]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* DWARF debugging format support for GDB. |
b6ba6518 KB |
2 | Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
3 | 2001 | |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, | |
6 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | /* | |
25 | ||
c5aa993b JM |
26 | FIXME: Do we need to generate dependencies in partial symtabs? |
27 | (Perhaps we don't need to). | |
c906108c | 28 | |
c5aa993b JM |
29 | FIXME: Resolve minor differences between what information we put in the |
30 | partial symbol table and what dbxread puts in. For example, we don't yet | |
31 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
32 | we never see. Use the new printpsym command to see the partial symbol table | |
33 | contents. | |
c906108c | 34 | |
c5aa993b JM |
35 | FIXME: Figure out a better way to tell gdb about the name of the function |
36 | contain the user's entry point (I.E. main()) | |
c906108c | 37 | |
c5aa993b JM |
38 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for |
39 | other things to work on, if you get bored. :-) | |
c906108c | 40 | |
c5aa993b | 41 | */ |
c906108c SS |
42 | |
43 | #include "defs.h" | |
44 | #include "symtab.h" | |
45 | #include "gdbtypes.h" | |
46 | #include "symfile.h" | |
47 | #include "objfiles.h" | |
48 | #include "elf/dwarf.h" | |
49 | #include "buildsym.h" | |
50 | #include "demangle.h" | |
c5aa993b | 51 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ |
c906108c SS |
52 | #include "language.h" |
53 | #include "complaints.h" | |
54 | ||
55 | #include <fcntl.h> | |
56 | #include "gdb_string.h" | |
57 | ||
58 | /* Some macros to provide DIE info for complaints. */ | |
59 | ||
60 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) | |
61 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" | |
62 | ||
63 | /* Complaints that can be issued during DWARF debug info reading. */ | |
64 | ||
65 | struct complaint no_bfd_get_N = | |
66 | { | |
67 | "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 | |
68 | }; | |
69 | ||
70 | struct complaint malformed_die = | |
71 | { | |
72 | "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 | |
73 | }; | |
74 | ||
75 | struct complaint bad_die_ref = | |
76 | { | |
77 | "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 | |
78 | }; | |
79 | ||
80 | struct complaint unknown_attribute_form = | |
81 | { | |
82 | "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 | |
83 | }; | |
84 | ||
85 | struct complaint unknown_attribute_length = | |
86 | { | |
87 | "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 | |
88 | }; | |
89 | ||
90 | struct complaint unexpected_fund_type = | |
91 | { | |
92 | "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 | |
93 | }; | |
94 | ||
95 | struct complaint unknown_type_modifier = | |
96 | { | |
97 | "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 | |
98 | }; | |
99 | ||
100 | struct complaint volatile_ignored = | |
101 | { | |
102 | "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 | |
103 | }; | |
104 | ||
105 | struct complaint const_ignored = | |
106 | { | |
107 | "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 | |
108 | }; | |
109 | ||
110 | struct complaint botched_modified_type = | |
111 | { | |
112 | "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 | |
113 | }; | |
114 | ||
115 | struct complaint op_deref2 = | |
116 | { | |
117 | "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 | |
118 | }; | |
119 | ||
120 | struct complaint op_deref4 = | |
121 | { | |
122 | "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 | |
123 | }; | |
124 | ||
125 | struct complaint basereg_not_handled = | |
126 | { | |
127 | "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 | |
128 | }; | |
129 | ||
130 | struct complaint dup_user_type_allocation = | |
131 | { | |
132 | "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 | |
133 | }; | |
134 | ||
135 | struct complaint dup_user_type_definition = | |
136 | { | |
137 | "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 | |
138 | }; | |
139 | ||
140 | struct complaint missing_tag = | |
141 | { | |
142 | "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 | |
143 | }; | |
144 | ||
145 | struct complaint bad_array_element_type = | |
146 | { | |
147 | "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 | |
148 | }; | |
149 | ||
150 | struct complaint subscript_data_items = | |
151 | { | |
152 | "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 | |
153 | }; | |
154 | ||
155 | struct complaint unhandled_array_subscript_format = | |
156 | { | |
157 | "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 | |
158 | }; | |
159 | ||
160 | struct complaint unknown_array_subscript_format = | |
161 | { | |
162 | "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 | |
163 | }; | |
164 | ||
165 | struct complaint not_row_major = | |
166 | { | |
167 | "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 | |
168 | }; | |
169 | ||
170 | struct complaint missing_at_name = | |
171 | { | |
172 | "DIE @ 0x%x, AT_name tag missing", 0, 0 | |
173 | }; | |
174 | ||
175 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |
176 | ||
177 | #ifndef GCC_PRODUCER | |
178 | #define GCC_PRODUCER "GNU C " | |
179 | #endif | |
180 | ||
181 | #ifndef GPLUS_PRODUCER | |
182 | #define GPLUS_PRODUCER "GNU C++ " | |
183 | #endif | |
184 | ||
185 | #ifndef LCC_PRODUCER | |
186 | #define LCC_PRODUCER "NCR C/C++" | |
187 | #endif | |
188 | ||
189 | #ifndef CHILL_PRODUCER | |
190 | #define CHILL_PRODUCER "GNU Chill " | |
191 | #endif | |
192 | ||
c906108c SS |
193 | /* Flags to target_to_host() that tell whether or not the data object is |
194 | expected to be signed. Used, for example, when fetching a signed | |
195 | integer in the target environment which is used as a signed integer | |
196 | in the host environment, and the two environments have different sized | |
197 | ints. In this case, *somebody* has to sign extend the smaller sized | |
198 | int. */ | |
199 | ||
200 | #define GET_UNSIGNED 0 /* No sign extension required */ | |
201 | #define GET_SIGNED 1 /* Sign extension required */ | |
202 | ||
203 | /* Defines for things which are specified in the document "DWARF Debugging | |
204 | Information Format" published by UNIX International, Programming Languages | |
205 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |
206 | ||
207 | #define SIZEOF_DIE_LENGTH 4 | |
208 | #define SIZEOF_DIE_TAG 2 | |
209 | #define SIZEOF_ATTRIBUTE 2 | |
210 | #define SIZEOF_FORMAT_SPECIFIER 1 | |
211 | #define SIZEOF_FMT_FT 2 | |
212 | #define SIZEOF_LINETBL_LENGTH 4 | |
213 | #define SIZEOF_LINETBL_LINENO 4 | |
214 | #define SIZEOF_LINETBL_STMT 2 | |
215 | #define SIZEOF_LINETBL_DELTA 4 | |
216 | #define SIZEOF_LOC_ATOM_CODE 1 | |
217 | ||
218 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ | |
219 | ||
220 | /* Macros that return the sizes of various types of data in the target | |
221 | environment. | |
222 | ||
223 | FIXME: Currently these are just compile time constants (as they are in | |
224 | other parts of gdb as well). They need to be able to get the right size | |
225 | either from the bfd or possibly from the DWARF info. It would be nice if | |
226 | the DWARF producer inserted DIES that describe the fundamental types in | |
227 | the target environment into the DWARF info, similar to the way dbx stabs | |
228 | producers produce information about their fundamental types. */ | |
229 | ||
230 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) | |
231 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
232 | ||
233 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |
234 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |
235 | However, the Issue 2 DWARF specification from AT&T defines it as | |
236 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |
237 | For backwards compatibility with the AT&T compiler produced executables | |
238 | we define AT_short_element_list for this variant. */ | |
239 | ||
240 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) | |
241 | ||
242 | /* External variables referenced. */ | |
243 | ||
c5aa993b JM |
244 | extern int info_verbose; /* From main.c; nonzero => verbose */ |
245 | extern char *warning_pre_print; /* From utils.c */ | |
c906108c SS |
246 | |
247 | /* The DWARF debugging information consists of two major pieces, | |
248 | one is a block of DWARF Information Entries (DIE's) and the other | |
249 | is a line number table. The "struct dieinfo" structure contains | |
250 | the information for a single DIE, the one currently being processed. | |
251 | ||
252 | In order to make it easier to randomly access the attribute fields | |
253 | of the current DIE, which are specifically unordered within the DIE, | |
254 | each DIE is scanned and an instance of the "struct dieinfo" | |
255 | structure is initialized. | |
256 | ||
257 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
258 | just initializes those fields that are vital to deciding whether or not | |
259 | to use this DIE, how to skip past it, etc. The second, done by the | |
260 | function completedieinfo(), fills in the rest of the information. | |
261 | ||
262 | Attributes which have block forms are not interpreted at the time | |
263 | the DIE is scanned, instead we just save pointers to the start | |
264 | of their value fields. | |
265 | ||
266 | Some fields have a flag <name>_p that is set when the value of the | |
267 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
268 | we may want to test for the presence of some attributes in the DIE, | |
269 | such as AT_low_pc, without restricting the values of the field, | |
270 | we need someway to note that we found such an attribute. | |
c5aa993b | 271 | |
c906108c | 272 | */ |
c5aa993b | 273 | |
c906108c SS |
274 | typedef char BLOCK; |
275 | ||
c5aa993b JM |
276 | struct dieinfo |
277 | { | |
278 | char *die; /* Pointer to the raw DIE data */ | |
279 | unsigned long die_length; /* Length of the raw DIE data */ | |
280 | DIE_REF die_ref; /* Offset of this DIE */ | |
281 | unsigned short die_tag; /* Tag for this DIE */ | |
282 | unsigned long at_padding; | |
283 | unsigned long at_sibling; | |
284 | BLOCK *at_location; | |
285 | char *at_name; | |
286 | unsigned short at_fund_type; | |
287 | BLOCK *at_mod_fund_type; | |
288 | unsigned long at_user_def_type; | |
289 | BLOCK *at_mod_u_d_type; | |
290 | unsigned short at_ordering; | |
291 | BLOCK *at_subscr_data; | |
292 | unsigned long at_byte_size; | |
293 | unsigned short at_bit_offset; | |
294 | unsigned long at_bit_size; | |
295 | BLOCK *at_element_list; | |
296 | unsigned long at_stmt_list; | |
297 | CORE_ADDR at_low_pc; | |
298 | CORE_ADDR at_high_pc; | |
299 | unsigned long at_language; | |
300 | unsigned long at_member; | |
301 | unsigned long at_discr; | |
302 | BLOCK *at_discr_value; | |
303 | BLOCK *at_string_length; | |
304 | char *at_comp_dir; | |
305 | char *at_producer; | |
306 | unsigned long at_start_scope; | |
307 | unsigned long at_stride_size; | |
308 | unsigned long at_src_info; | |
309 | char *at_prototyped; | |
310 | unsigned int has_at_low_pc:1; | |
311 | unsigned int has_at_stmt_list:1; | |
312 | unsigned int has_at_byte_size:1; | |
313 | unsigned int short_element_list:1; | |
314 | ||
315 | /* Kludge to identify register variables */ | |
316 | ||
317 | unsigned int isreg; | |
318 | ||
319 | /* Kludge to identify optimized out variables */ | |
320 | ||
321 | unsigned int optimized_out; | |
322 | ||
323 | /* Kludge to identify basereg references. | |
324 | Nonzero if we have an offset relative to a basereg. */ | |
325 | ||
326 | unsigned int offreg; | |
327 | ||
328 | /* Kludge to identify which base register is it relative to. */ | |
329 | ||
330 | unsigned int basereg; | |
331 | }; | |
c906108c | 332 | |
c5aa993b | 333 | static int diecount; /* Approximate count of dies for compilation unit */ |
c906108c SS |
334 | static struct dieinfo *curdie; /* For warnings and such */ |
335 | ||
c5aa993b JM |
336 | static char *dbbase; /* Base pointer to dwarf info */ |
337 | static int dbsize; /* Size of dwarf info in bytes */ | |
338 | static int dbroff; /* Relative offset from start of .debug section */ | |
339 | static char *lnbase; /* Base pointer to line section */ | |
c906108c SS |
340 | |
341 | /* This value is added to each symbol value. FIXME: Generalize to | |
342 | the section_offsets structure used by dbxread (once this is done, | |
343 | pass the appropriate section number to end_symtab). */ | |
344 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
345 | ||
346 | /* The section offsets used in the current psymtab or symtab. FIXME, | |
347 | only used to pass one value (baseaddr) at the moment. */ | |
348 | static struct section_offsets *base_section_offsets; | |
349 | ||
350 | /* We put a pointer to this structure in the read_symtab_private field | |
351 | of the psymtab. */ | |
352 | ||
c5aa993b JM |
353 | struct dwfinfo |
354 | { | |
355 | /* Always the absolute file offset to the start of the ".debug" | |
356 | section for the file containing the DIE's being accessed. */ | |
357 | file_ptr dbfoff; | |
358 | /* Relative offset from the start of the ".debug" section to the | |
359 | first DIE to be accessed. When building the partial symbol | |
360 | table, this value will be zero since we are accessing the | |
361 | entire ".debug" section. When expanding a partial symbol | |
362 | table entry, this value will be the offset to the first | |
363 | DIE for the compilation unit containing the symbol that | |
364 | triggers the expansion. */ | |
365 | int dbroff; | |
366 | /* The size of the chunk of DIE's being examined, in bytes. */ | |
367 | int dblength; | |
368 | /* The absolute file offset to the line table fragment. Ignored | |
369 | when building partial symbol tables, but used when expanding | |
370 | them, and contains the absolute file offset to the fragment | |
371 | of the ".line" section containing the line numbers for the | |
372 | current compilation unit. */ | |
373 | file_ptr lnfoff; | |
374 | }; | |
c906108c SS |
375 | |
376 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
377 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
378 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
379 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
380 | ||
381 | /* The generic symbol table building routines have separate lists for | |
382 | file scope symbols and all all other scopes (local scopes). So | |
383 | we need to select the right one to pass to add_symbol_to_list(). | |
384 | We do it by keeping a pointer to the correct list in list_in_scope. | |
385 | ||
386 | FIXME: The original dwarf code just treated the file scope as the first | |
387 | local scope, and all other local scopes as nested local scopes, and worked | |
388 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |
389 | ||
390 | struct pending **list_in_scope = &file_symbols; | |
391 | ||
392 | /* DIES which have user defined types or modified user defined types refer to | |
393 | other DIES for the type information. Thus we need to associate the offset | |
394 | of a DIE for a user defined type with a pointer to the type information. | |
395 | ||
396 | Originally this was done using a simple but expensive algorithm, with an | |
397 | array of unsorted structures, each containing an offset/type-pointer pair. | |
398 | This array was scanned linearly each time a lookup was done. The result | |
399 | was that gdb was spending over half it's startup time munging through this | |
400 | array of pointers looking for a structure that had the right offset member. | |
401 | ||
402 | The second attempt used the same array of structures, but the array was | |
403 | sorted using qsort each time a new offset/type was recorded, and a binary | |
404 | search was used to find the type pointer for a given DIE offset. This was | |
405 | even slower, due to the overhead of sorting the array each time a new | |
406 | offset/type pair was entered. | |
407 | ||
408 | The third attempt uses a fixed size array of type pointers, indexed by a | |
409 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
410 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
411 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
412 | much memory to hold this array as to hold the DWARF info for a given | |
413 | compilation unit. But it gets freed as soon as we are done with it. | |
414 | This has worked well in practice, as a reasonable tradeoff between memory | |
415 | consumption and speed, without having to resort to much more complicated | |
416 | algorithms. */ | |
417 | ||
418 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
419 | static int numutypes; /* Max number of user type pointers */ | |
420 | ||
421 | /* Maintain an array of referenced fundamental types for the current | |
422 | compilation unit being read. For DWARF version 1, we have to construct | |
423 | the fundamental types on the fly, since no information about the | |
424 | fundamental types is supplied. Each such fundamental type is created by | |
425 | calling a language dependent routine to create the type, and then a | |
426 | pointer to that type is then placed in the array at the index specified | |
427 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |
428 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |
429 | fundamental types gdb knows how to construct. */ | |
430 | ||
c5aa993b | 431 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ |
c906108c SS |
432 | |
433 | /* Record the language for the compilation unit which is currently being | |
434 | processed. We know it once we have seen the TAG_compile_unit DIE, | |
435 | and we need it while processing the DIE's for that compilation unit. | |
436 | It is eventually saved in the symtab structure, but we don't finalize | |
437 | the symtab struct until we have processed all the DIE's for the | |
438 | compilation unit. We also need to get and save a pointer to the | |
439 | language struct for this language, so we can call the language | |
440 | dependent routines for doing things such as creating fundamental | |
441 | types. */ | |
442 | ||
443 | static enum language cu_language; | |
444 | static const struct language_defn *cu_language_defn; | |
445 | ||
446 | /* Forward declarations of static functions so we don't have to worry | |
447 | about ordering within this file. */ | |
448 | ||
a14ed312 | 449 | static void free_utypes (PTR); |
c906108c | 450 | |
a14ed312 | 451 | static int attribute_size (unsigned int); |
c906108c | 452 | |
a14ed312 | 453 | static CORE_ADDR target_to_host (char *, int, int, struct objfile *); |
c906108c | 454 | |
a14ed312 | 455 | static void add_enum_psymbol (struct dieinfo *, struct objfile *); |
c906108c | 456 | |
a14ed312 | 457 | static void handle_producer (char *); |
c906108c SS |
458 | |
459 | static void | |
a14ed312 | 460 | read_file_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c SS |
461 | |
462 | static void | |
a14ed312 | 463 | read_func_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c SS |
464 | |
465 | static void | |
a14ed312 | 466 | read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c | 467 | |
a14ed312 | 468 | static void scan_partial_symbols (char *, char *, struct objfile *); |
c906108c SS |
469 | |
470 | static void | |
a14ed312 | 471 | scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *); |
c906108c | 472 | |
a14ed312 | 473 | static void add_partial_symbol (struct dieinfo *, struct objfile *); |
c906108c | 474 | |
a14ed312 | 475 | static void basicdieinfo (struct dieinfo *, char *, struct objfile *); |
c906108c | 476 | |
a14ed312 | 477 | static void completedieinfo (struct dieinfo *, struct objfile *); |
c906108c | 478 | |
a14ed312 | 479 | static void dwarf_psymtab_to_symtab (struct partial_symtab *); |
c906108c | 480 | |
a14ed312 | 481 | static void psymtab_to_symtab_1 (struct partial_symtab *); |
c906108c | 482 | |
a14ed312 | 483 | static void read_ofile_symtab (struct partial_symtab *); |
c906108c | 484 | |
a14ed312 | 485 | static void process_dies (char *, char *, struct objfile *); |
c906108c SS |
486 | |
487 | static void | |
a14ed312 | 488 | read_structure_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c | 489 | |
a14ed312 | 490 | static struct type *decode_array_element_type (char *); |
c906108c | 491 | |
a14ed312 | 492 | static struct type *decode_subscript_data_item (char *, char *); |
c906108c | 493 | |
a14ed312 | 494 | static void dwarf_read_array_type (struct dieinfo *); |
c906108c | 495 | |
a14ed312 | 496 | static void read_tag_pointer_type (struct dieinfo *dip); |
c906108c | 497 | |
a14ed312 | 498 | static void read_tag_string_type (struct dieinfo *dip); |
c906108c | 499 | |
a14ed312 | 500 | static void read_subroutine_type (struct dieinfo *, char *, char *); |
c906108c SS |
501 | |
502 | static void | |
a14ed312 | 503 | read_enumeration (struct dieinfo *, char *, char *, struct objfile *); |
c906108c | 504 | |
a14ed312 KB |
505 | static struct type *struct_type (struct dieinfo *, char *, char *, |
506 | struct objfile *); | |
c906108c | 507 | |
a14ed312 | 508 | static struct type *enum_type (struct dieinfo *, struct objfile *); |
c906108c | 509 | |
a14ed312 | 510 | static void decode_line_numbers (char *); |
c906108c | 511 | |
a14ed312 | 512 | static struct type *decode_die_type (struct dieinfo *); |
c906108c | 513 | |
a14ed312 | 514 | static struct type *decode_mod_fund_type (char *); |
c906108c | 515 | |
a14ed312 | 516 | static struct type *decode_mod_u_d_type (char *); |
c906108c | 517 | |
a14ed312 | 518 | static struct type *decode_modified_type (char *, unsigned int, int); |
c906108c | 519 | |
a14ed312 | 520 | static struct type *decode_fund_type (unsigned int); |
c906108c | 521 | |
a14ed312 | 522 | static char *create_name (char *, struct obstack *); |
c906108c | 523 | |
a14ed312 | 524 | static struct type *lookup_utype (DIE_REF); |
c906108c | 525 | |
a14ed312 | 526 | static struct type *alloc_utype (DIE_REF, struct type *); |
c906108c | 527 | |
a14ed312 | 528 | static struct symbol *new_symbol (struct dieinfo *, struct objfile *); |
c906108c SS |
529 | |
530 | static void | |
a14ed312 | 531 | synthesize_typedef (struct dieinfo *, struct objfile *, struct type *); |
c906108c | 532 | |
a14ed312 | 533 | static int locval (struct dieinfo *); |
c906108c | 534 | |
a14ed312 | 535 | static void set_cu_language (struct dieinfo *); |
c906108c | 536 | |
a14ed312 | 537 | static struct type *dwarf_fundamental_type (struct objfile *, int); |
c906108c SS |
538 | |
539 | ||
540 | /* | |
541 | ||
c5aa993b | 542 | LOCAL FUNCTION |
c906108c | 543 | |
c5aa993b | 544 | dwarf_fundamental_type -- lookup or create a fundamental type |
c906108c | 545 | |
c5aa993b | 546 | SYNOPSIS |
c906108c | 547 | |
c5aa993b JM |
548 | struct type * |
549 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |
c906108c | 550 | |
c5aa993b | 551 | DESCRIPTION |
c906108c | 552 | |
c5aa993b JM |
553 | DWARF version 1 doesn't supply any fundamental type information, |
554 | so gdb has to construct such types. It has a fixed number of | |
555 | fundamental types that it knows how to construct, which is the | |
556 | union of all types that it knows how to construct for all languages | |
557 | that it knows about. These are enumerated in gdbtypes.h. | |
c906108c | 558 | |
c5aa993b JM |
559 | As an example, assume we find a DIE that references a DWARF |
560 | fundamental type of FT_integer. We first look in the ftypes | |
561 | array to see if we already have such a type, indexed by the | |
562 | gdb internal value of FT_INTEGER. If so, we simply return a | |
563 | pointer to that type. If not, then we ask an appropriate | |
564 | language dependent routine to create a type FT_INTEGER, using | |
565 | defaults reasonable for the current target machine, and install | |
566 | that type in ftypes for future reference. | |
c906108c | 567 | |
c5aa993b | 568 | RETURNS |
c906108c | 569 | |
c5aa993b | 570 | Pointer to a fundamental type. |
c906108c | 571 | |
c5aa993b | 572 | */ |
c906108c SS |
573 | |
574 | static struct type * | |
fba45db2 | 575 | dwarf_fundamental_type (struct objfile *objfile, int typeid) |
c906108c SS |
576 | { |
577 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
578 | { | |
579 | error ("internal error - invalid fundamental type id %d", typeid); | |
580 | } | |
581 | ||
582 | /* Look for this particular type in the fundamental type vector. If one is | |
583 | not found, create and install one appropriate for the current language | |
584 | and the current target machine. */ | |
585 | ||
586 | if (ftypes[typeid] == NULL) | |
587 | { | |
c5aa993b | 588 | ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); |
c906108c SS |
589 | } |
590 | ||
591 | return (ftypes[typeid]); | |
592 | } | |
593 | ||
594 | /* | |
595 | ||
c5aa993b | 596 | LOCAL FUNCTION |
c906108c | 597 | |
c5aa993b | 598 | set_cu_language -- set local copy of language for compilation unit |
c906108c | 599 | |
c5aa993b | 600 | SYNOPSIS |
c906108c | 601 | |
c5aa993b JM |
602 | void |
603 | set_cu_language (struct dieinfo *dip) | |
c906108c | 604 | |
c5aa993b | 605 | DESCRIPTION |
c906108c | 606 | |
c5aa993b JM |
607 | Decode the language attribute for a compilation unit DIE and |
608 | remember what the language was. We use this at various times | |
609 | when processing DIE's for a given compilation unit. | |
c906108c | 610 | |
c5aa993b | 611 | RETURNS |
c906108c | 612 | |
c5aa993b | 613 | No return value. |
c906108c SS |
614 | |
615 | */ | |
616 | ||
617 | static void | |
fba45db2 | 618 | set_cu_language (struct dieinfo *dip) |
c906108c | 619 | { |
c5aa993b | 620 | switch (dip->at_language) |
c906108c | 621 | { |
c5aa993b JM |
622 | case LANG_C89: |
623 | case LANG_C: | |
624 | cu_language = language_c; | |
625 | break; | |
626 | case LANG_C_PLUS_PLUS: | |
627 | cu_language = language_cplus; | |
628 | break; | |
629 | case LANG_CHILL: | |
630 | cu_language = language_chill; | |
631 | break; | |
632 | case LANG_MODULA2: | |
633 | cu_language = language_m2; | |
634 | break; | |
635 | case LANG_FORTRAN77: | |
636 | case LANG_FORTRAN90: | |
637 | cu_language = language_fortran; | |
638 | break; | |
639 | case LANG_ADA83: | |
640 | case LANG_COBOL74: | |
641 | case LANG_COBOL85: | |
642 | case LANG_PASCAL83: | |
643 | /* We don't know anything special about these yet. */ | |
644 | cu_language = language_unknown; | |
645 | break; | |
646 | default: | |
647 | /* If no at_language, try to deduce one from the filename */ | |
648 | cu_language = deduce_language_from_filename (dip->at_name); | |
649 | break; | |
c906108c SS |
650 | } |
651 | cu_language_defn = language_def (cu_language); | |
652 | } | |
653 | ||
654 | /* | |
655 | ||
c5aa993b | 656 | GLOBAL FUNCTION |
c906108c | 657 | |
c5aa993b | 658 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info |
c906108c | 659 | |
c5aa993b | 660 | SYNOPSIS |
c906108c | 661 | |
c5aa993b | 662 | void dwarf_build_psymtabs (struct objfile *objfile, |
c5aa993b JM |
663 | int mainline, file_ptr dbfoff, unsigned int dbfsize, |
664 | file_ptr lnoffset, unsigned int lnsize) | |
c906108c | 665 | |
c5aa993b | 666 | DESCRIPTION |
c906108c | 667 | |
c5aa993b JM |
668 | This function is called upon to build partial symtabs from files |
669 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
c906108c | 670 | |
c5aa993b JM |
671 | It is passed a bfd* containing the DIES |
672 | and line number information, the corresponding filename for that | |
673 | file, a base address for relocating the symbols, a flag indicating | |
674 | whether or not this debugging information is from a "main symbol | |
675 | table" rather than a shared library or dynamically linked file, | |
676 | and file offset/size pairs for the DIE information and line number | |
677 | information. | |
c906108c | 678 | |
c5aa993b | 679 | RETURNS |
c906108c | 680 | |
c5aa993b | 681 | No return value. |
c906108c SS |
682 | |
683 | */ | |
684 | ||
685 | void | |
fba45db2 KB |
686 | dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff, |
687 | unsigned int dbfsize, file_ptr lnoffset, | |
688 | unsigned int lnsize) | |
c906108c SS |
689 | { |
690 | bfd *abfd = objfile->obfd; | |
691 | struct cleanup *back_to; | |
c5aa993b | 692 | |
c906108c SS |
693 | current_objfile = objfile; |
694 | dbsize = dbfsize; | |
695 | dbbase = xmalloc (dbsize); | |
696 | dbroff = 0; | |
697 | if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || | |
698 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
699 | { | |
b8c9b27d | 700 | xfree (dbbase); |
c906108c SS |
701 | error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); |
702 | } | |
b8c9b27d | 703 | back_to = make_cleanup (xfree, dbbase); |
c5aa993b | 704 | |
c906108c SS |
705 | /* If we are reinitializing, or if we have never loaded syms yet, init. |
706 | Since we have no idea how many DIES we are looking at, we just guess | |
707 | some arbitrary value. */ | |
c5aa993b JM |
708 | |
709 | if (mainline || objfile->global_psymbols.size == 0 || | |
710 | objfile->static_psymbols.size == 0) | |
c906108c SS |
711 | { |
712 | init_psymbol_list (objfile, 1024); | |
713 | } | |
c5aa993b | 714 | |
c906108c SS |
715 | /* Save the relocation factor where everybody can see it. */ |
716 | ||
d4f3574e SS |
717 | base_section_offsets = objfile->section_offsets; |
718 | baseaddr = ANOFFSET (objfile->section_offsets, 0); | |
c906108c SS |
719 | |
720 | /* Follow the compilation unit sibling chain, building a partial symbol | |
721 | table entry for each one. Save enough information about each compilation | |
722 | unit to locate the full DWARF information later. */ | |
c5aa993b | 723 | |
c906108c | 724 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); |
c5aa993b | 725 | |
c906108c SS |
726 | do_cleanups (back_to); |
727 | current_objfile = NULL; | |
728 | } | |
729 | ||
730 | /* | |
731 | ||
c5aa993b | 732 | LOCAL FUNCTION |
c906108c | 733 | |
c5aa993b | 734 | read_lexical_block_scope -- process all dies in a lexical block |
c906108c | 735 | |
c5aa993b | 736 | SYNOPSIS |
c906108c | 737 | |
c5aa993b JM |
738 | static void read_lexical_block_scope (struct dieinfo *dip, |
739 | char *thisdie, char *enddie) | |
c906108c | 740 | |
c5aa993b | 741 | DESCRIPTION |
c906108c | 742 | |
c5aa993b JM |
743 | Process all the DIES contained within a lexical block scope. |
744 | Start a new scope, process the dies, and then close the scope. | |
c906108c SS |
745 | |
746 | */ | |
747 | ||
748 | static void | |
fba45db2 KB |
749 | read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
750 | struct objfile *objfile) | |
c906108c SS |
751 | { |
752 | register struct context_stack *new; | |
753 | ||
c5aa993b JM |
754 | push_context (0, dip->at_low_pc); |
755 | process_dies (thisdie + dip->die_length, enddie, objfile); | |
c906108c SS |
756 | new = pop_context (); |
757 | if (local_symbols != NULL) | |
758 | { | |
c5aa993b JM |
759 | finish_block (0, &local_symbols, new->old_blocks, new->start_addr, |
760 | dip->at_high_pc, objfile); | |
c906108c | 761 | } |
c5aa993b | 762 | local_symbols = new->locals; |
c906108c SS |
763 | } |
764 | ||
765 | /* | |
766 | ||
c5aa993b | 767 | LOCAL FUNCTION |
c906108c | 768 | |
c5aa993b | 769 | lookup_utype -- look up a user defined type from die reference |
c906108c | 770 | |
c5aa993b | 771 | SYNOPSIS |
c906108c | 772 | |
c5aa993b | 773 | static type *lookup_utype (DIE_REF die_ref) |
c906108c | 774 | |
c5aa993b | 775 | DESCRIPTION |
c906108c | 776 | |
c5aa993b JM |
777 | Given a DIE reference, lookup the user defined type associated with |
778 | that DIE, if it has been registered already. If not registered, then | |
779 | return NULL. Alloc_utype() can be called to register an empty | |
780 | type for this reference, which will be filled in later when the | |
781 | actual referenced DIE is processed. | |
c906108c SS |
782 | */ |
783 | ||
784 | static struct type * | |
fba45db2 | 785 | lookup_utype (DIE_REF die_ref) |
c906108c SS |
786 | { |
787 | struct type *type = NULL; | |
788 | int utypeidx; | |
c5aa993b | 789 | |
c906108c SS |
790 | utypeidx = (die_ref - dbroff) / 4; |
791 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
792 | { | |
793 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
794 | } | |
795 | else | |
796 | { | |
797 | type = *(utypes + utypeidx); | |
798 | } | |
799 | return (type); | |
800 | } | |
801 | ||
802 | ||
803 | /* | |
804 | ||
c5aa993b | 805 | LOCAL FUNCTION |
c906108c | 806 | |
c5aa993b | 807 | alloc_utype -- add a user defined type for die reference |
c906108c | 808 | |
c5aa993b | 809 | SYNOPSIS |
c906108c | 810 | |
c5aa993b | 811 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c | 812 | |
c5aa993b | 813 | DESCRIPTION |
c906108c | 814 | |
c5aa993b JM |
815 | Given a die reference DIE_REF, and a possible pointer to a user |
816 | defined type UTYPEP, register that this reference has a user | |
817 | defined type and either use the specified type in UTYPEP or | |
818 | make a new empty type that will be filled in later. | |
c906108c | 819 | |
c5aa993b JM |
820 | We should only be called after calling lookup_utype() to verify that |
821 | there is not currently a type registered for DIE_REF. | |
c906108c SS |
822 | */ |
823 | ||
824 | static struct type * | |
fba45db2 | 825 | alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c SS |
826 | { |
827 | struct type **typep; | |
828 | int utypeidx; | |
c5aa993b | 829 | |
c906108c SS |
830 | utypeidx = (die_ref - dbroff) / 4; |
831 | typep = utypes + utypeidx; | |
832 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
833 | { | |
834 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
835 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
836 | } | |
837 | else if (*typep != NULL) | |
838 | { | |
839 | utypep = *typep; | |
840 | complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); | |
841 | } | |
842 | else | |
843 | { | |
844 | if (utypep == NULL) | |
845 | { | |
846 | utypep = alloc_type (current_objfile); | |
847 | } | |
848 | *typep = utypep; | |
849 | } | |
850 | return (utypep); | |
851 | } | |
852 | ||
853 | /* | |
854 | ||
c5aa993b | 855 | LOCAL FUNCTION |
c906108c | 856 | |
c5aa993b | 857 | free_utypes -- free the utypes array and reset pointer & count |
c906108c | 858 | |
c5aa993b | 859 | SYNOPSIS |
c906108c | 860 | |
c5aa993b | 861 | static void free_utypes (PTR dummy) |
c906108c | 862 | |
c5aa993b | 863 | DESCRIPTION |
c906108c | 864 | |
c5aa993b JM |
865 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, |
866 | and set numutypes back to zero. This ensures that the utypes does not get | |
867 | referenced after being freed. | |
c906108c SS |
868 | */ |
869 | ||
870 | static void | |
fba45db2 | 871 | free_utypes (PTR dummy) |
c906108c | 872 | { |
b8c9b27d | 873 | xfree (utypes); |
c906108c SS |
874 | utypes = NULL; |
875 | numutypes = 0; | |
876 | } | |
877 | ||
878 | ||
879 | /* | |
880 | ||
c5aa993b | 881 | LOCAL FUNCTION |
c906108c | 882 | |
c5aa993b | 883 | decode_die_type -- return a type for a specified die |
c906108c | 884 | |
c5aa993b | 885 | SYNOPSIS |
c906108c | 886 | |
c5aa993b | 887 | static struct type *decode_die_type (struct dieinfo *dip) |
c906108c | 888 | |
c5aa993b | 889 | DESCRIPTION |
c906108c | 890 | |
c5aa993b JM |
891 | Given a pointer to a die information structure DIP, decode the |
892 | type of the die and return a pointer to the decoded type. All | |
893 | dies without specific types default to type int. | |
c906108c SS |
894 | */ |
895 | ||
896 | static struct type * | |
fba45db2 | 897 | decode_die_type (struct dieinfo *dip) |
c906108c SS |
898 | { |
899 | struct type *type = NULL; | |
c5aa993b JM |
900 | |
901 | if (dip->at_fund_type != 0) | |
c906108c | 902 | { |
c5aa993b | 903 | type = decode_fund_type (dip->at_fund_type); |
c906108c | 904 | } |
c5aa993b | 905 | else if (dip->at_mod_fund_type != NULL) |
c906108c | 906 | { |
c5aa993b | 907 | type = decode_mod_fund_type (dip->at_mod_fund_type); |
c906108c | 908 | } |
c5aa993b | 909 | else if (dip->at_user_def_type) |
c906108c | 910 | { |
c5aa993b | 911 | if ((type = lookup_utype (dip->at_user_def_type)) == NULL) |
c906108c | 912 | { |
c5aa993b | 913 | type = alloc_utype (dip->at_user_def_type, NULL); |
c906108c SS |
914 | } |
915 | } | |
c5aa993b | 916 | else if (dip->at_mod_u_d_type) |
c906108c | 917 | { |
c5aa993b | 918 | type = decode_mod_u_d_type (dip->at_mod_u_d_type); |
c906108c SS |
919 | } |
920 | else | |
921 | { | |
922 | type = dwarf_fundamental_type (current_objfile, FT_VOID); | |
923 | } | |
924 | return (type); | |
925 | } | |
926 | ||
927 | /* | |
928 | ||
c5aa993b | 929 | LOCAL FUNCTION |
c906108c | 930 | |
c5aa993b | 931 | struct_type -- compute and return the type for a struct or union |
c906108c | 932 | |
c5aa993b | 933 | SYNOPSIS |
c906108c | 934 | |
c5aa993b JM |
935 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, |
936 | char *enddie, struct objfile *objfile) | |
c906108c | 937 | |
c5aa993b | 938 | DESCRIPTION |
c906108c | 939 | |
c5aa993b JM |
940 | Given pointer to a die information structure for a die which |
941 | defines a union or structure (and MUST define one or the other), | |
942 | and pointers to the raw die data that define the range of dies which | |
943 | define the members, compute and return the user defined type for the | |
944 | structure or union. | |
c906108c SS |
945 | */ |
946 | ||
947 | static struct type * | |
fba45db2 KB |
948 | struct_type (struct dieinfo *dip, char *thisdie, char *enddie, |
949 | struct objfile *objfile) | |
c906108c SS |
950 | { |
951 | struct type *type; | |
c5aa993b JM |
952 | struct nextfield |
953 | { | |
954 | struct nextfield *next; | |
955 | struct field field; | |
956 | }; | |
c906108c SS |
957 | struct nextfield *list = NULL; |
958 | struct nextfield *new; | |
959 | int nfields = 0; | |
960 | int n; | |
961 | struct dieinfo mbr; | |
962 | char *nextdie; | |
963 | int anonymous_size; | |
c5aa993b JM |
964 | |
965 | if ((type = lookup_utype (dip->die_ref)) == NULL) | |
c906108c SS |
966 | { |
967 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 968 | type = alloc_utype (dip->die_ref, NULL); |
c906108c | 969 | } |
c5aa993b JM |
970 | INIT_CPLUS_SPECIFIC (type); |
971 | switch (dip->die_tag) | |
c906108c | 972 | { |
c5aa993b JM |
973 | case TAG_class_type: |
974 | TYPE_CODE (type) = TYPE_CODE_CLASS; | |
975 | break; | |
976 | case TAG_structure_type: | |
977 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
978 | break; | |
979 | case TAG_union_type: | |
980 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
981 | break; | |
982 | default: | |
983 | /* Should never happen */ | |
984 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
985 | complain (&missing_tag, DIE_ID, DIE_NAME); | |
986 | break; | |
c906108c SS |
987 | } |
988 | /* Some compilers try to be helpful by inventing "fake" names for | |
989 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
990 | Thanks, but no thanks... */ | |
c5aa993b JM |
991 | if (dip->at_name != NULL |
992 | && *dip->at_name != '~' | |
993 | && *dip->at_name != '.') | |
c906108c | 994 | { |
c5aa993b JM |
995 | TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack, |
996 | "", "", dip->at_name); | |
c906108c SS |
997 | } |
998 | /* Use whatever size is known. Zero is a valid size. We might however | |
999 | wish to check has_at_byte_size to make sure that some byte size was | |
1000 | given explicitly, but DWARF doesn't specify that explicit sizes of | |
1001 | zero have to present, so complaining about missing sizes should | |
1002 | probably not be the default. */ | |
c5aa993b JM |
1003 | TYPE_LENGTH (type) = dip->at_byte_size; |
1004 | thisdie += dip->die_length; | |
c906108c SS |
1005 | while (thisdie < enddie) |
1006 | { | |
1007 | basicdieinfo (&mbr, thisdie, objfile); | |
1008 | completedieinfo (&mbr, objfile); | |
1009 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) | |
1010 | { | |
1011 | break; | |
1012 | } | |
1013 | else if (mbr.at_sibling != 0) | |
1014 | { | |
1015 | nextdie = dbbase + mbr.at_sibling - dbroff; | |
1016 | } | |
1017 | else | |
1018 | { | |
1019 | nextdie = thisdie + mbr.die_length; | |
1020 | } | |
1021 | switch (mbr.die_tag) | |
1022 | { | |
1023 | case TAG_member: | |
1024 | /* Get space to record the next field's data. */ | |
1025 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1026 | new->next = list; |
c906108c SS |
1027 | list = new; |
1028 | /* Save the data. */ | |
c5aa993b JM |
1029 | list->field.name = |
1030 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |
1031 | &objfile->type_obstack); | |
c906108c SS |
1032 | FIELD_TYPE (list->field) = decode_die_type (&mbr); |
1033 | FIELD_BITPOS (list->field) = 8 * locval (&mbr); | |
1034 | /* Handle bit fields. */ | |
1035 | FIELD_BITSIZE (list->field) = mbr.at_bit_size; | |
1036 | if (BITS_BIG_ENDIAN) | |
1037 | { | |
1038 | /* For big endian bits, the at_bit_offset gives the | |
c5aa993b JM |
1039 | additional bit offset from the MSB of the containing |
1040 | anonymous object to the MSB of the field. We don't | |
1041 | have to do anything special since we don't need to | |
1042 | know the size of the anonymous object. */ | |
c906108c SS |
1043 | FIELD_BITPOS (list->field) += mbr.at_bit_offset; |
1044 | } | |
1045 | else | |
1046 | { | |
1047 | /* For little endian bits, we need to have a non-zero | |
c5aa993b JM |
1048 | at_bit_size, so that we know we are in fact dealing |
1049 | with a bitfield. Compute the bit offset to the MSB | |
1050 | of the anonymous object, subtract off the number of | |
1051 | bits from the MSB of the field to the MSB of the | |
1052 | object, and then subtract off the number of bits of | |
1053 | the field itself. The result is the bit offset of | |
1054 | the LSB of the field. */ | |
c906108c SS |
1055 | if (mbr.at_bit_size > 0) |
1056 | { | |
1057 | if (mbr.has_at_byte_size) | |
1058 | { | |
1059 | /* The size of the anonymous object containing | |
c5aa993b JM |
1060 | the bit field is explicit, so use the |
1061 | indicated size (in bytes). */ | |
c906108c SS |
1062 | anonymous_size = mbr.at_byte_size; |
1063 | } | |
1064 | else | |
1065 | { | |
1066 | /* The size of the anonymous object containing | |
c5aa993b JM |
1067 | the bit field matches the size of an object |
1068 | of the bit field's type. DWARF allows | |
1069 | at_byte_size to be left out in such cases, as | |
1070 | a debug information size optimization. */ | |
1071 | anonymous_size = TYPE_LENGTH (list->field.type); | |
c906108c SS |
1072 | } |
1073 | FIELD_BITPOS (list->field) += | |
1074 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |
1075 | } | |
1076 | } | |
1077 | nfields++; | |
1078 | break; | |
1079 | default: | |
1080 | process_dies (thisdie, nextdie, objfile); | |
1081 | break; | |
1082 | } | |
1083 | thisdie = nextdie; | |
1084 | } | |
1085 | /* Now create the vector of fields, and record how big it is. We may | |
1086 | not even have any fields, if this DIE was generated due to a reference | |
1087 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |
1088 | set, which clues gdb in to the fact that it needs to search elsewhere | |
1089 | for the full structure definition. */ | |
1090 | if (nfields == 0) | |
1091 | { | |
1092 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1093 | } | |
1094 | else | |
1095 | { | |
1096 | TYPE_NFIELDS (type) = nfields; | |
1097 | TYPE_FIELDS (type) = (struct field *) | |
1098 | TYPE_ALLOC (type, sizeof (struct field) * nfields); | |
1099 | /* Copy the saved-up fields into the field vector. */ | |
c5aa993b | 1100 | for (n = nfields; list; list = list->next) |
c906108c | 1101 | { |
c5aa993b JM |
1102 | TYPE_FIELD (type, --n) = list->field; |
1103 | } | |
c906108c SS |
1104 | } |
1105 | return (type); | |
1106 | } | |
1107 | ||
1108 | /* | |
1109 | ||
c5aa993b | 1110 | LOCAL FUNCTION |
c906108c | 1111 | |
c5aa993b | 1112 | read_structure_scope -- process all dies within struct or union |
c906108c | 1113 | |
c5aa993b | 1114 | SYNOPSIS |
c906108c | 1115 | |
c5aa993b JM |
1116 | static void read_structure_scope (struct dieinfo *dip, |
1117 | char *thisdie, char *enddie, struct objfile *objfile) | |
c906108c | 1118 | |
c5aa993b | 1119 | DESCRIPTION |
c906108c | 1120 | |
c5aa993b JM |
1121 | Called when we find the DIE that starts a structure or union |
1122 | scope (definition) to process all dies that define the members | |
1123 | of the structure or union. DIP is a pointer to the die info | |
1124 | struct for the DIE that names the structure or union. | |
c906108c | 1125 | |
c5aa993b JM |
1126 | NOTES |
1127 | ||
1128 | Note that we need to call struct_type regardless of whether or not | |
1129 | the DIE has an at_name attribute, since it might be an anonymous | |
1130 | structure or union. This gets the type entered into our set of | |
1131 | user defined types. | |
1132 | ||
1133 | However, if the structure is incomplete (an opaque struct/union) | |
1134 | then suppress creating a symbol table entry for it since gdb only | |
1135 | wants to find the one with the complete definition. Note that if | |
1136 | it is complete, we just call new_symbol, which does it's own | |
1137 | checking about whether the struct/union is anonymous or not (and | |
1138 | suppresses creating a symbol table entry itself). | |
c906108c | 1139 | |
c906108c SS |
1140 | */ |
1141 | ||
1142 | static void | |
fba45db2 KB |
1143 | read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1144 | struct objfile *objfile) | |
c906108c SS |
1145 | { |
1146 | struct type *type; | |
1147 | struct symbol *sym; | |
c5aa993b | 1148 | |
c906108c SS |
1149 | type = struct_type (dip, thisdie, enddie, objfile); |
1150 | if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) | |
1151 | { | |
1152 | sym = new_symbol (dip, objfile); | |
1153 | if (sym != NULL) | |
1154 | { | |
1155 | SYMBOL_TYPE (sym) = type; | |
1156 | if (cu_language == language_cplus) | |
1157 | { | |
1158 | synthesize_typedef (dip, objfile, type); | |
1159 | } | |
1160 | } | |
1161 | } | |
1162 | } | |
1163 | ||
1164 | /* | |
1165 | ||
c5aa993b | 1166 | LOCAL FUNCTION |
c906108c | 1167 | |
c5aa993b | 1168 | decode_array_element_type -- decode type of the array elements |
c906108c | 1169 | |
c5aa993b | 1170 | SYNOPSIS |
c906108c | 1171 | |
c5aa993b | 1172 | static struct type *decode_array_element_type (char *scan, char *end) |
c906108c | 1173 | |
c5aa993b | 1174 | DESCRIPTION |
c906108c | 1175 | |
c5aa993b JM |
1176 | As the last step in decoding the array subscript information for an |
1177 | array DIE, we need to decode the type of the array elements. We are | |
1178 | passed a pointer to this last part of the subscript information and | |
1179 | must return the appropriate type. If the type attribute is not | |
1180 | recognized, just warn about the problem and return type int. | |
c906108c SS |
1181 | */ |
1182 | ||
1183 | static struct type * | |
fba45db2 | 1184 | decode_array_element_type (char *scan) |
c906108c SS |
1185 | { |
1186 | struct type *typep; | |
1187 | DIE_REF die_ref; | |
1188 | unsigned short attribute; | |
1189 | unsigned short fundtype; | |
1190 | int nbytes; | |
c5aa993b | 1191 | |
c906108c SS |
1192 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, |
1193 | current_objfile); | |
1194 | scan += SIZEOF_ATTRIBUTE; | |
1195 | if ((nbytes = attribute_size (attribute)) == -1) | |
1196 | { | |
1197 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1198 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1199 | } | |
1200 | else | |
1201 | { | |
1202 | switch (attribute) | |
1203 | { | |
c5aa993b JM |
1204 | case AT_fund_type: |
1205 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1206 | current_objfile); | |
1207 | typep = decode_fund_type (fundtype); | |
1208 | break; | |
1209 | case AT_mod_fund_type: | |
1210 | typep = decode_mod_fund_type (scan); | |
1211 | break; | |
1212 | case AT_user_def_type: | |
1213 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1214 | current_objfile); | |
1215 | if ((typep = lookup_utype (die_ref)) == NULL) | |
1216 | { | |
1217 | typep = alloc_utype (die_ref, NULL); | |
1218 | } | |
1219 | break; | |
1220 | case AT_mod_u_d_type: | |
1221 | typep = decode_mod_u_d_type (scan); | |
1222 | break; | |
1223 | default: | |
1224 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1225 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1226 | break; | |
1227 | } | |
c906108c SS |
1228 | } |
1229 | return (typep); | |
1230 | } | |
1231 | ||
1232 | /* | |
1233 | ||
c5aa993b | 1234 | LOCAL FUNCTION |
c906108c | 1235 | |
c5aa993b | 1236 | decode_subscript_data_item -- decode array subscript item |
c906108c | 1237 | |
c5aa993b | 1238 | SYNOPSIS |
c906108c | 1239 | |
c5aa993b JM |
1240 | static struct type * |
1241 | decode_subscript_data_item (char *scan, char *end) | |
c906108c | 1242 | |
c5aa993b | 1243 | DESCRIPTION |
c906108c | 1244 | |
c5aa993b JM |
1245 | The array subscripts and the data type of the elements of an |
1246 | array are described by a list of data items, stored as a block | |
1247 | of contiguous bytes. There is a data item describing each array | |
1248 | dimension, and a final data item describing the element type. | |
1249 | The data items are ordered the same as their appearance in the | |
1250 | source (I.E. leftmost dimension first, next to leftmost second, | |
1251 | etc). | |
c906108c | 1252 | |
c5aa993b JM |
1253 | The data items describing each array dimension consist of four |
1254 | parts: (1) a format specifier, (2) type type of the subscript | |
1255 | index, (3) a description of the low bound of the array dimension, | |
1256 | and (4) a description of the high bound of the array dimension. | |
c906108c | 1257 | |
c5aa993b JM |
1258 | The last data item is the description of the type of each of |
1259 | the array elements. | |
c906108c | 1260 | |
c5aa993b JM |
1261 | We are passed a pointer to the start of the block of bytes |
1262 | containing the remaining data items, and a pointer to the first | |
1263 | byte past the data. This function recursively decodes the | |
1264 | remaining data items and returns a type. | |
c906108c | 1265 | |
c5aa993b JM |
1266 | If we somehow fail to decode some data, we complain about it |
1267 | and return a type "array of int". | |
c906108c | 1268 | |
c5aa993b JM |
1269 | BUGS |
1270 | FIXME: This code only implements the forms currently used | |
1271 | by the AT&T and GNU C compilers. | |
c906108c | 1272 | |
c5aa993b JM |
1273 | The end pointer is supplied for error checking, maybe we should |
1274 | use it for that... | |
c906108c SS |
1275 | */ |
1276 | ||
1277 | static struct type * | |
fba45db2 | 1278 | decode_subscript_data_item (char *scan, char *end) |
c906108c SS |
1279 | { |
1280 | struct type *typep = NULL; /* Array type we are building */ | |
1281 | struct type *nexttype; /* Type of each element (may be array) */ | |
1282 | struct type *indextype; /* Type of this index */ | |
1283 | struct type *rangetype; | |
1284 | unsigned int format; | |
1285 | unsigned short fundtype; | |
1286 | unsigned long lowbound; | |
1287 | unsigned long highbound; | |
1288 | int nbytes; | |
c5aa993b | 1289 | |
c906108c SS |
1290 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, |
1291 | current_objfile); | |
1292 | scan += SIZEOF_FORMAT_SPECIFIER; | |
1293 | switch (format) | |
1294 | { | |
1295 | case FMT_ET: | |
1296 | typep = decode_array_element_type (scan); | |
1297 | break; | |
1298 | case FMT_FT_C_C: | |
1299 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, | |
1300 | current_objfile); | |
1301 | indextype = decode_fund_type (fundtype); | |
1302 | scan += SIZEOF_FMT_FT; | |
1303 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); | |
1304 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1305 | scan += nbytes; | |
1306 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1307 | scan += nbytes; | |
1308 | nexttype = decode_subscript_data_item (scan, end); | |
1309 | if (nexttype == NULL) | |
1310 | { | |
1311 | /* Munged subscript data or other problem, fake it. */ | |
1312 | complain (&subscript_data_items, DIE_ID, DIE_NAME); | |
1313 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1314 | } | |
1315 | rangetype = create_range_type ((struct type *) NULL, indextype, | |
c5aa993b | 1316 | lowbound, highbound); |
c906108c SS |
1317 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
1318 | break; | |
1319 | case FMT_FT_C_X: | |
1320 | case FMT_FT_X_C: | |
1321 | case FMT_FT_X_X: | |
1322 | case FMT_UT_C_C: | |
1323 | case FMT_UT_C_X: | |
1324 | case FMT_UT_X_C: | |
1325 | case FMT_UT_X_X: | |
1326 | complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1327 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1328 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1329 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1330 | break; | |
1331 | default: | |
1332 | complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1333 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1334 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1335 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1336 | break; | |
1337 | } | |
1338 | return (typep); | |
1339 | } | |
1340 | ||
1341 | /* | |
1342 | ||
c5aa993b | 1343 | LOCAL FUNCTION |
c906108c | 1344 | |
c5aa993b | 1345 | dwarf_read_array_type -- read TAG_array_type DIE |
c906108c | 1346 | |
c5aa993b | 1347 | SYNOPSIS |
c906108c | 1348 | |
c5aa993b | 1349 | static void dwarf_read_array_type (struct dieinfo *dip) |
c906108c | 1350 | |
c5aa993b | 1351 | DESCRIPTION |
c906108c | 1352 | |
c5aa993b JM |
1353 | Extract all information from a TAG_array_type DIE and add to |
1354 | the user defined type vector. | |
c906108c SS |
1355 | */ |
1356 | ||
1357 | static void | |
fba45db2 | 1358 | dwarf_read_array_type (struct dieinfo *dip) |
c906108c SS |
1359 | { |
1360 | struct type *type; | |
1361 | struct type *utype; | |
1362 | char *sub; | |
1363 | char *subend; | |
1364 | unsigned short blocksz; | |
1365 | int nbytes; | |
c5aa993b JM |
1366 | |
1367 | if (dip->at_ordering != ORD_row_major) | |
c906108c SS |
1368 | { |
1369 | /* FIXME: Can gdb even handle column major arrays? */ | |
1370 | complain (¬_row_major, DIE_ID, DIE_NAME); | |
1371 | } | |
c5aa993b | 1372 | if ((sub = dip->at_subscr_data) != NULL) |
c906108c SS |
1373 | { |
1374 | nbytes = attribute_size (AT_subscr_data); | |
1375 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); | |
1376 | subend = sub + nbytes + blocksz; | |
1377 | sub += nbytes; | |
1378 | type = decode_subscript_data_item (sub, subend); | |
c5aa993b | 1379 | if ((utype = lookup_utype (dip->die_ref)) == NULL) |
c906108c SS |
1380 | { |
1381 | /* Install user defined type that has not been referenced yet. */ | |
c5aa993b | 1382 | alloc_utype (dip->die_ref, type); |
c906108c SS |
1383 | } |
1384 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) | |
1385 | { | |
1386 | /* Ick! A forward ref has already generated a blank type in our | |
1387 | slot, and this type probably already has things pointing to it | |
1388 | (which is what caused it to be created in the first place). | |
1389 | If it's just a place holder we can plop our fully defined type | |
1390 | on top of it. We can't recover the space allocated for our | |
1391 | new type since it might be on an obstack, but we could reuse | |
1392 | it if we kept a list of them, but it might not be worth it | |
1393 | (FIXME). */ | |
1394 | *utype = *type; | |
1395 | } | |
1396 | else | |
1397 | { | |
1398 | /* Double ick! Not only is a type already in our slot, but | |
1399 | someone has decorated it. Complain and leave it alone. */ | |
1400 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1401 | } | |
1402 | } | |
1403 | } | |
1404 | ||
1405 | /* | |
1406 | ||
c5aa993b | 1407 | LOCAL FUNCTION |
c906108c | 1408 | |
c5aa993b | 1409 | read_tag_pointer_type -- read TAG_pointer_type DIE |
c906108c | 1410 | |
c5aa993b | 1411 | SYNOPSIS |
c906108c | 1412 | |
c5aa993b | 1413 | static void read_tag_pointer_type (struct dieinfo *dip) |
c906108c | 1414 | |
c5aa993b | 1415 | DESCRIPTION |
c906108c | 1416 | |
c5aa993b JM |
1417 | Extract all information from a TAG_pointer_type DIE and add to |
1418 | the user defined type vector. | |
c906108c SS |
1419 | */ |
1420 | ||
1421 | static void | |
fba45db2 | 1422 | read_tag_pointer_type (struct dieinfo *dip) |
c906108c SS |
1423 | { |
1424 | struct type *type; | |
1425 | struct type *utype; | |
c5aa993b | 1426 | |
c906108c | 1427 | type = decode_die_type (dip); |
c5aa993b | 1428 | if ((utype = lookup_utype (dip->die_ref)) == NULL) |
c906108c SS |
1429 | { |
1430 | utype = lookup_pointer_type (type); | |
c5aa993b | 1431 | alloc_utype (dip->die_ref, utype); |
c906108c SS |
1432 | } |
1433 | else | |
1434 | { | |
1435 | TYPE_TARGET_TYPE (utype) = type; | |
1436 | TYPE_POINTER_TYPE (type) = utype; | |
1437 | ||
1438 | /* We assume the machine has only one representation for pointers! */ | |
1439 | /* FIXME: Possably a poor assumption */ | |
c5aa993b | 1440 | TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; |
c906108c SS |
1441 | TYPE_CODE (utype) = TYPE_CODE_PTR; |
1442 | } | |
1443 | } | |
1444 | ||
1445 | /* | |
1446 | ||
c5aa993b | 1447 | LOCAL FUNCTION |
c906108c | 1448 | |
c5aa993b | 1449 | read_tag_string_type -- read TAG_string_type DIE |
c906108c | 1450 | |
c5aa993b | 1451 | SYNOPSIS |
c906108c | 1452 | |
c5aa993b | 1453 | static void read_tag_string_type (struct dieinfo *dip) |
c906108c | 1454 | |
c5aa993b | 1455 | DESCRIPTION |
c906108c | 1456 | |
c5aa993b JM |
1457 | Extract all information from a TAG_string_type DIE and add to |
1458 | the user defined type vector. It isn't really a user defined | |
1459 | type, but it behaves like one, with other DIE's using an | |
1460 | AT_user_def_type attribute to reference it. | |
c906108c SS |
1461 | */ |
1462 | ||
1463 | static void | |
fba45db2 | 1464 | read_tag_string_type (struct dieinfo *dip) |
c906108c SS |
1465 | { |
1466 | struct type *utype; | |
1467 | struct type *indextype; | |
1468 | struct type *rangetype; | |
1469 | unsigned long lowbound = 0; | |
1470 | unsigned long highbound; | |
1471 | ||
c5aa993b | 1472 | if (dip->has_at_byte_size) |
c906108c SS |
1473 | { |
1474 | /* A fixed bounds string */ | |
c5aa993b | 1475 | highbound = dip->at_byte_size - 1; |
c906108c SS |
1476 | } |
1477 | else | |
1478 | { | |
1479 | /* A varying length string. Stub for now. (FIXME) */ | |
1480 | highbound = 1; | |
1481 | } | |
1482 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1483 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, | |
1484 | highbound); | |
c5aa993b JM |
1485 | |
1486 | utype = lookup_utype (dip->die_ref); | |
c906108c SS |
1487 | if (utype == NULL) |
1488 | { | |
1489 | /* No type defined, go ahead and create a blank one to use. */ | |
c5aa993b | 1490 | utype = alloc_utype (dip->die_ref, (struct type *) NULL); |
c906108c SS |
1491 | } |
1492 | else | |
1493 | { | |
1494 | /* Already a type in our slot due to a forward reference. Make sure it | |
c5aa993b | 1495 | is a blank one. If not, complain and leave it alone. */ |
c906108c SS |
1496 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) |
1497 | { | |
1498 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1499 | return; | |
1500 | } | |
1501 | } | |
1502 | ||
1503 | /* Create the string type using the blank type we either found or created. */ | |
1504 | utype = create_string_type (utype, rangetype); | |
1505 | } | |
1506 | ||
1507 | /* | |
1508 | ||
c5aa993b | 1509 | LOCAL FUNCTION |
c906108c | 1510 | |
c5aa993b | 1511 | read_subroutine_type -- process TAG_subroutine_type dies |
c906108c | 1512 | |
c5aa993b | 1513 | SYNOPSIS |
c906108c | 1514 | |
c5aa993b JM |
1515 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, |
1516 | char *enddie) | |
c906108c | 1517 | |
c5aa993b | 1518 | DESCRIPTION |
c906108c | 1519 | |
c5aa993b | 1520 | Handle DIES due to C code like: |
c906108c | 1521 | |
c5aa993b JM |
1522 | struct foo { |
1523 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1524 | int b; | |
1525 | }; | |
c906108c | 1526 | |
c5aa993b | 1527 | NOTES |
c906108c | 1528 | |
c5aa993b JM |
1529 | The parameter DIES are currently ignored. See if gdb has a way to |
1530 | include this info in it's type system, and decode them if so. Is | |
1531 | this what the type structure's "arg_types" field is for? (FIXME) | |
c906108c SS |
1532 | */ |
1533 | ||
1534 | static void | |
fba45db2 | 1535 | read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie) |
c906108c SS |
1536 | { |
1537 | struct type *type; /* Type that this function returns */ | |
1538 | struct type *ftype; /* Function that returns above type */ | |
c5aa993b | 1539 | |
c906108c SS |
1540 | /* Decode the type that this subroutine returns */ |
1541 | ||
1542 | type = decode_die_type (dip); | |
1543 | ||
1544 | /* Check to see if we already have a partially constructed user | |
1545 | defined type for this DIE, from a forward reference. */ | |
1546 | ||
c5aa993b | 1547 | if ((ftype = lookup_utype (dip->die_ref)) == NULL) |
c906108c SS |
1548 | { |
1549 | /* This is the first reference to one of these types. Make | |
c5aa993b | 1550 | a new one and place it in the user defined types. */ |
c906108c | 1551 | ftype = lookup_function_type (type); |
c5aa993b | 1552 | alloc_utype (dip->die_ref, ftype); |
c906108c SS |
1553 | } |
1554 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) | |
1555 | { | |
1556 | /* We have an existing partially constructed type, so bash it | |
c5aa993b | 1557 | into the correct type. */ |
c906108c SS |
1558 | TYPE_TARGET_TYPE (ftype) = type; |
1559 | TYPE_LENGTH (ftype) = 1; | |
1560 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; | |
1561 | } | |
1562 | else | |
1563 | { | |
1564 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | /* | |
1569 | ||
c5aa993b | 1570 | LOCAL FUNCTION |
c906108c | 1571 | |
c5aa993b | 1572 | read_enumeration -- process dies which define an enumeration |
c906108c | 1573 | |
c5aa993b | 1574 | SYNOPSIS |
c906108c | 1575 | |
c5aa993b JM |
1576 | static void read_enumeration (struct dieinfo *dip, char *thisdie, |
1577 | char *enddie, struct objfile *objfile) | |
c906108c | 1578 | |
c5aa993b | 1579 | DESCRIPTION |
c906108c | 1580 | |
c5aa993b JM |
1581 | Given a pointer to a die which begins an enumeration, process all |
1582 | the dies that define the members of the enumeration. | |
c906108c | 1583 | |
c5aa993b | 1584 | NOTES |
c906108c | 1585 | |
c5aa993b JM |
1586 | Note that we need to call enum_type regardless of whether or not we |
1587 | have a symbol, since we might have an enum without a tag name (thus | |
1588 | no symbol for the tagname). | |
c906108c SS |
1589 | */ |
1590 | ||
1591 | static void | |
fba45db2 KB |
1592 | read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie, |
1593 | struct objfile *objfile) | |
c906108c SS |
1594 | { |
1595 | struct type *type; | |
1596 | struct symbol *sym; | |
c5aa993b | 1597 | |
c906108c SS |
1598 | type = enum_type (dip, objfile); |
1599 | sym = new_symbol (dip, objfile); | |
1600 | if (sym != NULL) | |
1601 | { | |
1602 | SYMBOL_TYPE (sym) = type; | |
1603 | if (cu_language == language_cplus) | |
1604 | { | |
1605 | synthesize_typedef (dip, objfile, type); | |
1606 | } | |
1607 | } | |
1608 | } | |
1609 | ||
1610 | /* | |
1611 | ||
c5aa993b | 1612 | LOCAL FUNCTION |
c906108c | 1613 | |
c5aa993b | 1614 | enum_type -- decode and return a type for an enumeration |
c906108c | 1615 | |
c5aa993b | 1616 | SYNOPSIS |
c906108c | 1617 | |
c5aa993b | 1618 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 1619 | |
c5aa993b | 1620 | DESCRIPTION |
c906108c | 1621 | |
c5aa993b JM |
1622 | Given a pointer to a die information structure for the die which |
1623 | starts an enumeration, process all the dies that define the members | |
1624 | of the enumeration and return a type pointer for the enumeration. | |
c906108c | 1625 | |
c5aa993b JM |
1626 | At the same time, for each member of the enumeration, create a |
1627 | symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, | |
1628 | and give it the type of the enumeration itself. | |
c906108c | 1629 | |
c5aa993b | 1630 | NOTES |
c906108c | 1631 | |
c5aa993b JM |
1632 | Note that the DWARF specification explicitly mandates that enum |
1633 | constants occur in reverse order from the source program order, | |
1634 | for "consistency" and because this ordering is easier for many | |
1635 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |
1636 | Entries). Because gdb wants to see the enum members in program | |
1637 | source order, we have to ensure that the order gets reversed while | |
1638 | we are processing them. | |
c906108c SS |
1639 | */ |
1640 | ||
1641 | static struct type * | |
fba45db2 | 1642 | enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
1643 | { |
1644 | struct type *type; | |
c5aa993b JM |
1645 | struct nextfield |
1646 | { | |
1647 | struct nextfield *next; | |
1648 | struct field field; | |
1649 | }; | |
c906108c SS |
1650 | struct nextfield *list = NULL; |
1651 | struct nextfield *new; | |
1652 | int nfields = 0; | |
1653 | int n; | |
1654 | char *scan; | |
1655 | char *listend; | |
1656 | unsigned short blocksz; | |
1657 | struct symbol *sym; | |
1658 | int nbytes; | |
1659 | int unsigned_enum = 1; | |
c5aa993b JM |
1660 | |
1661 | if ((type = lookup_utype (dip->die_ref)) == NULL) | |
c906108c SS |
1662 | { |
1663 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 1664 | type = alloc_utype (dip->die_ref, NULL); |
c906108c SS |
1665 | } |
1666 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1667 | /* Some compilers try to be helpful by inventing "fake" names for | |
1668 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1669 | Thanks, but no thanks... */ | |
c5aa993b JM |
1670 | if (dip->at_name != NULL |
1671 | && *dip->at_name != '~' | |
1672 | && *dip->at_name != '.') | |
c906108c | 1673 | { |
c5aa993b JM |
1674 | TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack, |
1675 | "", "", dip->at_name); | |
c906108c | 1676 | } |
c5aa993b | 1677 | if (dip->at_byte_size != 0) |
c906108c | 1678 | { |
c5aa993b | 1679 | TYPE_LENGTH (type) = dip->at_byte_size; |
c906108c | 1680 | } |
c5aa993b | 1681 | if ((scan = dip->at_element_list) != NULL) |
c906108c | 1682 | { |
c5aa993b | 1683 | if (dip->short_element_list) |
c906108c SS |
1684 | { |
1685 | nbytes = attribute_size (AT_short_element_list); | |
1686 | } | |
1687 | else | |
1688 | { | |
1689 | nbytes = attribute_size (AT_element_list); | |
1690 | } | |
1691 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
1692 | listend = scan + nbytes + blocksz; | |
1693 | scan += nbytes; | |
1694 | while (scan < listend) | |
1695 | { | |
1696 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1697 | new->next = list; |
c906108c SS |
1698 | list = new; |
1699 | FIELD_TYPE (list->field) = NULL; | |
1700 | FIELD_BITSIZE (list->field) = 0; | |
1701 | FIELD_BITPOS (list->field) = | |
1702 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, | |
1703 | objfile); | |
1704 | scan += TARGET_FT_LONG_SIZE (objfile); | |
c5aa993b JM |
1705 | list->field.name = obsavestring (scan, strlen (scan), |
1706 | &objfile->type_obstack); | |
c906108c SS |
1707 | scan += strlen (scan) + 1; |
1708 | nfields++; | |
1709 | /* Handcraft a new symbol for this enum member. */ | |
1710 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, | |
1711 | sizeof (struct symbol)); | |
1712 | memset (sym, 0, sizeof (struct symbol)); | |
c5aa993b | 1713 | SYMBOL_NAME (sym) = create_name (list->field.name, |
c906108c SS |
1714 | &objfile->symbol_obstack); |
1715 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
1716 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1717 | SYMBOL_CLASS (sym) = LOC_CONST; | |
1718 | SYMBOL_TYPE (sym) = type; | |
1719 | SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); | |
1720 | if (SYMBOL_VALUE (sym) < 0) | |
1721 | unsigned_enum = 0; | |
1722 | add_symbol_to_list (sym, list_in_scope); | |
1723 | } | |
1724 | /* Now create the vector of fields, and record how big it is. This is | |
c5aa993b JM |
1725 | where we reverse the order, by pulling the members off the list in |
1726 | reverse order from how they were inserted. If we have no fields | |
1727 | (this is apparently possible in C++) then skip building a field | |
1728 | vector. */ | |
c906108c SS |
1729 | if (nfields > 0) |
1730 | { | |
1731 | if (unsigned_enum) | |
1732 | TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; | |
1733 | TYPE_NFIELDS (type) = nfields; | |
1734 | TYPE_FIELDS (type) = (struct field *) | |
1735 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); | |
1736 | /* Copy the saved-up fields into the field vector. */ | |
c5aa993b | 1737 | for (n = 0; (n < nfields) && (list != NULL); list = list->next) |
c906108c | 1738 | { |
c5aa993b JM |
1739 | TYPE_FIELD (type, n++) = list->field; |
1740 | } | |
c906108c SS |
1741 | } |
1742 | } | |
1743 | return (type); | |
1744 | } | |
1745 | ||
1746 | /* | |
1747 | ||
c5aa993b | 1748 | LOCAL FUNCTION |
c906108c | 1749 | |
c5aa993b | 1750 | read_func_scope -- process all dies within a function scope |
c906108c | 1751 | |
c5aa993b | 1752 | DESCRIPTION |
c906108c | 1753 | |
c5aa993b JM |
1754 | Process all dies within a given function scope. We are passed |
1755 | a die information structure pointer DIP for the die which | |
1756 | starts the function scope, and pointers into the raw die data | |
1757 | that define the dies within the function scope. | |
1758 | ||
1759 | For now, we ignore lexical block scopes within the function. | |
1760 | The problem is that AT&T cc does not define a DWARF lexical | |
1761 | block scope for the function itself, while gcc defines a | |
1762 | lexical block scope for the function. We need to think about | |
1763 | how to handle this difference, or if it is even a problem. | |
1764 | (FIXME) | |
c906108c SS |
1765 | */ |
1766 | ||
1767 | static void | |
fba45db2 KB |
1768 | read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1769 | struct objfile *objfile) | |
c906108c SS |
1770 | { |
1771 | register struct context_stack *new; | |
c5aa993b | 1772 | |
c906108c SS |
1773 | /* AT_name is absent if the function is described with an |
1774 | AT_abstract_origin tag. | |
1775 | Ignore the function description for now to avoid GDB core dumps. | |
1776 | FIXME: Add code to handle AT_abstract_origin tags properly. */ | |
c5aa993b | 1777 | if (dip->at_name == NULL) |
c906108c SS |
1778 | { |
1779 | complain (&missing_at_name, DIE_ID); | |
1780 | return; | |
1781 | } | |
1782 | ||
c5aa993b JM |
1783 | if (objfile->ei.entry_point >= dip->at_low_pc && |
1784 | objfile->ei.entry_point < dip->at_high_pc) | |
c906108c | 1785 | { |
c5aa993b JM |
1786 | objfile->ei.entry_func_lowpc = dip->at_low_pc; |
1787 | objfile->ei.entry_func_highpc = dip->at_high_pc; | |
c906108c | 1788 | } |
c5aa993b JM |
1789 | new = push_context (0, dip->at_low_pc); |
1790 | new->name = new_symbol (dip, objfile); | |
c906108c | 1791 | list_in_scope = &local_symbols; |
c5aa993b | 1792 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c SS |
1793 | new = pop_context (); |
1794 | /* Make a block for the local symbols within. */ | |
c5aa993b JM |
1795 | finish_block (new->name, &local_symbols, new->old_blocks, |
1796 | new->start_addr, dip->at_high_pc, objfile); | |
c906108c SS |
1797 | list_in_scope = &file_symbols; |
1798 | } | |
1799 | ||
1800 | ||
1801 | /* | |
1802 | ||
c5aa993b | 1803 | LOCAL FUNCTION |
c906108c | 1804 | |
c5aa993b | 1805 | handle_producer -- process the AT_producer attribute |
c906108c | 1806 | |
c5aa993b | 1807 | DESCRIPTION |
c906108c | 1808 | |
c5aa993b JM |
1809 | Perform any operations that depend on finding a particular |
1810 | AT_producer attribute. | |
c906108c SS |
1811 | |
1812 | */ | |
1813 | ||
1814 | static void | |
fba45db2 | 1815 | handle_producer (char *producer) |
c906108c SS |
1816 | { |
1817 | ||
1818 | /* If this compilation unit was compiled with g++ or gcc, then set the | |
1819 | processing_gcc_compilation flag. */ | |
1820 | ||
1821 | if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) | |
1822 | { | |
1823 | char version = producer[strlen (GCC_PRODUCER)]; | |
1824 | processing_gcc_compilation = (version == '2' ? 2 : 1); | |
1825 | } | |
1826 | else | |
1827 | { | |
1828 | processing_gcc_compilation = | |
1829 | STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) | |
1830 | || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); | |
1831 | } | |
1832 | ||
1833 | /* Select a demangling style if we can identify the producer and if | |
1834 | the current style is auto. We leave the current style alone if it | |
1835 | is not auto. We also leave the demangling style alone if we find a | |
1836 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |
1837 | ||
1838 | if (AUTO_DEMANGLING) | |
1839 | { | |
1840 | if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) | |
1841 | { | |
8052a17a JM |
1842 | #if 0 |
1843 | /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't | |
1844 | know whether it will use the old style or v3 mangling. */ | |
c906108c | 1845 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); |
8052a17a | 1846 | #endif |
c906108c SS |
1847 | } |
1848 | else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) | |
1849 | { | |
1850 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); | |
1851 | } | |
1852 | } | |
1853 | } | |
1854 | ||
1855 | ||
1856 | /* | |
1857 | ||
c5aa993b | 1858 | LOCAL FUNCTION |
c906108c | 1859 | |
c5aa993b | 1860 | read_file_scope -- process all dies within a file scope |
c906108c | 1861 | |
c5aa993b JM |
1862 | DESCRIPTION |
1863 | ||
1864 | Process all dies within a given file scope. We are passed a | |
1865 | pointer to the die information structure for the die which | |
1866 | starts the file scope, and pointers into the raw die data which | |
1867 | mark the range of dies within the file scope. | |
c906108c | 1868 | |
c5aa993b JM |
1869 | When the partial symbol table is built, the file offset for the line |
1870 | number table for each compilation unit is saved in the partial symbol | |
1871 | table entry for that compilation unit. As the symbols for each | |
1872 | compilation unit are read, the line number table is read into memory | |
1873 | and the variable lnbase is set to point to it. Thus all we have to | |
1874 | do is use lnbase to access the line number table for the current | |
1875 | compilation unit. | |
c906108c SS |
1876 | */ |
1877 | ||
1878 | static void | |
fba45db2 KB |
1879 | read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1880 | struct objfile *objfile) | |
c906108c SS |
1881 | { |
1882 | struct cleanup *back_to; | |
1883 | struct symtab *symtab; | |
c5aa993b JM |
1884 | |
1885 | if (objfile->ei.entry_point >= dip->at_low_pc && | |
1886 | objfile->ei.entry_point < dip->at_high_pc) | |
c906108c | 1887 | { |
c5aa993b JM |
1888 | objfile->ei.entry_file_lowpc = dip->at_low_pc; |
1889 | objfile->ei.entry_file_highpc = dip->at_high_pc; | |
c906108c SS |
1890 | } |
1891 | set_cu_language (dip); | |
c5aa993b | 1892 | if (dip->at_producer != NULL) |
c906108c | 1893 | { |
c5aa993b | 1894 | handle_producer (dip->at_producer); |
c906108c SS |
1895 | } |
1896 | numutypes = (enddie - thisdie) / 4; | |
1897 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1898 | back_to = make_cleanup (free_utypes, NULL); | |
1899 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1900 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); | |
c5aa993b | 1901 | start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); |
c906108c SS |
1902 | record_debugformat ("DWARF 1"); |
1903 | decode_line_numbers (lnbase); | |
c5aa993b | 1904 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c | 1905 | |
c5aa993b | 1906 | symtab = end_symtab (dip->at_high_pc, objfile, 0); |
c906108c SS |
1907 | if (symtab != NULL) |
1908 | { | |
c5aa993b JM |
1909 | symtab->language = cu_language; |
1910 | } | |
c906108c SS |
1911 | do_cleanups (back_to); |
1912 | } | |
1913 | ||
1914 | /* | |
1915 | ||
c5aa993b | 1916 | LOCAL FUNCTION |
c906108c | 1917 | |
c5aa993b | 1918 | process_dies -- process a range of DWARF Information Entries |
c906108c | 1919 | |
c5aa993b | 1920 | SYNOPSIS |
c906108c | 1921 | |
c5aa993b JM |
1922 | static void process_dies (char *thisdie, char *enddie, |
1923 | struct objfile *objfile) | |
c906108c | 1924 | |
c5aa993b | 1925 | DESCRIPTION |
c906108c | 1926 | |
c5aa993b JM |
1927 | Process all DIE's in a specified range. May be (and almost |
1928 | certainly will be) called recursively. | |
c906108c SS |
1929 | */ |
1930 | ||
1931 | static void | |
fba45db2 | 1932 | process_dies (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
1933 | { |
1934 | char *nextdie; | |
1935 | struct dieinfo di; | |
c5aa993b | 1936 | |
c906108c SS |
1937 | while (thisdie < enddie) |
1938 | { | |
1939 | basicdieinfo (&di, thisdie, objfile); | |
1940 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
1941 | { | |
1942 | break; | |
1943 | } | |
1944 | else if (di.die_tag == TAG_padding) | |
1945 | { | |
1946 | nextdie = thisdie + di.die_length; | |
1947 | } | |
1948 | else | |
1949 | { | |
1950 | completedieinfo (&di, objfile); | |
1951 | if (di.at_sibling != 0) | |
1952 | { | |
1953 | nextdie = dbbase + di.at_sibling - dbroff; | |
1954 | } | |
1955 | else | |
1956 | { | |
1957 | nextdie = thisdie + di.die_length; | |
1958 | } | |
1959 | #ifdef SMASH_TEXT_ADDRESS | |
1960 | /* I think that these are always text, not data, addresses. */ | |
1961 | SMASH_TEXT_ADDRESS (di.at_low_pc); | |
1962 | SMASH_TEXT_ADDRESS (di.at_high_pc); | |
1963 | #endif | |
1964 | switch (di.die_tag) | |
1965 | { | |
1966 | case TAG_compile_unit: | |
1967 | /* Skip Tag_compile_unit if we are already inside a compilation | |
c5aa993b JM |
1968 | unit, we are unable to handle nested compilation units |
1969 | properly (FIXME). */ | |
c906108c SS |
1970 | if (current_subfile == NULL) |
1971 | read_file_scope (&di, thisdie, nextdie, objfile); | |
1972 | else | |
1973 | nextdie = thisdie + di.die_length; | |
1974 | break; | |
1975 | case TAG_global_subroutine: | |
1976 | case TAG_subroutine: | |
1977 | if (di.has_at_low_pc) | |
1978 | { | |
1979 | read_func_scope (&di, thisdie, nextdie, objfile); | |
1980 | } | |
1981 | break; | |
1982 | case TAG_lexical_block: | |
1983 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |
1984 | break; | |
1985 | case TAG_class_type: | |
1986 | case TAG_structure_type: | |
1987 | case TAG_union_type: | |
1988 | read_structure_scope (&di, thisdie, nextdie, objfile); | |
1989 | break; | |
1990 | case TAG_enumeration_type: | |
1991 | read_enumeration (&di, thisdie, nextdie, objfile); | |
1992 | break; | |
1993 | case TAG_subroutine_type: | |
1994 | read_subroutine_type (&di, thisdie, nextdie); | |
1995 | break; | |
1996 | case TAG_array_type: | |
1997 | dwarf_read_array_type (&di); | |
1998 | break; | |
1999 | case TAG_pointer_type: | |
2000 | read_tag_pointer_type (&di); | |
2001 | break; | |
2002 | case TAG_string_type: | |
2003 | read_tag_string_type (&di); | |
2004 | break; | |
2005 | default: | |
2006 | new_symbol (&di, objfile); | |
2007 | break; | |
2008 | } | |
2009 | } | |
2010 | thisdie = nextdie; | |
2011 | } | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | ||
c5aa993b | 2016 | LOCAL FUNCTION |
c906108c | 2017 | |
c5aa993b | 2018 | decode_line_numbers -- decode a line number table fragment |
c906108c | 2019 | |
c5aa993b | 2020 | SYNOPSIS |
c906108c | 2021 | |
c5aa993b JM |
2022 | static void decode_line_numbers (char *tblscan, char *tblend, |
2023 | long length, long base, long line, long pc) | |
c906108c | 2024 | |
c5aa993b | 2025 | DESCRIPTION |
c906108c | 2026 | |
c5aa993b | 2027 | Translate the DWARF line number information to gdb form. |
c906108c | 2028 | |
c5aa993b JM |
2029 | The ".line" section contains one or more line number tables, one for |
2030 | each ".line" section from the objects that were linked. | |
c906108c | 2031 | |
c5aa993b JM |
2032 | The AT_stmt_list attribute for each TAG_source_file entry in the |
2033 | ".debug" section contains the offset into the ".line" section for the | |
2034 | start of the table for that file. | |
c906108c | 2035 | |
c5aa993b | 2036 | The table itself has the following structure: |
c906108c | 2037 | |
c5aa993b JM |
2038 | <table length><base address><source statement entry> |
2039 | 4 bytes 4 bytes 10 bytes | |
c906108c | 2040 | |
c5aa993b JM |
2041 | The table length is the total size of the table, including the 4 bytes |
2042 | for the length information. | |
c906108c | 2043 | |
c5aa993b JM |
2044 | The base address is the address of the first instruction generated |
2045 | for the source file. | |
c906108c | 2046 | |
c5aa993b | 2047 | Each source statement entry has the following structure: |
c906108c | 2048 | |
c5aa993b JM |
2049 | <line number><statement position><address delta> |
2050 | 4 bytes 2 bytes 4 bytes | |
c906108c | 2051 | |
c5aa993b JM |
2052 | The line number is relative to the start of the file, starting with |
2053 | line 1. | |
c906108c | 2054 | |
c5aa993b JM |
2055 | The statement position either -1 (0xFFFF) or the number of characters |
2056 | from the beginning of the line to the beginning of the statement. | |
c906108c | 2057 | |
c5aa993b JM |
2058 | The address delta is the difference between the base address and |
2059 | the address of the first instruction for the statement. | |
c906108c | 2060 | |
c5aa993b JM |
2061 | Note that we must copy the bytes from the packed table to our local |
2062 | variables before attempting to use them, to avoid alignment problems | |
2063 | on some machines, particularly RISC processors. | |
c906108c | 2064 | |
c5aa993b | 2065 | BUGS |
c906108c | 2066 | |
c5aa993b JM |
2067 | Does gdb expect the line numbers to be sorted? They are now by |
2068 | chance/luck, but are not required to be. (FIXME) | |
c906108c | 2069 | |
c5aa993b JM |
2070 | The line with number 0 is unused, gdb apparently can discover the |
2071 | span of the last line some other way. How? (FIXME) | |
c906108c SS |
2072 | */ |
2073 | ||
2074 | static void | |
fba45db2 | 2075 | decode_line_numbers (char *linetable) |
c906108c SS |
2076 | { |
2077 | char *tblscan; | |
2078 | char *tblend; | |
2079 | unsigned long length; | |
2080 | unsigned long base; | |
2081 | unsigned long line; | |
2082 | unsigned long pc; | |
c5aa993b | 2083 | |
c906108c SS |
2084 | if (linetable != NULL) |
2085 | { | |
2086 | tblscan = tblend = linetable; | |
2087 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, | |
2088 | current_objfile); | |
2089 | tblscan += SIZEOF_LINETBL_LENGTH; | |
2090 | tblend += length; | |
2091 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), | |
2092 | GET_UNSIGNED, current_objfile); | |
2093 | tblscan += TARGET_FT_POINTER_SIZE (objfile); | |
2094 | base += baseaddr; | |
2095 | while (tblscan < tblend) | |
2096 | { | |
2097 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, | |
2098 | current_objfile); | |
2099 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; | |
2100 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, | |
2101 | current_objfile); | |
2102 | tblscan += SIZEOF_LINETBL_DELTA; | |
2103 | pc += base; | |
2104 | if (line != 0) | |
2105 | { | |
2106 | record_line (current_subfile, line, pc); | |
2107 | } | |
2108 | } | |
2109 | } | |
2110 | } | |
2111 | ||
2112 | /* | |
2113 | ||
c5aa993b | 2114 | LOCAL FUNCTION |
c906108c | 2115 | |
c5aa993b | 2116 | locval -- compute the value of a location attribute |
c906108c | 2117 | |
c5aa993b | 2118 | SYNOPSIS |
c906108c | 2119 | |
c5aa993b | 2120 | static int locval (struct dieinfo *dip) |
c906108c | 2121 | |
c5aa993b | 2122 | DESCRIPTION |
c906108c | 2123 | |
c5aa993b JM |
2124 | Given pointer to a string of bytes that define a location, compute |
2125 | the location and return the value. | |
2126 | A location description containing no atoms indicates that the | |
2127 | object is optimized out. The optimized_out flag is set for those, | |
2128 | the return value is meaningless. | |
c906108c | 2129 | |
c5aa993b JM |
2130 | When computing values involving the current value of the frame pointer, |
2131 | the value zero is used, which results in a value relative to the frame | |
2132 | pointer, rather than the absolute value. This is what GDB wants | |
2133 | anyway. | |
c906108c | 2134 | |
c5aa993b JM |
2135 | When the result is a register number, the isreg flag is set, otherwise |
2136 | it is cleared. This is a kludge until we figure out a better | |
2137 | way to handle the problem. Gdb's design does not mesh well with the | |
2138 | DWARF notion of a location computing interpreter, which is a shame | |
2139 | because the flexibility goes unused. | |
2140 | ||
2141 | NOTES | |
2142 | ||
2143 | Note that stack[0] is unused except as a default error return. | |
2144 | Note that stack overflow is not yet handled. | |
c906108c SS |
2145 | */ |
2146 | ||
2147 | static int | |
fba45db2 | 2148 | locval (struct dieinfo *dip) |
c906108c SS |
2149 | { |
2150 | unsigned short nbytes; | |
2151 | unsigned short locsize; | |
2152 | auto long stack[64]; | |
2153 | int stacki; | |
2154 | char *loc; | |
2155 | char *end; | |
2156 | int loc_atom_code; | |
2157 | int loc_value_size; | |
c5aa993b JM |
2158 | |
2159 | loc = dip->at_location; | |
c906108c SS |
2160 | nbytes = attribute_size (AT_location); |
2161 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); | |
2162 | loc += nbytes; | |
2163 | end = loc + locsize; | |
2164 | stacki = 0; | |
2165 | stack[stacki] = 0; | |
c5aa993b JM |
2166 | dip->isreg = 0; |
2167 | dip->offreg = 0; | |
2168 | dip->optimized_out = 1; | |
c906108c SS |
2169 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); |
2170 | while (loc < end) | |
2171 | { | |
c5aa993b | 2172 | dip->optimized_out = 0; |
c906108c SS |
2173 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, |
2174 | current_objfile); | |
2175 | loc += SIZEOF_LOC_ATOM_CODE; | |
2176 | switch (loc_atom_code) | |
2177 | { | |
c5aa993b JM |
2178 | case 0: |
2179 | /* error */ | |
2180 | loc = end; | |
2181 | break; | |
2182 | case OP_REG: | |
2183 | /* push register (number) */ | |
2184 | stack[++stacki] | |
2185 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, | |
2186 | GET_UNSIGNED, | |
2187 | current_objfile)); | |
2188 | loc += loc_value_size; | |
2189 | dip->isreg = 1; | |
2190 | break; | |
2191 | case OP_BASEREG: | |
2192 | /* push value of register (number) */ | |
2193 | /* Actually, we compute the value as if register has 0, so the | |
2194 | value ends up being the offset from that register. */ | |
2195 | dip->offreg = 1; | |
2196 | dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, | |
2197 | current_objfile); | |
2198 | loc += loc_value_size; | |
2199 | stack[++stacki] = 0; | |
2200 | break; | |
2201 | case OP_ADDR: | |
2202 | /* push address (relocated address) */ | |
2203 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2204 | GET_UNSIGNED, current_objfile); | |
2205 | loc += loc_value_size; | |
2206 | break; | |
2207 | case OP_CONST: | |
2208 | /* push constant (number) FIXME: signed or unsigned! */ | |
2209 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2210 | GET_SIGNED, current_objfile); | |
2211 | loc += loc_value_size; | |
2212 | break; | |
2213 | case OP_DEREF2: | |
2214 | /* pop, deref and push 2 bytes (as a long) */ | |
2215 | complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); | |
2216 | break; | |
2217 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
2218 | complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); | |
2219 | break; | |
2220 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2221 | stack[stacki - 1] += stack[stacki]; | |
2222 | stacki--; | |
2223 | break; | |
c906108c SS |
2224 | } |
2225 | } | |
2226 | return (stack[stacki]); | |
2227 | } | |
2228 | ||
2229 | /* | |
2230 | ||
c5aa993b | 2231 | LOCAL FUNCTION |
c906108c | 2232 | |
c5aa993b | 2233 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's |
c906108c | 2234 | |
c5aa993b | 2235 | SYNOPSIS |
c906108c | 2236 | |
c5aa993b | 2237 | static void read_ofile_symtab (struct partial_symtab *pst) |
c906108c | 2238 | |
c5aa993b | 2239 | DESCRIPTION |
c906108c | 2240 | |
c5aa993b JM |
2241 | When expanding a partial symbol table entry to a full symbol table |
2242 | entry, this is the function that gets called to read in the symbols | |
2243 | for the compilation unit. A pointer to the newly constructed symtab, | |
2244 | which is now the new first one on the objfile's symtab list, is | |
2245 | stashed in the partial symbol table entry. | |
c906108c SS |
2246 | */ |
2247 | ||
2248 | static void | |
fba45db2 | 2249 | read_ofile_symtab (struct partial_symtab *pst) |
c906108c SS |
2250 | { |
2251 | struct cleanup *back_to; | |
2252 | unsigned long lnsize; | |
2253 | file_ptr foffset; | |
2254 | bfd *abfd; | |
2255 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; | |
2256 | ||
c5aa993b JM |
2257 | abfd = pst->objfile->obfd; |
2258 | current_objfile = pst->objfile; | |
c906108c SS |
2259 | |
2260 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2261 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2262 | ||
2263 | diecount = 0; | |
2264 | dbsize = DBLENGTH (pst); | |
2265 | dbbase = xmalloc (dbsize); | |
c5aa993b JM |
2266 | dbroff = DBROFF (pst); |
2267 | foffset = DBFOFF (pst) + dbroff; | |
c906108c SS |
2268 | base_section_offsets = pst->section_offsets; |
2269 | baseaddr = ANOFFSET (pst->section_offsets, 0); | |
2270 | if (bfd_seek (abfd, foffset, SEEK_SET) || | |
2271 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
2272 | { | |
b8c9b27d | 2273 | xfree (dbbase); |
c906108c SS |
2274 | error ("can't read DWARF data"); |
2275 | } | |
b8c9b27d | 2276 | back_to = make_cleanup (xfree, dbbase); |
c906108c SS |
2277 | |
2278 | /* If there is a line number table associated with this compilation unit | |
2279 | then read the size of this fragment in bytes, from the fragment itself. | |
2280 | Allocate a buffer for the fragment and read it in for future | |
2281 | processing. */ | |
2282 | ||
2283 | lnbase = NULL; | |
2284 | if (LNFOFF (pst)) | |
2285 | { | |
2286 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
2287 | (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != | |
2288 | sizeof (lnsizedata))) | |
2289 | { | |
2290 | error ("can't read DWARF line number table size"); | |
2291 | } | |
2292 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, | |
c5aa993b | 2293 | GET_UNSIGNED, pst->objfile); |
c906108c SS |
2294 | lnbase = xmalloc (lnsize); |
2295 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
2296 | (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) | |
2297 | { | |
b8c9b27d | 2298 | xfree (lnbase); |
c906108c SS |
2299 | error ("can't read DWARF line numbers"); |
2300 | } | |
b8c9b27d | 2301 | make_cleanup (xfree, lnbase); |
c906108c SS |
2302 | } |
2303 | ||
c5aa993b | 2304 | process_dies (dbbase, dbbase + dbsize, pst->objfile); |
c906108c SS |
2305 | do_cleanups (back_to); |
2306 | current_objfile = NULL; | |
c5aa993b | 2307 | pst->symtab = pst->objfile->symtabs; |
c906108c SS |
2308 | } |
2309 | ||
2310 | /* | |
2311 | ||
c5aa993b | 2312 | LOCAL FUNCTION |
c906108c | 2313 | |
c5aa993b | 2314 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry |
c906108c | 2315 | |
c5aa993b | 2316 | SYNOPSIS |
c906108c | 2317 | |
c5aa993b | 2318 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c | 2319 | |
c5aa993b | 2320 | DESCRIPTION |
c906108c | 2321 | |
c5aa993b JM |
2322 | Called once for each partial symbol table entry that needs to be |
2323 | expanded into a full symbol table entry. | |
c906108c | 2324 | |
c5aa993b | 2325 | */ |
c906108c SS |
2326 | |
2327 | static void | |
fba45db2 | 2328 | psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c SS |
2329 | { |
2330 | int i; | |
2331 | struct cleanup *old_chain; | |
c5aa993b | 2332 | |
c906108c SS |
2333 | if (pst != NULL) |
2334 | { | |
2335 | if (pst->readin) | |
2336 | { | |
2337 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
c5aa993b | 2338 | pst->filename); |
c906108c SS |
2339 | } |
2340 | else | |
2341 | { | |
2342 | /* Read in all partial symtabs on which this one is dependent */ | |
c5aa993b | 2343 | for (i = 0; i < pst->number_of_dependencies; i++) |
c906108c | 2344 | { |
c5aa993b | 2345 | if (!pst->dependencies[i]->readin) |
c906108c SS |
2346 | { |
2347 | /* Inform about additional files that need to be read in. */ | |
2348 | if (info_verbose) | |
2349 | { | |
2350 | fputs_filtered (" ", gdb_stdout); | |
2351 | wrap_here (""); | |
2352 | fputs_filtered ("and ", gdb_stdout); | |
2353 | wrap_here (""); | |
2354 | printf_filtered ("%s...", | |
c5aa993b | 2355 | pst->dependencies[i]->filename); |
c906108c | 2356 | wrap_here (""); |
c5aa993b | 2357 | gdb_flush (gdb_stdout); /* Flush output */ |
c906108c | 2358 | } |
c5aa993b | 2359 | psymtab_to_symtab_1 (pst->dependencies[i]); |
c906108c | 2360 | } |
c5aa993b JM |
2361 | } |
2362 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ | |
c906108c SS |
2363 | { |
2364 | buildsym_init (); | |
a0b3c4fd | 2365 | old_chain = make_cleanup (really_free_pendings, 0); |
c906108c SS |
2366 | read_ofile_symtab (pst); |
2367 | if (info_verbose) | |
2368 | { | |
2369 | printf_filtered ("%d DIE's, sorting...", diecount); | |
2370 | wrap_here (""); | |
2371 | gdb_flush (gdb_stdout); | |
2372 | } | |
c5aa993b | 2373 | sort_symtab_syms (pst->symtab); |
c906108c SS |
2374 | do_cleanups (old_chain); |
2375 | } | |
c5aa993b | 2376 | pst->readin = 1; |
c906108c SS |
2377 | } |
2378 | } | |
2379 | } | |
2380 | ||
2381 | /* | |
2382 | ||
c5aa993b | 2383 | LOCAL FUNCTION |
c906108c | 2384 | |
c5aa993b | 2385 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one |
c906108c | 2386 | |
c5aa993b | 2387 | SYNOPSIS |
c906108c | 2388 | |
c5aa993b | 2389 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c | 2390 | |
c5aa993b | 2391 | DESCRIPTION |
c906108c | 2392 | |
c5aa993b JM |
2393 | This is the DWARF support entry point for building a full symbol |
2394 | table entry from a partial symbol table entry. We are passed a | |
2395 | pointer to the partial symbol table entry that needs to be expanded. | |
c906108c | 2396 | |
c5aa993b | 2397 | */ |
c906108c SS |
2398 | |
2399 | static void | |
fba45db2 | 2400 | dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c SS |
2401 | { |
2402 | ||
2403 | if (pst != NULL) | |
2404 | { | |
c5aa993b | 2405 | if (pst->readin) |
c906108c SS |
2406 | { |
2407 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
c5aa993b | 2408 | pst->filename); |
c906108c SS |
2409 | } |
2410 | else | |
2411 | { | |
c5aa993b | 2412 | if (DBLENGTH (pst) || pst->number_of_dependencies) |
c906108c SS |
2413 | { |
2414 | /* Print the message now, before starting serious work, to avoid | |
c5aa993b | 2415 | disconcerting pauses. */ |
c906108c SS |
2416 | if (info_verbose) |
2417 | { | |
2418 | printf_filtered ("Reading in symbols for %s...", | |
c5aa993b | 2419 | pst->filename); |
c906108c SS |
2420 | gdb_flush (gdb_stdout); |
2421 | } | |
c5aa993b | 2422 | |
c906108c | 2423 | psymtab_to_symtab_1 (pst); |
c5aa993b JM |
2424 | |
2425 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2426 | we need to do an equivalent or is this something peculiar to | |
2427 | stabs/a.out format. | |
2428 | Match with global symbols. This only needs to be done once, | |
2429 | after all of the symtabs and dependencies have been read in. | |
2430 | */ | |
2431 | scan_file_globals (pst->objfile); | |
c906108c | 2432 | #endif |
c5aa993b | 2433 | |
c906108c SS |
2434 | /* Finish up the verbose info message. */ |
2435 | if (info_verbose) | |
2436 | { | |
2437 | printf_filtered ("done.\n"); | |
2438 | gdb_flush (gdb_stdout); | |
2439 | } | |
2440 | } | |
2441 | } | |
2442 | } | |
2443 | } | |
2444 | ||
2445 | /* | |
2446 | ||
c5aa993b | 2447 | LOCAL FUNCTION |
c906108c | 2448 | |
c5aa993b | 2449 | add_enum_psymbol -- add enumeration members to partial symbol table |
c906108c | 2450 | |
c5aa993b | 2451 | DESCRIPTION |
c906108c | 2452 | |
c5aa993b JM |
2453 | Given pointer to a DIE that is known to be for an enumeration, |
2454 | extract the symbolic names of the enumeration members and add | |
2455 | partial symbols for them. | |
2456 | */ | |
c906108c SS |
2457 | |
2458 | static void | |
fba45db2 | 2459 | add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2460 | { |
2461 | char *scan; | |
2462 | char *listend; | |
2463 | unsigned short blocksz; | |
2464 | int nbytes; | |
c5aa993b JM |
2465 | |
2466 | if ((scan = dip->at_element_list) != NULL) | |
c906108c | 2467 | { |
c5aa993b | 2468 | if (dip->short_element_list) |
c906108c SS |
2469 | { |
2470 | nbytes = attribute_size (AT_short_element_list); | |
2471 | } | |
2472 | else | |
2473 | { | |
2474 | nbytes = attribute_size (AT_element_list); | |
2475 | } | |
2476 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
2477 | scan += nbytes; | |
2478 | listend = scan + blocksz; | |
2479 | while (scan < listend) | |
2480 | { | |
2481 | scan += TARGET_FT_LONG_SIZE (objfile); | |
2482 | add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, | |
c5aa993b | 2483 | &objfile->static_psymbols, 0, 0, cu_language, |
c906108c SS |
2484 | objfile); |
2485 | scan += strlen (scan) + 1; | |
2486 | } | |
2487 | } | |
2488 | } | |
2489 | ||
2490 | /* | |
2491 | ||
c5aa993b | 2492 | LOCAL FUNCTION |
c906108c | 2493 | |
c5aa993b | 2494 | add_partial_symbol -- add symbol to partial symbol table |
c906108c | 2495 | |
c5aa993b | 2496 | DESCRIPTION |
c906108c | 2497 | |
c5aa993b JM |
2498 | Given a DIE, if it is one of the types that we want to |
2499 | add to a partial symbol table, finish filling in the die info | |
2500 | and then add a partial symbol table entry for it. | |
c906108c | 2501 | |
c5aa993b | 2502 | NOTES |
c906108c | 2503 | |
c5aa993b JM |
2504 | The caller must ensure that the DIE has a valid name attribute. |
2505 | */ | |
c906108c SS |
2506 | |
2507 | static void | |
fba45db2 | 2508 | add_partial_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 2509 | { |
c5aa993b | 2510 | switch (dip->die_tag) |
c906108c SS |
2511 | { |
2512 | case TAG_global_subroutine: | |
c5aa993b JM |
2513 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
2514 | VAR_NAMESPACE, LOC_BLOCK, | |
2515 | &objfile->global_psymbols, | |
2516 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2517 | break; |
2518 | case TAG_global_variable: | |
c5aa993b | 2519 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2520 | VAR_NAMESPACE, LOC_STATIC, |
c5aa993b | 2521 | &objfile->global_psymbols, |
c906108c SS |
2522 | 0, 0, cu_language, objfile); |
2523 | break; | |
2524 | case TAG_subroutine: | |
c5aa993b JM |
2525 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
2526 | VAR_NAMESPACE, LOC_BLOCK, | |
2527 | &objfile->static_psymbols, | |
2528 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2529 | break; |
2530 | case TAG_local_variable: | |
c5aa993b | 2531 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2532 | VAR_NAMESPACE, LOC_STATIC, |
c5aa993b | 2533 | &objfile->static_psymbols, |
c906108c SS |
2534 | 0, 0, cu_language, objfile); |
2535 | break; | |
2536 | case TAG_typedef: | |
c5aa993b | 2537 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2538 | VAR_NAMESPACE, LOC_TYPEDEF, |
c5aa993b | 2539 | &objfile->static_psymbols, |
c906108c SS |
2540 | 0, 0, cu_language, objfile); |
2541 | break; | |
2542 | case TAG_class_type: | |
2543 | case TAG_structure_type: | |
2544 | case TAG_union_type: | |
2545 | case TAG_enumeration_type: | |
2546 | /* Do not add opaque aggregate definitions to the psymtab. */ | |
c5aa993b | 2547 | if (!dip->has_at_byte_size) |
c906108c | 2548 | break; |
c5aa993b | 2549 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2550 | STRUCT_NAMESPACE, LOC_TYPEDEF, |
c5aa993b | 2551 | &objfile->static_psymbols, |
c906108c SS |
2552 | 0, 0, cu_language, objfile); |
2553 | if (cu_language == language_cplus) | |
2554 | { | |
2555 | /* For C++, these implicitly act as typedefs as well. */ | |
c5aa993b | 2556 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2557 | VAR_NAMESPACE, LOC_TYPEDEF, |
c5aa993b | 2558 | &objfile->static_psymbols, |
c906108c SS |
2559 | 0, 0, cu_language, objfile); |
2560 | } | |
2561 | break; | |
2562 | } | |
2563 | } | |
9846de1b | 2564 | /* *INDENT-OFF* */ |
c906108c SS |
2565 | /* |
2566 | ||
2567 | LOCAL FUNCTION | |
2568 | ||
2569 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2570 | ||
2571 | DESCRIPTION | |
2572 | ||
2573 | Process the DIE's within a single compilation unit, looking for | |
2574 | interesting DIE's that contribute to the partial symbol table entry | |
2575 | for this compilation unit. | |
2576 | ||
2577 | NOTES | |
2578 | ||
2579 | There are some DIE's that may appear both at file scope and within | |
2580 | the scope of a function. We are only interested in the ones at file | |
2581 | scope, and the only way to tell them apart is to keep track of the | |
2582 | scope. For example, consider the test case: | |
2583 | ||
2584 | static int i; | |
2585 | main () { int j; } | |
2586 | ||
2587 | for which the relevant DWARF segment has the structure: | |
2588 | ||
2589 | 0x51: | |
2590 | 0x23 global subrtn sibling 0x9b | |
2591 | name main | |
2592 | fund_type FT_integer | |
2593 | low_pc 0x800004cc | |
2594 | high_pc 0x800004d4 | |
2595 | ||
2596 | 0x74: | |
2597 | 0x23 local var sibling 0x97 | |
2598 | name j | |
2599 | fund_type FT_integer | |
2600 | location OP_BASEREG 0xe | |
2601 | OP_CONST 0xfffffffc | |
2602 | OP_ADD | |
2603 | 0x97: | |
2604 | 0x4 | |
2605 | ||
2606 | 0x9b: | |
2607 | 0x1d local var sibling 0xb8 | |
2608 | name i | |
2609 | fund_type FT_integer | |
2610 | location OP_ADDR 0x800025dc | |
2611 | ||
2612 | 0xb8: | |
2613 | 0x4 | |
2614 | ||
2615 | We want to include the symbol 'i' in the partial symbol table, but | |
2616 | not the symbol 'j'. In essence, we want to skip all the dies within | |
2617 | the scope of a TAG_global_subroutine DIE. | |
2618 | ||
2619 | Don't attempt to add anonymous structures or unions since they have | |
2620 | no name. Anonymous enumerations however are processed, because we | |
2621 | want to extract their member names (the check for a tag name is | |
2622 | done later). | |
2623 | ||
2624 | Also, for variables and subroutines, check that this is the place | |
2625 | where the actual definition occurs, rather than just a reference | |
2626 | to an external. | |
2627 | */ | |
9846de1b | 2628 | /* *INDENT-ON* */ |
c906108c | 2629 | |
c5aa993b JM |
2630 | |
2631 | ||
c906108c | 2632 | static void |
fba45db2 | 2633 | scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
2634 | { |
2635 | char *nextdie; | |
2636 | char *temp; | |
2637 | struct dieinfo di; | |
c5aa993b | 2638 | |
c906108c SS |
2639 | while (thisdie < enddie) |
2640 | { | |
2641 | basicdieinfo (&di, thisdie, objfile); | |
2642 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2643 | { | |
2644 | break; | |
2645 | } | |
2646 | else | |
2647 | { | |
2648 | nextdie = thisdie + di.die_length; | |
2649 | /* To avoid getting complete die information for every die, we | |
2650 | only do it (below) for the cases we are interested in. */ | |
2651 | switch (di.die_tag) | |
2652 | { | |
2653 | case TAG_global_subroutine: | |
2654 | case TAG_subroutine: | |
2655 | completedieinfo (&di, objfile); | |
2656 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2657 | { | |
2658 | add_partial_symbol (&di, objfile); | |
2659 | /* If there is a sibling attribute, adjust the nextdie | |
2660 | pointer to skip the entire scope of the subroutine. | |
2661 | Apply some sanity checking to make sure we don't | |
2662 | overrun or underrun the range of remaining DIE's */ | |
2663 | if (di.at_sibling != 0) | |
2664 | { | |
2665 | temp = dbbase + di.at_sibling - dbroff; | |
2666 | if ((temp < thisdie) || (temp >= enddie)) | |
2667 | { | |
2668 | complain (&bad_die_ref, DIE_ID, DIE_NAME, | |
2669 | di.at_sibling); | |
2670 | } | |
2671 | else | |
2672 | { | |
2673 | nextdie = temp; | |
2674 | } | |
2675 | } | |
2676 | } | |
2677 | break; | |
2678 | case TAG_global_variable: | |
2679 | case TAG_local_variable: | |
2680 | completedieinfo (&di, objfile); | |
2681 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2682 | { | |
2683 | add_partial_symbol (&di, objfile); | |
2684 | } | |
2685 | break; | |
2686 | case TAG_typedef: | |
2687 | case TAG_class_type: | |
2688 | case TAG_structure_type: | |
2689 | case TAG_union_type: | |
2690 | completedieinfo (&di, objfile); | |
2691 | if (di.at_name) | |
2692 | { | |
2693 | add_partial_symbol (&di, objfile); | |
2694 | } | |
2695 | break; | |
2696 | case TAG_enumeration_type: | |
2697 | completedieinfo (&di, objfile); | |
2698 | if (di.at_name) | |
2699 | { | |
2700 | add_partial_symbol (&di, objfile); | |
2701 | } | |
2702 | add_enum_psymbol (&di, objfile); | |
2703 | break; | |
2704 | } | |
2705 | } | |
2706 | thisdie = nextdie; | |
2707 | } | |
2708 | } | |
2709 | ||
2710 | /* | |
2711 | ||
c5aa993b | 2712 | LOCAL FUNCTION |
c906108c | 2713 | |
c5aa993b | 2714 | scan_compilation_units -- build a psymtab entry for each compilation |
c906108c | 2715 | |
c5aa993b | 2716 | DESCRIPTION |
c906108c | 2717 | |
c5aa993b JM |
2718 | This is the top level dwarf parsing routine for building partial |
2719 | symbol tables. | |
c906108c | 2720 | |
c5aa993b JM |
2721 | It scans from the beginning of the DWARF table looking for the first |
2722 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2723 | each additional TAG_compile_unit DIE. | |
2724 | ||
2725 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2726 | calls a subordinate routine to collect all the compilation unit's | |
2727 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2728 | new partial symtab structure into the partial symbol table. It also | |
2729 | records the appropriate information in the partial symbol table entry | |
2730 | to allow the chunk of DIE's and line number table for this compilation | |
2731 | unit to be located and re-read later, to generate a complete symbol | |
2732 | table entry for the compilation unit. | |
2733 | ||
2734 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2735 | compilation units into smaller DIE chunks and line number tables, | |
2736 | and associates them with a partial symbol table entry. | |
2737 | ||
2738 | NOTES | |
c906108c | 2739 | |
c5aa993b JM |
2740 | If any compilation unit has no line number table associated with |
2741 | it for some reason (a missing at_stmt_list attribute, rather than | |
2742 | just one with a value of zero, which is valid) then we ensure that | |
2743 | the recorded file offset is zero so that the routine which later | |
2744 | reads line number table fragments knows that there is no fragment | |
2745 | to read. | |
c906108c | 2746 | |
c5aa993b | 2747 | RETURNS |
c906108c | 2748 | |
c5aa993b | 2749 | Returns no value. |
c906108c SS |
2750 | |
2751 | */ | |
2752 | ||
2753 | static void | |
fba45db2 KB |
2754 | scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff, |
2755 | file_ptr lnoffset, struct objfile *objfile) | |
c906108c SS |
2756 | { |
2757 | char *nextdie; | |
2758 | struct dieinfo di; | |
2759 | struct partial_symtab *pst; | |
2760 | int culength; | |
2761 | int curoff; | |
2762 | file_ptr curlnoffset; | |
2763 | ||
2764 | while (thisdie < enddie) | |
2765 | { | |
2766 | basicdieinfo (&di, thisdie, objfile); | |
2767 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2768 | { | |
2769 | break; | |
2770 | } | |
2771 | else if (di.die_tag != TAG_compile_unit) | |
2772 | { | |
2773 | nextdie = thisdie + di.die_length; | |
2774 | } | |
2775 | else | |
2776 | { | |
2777 | completedieinfo (&di, objfile); | |
2778 | set_cu_language (&di); | |
2779 | if (di.at_sibling != 0) | |
2780 | { | |
2781 | nextdie = dbbase + di.at_sibling - dbroff; | |
2782 | } | |
2783 | else | |
2784 | { | |
2785 | nextdie = thisdie + di.die_length; | |
2786 | } | |
2787 | curoff = thisdie - dbbase; | |
2788 | culength = nextdie - thisdie; | |
2789 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |
2790 | ||
2791 | /* First allocate a new partial symbol table structure */ | |
2792 | ||
2793 | pst = start_psymtab_common (objfile, base_section_offsets, | |
2794 | di.at_name, di.at_low_pc, | |
c5aa993b JM |
2795 | objfile->global_psymbols.next, |
2796 | objfile->static_psymbols.next); | |
c906108c | 2797 | |
c5aa993b JM |
2798 | pst->texthigh = di.at_high_pc; |
2799 | pst->read_symtab_private = (char *) | |
2800 | obstack_alloc (&objfile->psymbol_obstack, | |
2801 | sizeof (struct dwfinfo)); | |
c906108c SS |
2802 | DBFOFF (pst) = dbfoff; |
2803 | DBROFF (pst) = curoff; | |
2804 | DBLENGTH (pst) = culength; | |
c5aa993b JM |
2805 | LNFOFF (pst) = curlnoffset; |
2806 | pst->read_symtab = dwarf_psymtab_to_symtab; | |
c906108c SS |
2807 | |
2808 | /* Now look for partial symbols */ | |
2809 | ||
2810 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |
2811 | ||
c5aa993b JM |
2812 | pst->n_global_syms = objfile->global_psymbols.next - |
2813 | (objfile->global_psymbols.list + pst->globals_offset); | |
2814 | pst->n_static_syms = objfile->static_psymbols.next - | |
2815 | (objfile->static_psymbols.list + pst->statics_offset); | |
c906108c SS |
2816 | sort_pst_symbols (pst); |
2817 | /* If there is already a psymtab or symtab for a file of this name, | |
2818 | remove it. (If there is a symtab, more drastic things also | |
2819 | happen.) This happens in VxWorks. */ | |
c5aa993b | 2820 | free_named_symtabs (pst->filename); |
c906108c | 2821 | } |
c5aa993b | 2822 | thisdie = nextdie; |
c906108c SS |
2823 | } |
2824 | } | |
2825 | ||
2826 | /* | |
2827 | ||
c5aa993b | 2828 | LOCAL FUNCTION |
c906108c | 2829 | |
c5aa993b | 2830 | new_symbol -- make a symbol table entry for a new symbol |
c906108c | 2831 | |
c5aa993b | 2832 | SYNOPSIS |
c906108c | 2833 | |
c5aa993b JM |
2834 | static struct symbol *new_symbol (struct dieinfo *dip, |
2835 | struct objfile *objfile) | |
c906108c | 2836 | |
c5aa993b | 2837 | DESCRIPTION |
c906108c | 2838 | |
c5aa993b JM |
2839 | Given a pointer to a DWARF information entry, figure out if we need |
2840 | to make a symbol table entry for it, and if so, create a new entry | |
2841 | and return a pointer to it. | |
c906108c SS |
2842 | */ |
2843 | ||
2844 | static struct symbol * | |
fba45db2 | 2845 | new_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2846 | { |
2847 | struct symbol *sym = NULL; | |
c5aa993b JM |
2848 | |
2849 | if (dip->at_name != NULL) | |
c906108c | 2850 | { |
c5aa993b | 2851 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, |
c906108c SS |
2852 | sizeof (struct symbol)); |
2853 | OBJSTAT (objfile, n_syms++); | |
2854 | memset (sym, 0, sizeof (struct symbol)); | |
c5aa993b | 2855 | SYMBOL_NAME (sym) = create_name (dip->at_name, |
c906108c SS |
2856 | &objfile->symbol_obstack); |
2857 | /* default assumptions */ | |
2858 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2859 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2860 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2861 | ||
2862 | /* If this symbol is from a C++ compilation, then attempt to cache the | |
c5aa993b JM |
2863 | demangled form for future reference. This is a typical time versus |
2864 | space tradeoff, that was decided in favor of time because it sped up | |
2865 | C++ symbol lookups by a factor of about 20. */ | |
c906108c SS |
2866 | |
2867 | SYMBOL_LANGUAGE (sym) = cu_language; | |
c5aa993b JM |
2868 | SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack); |
2869 | switch (dip->die_tag) | |
c906108c SS |
2870 | { |
2871 | case TAG_label: | |
c5aa993b | 2872 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c SS |
2873 | SYMBOL_CLASS (sym) = LOC_LABEL; |
2874 | break; | |
2875 | case TAG_global_subroutine: | |
2876 | case TAG_subroutine: | |
c5aa993b | 2877 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c | 2878 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); |
c5aa993b | 2879 | if (dip->at_prototyped) |
c906108c SS |
2880 | TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; |
2881 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
c5aa993b | 2882 | if (dip->die_tag == TAG_global_subroutine) |
c906108c SS |
2883 | { |
2884 | add_symbol_to_list (sym, &global_symbols); | |
2885 | } | |
2886 | else | |
2887 | { | |
2888 | add_symbol_to_list (sym, list_in_scope); | |
2889 | } | |
2890 | break; | |
2891 | case TAG_global_variable: | |
c5aa993b | 2892 | if (dip->at_location != NULL) |
c906108c SS |
2893 | { |
2894 | SYMBOL_VALUE_ADDRESS (sym) = locval (dip); | |
2895 | add_symbol_to_list (sym, &global_symbols); | |
2896 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2897 | SYMBOL_VALUE (sym) += baseaddr; | |
2898 | } | |
2899 | break; | |
2900 | case TAG_local_variable: | |
c5aa993b | 2901 | if (dip->at_location != NULL) |
c906108c SS |
2902 | { |
2903 | int loc = locval (dip); | |
c5aa993b | 2904 | if (dip->optimized_out) |
c906108c SS |
2905 | { |
2906 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; | |
2907 | } | |
c5aa993b | 2908 | else if (dip->isreg) |
c906108c SS |
2909 | { |
2910 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2911 | } | |
c5aa993b | 2912 | else if (dip->offreg) |
c906108c SS |
2913 | { |
2914 | SYMBOL_CLASS (sym) = LOC_BASEREG; | |
c5aa993b | 2915 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2916 | } |
2917 | else | |
2918 | { | |
2919 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2920 | SYMBOL_VALUE (sym) += baseaddr; | |
2921 | } | |
2922 | if (SYMBOL_CLASS (sym) == LOC_STATIC) | |
2923 | { | |
2924 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, | |
2925 | which may store to a bigger location than SYMBOL_VALUE. */ | |
2926 | SYMBOL_VALUE_ADDRESS (sym) = loc; | |
2927 | } | |
2928 | else | |
2929 | { | |
2930 | SYMBOL_VALUE (sym) = loc; | |
2931 | } | |
2932 | add_symbol_to_list (sym, list_in_scope); | |
2933 | } | |
2934 | break; | |
2935 | case TAG_formal_parameter: | |
c5aa993b | 2936 | if (dip->at_location != NULL) |
c906108c SS |
2937 | { |
2938 | SYMBOL_VALUE (sym) = locval (dip); | |
2939 | } | |
2940 | add_symbol_to_list (sym, list_in_scope); | |
c5aa993b | 2941 | if (dip->isreg) |
c906108c SS |
2942 | { |
2943 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2944 | } | |
c5aa993b | 2945 | else if (dip->offreg) |
c906108c SS |
2946 | { |
2947 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; | |
c5aa993b | 2948 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2949 | } |
2950 | else | |
2951 | { | |
2952 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2953 | } | |
2954 | break; | |
2955 | case TAG_unspecified_parameters: | |
2956 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2957 | this information, so just ignore it for now. (FIXME?) */ | |
2958 | break; | |
2959 | case TAG_class_type: | |
2960 | case TAG_structure_type: | |
2961 | case TAG_union_type: | |
2962 | case TAG_enumeration_type: | |
2963 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2964 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
2965 | add_symbol_to_list (sym, list_in_scope); | |
2966 | break; | |
2967 | case TAG_typedef: | |
2968 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2969 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2970 | add_symbol_to_list (sym, list_in_scope); | |
2971 | break; | |
2972 | default: | |
2973 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
2974 | data, but since we must specifically ignore things we don't | |
2975 | recognize, there is nothing else we should do at this point. */ | |
2976 | break; | |
2977 | } | |
2978 | } | |
2979 | return (sym); | |
2980 | } | |
2981 | ||
2982 | /* | |
2983 | ||
c5aa993b | 2984 | LOCAL FUNCTION |
c906108c | 2985 | |
c5aa993b | 2986 | synthesize_typedef -- make a symbol table entry for a "fake" typedef |
c906108c | 2987 | |
c5aa993b | 2988 | SYNOPSIS |
c906108c | 2989 | |
c5aa993b JM |
2990 | static void synthesize_typedef (struct dieinfo *dip, |
2991 | struct objfile *objfile, | |
2992 | struct type *type); | |
c906108c | 2993 | |
c5aa993b | 2994 | DESCRIPTION |
c906108c | 2995 | |
c5aa993b JM |
2996 | Given a pointer to a DWARF information entry, synthesize a typedef |
2997 | for the name in the DIE, using the specified type. | |
c906108c | 2998 | |
c5aa993b JM |
2999 | This is used for C++ class, structs, unions, and enumerations to |
3000 | set up the tag name as a type. | |
c906108c SS |
3001 | |
3002 | */ | |
3003 | ||
3004 | static void | |
fba45db2 KB |
3005 | synthesize_typedef (struct dieinfo *dip, struct objfile *objfile, |
3006 | struct type *type) | |
c906108c SS |
3007 | { |
3008 | struct symbol *sym = NULL; | |
c5aa993b JM |
3009 | |
3010 | if (dip->at_name != NULL) | |
c906108c SS |
3011 | { |
3012 | sym = (struct symbol *) | |
c5aa993b | 3013 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol)); |
c906108c SS |
3014 | OBJSTAT (objfile, n_syms++); |
3015 | memset (sym, 0, sizeof (struct symbol)); | |
c5aa993b | 3016 | SYMBOL_NAME (sym) = create_name (dip->at_name, |
c906108c SS |
3017 | &objfile->symbol_obstack); |
3018 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
3019 | SYMBOL_TYPE (sym) = type; | |
3020 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
3021 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
3022 | add_symbol_to_list (sym, list_in_scope); | |
3023 | } | |
3024 | } | |
3025 | ||
3026 | /* | |
3027 | ||
c5aa993b | 3028 | LOCAL FUNCTION |
c906108c | 3029 | |
c5aa993b | 3030 | decode_mod_fund_type -- decode a modified fundamental type |
c906108c | 3031 | |
c5aa993b | 3032 | SYNOPSIS |
c906108c | 3033 | |
c5aa993b | 3034 | static struct type *decode_mod_fund_type (char *typedata) |
c906108c | 3035 | |
c5aa993b | 3036 | DESCRIPTION |
c906108c | 3037 | |
c5aa993b JM |
3038 | Decode a block of data containing a modified fundamental |
3039 | type specification. TYPEDATA is a pointer to the block, | |
3040 | which starts with a length containing the size of the rest | |
3041 | of the block. At the end of the block is a fundmental type | |
3042 | code value that gives the fundamental type. Everything | |
3043 | in between are type modifiers. | |
c906108c | 3044 | |
c5aa993b JM |
3045 | We simply compute the number of modifiers and call the general |
3046 | function decode_modified_type to do the actual work. | |
3047 | */ | |
c906108c SS |
3048 | |
3049 | static struct type * | |
fba45db2 | 3050 | decode_mod_fund_type (char *typedata) |
c906108c SS |
3051 | { |
3052 | struct type *typep = NULL; | |
3053 | unsigned short modcount; | |
3054 | int nbytes; | |
c5aa993b | 3055 | |
c906108c SS |
3056 | /* Get the total size of the block, exclusive of the size itself */ |
3057 | ||
3058 | nbytes = attribute_size (AT_mod_fund_type); | |
3059 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3060 | typedata += nbytes; | |
3061 | ||
3062 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3063 | ||
3064 | modcount -= attribute_size (AT_fund_type); | |
3065 | ||
3066 | /* Now do the actual decoding */ | |
3067 | ||
3068 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |
3069 | return (typep); | |
3070 | } | |
3071 | ||
3072 | /* | |
3073 | ||
c5aa993b | 3074 | LOCAL FUNCTION |
c906108c | 3075 | |
c5aa993b | 3076 | decode_mod_u_d_type -- decode a modified user defined type |
c906108c | 3077 | |
c5aa993b | 3078 | SYNOPSIS |
c906108c | 3079 | |
c5aa993b | 3080 | static struct type *decode_mod_u_d_type (char *typedata) |
c906108c | 3081 | |
c5aa993b | 3082 | DESCRIPTION |
c906108c | 3083 | |
c5aa993b JM |
3084 | Decode a block of data containing a modified user defined |
3085 | type specification. TYPEDATA is a pointer to the block, | |
3086 | which consists of a two byte length, containing the size | |
3087 | of the rest of the block. At the end of the block is a | |
3088 | four byte value that gives a reference to a user defined type. | |
3089 | Everything in between are type modifiers. | |
c906108c | 3090 | |
c5aa993b JM |
3091 | We simply compute the number of modifiers and call the general |
3092 | function decode_modified_type to do the actual work. | |
3093 | */ | |
c906108c SS |
3094 | |
3095 | static struct type * | |
fba45db2 | 3096 | decode_mod_u_d_type (char *typedata) |
c906108c SS |
3097 | { |
3098 | struct type *typep = NULL; | |
3099 | unsigned short modcount; | |
3100 | int nbytes; | |
c5aa993b | 3101 | |
c906108c SS |
3102 | /* Get the total size of the block, exclusive of the size itself */ |
3103 | ||
3104 | nbytes = attribute_size (AT_mod_u_d_type); | |
3105 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3106 | typedata += nbytes; | |
3107 | ||
3108 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3109 | ||
3110 | modcount -= attribute_size (AT_user_def_type); | |
3111 | ||
3112 | /* Now do the actual decoding */ | |
3113 | ||
3114 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |
3115 | return (typep); | |
3116 | } | |
3117 | ||
3118 | /* | |
3119 | ||
c5aa993b | 3120 | LOCAL FUNCTION |
c906108c | 3121 | |
c5aa993b | 3122 | decode_modified_type -- decode modified user or fundamental type |
c906108c | 3123 | |
c5aa993b | 3124 | SYNOPSIS |
c906108c | 3125 | |
c5aa993b JM |
3126 | static struct type *decode_modified_type (char *modifiers, |
3127 | unsigned short modcount, int mtype) | |
c906108c | 3128 | |
c5aa993b | 3129 | DESCRIPTION |
c906108c | 3130 | |
c5aa993b JM |
3131 | Decode a modified type, either a modified fundamental type or |
3132 | a modified user defined type. MODIFIERS is a pointer to the | |
3133 | block of bytes that define MODCOUNT modifiers. Immediately | |
3134 | following the last modifier is a short containing the fundamental | |
3135 | type or a long containing the reference to the user defined | |
3136 | type. Which one is determined by MTYPE, which is either | |
3137 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3138 | type we are generating. | |
c906108c | 3139 | |
c5aa993b JM |
3140 | We call ourself recursively to generate each modified type,` |
3141 | until MODCOUNT reaches zero, at which point we have consumed | |
3142 | all the modifiers and generate either the fundamental type or | |
3143 | user defined type. When the recursion unwinds, each modifier | |
3144 | is applied in turn to generate the full modified type. | |
3145 | ||
3146 | NOTES | |
c906108c | 3147 | |
c5aa993b JM |
3148 | If we find a modifier that we don't recognize, and it is not one |
3149 | of those reserved for application specific use, then we issue a | |
3150 | warning and simply ignore the modifier. | |
c906108c | 3151 | |
c5aa993b | 3152 | BUGS |
c906108c | 3153 | |
c5aa993b | 3154 | We currently ignore MOD_const and MOD_volatile. (FIXME) |
c906108c SS |
3155 | |
3156 | */ | |
3157 | ||
3158 | static struct type * | |
fba45db2 | 3159 | decode_modified_type (char *modifiers, unsigned int modcount, int mtype) |
c906108c SS |
3160 | { |
3161 | struct type *typep = NULL; | |
3162 | unsigned short fundtype; | |
3163 | DIE_REF die_ref; | |
3164 | char modifier; | |
3165 | int nbytes; | |
c5aa993b | 3166 | |
c906108c SS |
3167 | if (modcount == 0) |
3168 | { | |
3169 | switch (mtype) | |
3170 | { | |
3171 | case AT_mod_fund_type: | |
3172 | nbytes = attribute_size (AT_fund_type); | |
3173 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3174 | current_objfile); | |
3175 | typep = decode_fund_type (fundtype); | |
3176 | break; | |
3177 | case AT_mod_u_d_type: | |
3178 | nbytes = attribute_size (AT_user_def_type); | |
3179 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3180 | current_objfile); | |
3181 | if ((typep = lookup_utype (die_ref)) == NULL) | |
3182 | { | |
3183 | typep = alloc_utype (die_ref, NULL); | |
3184 | } | |
3185 | break; | |
3186 | default: | |
3187 | complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); | |
3188 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3189 | break; | |
3190 | } | |
3191 | } | |
3192 | else | |
3193 | { | |
3194 | modifier = *modifiers++; | |
3195 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3196 | switch (modifier) | |
3197 | { | |
c5aa993b JM |
3198 | case MOD_pointer_to: |
3199 | typep = lookup_pointer_type (typep); | |
3200 | break; | |
3201 | case MOD_reference_to: | |
3202 | typep = lookup_reference_type (typep); | |
3203 | break; | |
3204 | case MOD_const: | |
3205 | complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3206 | break; | |
3207 | case MOD_volatile: | |
3208 | complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3209 | break; | |
3210 | default: | |
3211 | if (!(MOD_lo_user <= (unsigned char) modifier | |
3212 | && (unsigned char) modifier <= MOD_hi_user)) | |
3213 | { | |
3214 | complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); | |
3215 | } | |
3216 | break; | |
c906108c SS |
3217 | } |
3218 | } | |
3219 | return (typep); | |
3220 | } | |
3221 | ||
3222 | /* | |
3223 | ||
c5aa993b | 3224 | LOCAL FUNCTION |
c906108c | 3225 | |
c5aa993b | 3226 | decode_fund_type -- translate basic DWARF type to gdb base type |
c906108c | 3227 | |
c5aa993b | 3228 | DESCRIPTION |
c906108c | 3229 | |
c5aa993b JM |
3230 | Given an integer that is one of the fundamental DWARF types, |
3231 | translate it to one of the basic internal gdb types and return | |
3232 | a pointer to the appropriate gdb type (a "struct type *"). | |
c906108c | 3233 | |
c5aa993b | 3234 | NOTES |
c906108c | 3235 | |
c5aa993b JM |
3236 | For robustness, if we are asked to translate a fundamental |
3237 | type that we are unprepared to deal with, we return int so | |
3238 | callers can always depend upon a valid type being returned, | |
3239 | and so gdb may at least do something reasonable by default. | |
3240 | If the type is not in the range of those types defined as | |
3241 | application specific types, we also issue a warning. | |
3242 | */ | |
c906108c SS |
3243 | |
3244 | static struct type * | |
fba45db2 | 3245 | decode_fund_type (unsigned int fundtype) |
c906108c SS |
3246 | { |
3247 | struct type *typep = NULL; | |
c5aa993b | 3248 | |
c906108c SS |
3249 | switch (fundtype) |
3250 | { | |
3251 | ||
3252 | case FT_void: | |
3253 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3254 | break; | |
c5aa993b | 3255 | |
c906108c SS |
3256 | case FT_boolean: /* Was FT_set in AT&T version */ |
3257 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); | |
3258 | break; | |
3259 | ||
3260 | case FT_pointer: /* (void *) */ | |
3261 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3262 | typep = lookup_pointer_type (typep); | |
3263 | break; | |
c5aa993b | 3264 | |
c906108c SS |
3265 | case FT_char: |
3266 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); | |
3267 | break; | |
c5aa993b | 3268 | |
c906108c SS |
3269 | case FT_signed_char: |
3270 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); | |
3271 | break; | |
3272 | ||
3273 | case FT_unsigned_char: | |
3274 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); | |
3275 | break; | |
c5aa993b | 3276 | |
c906108c SS |
3277 | case FT_short: |
3278 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); | |
3279 | break; | |
3280 | ||
3281 | case FT_signed_short: | |
3282 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); | |
3283 | break; | |
c5aa993b | 3284 | |
c906108c SS |
3285 | case FT_unsigned_short: |
3286 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); | |
3287 | break; | |
c5aa993b | 3288 | |
c906108c SS |
3289 | case FT_integer: |
3290 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3291 | break; | |
3292 | ||
3293 | case FT_signed_integer: | |
3294 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); | |
3295 | break; | |
c5aa993b | 3296 | |
c906108c SS |
3297 | case FT_unsigned_integer: |
3298 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); | |
3299 | break; | |
c5aa993b | 3300 | |
c906108c SS |
3301 | case FT_long: |
3302 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); | |
3303 | break; | |
3304 | ||
3305 | case FT_signed_long: | |
3306 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); | |
3307 | break; | |
c5aa993b | 3308 | |
c906108c SS |
3309 | case FT_unsigned_long: |
3310 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); | |
3311 | break; | |
c5aa993b | 3312 | |
c906108c SS |
3313 | case FT_long_long: |
3314 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); | |
3315 | break; | |
3316 | ||
3317 | case FT_signed_long_long: | |
3318 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); | |
3319 | break; | |
3320 | ||
3321 | case FT_unsigned_long_long: | |
3322 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); | |
3323 | break; | |
3324 | ||
3325 | case FT_float: | |
3326 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); | |
3327 | break; | |
c5aa993b | 3328 | |
c906108c SS |
3329 | case FT_dbl_prec_float: |
3330 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); | |
3331 | break; | |
c5aa993b | 3332 | |
c906108c SS |
3333 | case FT_ext_prec_float: |
3334 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); | |
3335 | break; | |
c5aa993b | 3336 | |
c906108c SS |
3337 | case FT_complex: |
3338 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); | |
3339 | break; | |
c5aa993b | 3340 | |
c906108c SS |
3341 | case FT_dbl_prec_complex: |
3342 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); | |
3343 | break; | |
c5aa993b | 3344 | |
c906108c SS |
3345 | case FT_ext_prec_complex: |
3346 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); | |
3347 | break; | |
c5aa993b | 3348 | |
c906108c SS |
3349 | } |
3350 | ||
3351 | if (typep == NULL) | |
3352 | { | |
3353 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3354 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3355 | { | |
3356 | complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); | |
3357 | } | |
3358 | } | |
c5aa993b | 3359 | |
c906108c SS |
3360 | return (typep); |
3361 | } | |
3362 | ||
3363 | /* | |
3364 | ||
c5aa993b | 3365 | LOCAL FUNCTION |
c906108c | 3366 | |
c5aa993b | 3367 | create_name -- allocate a fresh copy of a string on an obstack |
c906108c | 3368 | |
c5aa993b | 3369 | DESCRIPTION |
c906108c | 3370 | |
c5aa993b JM |
3371 | Given a pointer to a string and a pointer to an obstack, allocates |
3372 | a fresh copy of the string on the specified obstack. | |
c906108c | 3373 | |
c5aa993b | 3374 | */ |
c906108c SS |
3375 | |
3376 | static char * | |
fba45db2 | 3377 | create_name (char *name, struct obstack *obstackp) |
c906108c SS |
3378 | { |
3379 | int length; | |
3380 | char *newname; | |
3381 | ||
3382 | length = strlen (name) + 1; | |
3383 | newname = (char *) obstack_alloc (obstackp, length); | |
3384 | strcpy (newname, name); | |
3385 | return (newname); | |
3386 | } | |
3387 | ||
3388 | /* | |
3389 | ||
c5aa993b | 3390 | LOCAL FUNCTION |
c906108c | 3391 | |
c5aa993b | 3392 | basicdieinfo -- extract the minimal die info from raw die data |
c906108c | 3393 | |
c5aa993b | 3394 | SYNOPSIS |
c906108c | 3395 | |
c5aa993b JM |
3396 | void basicdieinfo (char *diep, struct dieinfo *dip, |
3397 | struct objfile *objfile) | |
c906108c | 3398 | |
c5aa993b | 3399 | DESCRIPTION |
c906108c | 3400 | |
c5aa993b JM |
3401 | Given a pointer to raw DIE data, and a pointer to an instance of a |
3402 | die info structure, this function extracts the basic information | |
3403 | from the DIE data required to continue processing this DIE, along | |
3404 | with some bookkeeping information about the DIE. | |
c906108c | 3405 | |
c5aa993b JM |
3406 | The information we absolutely must have includes the DIE tag, |
3407 | and the DIE length. If we need the sibling reference, then we | |
3408 | will have to call completedieinfo() to process all the remaining | |
3409 | DIE information. | |
c906108c | 3410 | |
c5aa993b JM |
3411 | Note that since there is no guarantee that the data is properly |
3412 | aligned in memory for the type of access required (indirection | |
3413 | through anything other than a char pointer), and there is no | |
3414 | guarantee that it is in the same byte order as the gdb host, | |
3415 | we call a function which deals with both alignment and byte | |
3416 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3417 | |
c5aa993b JM |
3418 | We also take care of some other basic things at this point, such |
3419 | as ensuring that the instance of the die info structure starts | |
3420 | out completely zero'd and that curdie is initialized for use | |
3421 | in error reporting if we have a problem with the current die. | |
c906108c | 3422 | |
c5aa993b JM |
3423 | NOTES |
3424 | ||
3425 | All DIE's must have at least a valid length, thus the minimum | |
3426 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |
3427 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |
3428 | are forced to be TAG_padding DIES. | |
c906108c | 3429 | |
c5aa993b JM |
3430 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying |
3431 | that if a padding DIE is used for alignment and the amount needed is | |
3432 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |
3433 | enough to align to the next alignment boundry. | |
3434 | ||
3435 | We do some basic sanity checking here, such as verifying that the | |
3436 | length of the die would not cause it to overrun the recorded end of | |
3437 | the buffer holding the DIE info. If we find a DIE that is either | |
3438 | too small or too large, we force it's length to zero which should | |
3439 | cause the caller to take appropriate action. | |
c906108c SS |
3440 | */ |
3441 | ||
3442 | static void | |
fba45db2 | 3443 | basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile) |
c906108c SS |
3444 | { |
3445 | curdie = dip; | |
3446 | memset (dip, 0, sizeof (struct dieinfo)); | |
c5aa993b JM |
3447 | dip->die = diep; |
3448 | dip->die_ref = dbroff + (diep - dbbase); | |
3449 | dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, | |
3450 | objfile); | |
3451 | if ((dip->die_length < SIZEOF_DIE_LENGTH) || | |
3452 | ((diep + dip->die_length) > (dbbase + dbsize))) | |
c906108c | 3453 | { |
c5aa993b JM |
3454 | complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length); |
3455 | dip->die_length = 0; | |
c906108c | 3456 | } |
c5aa993b | 3457 | else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) |
c906108c | 3458 | { |
c5aa993b | 3459 | dip->die_tag = TAG_padding; |
c906108c SS |
3460 | } |
3461 | else | |
3462 | { | |
3463 | diep += SIZEOF_DIE_LENGTH; | |
c5aa993b JM |
3464 | dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, |
3465 | objfile); | |
c906108c SS |
3466 | } |
3467 | } | |
3468 | ||
3469 | /* | |
3470 | ||
c5aa993b | 3471 | LOCAL FUNCTION |
c906108c | 3472 | |
c5aa993b | 3473 | completedieinfo -- finish reading the information for a given DIE |
c906108c | 3474 | |
c5aa993b | 3475 | SYNOPSIS |
c906108c | 3476 | |
c5aa993b | 3477 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 3478 | |
c5aa993b | 3479 | DESCRIPTION |
c906108c | 3480 | |
c5aa993b JM |
3481 | Given a pointer to an already partially initialized die info structure, |
3482 | scan the raw DIE data and finish filling in the die info structure | |
3483 | from the various attributes found. | |
c906108c | 3484 | |
c5aa993b JM |
3485 | Note that since there is no guarantee that the data is properly |
3486 | aligned in memory for the type of access required (indirection | |
3487 | through anything other than a char pointer), and there is no | |
3488 | guarantee that it is in the same byte order as the gdb host, | |
3489 | we call a function which deals with both alignment and byte | |
3490 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3491 | |
c5aa993b JM |
3492 | NOTES |
3493 | ||
3494 | Each time we are called, we increment the diecount variable, which | |
3495 | keeps an approximate count of the number of dies processed for | |
3496 | each compilation unit. This information is presented to the user | |
3497 | if the info_verbose flag is set. | |
c906108c SS |
3498 | |
3499 | */ | |
3500 | ||
3501 | static void | |
fba45db2 | 3502 | completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
3503 | { |
3504 | char *diep; /* Current pointer into raw DIE data */ | |
3505 | char *end; /* Terminate DIE scan here */ | |
3506 | unsigned short attr; /* Current attribute being scanned */ | |
3507 | unsigned short form; /* Form of the attribute */ | |
3508 | int nbytes; /* Size of next field to read */ | |
c5aa993b | 3509 | |
c906108c | 3510 | diecount++; |
c5aa993b JM |
3511 | diep = dip->die; |
3512 | end = diep + dip->die_length; | |
c906108c SS |
3513 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; |
3514 | while (diep < end) | |
3515 | { | |
3516 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); | |
3517 | diep += SIZEOF_ATTRIBUTE; | |
3518 | if ((nbytes = attribute_size (attr)) == -1) | |
3519 | { | |
3520 | complain (&unknown_attribute_length, DIE_ID, DIE_NAME); | |
3521 | diep = end; | |
3522 | continue; | |
3523 | } | |
3524 | switch (attr) | |
3525 | { | |
3526 | case AT_fund_type: | |
c5aa993b JM |
3527 | dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, |
3528 | objfile); | |
c906108c SS |
3529 | break; |
3530 | case AT_ordering: | |
c5aa993b JM |
3531 | dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, |
3532 | objfile); | |
c906108c SS |
3533 | break; |
3534 | case AT_bit_offset: | |
c5aa993b JM |
3535 | dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, |
3536 | objfile); | |
c906108c SS |
3537 | break; |
3538 | case AT_sibling: | |
c5aa993b JM |
3539 | dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, |
3540 | objfile); | |
c906108c SS |
3541 | break; |
3542 | case AT_stmt_list: | |
c5aa993b JM |
3543 | dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, |
3544 | objfile); | |
3545 | dip->has_at_stmt_list = 1; | |
c906108c SS |
3546 | break; |
3547 | case AT_low_pc: | |
c5aa993b JM |
3548 | dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3549 | objfile); | |
3550 | dip->at_low_pc += baseaddr; | |
3551 | dip->has_at_low_pc = 1; | |
c906108c SS |
3552 | break; |
3553 | case AT_high_pc: | |
c5aa993b JM |
3554 | dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3555 | objfile); | |
3556 | dip->at_high_pc += baseaddr; | |
c906108c SS |
3557 | break; |
3558 | case AT_language: | |
c5aa993b JM |
3559 | dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED, |
3560 | objfile); | |
c906108c SS |
3561 | break; |
3562 | case AT_user_def_type: | |
c5aa993b JM |
3563 | dip->at_user_def_type = target_to_host (diep, nbytes, |
3564 | GET_UNSIGNED, objfile); | |
c906108c SS |
3565 | break; |
3566 | case AT_byte_size: | |
c5aa993b JM |
3567 | dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3568 | objfile); | |
3569 | dip->has_at_byte_size = 1; | |
c906108c SS |
3570 | break; |
3571 | case AT_bit_size: | |
c5aa993b JM |
3572 | dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3573 | objfile); | |
c906108c SS |
3574 | break; |
3575 | case AT_member: | |
c5aa993b JM |
3576 | dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED, |
3577 | objfile); | |
c906108c SS |
3578 | break; |
3579 | case AT_discr: | |
c5aa993b JM |
3580 | dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, |
3581 | objfile); | |
c906108c SS |
3582 | break; |
3583 | case AT_location: | |
c5aa993b | 3584 | dip->at_location = diep; |
c906108c SS |
3585 | break; |
3586 | case AT_mod_fund_type: | |
c5aa993b | 3587 | dip->at_mod_fund_type = diep; |
c906108c SS |
3588 | break; |
3589 | case AT_subscr_data: | |
c5aa993b | 3590 | dip->at_subscr_data = diep; |
c906108c SS |
3591 | break; |
3592 | case AT_mod_u_d_type: | |
c5aa993b | 3593 | dip->at_mod_u_d_type = diep; |
c906108c SS |
3594 | break; |
3595 | case AT_element_list: | |
c5aa993b JM |
3596 | dip->at_element_list = diep; |
3597 | dip->short_element_list = 0; | |
c906108c SS |
3598 | break; |
3599 | case AT_short_element_list: | |
c5aa993b JM |
3600 | dip->at_element_list = diep; |
3601 | dip->short_element_list = 1; | |
c906108c SS |
3602 | break; |
3603 | case AT_discr_value: | |
c5aa993b | 3604 | dip->at_discr_value = diep; |
c906108c SS |
3605 | break; |
3606 | case AT_string_length: | |
c5aa993b | 3607 | dip->at_string_length = diep; |
c906108c SS |
3608 | break; |
3609 | case AT_name: | |
c5aa993b | 3610 | dip->at_name = diep; |
c906108c SS |
3611 | break; |
3612 | case AT_comp_dir: | |
3613 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |
3614 | know how to deal with it. (FIXME). */ | |
c5aa993b JM |
3615 | dip->at_comp_dir = strrchr (diep, ':'); |
3616 | if (dip->at_comp_dir != NULL) | |
c906108c | 3617 | { |
c5aa993b | 3618 | dip->at_comp_dir++; |
c906108c SS |
3619 | } |
3620 | else | |
3621 | { | |
c5aa993b | 3622 | dip->at_comp_dir = diep; |
c906108c SS |
3623 | } |
3624 | break; | |
3625 | case AT_producer: | |
c5aa993b | 3626 | dip->at_producer = diep; |
c906108c SS |
3627 | break; |
3628 | case AT_start_scope: | |
c5aa993b JM |
3629 | dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, |
3630 | objfile); | |
c906108c SS |
3631 | break; |
3632 | case AT_stride_size: | |
c5aa993b JM |
3633 | dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3634 | objfile); | |
c906108c SS |
3635 | break; |
3636 | case AT_src_info: | |
c5aa993b JM |
3637 | dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, |
3638 | objfile); | |
c906108c SS |
3639 | break; |
3640 | case AT_prototyped: | |
c5aa993b | 3641 | dip->at_prototyped = diep; |
c906108c SS |
3642 | break; |
3643 | default: | |
3644 | /* Found an attribute that we are unprepared to handle. However | |
3645 | it is specifically one of the design goals of DWARF that | |
3646 | consumers should ignore unknown attributes. As long as the | |
3647 | form is one that we recognize (so we know how to skip it), | |
3648 | we can just ignore the unknown attribute. */ | |
3649 | break; | |
3650 | } | |
3651 | form = FORM_FROM_ATTR (attr); | |
3652 | switch (form) | |
3653 | { | |
3654 | case FORM_DATA2: | |
3655 | diep += 2; | |
3656 | break; | |
3657 | case FORM_DATA4: | |
3658 | case FORM_REF: | |
3659 | diep += 4; | |
3660 | break; | |
3661 | case FORM_DATA8: | |
3662 | diep += 8; | |
3663 | break; | |
3664 | case FORM_ADDR: | |
3665 | diep += TARGET_FT_POINTER_SIZE (objfile); | |
3666 | break; | |
3667 | case FORM_BLOCK2: | |
3668 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3669 | break; | |
3670 | case FORM_BLOCK4: | |
3671 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3672 | break; | |
3673 | case FORM_STRING: | |
3674 | diep += strlen (diep) + 1; | |
3675 | break; | |
3676 | default: | |
3677 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3678 | diep = end; | |
3679 | break; | |
3680 | } | |
3681 | } | |
3682 | } | |
3683 | ||
3684 | /* | |
3685 | ||
c5aa993b | 3686 | LOCAL FUNCTION |
c906108c | 3687 | |
c5aa993b | 3688 | target_to_host -- swap in target data to host |
c906108c | 3689 | |
c5aa993b | 3690 | SYNOPSIS |
c906108c | 3691 | |
c5aa993b JM |
3692 | target_to_host (char *from, int nbytes, int signextend, |
3693 | struct objfile *objfile) | |
c906108c | 3694 | |
c5aa993b | 3695 | DESCRIPTION |
c906108c | 3696 | |
c5aa993b JM |
3697 | Given pointer to data in target format in FROM, a byte count for |
3698 | the size of the data in NBYTES, a flag indicating whether or not | |
3699 | the data is signed in SIGNEXTEND, and a pointer to the current | |
3700 | objfile in OBJFILE, convert the data to host format and return | |
3701 | the converted value. | |
c906108c | 3702 | |
c5aa993b | 3703 | NOTES |
c906108c | 3704 | |
c5aa993b JM |
3705 | FIXME: If we read data that is known to be signed, and expect to |
3706 | use it as signed data, then we need to explicitly sign extend the | |
3707 | result until the bfd library is able to do this for us. | |
c906108c | 3708 | |
c5aa993b | 3709 | FIXME: Would a 32 bit target ever need an 8 byte result? |
c906108c SS |
3710 | |
3711 | */ | |
3712 | ||
3713 | static CORE_ADDR | |
fba45db2 KB |
3714 | target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */ |
3715 | struct objfile *objfile) | |
c906108c SS |
3716 | { |
3717 | CORE_ADDR rtnval; | |
3718 | ||
3719 | switch (nbytes) | |
3720 | { | |
c5aa993b JM |
3721 | case 8: |
3722 | rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from); | |
3723 | break; | |
3724 | case 4: | |
3725 | rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from); | |
3726 | break; | |
3727 | case 2: | |
3728 | rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from); | |
3729 | break; | |
3730 | case 1: | |
3731 | rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from); | |
3732 | break; | |
3733 | default: | |
3734 | complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); | |
3735 | rtnval = 0; | |
3736 | break; | |
c906108c SS |
3737 | } |
3738 | return (rtnval); | |
3739 | } | |
3740 | ||
3741 | /* | |
3742 | ||
c5aa993b | 3743 | LOCAL FUNCTION |
c906108c | 3744 | |
c5aa993b | 3745 | attribute_size -- compute size of data for a DWARF attribute |
c906108c | 3746 | |
c5aa993b | 3747 | SYNOPSIS |
c906108c | 3748 | |
c5aa993b | 3749 | static int attribute_size (unsigned int attr) |
c906108c | 3750 | |
c5aa993b | 3751 | DESCRIPTION |
c906108c | 3752 | |
c5aa993b JM |
3753 | Given a DWARF attribute in ATTR, compute the size of the first |
3754 | piece of data associated with this attribute and return that | |
3755 | size. | |
c906108c | 3756 | |
c5aa993b | 3757 | Returns -1 for unrecognized attributes. |
c906108c SS |
3758 | |
3759 | */ | |
3760 | ||
3761 | static int | |
fba45db2 | 3762 | attribute_size (unsigned int attr) |
c906108c SS |
3763 | { |
3764 | int nbytes; /* Size of next data for this attribute */ | |
3765 | unsigned short form; /* Form of the attribute */ | |
3766 | ||
3767 | form = FORM_FROM_ATTR (attr); | |
3768 | switch (form) | |
3769 | { | |
c5aa993b JM |
3770 | case FORM_STRING: /* A variable length field is next */ |
3771 | nbytes = 0; | |
3772 | break; | |
3773 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |
3774 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |
3775 | nbytes = 2; | |
3776 | break; | |
3777 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |
3778 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |
3779 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |
3780 | nbytes = 4; | |
3781 | break; | |
3782 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |
3783 | nbytes = 8; | |
3784 | break; | |
3785 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |
3786 | nbytes = TARGET_FT_POINTER_SIZE (objfile); | |
3787 | break; | |
3788 | default: | |
3789 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3790 | nbytes = -1; | |
3791 | break; | |
3792 | } | |
c906108c SS |
3793 | return (nbytes); |
3794 | } |