | { |
4afcc598 JJ |
1779 | /* We don't know how to get the complete previous PSR, but we need it for |
1780 | the slot information when we unwind the pc (pc is formed of IP register | |
1781 | plus slot information from PSR). To get the previous slot information, | |
1782 | we mask it off the return address. */ | |
004d836a JJ |
1783 | ULONGEST slot_num = 0; |
1784 | CORE_ADDR pc= 0; | |
1785 | CORE_ADDR psr = 0; | |
4afcc598 | 1786 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a JJ |
1787 | |
1788 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1789 | psr = extract_unsigned_integer (buf, 8); | |
1790 | ||
4afcc598 | 1791 | if (addr != 0) |
244bc108 | 1792 | { |
4afcc598 JJ |
1793 | *lvalp = lval_memory; |
1794 | *addrp = addr; | |
088568da | 1795 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
004d836a | 1796 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1797 | } |
4afcc598 | 1798 | else if (cache->frameless) |
004d836a | 1799 | { |
4afcc598 JJ |
1800 | CORE_ADDR pc; |
1801 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); | |
1802 | pc = extract_unsigned_integer (buf, 8); | |
004d836a JJ |
1803 | } |
1804 | psr &= ~(3LL << 41); | |
1805 | slot_num = pc & 0x3LL; | |
1806 | psr |= (CORE_ADDR)slot_num << 41; | |
1807 | store_unsigned_integer (valuep, 8, psr); | |
1808 | } | |
4afcc598 JJ |
1809 | else if (regnum == IA64_BR0_REGNUM) |
1810 | { | |
1811 | CORE_ADDR br0 = 0; | |
1812 | CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; | |
1813 | if (addr != 0) | |
1814 | { | |
1815 | *lvalp = lval_memory; | |
1816 | *addrp = addr; | |
088568da | 1817 | read_memory (addr, buf, register_size (gdbarch, IA64_BR0_REGNUM)); |
4afcc598 JJ |
1818 | br0 = extract_unsigned_integer (buf, 8); |
1819 | } | |
1820 | store_unsigned_integer (valuep, 8, br0); | |
1821 | } | |
004d836a JJ |
1822 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || |
1823 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
1824 | { | |
1825 | CORE_ADDR addr = 0; | |
1826 | if (regnum >= V32_REGNUM) | |
1827 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1828 | addr = cache->saved_regs[regnum]; | |
244bc108 KB |
1829 | if (addr != 0) |
1830 | { | |
004d836a JJ |
1831 | *lvalp = lval_memory; |
1832 | *addrp = addr; | |
088568da | 1833 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
244bc108 | 1834 | } |
004d836a | 1835 | else if (cache->frameless) |
244bc108 | 1836 | { |
004d836a JJ |
1837 | char r_valuep[MAX_REGISTER_SIZE]; |
1838 | int r_optim; | |
1839 | int r_realnum; | |
1840 | enum lval_type r_lval; | |
1841 | CORE_ADDR r_addr; | |
1842 | CORE_ADDR prev_cfm, prev_bsp, prev_bof; | |
1843 | CORE_ADDR addr = 0; | |
1844 | if (regnum >= V32_REGNUM) | |
1845 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1846 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1847 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1848 | prev_cfm = extract_unsigned_integer (r_valuep, 8); | |
1849 | ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM, | |
1850 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1851 | prev_bsp = extract_unsigned_integer (r_valuep, 8); | |
1852 | prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); | |
1853 | ||
1854 | addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); | |
1855 | *lvalp = lval_memory; | |
1856 | *addrp = addr; | |
088568da | 1857 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
244bc108 | 1858 | } |
16461d7d KB |
1859 | } |
1860 | else | |
1861 | { | |
004d836a | 1862 | CORE_ADDR addr = 0; |
3a854e23 KB |
1863 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1864 | { | |
1865 | /* Fetch floating point register rename base from current | |
004d836a JJ |
1866 | frame marker for this frame. */ |
1867 | int rrb_fr = (cache->cfm >> 25) & 0x7f; | |
3a854e23 KB |
1868 | |
1869 | /* Adjust the floating point register number to account for | |
004d836a | 1870 | register rotation. */ |
3a854e23 KB |
1871 | regnum = IA64_FR32_REGNUM |
1872 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1873 | } | |
1874 | ||
004d836a JJ |
1875 | /* If we have stored a memory address, access the register. */ |
1876 | addr = cache->saved_regs[regnum]; | |
1877 | if (addr != 0) | |
1878 | { | |
1879 | *lvalp = lval_memory; | |
1880 | *addrp = addr; | |
088568da | 1881 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
004d836a JJ |
1882 | } |
1883 | /* Otherwise, punt and get the current value of the register. */ | |
1884 | else | |
1885 | frame_unwind_register (next_frame, regnum, valuep); | |
16461d7d | 1886 | } |
4afcc598 JJ |
1887 | |
1888 | if (gdbarch_debug >= 1) | |
1889 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 1890 | "regular prev register <%d> <%s> is 0x%s\n", regnum, |
4afcc598 | 1891 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
1892 | ? ia64_register_names[regnum] : "r??"), |
1893 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
16461d7d | 1894 | } |
004d836a JJ |
1895 | |
1896 | static const struct frame_unwind ia64_frame_unwind = | |
1897 | { | |
1898 | NORMAL_FRAME, | |
1899 | &ia64_frame_this_id, | |
1900 | &ia64_frame_prev_register | |
1901 | }; | |
1902 | ||
1903 | static const struct frame_unwind * | |
1904 | ia64_frame_sniffer (struct frame_info *next_frame) | |
1905 | { | |
1906 | return &ia64_frame_unwind; | |
1907 | } | |
1908 | ||
1909 | /* Signal trampolines. */ | |
1910 | ||
1911 | static void | |
2685572f UW |
1912 | ia64_sigtramp_frame_init_saved_regs (struct frame_info *next_frame, |
1913 | struct ia64_frame_cache *cache) | |
004d836a | 1914 | { |
2685572f UW |
1915 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
1916 | ||
1917 | if (tdep->sigcontext_register_address) | |
004d836a JJ |
1918 | { |
1919 | int regno; | |
1920 | ||
1921 | cache->saved_regs[IA64_VRAP_REGNUM] = | |
2685572f | 1922 | tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM); |
004d836a | 1923 | cache->saved_regs[IA64_CFM_REGNUM] = |
2685572f | 1924 | tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM); |
004d836a | 1925 | cache->saved_regs[IA64_PSR_REGNUM] = |
2685572f | 1926 | tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM); |
004d836a | 1927 | cache->saved_regs[IA64_BSP_REGNUM] = |
2685572f | 1928 | tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM); |
004d836a | 1929 | cache->saved_regs[IA64_RNAT_REGNUM] = |
2685572f | 1930 | tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM); |
004d836a | 1931 | cache->saved_regs[IA64_CCV_REGNUM] = |
2685572f | 1932 | tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM); |
004d836a | 1933 | cache->saved_regs[IA64_UNAT_REGNUM] = |
2685572f | 1934 | tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM); |
004d836a | 1935 | cache->saved_regs[IA64_FPSR_REGNUM] = |
2685572f | 1936 | tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM); |
004d836a | 1937 | cache->saved_regs[IA64_PFS_REGNUM] = |
2685572f | 1938 | tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM); |
004d836a | 1939 | cache->saved_regs[IA64_LC_REGNUM] = |
2685572f | 1940 | tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM); |
004d836a | 1941 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) |
4afcc598 | 1942 | cache->saved_regs[regno] = |
2685572f | 1943 | tdep->sigcontext_register_address (cache->base, regno); |
004d836a JJ |
1944 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
1945 | cache->saved_regs[regno] = | |
2685572f | 1946 | tdep->sigcontext_register_address (cache->base, regno); |
932644f0 | 1947 | for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
004d836a | 1948 | cache->saved_regs[regno] = |
2685572f | 1949 | tdep->sigcontext_register_address (cache->base, regno); |
004d836a JJ |
1950 | } |
1951 | } | |
1952 | ||
1953 | static struct ia64_frame_cache * | |
1954 | ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1955 | { | |
1956 | struct ia64_frame_cache *cache; | |
1957 | CORE_ADDR addr; | |
1958 | char buf[8]; | |
1959 | int i; | |
1960 | ||
1961 | if (*this_cache) | |
1962 | return *this_cache; | |
1963 | ||
1964 | cache = ia64_alloc_frame_cache (); | |
1965 | ||
1966 | frame_unwind_register (next_frame, sp_regnum, buf); | |
4afcc598 JJ |
1967 | /* Note that frame size is hard-coded below. We cannot calculate it |
1968 | via prologue examination. */ | |
1969 | cache->base = extract_unsigned_integer (buf, 8) + 16; | |
1970 | ||
1971 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1972 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1973 | ||
1974 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1975 | cache->cfm = extract_unsigned_integer (buf, 8); | |
1976 | cache->sof = cache->cfm & 0x7f; | |
004d836a | 1977 | |
2685572f | 1978 | ia64_sigtramp_frame_init_saved_regs (next_frame, cache); |
004d836a JJ |
1979 | |
1980 | *this_cache = cache; | |
1981 | return cache; | |
1982 | } | |
1983 | ||
1984 | static void | |
1985 | ia64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1986 | void **this_cache, struct frame_id *this_id) | |
1987 | { | |
1988 | struct ia64_frame_cache *cache = | |
1989 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1990 | ||
4afcc598 JJ |
1991 | (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp); |
1992 | if (gdbarch_debug >= 1) | |
1993 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1994 | "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1995 | paddr_nz (this_id->code_addr), | |
1996 | paddr_nz (this_id->stack_addr), | |
1997 | paddr_nz (cache->bsp), next_frame); | |
004d836a JJ |
1998 | } |
1999 | ||
2000 | static void | |
2001 | ia64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
2002 | void **this_cache, | |
2003 | int regnum, int *optimizedp, | |
2004 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2005 | int *realnump, gdb_byte *valuep) |
004d836a | 2006 | { |
4afcc598 JJ |
2007 | char dummy_valp[MAX_REGISTER_SIZE]; |
2008 | char buf[MAX_REGISTER_SIZE]; | |
2009 | ||
088568da | 2010 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
4afcc598 JJ |
2011 | struct ia64_frame_cache *cache = |
2012 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
2013 | ||
2014 | gdb_assert (regnum >= 0); | |
2015 | ||
2016 | if (!target_has_registers) | |
8a3fe4f8 | 2017 | error (_("No registers.")); |
4afcc598 JJ |
2018 | |
2019 | *optimizedp = 0; | |
2020 | *addrp = 0; | |
2021 | *lvalp = not_lval; | |
2022 | *realnump = -1; | |
2023 | ||
2024 | /* Rather than check each time if valuep is non-null, supply a dummy buffer | |
2025 | when valuep is not supplied. */ | |
2026 | if (!valuep) | |
2027 | valuep = dummy_valp; | |
2028 | ||
088568da | 2029 | memset (valuep, 0, register_size (gdbarch, regnum)); |
4afcc598 JJ |
2030 | |
2031 | if (regnum == IA64_IP_REGNUM) | |
2032 | { | |
2033 | CORE_ADDR pc = 0; | |
2034 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; | |
2035 | ||
2036 | if (addr != 0) | |
2037 | { | |
2038 | *lvalp = lval_memory; | |
2039 | *addrp = addr; | |
088568da | 2040 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
4afcc598 JJ |
2041 | pc = extract_unsigned_integer (buf, 8); |
2042 | } | |
2043 | pc &= ~0xf; | |
2044 | store_unsigned_integer (valuep, 8, pc); | |
2045 | } | |
2046 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || | |
2047 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
2048 | { | |
2049 | CORE_ADDR addr = 0; | |
2050 | if (regnum >= V32_REGNUM) | |
2051 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
2052 | addr = cache->saved_regs[regnum]; | |
2053 | if (addr != 0) | |
2054 | { | |
2055 | *lvalp = lval_memory; | |
2056 | *addrp = addr; | |
088568da | 2057 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
4afcc598 JJ |
2058 | } |
2059 | } | |
2060 | else | |
2061 | { | |
2062 | /* All other registers not listed above. */ | |
2063 | CORE_ADDR addr = cache->saved_regs[regnum]; | |
2064 | if (addr != 0) | |
2065 | { | |
2066 | *lvalp = lval_memory; | |
2067 | *addrp = addr; | |
088568da | 2068 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
4afcc598 JJ |
2069 | } |
2070 | } | |
004d836a | 2071 | |
4afcc598 JJ |
2072 | if (gdbarch_debug >= 1) |
2073 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2074 | "sigtramp prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2075 | (regnum < IA64_GR32_REGNUM |
2076 | || (regnum > IA64_GR127_REGNUM | |
2077 | && regnum < LAST_PSEUDO_REGNUM)) | |
2078 | ? ia64_register_names[regnum] | |
2079 | : (regnum < LAST_PSEUDO_REGNUM | |
2080 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2081 | : "OUT_OF_RANGE"), | |
78ced177 | 2082 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
004d836a JJ |
2083 | } |
2084 | ||
2085 | static const struct frame_unwind ia64_sigtramp_frame_unwind = | |
2086 | { | |
2087 | SIGTRAMP_FRAME, | |
2088 | ia64_sigtramp_frame_this_id, | |
2089 | ia64_sigtramp_frame_prev_register | |
2090 | }; | |
2091 | ||
2092 | static const struct frame_unwind * | |
2093 | ia64_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2094 | { | |
74174d2e UW |
2095 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
2096 | if (tdep->pc_in_sigtramp) | |
2097 | { | |
2098 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
004d836a | 2099 | |
74174d2e UW |
2100 | if (tdep->pc_in_sigtramp (pc)) |
2101 | return &ia64_sigtramp_frame_unwind; | |
2102 | } | |
004d836a JJ |
2103 | |
2104 | return NULL; | |
2105 | } | |
2106 | \f | |
2107 | ||
2108 | static CORE_ADDR | |
2109 | ia64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
2110 | { | |
2111 | struct ia64_frame_cache *cache = | |
2112 | ia64_frame_cache (next_frame, this_cache); | |
2113 | ||
2114 | return cache->base; | |
2115 | } | |
2116 | ||
2117 | static const struct frame_base ia64_frame_base = | |
2118 | { | |
2119 | &ia64_frame_unwind, | |
2120 | ia64_frame_base_address, | |
2121 | ia64_frame_base_address, | |
2122 | ia64_frame_base_address | |
2123 | }; | |
16461d7d | 2124 | |
968d1cb4 JJ |
2125 | #ifdef HAVE_LIBUNWIND_IA64_H |
2126 | ||
2127 | struct ia64_unwind_table_entry | |
2128 | { | |
2129 | unw_word_t start_offset; | |
2130 | unw_word_t end_offset; | |
2131 | unw_word_t info_offset; | |
2132 | }; | |
2133 | ||
2134 | static __inline__ uint64_t | |
2135 | ia64_rse_slot_num (uint64_t addr) | |
2136 | { | |
2137 | return (addr >> 3) & 0x3f; | |
2138 | } | |
2139 | ||
2140 | /* Skip over a designated number of registers in the backing | |
2141 | store, remembering every 64th position is for NAT. */ | |
2142 | static __inline__ uint64_t | |
2143 | ia64_rse_skip_regs (uint64_t addr, long num_regs) | |
2144 | { | |
2145 | long delta = ia64_rse_slot_num(addr) + num_regs; | |
2146 | ||
2147 | if (num_regs < 0) | |
2148 | delta -= 0x3e; | |
2149 | return addr + ((num_regs + delta/0x3f) << 3); | |
2150 | } | |
2151 | ||
2152 | /* Gdb libunwind-frame callback function to convert from an ia64 gdb register | |
2153 | number to a libunwind register number. */ | |
2154 | static int | |
2155 | ia64_gdb2uw_regnum (int regnum) | |
2156 | { | |
2157 | if (regnum == sp_regnum) | |
2158 | return UNW_IA64_SP; | |
2159 | else if (regnum == IA64_BSP_REGNUM) | |
2160 | return UNW_IA64_BSP; | |
2161 | else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) | |
2162 | return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); | |
2163 | else if ((unsigned) (regnum - V32_REGNUM) < 95) | |
2164 | return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); | |
2165 | else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) | |
2166 | return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); | |
2167 | else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) | |
2168 | return -1; | |
2169 | else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) | |
2170 | return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); | |
2171 | else if (regnum == IA64_PR_REGNUM) | |
2172 | return UNW_IA64_PR; | |
2173 | else if (regnum == IA64_IP_REGNUM) | |
2174 | return UNW_REG_IP; | |
2175 | else if (regnum == IA64_CFM_REGNUM) | |
2176 | return UNW_IA64_CFM; | |
2177 | else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) | |
2178 | return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); | |
2179 | else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) | |
2180 | return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); | |
2181 | else | |
2182 | return -1; | |
2183 | } | |
2184 | ||
2185 | /* Gdb libunwind-frame callback function to convert from a libunwind register | |
2186 | number to a ia64 gdb register number. */ | |
2187 | static int | |
2188 | ia64_uw2gdb_regnum (int uw_regnum) | |
2189 | { | |
2190 | if (uw_regnum == UNW_IA64_SP) | |
2191 | return sp_regnum; | |
2192 | else if (uw_regnum == UNW_IA64_BSP) | |
2193 | return IA64_BSP_REGNUM; | |
2194 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) | |
2195 | return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); | |
2196 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) | |
2197 | return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); | |
2198 | else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) | |
2199 | return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); | |
2200 | else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) | |
2201 | return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); | |
2202 | else if (uw_regnum == UNW_IA64_PR) | |
2203 | return IA64_PR_REGNUM; | |
2204 | else if (uw_regnum == UNW_REG_IP) | |
2205 | return IA64_IP_REGNUM; | |
2206 | else if (uw_regnum == UNW_IA64_CFM) | |
2207 | return IA64_CFM_REGNUM; | |
2208 | else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) | |
2209 | return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); | |
2210 | else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) | |
2211 | return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); | |
2212 | else | |
2213 | return -1; | |
2214 | } | |
2215 | ||
2216 | /* Gdb libunwind-frame callback function to reveal if register is a float | |
2217 | register or not. */ | |
2218 | static int | |
2219 | ia64_is_fpreg (int uw_regnum) | |
2220 | { | |
2221 | return unw_is_fpreg (uw_regnum); | |
2222 | } | |
2223 | ||
2224 | /* Libunwind callback accessor function for general registers. */ | |
2225 | static int | |
2226 | ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2227 | int write, void *arg) | |
2228 | { | |
2229 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2230 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
2231 | struct frame_info *next_frame = arg; | |
2232 | long new_sof, old_sof; | |
2233 | char buf[MAX_REGISTER_SIZE]; | |
2234 | ||
45ecac4b UW |
2235 | /* We never call any libunwind routines that need to write registers. */ |
2236 | gdb_assert (!write); | |
968d1cb4 | 2237 | |
45ecac4b | 2238 | switch (uw_regnum) |
968d1cb4 | 2239 | { |
45ecac4b UW |
2240 | case UNW_REG_IP: |
2241 | /* Libunwind expects to see the pc value which means the slot number | |
2242 | from the psr must be merged with the ip word address. */ | |
2243 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
2244 | ip = extract_unsigned_integer (buf, 8); | |
2245 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
2246 | psr = extract_unsigned_integer (buf, 8); | |
2247 | *val = ip | ((psr >> 41) & 0x3); | |
2248 | break; | |
2249 | ||
2250 | case UNW_IA64_AR_BSP: | |
2251 | /* Libunwind expects to see the beginning of the current register | |
2252 | frame so we must account for the fact that ptrace() will return a value | |
2253 | for bsp that points *after* the current register frame. */ | |
2254 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2255 | bsp = extract_unsigned_integer (buf, 8); | |
2256 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2257 | cfm = extract_unsigned_integer (buf, 8); | |
2258 | sof = (cfm & 0x7f); | |
2259 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2260 | break; | |
968d1cb4 | 2261 | |
45ecac4b UW |
2262 | case UNW_IA64_AR_BSPSTORE: |
2263 | /* Libunwind wants bspstore to be after the current register frame. | |
2264 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2265 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2266 | *val = extract_unsigned_integer (buf, 8); | |
2267 | break; | |
2268 | ||
2269 | default: | |
2270 | /* For all other registers, just unwind the value directly. */ | |
2271 | frame_unwind_register (next_frame, regnum, buf); | |
2272 | *val = extract_unsigned_integer (buf, 8); | |
2273 | break; | |
968d1cb4 | 2274 | } |
45ecac4b UW |
2275 | |
2276 | if (gdbarch_debug >= 1) | |
2277 | fprintf_unfiltered (gdb_stdlog, | |
2278 | " access_reg: from cache: %4s=0x%s\n", | |
2279 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2280 | ? ia64_register_names[regnum] : "r??"), | |
2281 | paddr_nz (*val)); | |
968d1cb4 JJ |
2282 | return 0; |
2283 | } | |
2284 | ||
2285 | /* Libunwind callback accessor function for floating-point registers. */ | |
2286 | static int | |
2287 | ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, | |
2288 | int write, void *arg) | |
2289 | { | |
2290 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
45ecac4b | 2291 | struct frame_info *next_frame = arg; |
968d1cb4 | 2292 | |
45ecac4b UW |
2293 | /* We never call any libunwind routines that need to write registers. */ |
2294 | gdb_assert (!write); | |
2295 | ||
2296 | frame_unwind_register (next_frame, regnum, (char *) val); | |
2297 | ||
968d1cb4 JJ |
2298 | return 0; |
2299 | } | |
2300 | ||
c5a27d9c JJ |
2301 | /* Libunwind callback accessor function for top-level rse registers. */ |
2302 | static int | |
2303 | ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2304 | int write, void *arg) | |
2305 | { | |
2306 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2307 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
45ecac4b | 2308 | struct regcache *regcache = arg; |
c5a27d9c | 2309 | long new_sof, old_sof; |
45ecac4b | 2310 | char buf[MAX_REGISTER_SIZE]; |
c5a27d9c | 2311 | |
45ecac4b UW |
2312 | /* We never call any libunwind routines that need to write registers. */ |
2313 | gdb_assert (!write); | |
c5a27d9c | 2314 | |
45ecac4b | 2315 | switch (uw_regnum) |
c5a27d9c | 2316 | { |
45ecac4b UW |
2317 | case UNW_REG_IP: |
2318 | /* Libunwind expects to see the pc value which means the slot number | |
2319 | from the psr must be merged with the ip word address. */ | |
2320 | regcache_cooked_read (regcache, IA64_IP_REGNUM, buf); | |
2321 | ip = extract_unsigned_integer (buf, 8); | |
2322 | regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf); | |
2323 | psr = extract_unsigned_integer (buf, 8); | |
2324 | *val = ip | ((psr >> 41) & 0x3); | |
2325 | break; | |
c5a27d9c | 2326 | |
45ecac4b UW |
2327 | case UNW_IA64_AR_BSP: |
2328 | /* Libunwind expects to see the beginning of the current register | |
2329 | frame so we must account for the fact that ptrace() will return a value | |
2330 | for bsp that points *after* the current register frame. */ | |
2331 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2332 | bsp = extract_unsigned_integer (buf, 8); | |
2333 | regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf); | |
2334 | cfm = extract_unsigned_integer (buf, 8); | |
2335 | sof = (cfm & 0x7f); | |
2336 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2337 | break; | |
c5a27d9c | 2338 | |
45ecac4b UW |
2339 | case UNW_IA64_AR_BSPSTORE: |
2340 | /* Libunwind wants bspstore to be after the current register frame. | |
2341 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2342 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2343 | *val = extract_unsigned_integer (buf, 8); | |
2344 | break; | |
c5a27d9c | 2345 | |
45ecac4b UW |
2346 | default: |
2347 | /* For all other registers, just unwind the value directly. */ | |
2348 | regcache_cooked_read (regcache, regnum, buf); | |
2349 | *val = extract_unsigned_integer (buf, 8); | |
2350 | break; | |
c5a27d9c JJ |
2351 | } |
2352 | ||
2353 | if (gdbarch_debug >= 1) | |
2354 | fprintf_unfiltered (gdb_stdlog, | |
2355 | " access_rse_reg: from cache: %4s=0x%s\n", | |
2356 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2357 | ? ia64_register_names[regnum] : "r??"), | |
2358 | paddr_nz (*val)); | |
2359 | ||
2360 | return 0; | |
2361 | } | |
2362 | ||
45ecac4b UW |
2363 | /* Libunwind callback accessor function for top-level fp registers. */ |
2364 | static int | |
2365 | ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, | |
2366 | unw_fpreg_t *val, int write, void *arg) | |
2367 | { | |
2368 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2369 | struct regcache *regcache = arg; | |
2370 | ||
2371 | /* We never call any libunwind routines that need to write registers. */ | |
2372 | gdb_assert (!write); | |
2373 | ||
2374 | regcache_cooked_read (regcache, regnum, (char *) val); | |
2375 | ||
2376 | return 0; | |
2377 | } | |
2378 | ||
968d1cb4 JJ |
2379 | /* Libunwind callback accessor function for accessing memory. */ |
2380 | static int | |
2381 | ia64_access_mem (unw_addr_space_t as, | |
2382 | unw_word_t addr, unw_word_t *val, | |
2383 | int write, void *arg) | |
2384 | { | |
c5a27d9c JJ |
2385 | if (addr - KERNEL_START < ktab_size) |
2386 | { | |
2387 | unw_word_t *laddr = (unw_word_t*) ((char *) ktab | |
2388 | + (addr - KERNEL_START)); | |
2389 | ||
2390 | if (write) | |
2391 | *laddr = *val; | |
2392 | else | |
2393 | *val = *laddr; | |
2394 | return 0; | |
2395 | } | |
2396 | ||
968d1cb4 JJ |
2397 | /* XXX do we need to normalize byte-order here? */ |
2398 | if (write) | |
2399 | return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2400 | else | |
2401 | return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2402 | } | |
2403 | ||
2404 | /* Call low-level function to access the kernel unwind table. */ | |
13547ab6 DJ |
2405 | static LONGEST |
2406 | getunwind_table (gdb_byte **buf_p) | |
968d1cb4 JJ |
2407 | { |
2408 | LONGEST x; | |
c5a27d9c | 2409 | |
10d6c8cd DJ |
2410 | /* FIXME drow/2005-09-10: This code used to call |
2411 | ia64_linux_xfer_unwind_table directly to fetch the unwind table | |
2412 | for the currently running ia64-linux kernel. That data should | |
2413 | come from the core file and be accessed via the auxv vector; if | |
2414 | we want to preserve fall back to the running kernel's table, then | |
2415 | we should find a way to override the corefile layer's | |
2416 | xfer_partial method. */ | |
968d1cb4 | 2417 | |
13547ab6 DJ |
2418 | x = target_read_alloc (¤t_target, TARGET_OBJECT_UNWIND_TABLE, |
2419 | NULL, buf_p); | |
2420 | ||
2421 | return x; | |
968d1cb4 | 2422 | } |
10d6c8cd | 2423 | |
968d1cb4 JJ |
2424 | /* Get the kernel unwind table. */ |
2425 | static int | |
2426 | get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) | |
2427 | { | |
c5a27d9c | 2428 | static struct ia64_table_entry *etab; |
968d1cb4 | 2429 | |
c5a27d9c | 2430 | if (!ktab) |
968d1cb4 | 2431 | { |
13547ab6 | 2432 | gdb_byte *ktab_buf; |
eeec829c | 2433 | LONGEST size; |
13547ab6 | 2434 | |
eeec829c DJ |
2435 | size = getunwind_table (&ktab_buf); |
2436 | if (size <= 0) | |
13547ab6 | 2437 | return -UNW_ENOINFO; |
eeec829c DJ |
2438 | |
2439 | ktab = (struct ia64_table_entry *) ktab_buf; | |
2440 | ktab_size = size; | |
13547ab6 | 2441 | |
968d1cb4 | 2442 | for (etab = ktab; etab->start_offset; ++etab) |
c5a27d9c | 2443 | etab->info_offset += KERNEL_START; |
968d1cb4 JJ |
2444 | } |
2445 | ||
2446 | if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) | |
2447 | return -UNW_ENOINFO; | |
2448 | ||
2449 | di->format = UNW_INFO_FORMAT_TABLE; | |
2450 | di->gp = 0; | |
2451 | di->start_ip = ktab[0].start_offset; | |
2452 | di->end_ip = etab[-1].end_offset; | |
2453 | di->u.ti.name_ptr = (unw_word_t) "<kernel>"; | |
2454 | di->u.ti.segbase = 0; | |
2455 | di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); | |
2456 | di->u.ti.table_data = (unw_word_t *) ktab; | |
2457 | ||
2458 | if (gdbarch_debug >= 1) | |
2459 | fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " | |
78ced177 JJ |
2460 | "segbase=0x%s, length=%s, gp=0x%s\n", |
2461 | (char *) di->u.ti.name_ptr, | |
2462 | paddr_nz (di->u.ti.segbase), | |
2463 | paddr_u (di->u.ti.table_len), | |
2464 | paddr_nz (di->gp)); | |
968d1cb4 JJ |
2465 | return 0; |
2466 | } | |
2467 | ||
2468 | /* Find the unwind table entry for a specified address. */ | |
2469 | static int | |
2470 | ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, | |
2471 | unw_dyn_info_t *dip, void **buf) | |
2472 | { | |
2473 | Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; | |
2474 | Elf_Internal_Ehdr *ehdr; | |
2475 | unw_word_t segbase = 0; | |
2476 | CORE_ADDR load_base; | |
2477 | bfd *bfd; | |
2478 | int i; | |
2479 | ||
2480 | bfd = objfile->obfd; | |
2481 | ||
2482 | ehdr = elf_tdata (bfd)->elf_header; | |
2483 | phdr = elf_tdata (bfd)->phdr; | |
2484 | ||
2485 | load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
2486 | ||
2487 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2488 | { | |
2489 | switch (phdr[i].p_type) | |
2490 | { | |
2491 | case PT_LOAD: | |
2492 | if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) | |
2493 | < phdr[i].p_memsz) | |
2494 | p_text = phdr + i; | |
2495 | break; | |
2496 | ||
2497 | case PT_IA_64_UNWIND: | |
2498 | p_unwind = phdr + i; | |
2499 | break; | |
2500 | ||
2501 | default: | |
2502 | break; | |
2503 | } | |
2504 | } | |
2505 | ||
c5a27d9c | 2506 | if (!p_text || !p_unwind) |
968d1cb4 JJ |
2507 | return -UNW_ENOINFO; |
2508 | ||
c5a27d9c JJ |
2509 | /* Verify that the segment that contains the IP also contains |
2510 | the static unwind table. If not, we may be in the Linux kernel's | |
2511 | DSO gate page in which case the unwind table is another segment. | |
2512 | Otherwise, we are dealing with runtime-generated code, for which we | |
2513 | have no info here. */ | |
968d1cb4 JJ |
2514 | segbase = p_text->p_vaddr + load_base; |
2515 | ||
c5a27d9c JJ |
2516 | if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) |
2517 | { | |
2518 | int ok = 0; | |
2519 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2520 | { | |
2521 | if (phdr[i].p_type == PT_LOAD | |
2522 | && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz) | |
2523 | { | |
2524 | ok = 1; | |
2525 | /* Get the segbase from the section containing the | |
2526 | libunwind table. */ | |
2527 | segbase = phdr[i].p_vaddr + load_base; | |
2528 | } | |
2529 | } | |
2530 | if (!ok) | |
2531 | return -UNW_ENOINFO; | |
2532 | } | |
2533 | ||
2534 | dip->start_ip = p_text->p_vaddr + load_base; | |
968d1cb4 | 2535 | dip->end_ip = dip->start_ip + p_text->p_memsz; |
b33e8514 | 2536 | dip->gp = ia64_find_global_pointer (ip); |
503ff15d KB |
2537 | dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
2538 | dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); | |
2539 | dip->u.rti.segbase = segbase; | |
2540 | dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); | |
2541 | dip->u.rti.table_data = p_unwind->p_vaddr + load_base; | |
968d1cb4 JJ |
2542 | |
2543 | return 0; | |
2544 | } | |
2545 | ||
2546 | /* Libunwind callback accessor function to acquire procedure unwind-info. */ | |
2547 | static int | |
2548 | ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, | |
2549 | int need_unwind_info, void *arg) | |
2550 | { | |
2551 | struct obj_section *sec = find_pc_section (ip); | |
2552 | unw_dyn_info_t di; | |
2553 | int ret; | |
2554 | void *buf = NULL; | |
2555 | ||
2556 | if (!sec) | |
2557 | { | |
2558 | /* XXX This only works if the host and the target architecture are | |
2559 | both ia64 and if the have (more or less) the same kernel | |
2560 | version. */ | |
2561 | if (get_kernel_table (ip, &di) < 0) | |
2562 | return -UNW_ENOINFO; | |
503ff15d KB |
2563 | |
2564 | if (gdbarch_debug >= 1) | |
78ced177 JJ |
2565 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2566 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2567 | "length=%s,data=0x%s)\n", | |
2568 | paddr_nz (ip), (char *)di.u.ti.name_ptr, | |
2569 | paddr_nz (di.u.ti.segbase), | |
2570 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2571 | paddr_nz (di.gp), | |
2572 | paddr_u (di.u.ti.table_len), | |
2573 | paddr_nz ((CORE_ADDR)di.u.ti.table_data)); | |
968d1cb4 JJ |
2574 | } |
2575 | else | |
2576 | { | |
2577 | ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); | |
2578 | if (ret < 0) | |
2579 | return ret; | |
968d1cb4 | 2580 | |
503ff15d | 2581 | if (gdbarch_debug >= 1) |
78ced177 JJ |
2582 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2583 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2584 | "length=%s,data=0x%s)\n", | |
2585 | paddr_nz (ip), (char *)di.u.rti.name_ptr, | |
2586 | paddr_nz (di.u.rti.segbase), | |
2587 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2588 | paddr_nz (di.gp), | |
2589 | paddr_u (di.u.rti.table_len), | |
2590 | paddr_nz (di.u.rti.table_data)); | |
503ff15d | 2591 | } |
968d1cb4 | 2592 | |
503ff15d KB |
2593 | ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
2594 | arg); | |
968d1cb4 JJ |
2595 | |
2596 | /* We no longer need the dyn info storage so free it. */ | |
2597 | xfree (buf); | |
2598 | ||
2599 | return ret; | |
2600 | } | |
2601 | ||
2602 | /* Libunwind callback accessor function for cleanup. */ | |
2603 | static void | |
2604 | ia64_put_unwind_info (unw_addr_space_t as, | |
2605 | unw_proc_info_t *pip, void *arg) | |
2606 | { | |
2607 | /* Nothing required for now. */ | |
2608 | } | |
2609 | ||
2610 | /* Libunwind callback accessor function to get head of the dynamic | |
2611 | unwind-info registration list. */ | |
2612 | static int | |
2613 | ia64_get_dyn_info_list (unw_addr_space_t as, | |
2614 | unw_word_t *dilap, void *arg) | |
2615 | { | |
2616 | struct obj_section *text_sec; | |
2617 | struct objfile *objfile; | |
2618 | unw_word_t ip, addr; | |
2619 | unw_dyn_info_t di; | |
2620 | int ret; | |
2621 | ||
2622 | if (!libunwind_is_initialized ()) | |
2623 | return -UNW_ENOINFO; | |
2624 | ||
2625 | for (objfile = object_files; objfile; objfile = objfile->next) | |
2626 | { | |
2627 | void *buf = NULL; | |
2628 | ||
2629 | text_sec = objfile->sections + SECT_OFF_TEXT (objfile); | |
2630 | ip = text_sec->addr; | |
2631 | ret = ia64_find_unwind_table (objfile, ip, &di, &buf); | |
2632 | if (ret >= 0) | |
2633 | { | |
503ff15d | 2634 | addr = libunwind_find_dyn_list (as, &di, arg); |
968d1cb4 JJ |
2635 | /* We no longer need the dyn info storage so free it. */ |
2636 | xfree (buf); | |
2637 | ||
2638 | if (addr) | |
2639 | { | |
2640 | if (gdbarch_debug >= 1) | |
2641 | fprintf_unfiltered (gdb_stdlog, | |
2642 | "dynamic unwind table in objfile %s " | |
78ced177 | 2643 | "at 0x%s (gp=0x%s)\n", |
968d1cb4 | 2644 | bfd_get_filename (objfile->obfd), |
78ced177 | 2645 | paddr_nz (addr), paddr_nz (di.gp)); |
968d1cb4 JJ |
2646 | *dilap = addr; |
2647 | return 0; | |
2648 | } | |
2649 | } | |
2650 | } | |
2651 | return -UNW_ENOINFO; | |
2652 | } | |
2653 | ||
2654 | ||
2655 | /* Frame interface functions for libunwind. */ | |
2656 | ||
2657 | static void | |
2658 | ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
7166c4a9 | 2659 | struct frame_id *this_id) |
968d1cb4 JJ |
2660 | { |
2661 | char buf[8]; | |
2662 | CORE_ADDR bsp; | |
2663 | struct frame_id id; | |
c5a27d9c JJ |
2664 | CORE_ADDR prev_ip, addr; |
2665 | int realnum, optimized; | |
2666 | enum lval_type lval; | |
2667 | ||
968d1cb4 JJ |
2668 | |
2669 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
c5a27d9c JJ |
2670 | if (frame_id_eq (id, null_frame_id)) |
2671 | { | |
2672 | (*this_id) = null_frame_id; | |
2673 | return; | |
2674 | } | |
968d1cb4 | 2675 | |
c5a27d9c JJ |
2676 | /* We must add the bsp as the special address for frame comparison |
2677 | purposes. */ | |
968d1cb4 JJ |
2678 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
2679 | bsp = extract_unsigned_integer (buf, 8); | |
2680 | ||
c5a27d9c JJ |
2681 | /* If the previous frame pc value is 0, then we are at the end of the stack |
2682 | and don't want to unwind past this frame. We return a null frame_id to | |
2683 | indicate this. */ | |
2684 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2685 | &optimized, &lval, &addr, &realnum, buf); |
2686 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2687 | |
2688 | if (prev_ip != 0) | |
2689 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2690 | else | |
2691 | (*this_id) = null_frame_id; | |
968d1cb4 JJ |
2692 | |
2693 | if (gdbarch_debug >= 1) | |
2694 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
2695 | "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
2696 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2697 | paddr_nz (bsp), next_frame); | |
968d1cb4 JJ |
2698 | } |
2699 | ||
2700 | static void | |
2701 | ia64_libunwind_frame_prev_register (struct frame_info *next_frame, | |
2702 | void **this_cache, | |
2703 | int regnum, int *optimizedp, | |
2704 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2705 | int *realnump, gdb_byte *valuep) |
968d1cb4 JJ |
2706 | { |
2707 | int reg = regnum; | |
2708 | ||
088568da | 2709 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
968d1cb4 JJ |
2710 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2711 | reg = IA64_PR_REGNUM; | |
2712 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2713 | reg = IA64_UNAT_REGNUM; | |
2714 | ||
2715 | /* Let libunwind do most of the work. */ | |
2716 | libunwind_frame_prev_register (next_frame, this_cache, reg, | |
2717 | optimizedp, lvalp, addrp, realnump, valuep); | |
2718 | ||
6672f2ae AS |
2719 | /* No more to do if the value is not supposed to be supplied. */ |
2720 | if (!valuep) | |
2721 | return; | |
2722 | ||
968d1cb4 JJ |
2723 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2724 | { | |
2725 | ULONGEST prN_val; | |
2726 | ||
2727 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2728 | { | |
2729 | int rrb_pr = 0; | |
2730 | ULONGEST cfm; | |
2731 | unsigned char buf[MAX_REGISTER_SIZE]; | |
2732 | ||
2733 | /* Fetch predicate register rename base from current frame | |
2734 | marker for this frame. */ | |
2735 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2736 | cfm = extract_unsigned_integer (buf, 8); | |
2737 | rrb_pr = (cfm >> 32) & 0x3f; | |
2738 | ||
2739 | /* Adjust the register number to account for register rotation. */ | |
2740 | regnum = VP16_REGNUM | |
2741 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
2742 | } | |
2743 | prN_val = extract_bit_field ((unsigned char *) valuep, | |
2744 | regnum - VP0_REGNUM, 1); | |
088568da | 2745 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), prN_val); |
968d1cb4 JJ |
2746 | } |
2747 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2748 | { | |
2749 | ULONGEST unatN_val; | |
2750 | ||
2751 | unatN_val = extract_bit_field ((unsigned char *) valuep, | |
2752 | regnum - IA64_NAT0_REGNUM, 1); | |
088568da | 2753 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
968d1cb4 JJ |
2754 | unatN_val); |
2755 | } | |
2756 | else if (regnum == IA64_BSP_REGNUM) | |
2757 | { | |
2758 | char cfm_valuep[MAX_REGISTER_SIZE]; | |
2759 | int cfm_optim; | |
2760 | int cfm_realnum; | |
2761 | enum lval_type cfm_lval; | |
2762 | CORE_ADDR cfm_addr; | |
2763 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
2764 | ||
2765 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
2766 | This corresponds to what the hardware bsp register will be if we pop the frame | |
2767 | back which is why we might have been called. We know that libunwind will pass us back | |
2768 | the beginning of the current frame so we should just add sof to it. */ | |
2769 | prev_bsp = extract_unsigned_integer (valuep, 8); | |
2770 | libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
2771 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
2772 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
2773 | prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); | |
2774 | ||
088568da | 2775 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
968d1cb4 JJ |
2776 | prev_bsp); |
2777 | } | |
2778 | ||
2779 | if (gdbarch_debug >= 1) | |
2780 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2781 | "libunwind prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2782 | (regnum < IA64_GR32_REGNUM |
2783 | || (regnum > IA64_GR127_REGNUM | |
2784 | && regnum < LAST_PSEUDO_REGNUM)) | |
2785 | ? ia64_register_names[regnum] | |
2786 | : (regnum < LAST_PSEUDO_REGNUM | |
2787 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2788 | : "OUT_OF_RANGE"), | |
78ced177 | 2789 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
968d1cb4 JJ |
2790 | } |
2791 | ||
2792 | static const struct frame_unwind ia64_libunwind_frame_unwind = | |
2793 | { | |
2794 | NORMAL_FRAME, | |
2795 | ia64_libunwind_frame_this_id, | |
272dfcfd AS |
2796 | ia64_libunwind_frame_prev_register, |
2797 | NULL, | |
2798 | NULL, | |
2799 | NULL, | |
2800 | libunwind_frame_dealloc_cache | |
968d1cb4 JJ |
2801 | }; |
2802 | ||
2803 | static const struct frame_unwind * | |
2804 | ia64_libunwind_frame_sniffer (struct frame_info *next_frame) | |
2805 | { | |
2806 | if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame)) | |
2807 | return &ia64_libunwind_frame_unwind; | |
2808 | ||
2809 | return NULL; | |
2810 | } | |
2811 | ||
c5a27d9c JJ |
2812 | static void |
2813 | ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2814 | struct frame_id *this_id) | |
2815 | { | |
2816 | char buf[8]; | |
2817 | CORE_ADDR bsp; | |
2818 | struct frame_id id; | |
2819 | CORE_ADDR prev_ip; | |
2820 | ||
2821 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
2822 | if (frame_id_eq (id, null_frame_id)) | |
2823 | { | |
2824 | (*this_id) = null_frame_id; | |
2825 | return; | |
2826 | } | |
2827 | ||
2828 | /* We must add the bsp as the special address for frame comparison | |
2829 | purposes. */ | |
2830 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2831 | bsp = extract_unsigned_integer (buf, 8); | |
2832 | ||
2833 | /* For a sigtramp frame, we don't make the check for previous ip being 0. */ | |
2834 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2835 | ||
2836 | if (gdbarch_debug >= 1) | |
2837 | fprintf_unfiltered (gdb_stdlog, | |
2838 | "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", | |
2839 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2840 | paddr_nz (bsp), next_frame); | |
2841 | } | |
2842 | ||
2843 | static void | |
2844 | ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
2845 | void **this_cache, | |
2846 | int regnum, int *optimizedp, | |
2847 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2848 | int *realnump, gdb_byte *valuep) |
c5a27d9c JJ |
2849 | |
2850 | { | |
f1b4b38e | 2851 | gdb_byte buf[8]; |
c5a27d9c JJ |
2852 | CORE_ADDR prev_ip, addr; |
2853 | int realnum, optimized; | |
2854 | enum lval_type lval; | |
2855 | ||
2856 | ||
2857 | /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT | |
2858 | method of getting previous registers. */ | |
2859 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2860 | &optimized, &lval, &addr, &realnum, buf); |
2861 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2862 | |
2863 | if (prev_ip == 0) | |
2864 | { | |
2865 | void *tmp_cache = NULL; | |
2866 | ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp, | |
2867 | addrp, realnump, valuep); | |
2868 | } | |
2869 | else | |
2870 | ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp, | |
2871 | addrp, realnump, valuep); | |
2872 | } | |
2873 | ||
2874 | static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind = | |
2875 | { | |
2876 | SIGTRAMP_FRAME, | |
2877 | ia64_libunwind_sigtramp_frame_this_id, | |
2878 | ia64_libunwind_sigtramp_frame_prev_register | |
2879 | }; | |
2880 | ||
2881 | static const struct frame_unwind * | |
2882 | ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2883 | { | |
2884 | if (libunwind_is_initialized ()) | |
2885 | { | |
2886 | if (libunwind_sigtramp_frame_sniffer (next_frame)) | |
2887 | return &ia64_libunwind_sigtramp_frame_unwind; | |
2888 | return NULL; | |
2889 | } | |
2890 | else | |
2891 | return ia64_sigtramp_frame_sniffer (next_frame); | |
2892 | } | |
2893 | ||
968d1cb4 JJ |
2894 | /* Set of libunwind callback acccessor functions. */ |
2895 | static unw_accessors_t ia64_unw_accessors = | |
2896 | { | |
2897 | ia64_find_proc_info_x, | |
2898 | ia64_put_unwind_info, | |
2899 | ia64_get_dyn_info_list, | |
2900 | ia64_access_mem, | |
2901 | ia64_access_reg, | |
2902 | ia64_access_fpreg, | |
2903 | /* resume */ | |
2904 | /* get_proc_name */ | |
2905 | }; | |
2906 | ||
c5a27d9c JJ |
2907 | /* Set of special libunwind callback acccessor functions specific for accessing |
2908 | the rse registers. At the top of the stack, we want libunwind to figure out | |
2909 | how to read r32 - r127. Though usually they are found sequentially in memory | |
2910 | starting from $bof, this is not always true. */ | |
2911 | static unw_accessors_t ia64_unw_rse_accessors = | |
2912 | { | |
2913 | ia64_find_proc_info_x, | |
2914 | ia64_put_unwind_info, | |
2915 | ia64_get_dyn_info_list, | |
2916 | ia64_access_mem, | |
2917 | ia64_access_rse_reg, | |
45ecac4b | 2918 | ia64_access_rse_fpreg, |
c5a27d9c JJ |
2919 | /* resume */ |
2920 | /* get_proc_name */ | |
2921 | }; | |
2922 | ||
968d1cb4 JJ |
2923 | /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ |
2924 | static struct libunwind_descr ia64_libunwind_descr = | |
2925 | { | |
2926 | ia64_gdb2uw_regnum, | |
2927 | ia64_uw2gdb_regnum, | |
2928 | ia64_is_fpreg, | |
2929 | &ia64_unw_accessors, | |
c5a27d9c | 2930 | &ia64_unw_rse_accessors, |
968d1cb4 JJ |
2931 | }; |
2932 | ||
2933 | #endif /* HAVE_LIBUNWIND_IA64_H */ | |
2934 | ||
4c8b6ae0 UW |
2935 | static int |
2936 | ia64_use_struct_convention (struct type *type) | |
16461d7d | 2937 | { |
64a5b29c KB |
2938 | struct type *float_elt_type; |
2939 | ||
4c8b6ae0 UW |
2940 | /* Don't use the struct convention for anything but structure, |
2941 | union, or array types. */ | |
2942 | if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2943 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
2944 | || TYPE_CODE (type) == TYPE_CODE_ARRAY)) | |
2945 | return 0; | |
2946 | ||
64a5b29c KB |
2947 | /* HFAs are structures (or arrays) consisting entirely of floating |
2948 | point values of the same length. Up to 8 of these are returned | |
2949 | in registers. Don't use the struct convention when this is the | |
004d836a | 2950 | case. */ |
64a5b29c KB |
2951 | float_elt_type = is_float_or_hfa_type (type); |
2952 | if (float_elt_type != NULL | |
2953 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
2954 | return 0; | |
2955 | ||
2956 | /* Other structs of length 32 or less are returned in r8-r11. | |
004d836a | 2957 | Don't use the struct convention for those either. */ |
16461d7d KB |
2958 | return TYPE_LENGTH (type) > 32; |
2959 | } | |
2960 | ||
4c8b6ae0 | 2961 | static void |
2d522557 AC |
2962 | ia64_extract_return_value (struct type *type, struct regcache *regcache, |
2963 | gdb_byte *valbuf) | |
16461d7d | 2964 | { |
64a5b29c KB |
2965 | struct type *float_elt_type; |
2966 | ||
2967 | float_elt_type = is_float_or_hfa_type (type); | |
2968 | if (float_elt_type != NULL) | |
2969 | { | |
004d836a | 2970 | char from[MAX_REGISTER_SIZE]; |
64a5b29c KB |
2971 | int offset = 0; |
2972 | int regnum = IA64_FR8_REGNUM; | |
2973 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
2974 | ||
2975 | while (n-- > 0) | |
2976 | { | |
004d836a JJ |
2977 | regcache_cooked_read (regcache, regnum, from); |
2978 | convert_typed_floating (from, builtin_type_ia64_ext, | |
2979 | (char *)valbuf + offset, float_elt_type); | |
64a5b29c KB |
2980 | offset += TYPE_LENGTH (float_elt_type); |
2981 | regnum++; | |
2982 | } | |
2983 | } | |
16461d7d | 2984 | else |
004d836a JJ |
2985 | { |
2986 | ULONGEST val; | |
2987 | int offset = 0; | |
2988 | int regnum = IA64_GR8_REGNUM; | |
7b9ee6a8 DJ |
2989 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), |
2990 | IA64_GR8_REGNUM)); | |
004d836a JJ |
2991 | int n = TYPE_LENGTH (type) / reglen; |
2992 | int m = TYPE_LENGTH (type) % reglen; | |
16461d7d | 2993 | |
004d836a JJ |
2994 | while (n-- > 0) |
2995 | { | |
2996 | ULONGEST val; | |
2997 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
2998 | memcpy ((char *)valbuf + offset, &val, reglen); | |
2999 | offset += reglen; | |
3000 | regnum++; | |
3001 | } | |
16461d7d | 3002 | |
004d836a JJ |
3003 | if (m) |
3004 | { | |
3005 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
3006 | memcpy ((char *)valbuf + offset, &val, m); | |
3007 | } | |
3008 | } | |
16461d7d KB |
3009 | } |
3010 | ||
4c8b6ae0 UW |
3011 | static void |
3012 | ia64_store_return_value (struct type *type, struct regcache *regcache, | |
3013 | const gdb_byte *valbuf) | |
3014 | { | |
3015 | struct type *float_elt_type; | |
3016 | ||
3017 | float_elt_type = is_float_or_hfa_type (type); | |
3018 | if (float_elt_type != NULL) | |
3019 | { | |
3020 | char to[MAX_REGISTER_SIZE]; | |
3021 | int offset = 0; | |
3022 | int regnum = IA64_FR8_REGNUM; | |
3023 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
3024 | ||
3025 | while (n-- > 0) | |
3026 | { | |
3027 | convert_typed_floating ((char *)valbuf + offset, float_elt_type, | |
3028 | to, builtin_type_ia64_ext); | |
3029 | regcache_cooked_write (regcache, regnum, to); | |
3030 | offset += TYPE_LENGTH (float_elt_type); | |
3031 | regnum++; | |
3032 | } | |
3033 | } | |
3034 | else | |
3035 | { | |
3036 | ULONGEST val; | |
3037 | int offset = 0; | |
3038 | int regnum = IA64_GR8_REGNUM; | |
3039 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), | |
3040 | IA64_GR8_REGNUM)); | |
3041 | int n = TYPE_LENGTH (type) / reglen; | |
3042 | int m = TYPE_LENGTH (type) % reglen; | |
3043 | ||
3044 | while (n-- > 0) | |
3045 | { | |
3046 | ULONGEST val; | |
3047 | memcpy (&val, (char *)valbuf + offset, reglen); | |
3048 | regcache_cooked_write_unsigned (regcache, regnum, val); | |
3049 | offset += reglen; | |
3050 | regnum++; | |
3051 | } | |
3052 | ||
3053 | if (m) | |
3054 | { | |
3055 | memcpy (&val, (char *)valbuf + offset, m); | |
3056 | regcache_cooked_write_unsigned (regcache, regnum, val); | |
3057 | } | |
3058 | } | |
3059 | } | |
3060 | ||
3061 | static enum return_value_convention | |
3062 | ia64_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
3063 | struct regcache *regcache, gdb_byte *readbuf, | |
3064 | const gdb_byte *writebuf) | |
3065 | { | |
3066 | int struct_return = ia64_use_struct_convention (valtype); | |
3067 | ||
3068 | if (writebuf != NULL) | |
3069 | { | |
3070 | gdb_assert (!struct_return); | |
3071 | ia64_store_return_value (valtype, regcache, writebuf); | |
3072 | } | |
3073 | ||
3074 | if (readbuf != NULL) | |
3075 | { | |
3076 | gdb_assert (!struct_return); | |
3077 | ia64_extract_return_value (valtype, regcache, readbuf); | |
3078 | } | |
3079 | ||
3080 | if (struct_return) | |
3081 | return RETURN_VALUE_STRUCT_CONVENTION; | |
3082 | else | |
3083 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3084 | } | |
16461d7d | 3085 | |
64a5b29c KB |
3086 | static int |
3087 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
3088 | { | |
3089 | switch (TYPE_CODE (t)) | |
3090 | { | |
3091 | case TYPE_CODE_FLT: | |
3092 | if (*etp) | |
3093 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
3094 | else | |
3095 | { | |
3096 | *etp = t; | |
3097 | return 1; | |
3098 | } | |
3099 | break; | |
3100 | case TYPE_CODE_ARRAY: | |
98f96ba1 KB |
3101 | return |
3102 | is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), | |
3103 | etp); | |
64a5b29c KB |
3104 | break; |
3105 | case TYPE_CODE_STRUCT: | |
3106 | { | |
3107 | int i; | |
3108 | ||
3109 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
98f96ba1 KB |
3110 | if (!is_float_or_hfa_type_recurse |
3111 | (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) | |
64a5b29c KB |
3112 | return 0; |
3113 | return 1; | |
3114 | } | |
3115 | break; | |
3116 | default: | |
3117 | return 0; | |
3118 | break; | |
3119 | } | |
3120 | } | |
3121 | ||
3122 | /* Determine if the given type is one of the floating point types or | |
3123 | and HFA (which is a struct, array, or combination thereof whose | |
004d836a | 3124 | bottom-most elements are all of the same floating point type). */ |
64a5b29c KB |
3125 | |
3126 | static struct type * | |
3127 | is_float_or_hfa_type (struct type *t) | |
3128 | { | |
3129 | struct type *et = 0; | |
3130 | ||
3131 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
3132 | } | |
3133 | ||
3134 | ||
98f96ba1 KB |
3135 | /* Return 1 if the alignment of T is such that the next even slot |
3136 | should be used. Return 0, if the next available slot should | |
3137 | be used. (See section 8.5.1 of the IA-64 Software Conventions | |
004d836a | 3138 | and Runtime manual). */ |
98f96ba1 KB |
3139 | |
3140 | static int | |
3141 | slot_alignment_is_next_even (struct type *t) | |
3142 | { | |
3143 | switch (TYPE_CODE (t)) | |
3144 | { | |
3145 | case TYPE_CODE_INT: | |
3146 | case TYPE_CODE_FLT: | |
3147 | if (TYPE_LENGTH (t) > 8) | |
3148 | return 1; | |
3149 | else | |
3150 | return 0; | |
3151 | case TYPE_CODE_ARRAY: | |
3152 | return | |
3153 | slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); | |
3154 | case TYPE_CODE_STRUCT: | |
3155 | { | |
3156 | int i; | |
3157 | ||
3158 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3159 | if (slot_alignment_is_next_even | |
3160 | (check_typedef (TYPE_FIELD_TYPE (t, i)))) | |
3161 | return 1; | |
3162 | return 0; | |
3163 | } | |
3164 | default: | |
3165 | return 0; | |
3166 | } | |
3167 | } | |
3168 | ||
64a5b29c KB |
3169 | /* Attempt to find (and return) the global pointer for the given |
3170 | function. | |
3171 | ||
3172 | This is a rather nasty bit of code searchs for the .dynamic section | |
3173 | in the objfile corresponding to the pc of the function we're trying | |
3174 | to call. Once it finds the addresses at which the .dynamic section | |
3175 | lives in the child process, it scans the Elf64_Dyn entries for a | |
3176 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
3177 | d_un.d_ptr value is the global pointer. */ | |
3178 | ||
3179 | static CORE_ADDR | |
b33e8514 | 3180 | ia64_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 3181 | { |
76d689a6 | 3182 | struct obj_section *faddr_sect; |
64a5b29c | 3183 | |
76d689a6 KB |
3184 | faddr_sect = find_pc_section (faddr); |
3185 | if (faddr_sect != NULL) | |
64a5b29c KB |
3186 | { |
3187 | struct obj_section *osect; | |
3188 | ||
76d689a6 | 3189 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
3190 | { |
3191 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
3192 | break; | |
3193 | } | |
3194 | ||
76d689a6 | 3195 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3196 | { |
3197 | CORE_ADDR addr; | |
3198 | ||
3199 | addr = osect->addr; | |
3200 | while (addr < osect->endaddr) | |
3201 | { | |
3202 | int status; | |
3203 | LONGEST tag; | |
3204 | char buf[8]; | |
3205 | ||
3206 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3207 | if (status != 0) | |
3208 | break; | |
3209 | tag = extract_signed_integer (buf, sizeof (buf)); | |
3210 | ||
3211 | if (tag == DT_PLTGOT) | |
3212 | { | |
3213 | CORE_ADDR global_pointer; | |
3214 | ||
3215 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
3216 | if (status != 0) | |
3217 | break; | |
7c0b4a20 | 3218 | global_pointer = extract_unsigned_integer (buf, sizeof (buf)); |
64a5b29c KB |
3219 | |
3220 | /* The payoff... */ | |
3221 | return global_pointer; | |
3222 | } | |
3223 | ||
3224 | if (tag == DT_NULL) | |
3225 | break; | |
3226 | ||
3227 | addr += 16; | |
3228 | } | |
3229 | } | |
3230 | } | |
3231 | return 0; | |
3232 | } | |
3233 | ||
3234 | /* Given a function's address, attempt to find (and return) the | |
3235 | corresponding (canonical) function descriptor. Return 0 if | |
004d836a | 3236 | not found. */ |
64a5b29c KB |
3237 | static CORE_ADDR |
3238 | find_extant_func_descr (CORE_ADDR faddr) | |
3239 | { | |
76d689a6 | 3240 | struct obj_section *faddr_sect; |
64a5b29c | 3241 | |
004d836a | 3242 | /* Return early if faddr is already a function descriptor. */ |
76d689a6 KB |
3243 | faddr_sect = find_pc_section (faddr); |
3244 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
3245 | return faddr; |
3246 | ||
76d689a6 | 3247 | if (faddr_sect != NULL) |
64a5b29c | 3248 | { |
76d689a6 KB |
3249 | struct obj_section *osect; |
3250 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
3251 | { |
3252 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
3253 | break; | |
3254 | } | |
3255 | ||
76d689a6 | 3256 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3257 | { |
3258 | CORE_ADDR addr; | |
3259 | ||
3260 | addr = osect->addr; | |
3261 | while (addr < osect->endaddr) | |
3262 | { | |
3263 | int status; | |
3264 | LONGEST faddr2; | |
3265 | char buf[8]; | |
3266 | ||
3267 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3268 | if (status != 0) | |
3269 | break; | |
3270 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
3271 | ||
3272 | if (faddr == faddr2) | |
3273 | return addr; | |
3274 | ||
3275 | addr += 16; | |
3276 | } | |
3277 | } | |
3278 | } | |
3279 | return 0; | |
3280 | } | |
3281 | ||
3282 | /* Attempt to find a function descriptor corresponding to the | |
3283 | given address. If none is found, construct one on the | |
004d836a | 3284 | stack using the address at fdaptr. */ |
64a5b29c KB |
3285 | |
3286 | static CORE_ADDR | |
9c9acae0 | 3287 | find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr) |
64a5b29c KB |
3288 | { |
3289 | CORE_ADDR fdesc; | |
3290 | ||
3291 | fdesc = find_extant_func_descr (faddr); | |
3292 | ||
3293 | if (fdesc == 0) | |
3294 | { | |
9c9acae0 | 3295 | ULONGEST global_pointer; |
64a5b29c KB |
3296 | char buf[16]; |
3297 | ||
3298 | fdesc = *fdaptr; | |
3299 | *fdaptr += 16; | |
3300 | ||
b33e8514 | 3301 | global_pointer = ia64_find_global_pointer (faddr); |
64a5b29c KB |
3302 | |
3303 | if (global_pointer == 0) | |
9c9acae0 UW |
3304 | regcache_cooked_read_unsigned (regcache, |
3305 | IA64_GR1_REGNUM, &global_pointer); | |
64a5b29c | 3306 | |
fbd9dcd3 AC |
3307 | store_unsigned_integer (buf, 8, faddr); |
3308 | store_unsigned_integer (buf + 8, 8, global_pointer); | |
64a5b29c KB |
3309 | |
3310 | write_memory (fdesc, buf, 16); | |
3311 | } | |
3312 | ||
3313 | return fdesc; | |
3314 | } | |
16461d7d | 3315 | |
af8b88dd JJ |
3316 | /* Use the following routine when printing out function pointers |
3317 | so the user can see the function address rather than just the | |
3318 | function descriptor. */ | |
3319 | static CORE_ADDR | |
e2d0e7eb AC |
3320 | ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
3321 | struct target_ops *targ) | |
af8b88dd JJ |
3322 | { |
3323 | struct obj_section *s; | |
3324 | ||
3325 | s = find_pc_section (addr); | |
3326 | ||
3327 | /* check if ADDR points to a function descriptor. */ | |
3328 | if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) | |
3329 | return read_memory_unsigned_integer (addr, 8); | |
3330 | ||
0d5de010 DJ |
3331 | /* There are also descriptors embedded in vtables. */ |
3332 | if (s) | |
3333 | { | |
3334 | struct minimal_symbol *minsym; | |
3335 | ||
3336 | minsym = lookup_minimal_symbol_by_pc (addr); | |
3337 | ||
3338 | if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym))) | |
3339 | return read_memory_unsigned_integer (addr, 8); | |
3340 | } | |
3341 | ||
af8b88dd JJ |
3342 | return addr; |
3343 | } | |
3344 | ||
a78f21af | 3345 | static CORE_ADDR |
004d836a JJ |
3346 | ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
3347 | { | |
3348 | return sp & ~0xfLL; | |
3349 | } | |
3350 | ||
3351 | static CORE_ADDR | |
7d9b040b | 3352 | ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8dd5115e AS |
3353 | struct regcache *regcache, CORE_ADDR bp_addr, |
3354 | int nargs, struct value **args, CORE_ADDR sp, | |
3355 | int struct_return, CORE_ADDR struct_addr) | |
16461d7d KB |
3356 | { |
3357 | int argno; | |
ea7c478f | 3358 | struct value *arg; |
16461d7d KB |
3359 | struct type *type; |
3360 | int len, argoffset; | |
64a5b29c | 3361 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 3362 | int floatreg; |
9c9acae0 UW |
3363 | ULONGEST bsp, cfm, pfs, new_bsp; |
3364 | CORE_ADDR funcdescaddr, pc, global_pointer; | |
7d9b040b | 3365 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
16461d7d KB |
3366 | |
3367 | nslots = 0; | |
64a5b29c | 3368 | nfuncargs = 0; |
004d836a | 3369 | /* Count the number of slots needed for the arguments. */ |
16461d7d KB |
3370 | for (argno = 0; argno < nargs; argno++) |
3371 | { | |
3372 | arg = args[argno]; | |
4991999e | 3373 | type = check_typedef (value_type (arg)); |
16461d7d KB |
3374 | len = TYPE_LENGTH (type); |
3375 | ||
98f96ba1 | 3376 | if ((nslots & 1) && slot_alignment_is_next_even (type)) |
16461d7d KB |
3377 | nslots++; |
3378 | ||
64a5b29c KB |
3379 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
3380 | nfuncargs++; | |
3381 | ||
16461d7d KB |
3382 | nslots += (len + 7) / 8; |
3383 | } | |
3384 | ||
004d836a | 3385 | /* Divvy up the slots between the RSE and the memory stack. */ |
16461d7d KB |
3386 | rseslots = (nslots > 8) ? 8 : nslots; |
3387 | memslots = nslots - rseslots; | |
3388 | ||
004d836a | 3389 | /* Allocate a new RSE frame. */ |
9c9acae0 | 3390 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
16461d7d | 3391 | |
9c9acae0 | 3392 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
16461d7d | 3393 | new_bsp = rse_address_add (bsp, rseslots); |
9c9acae0 | 3394 | regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp); |
16461d7d | 3395 | |
9c9acae0 | 3396 | regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs); |
16461d7d KB |
3397 | pfs &= 0xc000000000000000LL; |
3398 | pfs |= (cfm & 0xffffffffffffLL); | |
9c9acae0 | 3399 | regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs); |
16461d7d KB |
3400 | |
3401 | cfm &= 0xc000000000000000LL; | |
3402 | cfm |= rseslots; | |
9c9acae0 | 3403 | regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm); |
16461d7d | 3404 | |
64a5b29c KB |
3405 | /* We will attempt to find function descriptors in the .opd segment, |
3406 | but if we can't we'll construct them ourselves. That being the | |
004d836a | 3407 | case, we'll need to reserve space on the stack for them. */ |
64a5b29c KB |
3408 | funcdescaddr = sp - nfuncargs * 16; |
3409 | funcdescaddr &= ~0xfLL; | |
3410 | ||
3411 | /* Adjust the stack pointer to it's new value. The calling conventions | |
3412 | require us to have 16 bytes of scratch, plus whatever space is | |
004d836a | 3413 | necessary for the memory slots and our function descriptors. */ |
64a5b29c | 3414 | sp = sp - 16 - (memslots + nfuncargs) * 8; |
004d836a | 3415 | sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
16461d7d | 3416 | |
64a5b29c KB |
3417 | /* Place the arguments where they belong. The arguments will be |
3418 | either placed in the RSE backing store or on the memory stack. | |
3419 | In addition, floating point arguments or HFAs are placed in | |
004d836a | 3420 | floating point registers. */ |
16461d7d KB |
3421 | slotnum = 0; |
3422 | floatreg = IA64_FR8_REGNUM; | |
3423 | for (argno = 0; argno < nargs; argno++) | |
3424 | { | |
64a5b29c KB |
3425 | struct type *float_elt_type; |
3426 | ||
16461d7d | 3427 | arg = args[argno]; |
4991999e | 3428 | type = check_typedef (value_type (arg)); |
16461d7d | 3429 | len = TYPE_LENGTH (type); |
64a5b29c | 3430 | |
004d836a | 3431 | /* Special handling for function parameters. */ |
64a5b29c KB |
3432 | if (len == 8 |
3433 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
3434 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
3435 | { | |
3436 | char val_buf[8]; | |
9c9acae0 | 3437 | ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8); |
fbd9dcd3 | 3438 | store_unsigned_integer (val_buf, 8, |
9c9acae0 | 3439 | find_func_descr (regcache, faddr, |
fbd9dcd3 | 3440 | &funcdescaddr)); |
64a5b29c KB |
3441 | if (slotnum < rseslots) |
3442 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3443 | else | |
3444 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3445 | slotnum++; | |
3446 | continue; | |
3447 | } | |
3448 | ||
004d836a | 3449 | /* Normal slots. */ |
98f96ba1 KB |
3450 | |
3451 | /* Skip odd slot if necessary... */ | |
3452 | if ((slotnum & 1) && slot_alignment_is_next_even (type)) | |
16461d7d | 3453 | slotnum++; |
98f96ba1 | 3454 | |
16461d7d KB |
3455 | argoffset = 0; |
3456 | while (len > 0) | |
3457 | { | |
3458 | char val_buf[8]; | |
3459 | ||
3460 | memset (val_buf, 0, 8); | |
0fd88904 | 3461 | memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len); |
16461d7d KB |
3462 | |
3463 | if (slotnum < rseslots) | |
3464 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3465 | else | |
3466 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3467 | ||
3468 | argoffset += 8; | |
3469 | len -= 8; | |
3470 | slotnum++; | |
3471 | } | |
64a5b29c | 3472 | |
004d836a | 3473 | /* Handle floating point types (including HFAs). */ |
64a5b29c KB |
3474 | float_elt_type = is_float_or_hfa_type (type); |
3475 | if (float_elt_type != NULL) | |
3476 | { | |
3477 | argoffset = 0; | |
3478 | len = TYPE_LENGTH (type); | |
3479 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
3480 | { | |
004d836a | 3481 | char to[MAX_REGISTER_SIZE]; |
0fd88904 | 3482 | convert_typed_floating (value_contents (arg) + argoffset, float_elt_type, |
004d836a JJ |
3483 | to, builtin_type_ia64_ext); |
3484 | regcache_cooked_write (regcache, floatreg, (void *)to); | |
64a5b29c KB |
3485 | floatreg++; |
3486 | argoffset += TYPE_LENGTH (float_elt_type); | |
3487 | len -= TYPE_LENGTH (float_elt_type); | |
3488 | } | |
16461d7d KB |
3489 | } |
3490 | } | |
3491 | ||
004d836a | 3492 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
3493 | if (struct_return) |
3494 | { | |
004d836a | 3495 | regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); |
16461d7d KB |
3496 | } |
3497 | ||
b33e8514 | 3498 | global_pointer = ia64_find_global_pointer (func_addr); |
8dd5115e | 3499 | |
004d836a | 3500 | if (global_pointer != 0) |
9c9acae0 | 3501 | regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer); |
a59fe496 | 3502 | |
9c9acae0 | 3503 | regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr); |
16461d7d | 3504 | |
9c9acae0 | 3505 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); |
16461d7d KB |
3506 | |
3507 | return sp; | |
3508 | } | |
3509 | ||
004d836a JJ |
3510 | static struct frame_id |
3511 | ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3512 | { |
004d836a | 3513 | char buf[8]; |
4afcc598 | 3514 | CORE_ADDR sp, bsp; |
004d836a JJ |
3515 | |
3516 | frame_unwind_register (next_frame, sp_regnum, buf); | |
3517 | sp = extract_unsigned_integer (buf, 8); | |
3518 | ||
4afcc598 JJ |
3519 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
3520 | bsp = extract_unsigned_integer (buf, 8); | |
3521 | ||
3522 | if (gdbarch_debug >= 1) | |
3523 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
3524 | "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", |
3525 | paddr_nz (frame_pc_unwind (next_frame)), | |
3526 | paddr_nz (sp), paddr_nz (bsp)); | |
4afcc598 JJ |
3527 | |
3528 | return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp); | |
16461d7d KB |
3529 | } |
3530 | ||
004d836a JJ |
3531 | static CORE_ADDR |
3532 | ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3533 | { |
004d836a JJ |
3534 | char buf[8]; |
3535 | CORE_ADDR ip, psr, pc; | |
3536 | ||
3537 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
3538 | ip = extract_unsigned_integer (buf, 8); | |
3539 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
3540 | psr = extract_unsigned_integer (buf, 8); | |
3541 | ||
3542 | pc = (ip & ~0xf) | ((psr >> 41) & 3); | |
3543 | return pc; | |
16461d7d KB |
3544 | } |
3545 | ||
6926787d AS |
3546 | static int |
3547 | ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) | |
3548 | { | |
3549 | info->bytes_per_line = SLOT_MULTIPLIER; | |
3550 | return print_insn_ia64 (memaddr, info); | |
3551 | } | |
3552 | ||
16461d7d KB |
3553 | static struct gdbarch * |
3554 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3555 | { | |
3556 | struct gdbarch *gdbarch; | |
244bc108 | 3557 | struct gdbarch_tdep *tdep; |
244bc108 | 3558 | |
85bf2b91 JJ |
3559 | /* If there is already a candidate, use it. */ |
3560 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3561 | if (arches != NULL) | |
3562 | return arches->gdbarch; | |
16461d7d | 3563 | |
244bc108 KB |
3564 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
3565 | gdbarch = gdbarch_alloc (&info, tdep); | |
244bc108 | 3566 | |
b33e8514 | 3567 | tdep->sigcontext_register_address = 0; |
74174d2e | 3568 | tdep->pc_in_sigtramp = 0; |
698cb3f0 | 3569 | |
5439edaa AC |
3570 | /* According to the ia64 specs, instructions that store long double |
3571 | floats in memory use a long-double format different than that | |
3572 | used in the floating registers. The memory format matches the | |
3573 | x86 extended float format which is 80 bits. An OS may choose to | |
3574 | use this format (e.g. GNU/Linux) or choose to use a different | |
3575 | format for storing long doubles (e.g. HPUX). In the latter case, | |
3576 | the setting of the format may be moved/overridden in an | |
3577 | OS-specific tdep file. */ | |
8da61cc4 | 3578 | set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext); |
32edc941 | 3579 | |
16461d7d KB |
3580 | set_gdbarch_short_bit (gdbarch, 16); |
3581 | set_gdbarch_int_bit (gdbarch, 32); | |
3582 | set_gdbarch_long_bit (gdbarch, 64); | |
3583 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3584 | set_gdbarch_float_bit (gdbarch, 32); | |
3585 | set_gdbarch_double_bit (gdbarch, 64); | |
33c08150 | 3586 | set_gdbarch_long_double_bit (gdbarch, 128); |
16461d7d KB |
3587 | set_gdbarch_ptr_bit (gdbarch, 64); |
3588 | ||
004d836a JJ |
3589 | set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
3590 | set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); | |
16461d7d | 3591 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
698cb3f0 | 3592 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
3593 | |
3594 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
004d836a | 3595 | set_gdbarch_register_type (gdbarch, ia64_register_type); |
16461d7d | 3596 | |
004d836a JJ |
3597 | set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
3598 | set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); | |
3599 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); | |
3600 | set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); | |
3601 | set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); | |
3602 | set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); | |
3603 | set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); | |
16461d7d | 3604 | |
004d836a | 3605 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
16461d7d | 3606 | |
4c8b6ae0 | 3607 | set_gdbarch_return_value (gdbarch, ia64_return_value); |
16461d7d KB |
3608 | |
3609 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
3610 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
3611 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
3612 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
b33e8514 | 3613 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); |
16461d7d KB |
3614 | |
3615 | /* Settings for calling functions in the inferior. */ | |
8dd5115e | 3616 | set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
004d836a JJ |
3617 | set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
3618 | set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id); | |
16461d7d | 3619 | |
004d836a | 3620 | set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
968d1cb4 | 3621 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c | 3622 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer); |
968d1cb4 JJ |
3623 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer); |
3624 | libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); | |
c5a27d9c JJ |
3625 | #else |
3626 | frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer); | |
968d1cb4 | 3627 | #endif |
004d836a JJ |
3628 | frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer); |
3629 | frame_base_set_default (gdbarch, &ia64_frame_base); | |
16461d7d KB |
3630 | |
3631 | /* Settings that should be unnecessary. */ | |
3632 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3633 | ||
6926787d | 3634 | set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
af8b88dd | 3635 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); |
6926787d | 3636 | |
0d5de010 DJ |
3637 | /* The virtual table contains 16-byte descriptors, not pointers to |
3638 | descriptors. */ | |
3639 | set_gdbarch_vtable_function_descriptors (gdbarch, 1); | |
3640 | ||
b33e8514 AS |
3641 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3642 | gdbarch_init_osabi (info, gdbarch); | |
3643 | ||
16461d7d KB |
3644 | return gdbarch; |
3645 | } | |
3646 | ||
a78f21af AC |
3647 | extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ |
3648 | ||
16461d7d KB |
3649 | void |
3650 | _initialize_ia64_tdep (void) | |
3651 | { | |
83acabca DJ |
3652 | /* Define the ia64 floating-point format to gdb. */ |
3653 | builtin_type_ia64_ext = | |
3654 | init_type (TYPE_CODE_FLT, 128 / 8, | |
3655 | 0, "builtin_type_ia64_ext", NULL); | |
3656 | TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext; | |
3657 | ||
b33e8514 | 3658 | gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL); |
16461d7d | 3659 | } |