]>
Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
ca557f44 | 2 | |
6aba47ca | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 |
13547ab6 | 4 | Free Software Foundation, Inc. |
16461d7d KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
20 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
21 | Boston, MA 02110-1301, USA. */ | |
16461d7d KB |
22 | |
23 | #include "defs.h" | |
24 | #include "inferior.h" | |
16461d7d | 25 | #include "gdbcore.h" |
8064c6ae | 26 | #include "arch-utils.h" |
16461d7d | 27 | #include "floatformat.h" |
e6bb342a | 28 | #include "gdbtypes.h" |
4e052eda | 29 | #include "regcache.h" |
004d836a JJ |
30 | #include "reggroups.h" |
31 | #include "frame.h" | |
32 | #include "frame-base.h" | |
33 | #include "frame-unwind.h" | |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
bd1ce8ba | 36 | #include "gdb_assert.h" |
16461d7d KB |
37 | #include "objfiles.h" |
38 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 39 | #include "elf-bfd.h" |
a89aa300 | 40 | #include "dis-asm.h" |
7d9b040b | 41 | #include "infcall.h" |
b33e8514 | 42 | #include "osabi.h" |
9fc9f5e2 | 43 | #include "ia64-tdep.h" |
0d5de010 | 44 | #include "cp-abi.h" |
16461d7d | 45 | |
968d1cb4 | 46 | #ifdef HAVE_LIBUNWIND_IA64_H |
8973ff21 | 47 | #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
968d1cb4 JJ |
48 | #include "libunwind-frame.h" |
49 | #include "libunwind-ia64.h" | |
c5a27d9c JJ |
50 | |
51 | /* Note: KERNEL_START is supposed to be an address which is not going | |
52 | to ever contain any valid unwind info. For ia64 linux, the choice | |
53 | of 0xc000000000000000 is fairly safe since that's uncached space. | |
54 | ||
55 | We use KERNEL_START as follows: after obtaining the kernel's | |
56 | unwind table via getunwind(), we project its unwind data into | |
57 | address-range KERNEL_START-(KERNEL_START+ktab_size) and then | |
58 | when ia64_access_mem() sees a memory access to this | |
59 | address-range, we redirect it to ktab instead. | |
60 | ||
61 | None of this hackery is needed with a modern kernel/libcs | |
62 | which uses the kernel virtual DSO to provide access to the | |
63 | kernel's unwind info. In that case, ktab_size remains 0 and | |
64 | hence the value of KERNEL_START doesn't matter. */ | |
65 | ||
66 | #define KERNEL_START 0xc000000000000000ULL | |
67 | ||
68 | static size_t ktab_size = 0; | |
69 | struct ia64_table_entry | |
70 | { | |
71 | uint64_t start_offset; | |
72 | uint64_t end_offset; | |
73 | uint64_t info_offset; | |
74 | }; | |
75 | ||
76 | static struct ia64_table_entry *ktab = NULL; | |
77 | ||
968d1cb4 JJ |
78 | #endif |
79 | ||
698cb3f0 KB |
80 | /* An enumeration of the different IA-64 instruction types. */ |
81 | ||
16461d7d KB |
82 | typedef enum instruction_type |
83 | { | |
84 | A, /* Integer ALU ; I-unit or M-unit */ | |
85 | I, /* Non-ALU integer; I-unit */ | |
86 | M, /* Memory ; M-unit */ | |
87 | F, /* Floating-point ; F-unit */ | |
88 | B, /* Branch ; B-unit */ | |
89 | L, /* Extended (L+X) ; I-unit */ | |
90 | X, /* Extended (L+X) ; I-unit */ | |
91 | undefined /* undefined or reserved */ | |
92 | } instruction_type; | |
93 | ||
94 | /* We represent IA-64 PC addresses as the value of the instruction | |
95 | pointer or'd with some bit combination in the low nibble which | |
96 | represents the slot number in the bundle addressed by the | |
97 | instruction pointer. The problem is that the Linux kernel | |
98 | multiplies its slot numbers (for exceptions) by one while the | |
99 | disassembler multiplies its slot numbers by 6. In addition, I've | |
100 | heard it said that the simulator uses 1 as the multiplier. | |
101 | ||
102 | I've fixed the disassembler so that the bytes_per_line field will | |
103 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
104 | is set to six (which is how it was set up initially). -- objdump | |
105 | displays pretty disassembly dumps with this value. For our purposes, | |
106 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
107 | never want to also display the raw bytes the way objdump does. */ | |
108 | ||
109 | #define SLOT_MULTIPLIER 1 | |
110 | ||
111 | /* Length in bytes of an instruction bundle */ | |
112 | ||
113 | #define BUNDLE_LEN 16 | |
114 | ||
16461d7d KB |
115 | static gdbarch_init_ftype ia64_gdbarch_init; |
116 | ||
117 | static gdbarch_register_name_ftype ia64_register_name; | |
004d836a | 118 | static gdbarch_register_type_ftype ia64_register_type; |
16461d7d | 119 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
16461d7d | 120 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
64a5b29c | 121 | static struct type *is_float_or_hfa_type (struct type *t); |
b33e8514 | 122 | static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr); |
16461d7d | 123 | |
004d836a JJ |
124 | static struct type *builtin_type_ia64_ext; |
125 | ||
126 | #define NUM_IA64_RAW_REGS 462 | |
16461d7d | 127 | |
16461d7d KB |
128 | static int sp_regnum = IA64_GR12_REGNUM; |
129 | static int fp_regnum = IA64_VFP_REGNUM; | |
130 | static int lr_regnum = IA64_VRAP_REGNUM; | |
131 | ||
004d836a | 132 | /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because |
4afcc598 | 133 | they may not be accessible via the ptrace register get/set interfaces. */ |
004d836a JJ |
134 | enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
135 | V127_REGNUM = V32_REGNUM + 95, | |
136 | VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; | |
16461d7d KB |
137 | |
138 | /* Array of register names; There should be ia64_num_regs strings in | |
139 | the initializer. */ | |
140 | ||
141 | static char *ia64_register_names[] = | |
142 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
143 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
144 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
145 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
004d836a JJ |
146 | "", "", "", "", "", "", "", "", |
147 | "", "", "", "", "", "", "", "", | |
148 | "", "", "", "", "", "", "", "", | |
149 | "", "", "", "", "", "", "", "", | |
150 | "", "", "", "", "", "", "", "", | |
151 | "", "", "", "", "", "", "", "", | |
152 | "", "", "", "", "", "", "", "", | |
153 | "", "", "", "", "", "", "", "", | |
154 | "", "", "", "", "", "", "", "", | |
155 | "", "", "", "", "", "", "", "", | |
156 | "", "", "", "", "", "", "", "", | |
157 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
158 | |
159 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
160 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
161 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
162 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
163 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
164 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
165 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
166 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
167 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
168 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
169 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
170 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
171 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
172 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
173 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
174 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
175 | ||
004d836a JJ |
176 | "", "", "", "", "", "", "", "", |
177 | "", "", "", "", "", "", "", "", | |
178 | "", "", "", "", "", "", "", "", | |
179 | "", "", "", "", "", "", "", "", | |
180 | "", "", "", "", "", "", "", "", | |
181 | "", "", "", "", "", "", "", "", | |
182 | "", "", "", "", "", "", "", "", | |
183 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
184 | |
185 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
186 | ||
187 | "vfp", "vrap", | |
188 | ||
189 | "pr", "ip", "psr", "cfm", | |
190 | ||
191 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
192 | "", "", "", "", "", "", "", "", | |
193 | "rsc", "bsp", "bspstore", "rnat", | |
194 | "", "fcr", "", "", | |
195 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
196 | "ccv", "", "", "", "unat", "", "", "", | |
197 | "fpsr", "", "", "", "itc", | |
198 | "", "", "", "", "", "", "", "", "", "", | |
199 | "", "", "", "", "", "", "", "", "", | |
200 | "pfs", "lc", "ec", | |
201 | "", "", "", "", "", "", "", "", "", "", | |
202 | "", "", "", "", "", "", "", "", "", "", | |
203 | "", "", "", "", "", "", "", "", "", "", | |
204 | "", "", "", "", "", "", "", "", "", "", | |
205 | "", "", "", "", "", "", "", "", "", "", | |
206 | "", "", "", "", "", "", "", "", "", "", | |
207 | "", | |
208 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
209 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
210 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
211 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
212 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
213 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
214 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
215 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
216 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
217 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
218 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
219 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
220 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
221 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
222 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
223 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
004d836a JJ |
224 | |
225 | "bof", | |
226 | ||
227 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
228 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
229 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
230 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
231 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
232 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
233 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
234 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
235 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
236 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
237 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
238 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
239 | ||
240 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
241 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
242 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
243 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
244 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
245 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
246 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
247 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
16461d7d KB |
248 | }; |
249 | ||
004d836a JJ |
250 | struct ia64_frame_cache |
251 | { | |
252 | CORE_ADDR base; /* frame pointer base for frame */ | |
253 | CORE_ADDR pc; /* function start pc for frame */ | |
254 | CORE_ADDR saved_sp; /* stack pointer for frame */ | |
255 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
256 | CORE_ADDR cfm; /* cfm value for current frame */ | |
4afcc598 | 257 | CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
004d836a JJ |
258 | int frameless; |
259 | int sof; /* Size of frame (decoded from cfm value) */ | |
260 | int sol; /* Size of locals (decoded from cfm value) */ | |
261 | int sor; /* Number of rotating registers. (decoded from cfm value) */ | |
262 | CORE_ADDR after_prologue; | |
263 | /* Address of first instruction after the last | |
264 | prologue instruction; Note that there may | |
265 | be instructions from the function's body | |
266 | intermingled with the prologue. */ | |
267 | int mem_stack_frame_size; | |
268 | /* Size of the memory stack frame (may be zero), | |
269 | or -1 if it has not been determined yet. */ | |
270 | int fp_reg; /* Register number (if any) used a frame pointer | |
244bc108 | 271 | for this frame. 0 if no register is being used |
16461d7d | 272 | as the frame pointer. */ |
004d836a JJ |
273 | |
274 | /* Saved registers. */ | |
275 | CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; | |
276 | ||
277 | }; | |
244bc108 | 278 | |
698cb3f0 KB |
279 | #define SIGCONTEXT_REGISTER_ADDRESS \ |
280 | (gdbarch_tdep (current_gdbarch)->sigcontext_register_address) | |
16461d7d | 281 | |
004d836a JJ |
282 | int |
283 | ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
284 | struct reggroup *group) | |
16461d7d | 285 | { |
004d836a JJ |
286 | int vector_p; |
287 | int float_p; | |
288 | int raw_p; | |
289 | if (group == all_reggroup) | |
290 | return 1; | |
291 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
292 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
293 | raw_p = regnum < NUM_IA64_RAW_REGS; | |
294 | if (group == float_reggroup) | |
295 | return float_p; | |
296 | if (group == vector_reggroup) | |
297 | return vector_p; | |
298 | if (group == general_reggroup) | |
299 | return (!vector_p && !float_p); | |
300 | if (group == save_reggroup || group == restore_reggroup) | |
301 | return raw_p; | |
302 | return 0; | |
16461d7d KB |
303 | } |
304 | ||
004d836a JJ |
305 | static const char * |
306 | ia64_register_name (int reg) | |
16461d7d | 307 | { |
004d836a | 308 | return ia64_register_names[reg]; |
16461d7d KB |
309 | } |
310 | ||
004d836a JJ |
311 | struct type * |
312 | ia64_register_type (struct gdbarch *arch, int reg) | |
16461d7d | 313 | { |
004d836a JJ |
314 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
315 | return builtin_type_ia64_ext; | |
316 | else | |
317 | return builtin_type_long; | |
16461d7d KB |
318 | } |
319 | ||
a78f21af | 320 | static int |
004d836a | 321 | ia64_dwarf_reg_to_regnum (int reg) |
16461d7d | 322 | { |
004d836a JJ |
323 | if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
324 | return V32_REGNUM + (reg - IA64_GR32_REGNUM); | |
325 | return reg; | |
16461d7d KB |
326 | } |
327 | ||
4afcc598 | 328 | static int |
2fda21a6 | 329 | floatformat_valid (const struct floatformat *fmt, const void *from) |
4afcc598 JJ |
330 | { |
331 | return 1; | |
332 | } | |
333 | ||
16461d7d KB |
334 | const struct floatformat floatformat_ia64_ext = |
335 | { | |
336 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
4afcc598 | 337 | floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid |
16461d7d KB |
338 | }; |
339 | ||
8da61cc4 DJ |
340 | const struct floatformat *floatformats_ia64_ext[2] = |
341 | { | |
342 | &floatformat_ia64_ext, | |
343 | &floatformat_ia64_ext | |
344 | }; | |
345 | ||
16461d7d KB |
346 | |
347 | /* Extract ``len'' bits from an instruction bundle starting at | |
348 | bit ``from''. */ | |
349 | ||
244bc108 | 350 | static long long |
16461d7d KB |
351 | extract_bit_field (char *bundle, int from, int len) |
352 | { | |
353 | long long result = 0LL; | |
354 | int to = from + len; | |
355 | int from_byte = from / 8; | |
356 | int to_byte = to / 8; | |
357 | unsigned char *b = (unsigned char *) bundle; | |
358 | unsigned char c; | |
359 | int lshift; | |
360 | int i; | |
361 | ||
362 | c = b[from_byte]; | |
363 | if (from_byte == to_byte) | |
364 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
365 | result = c >> (from % 8); | |
366 | lshift = 8 - (from % 8); | |
367 | ||
368 | for (i = from_byte+1; i < to_byte; i++) | |
369 | { | |
370 | result |= ((long long) b[i]) << lshift; | |
371 | lshift += 8; | |
372 | } | |
373 | ||
374 | if (from_byte < to_byte && (to % 8 != 0)) | |
375 | { | |
376 | c = b[to_byte]; | |
377 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
378 | result |= ((long long) c) << lshift; | |
379 | } | |
380 | ||
381 | return result; | |
382 | } | |
383 | ||
384 | /* Replace the specified bits in an instruction bundle */ | |
385 | ||
244bc108 | 386 | static void |
16461d7d KB |
387 | replace_bit_field (char *bundle, long long val, int from, int len) |
388 | { | |
389 | int to = from + len; | |
390 | int from_byte = from / 8; | |
391 | int to_byte = to / 8; | |
392 | unsigned char *b = (unsigned char *) bundle; | |
393 | unsigned char c; | |
394 | ||
395 | if (from_byte == to_byte) | |
396 | { | |
397 | unsigned char left, right; | |
398 | c = b[from_byte]; | |
399 | left = (c >> (to % 8)) << (to % 8); | |
400 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
401 | c = (unsigned char) (val & 0xff); | |
402 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
403 | c |= right | left; | |
404 | b[from_byte] = c; | |
405 | } | |
406 | else | |
407 | { | |
408 | int i; | |
409 | c = b[from_byte]; | |
410 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
411 | c = c | (val << (from % 8)); | |
412 | b[from_byte] = c; | |
413 | val >>= 8 - from % 8; | |
414 | ||
415 | for (i = from_byte+1; i < to_byte; i++) | |
416 | { | |
417 | c = val & 0xff; | |
418 | val >>= 8; | |
419 | b[i] = c; | |
420 | } | |
421 | ||
422 | if (to % 8 != 0) | |
423 | { | |
424 | unsigned char cv = (unsigned char) val; | |
425 | c = b[to_byte]; | |
426 | c = c >> (to % 8) << (to % 8); | |
427 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
428 | b[to_byte] = c; | |
429 | } | |
430 | } | |
431 | } | |
432 | ||
433 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
434 | and instruction bundle */ | |
435 | ||
244bc108 | 436 | static long long |
2fc3ac7e | 437 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
438 | { |
439 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
440 | } | |
441 | ||
442 | /* Store an instruction in an instruction bundle */ | |
443 | ||
244bc108 | 444 | static void |
2fc3ac7e | 445 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
446 | { |
447 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
448 | } | |
449 | ||
64a5b29c | 450 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
451 | { |
452 | { M, I, I }, /* 00 */ | |
453 | { M, I, I }, /* 01 */ | |
454 | { M, I, I }, /* 02 */ | |
455 | { M, I, I }, /* 03 */ | |
456 | { M, L, X }, /* 04 */ | |
457 | { M, L, X }, /* 05 */ | |
458 | { undefined, undefined, undefined }, /* 06 */ | |
459 | { undefined, undefined, undefined }, /* 07 */ | |
460 | { M, M, I }, /* 08 */ | |
461 | { M, M, I }, /* 09 */ | |
462 | { M, M, I }, /* 0A */ | |
463 | { M, M, I }, /* 0B */ | |
464 | { M, F, I }, /* 0C */ | |
465 | { M, F, I }, /* 0D */ | |
466 | { M, M, F }, /* 0E */ | |
467 | { M, M, F }, /* 0F */ | |
468 | { M, I, B }, /* 10 */ | |
469 | { M, I, B }, /* 11 */ | |
470 | { M, B, B }, /* 12 */ | |
471 | { M, B, B }, /* 13 */ | |
472 | { undefined, undefined, undefined }, /* 14 */ | |
473 | { undefined, undefined, undefined }, /* 15 */ | |
474 | { B, B, B }, /* 16 */ | |
475 | { B, B, B }, /* 17 */ | |
476 | { M, M, B }, /* 18 */ | |
477 | { M, M, B }, /* 19 */ | |
478 | { undefined, undefined, undefined }, /* 1A */ | |
479 | { undefined, undefined, undefined }, /* 1B */ | |
480 | { M, F, B }, /* 1C */ | |
481 | { M, F, B }, /* 1D */ | |
482 | { undefined, undefined, undefined }, /* 1E */ | |
483 | { undefined, undefined, undefined }, /* 1F */ | |
484 | }; | |
485 | ||
486 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
487 | address of the next instruction to fetch. */ | |
488 | ||
489 | static CORE_ADDR | |
490 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
491 | { | |
492 | char bundle[BUNDLE_LEN]; | |
493 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
494 | long long template; | |
495 | int val; | |
496 | ||
c26e1c2b KB |
497 | /* Warn about slot numbers greater than 2. We used to generate |
498 | an error here on the assumption that the user entered an invalid | |
499 | address. But, sometimes GDB itself requests an invalid address. | |
500 | This can (easily) happen when execution stops in a function for | |
501 | which there are no symbols. The prologue scanner will attempt to | |
502 | find the beginning of the function - if the nearest symbol | |
503 | happens to not be aligned on a bundle boundary (16 bytes), the | |
504 | resulting starting address will cause GDB to think that the slot | |
505 | number is too large. | |
506 | ||
507 | So we warn about it and set the slot number to zero. It is | |
508 | not necessarily a fatal condition, particularly if debugging | |
509 | at the assembly language level. */ | |
16461d7d | 510 | if (slotnum > 2) |
c26e1c2b | 511 | { |
8a3fe4f8 AC |
512 | warning (_("Can't fetch instructions for slot numbers greater than 2.\n" |
513 | "Using slot 0 instead")); | |
c26e1c2b KB |
514 | slotnum = 0; |
515 | } | |
16461d7d KB |
516 | |
517 | addr &= ~0x0f; | |
518 | ||
519 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
520 | ||
521 | if (val != 0) | |
522 | return 0; | |
523 | ||
524 | *instr = slotN_contents (bundle, slotnum); | |
525 | template = extract_bit_field (bundle, 0, 5); | |
526 | *it = template_encoding_table[(int)template][slotnum]; | |
527 | ||
64a5b29c | 528 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
529 | addr += 16; |
530 | else | |
531 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
532 | ||
533 | return addr; | |
534 | } | |
535 | ||
536 | /* There are 5 different break instructions (break.i, break.b, | |
537 | break.m, break.f, and break.x), but they all have the same | |
538 | encoding. (The five bit template in the low five bits of the | |
539 | instruction bundle distinguishes one from another.) | |
540 | ||
541 | The runtime architecture manual specifies that break instructions | |
542 | used for debugging purposes must have the upper two bits of the 21 | |
543 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
544 | instruction encodes the most significant bit of its 21 bit | |
545 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
546 | is at bit 25 which leads to the pattern below. | |
547 | ||
548 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
549 | it turns out that 0x80000 was used as the syscall break in the early | |
550 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
551 | instead. But that didn't work either (I later found out that this | |
552 | pattern was used by the simulator that I was using.) So I ended up | |
553 | using the pattern seen below. */ | |
554 | ||
555 | #if 0 | |
aaab4dba | 556 | #define IA64_BREAKPOINT 0x00002000040LL |
16461d7d | 557 | #endif |
aaab4dba | 558 | #define IA64_BREAKPOINT 0x00003333300LL |
16461d7d KB |
559 | |
560 | static int | |
8181d85f | 561 | ia64_memory_insert_breakpoint (struct bp_target_info *bp_tgt) |
16461d7d | 562 | { |
8181d85f | 563 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
564 | char bundle[BUNDLE_LEN]; |
565 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
566 | long long instr; | |
567 | int val; | |
126fa72d | 568 | int template; |
16461d7d KB |
569 | |
570 | if (slotnum > 2) | |
8a3fe4f8 | 571 | error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
16461d7d KB |
572 | |
573 | addr &= ~0x0f; | |
574 | ||
575 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
576 | |
577 | /* Check for L type instruction in 2nd slot, if present then | |
578 | bump up the slot number to the 3rd slot */ | |
579 | template = extract_bit_field (bundle, 0, 5); | |
580 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
581 | { | |
582 | slotnum = 2; | |
583 | } | |
584 | ||
16461d7d | 585 | instr = slotN_contents (bundle, slotnum); |
8181d85f DJ |
586 | memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr)); |
587 | bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr); | |
aaab4dba | 588 | replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
16461d7d KB |
589 | if (val == 0) |
590 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
591 | ||
592 | return val; | |
593 | } | |
594 | ||
595 | static int | |
8181d85f | 596 | ia64_memory_remove_breakpoint (struct bp_target_info *bp_tgt) |
16461d7d | 597 | { |
8181d85f | 598 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
599 | char bundle[BUNDLE_LEN]; |
600 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
601 | long long instr; | |
602 | int val; | |
126fa72d | 603 | int template; |
16461d7d KB |
604 | |
605 | addr &= ~0x0f; | |
606 | ||
607 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
608 | |
609 | /* Check for L type instruction in 2nd slot, if present then | |
610 | bump up the slot number to the 3rd slot */ | |
611 | template = extract_bit_field (bundle, 0, 5); | |
612 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
613 | { | |
614 | slotnum = 2; | |
615 | } | |
616 | ||
8181d85f | 617 | memcpy (&instr, bp_tgt->shadow_contents, sizeof instr); |
16461d7d KB |
618 | replace_slotN_contents (bundle, instr, slotnum); |
619 | if (val == 0) | |
620 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
621 | ||
622 | return val; | |
623 | } | |
624 | ||
625 | /* We don't really want to use this, but remote.c needs to call it in order | |
626 | to figure out if Z-packets are supported or not. Oh, well. */ | |
f4f9705a | 627 | const unsigned char * |
fba45db2 | 628 | ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
16461d7d KB |
629 | { |
630 | static unsigned char breakpoint[] = | |
631 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
632 | *lenptr = sizeof (breakpoint); | |
633 | #if 0 | |
634 | *pcptr &= ~0x0f; | |
635 | #endif | |
636 | return breakpoint; | |
637 | } | |
638 | ||
a78f21af | 639 | static CORE_ADDR |
61a1198a | 640 | ia64_read_pc (struct regcache *regcache) |
16461d7d | 641 | { |
61a1198a UW |
642 | ULONGEST psr_value, pc_value; |
643 | int slot_num; | |
644 | ||
645 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
646 | regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value); | |
647 | slot_num = (psr_value >> 41) & 3; | |
16461d7d KB |
648 | |
649 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
650 | } | |
651 | ||
54a5c8d8 | 652 | void |
61a1198a | 653 | ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc) |
16461d7d KB |
654 | { |
655 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
61a1198a UW |
656 | ULONGEST psr_value; |
657 | ||
658 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
16461d7d | 659 | psr_value &= ~(3LL << 41); |
61a1198a | 660 | psr_value |= (ULONGEST)(slot_num & 0x3) << 41; |
16461d7d KB |
661 | |
662 | new_pc &= ~0xfLL; | |
663 | ||
61a1198a UW |
664 | regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value); |
665 | regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc); | |
16461d7d KB |
666 | } |
667 | ||
668 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
669 | ||
670 | /* Returns the address of the slot that's NSLOTS slots away from | |
671 | the address ADDR. NSLOTS may be positive or negative. */ | |
672 | static CORE_ADDR | |
673 | rse_address_add(CORE_ADDR addr, int nslots) | |
674 | { | |
675 | CORE_ADDR new_addr; | |
676 | int mandatory_nat_slots = nslots / 63; | |
677 | int direction = nslots < 0 ? -1 : 1; | |
678 | ||
679 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
680 | ||
681 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
682 | new_addr += 8 * direction; | |
683 | ||
684 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
685 | new_addr += 8 * direction; | |
686 | ||
687 | return new_addr; | |
688 | } | |
689 | ||
004d836a JJ |
690 | static void |
691 | ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 692 | int regnum, gdb_byte *buf) |
16461d7d | 693 | { |
004d836a | 694 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 695 | { |
88d82102 | 696 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c JJ |
697 | /* First try and use the libunwind special reg accessor, otherwise fallback to |
698 | standard logic. */ | |
699 | if (!libunwind_is_initialized () | |
45ecac4b | 700 | || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0) |
88d82102 | 701 | #endif |
004d836a | 702 | { |
c5a27d9c JJ |
703 | /* The fallback position is to assume that r32-r127 are found sequentially |
704 | in memory starting at $bof. This isn't always true, but without libunwind, | |
705 | this is the best we can do. */ | |
706 | ULONGEST cfm; | |
707 | ULONGEST bsp; | |
708 | CORE_ADDR reg; | |
709 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
710 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
711 | ||
712 | /* The bsp points at the end of the register frame so we | |
713 | subtract the size of frame from it to get start of register frame. */ | |
714 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
715 | ||
716 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
717 | { | |
718 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
719 | reg = read_memory_integer ((CORE_ADDR)reg_addr, 8); | |
720 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), reg); | |
721 | } | |
722 | else | |
723 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), 0); | |
004d836a | 724 | } |
004d836a JJ |
725 | } |
726 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
727 | { | |
728 | ULONGEST unatN_val; | |
729 | ULONGEST unat; | |
730 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
731 | unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; | |
aa2a9a3c | 732 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), unatN_val); |
004d836a JJ |
733 | } |
734 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
735 | { | |
736 | ULONGEST natN_val = 0; | |
737 | ULONGEST bsp; | |
738 | ULONGEST cfm; | |
739 | CORE_ADDR gr_addr = 0; | |
740 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
741 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
742 | ||
743 | /* The bsp points at the end of the register frame so we | |
744 | subtract the size of frame from it to get start of register frame. */ | |
745 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
746 | ||
747 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
748 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
749 | ||
750 | if (gr_addr != 0) | |
751 | { | |
752 | /* Compute address of nat collection bits. */ | |
753 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
754 | CORE_ADDR nat_collection; | |
755 | int nat_bit; | |
756 | /* If our nat collection address is bigger than bsp, we have to get | |
757 | the nat collection from rnat. Otherwise, we fetch the nat | |
758 | collection from the computed address. */ | |
759 | if (nat_addr >= bsp) | |
760 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
761 | else | |
762 | nat_collection = read_memory_integer (nat_addr, 8); | |
763 | nat_bit = (gr_addr >> 3) & 0x3f; | |
764 | natN_val = (nat_collection >> nat_bit) & 1; | |
765 | } | |
766 | ||
aa2a9a3c | 767 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), natN_val); |
244bc108 | 768 | } |
004d836a JJ |
769 | else if (regnum == VBOF_REGNUM) |
770 | { | |
771 | /* A virtual register frame start is provided for user convenience. | |
772 | It can be calculated as the bsp - sof (sizeof frame). */ | |
773 | ULONGEST bsp, vbsp; | |
774 | ULONGEST cfm; | |
775 | CORE_ADDR reg; | |
776 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
777 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
778 | ||
779 | /* The bsp points at the end of the register frame so we | |
780 | subtract the size of frame from it to get beginning of frame. */ | |
781 | vbsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
aa2a9a3c | 782 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), vbsp); |
004d836a JJ |
783 | } |
784 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
785 | { | |
786 | ULONGEST pr; | |
787 | ULONGEST cfm; | |
788 | ULONGEST prN_val; | |
789 | CORE_ADDR reg; | |
790 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
791 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
792 | ||
793 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
794 | { | |
795 | /* Fetch predicate register rename base from current frame | |
796 | marker for this frame. */ | |
797 | int rrb_pr = (cfm >> 32) & 0x3f; | |
798 | ||
799 | /* Adjust the register number to account for register rotation. */ | |
800 | regnum = VP16_REGNUM | |
801 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
802 | } | |
803 | prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; | |
aa2a9a3c | 804 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), prN_val); |
004d836a JJ |
805 | } |
806 | else | |
aa2a9a3c | 807 | memset (buf, 0, register_size (current_gdbarch, regnum)); |
16461d7d KB |
808 | } |
809 | ||
004d836a JJ |
810 | static void |
811 | ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 812 | int regnum, const gdb_byte *buf) |
16461d7d | 813 | { |
004d836a | 814 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 815 | { |
004d836a JJ |
816 | ULONGEST bsp; |
817 | ULONGEST cfm; | |
818 | CORE_ADDR reg; | |
819 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
820 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
821 | ||
822 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
823 | ||
824 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
825 | { | |
826 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
827 | write_memory (reg_addr, (void *)buf, 8); | |
828 | } | |
829 | } | |
830 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
831 | { | |
832 | ULONGEST unatN_val, unat, unatN_mask; | |
833 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
aa2a9a3c | 834 | unatN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
835 | unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
836 | if (unatN_val == 0) | |
837 | unat &= ~unatN_mask; | |
838 | else if (unatN_val == 1) | |
839 | unat |= unatN_mask; | |
840 | regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); | |
841 | } | |
842 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
843 | { | |
844 | ULONGEST natN_val; | |
845 | ULONGEST bsp; | |
846 | ULONGEST cfm; | |
847 | CORE_ADDR gr_addr = 0; | |
848 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
849 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
850 | ||
851 | /* The bsp points at the end of the register frame so we | |
852 | subtract the size of frame from it to get start of register frame. */ | |
853 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
854 | ||
855 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
856 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
857 | ||
aa2a9a3c | 858 | natN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
859 | |
860 | if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) | |
861 | { | |
862 | /* Compute address of nat collection bits. */ | |
863 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
864 | CORE_ADDR nat_collection; | |
865 | int natN_bit = (gr_addr >> 3) & 0x3f; | |
866 | ULONGEST natN_mask = (1LL << natN_bit); | |
867 | /* If our nat collection address is bigger than bsp, we have to get | |
868 | the nat collection from rnat. Otherwise, we fetch the nat | |
869 | collection from the computed address. */ | |
870 | if (nat_addr >= bsp) | |
871 | { | |
872 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
873 | if (natN_val) | |
874 | nat_collection |= natN_mask; | |
875 | else | |
876 | nat_collection &= ~natN_mask; | |
877 | regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); | |
878 | } | |
879 | else | |
880 | { | |
881 | char nat_buf[8]; | |
882 | nat_collection = read_memory_integer (nat_addr, 8); | |
883 | if (natN_val) | |
884 | nat_collection |= natN_mask; | |
885 | else | |
886 | nat_collection &= ~natN_mask; | |
aa2a9a3c | 887 | store_unsigned_integer (nat_buf, register_size (current_gdbarch, regnum), nat_collection); |
004d836a JJ |
888 | write_memory (nat_addr, nat_buf, 8); |
889 | } | |
890 | } | |
891 | } | |
892 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
893 | { | |
894 | ULONGEST pr; | |
895 | ULONGEST cfm; | |
896 | ULONGEST prN_val; | |
897 | ULONGEST prN_mask; | |
898 | ||
899 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
900 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
901 | ||
902 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
903 | { | |
904 | /* Fetch predicate register rename base from current frame | |
905 | marker for this frame. */ | |
906 | int rrb_pr = (cfm >> 32) & 0x3f; | |
907 | ||
908 | /* Adjust the register number to account for register rotation. */ | |
909 | regnum = VP16_REGNUM | |
910 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
911 | } | |
aa2a9a3c | 912 | prN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
913 | prN_mask = (1LL << (regnum - VP0_REGNUM)); |
914 | if (prN_val == 0) | |
915 | pr &= ~prN_mask; | |
916 | else if (prN_val == 1) | |
917 | pr |= prN_mask; | |
918 | regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); | |
244bc108 | 919 | } |
16461d7d KB |
920 | } |
921 | ||
004d836a JJ |
922 | /* The ia64 needs to convert between various ieee floating-point formats |
923 | and the special ia64 floating point register format. */ | |
924 | ||
925 | static int | |
926 | ia64_convert_register_p (int regno, struct type *type) | |
927 | { | |
928 | return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM); | |
929 | } | |
930 | ||
931 | static void | |
932 | ia64_register_to_value (struct frame_info *frame, int regnum, | |
88d82102 | 933 | struct type *valtype, gdb_byte *out) |
004d836a JJ |
934 | { |
935 | char in[MAX_REGISTER_SIZE]; | |
936 | frame_register_read (frame, regnum, in); | |
937 | convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); | |
938 | } | |
939 | ||
940 | static void | |
941 | ia64_value_to_register (struct frame_info *frame, int regnum, | |
88d82102 | 942 | struct type *valtype, const gdb_byte *in) |
004d836a JJ |
943 | { |
944 | char out[MAX_REGISTER_SIZE]; | |
945 | convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); | |
946 | put_frame_register (frame, regnum, out); | |
947 | } | |
948 | ||
949 | ||
58ab00f9 KB |
950 | /* Limit the number of skipped non-prologue instructions since examining |
951 | of the prologue is expensive. */ | |
5ea2bd7f | 952 | static int max_skip_non_prologue_insns = 40; |
58ab00f9 KB |
953 | |
954 | /* Given PC representing the starting address of a function, and | |
955 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
956 | for a prologue, attempt to further refine this limit by using | |
957 | the line data in the symbol table. If successful, a better guess | |
958 | on where the prologue ends is returned, otherwise the previous | |
959 | value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag | |
960 | which will be set to indicate whether the returned limit may be | |
961 | used with no further scanning in the event that the function is | |
962 | frameless. */ | |
963 | ||
634aa483 AC |
964 | /* FIXME: cagney/2004-02-14: This function and logic have largely been |
965 | superseded by skip_prologue_using_sal. */ | |
966 | ||
58ab00f9 KB |
967 | static CORE_ADDR |
968 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) | |
969 | { | |
970 | struct symtab_and_line prologue_sal; | |
971 | CORE_ADDR start_pc = pc; | |
972 | ||
973 | /* Start off not trusting the limit. */ | |
974 | *trust_limit = 0; | |
975 | ||
976 | prologue_sal = find_pc_line (pc, 0); | |
977 | if (prologue_sal.line != 0) | |
978 | { | |
979 | int i; | |
980 | CORE_ADDR addr = prologue_sal.end; | |
981 | ||
982 | /* Handle the case in which compiler's optimizer/scheduler | |
983 | has moved instructions into the prologue. We scan ahead | |
984 | in the function looking for address ranges whose corresponding | |
985 | line number is less than or equal to the first one that we | |
986 | found for the function. (It can be less than when the | |
987 | scheduler puts a body instruction before the first prologue | |
988 | instruction.) */ | |
989 | for (i = 2 * max_skip_non_prologue_insns; | |
990 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
991 | i--) | |
992 | { | |
993 | struct symtab_and_line sal; | |
994 | ||
995 | sal = find_pc_line (addr, 0); | |
996 | if (sal.line == 0) | |
997 | break; | |
998 | if (sal.line <= prologue_sal.line | |
999 | && sal.symtab == prologue_sal.symtab) | |
1000 | { | |
1001 | prologue_sal = sal; | |
1002 | } | |
1003 | addr = sal.end; | |
1004 | } | |
1005 | ||
1006 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
1007 | { | |
1008 | lim_pc = prologue_sal.end; | |
1009 | if (start_pc == get_pc_function_start (lim_pc)) | |
1010 | *trust_limit = 1; | |
1011 | } | |
1012 | } | |
1013 | return lim_pc; | |
1014 | } | |
1015 | ||
16461d7d KB |
1016 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
1017 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
1018 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
1019 | #define imm9(_instr_) \ | |
1020 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
1021 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
1022 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
1023 | ||
004d836a JJ |
1024 | /* Allocate and initialize a frame cache. */ |
1025 | ||
1026 | static struct ia64_frame_cache * | |
1027 | ia64_alloc_frame_cache (void) | |
1028 | { | |
1029 | struct ia64_frame_cache *cache; | |
1030 | int i; | |
1031 | ||
1032 | cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); | |
1033 | ||
1034 | /* Base address. */ | |
1035 | cache->base = 0; | |
1036 | cache->pc = 0; | |
1037 | cache->cfm = 0; | |
4afcc598 | 1038 | cache->prev_cfm = 0; |
004d836a JJ |
1039 | cache->sof = 0; |
1040 | cache->sol = 0; | |
1041 | cache->sor = 0; | |
1042 | cache->bsp = 0; | |
1043 | cache->fp_reg = 0; | |
1044 | cache->frameless = 1; | |
1045 | ||
1046 | for (i = 0; i < NUM_IA64_RAW_REGS; i++) | |
1047 | cache->saved_regs[i] = 0; | |
1048 | ||
1049 | return cache; | |
1050 | } | |
1051 | ||
16461d7d | 1052 | static CORE_ADDR |
004d836a | 1053 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache) |
16461d7d KB |
1054 | { |
1055 | CORE_ADDR next_pc; | |
1056 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
1057 | instruction_type it; |
1058 | long long instr; | |
16461d7d KB |
1059 | int cfm_reg = 0; |
1060 | int ret_reg = 0; | |
1061 | int fp_reg = 0; | |
1062 | int unat_save_reg = 0; | |
1063 | int pr_save_reg = 0; | |
1064 | int mem_stack_frame_size = 0; | |
1065 | int spill_reg = 0; | |
1066 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
1067 | char instores[8]; |
1068 | char infpstores[8]; | |
5ea2bd7f | 1069 | char reg_contents[256]; |
58ab00f9 | 1070 | int trust_limit; |
004d836a JJ |
1071 | int frameless = 1; |
1072 | int i; | |
1073 | CORE_ADDR addr; | |
1074 | char buf[8]; | |
1075 | CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; | |
0927a22b KB |
1076 | |
1077 | memset (instores, 0, sizeof instores); | |
1078 | memset (infpstores, 0, sizeof infpstores); | |
5ea2bd7f | 1079 | memset (reg_contents, 0, sizeof reg_contents); |
16461d7d | 1080 | |
004d836a JJ |
1081 | if (cache->after_prologue != 0 |
1082 | && cache->after_prologue <= lim_pc) | |
1083 | return cache->after_prologue; | |
16461d7d | 1084 | |
58ab00f9 | 1085 | lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
16461d7d | 1086 | next_pc = fetch_instruction (pc, &it, &instr); |
5ea2bd7f JJ |
1087 | |
1088 | /* We want to check if we have a recognizable function start before we | |
1089 | look ahead for a prologue. */ | |
16461d7d KB |
1090 | if (pc < lim_pc && next_pc |
1091 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
1092 | { | |
5ea2bd7f | 1093 | /* alloc - start of a regular function. */ |
16461d7d KB |
1094 | int sor = (int) ((instr & 0x00078000000LL) >> 27); |
1095 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
1096 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
16461d7d | 1097 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
004d836a JJ |
1098 | |
1099 | /* Verify that the current cfm matches what we think is the | |
1100 | function start. If we have somehow jumped within a function, | |
1101 | we do not want to interpret the prologue and calculate the | |
1102 | addresses of various registers such as the return address. | |
1103 | We will instead treat the frame as frameless. */ | |
1104 | if (!next_frame || | |
1105 | (sof == (cache->cfm & 0x7f) && | |
1106 | sol == ((cache->cfm >> 7) & 0x7f))) | |
1107 | frameless = 0; | |
1108 | ||
16461d7d KB |
1109 | cfm_reg = rN; |
1110 | last_prologue_pc = next_pc; | |
1111 | pc = next_pc; | |
1112 | } | |
1113 | else | |
58ab00f9 | 1114 | { |
5ea2bd7f JJ |
1115 | /* Look for a leaf routine. */ |
1116 | if (pc < lim_pc && next_pc | |
1117 | && (it == I || it == M) | |
1118 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1119 | { | |
1120 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1121 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1122 | | ((instr & 0x001f8000000LL) >> 20) | |
1123 | | ((instr & 0x000000fe000LL) >> 13)); | |
1124 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1125 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1126 | int qp = (int) (instr & 0x0000000003fLL); | |
1127 | if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) | |
1128 | { | |
1129 | /* mov r2, r12 - beginning of leaf routine */ | |
1130 | fp_reg = rN; | |
5ea2bd7f JJ |
1131 | last_prologue_pc = next_pc; |
1132 | } | |
1133 | } | |
1134 | ||
1135 | /* If we don't recognize a regular function or leaf routine, we are | |
1136 | done. */ | |
1137 | if (!fp_reg) | |
1138 | { | |
1139 | pc = lim_pc; | |
1140 | if (trust_limit) | |
1141 | last_prologue_pc = lim_pc; | |
1142 | } | |
58ab00f9 | 1143 | } |
16461d7d KB |
1144 | |
1145 | /* Loop, looking for prologue instructions, keeping track of | |
1146 | where preserved registers were spilled. */ | |
1147 | while (pc < lim_pc) | |
1148 | { | |
1149 | next_pc = fetch_instruction (pc, &it, &instr); | |
1150 | if (next_pc == 0) | |
1151 | break; | |
1152 | ||
594706e6 | 1153 | if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
0927a22b | 1154 | { |
102d615a JJ |
1155 | /* Exit loop upon hitting a non-nop branch instruction. */ |
1156 | if (trust_limit) | |
1157 | lim_pc = pc; | |
1158 | break; | |
1159 | } | |
1160 | else if (((instr & 0x3fLL) != 0LL) && | |
1161 | (frameless || ret_reg != 0)) | |
1162 | { | |
1163 | /* Exit loop upon hitting a predicated instruction if | |
1164 | we already have the return register or if we are frameless. */ | |
5ea2bd7f JJ |
1165 | if (trust_limit) |
1166 | lim_pc = pc; | |
0927a22b KB |
1167 | break; |
1168 | } | |
1169 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
1170 | { |
1171 | /* Move from BR */ | |
1172 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
1173 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1174 | int qp = (int) (instr & 0x0000000003f); | |
1175 | ||
1176 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
1177 | { | |
1178 | ret_reg = rN; | |
1179 | last_prologue_pc = next_pc; | |
1180 | } | |
1181 | } | |
1182 | else if ((it == I || it == M) | |
1183 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1184 | { | |
1185 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1186 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1187 | | ((instr & 0x001f8000000LL) >> 20) | |
1188 | | ((instr & 0x000000fe000LL) >> 13)); | |
1189 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1190 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1191 | int qp = (int) (instr & 0x0000000003fLL); | |
1192 | ||
1193 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
1194 | { | |
1195 | /* mov rN, r12 */ | |
1196 | fp_reg = rN; | |
1197 | last_prologue_pc = next_pc; | |
1198 | } | |
1199 | else if (qp == 0 && rN == 12 && rM == 12) | |
1200 | { | |
1201 | /* adds r12, -mem_stack_frame_size, r12 */ | |
1202 | mem_stack_frame_size -= imm; | |
1203 | last_prologue_pc = next_pc; | |
1204 | } | |
1205 | else if (qp == 0 && rN == 2 | |
1206 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
1207 | { | |
004d836a JJ |
1208 | char buf[MAX_REGISTER_SIZE]; |
1209 | CORE_ADDR saved_sp = 0; | |
16461d7d KB |
1210 | /* adds r2, spilloffset, rFramePointer |
1211 | or | |
1212 | adds r2, spilloffset, r12 | |
1213 | ||
1214 | Get ready for stf.spill or st8.spill instructions. | |
1215 | The address to start spilling at is loaded into r2. | |
1216 | FIXME: Why r2? That's what gcc currently uses; it | |
1217 | could well be different for other compilers. */ | |
1218 | ||
1219 | /* Hmm... whether or not this will work will depend on | |
1220 | where the pc is. If it's still early in the prologue | |
1221 | this'll be wrong. FIXME */ | |
004d836a JJ |
1222 | if (next_frame) |
1223 | { | |
1224 | frame_unwind_register (next_frame, sp_regnum, buf); | |
1225 | saved_sp = extract_unsigned_integer (buf, 8); | |
1226 | } | |
1227 | spill_addr = saved_sp | |
16461d7d KB |
1228 | + (rM == 12 ? 0 : mem_stack_frame_size) |
1229 | + imm; | |
1230 | spill_reg = rN; | |
1231 | last_prologue_pc = next_pc; | |
1232 | } | |
5ea2bd7f JJ |
1233 | else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] && |
1234 | rN < 256 && imm == 0) | |
1235 | { | |
1236 | /* mov rN, rM where rM is an input register */ | |
1237 | reg_contents[rN] = rM; | |
1238 | last_prologue_pc = next_pc; | |
1239 | } | |
1240 | else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && | |
1241 | rM == 2) | |
1242 | { | |
1243 | /* mov r12, r2 */ | |
1244 | last_prologue_pc = next_pc; | |
1245 | break; | |
1246 | } | |
16461d7d KB |
1247 | } |
1248 | else if (it == M | |
1249 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
1250 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
1251 | { | |
1252 | /* stf.spill [rN] = fM, imm9 | |
1253 | or | |
1254 | stf.spill [rN] = fM */ | |
1255 | ||
1256 | int imm = imm9(instr); | |
1257 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1258 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1259 | int qp = (int) (instr & 0x0000000003fLL); | |
1260 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
1261 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
1262 | { | |
004d836a | 1263 | cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
16461d7d | 1264 | |
594706e6 | 1265 | if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
16461d7d KB |
1266 | spill_addr += imm; |
1267 | else | |
1268 | spill_addr = 0; /* last one; must be done */ | |
1269 | last_prologue_pc = next_pc; | |
1270 | } | |
1271 | } | |
1272 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
1273 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
1274 | { | |
1275 | /* mov.m rN = arM | |
1276 | or | |
1277 | mov.i rN = arM */ | |
1278 | ||
1279 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1280 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1281 | int qp = (int) (instr & 0x0000000003fLL); | |
1282 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
1283 | { | |
1284 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
1285 | r3 (or whatever) and watch for a store of this register... */ | |
1286 | unat_save_reg = rN; | |
1287 | last_prologue_pc = next_pc; | |
1288 | } | |
1289 | } | |
1290 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
1291 | { | |
1292 | /* mov rN = pr */ | |
1293 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1294 | int qp = (int) (instr & 0x0000000003fLL); | |
1295 | if (qp == 0 && isScratch (rN)) | |
1296 | { | |
1297 | pr_save_reg = rN; | |
1298 | last_prologue_pc = next_pc; | |
1299 | } | |
1300 | } | |
1301 | else if (it == M | |
1302 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
1303 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
1304 | { | |
1305 | /* st8 [rN] = rM | |
1306 | or | |
1307 | st8 [rN] = rM, imm9 */ | |
1308 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1309 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1310 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1311 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
16461d7d KB |
1312 | if (qp == 0 && rN == spill_reg && spill_addr != 0 |
1313 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
1314 | { | |
1315 | /* We've found a spill of either the UNAT register or the PR | |
1316 | register. (Well, not exactly; what we've actually found is | |
1317 | a spill of the register that UNAT or PR was moved to). | |
1318 | Record that fact and move on... */ | |
1319 | if (rM == unat_save_reg) | |
1320 | { | |
1321 | /* Track UNAT register */ | |
004d836a | 1322 | cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
16461d7d KB |
1323 | unat_save_reg = 0; |
1324 | } | |
1325 | else | |
1326 | { | |
1327 | /* Track PR register */ | |
004d836a | 1328 | cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
16461d7d KB |
1329 | pr_save_reg = 0; |
1330 | } | |
1331 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
1332 | /* st8 [rN] = rM, imm9 */ | |
1333 | spill_addr += imm9(instr); | |
1334 | else | |
1335 | spill_addr = 0; /* must be done spilling */ | |
1336 | last_prologue_pc = next_pc; | |
1337 | } | |
0927a22b KB |
1338 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1339 | { | |
1340 | /* Allow up to one store of each input register. */ | |
1341 | instores[rM-32] = 1; | |
1342 | last_prologue_pc = next_pc; | |
1343 | } | |
5ea2bd7f JJ |
1344 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1345 | !instores[indirect-32]) | |
1346 | { | |
1347 | /* Allow an indirect store of an input register. */ | |
1348 | instores[indirect-32] = 1; | |
1349 | last_prologue_pc = next_pc; | |
1350 | } | |
0927a22b KB |
1351 | } |
1352 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
1353 | { | |
1354 | /* One of | |
1355 | st1 [rN] = rM | |
1356 | st2 [rN] = rM | |
1357 | st4 [rN] = rM | |
1358 | st8 [rN] = rM | |
1359 | Note that the st8 case is handled in the clause above. | |
1360 | ||
1361 | Advance over stores of input registers. One store per input | |
1362 | register is permitted. */ | |
1363 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1364 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1365 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
0927a22b KB |
1366 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1367 | { | |
1368 | instores[rM-32] = 1; | |
1369 | last_prologue_pc = next_pc; | |
1370 | } | |
5ea2bd7f JJ |
1371 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1372 | !instores[indirect-32]) | |
1373 | { | |
1374 | /* Allow an indirect store of an input register. */ | |
1375 | instores[indirect-32] = 1; | |
1376 | last_prologue_pc = next_pc; | |
1377 | } | |
0927a22b KB |
1378 | } |
1379 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
1380 | { | |
1381 | /* Either | |
1382 | stfs [rN] = fM | |
1383 | or | |
1384 | stfd [rN] = fM | |
1385 | ||
1386 | Advance over stores of floating point input registers. Again | |
1387 | one store per register is permitted */ | |
1388 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1389 | int qp = (int) (instr & 0x0000000003fLL); | |
1390 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
1391 | { | |
1392 | infpstores[fM-8] = 1; | |
1393 | last_prologue_pc = next_pc; | |
1394 | } | |
16461d7d KB |
1395 | } |
1396 | else if (it == M | |
1397 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
1398 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
1399 | { | |
1400 | /* st8.spill [rN] = rM | |
1401 | or | |
1402 | st8.spill [rN] = rM, imm9 */ | |
1403 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1404 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1405 | int qp = (int) (instr & 0x0000000003fLL); | |
1406 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1407 | { | |
1408 | /* We've found a spill of one of the preserved general purpose | |
1409 | regs. Record the spill address and advance the spill | |
1410 | register if appropriate. */ | |
004d836a | 1411 | cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
16461d7d KB |
1412 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
1413 | /* st8.spill [rN] = rM, imm9 */ | |
1414 | spill_addr += imm9(instr); | |
1415 | else | |
1416 | spill_addr = 0; /* Done spilling */ | |
1417 | last_prologue_pc = next_pc; | |
1418 | } | |
1419 | } | |
16461d7d KB |
1420 | |
1421 | pc = next_pc; | |
1422 | } | |
1423 | ||
004d836a JJ |
1424 | /* If not frameless and we aren't called by skip_prologue, then we need to calculate |
1425 | registers for the previous frame which will be needed later. */ | |
16461d7d | 1426 | |
004d836a | 1427 | if (!frameless && next_frame) |
da50a4b7 | 1428 | { |
004d836a JJ |
1429 | /* Extract the size of the rotating portion of the stack |
1430 | frame and the register rename base from the current | |
1431 | frame marker. */ | |
1432 | cfm = cache->cfm; | |
1433 | sor = cache->sor; | |
1434 | sof = cache->sof; | |
1435 | sol = cache->sol; | |
1436 | rrb_gr = (cfm >> 18) & 0x7f; | |
1437 | ||
1438 | /* Find the bof (beginning of frame). */ | |
1439 | bof = rse_address_add (cache->bsp, -sof); | |
1440 | ||
1441 | for (i = 0, addr = bof; | |
1442 | i < sof; | |
1443 | i++, addr += 8) | |
1444 | { | |
1445 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1446 | { | |
1447 | addr += 8; | |
1448 | } | |
1449 | if (i+32 == cfm_reg) | |
1450 | cache->saved_regs[IA64_CFM_REGNUM] = addr; | |
1451 | if (i+32 == ret_reg) | |
1452 | cache->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1453 | if (i+32 == fp_reg) | |
1454 | cache->saved_regs[IA64_VFP_REGNUM] = addr; | |
1455 | } | |
16461d7d | 1456 | |
004d836a JJ |
1457 | /* For the previous argument registers we require the previous bof. |
1458 | If we can't find the previous cfm, then we can do nothing. */ | |
4afcc598 | 1459 | cfm = 0; |
004d836a JJ |
1460 | if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
1461 | { | |
1462 | cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8); | |
4afcc598 JJ |
1463 | } |
1464 | else if (cfm_reg != 0) | |
1465 | { | |
1466 | frame_unwind_register (next_frame, cfm_reg, buf); | |
1467 | cfm = extract_unsigned_integer (buf, 8); | |
1468 | } | |
1469 | cache->prev_cfm = cfm; | |
1470 | ||
1471 | if (cfm != 0) | |
1472 | { | |
004d836a JJ |
1473 | sor = ((cfm >> 14) & 0xf) * 8; |
1474 | sof = (cfm & 0x7f); | |
1475 | sol = (cfm >> 7) & 0x7f; | |
1476 | rrb_gr = (cfm >> 18) & 0x7f; | |
1477 | ||
1478 | /* The previous bof only requires subtraction of the sol (size of locals) | |
1479 | due to the overlap between output and input of subsequent frames. */ | |
1480 | bof = rse_address_add (bof, -sol); | |
1481 | ||
1482 | for (i = 0, addr = bof; | |
1483 | i < sof; | |
1484 | i++, addr += 8) | |
1485 | { | |
1486 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1487 | { | |
1488 | addr += 8; | |
1489 | } | |
1490 | if (i < sor) | |
1491 | cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1492 | = addr; | |
1493 | else | |
1494 | cache->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
1495 | } | |
1496 | ||
1497 | } | |
1498 | } | |
1499 | ||
5ea2bd7f JJ |
1500 | /* Try and trust the lim_pc value whenever possible. */ |
1501 | if (trust_limit && lim_pc >= last_prologue_pc) | |
004d836a JJ |
1502 | last_prologue_pc = lim_pc; |
1503 | ||
1504 | cache->frameless = frameless; | |
1505 | cache->after_prologue = last_prologue_pc; | |
1506 | cache->mem_stack_frame_size = mem_stack_frame_size; | |
1507 | cache->fp_reg = fp_reg; | |
5ea2bd7f | 1508 | |
16461d7d KB |
1509 | return last_prologue_pc; |
1510 | } | |
1511 | ||
1512 | CORE_ADDR | |
1513 | ia64_skip_prologue (CORE_ADDR pc) | |
1514 | { | |
004d836a JJ |
1515 | struct ia64_frame_cache cache; |
1516 | cache.base = 0; | |
1517 | cache.after_prologue = 0; | |
1518 | cache.cfm = 0; | |
1519 | cache.bsp = 0; | |
1520 | ||
1521 | /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ | |
1522 | return examine_prologue (pc, pc+1024, 0, &cache); | |
16461d7d KB |
1523 | } |
1524 | ||
004d836a JJ |
1525 | |
1526 | /* Normal frames. */ | |
1527 | ||
1528 | static struct ia64_frame_cache * | |
1529 | ia64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
16461d7d | 1530 | { |
004d836a JJ |
1531 | struct ia64_frame_cache *cache; |
1532 | char buf[8]; | |
1533 | CORE_ADDR cfm, sof, sol, bsp, psr; | |
1534 | int i; | |
16461d7d | 1535 | |
004d836a JJ |
1536 | if (*this_cache) |
1537 | return *this_cache; | |
16461d7d | 1538 | |
004d836a JJ |
1539 | cache = ia64_alloc_frame_cache (); |
1540 | *this_cache = cache; | |
16461d7d | 1541 | |
004d836a JJ |
1542 | frame_unwind_register (next_frame, sp_regnum, buf); |
1543 | cache->saved_sp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1544 | |
004d836a JJ |
1545 | /* We always want the bsp to point to the end of frame. |
1546 | This way, we can always get the beginning of frame (bof) | |
1547 | by subtracting frame size. */ | |
1548 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1549 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1550 | ||
1551 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1552 | psr = extract_unsigned_integer (buf, 8); | |
1553 | ||
1554 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1555 | cfm = extract_unsigned_integer (buf, 8); | |
1556 | ||
1557 | cache->sof = (cfm & 0x7f); | |
1558 | cache->sol = (cfm >> 7) & 0x7f; | |
1559 | cache->sor = ((cfm >> 14) & 0xf) * 8; | |
1560 | ||
1561 | cache->cfm = cfm; | |
1562 | ||
93d42b30 | 1563 | cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME); |
004d836a JJ |
1564 | |
1565 | if (cache->pc != 0) | |
1566 | examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache); | |
1567 | ||
1568 | cache->base = cache->saved_sp + cache->mem_stack_frame_size; | |
1569 | ||
1570 | return cache; | |
16461d7d KB |
1571 | } |
1572 | ||
a78f21af | 1573 | static void |
004d836a JJ |
1574 | ia64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
1575 | struct frame_id *this_id) | |
16461d7d | 1576 | { |
004d836a JJ |
1577 | struct ia64_frame_cache *cache = |
1578 | ia64_frame_cache (next_frame, this_cache); | |
16461d7d | 1579 | |
c5a27d9c | 1580 | /* If outermost frame, mark with null frame id. */ |
004d836a | 1581 | if (cache->base == 0) |
c5a27d9c JJ |
1582 | (*this_id) = null_frame_id; |
1583 | else | |
1584 | (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); | |
4afcc598 JJ |
1585 | if (gdbarch_debug >= 1) |
1586 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1587 | "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1588 | paddr_nz (this_id->code_addr), | |
1589 | paddr_nz (this_id->stack_addr), | |
1590 | paddr_nz (cache->bsp), next_frame); | |
004d836a | 1591 | } |
244bc108 | 1592 | |
004d836a JJ |
1593 | static void |
1594 | ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
1595 | int regnum, int *optimizedp, | |
1596 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 1597 | int *realnump, gdb_byte *valuep) |
004d836a JJ |
1598 | { |
1599 | struct ia64_frame_cache *cache = | |
1600 | ia64_frame_cache (next_frame, this_cache); | |
1601 | char dummy_valp[MAX_REGISTER_SIZE]; | |
1602 | char buf[8]; | |
1603 | ||
1604 | gdb_assert (regnum >= 0); | |
244bc108 | 1605 | |
004d836a | 1606 | if (!target_has_registers) |
8a3fe4f8 | 1607 | error (_("No registers.")); |
244bc108 | 1608 | |
004d836a JJ |
1609 | *optimizedp = 0; |
1610 | *addrp = 0; | |
1611 | *lvalp = not_lval; | |
1612 | *realnump = -1; | |
244bc108 | 1613 | |
004d836a JJ |
1614 | /* Rather than check each time if valuep is non-null, supply a dummy buffer |
1615 | when valuep is not supplied. */ | |
1616 | if (!valuep) | |
1617 | valuep = dummy_valp; | |
1618 | ||
aa2a9a3c | 1619 | memset (valuep, 0, register_size (current_gdbarch, regnum)); |
004d836a | 1620 | |
3e8c568d | 1621 | if (regnum == gdbarch_sp_regnum (current_gdbarch)) |
16461d7d KB |
1622 | { |
1623 | /* Handle SP values for all frames but the topmost. */ | |
aa2a9a3c | 1624 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
004d836a | 1625 | cache->base); |
16461d7d KB |
1626 | } |
1627 | else if (regnum == IA64_BSP_REGNUM) | |
1628 | { | |
004d836a JJ |
1629 | char cfm_valuep[MAX_REGISTER_SIZE]; |
1630 | int cfm_optim; | |
1631 | int cfm_realnum; | |
1632 | enum lval_type cfm_lval; | |
1633 | CORE_ADDR cfm_addr; | |
1634 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
1635 | ||
1636 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
1637 | This corresponds to what the hardware bsp register will be if we pop the frame | |
1638 | back which is why we might have been called. We know the beginning of the current | |
aa2a9a3c | 1639 | frame is cache->bsp - cache->sof. This value in the previous frame points to |
004d836a JJ |
1640 | the start of the output registers. We can calculate the end of that frame by adding |
1641 | the size of output (sof (size of frame) - sol (size of locals)). */ | |
1642 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1643 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
1644 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
1645 | ||
1646 | bsp = rse_address_add (cache->bsp, -(cache->sof)); | |
1647 | prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); | |
1648 | ||
aa2a9a3c | 1649 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
004d836a JJ |
1650 | prev_bsp); |
1651 | } | |
1652 | else if (regnum == IA64_CFM_REGNUM) | |
1653 | { | |
4afcc598 JJ |
1654 | CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
1655 | ||
1656 | if (addr != 0) | |
004d836a | 1657 | { |
4afcc598 JJ |
1658 | *lvalp = lval_memory; |
1659 | *addrp = addr; | |
1660 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
004d836a | 1661 | } |
4afcc598 JJ |
1662 | else if (cache->prev_cfm) |
1663 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->prev_cfm); | |
1664 | else if (cache->frameless) | |
004d836a | 1665 | { |
4afcc598 JJ |
1666 | CORE_ADDR cfm = 0; |
1667 | frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep); | |
004d836a | 1668 | } |
16461d7d KB |
1669 | } |
1670 | else if (regnum == IA64_VFP_REGNUM) | |
1671 | { | |
1672 | /* If the function in question uses an automatic register (r32-r127) | |
1673 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1674 | above. If the function lacks one of these frame pointers, we can | |
004d836a JJ |
1675 | still provide a value since we know the size of the frame. */ |
1676 | CORE_ADDR vfp = cache->base; | |
aa2a9a3c | 1677 | store_unsigned_integer (valuep, register_size (current_gdbarch, IA64_VFP_REGNUM), vfp); |
16461d7d | 1678 | } |
004d836a | 1679 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
16461d7d | 1680 | { |
004d836a | 1681 | char pr_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1682 | int pr_optim; |
004d836a | 1683 | int pr_realnum; |
16461d7d KB |
1684 | enum lval_type pr_lval; |
1685 | CORE_ADDR pr_addr; | |
004d836a JJ |
1686 | ULONGEST prN_val; |
1687 | ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM, | |
1688 | &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep); | |
1689 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
3a854e23 KB |
1690 | { |
1691 | /* Fetch predicate register rename base from current frame | |
004d836a JJ |
1692 | marker for this frame. */ |
1693 | int rrb_pr = (cache->cfm >> 32) & 0x3f; | |
3a854e23 | 1694 | |
004d836a JJ |
1695 | /* Adjust the register number to account for register rotation. */ |
1696 | regnum = VP16_REGNUM | |
1697 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
3a854e23 | 1698 | } |
004d836a JJ |
1699 | prN_val = extract_bit_field ((unsigned char *) pr_valuep, |
1700 | regnum - VP0_REGNUM, 1); | |
aa2a9a3c | 1701 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); |
16461d7d KB |
1702 | } |
1703 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1704 | { | |
004d836a | 1705 | char unat_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1706 | int unat_optim; |
004d836a | 1707 | int unat_realnum; |
16461d7d KB |
1708 | enum lval_type unat_lval; |
1709 | CORE_ADDR unat_addr; | |
004d836a JJ |
1710 | ULONGEST unatN_val; |
1711 | ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM, | |
1712 | &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep); | |
1713 | unatN_val = extract_bit_field ((unsigned char *) unat_valuep, | |
16461d7d | 1714 | regnum - IA64_NAT0_REGNUM, 1); |
aa2a9a3c | 1715 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
16461d7d | 1716 | unatN_val); |
16461d7d KB |
1717 | } |
1718 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1719 | { | |
1720 | int natval = 0; | |
1721 | /* Find address of general register corresponding to nat bit we're | |
004d836a JJ |
1722 | interested in. */ |
1723 | CORE_ADDR gr_addr; | |
244bc108 | 1724 | |
004d836a JJ |
1725 | gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM |
1726 | + IA64_GR0_REGNUM]; | |
1727 | if (gr_addr != 0) | |
244bc108 | 1728 | { |
004d836a | 1729 | /* Compute address of nat collection bits. */ |
16461d7d | 1730 | CORE_ADDR nat_addr = gr_addr | 0x1f8; |
004d836a | 1731 | CORE_ADDR bsp; |
16461d7d KB |
1732 | CORE_ADDR nat_collection; |
1733 | int nat_bit; | |
1734 | /* If our nat collection address is bigger than bsp, we have to get | |
1735 | the nat collection from rnat. Otherwise, we fetch the nat | |
004d836a JJ |
1736 | collection from the computed address. */ |
1737 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1738 | bsp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1739 | if (nat_addr >= bsp) |
004d836a JJ |
1740 | { |
1741 | frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf); | |
1742 | nat_collection = extract_unsigned_integer (buf, 8); | |
1743 | } | |
16461d7d KB |
1744 | else |
1745 | nat_collection = read_memory_integer (nat_addr, 8); | |
1746 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1747 | natval = (nat_collection >> nat_bit) & 1; | |
1748 | } | |
004d836a | 1749 | |
aa2a9a3c | 1750 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), natval); |
244bc108 KB |
1751 | } |
1752 | else if (regnum == IA64_IP_REGNUM) | |
1753 | { | |
004d836a | 1754 | CORE_ADDR pc = 0; |
4afcc598 | 1755 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1756 | |
4afcc598 | 1757 | if (addr != 0) |
004d836a | 1758 | { |
4afcc598 JJ |
1759 | *lvalp = lval_memory; |
1760 | *addrp = addr; | |
1761 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
004d836a JJ |
1762 | pc = extract_unsigned_integer (buf, 8); |
1763 | } | |
4afcc598 | 1764 | else if (cache->frameless) |
004d836a | 1765 | { |
4afcc598 JJ |
1766 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); |
1767 | pc = extract_unsigned_integer (buf, 8); | |
244bc108 | 1768 | } |
004d836a JJ |
1769 | pc &= ~0xf; |
1770 | store_unsigned_integer (valuep, 8, pc); | |
244bc108 | 1771 | } |
004d836a | 1772 | else if (regnum == IA64_PSR_REGNUM) |
244bc108 | 1773 | { |
4afcc598 JJ |
1774 | /* We don't know how to get the complete previous PSR, but we need it for |
1775 | the slot information when we unwind the pc (pc is formed of IP register | |
1776 | plus slot information from PSR). To get the previous slot information, | |
1777 | we mask it off the return address. */ | |
004d836a JJ |
1778 | ULONGEST slot_num = 0; |
1779 | CORE_ADDR pc= 0; | |
1780 | CORE_ADDR psr = 0; | |
4afcc598 | 1781 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a JJ |
1782 | |
1783 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1784 | psr = extract_unsigned_integer (buf, 8); | |
1785 | ||
4afcc598 | 1786 | if (addr != 0) |
244bc108 | 1787 | { |
4afcc598 JJ |
1788 | *lvalp = lval_memory; |
1789 | *addrp = addr; | |
1790 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
004d836a | 1791 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1792 | } |
4afcc598 | 1793 | else if (cache->frameless) |
004d836a | 1794 | { |
4afcc598 JJ |
1795 | CORE_ADDR pc; |
1796 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); | |
1797 | pc = extract_unsigned_integer (buf, 8); | |
004d836a JJ |
1798 | } |
1799 | psr &= ~(3LL << 41); | |
1800 | slot_num = pc & 0x3LL; | |
1801 | psr |= (CORE_ADDR)slot_num << 41; | |
1802 | store_unsigned_integer (valuep, 8, psr); | |
1803 | } | |
4afcc598 JJ |
1804 | else if (regnum == IA64_BR0_REGNUM) |
1805 | { | |
1806 | CORE_ADDR br0 = 0; | |
1807 | CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; | |
1808 | if (addr != 0) | |
1809 | { | |
1810 | *lvalp = lval_memory; | |
1811 | *addrp = addr; | |
1812 | read_memory (addr, buf, register_size (current_gdbarch, IA64_BR0_REGNUM)); | |
1813 | br0 = extract_unsigned_integer (buf, 8); | |
1814 | } | |
1815 | store_unsigned_integer (valuep, 8, br0); | |
1816 | } | |
004d836a JJ |
1817 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || |
1818 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
1819 | { | |
1820 | CORE_ADDR addr = 0; | |
1821 | if (regnum >= V32_REGNUM) | |
1822 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1823 | addr = cache->saved_regs[regnum]; | |
244bc108 KB |
1824 | if (addr != 0) |
1825 | { | |
004d836a JJ |
1826 | *lvalp = lval_memory; |
1827 | *addrp = addr; | |
aa2a9a3c | 1828 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
244bc108 | 1829 | } |
004d836a | 1830 | else if (cache->frameless) |
244bc108 | 1831 | { |
004d836a JJ |
1832 | char r_valuep[MAX_REGISTER_SIZE]; |
1833 | int r_optim; | |
1834 | int r_realnum; | |
1835 | enum lval_type r_lval; | |
1836 | CORE_ADDR r_addr; | |
1837 | CORE_ADDR prev_cfm, prev_bsp, prev_bof; | |
1838 | CORE_ADDR addr = 0; | |
1839 | if (regnum >= V32_REGNUM) | |
1840 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1841 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1842 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1843 | prev_cfm = extract_unsigned_integer (r_valuep, 8); | |
1844 | ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM, | |
1845 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1846 | prev_bsp = extract_unsigned_integer (r_valuep, 8); | |
1847 | prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); | |
1848 | ||
1849 | addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); | |
1850 | *lvalp = lval_memory; | |
1851 | *addrp = addr; | |
aa2a9a3c | 1852 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
244bc108 | 1853 | } |
16461d7d KB |
1854 | } |
1855 | else | |
1856 | { | |
004d836a | 1857 | CORE_ADDR addr = 0; |
3a854e23 KB |
1858 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1859 | { | |
1860 | /* Fetch floating point register rename base from current | |
004d836a JJ |
1861 | frame marker for this frame. */ |
1862 | int rrb_fr = (cache->cfm >> 25) & 0x7f; | |
3a854e23 KB |
1863 | |
1864 | /* Adjust the floating point register number to account for | |
004d836a | 1865 | register rotation. */ |
3a854e23 KB |
1866 | regnum = IA64_FR32_REGNUM |
1867 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1868 | } | |
1869 | ||
004d836a JJ |
1870 | /* If we have stored a memory address, access the register. */ |
1871 | addr = cache->saved_regs[regnum]; | |
1872 | if (addr != 0) | |
1873 | { | |
1874 | *lvalp = lval_memory; | |
1875 | *addrp = addr; | |
aa2a9a3c | 1876 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
004d836a JJ |
1877 | } |
1878 | /* Otherwise, punt and get the current value of the register. */ | |
1879 | else | |
1880 | frame_unwind_register (next_frame, regnum, valuep); | |
16461d7d | 1881 | } |
4afcc598 JJ |
1882 | |
1883 | if (gdbarch_debug >= 1) | |
1884 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 1885 | "regular prev register <%d> <%s> is 0x%s\n", regnum, |
4afcc598 | 1886 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
1887 | ? ia64_register_names[regnum] : "r??"), |
1888 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
16461d7d | 1889 | } |
004d836a JJ |
1890 | |
1891 | static const struct frame_unwind ia64_frame_unwind = | |
1892 | { | |
1893 | NORMAL_FRAME, | |
1894 | &ia64_frame_this_id, | |
1895 | &ia64_frame_prev_register | |
1896 | }; | |
1897 | ||
1898 | static const struct frame_unwind * | |
1899 | ia64_frame_sniffer (struct frame_info *next_frame) | |
1900 | { | |
1901 | return &ia64_frame_unwind; | |
1902 | } | |
1903 | ||
1904 | /* Signal trampolines. */ | |
1905 | ||
1906 | static void | |
1907 | ia64_sigtramp_frame_init_saved_regs (struct ia64_frame_cache *cache) | |
1908 | { | |
1909 | if (SIGCONTEXT_REGISTER_ADDRESS) | |
1910 | { | |
1911 | int regno; | |
1912 | ||
1913 | cache->saved_regs[IA64_VRAP_REGNUM] = | |
1914 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_IP_REGNUM); | |
1915 | cache->saved_regs[IA64_CFM_REGNUM] = | |
1916 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CFM_REGNUM); | |
1917 | cache->saved_regs[IA64_PSR_REGNUM] = | |
1918 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PSR_REGNUM); | |
004d836a | 1919 | cache->saved_regs[IA64_BSP_REGNUM] = |
4afcc598 | 1920 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_BSP_REGNUM); |
004d836a JJ |
1921 | cache->saved_regs[IA64_RNAT_REGNUM] = |
1922 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_RNAT_REGNUM); | |
1923 | cache->saved_regs[IA64_CCV_REGNUM] = | |
1924 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CCV_REGNUM); | |
1925 | cache->saved_regs[IA64_UNAT_REGNUM] = | |
1926 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_UNAT_REGNUM); | |
1927 | cache->saved_regs[IA64_FPSR_REGNUM] = | |
1928 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_FPSR_REGNUM); | |
1929 | cache->saved_regs[IA64_PFS_REGNUM] = | |
1930 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PFS_REGNUM); | |
1931 | cache->saved_regs[IA64_LC_REGNUM] = | |
1932 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_LC_REGNUM); | |
1933 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) | |
4afcc598 JJ |
1934 | cache->saved_regs[regno] = |
1935 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
004d836a JJ |
1936 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
1937 | cache->saved_regs[regno] = | |
1938 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
932644f0 | 1939 | for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
004d836a JJ |
1940 | cache->saved_regs[regno] = |
1941 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | static struct ia64_frame_cache * | |
1946 | ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1947 | { | |
1948 | struct ia64_frame_cache *cache; | |
1949 | CORE_ADDR addr; | |
1950 | char buf[8]; | |
1951 | int i; | |
1952 | ||
1953 | if (*this_cache) | |
1954 | return *this_cache; | |
1955 | ||
1956 | cache = ia64_alloc_frame_cache (); | |
1957 | ||
1958 | frame_unwind_register (next_frame, sp_regnum, buf); | |
4afcc598 JJ |
1959 | /* Note that frame size is hard-coded below. We cannot calculate it |
1960 | via prologue examination. */ | |
1961 | cache->base = extract_unsigned_integer (buf, 8) + 16; | |
1962 | ||
1963 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1964 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1965 | ||
1966 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1967 | cache->cfm = extract_unsigned_integer (buf, 8); | |
1968 | cache->sof = cache->cfm & 0x7f; | |
004d836a JJ |
1969 | |
1970 | ia64_sigtramp_frame_init_saved_regs (cache); | |
1971 | ||
1972 | *this_cache = cache; | |
1973 | return cache; | |
1974 | } | |
1975 | ||
1976 | static void | |
1977 | ia64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1978 | void **this_cache, struct frame_id *this_id) | |
1979 | { | |
1980 | struct ia64_frame_cache *cache = | |
1981 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1982 | ||
4afcc598 JJ |
1983 | (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp); |
1984 | if (gdbarch_debug >= 1) | |
1985 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1986 | "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1987 | paddr_nz (this_id->code_addr), | |
1988 | paddr_nz (this_id->stack_addr), | |
1989 | paddr_nz (cache->bsp), next_frame); | |
004d836a JJ |
1990 | } |
1991 | ||
1992 | static void | |
1993 | ia64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
1994 | void **this_cache, | |
1995 | int regnum, int *optimizedp, | |
1996 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 1997 | int *realnump, gdb_byte *valuep) |
004d836a | 1998 | { |
4afcc598 JJ |
1999 | char dummy_valp[MAX_REGISTER_SIZE]; |
2000 | char buf[MAX_REGISTER_SIZE]; | |
2001 | ||
2002 | struct ia64_frame_cache *cache = | |
2003 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
2004 | ||
2005 | gdb_assert (regnum >= 0); | |
2006 | ||
2007 | if (!target_has_registers) | |
8a3fe4f8 | 2008 | error (_("No registers.")); |
4afcc598 JJ |
2009 | |
2010 | *optimizedp = 0; | |
2011 | *addrp = 0; | |
2012 | *lvalp = not_lval; | |
2013 | *realnump = -1; | |
2014 | ||
2015 | /* Rather than check each time if valuep is non-null, supply a dummy buffer | |
2016 | when valuep is not supplied. */ | |
2017 | if (!valuep) | |
2018 | valuep = dummy_valp; | |
2019 | ||
2020 | memset (valuep, 0, register_size (current_gdbarch, regnum)); | |
2021 | ||
2022 | if (regnum == IA64_IP_REGNUM) | |
2023 | { | |
2024 | CORE_ADDR pc = 0; | |
2025 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; | |
2026 | ||
2027 | if (addr != 0) | |
2028 | { | |
2029 | *lvalp = lval_memory; | |
2030 | *addrp = addr; | |
2031 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
2032 | pc = extract_unsigned_integer (buf, 8); | |
2033 | } | |
2034 | pc &= ~0xf; | |
2035 | store_unsigned_integer (valuep, 8, pc); | |
2036 | } | |
2037 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || | |
2038 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
2039 | { | |
2040 | CORE_ADDR addr = 0; | |
2041 | if (regnum >= V32_REGNUM) | |
2042 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
2043 | addr = cache->saved_regs[regnum]; | |
2044 | if (addr != 0) | |
2045 | { | |
2046 | *lvalp = lval_memory; | |
2047 | *addrp = addr; | |
2048 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
2049 | } | |
2050 | } | |
2051 | else | |
2052 | { | |
2053 | /* All other registers not listed above. */ | |
2054 | CORE_ADDR addr = cache->saved_regs[regnum]; | |
2055 | if (addr != 0) | |
2056 | { | |
2057 | *lvalp = lval_memory; | |
2058 | *addrp = addr; | |
2059 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
2060 | } | |
2061 | } | |
004d836a | 2062 | |
4afcc598 JJ |
2063 | if (gdbarch_debug >= 1) |
2064 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2065 | "sigtramp prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2066 | (regnum < IA64_GR32_REGNUM |
2067 | || (regnum > IA64_GR127_REGNUM | |
2068 | && regnum < LAST_PSEUDO_REGNUM)) | |
2069 | ? ia64_register_names[regnum] | |
2070 | : (regnum < LAST_PSEUDO_REGNUM | |
2071 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2072 | : "OUT_OF_RANGE"), | |
78ced177 | 2073 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
004d836a JJ |
2074 | } |
2075 | ||
2076 | static const struct frame_unwind ia64_sigtramp_frame_unwind = | |
2077 | { | |
2078 | SIGTRAMP_FRAME, | |
2079 | ia64_sigtramp_frame_this_id, | |
2080 | ia64_sigtramp_frame_prev_register | |
2081 | }; | |
2082 | ||
2083 | static const struct frame_unwind * | |
2084 | ia64_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2085 | { | |
74174d2e UW |
2086 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
2087 | if (tdep->pc_in_sigtramp) | |
2088 | { | |
2089 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
004d836a | 2090 | |
74174d2e UW |
2091 | if (tdep->pc_in_sigtramp (pc)) |
2092 | return &ia64_sigtramp_frame_unwind; | |
2093 | } | |
004d836a JJ |
2094 | |
2095 | return NULL; | |
2096 | } | |
2097 | \f | |
2098 | ||
2099 | static CORE_ADDR | |
2100 | ia64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
2101 | { | |
2102 | struct ia64_frame_cache *cache = | |
2103 | ia64_frame_cache (next_frame, this_cache); | |
2104 | ||
2105 | return cache->base; | |
2106 | } | |
2107 | ||
2108 | static const struct frame_base ia64_frame_base = | |
2109 | { | |
2110 | &ia64_frame_unwind, | |
2111 | ia64_frame_base_address, | |
2112 | ia64_frame_base_address, | |
2113 | ia64_frame_base_address | |
2114 | }; | |
16461d7d | 2115 | |
968d1cb4 JJ |
2116 | #ifdef HAVE_LIBUNWIND_IA64_H |
2117 | ||
2118 | struct ia64_unwind_table_entry | |
2119 | { | |
2120 | unw_word_t start_offset; | |
2121 | unw_word_t end_offset; | |
2122 | unw_word_t info_offset; | |
2123 | }; | |
2124 | ||
2125 | static __inline__ uint64_t | |
2126 | ia64_rse_slot_num (uint64_t addr) | |
2127 | { | |
2128 | return (addr >> 3) & 0x3f; | |
2129 | } | |
2130 | ||
2131 | /* Skip over a designated number of registers in the backing | |
2132 | store, remembering every 64th position is for NAT. */ | |
2133 | static __inline__ uint64_t | |
2134 | ia64_rse_skip_regs (uint64_t addr, long num_regs) | |
2135 | { | |
2136 | long delta = ia64_rse_slot_num(addr) + num_regs; | |
2137 | ||
2138 | if (num_regs < 0) | |
2139 | delta -= 0x3e; | |
2140 | return addr + ((num_regs + delta/0x3f) << 3); | |
2141 | } | |
2142 | ||
2143 | /* Gdb libunwind-frame callback function to convert from an ia64 gdb register | |
2144 | number to a libunwind register number. */ | |
2145 | static int | |
2146 | ia64_gdb2uw_regnum (int regnum) | |
2147 | { | |
2148 | if (regnum == sp_regnum) | |
2149 | return UNW_IA64_SP; | |
2150 | else if (regnum == IA64_BSP_REGNUM) | |
2151 | return UNW_IA64_BSP; | |
2152 | else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) | |
2153 | return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); | |
2154 | else if ((unsigned) (regnum - V32_REGNUM) < 95) | |
2155 | return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); | |
2156 | else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) | |
2157 | return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); | |
2158 | else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) | |
2159 | return -1; | |
2160 | else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) | |
2161 | return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); | |
2162 | else if (regnum == IA64_PR_REGNUM) | |
2163 | return UNW_IA64_PR; | |
2164 | else if (regnum == IA64_IP_REGNUM) | |
2165 | return UNW_REG_IP; | |
2166 | else if (regnum == IA64_CFM_REGNUM) | |
2167 | return UNW_IA64_CFM; | |
2168 | else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) | |
2169 | return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); | |
2170 | else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) | |
2171 | return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); | |
2172 | else | |
2173 | return -1; | |
2174 | } | |
2175 | ||
2176 | /* Gdb libunwind-frame callback function to convert from a libunwind register | |
2177 | number to a ia64 gdb register number. */ | |
2178 | static int | |
2179 | ia64_uw2gdb_regnum (int uw_regnum) | |
2180 | { | |
2181 | if (uw_regnum == UNW_IA64_SP) | |
2182 | return sp_regnum; | |
2183 | else if (uw_regnum == UNW_IA64_BSP) | |
2184 | return IA64_BSP_REGNUM; | |
2185 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) | |
2186 | return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); | |
2187 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) | |
2188 | return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); | |
2189 | else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) | |
2190 | return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); | |
2191 | else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) | |
2192 | return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); | |
2193 | else if (uw_regnum == UNW_IA64_PR) | |
2194 | return IA64_PR_REGNUM; | |
2195 | else if (uw_regnum == UNW_REG_IP) | |
2196 | return IA64_IP_REGNUM; | |
2197 | else if (uw_regnum == UNW_IA64_CFM) | |
2198 | return IA64_CFM_REGNUM; | |
2199 | else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) | |
2200 | return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); | |
2201 | else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) | |
2202 | return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); | |
2203 | else | |
2204 | return -1; | |
2205 | } | |
2206 | ||
2207 | /* Gdb libunwind-frame callback function to reveal if register is a float | |
2208 | register or not. */ | |
2209 | static int | |
2210 | ia64_is_fpreg (int uw_regnum) | |
2211 | { | |
2212 | return unw_is_fpreg (uw_regnum); | |
2213 | } | |
2214 | ||
2215 | /* Libunwind callback accessor function for general registers. */ | |
2216 | static int | |
2217 | ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2218 | int write, void *arg) | |
2219 | { | |
2220 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2221 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
2222 | struct frame_info *next_frame = arg; | |
2223 | long new_sof, old_sof; | |
2224 | char buf[MAX_REGISTER_SIZE]; | |
2225 | ||
45ecac4b UW |
2226 | /* We never call any libunwind routines that need to write registers. */ |
2227 | gdb_assert (!write); | |
968d1cb4 | 2228 | |
45ecac4b | 2229 | switch (uw_regnum) |
968d1cb4 | 2230 | { |
45ecac4b UW |
2231 | case UNW_REG_IP: |
2232 | /* Libunwind expects to see the pc value which means the slot number | |
2233 | from the psr must be merged with the ip word address. */ | |
2234 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
2235 | ip = extract_unsigned_integer (buf, 8); | |
2236 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
2237 | psr = extract_unsigned_integer (buf, 8); | |
2238 | *val = ip | ((psr >> 41) & 0x3); | |
2239 | break; | |
2240 | ||
2241 | case UNW_IA64_AR_BSP: | |
2242 | /* Libunwind expects to see the beginning of the current register | |
2243 | frame so we must account for the fact that ptrace() will return a value | |
2244 | for bsp that points *after* the current register frame. */ | |
2245 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2246 | bsp = extract_unsigned_integer (buf, 8); | |
2247 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2248 | cfm = extract_unsigned_integer (buf, 8); | |
2249 | sof = (cfm & 0x7f); | |
2250 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2251 | break; | |
968d1cb4 | 2252 | |
45ecac4b UW |
2253 | case UNW_IA64_AR_BSPSTORE: |
2254 | /* Libunwind wants bspstore to be after the current register frame. | |
2255 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2256 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2257 | *val = extract_unsigned_integer (buf, 8); | |
2258 | break; | |
2259 | ||
2260 | default: | |
2261 | /* For all other registers, just unwind the value directly. */ | |
2262 | frame_unwind_register (next_frame, regnum, buf); | |
2263 | *val = extract_unsigned_integer (buf, 8); | |
2264 | break; | |
968d1cb4 | 2265 | } |
45ecac4b UW |
2266 | |
2267 | if (gdbarch_debug >= 1) | |
2268 | fprintf_unfiltered (gdb_stdlog, | |
2269 | " access_reg: from cache: %4s=0x%s\n", | |
2270 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2271 | ? ia64_register_names[regnum] : "r??"), | |
2272 | paddr_nz (*val)); | |
968d1cb4 JJ |
2273 | return 0; |
2274 | } | |
2275 | ||
2276 | /* Libunwind callback accessor function for floating-point registers. */ | |
2277 | static int | |
2278 | ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, | |
2279 | int write, void *arg) | |
2280 | { | |
2281 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
45ecac4b | 2282 | struct frame_info *next_frame = arg; |
968d1cb4 | 2283 | |
45ecac4b UW |
2284 | /* We never call any libunwind routines that need to write registers. */ |
2285 | gdb_assert (!write); | |
2286 | ||
2287 | frame_unwind_register (next_frame, regnum, (char *) val); | |
2288 | ||
968d1cb4 JJ |
2289 | return 0; |
2290 | } | |
2291 | ||
c5a27d9c JJ |
2292 | /* Libunwind callback accessor function for top-level rse registers. */ |
2293 | static int | |
2294 | ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2295 | int write, void *arg) | |
2296 | { | |
2297 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2298 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
45ecac4b | 2299 | struct regcache *regcache = arg; |
c5a27d9c | 2300 | long new_sof, old_sof; |
45ecac4b | 2301 | char buf[MAX_REGISTER_SIZE]; |
c5a27d9c | 2302 | |
45ecac4b UW |
2303 | /* We never call any libunwind routines that need to write registers. */ |
2304 | gdb_assert (!write); | |
c5a27d9c | 2305 | |
45ecac4b | 2306 | switch (uw_regnum) |
c5a27d9c | 2307 | { |
45ecac4b UW |
2308 | case UNW_REG_IP: |
2309 | /* Libunwind expects to see the pc value which means the slot number | |
2310 | from the psr must be merged with the ip word address. */ | |
2311 | regcache_cooked_read (regcache, IA64_IP_REGNUM, buf); | |
2312 | ip = extract_unsigned_integer (buf, 8); | |
2313 | regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf); | |
2314 | psr = extract_unsigned_integer (buf, 8); | |
2315 | *val = ip | ((psr >> 41) & 0x3); | |
2316 | break; | |
c5a27d9c | 2317 | |
45ecac4b UW |
2318 | case UNW_IA64_AR_BSP: |
2319 | /* Libunwind expects to see the beginning of the current register | |
2320 | frame so we must account for the fact that ptrace() will return a value | |
2321 | for bsp that points *after* the current register frame. */ | |
2322 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2323 | bsp = extract_unsigned_integer (buf, 8); | |
2324 | regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf); | |
2325 | cfm = extract_unsigned_integer (buf, 8); | |
2326 | sof = (cfm & 0x7f); | |
2327 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2328 | break; | |
c5a27d9c | 2329 | |
45ecac4b UW |
2330 | case UNW_IA64_AR_BSPSTORE: |
2331 | /* Libunwind wants bspstore to be after the current register frame. | |
2332 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2333 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2334 | *val = extract_unsigned_integer (buf, 8); | |
2335 | break; | |
c5a27d9c | 2336 | |
45ecac4b UW |
2337 | default: |
2338 | /* For all other registers, just unwind the value directly. */ | |
2339 | regcache_cooked_read (regcache, regnum, buf); | |
2340 | *val = extract_unsigned_integer (buf, 8); | |
2341 | break; | |
c5a27d9c JJ |
2342 | } |
2343 | ||
2344 | if (gdbarch_debug >= 1) | |
2345 | fprintf_unfiltered (gdb_stdlog, | |
2346 | " access_rse_reg: from cache: %4s=0x%s\n", | |
2347 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2348 | ? ia64_register_names[regnum] : "r??"), | |
2349 | paddr_nz (*val)); | |
2350 | ||
2351 | return 0; | |
2352 | } | |
2353 | ||
45ecac4b UW |
2354 | /* Libunwind callback accessor function for top-level fp registers. */ |
2355 | static int | |
2356 | ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, | |
2357 | unw_fpreg_t *val, int write, void *arg) | |
2358 | { | |
2359 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2360 | struct regcache *regcache = arg; | |
2361 | ||
2362 | /* We never call any libunwind routines that need to write registers. */ | |
2363 | gdb_assert (!write); | |
2364 | ||
2365 | regcache_cooked_read (regcache, regnum, (char *) val); | |
2366 | ||
2367 | return 0; | |
2368 | } | |
2369 | ||
968d1cb4 JJ |
2370 | /* Libunwind callback accessor function for accessing memory. */ |
2371 | static int | |
2372 | ia64_access_mem (unw_addr_space_t as, | |
2373 | unw_word_t addr, unw_word_t *val, | |
2374 | int write, void *arg) | |
2375 | { | |
c5a27d9c JJ |
2376 | if (addr - KERNEL_START < ktab_size) |
2377 | { | |
2378 | unw_word_t *laddr = (unw_word_t*) ((char *) ktab | |
2379 | + (addr - KERNEL_START)); | |
2380 | ||
2381 | if (write) | |
2382 | *laddr = *val; | |
2383 | else | |
2384 | *val = *laddr; | |
2385 | return 0; | |
2386 | } | |
2387 | ||
968d1cb4 JJ |
2388 | /* XXX do we need to normalize byte-order here? */ |
2389 | if (write) | |
2390 | return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2391 | else | |
2392 | return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2393 | } | |
2394 | ||
2395 | /* Call low-level function to access the kernel unwind table. */ | |
13547ab6 DJ |
2396 | static LONGEST |
2397 | getunwind_table (gdb_byte **buf_p) | |
968d1cb4 JJ |
2398 | { |
2399 | LONGEST x; | |
c5a27d9c | 2400 | |
10d6c8cd DJ |
2401 | /* FIXME drow/2005-09-10: This code used to call |
2402 | ia64_linux_xfer_unwind_table directly to fetch the unwind table | |
2403 | for the currently running ia64-linux kernel. That data should | |
2404 | come from the core file and be accessed via the auxv vector; if | |
2405 | we want to preserve fall back to the running kernel's table, then | |
2406 | we should find a way to override the corefile layer's | |
2407 | xfer_partial method. */ | |
968d1cb4 | 2408 | |
13547ab6 DJ |
2409 | x = target_read_alloc (¤t_target, TARGET_OBJECT_UNWIND_TABLE, |
2410 | NULL, buf_p); | |
2411 | ||
2412 | return x; | |
968d1cb4 | 2413 | } |
10d6c8cd | 2414 | |
968d1cb4 JJ |
2415 | /* Get the kernel unwind table. */ |
2416 | static int | |
2417 | get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) | |
2418 | { | |
c5a27d9c | 2419 | static struct ia64_table_entry *etab; |
968d1cb4 | 2420 | |
c5a27d9c | 2421 | if (!ktab) |
968d1cb4 | 2422 | { |
13547ab6 | 2423 | gdb_byte *ktab_buf; |
eeec829c | 2424 | LONGEST size; |
13547ab6 | 2425 | |
eeec829c DJ |
2426 | size = getunwind_table (&ktab_buf); |
2427 | if (size <= 0) | |
13547ab6 | 2428 | return -UNW_ENOINFO; |
eeec829c DJ |
2429 | |
2430 | ktab = (struct ia64_table_entry *) ktab_buf; | |
2431 | ktab_size = size; | |
13547ab6 | 2432 | |
968d1cb4 | 2433 | for (etab = ktab; etab->start_offset; ++etab) |
c5a27d9c | 2434 | etab->info_offset += KERNEL_START; |
968d1cb4 JJ |
2435 | } |
2436 | ||
2437 | if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) | |
2438 | return -UNW_ENOINFO; | |
2439 | ||
2440 | di->format = UNW_INFO_FORMAT_TABLE; | |
2441 | di->gp = 0; | |
2442 | di->start_ip = ktab[0].start_offset; | |
2443 | di->end_ip = etab[-1].end_offset; | |
2444 | di->u.ti.name_ptr = (unw_word_t) "<kernel>"; | |
2445 | di->u.ti.segbase = 0; | |
2446 | di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); | |
2447 | di->u.ti.table_data = (unw_word_t *) ktab; | |
2448 | ||
2449 | if (gdbarch_debug >= 1) | |
2450 | fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " | |
78ced177 JJ |
2451 | "segbase=0x%s, length=%s, gp=0x%s\n", |
2452 | (char *) di->u.ti.name_ptr, | |
2453 | paddr_nz (di->u.ti.segbase), | |
2454 | paddr_u (di->u.ti.table_len), | |
2455 | paddr_nz (di->gp)); | |
968d1cb4 JJ |
2456 | return 0; |
2457 | } | |
2458 | ||
2459 | /* Find the unwind table entry for a specified address. */ | |
2460 | static int | |
2461 | ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, | |
2462 | unw_dyn_info_t *dip, void **buf) | |
2463 | { | |
2464 | Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; | |
2465 | Elf_Internal_Ehdr *ehdr; | |
2466 | unw_word_t segbase = 0; | |
2467 | CORE_ADDR load_base; | |
2468 | bfd *bfd; | |
2469 | int i; | |
2470 | ||
2471 | bfd = objfile->obfd; | |
2472 | ||
2473 | ehdr = elf_tdata (bfd)->elf_header; | |
2474 | phdr = elf_tdata (bfd)->phdr; | |
2475 | ||
2476 | load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
2477 | ||
2478 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2479 | { | |
2480 | switch (phdr[i].p_type) | |
2481 | { | |
2482 | case PT_LOAD: | |
2483 | if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) | |
2484 | < phdr[i].p_memsz) | |
2485 | p_text = phdr + i; | |
2486 | break; | |
2487 | ||
2488 | case PT_IA_64_UNWIND: | |
2489 | p_unwind = phdr + i; | |
2490 | break; | |
2491 | ||
2492 | default: | |
2493 | break; | |
2494 | } | |
2495 | } | |
2496 | ||
c5a27d9c | 2497 | if (!p_text || !p_unwind) |
968d1cb4 JJ |
2498 | return -UNW_ENOINFO; |
2499 | ||
c5a27d9c JJ |
2500 | /* Verify that the segment that contains the IP also contains |
2501 | the static unwind table. If not, we may be in the Linux kernel's | |
2502 | DSO gate page in which case the unwind table is another segment. | |
2503 | Otherwise, we are dealing with runtime-generated code, for which we | |
2504 | have no info here. */ | |
968d1cb4 JJ |
2505 | segbase = p_text->p_vaddr + load_base; |
2506 | ||
c5a27d9c JJ |
2507 | if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) |
2508 | { | |
2509 | int ok = 0; | |
2510 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2511 | { | |
2512 | if (phdr[i].p_type == PT_LOAD | |
2513 | && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz) | |
2514 | { | |
2515 | ok = 1; | |
2516 | /* Get the segbase from the section containing the | |
2517 | libunwind table. */ | |
2518 | segbase = phdr[i].p_vaddr + load_base; | |
2519 | } | |
2520 | } | |
2521 | if (!ok) | |
2522 | return -UNW_ENOINFO; | |
2523 | } | |
2524 | ||
2525 | dip->start_ip = p_text->p_vaddr + load_base; | |
968d1cb4 | 2526 | dip->end_ip = dip->start_ip + p_text->p_memsz; |
b33e8514 | 2527 | dip->gp = ia64_find_global_pointer (ip); |
503ff15d KB |
2528 | dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
2529 | dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); | |
2530 | dip->u.rti.segbase = segbase; | |
2531 | dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); | |
2532 | dip->u.rti.table_data = p_unwind->p_vaddr + load_base; | |
968d1cb4 JJ |
2533 | |
2534 | return 0; | |
2535 | } | |
2536 | ||
2537 | /* Libunwind callback accessor function to acquire procedure unwind-info. */ | |
2538 | static int | |
2539 | ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, | |
2540 | int need_unwind_info, void *arg) | |
2541 | { | |
2542 | struct obj_section *sec = find_pc_section (ip); | |
2543 | unw_dyn_info_t di; | |
2544 | int ret; | |
2545 | void *buf = NULL; | |
2546 | ||
2547 | if (!sec) | |
2548 | { | |
2549 | /* XXX This only works if the host and the target architecture are | |
2550 | both ia64 and if the have (more or less) the same kernel | |
2551 | version. */ | |
2552 | if (get_kernel_table (ip, &di) < 0) | |
2553 | return -UNW_ENOINFO; | |
503ff15d KB |
2554 | |
2555 | if (gdbarch_debug >= 1) | |
78ced177 JJ |
2556 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2557 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2558 | "length=%s,data=0x%s)\n", | |
2559 | paddr_nz (ip), (char *)di.u.ti.name_ptr, | |
2560 | paddr_nz (di.u.ti.segbase), | |
2561 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2562 | paddr_nz (di.gp), | |
2563 | paddr_u (di.u.ti.table_len), | |
2564 | paddr_nz ((CORE_ADDR)di.u.ti.table_data)); | |
968d1cb4 JJ |
2565 | } |
2566 | else | |
2567 | { | |
2568 | ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); | |
2569 | if (ret < 0) | |
2570 | return ret; | |
968d1cb4 | 2571 | |
503ff15d | 2572 | if (gdbarch_debug >= 1) |
78ced177 JJ |
2573 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2574 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2575 | "length=%s,data=0x%s)\n", | |
2576 | paddr_nz (ip), (char *)di.u.rti.name_ptr, | |
2577 | paddr_nz (di.u.rti.segbase), | |
2578 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2579 | paddr_nz (di.gp), | |
2580 | paddr_u (di.u.rti.table_len), | |
2581 | paddr_nz (di.u.rti.table_data)); | |
503ff15d | 2582 | } |
968d1cb4 | 2583 | |
503ff15d KB |
2584 | ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
2585 | arg); | |
968d1cb4 JJ |
2586 | |
2587 | /* We no longer need the dyn info storage so free it. */ | |
2588 | xfree (buf); | |
2589 | ||
2590 | return ret; | |
2591 | } | |
2592 | ||
2593 | /* Libunwind callback accessor function for cleanup. */ | |
2594 | static void | |
2595 | ia64_put_unwind_info (unw_addr_space_t as, | |
2596 | unw_proc_info_t *pip, void *arg) | |
2597 | { | |
2598 | /* Nothing required for now. */ | |
2599 | } | |
2600 | ||
2601 | /* Libunwind callback accessor function to get head of the dynamic | |
2602 | unwind-info registration list. */ | |
2603 | static int | |
2604 | ia64_get_dyn_info_list (unw_addr_space_t as, | |
2605 | unw_word_t *dilap, void *arg) | |
2606 | { | |
2607 | struct obj_section *text_sec; | |
2608 | struct objfile *objfile; | |
2609 | unw_word_t ip, addr; | |
2610 | unw_dyn_info_t di; | |
2611 | int ret; | |
2612 | ||
2613 | if (!libunwind_is_initialized ()) | |
2614 | return -UNW_ENOINFO; | |
2615 | ||
2616 | for (objfile = object_files; objfile; objfile = objfile->next) | |
2617 | { | |
2618 | void *buf = NULL; | |
2619 | ||
2620 | text_sec = objfile->sections + SECT_OFF_TEXT (objfile); | |
2621 | ip = text_sec->addr; | |
2622 | ret = ia64_find_unwind_table (objfile, ip, &di, &buf); | |
2623 | if (ret >= 0) | |
2624 | { | |
503ff15d | 2625 | addr = libunwind_find_dyn_list (as, &di, arg); |
968d1cb4 JJ |
2626 | /* We no longer need the dyn info storage so free it. */ |
2627 | xfree (buf); | |
2628 | ||
2629 | if (addr) | |
2630 | { | |
2631 | if (gdbarch_debug >= 1) | |
2632 | fprintf_unfiltered (gdb_stdlog, | |
2633 | "dynamic unwind table in objfile %s " | |
78ced177 | 2634 | "at 0x%s (gp=0x%s)\n", |
968d1cb4 | 2635 | bfd_get_filename (objfile->obfd), |
78ced177 | 2636 | paddr_nz (addr), paddr_nz (di.gp)); |
968d1cb4 JJ |
2637 | *dilap = addr; |
2638 | return 0; | |
2639 | } | |
2640 | } | |
2641 | } | |
2642 | return -UNW_ENOINFO; | |
2643 | } | |
2644 | ||
2645 | ||
2646 | /* Frame interface functions for libunwind. */ | |
2647 | ||
2648 | static void | |
2649 | ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
7166c4a9 | 2650 | struct frame_id *this_id) |
968d1cb4 JJ |
2651 | { |
2652 | char buf[8]; | |
2653 | CORE_ADDR bsp; | |
2654 | struct frame_id id; | |
c5a27d9c JJ |
2655 | CORE_ADDR prev_ip, addr; |
2656 | int realnum, optimized; | |
2657 | enum lval_type lval; | |
2658 | ||
968d1cb4 JJ |
2659 | |
2660 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
c5a27d9c JJ |
2661 | if (frame_id_eq (id, null_frame_id)) |
2662 | { | |
2663 | (*this_id) = null_frame_id; | |
2664 | return; | |
2665 | } | |
968d1cb4 | 2666 | |
c5a27d9c JJ |
2667 | /* We must add the bsp as the special address for frame comparison |
2668 | purposes. */ | |
968d1cb4 JJ |
2669 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
2670 | bsp = extract_unsigned_integer (buf, 8); | |
2671 | ||
c5a27d9c JJ |
2672 | /* If the previous frame pc value is 0, then we are at the end of the stack |
2673 | and don't want to unwind past this frame. We return a null frame_id to | |
2674 | indicate this. */ | |
2675 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2676 | &optimized, &lval, &addr, &realnum, buf); |
2677 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2678 | |
2679 | if (prev_ip != 0) | |
2680 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2681 | else | |
2682 | (*this_id) = null_frame_id; | |
968d1cb4 JJ |
2683 | |
2684 | if (gdbarch_debug >= 1) | |
2685 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
2686 | "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
2687 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2688 | paddr_nz (bsp), next_frame); | |
968d1cb4 JJ |
2689 | } |
2690 | ||
2691 | static void | |
2692 | ia64_libunwind_frame_prev_register (struct frame_info *next_frame, | |
2693 | void **this_cache, | |
2694 | int regnum, int *optimizedp, | |
2695 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2696 | int *realnump, gdb_byte *valuep) |
968d1cb4 JJ |
2697 | { |
2698 | int reg = regnum; | |
2699 | ||
2700 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2701 | reg = IA64_PR_REGNUM; | |
2702 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2703 | reg = IA64_UNAT_REGNUM; | |
2704 | ||
2705 | /* Let libunwind do most of the work. */ | |
2706 | libunwind_frame_prev_register (next_frame, this_cache, reg, | |
2707 | optimizedp, lvalp, addrp, realnump, valuep); | |
2708 | ||
6672f2ae AS |
2709 | /* No more to do if the value is not supposed to be supplied. */ |
2710 | if (!valuep) | |
2711 | return; | |
2712 | ||
968d1cb4 JJ |
2713 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2714 | { | |
2715 | ULONGEST prN_val; | |
2716 | ||
2717 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2718 | { | |
2719 | int rrb_pr = 0; | |
2720 | ULONGEST cfm; | |
2721 | unsigned char buf[MAX_REGISTER_SIZE]; | |
2722 | ||
2723 | /* Fetch predicate register rename base from current frame | |
2724 | marker for this frame. */ | |
2725 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2726 | cfm = extract_unsigned_integer (buf, 8); | |
2727 | rrb_pr = (cfm >> 32) & 0x3f; | |
2728 | ||
2729 | /* Adjust the register number to account for register rotation. */ | |
2730 | regnum = VP16_REGNUM | |
2731 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
2732 | } | |
2733 | prN_val = extract_bit_field ((unsigned char *) valuep, | |
2734 | regnum - VP0_REGNUM, 1); | |
2735 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); | |
2736 | } | |
2737 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2738 | { | |
2739 | ULONGEST unatN_val; | |
2740 | ||
2741 | unatN_val = extract_bit_field ((unsigned char *) valuep, | |
2742 | regnum - IA64_NAT0_REGNUM, 1); | |
2743 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), | |
2744 | unatN_val); | |
2745 | } | |
2746 | else if (regnum == IA64_BSP_REGNUM) | |
2747 | { | |
2748 | char cfm_valuep[MAX_REGISTER_SIZE]; | |
2749 | int cfm_optim; | |
2750 | int cfm_realnum; | |
2751 | enum lval_type cfm_lval; | |
2752 | CORE_ADDR cfm_addr; | |
2753 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
2754 | ||
2755 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
2756 | This corresponds to what the hardware bsp register will be if we pop the frame | |
2757 | back which is why we might have been called. We know that libunwind will pass us back | |
2758 | the beginning of the current frame so we should just add sof to it. */ | |
2759 | prev_bsp = extract_unsigned_integer (valuep, 8); | |
2760 | libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
2761 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
2762 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
2763 | prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); | |
2764 | ||
2765 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), | |
2766 | prev_bsp); | |
2767 | } | |
2768 | ||
2769 | if (gdbarch_debug >= 1) | |
2770 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2771 | "libunwind prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2772 | (regnum < IA64_GR32_REGNUM |
2773 | || (regnum > IA64_GR127_REGNUM | |
2774 | && regnum < LAST_PSEUDO_REGNUM)) | |
2775 | ? ia64_register_names[regnum] | |
2776 | : (regnum < LAST_PSEUDO_REGNUM | |
2777 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2778 | : "OUT_OF_RANGE"), | |
78ced177 | 2779 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
968d1cb4 JJ |
2780 | } |
2781 | ||
2782 | static const struct frame_unwind ia64_libunwind_frame_unwind = | |
2783 | { | |
2784 | NORMAL_FRAME, | |
2785 | ia64_libunwind_frame_this_id, | |
272dfcfd AS |
2786 | ia64_libunwind_frame_prev_register, |
2787 | NULL, | |
2788 | NULL, | |
2789 | NULL, | |
2790 | libunwind_frame_dealloc_cache | |
968d1cb4 JJ |
2791 | }; |
2792 | ||
2793 | static const struct frame_unwind * | |
2794 | ia64_libunwind_frame_sniffer (struct frame_info *next_frame) | |
2795 | { | |
2796 | if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame)) | |
2797 | return &ia64_libunwind_frame_unwind; | |
2798 | ||
2799 | return NULL; | |
2800 | } | |
2801 | ||
c5a27d9c JJ |
2802 | static void |
2803 | ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2804 | struct frame_id *this_id) | |
2805 | { | |
2806 | char buf[8]; | |
2807 | CORE_ADDR bsp; | |
2808 | struct frame_id id; | |
2809 | CORE_ADDR prev_ip; | |
2810 | ||
2811 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
2812 | if (frame_id_eq (id, null_frame_id)) | |
2813 | { | |
2814 | (*this_id) = null_frame_id; | |
2815 | return; | |
2816 | } | |
2817 | ||
2818 | /* We must add the bsp as the special address for frame comparison | |
2819 | purposes. */ | |
2820 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2821 | bsp = extract_unsigned_integer (buf, 8); | |
2822 | ||
2823 | /* For a sigtramp frame, we don't make the check for previous ip being 0. */ | |
2824 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2825 | ||
2826 | if (gdbarch_debug >= 1) | |
2827 | fprintf_unfiltered (gdb_stdlog, | |
2828 | "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", | |
2829 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2830 | paddr_nz (bsp), next_frame); | |
2831 | } | |
2832 | ||
2833 | static void | |
2834 | ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
2835 | void **this_cache, | |
2836 | int regnum, int *optimizedp, | |
2837 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2838 | int *realnump, gdb_byte *valuep) |
c5a27d9c JJ |
2839 | |
2840 | { | |
f1b4b38e | 2841 | gdb_byte buf[8]; |
c5a27d9c JJ |
2842 | CORE_ADDR prev_ip, addr; |
2843 | int realnum, optimized; | |
2844 | enum lval_type lval; | |
2845 | ||
2846 | ||
2847 | /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT | |
2848 | method of getting previous registers. */ | |
2849 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2850 | &optimized, &lval, &addr, &realnum, buf); |
2851 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2852 | |
2853 | if (prev_ip == 0) | |
2854 | { | |
2855 | void *tmp_cache = NULL; | |
2856 | ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp, | |
2857 | addrp, realnump, valuep); | |
2858 | } | |
2859 | else | |
2860 | ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp, | |
2861 | addrp, realnump, valuep); | |
2862 | } | |
2863 | ||
2864 | static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind = | |
2865 | { | |
2866 | SIGTRAMP_FRAME, | |
2867 | ia64_libunwind_sigtramp_frame_this_id, | |
2868 | ia64_libunwind_sigtramp_frame_prev_register | |
2869 | }; | |
2870 | ||
2871 | static const struct frame_unwind * | |
2872 | ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2873 | { | |
2874 | if (libunwind_is_initialized ()) | |
2875 | { | |
2876 | if (libunwind_sigtramp_frame_sniffer (next_frame)) | |
2877 | return &ia64_libunwind_sigtramp_frame_unwind; | |
2878 | return NULL; | |
2879 | } | |
2880 | else | |
2881 | return ia64_sigtramp_frame_sniffer (next_frame); | |
2882 | } | |
2883 | ||
968d1cb4 JJ |
2884 | /* Set of libunwind callback acccessor functions. */ |
2885 | static unw_accessors_t ia64_unw_accessors = | |
2886 | { | |
2887 | ia64_find_proc_info_x, | |
2888 | ia64_put_unwind_info, | |
2889 | ia64_get_dyn_info_list, | |
2890 | ia64_access_mem, | |
2891 | ia64_access_reg, | |
2892 | ia64_access_fpreg, | |
2893 | /* resume */ | |
2894 | /* get_proc_name */ | |
2895 | }; | |
2896 | ||
c5a27d9c JJ |
2897 | /* Set of special libunwind callback acccessor functions specific for accessing |
2898 | the rse registers. At the top of the stack, we want libunwind to figure out | |
2899 | how to read r32 - r127. Though usually they are found sequentially in memory | |
2900 | starting from $bof, this is not always true. */ | |
2901 | static unw_accessors_t ia64_unw_rse_accessors = | |
2902 | { | |
2903 | ia64_find_proc_info_x, | |
2904 | ia64_put_unwind_info, | |
2905 | ia64_get_dyn_info_list, | |
2906 | ia64_access_mem, | |
2907 | ia64_access_rse_reg, | |
45ecac4b | 2908 | ia64_access_rse_fpreg, |
c5a27d9c JJ |
2909 | /* resume */ |
2910 | /* get_proc_name */ | |
2911 | }; | |
2912 | ||
968d1cb4 JJ |
2913 | /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ |
2914 | static struct libunwind_descr ia64_libunwind_descr = | |
2915 | { | |
2916 | ia64_gdb2uw_regnum, | |
2917 | ia64_uw2gdb_regnum, | |
2918 | ia64_is_fpreg, | |
2919 | &ia64_unw_accessors, | |
c5a27d9c | 2920 | &ia64_unw_rse_accessors, |
968d1cb4 JJ |
2921 | }; |
2922 | ||
2923 | #endif /* HAVE_LIBUNWIND_IA64_H */ | |
2924 | ||
74055713 | 2925 | /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of |
82d1552e | 2926 | gdbarch_extract_return_value? GCC_P is true if compiled with gcc and TYPE |
74055713 | 2927 | is the type (which is known to be struct, union or array). */ |
16461d7d KB |
2928 | int |
2929 | ia64_use_struct_convention (int gcc_p, struct type *type) | |
2930 | { | |
64a5b29c KB |
2931 | struct type *float_elt_type; |
2932 | ||
2933 | /* HFAs are structures (or arrays) consisting entirely of floating | |
2934 | point values of the same length. Up to 8 of these are returned | |
2935 | in registers. Don't use the struct convention when this is the | |
004d836a | 2936 | case. */ |
64a5b29c KB |
2937 | float_elt_type = is_float_or_hfa_type (type); |
2938 | if (float_elt_type != NULL | |
2939 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
2940 | return 0; | |
2941 | ||
2942 | /* Other structs of length 32 or less are returned in r8-r11. | |
004d836a | 2943 | Don't use the struct convention for those either. */ |
16461d7d KB |
2944 | return TYPE_LENGTH (type) > 32; |
2945 | } | |
2946 | ||
2947 | void | |
2d522557 AC |
2948 | ia64_extract_return_value (struct type *type, struct regcache *regcache, |
2949 | gdb_byte *valbuf) | |
16461d7d | 2950 | { |
64a5b29c KB |
2951 | struct type *float_elt_type; |
2952 | ||
2953 | float_elt_type = is_float_or_hfa_type (type); | |
2954 | if (float_elt_type != NULL) | |
2955 | { | |
004d836a | 2956 | char from[MAX_REGISTER_SIZE]; |
64a5b29c KB |
2957 | int offset = 0; |
2958 | int regnum = IA64_FR8_REGNUM; | |
2959 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
2960 | ||
2961 | while (n-- > 0) | |
2962 | { | |
004d836a JJ |
2963 | regcache_cooked_read (regcache, regnum, from); |
2964 | convert_typed_floating (from, builtin_type_ia64_ext, | |
2965 | (char *)valbuf + offset, float_elt_type); | |
64a5b29c KB |
2966 | offset += TYPE_LENGTH (float_elt_type); |
2967 | regnum++; | |
2968 | } | |
2969 | } | |
16461d7d | 2970 | else |
004d836a JJ |
2971 | { |
2972 | ULONGEST val; | |
2973 | int offset = 0; | |
2974 | int regnum = IA64_GR8_REGNUM; | |
7b9ee6a8 DJ |
2975 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), |
2976 | IA64_GR8_REGNUM)); | |
004d836a JJ |
2977 | int n = TYPE_LENGTH (type) / reglen; |
2978 | int m = TYPE_LENGTH (type) % reglen; | |
16461d7d | 2979 | |
004d836a JJ |
2980 | while (n-- > 0) |
2981 | { | |
2982 | ULONGEST val; | |
2983 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
2984 | memcpy ((char *)valbuf + offset, &val, reglen); | |
2985 | offset += reglen; | |
2986 | regnum++; | |
2987 | } | |
16461d7d | 2988 | |
004d836a JJ |
2989 | if (m) |
2990 | { | |
2991 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
2992 | memcpy ((char *)valbuf + offset, &val, m); | |
2993 | } | |
2994 | } | |
16461d7d KB |
2995 | } |
2996 | ||
16461d7d | 2997 | |
64a5b29c KB |
2998 | static int |
2999 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
3000 | { | |
3001 | switch (TYPE_CODE (t)) | |
3002 | { | |
3003 | case TYPE_CODE_FLT: | |
3004 | if (*etp) | |
3005 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
3006 | else | |
3007 | { | |
3008 | *etp = t; | |
3009 | return 1; | |
3010 | } | |
3011 | break; | |
3012 | case TYPE_CODE_ARRAY: | |
98f96ba1 KB |
3013 | return |
3014 | is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), | |
3015 | etp); | |
64a5b29c KB |
3016 | break; |
3017 | case TYPE_CODE_STRUCT: | |
3018 | { | |
3019 | int i; | |
3020 | ||
3021 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
98f96ba1 KB |
3022 | if (!is_float_or_hfa_type_recurse |
3023 | (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) | |
64a5b29c KB |
3024 | return 0; |
3025 | return 1; | |
3026 | } | |
3027 | break; | |
3028 | default: | |
3029 | return 0; | |
3030 | break; | |
3031 | } | |
3032 | } | |
3033 | ||
3034 | /* Determine if the given type is one of the floating point types or | |
3035 | and HFA (which is a struct, array, or combination thereof whose | |
004d836a | 3036 | bottom-most elements are all of the same floating point type). */ |
64a5b29c KB |
3037 | |
3038 | static struct type * | |
3039 | is_float_or_hfa_type (struct type *t) | |
3040 | { | |
3041 | struct type *et = 0; | |
3042 | ||
3043 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
3044 | } | |
3045 | ||
3046 | ||
98f96ba1 KB |
3047 | /* Return 1 if the alignment of T is such that the next even slot |
3048 | should be used. Return 0, if the next available slot should | |
3049 | be used. (See section 8.5.1 of the IA-64 Software Conventions | |
004d836a | 3050 | and Runtime manual). */ |
98f96ba1 KB |
3051 | |
3052 | static int | |
3053 | slot_alignment_is_next_even (struct type *t) | |
3054 | { | |
3055 | switch (TYPE_CODE (t)) | |
3056 | { | |
3057 | case TYPE_CODE_INT: | |
3058 | case TYPE_CODE_FLT: | |
3059 | if (TYPE_LENGTH (t) > 8) | |
3060 | return 1; | |
3061 | else | |
3062 | return 0; | |
3063 | case TYPE_CODE_ARRAY: | |
3064 | return | |
3065 | slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); | |
3066 | case TYPE_CODE_STRUCT: | |
3067 | { | |
3068 | int i; | |
3069 | ||
3070 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3071 | if (slot_alignment_is_next_even | |
3072 | (check_typedef (TYPE_FIELD_TYPE (t, i)))) | |
3073 | return 1; | |
3074 | return 0; | |
3075 | } | |
3076 | default: | |
3077 | return 0; | |
3078 | } | |
3079 | } | |
3080 | ||
64a5b29c KB |
3081 | /* Attempt to find (and return) the global pointer for the given |
3082 | function. | |
3083 | ||
3084 | This is a rather nasty bit of code searchs for the .dynamic section | |
3085 | in the objfile corresponding to the pc of the function we're trying | |
3086 | to call. Once it finds the addresses at which the .dynamic section | |
3087 | lives in the child process, it scans the Elf64_Dyn entries for a | |
3088 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
3089 | d_un.d_ptr value is the global pointer. */ | |
3090 | ||
3091 | static CORE_ADDR | |
b33e8514 | 3092 | ia64_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 3093 | { |
76d689a6 | 3094 | struct obj_section *faddr_sect; |
64a5b29c | 3095 | |
76d689a6 KB |
3096 | faddr_sect = find_pc_section (faddr); |
3097 | if (faddr_sect != NULL) | |
64a5b29c KB |
3098 | { |
3099 | struct obj_section *osect; | |
3100 | ||
76d689a6 | 3101 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
3102 | { |
3103 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
3104 | break; | |
3105 | } | |
3106 | ||
76d689a6 | 3107 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3108 | { |
3109 | CORE_ADDR addr; | |
3110 | ||
3111 | addr = osect->addr; | |
3112 | while (addr < osect->endaddr) | |
3113 | { | |
3114 | int status; | |
3115 | LONGEST tag; | |
3116 | char buf[8]; | |
3117 | ||
3118 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3119 | if (status != 0) | |
3120 | break; | |
3121 | tag = extract_signed_integer (buf, sizeof (buf)); | |
3122 | ||
3123 | if (tag == DT_PLTGOT) | |
3124 | { | |
3125 | CORE_ADDR global_pointer; | |
3126 | ||
3127 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
3128 | if (status != 0) | |
3129 | break; | |
7c0b4a20 | 3130 | global_pointer = extract_unsigned_integer (buf, sizeof (buf)); |
64a5b29c KB |
3131 | |
3132 | /* The payoff... */ | |
3133 | return global_pointer; | |
3134 | } | |
3135 | ||
3136 | if (tag == DT_NULL) | |
3137 | break; | |
3138 | ||
3139 | addr += 16; | |
3140 | } | |
3141 | } | |
3142 | } | |
3143 | return 0; | |
3144 | } | |
3145 | ||
3146 | /* Given a function's address, attempt to find (and return) the | |
3147 | corresponding (canonical) function descriptor. Return 0 if | |
004d836a | 3148 | not found. */ |
64a5b29c KB |
3149 | static CORE_ADDR |
3150 | find_extant_func_descr (CORE_ADDR faddr) | |
3151 | { | |
76d689a6 | 3152 | struct obj_section *faddr_sect; |
64a5b29c | 3153 | |
004d836a | 3154 | /* Return early if faddr is already a function descriptor. */ |
76d689a6 KB |
3155 | faddr_sect = find_pc_section (faddr); |
3156 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
3157 | return faddr; |
3158 | ||
76d689a6 | 3159 | if (faddr_sect != NULL) |
64a5b29c | 3160 | { |
76d689a6 KB |
3161 | struct obj_section *osect; |
3162 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
3163 | { |
3164 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
3165 | break; | |
3166 | } | |
3167 | ||
76d689a6 | 3168 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3169 | { |
3170 | CORE_ADDR addr; | |
3171 | ||
3172 | addr = osect->addr; | |
3173 | while (addr < osect->endaddr) | |
3174 | { | |
3175 | int status; | |
3176 | LONGEST faddr2; | |
3177 | char buf[8]; | |
3178 | ||
3179 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3180 | if (status != 0) | |
3181 | break; | |
3182 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
3183 | ||
3184 | if (faddr == faddr2) | |
3185 | return addr; | |
3186 | ||
3187 | addr += 16; | |
3188 | } | |
3189 | } | |
3190 | } | |
3191 | return 0; | |
3192 | } | |
3193 | ||
3194 | /* Attempt to find a function descriptor corresponding to the | |
3195 | given address. If none is found, construct one on the | |
004d836a | 3196 | stack using the address at fdaptr. */ |
64a5b29c KB |
3197 | |
3198 | static CORE_ADDR | |
9c9acae0 | 3199 | find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr) |
64a5b29c KB |
3200 | { |
3201 | CORE_ADDR fdesc; | |
3202 | ||
3203 | fdesc = find_extant_func_descr (faddr); | |
3204 | ||
3205 | if (fdesc == 0) | |
3206 | { | |
9c9acae0 | 3207 | ULONGEST global_pointer; |
64a5b29c KB |
3208 | char buf[16]; |
3209 | ||
3210 | fdesc = *fdaptr; | |
3211 | *fdaptr += 16; | |
3212 | ||
b33e8514 | 3213 | global_pointer = ia64_find_global_pointer (faddr); |
64a5b29c KB |
3214 | |
3215 | if (global_pointer == 0) | |
9c9acae0 UW |
3216 | regcache_cooked_read_unsigned (regcache, |
3217 | IA64_GR1_REGNUM, &global_pointer); | |
64a5b29c | 3218 | |
fbd9dcd3 AC |
3219 | store_unsigned_integer (buf, 8, faddr); |
3220 | store_unsigned_integer (buf + 8, 8, global_pointer); | |
64a5b29c KB |
3221 | |
3222 | write_memory (fdesc, buf, 16); | |
3223 | } | |
3224 | ||
3225 | return fdesc; | |
3226 | } | |
16461d7d | 3227 | |
af8b88dd JJ |
3228 | /* Use the following routine when printing out function pointers |
3229 | so the user can see the function address rather than just the | |
3230 | function descriptor. */ | |
3231 | static CORE_ADDR | |
e2d0e7eb AC |
3232 | ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
3233 | struct target_ops *targ) | |
af8b88dd JJ |
3234 | { |
3235 | struct obj_section *s; | |
3236 | ||
3237 | s = find_pc_section (addr); | |
3238 | ||
3239 | /* check if ADDR points to a function descriptor. */ | |
3240 | if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) | |
3241 | return read_memory_unsigned_integer (addr, 8); | |
3242 | ||
0d5de010 DJ |
3243 | /* There are also descriptors embedded in vtables. */ |
3244 | if (s) | |
3245 | { | |
3246 | struct minimal_symbol *minsym; | |
3247 | ||
3248 | minsym = lookup_minimal_symbol_by_pc (addr); | |
3249 | ||
3250 | if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym))) | |
3251 | return read_memory_unsigned_integer (addr, 8); | |
3252 | } | |
3253 | ||
af8b88dd JJ |
3254 | return addr; |
3255 | } | |
3256 | ||
a78f21af | 3257 | static CORE_ADDR |
004d836a JJ |
3258 | ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
3259 | { | |
3260 | return sp & ~0xfLL; | |
3261 | } | |
3262 | ||
3263 | static CORE_ADDR | |
7d9b040b | 3264 | ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8dd5115e AS |
3265 | struct regcache *regcache, CORE_ADDR bp_addr, |
3266 | int nargs, struct value **args, CORE_ADDR sp, | |
3267 | int struct_return, CORE_ADDR struct_addr) | |
16461d7d KB |
3268 | { |
3269 | int argno; | |
ea7c478f | 3270 | struct value *arg; |
16461d7d KB |
3271 | struct type *type; |
3272 | int len, argoffset; | |
64a5b29c | 3273 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 3274 | int floatreg; |
9c9acae0 UW |
3275 | ULONGEST bsp, cfm, pfs, new_bsp; |
3276 | CORE_ADDR funcdescaddr, pc, global_pointer; | |
7d9b040b | 3277 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
16461d7d KB |
3278 | |
3279 | nslots = 0; | |
64a5b29c | 3280 | nfuncargs = 0; |
004d836a | 3281 | /* Count the number of slots needed for the arguments. */ |
16461d7d KB |
3282 | for (argno = 0; argno < nargs; argno++) |
3283 | { | |
3284 | arg = args[argno]; | |
4991999e | 3285 | type = check_typedef (value_type (arg)); |
16461d7d KB |
3286 | len = TYPE_LENGTH (type); |
3287 | ||
98f96ba1 | 3288 | if ((nslots & 1) && slot_alignment_is_next_even (type)) |
16461d7d KB |
3289 | nslots++; |
3290 | ||
64a5b29c KB |
3291 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
3292 | nfuncargs++; | |
3293 | ||
16461d7d KB |
3294 | nslots += (len + 7) / 8; |
3295 | } | |
3296 | ||
004d836a | 3297 | /* Divvy up the slots between the RSE and the memory stack. */ |
16461d7d KB |
3298 | rseslots = (nslots > 8) ? 8 : nslots; |
3299 | memslots = nslots - rseslots; | |
3300 | ||
004d836a | 3301 | /* Allocate a new RSE frame. */ |
9c9acae0 | 3302 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
16461d7d | 3303 | |
9c9acae0 | 3304 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
16461d7d | 3305 | new_bsp = rse_address_add (bsp, rseslots); |
9c9acae0 | 3306 | regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp); |
16461d7d | 3307 | |
9c9acae0 | 3308 | regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs); |
16461d7d KB |
3309 | pfs &= 0xc000000000000000LL; |
3310 | pfs |= (cfm & 0xffffffffffffLL); | |
9c9acae0 | 3311 | regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs); |
16461d7d KB |
3312 | |
3313 | cfm &= 0xc000000000000000LL; | |
3314 | cfm |= rseslots; | |
9c9acae0 | 3315 | regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm); |
16461d7d | 3316 | |
64a5b29c KB |
3317 | /* We will attempt to find function descriptors in the .opd segment, |
3318 | but if we can't we'll construct them ourselves. That being the | |
004d836a | 3319 | case, we'll need to reserve space on the stack for them. */ |
64a5b29c KB |
3320 | funcdescaddr = sp - nfuncargs * 16; |
3321 | funcdescaddr &= ~0xfLL; | |
3322 | ||
3323 | /* Adjust the stack pointer to it's new value. The calling conventions | |
3324 | require us to have 16 bytes of scratch, plus whatever space is | |
004d836a | 3325 | necessary for the memory slots and our function descriptors. */ |
64a5b29c | 3326 | sp = sp - 16 - (memslots + nfuncargs) * 8; |
004d836a | 3327 | sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
16461d7d | 3328 | |
64a5b29c KB |
3329 | /* Place the arguments where they belong. The arguments will be |
3330 | either placed in the RSE backing store or on the memory stack. | |
3331 | In addition, floating point arguments or HFAs are placed in | |
004d836a | 3332 | floating point registers. */ |
16461d7d KB |
3333 | slotnum = 0; |
3334 | floatreg = IA64_FR8_REGNUM; | |
3335 | for (argno = 0; argno < nargs; argno++) | |
3336 | { | |
64a5b29c KB |
3337 | struct type *float_elt_type; |
3338 | ||
16461d7d | 3339 | arg = args[argno]; |
4991999e | 3340 | type = check_typedef (value_type (arg)); |
16461d7d | 3341 | len = TYPE_LENGTH (type); |
64a5b29c | 3342 | |
004d836a | 3343 | /* Special handling for function parameters. */ |
64a5b29c KB |
3344 | if (len == 8 |
3345 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
3346 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
3347 | { | |
3348 | char val_buf[8]; | |
9c9acae0 | 3349 | ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8); |
fbd9dcd3 | 3350 | store_unsigned_integer (val_buf, 8, |
9c9acae0 | 3351 | find_func_descr (regcache, faddr, |
fbd9dcd3 | 3352 | &funcdescaddr)); |
64a5b29c KB |
3353 | if (slotnum < rseslots) |
3354 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3355 | else | |
3356 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3357 | slotnum++; | |
3358 | continue; | |
3359 | } | |
3360 | ||
004d836a | 3361 | /* Normal slots. */ |
98f96ba1 KB |
3362 | |
3363 | /* Skip odd slot if necessary... */ | |
3364 | if ((slotnum & 1) && slot_alignment_is_next_even (type)) | |
16461d7d | 3365 | slotnum++; |
98f96ba1 | 3366 | |
16461d7d KB |
3367 | argoffset = 0; |
3368 | while (len > 0) | |
3369 | { | |
3370 | char val_buf[8]; | |
3371 | ||
3372 | memset (val_buf, 0, 8); | |
0fd88904 | 3373 | memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len); |
16461d7d KB |
3374 | |
3375 | if (slotnum < rseslots) | |
3376 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3377 | else | |
3378 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3379 | ||
3380 | argoffset += 8; | |
3381 | len -= 8; | |
3382 | slotnum++; | |
3383 | } | |
64a5b29c | 3384 | |
004d836a | 3385 | /* Handle floating point types (including HFAs). */ |
64a5b29c KB |
3386 | float_elt_type = is_float_or_hfa_type (type); |
3387 | if (float_elt_type != NULL) | |
3388 | { | |
3389 | argoffset = 0; | |
3390 | len = TYPE_LENGTH (type); | |
3391 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
3392 | { | |
004d836a | 3393 | char to[MAX_REGISTER_SIZE]; |
0fd88904 | 3394 | convert_typed_floating (value_contents (arg) + argoffset, float_elt_type, |
004d836a JJ |
3395 | to, builtin_type_ia64_ext); |
3396 | regcache_cooked_write (regcache, floatreg, (void *)to); | |
64a5b29c KB |
3397 | floatreg++; |
3398 | argoffset += TYPE_LENGTH (float_elt_type); | |
3399 | len -= TYPE_LENGTH (float_elt_type); | |
3400 | } | |
16461d7d KB |
3401 | } |
3402 | } | |
3403 | ||
004d836a | 3404 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
3405 | if (struct_return) |
3406 | { | |
004d836a | 3407 | regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); |
16461d7d KB |
3408 | } |
3409 | ||
b33e8514 | 3410 | global_pointer = ia64_find_global_pointer (func_addr); |
8dd5115e | 3411 | |
004d836a | 3412 | if (global_pointer != 0) |
9c9acae0 | 3413 | regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer); |
a59fe496 | 3414 | |
9c9acae0 | 3415 | regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr); |
16461d7d | 3416 | |
9c9acae0 | 3417 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); |
16461d7d KB |
3418 | |
3419 | return sp; | |
3420 | } | |
3421 | ||
004d836a JJ |
3422 | static struct frame_id |
3423 | ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3424 | { |
004d836a | 3425 | char buf[8]; |
4afcc598 | 3426 | CORE_ADDR sp, bsp; |
004d836a JJ |
3427 | |
3428 | frame_unwind_register (next_frame, sp_regnum, buf); | |
3429 | sp = extract_unsigned_integer (buf, 8); | |
3430 | ||
4afcc598 JJ |
3431 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
3432 | bsp = extract_unsigned_integer (buf, 8); | |
3433 | ||
3434 | if (gdbarch_debug >= 1) | |
3435 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
3436 | "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", |
3437 | paddr_nz (frame_pc_unwind (next_frame)), | |
3438 | paddr_nz (sp), paddr_nz (bsp)); | |
4afcc598 JJ |
3439 | |
3440 | return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp); | |
16461d7d KB |
3441 | } |
3442 | ||
004d836a JJ |
3443 | static CORE_ADDR |
3444 | ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3445 | { |
004d836a JJ |
3446 | char buf[8]; |
3447 | CORE_ADDR ip, psr, pc; | |
3448 | ||
3449 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
3450 | ip = extract_unsigned_integer (buf, 8); | |
3451 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
3452 | psr = extract_unsigned_integer (buf, 8); | |
3453 | ||
3454 | pc = (ip & ~0xf) | ((psr >> 41) & 3); | |
3455 | return pc; | |
16461d7d KB |
3456 | } |
3457 | ||
3458 | static void | |
88d82102 JJ |
3459 | ia64_store_return_value (struct type *type, struct regcache *regcache, |
3460 | const gdb_byte *valbuf) | |
16461d7d | 3461 | { |
004d836a | 3462 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
16461d7d | 3463 | { |
004d836a JJ |
3464 | char to[MAX_REGISTER_SIZE]; |
3465 | convert_typed_floating (valbuf, type, to, builtin_type_ia64_ext); | |
3466 | regcache_cooked_write (regcache, IA64_FR8_REGNUM, (void *)to); | |
56be3814 | 3467 | target_store_registers (regcache, IA64_FR8_REGNUM); |
16461d7d KB |
3468 | } |
3469 | else | |
004d836a | 3470 | regcache_cooked_write (regcache, IA64_GR8_REGNUM, valbuf); |
16461d7d KB |
3471 | } |
3472 | ||
6926787d AS |
3473 | static int |
3474 | ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) | |
3475 | { | |
3476 | info->bytes_per_line = SLOT_MULTIPLIER; | |
3477 | return print_insn_ia64 (memaddr, info); | |
3478 | } | |
3479 | ||
16461d7d KB |
3480 | static struct gdbarch * |
3481 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3482 | { | |
3483 | struct gdbarch *gdbarch; | |
244bc108 | 3484 | struct gdbarch_tdep *tdep; |
244bc108 | 3485 | |
85bf2b91 JJ |
3486 | /* If there is already a candidate, use it. */ |
3487 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3488 | if (arches != NULL) | |
3489 | return arches->gdbarch; | |
16461d7d | 3490 | |
244bc108 KB |
3491 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
3492 | gdbarch = gdbarch_alloc (&info, tdep); | |
244bc108 | 3493 | |
b33e8514 | 3494 | tdep->sigcontext_register_address = 0; |
74174d2e | 3495 | tdep->pc_in_sigtramp = 0; |
698cb3f0 | 3496 | |
004d836a JJ |
3497 | /* Define the ia64 floating-point format to gdb. */ |
3498 | builtin_type_ia64_ext = | |
3499 | init_type (TYPE_CODE_FLT, 128 / 8, | |
3500 | 0, "builtin_type_ia64_ext", NULL); | |
8da61cc4 | 3501 | TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext; |
004d836a | 3502 | |
5439edaa AC |
3503 | /* According to the ia64 specs, instructions that store long double |
3504 | floats in memory use a long-double format different than that | |
3505 | used in the floating registers. The memory format matches the | |
3506 | x86 extended float format which is 80 bits. An OS may choose to | |
3507 | use this format (e.g. GNU/Linux) or choose to use a different | |
3508 | format for storing long doubles (e.g. HPUX). In the latter case, | |
3509 | the setting of the format may be moved/overridden in an | |
3510 | OS-specific tdep file. */ | |
8da61cc4 | 3511 | set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext); |
32edc941 | 3512 | |
16461d7d KB |
3513 | set_gdbarch_short_bit (gdbarch, 16); |
3514 | set_gdbarch_int_bit (gdbarch, 32); | |
3515 | set_gdbarch_long_bit (gdbarch, 64); | |
3516 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3517 | set_gdbarch_float_bit (gdbarch, 32); | |
3518 | set_gdbarch_double_bit (gdbarch, 64); | |
33c08150 | 3519 | set_gdbarch_long_double_bit (gdbarch, 128); |
16461d7d KB |
3520 | set_gdbarch_ptr_bit (gdbarch, 64); |
3521 | ||
004d836a JJ |
3522 | set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
3523 | set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); | |
16461d7d | 3524 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
698cb3f0 | 3525 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
3526 | |
3527 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
004d836a | 3528 | set_gdbarch_register_type (gdbarch, ia64_register_type); |
16461d7d | 3529 | |
004d836a JJ |
3530 | set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
3531 | set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); | |
3532 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); | |
3533 | set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); | |
3534 | set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); | |
3535 | set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); | |
3536 | set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); | |
16461d7d | 3537 | |
004d836a | 3538 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
16461d7d | 3539 | |
b5622e8d | 3540 | set_gdbarch_deprecated_use_struct_convention (gdbarch, ia64_use_struct_convention); |
004d836a | 3541 | set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value); |
16461d7d | 3542 | |
004d836a | 3543 | set_gdbarch_store_return_value (gdbarch, ia64_store_return_value); |
16461d7d KB |
3544 | |
3545 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
3546 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
3547 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
3548 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
b33e8514 | 3549 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); |
16461d7d KB |
3550 | |
3551 | /* Settings for calling functions in the inferior. */ | |
8dd5115e | 3552 | set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
004d836a JJ |
3553 | set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
3554 | set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id); | |
16461d7d | 3555 | |
004d836a | 3556 | set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
968d1cb4 | 3557 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c | 3558 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer); |
968d1cb4 JJ |
3559 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer); |
3560 | libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); | |
c5a27d9c JJ |
3561 | #else |
3562 | frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer); | |
968d1cb4 | 3563 | #endif |
004d836a JJ |
3564 | frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer); |
3565 | frame_base_set_default (gdbarch, &ia64_frame_base); | |
16461d7d KB |
3566 | |
3567 | /* Settings that should be unnecessary. */ | |
3568 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3569 | ||
6926787d | 3570 | set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
af8b88dd | 3571 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); |
6926787d | 3572 | |
0d5de010 DJ |
3573 | /* The virtual table contains 16-byte descriptors, not pointers to |
3574 | descriptors. */ | |
3575 | set_gdbarch_vtable_function_descriptors (gdbarch, 1); | |
3576 | ||
b33e8514 AS |
3577 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3578 | gdbarch_init_osabi (info, gdbarch); | |
3579 | ||
16461d7d KB |
3580 | return gdbarch; |
3581 | } | |
3582 | ||
a78f21af AC |
3583 | extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ |
3584 | ||
16461d7d KB |
3585 | void |
3586 | _initialize_ia64_tdep (void) | |
3587 | { | |
b33e8514 | 3588 | gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL); |
16461d7d | 3589 | } |