]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* DWARF debugging format support for GDB. |
2 | Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, | |
5 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | /* | |
24 | ||
25 | FIXME: Do we need to generate dependencies in partial symtabs? | |
26 | (Perhaps we don't need to). | |
27 | ||
28 | FIXME: Resolve minor differences between what information we put in the | |
29 | partial symbol table and what dbxread puts in. For example, we don't yet | |
30 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
31 | we never see. Use the new printpsym command to see the partial symbol table | |
32 | contents. | |
33 | ||
34 | FIXME: Figure out a better way to tell gdb about the name of the function | |
35 | contain the user's entry point (I.E. main()) | |
36 | ||
37 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for | |
38 | other things to work on, if you get bored. :-) | |
39 | ||
40 | */ | |
41 | ||
42 | #include "defs.h" | |
43 | #include "symtab.h" | |
44 | #include "gdbtypes.h" | |
45 | #include "symfile.h" | |
46 | #include "objfiles.h" | |
47 | #include "elf/dwarf.h" | |
48 | #include "buildsym.h" | |
49 | #include "demangle.h" | |
50 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ | |
51 | #include "language.h" | |
52 | #include "complaints.h" | |
53 | ||
54 | #include <fcntl.h> | |
55 | #include "gdb_string.h" | |
56 | ||
57 | /* Some macros to provide DIE info for complaints. */ | |
58 | ||
59 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) | |
60 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" | |
61 | ||
62 | /* Complaints that can be issued during DWARF debug info reading. */ | |
63 | ||
64 | struct complaint no_bfd_get_N = | |
65 | { | |
66 | "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 | |
67 | }; | |
68 | ||
69 | struct complaint malformed_die = | |
70 | { | |
71 | "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 | |
72 | }; | |
73 | ||
74 | struct complaint bad_die_ref = | |
75 | { | |
76 | "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 | |
77 | }; | |
78 | ||
79 | struct complaint unknown_attribute_form = | |
80 | { | |
81 | "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 | |
82 | }; | |
83 | ||
84 | struct complaint unknown_attribute_length = | |
85 | { | |
86 | "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 | |
87 | }; | |
88 | ||
89 | struct complaint unexpected_fund_type = | |
90 | { | |
91 | "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 | |
92 | }; | |
93 | ||
94 | struct complaint unknown_type_modifier = | |
95 | { | |
96 | "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 | |
97 | }; | |
98 | ||
99 | struct complaint volatile_ignored = | |
100 | { | |
101 | "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 | |
102 | }; | |
103 | ||
104 | struct complaint const_ignored = | |
105 | { | |
106 | "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 | |
107 | }; | |
108 | ||
109 | struct complaint botched_modified_type = | |
110 | { | |
111 | "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 | |
112 | }; | |
113 | ||
114 | struct complaint op_deref2 = | |
115 | { | |
116 | "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 | |
117 | }; | |
118 | ||
119 | struct complaint op_deref4 = | |
120 | { | |
121 | "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 | |
122 | }; | |
123 | ||
124 | struct complaint basereg_not_handled = | |
125 | { | |
126 | "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 | |
127 | }; | |
128 | ||
129 | struct complaint dup_user_type_allocation = | |
130 | { | |
131 | "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 | |
132 | }; | |
133 | ||
134 | struct complaint dup_user_type_definition = | |
135 | { | |
136 | "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 | |
137 | }; | |
138 | ||
139 | struct complaint missing_tag = | |
140 | { | |
141 | "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 | |
142 | }; | |
143 | ||
144 | struct complaint bad_array_element_type = | |
145 | { | |
146 | "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 | |
147 | }; | |
148 | ||
149 | struct complaint subscript_data_items = | |
150 | { | |
151 | "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 | |
152 | }; | |
153 | ||
154 | struct complaint unhandled_array_subscript_format = | |
155 | { | |
156 | "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 | |
157 | }; | |
158 | ||
159 | struct complaint unknown_array_subscript_format = | |
160 | { | |
161 | "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 | |
162 | }; | |
163 | ||
164 | struct complaint not_row_major = | |
165 | { | |
166 | "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 | |
167 | }; | |
168 | ||
169 | struct complaint missing_at_name = | |
170 | { | |
171 | "DIE @ 0x%x, AT_name tag missing", 0, 0 | |
172 | }; | |
173 | ||
174 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |
175 | ||
176 | #ifndef GCC_PRODUCER | |
177 | #define GCC_PRODUCER "GNU C " | |
178 | #endif | |
179 | ||
180 | #ifndef GPLUS_PRODUCER | |
181 | #define GPLUS_PRODUCER "GNU C++ " | |
182 | #endif | |
183 | ||
184 | #ifndef LCC_PRODUCER | |
185 | #define LCC_PRODUCER "NCR C/C++" | |
186 | #endif | |
187 | ||
188 | #ifndef CHILL_PRODUCER | |
189 | #define CHILL_PRODUCER "GNU Chill " | |
190 | #endif | |
191 | ||
192 | /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */ | |
193 | #ifndef DWARF_REG_TO_REGNUM | |
194 | #define DWARF_REG_TO_REGNUM(num) (num) | |
195 | #endif | |
196 | ||
197 | /* Flags to target_to_host() that tell whether or not the data object is | |
198 | expected to be signed. Used, for example, when fetching a signed | |
199 | integer in the target environment which is used as a signed integer | |
200 | in the host environment, and the two environments have different sized | |
201 | ints. In this case, *somebody* has to sign extend the smaller sized | |
202 | int. */ | |
203 | ||
204 | #define GET_UNSIGNED 0 /* No sign extension required */ | |
205 | #define GET_SIGNED 1 /* Sign extension required */ | |
206 | ||
207 | /* Defines for things which are specified in the document "DWARF Debugging | |
208 | Information Format" published by UNIX International, Programming Languages | |
209 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |
210 | ||
211 | #define SIZEOF_DIE_LENGTH 4 | |
212 | #define SIZEOF_DIE_TAG 2 | |
213 | #define SIZEOF_ATTRIBUTE 2 | |
214 | #define SIZEOF_FORMAT_SPECIFIER 1 | |
215 | #define SIZEOF_FMT_FT 2 | |
216 | #define SIZEOF_LINETBL_LENGTH 4 | |
217 | #define SIZEOF_LINETBL_LINENO 4 | |
218 | #define SIZEOF_LINETBL_STMT 2 | |
219 | #define SIZEOF_LINETBL_DELTA 4 | |
220 | #define SIZEOF_LOC_ATOM_CODE 1 | |
221 | ||
222 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ | |
223 | ||
224 | /* Macros that return the sizes of various types of data in the target | |
225 | environment. | |
226 | ||
227 | FIXME: Currently these are just compile time constants (as they are in | |
228 | other parts of gdb as well). They need to be able to get the right size | |
229 | either from the bfd or possibly from the DWARF info. It would be nice if | |
230 | the DWARF producer inserted DIES that describe the fundamental types in | |
231 | the target environment into the DWARF info, similar to the way dbx stabs | |
232 | producers produce information about their fundamental types. */ | |
233 | ||
234 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) | |
235 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
236 | ||
237 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |
238 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |
239 | However, the Issue 2 DWARF specification from AT&T defines it as | |
240 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |
241 | For backwards compatibility with the AT&T compiler produced executables | |
242 | we define AT_short_element_list for this variant. */ | |
243 | ||
244 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) | |
245 | ||
246 | /* External variables referenced. */ | |
247 | ||
248 | extern int info_verbose; /* From main.c; nonzero => verbose */ | |
249 | extern char *warning_pre_print; /* From utils.c */ | |
250 | ||
251 | /* The DWARF debugging information consists of two major pieces, | |
252 | one is a block of DWARF Information Entries (DIE's) and the other | |
253 | is a line number table. The "struct dieinfo" structure contains | |
254 | the information for a single DIE, the one currently being processed. | |
255 | ||
256 | In order to make it easier to randomly access the attribute fields | |
257 | of the current DIE, which are specifically unordered within the DIE, | |
258 | each DIE is scanned and an instance of the "struct dieinfo" | |
259 | structure is initialized. | |
260 | ||
261 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
262 | just initializes those fields that are vital to deciding whether or not | |
263 | to use this DIE, how to skip past it, etc. The second, done by the | |
264 | function completedieinfo(), fills in the rest of the information. | |
265 | ||
266 | Attributes which have block forms are not interpreted at the time | |
267 | the DIE is scanned, instead we just save pointers to the start | |
268 | of their value fields. | |
269 | ||
270 | Some fields have a flag <name>_p that is set when the value of the | |
271 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
272 | we may want to test for the presence of some attributes in the DIE, | |
273 | such as AT_low_pc, without restricting the values of the field, | |
274 | we need someway to note that we found such an attribute. | |
275 | ||
276 | */ | |
277 | ||
278 | typedef char BLOCK; | |
279 | ||
280 | struct dieinfo { | |
281 | char * die; /* Pointer to the raw DIE data */ | |
282 | unsigned long die_length; /* Length of the raw DIE data */ | |
283 | DIE_REF die_ref; /* Offset of this DIE */ | |
284 | unsigned short die_tag; /* Tag for this DIE */ | |
285 | unsigned long at_padding; | |
286 | unsigned long at_sibling; | |
287 | BLOCK * at_location; | |
288 | char * at_name; | |
289 | unsigned short at_fund_type; | |
290 | BLOCK * at_mod_fund_type; | |
291 | unsigned long at_user_def_type; | |
292 | BLOCK * at_mod_u_d_type; | |
293 | unsigned short at_ordering; | |
294 | BLOCK * at_subscr_data; | |
295 | unsigned long at_byte_size; | |
296 | unsigned short at_bit_offset; | |
297 | unsigned long at_bit_size; | |
298 | BLOCK * at_element_list; | |
299 | unsigned long at_stmt_list; | |
300 | CORE_ADDR at_low_pc; | |
301 | CORE_ADDR at_high_pc; | |
302 | unsigned long at_language; | |
303 | unsigned long at_member; | |
304 | unsigned long at_discr; | |
305 | BLOCK * at_discr_value; | |
306 | BLOCK * at_string_length; | |
307 | char * at_comp_dir; | |
308 | char * at_producer; | |
309 | unsigned long at_start_scope; | |
310 | unsigned long at_stride_size; | |
311 | unsigned long at_src_info; | |
312 | char * at_prototyped; | |
313 | unsigned int has_at_low_pc:1; | |
314 | unsigned int has_at_stmt_list:1; | |
315 | unsigned int has_at_byte_size:1; | |
316 | unsigned int short_element_list:1; | |
317 | ||
318 | /* Kludge to identify register variables */ | |
319 | ||
320 | unsigned int isreg; | |
321 | ||
322 | /* Kludge to identify optimized out variables */ | |
323 | ||
324 | unsigned int optimized_out; | |
325 | ||
326 | /* Kludge to identify basereg references. | |
327 | Nonzero if we have an offset relative to a basereg. */ | |
328 | ||
329 | unsigned int offreg; | |
330 | ||
331 | /* Kludge to identify which base register is it relative to. */ | |
332 | ||
333 | unsigned int basereg; | |
334 | }; | |
335 | ||
336 | static int diecount; /* Approximate count of dies for compilation unit */ | |
337 | static struct dieinfo *curdie; /* For warnings and such */ | |
338 | ||
339 | static char *dbbase; /* Base pointer to dwarf info */ | |
340 | static int dbsize; /* Size of dwarf info in bytes */ | |
341 | static int dbroff; /* Relative offset from start of .debug section */ | |
342 | static char *lnbase; /* Base pointer to line section */ | |
343 | ||
344 | /* This value is added to each symbol value. FIXME: Generalize to | |
345 | the section_offsets structure used by dbxread (once this is done, | |
346 | pass the appropriate section number to end_symtab). */ | |
347 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
348 | ||
349 | /* The section offsets used in the current psymtab or symtab. FIXME, | |
350 | only used to pass one value (baseaddr) at the moment. */ | |
351 | static struct section_offsets *base_section_offsets; | |
352 | ||
353 | /* We put a pointer to this structure in the read_symtab_private field | |
354 | of the psymtab. */ | |
355 | ||
356 | struct dwfinfo { | |
357 | /* Always the absolute file offset to the start of the ".debug" | |
358 | section for the file containing the DIE's being accessed. */ | |
359 | file_ptr dbfoff; | |
360 | /* Relative offset from the start of the ".debug" section to the | |
361 | first DIE to be accessed. When building the partial symbol | |
362 | table, this value will be zero since we are accessing the | |
363 | entire ".debug" section. When expanding a partial symbol | |
364 | table entry, this value will be the offset to the first | |
365 | DIE for the compilation unit containing the symbol that | |
366 | triggers the expansion. */ | |
367 | int dbroff; | |
368 | /* The size of the chunk of DIE's being examined, in bytes. */ | |
369 | int dblength; | |
370 | /* The absolute file offset to the line table fragment. Ignored | |
371 | when building partial symbol tables, but used when expanding | |
372 | them, and contains the absolute file offset to the fragment | |
373 | of the ".line" section containing the line numbers for the | |
374 | current compilation unit. */ | |
375 | file_ptr lnfoff; | |
376 | }; | |
377 | ||
378 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
379 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
380 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
381 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
382 | ||
383 | /* The generic symbol table building routines have separate lists for | |
384 | file scope symbols and all all other scopes (local scopes). So | |
385 | we need to select the right one to pass to add_symbol_to_list(). | |
386 | We do it by keeping a pointer to the correct list in list_in_scope. | |
387 | ||
388 | FIXME: The original dwarf code just treated the file scope as the first | |
389 | local scope, and all other local scopes as nested local scopes, and worked | |
390 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |
391 | ||
392 | struct pending **list_in_scope = &file_symbols; | |
393 | ||
394 | /* DIES which have user defined types or modified user defined types refer to | |
395 | other DIES for the type information. Thus we need to associate the offset | |
396 | of a DIE for a user defined type with a pointer to the type information. | |
397 | ||
398 | Originally this was done using a simple but expensive algorithm, with an | |
399 | array of unsorted structures, each containing an offset/type-pointer pair. | |
400 | This array was scanned linearly each time a lookup was done. The result | |
401 | was that gdb was spending over half it's startup time munging through this | |
402 | array of pointers looking for a structure that had the right offset member. | |
403 | ||
404 | The second attempt used the same array of structures, but the array was | |
405 | sorted using qsort each time a new offset/type was recorded, and a binary | |
406 | search was used to find the type pointer for a given DIE offset. This was | |
407 | even slower, due to the overhead of sorting the array each time a new | |
408 | offset/type pair was entered. | |
409 | ||
410 | The third attempt uses a fixed size array of type pointers, indexed by a | |
411 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
412 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
413 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
414 | much memory to hold this array as to hold the DWARF info for a given | |
415 | compilation unit. But it gets freed as soon as we are done with it. | |
416 | This has worked well in practice, as a reasonable tradeoff between memory | |
417 | consumption and speed, without having to resort to much more complicated | |
418 | algorithms. */ | |
419 | ||
420 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
421 | static int numutypes; /* Max number of user type pointers */ | |
422 | ||
423 | /* Maintain an array of referenced fundamental types for the current | |
424 | compilation unit being read. For DWARF version 1, we have to construct | |
425 | the fundamental types on the fly, since no information about the | |
426 | fundamental types is supplied. Each such fundamental type is created by | |
427 | calling a language dependent routine to create the type, and then a | |
428 | pointer to that type is then placed in the array at the index specified | |
429 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |
430 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |
431 | fundamental types gdb knows how to construct. */ | |
432 | ||
433 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ | |
434 | ||
435 | /* Record the language for the compilation unit which is currently being | |
436 | processed. We know it once we have seen the TAG_compile_unit DIE, | |
437 | and we need it while processing the DIE's for that compilation unit. | |
438 | It is eventually saved in the symtab structure, but we don't finalize | |
439 | the symtab struct until we have processed all the DIE's for the | |
440 | compilation unit. We also need to get and save a pointer to the | |
441 | language struct for this language, so we can call the language | |
442 | dependent routines for doing things such as creating fundamental | |
443 | types. */ | |
444 | ||
445 | static enum language cu_language; | |
446 | static const struct language_defn *cu_language_defn; | |
447 | ||
448 | /* Forward declarations of static functions so we don't have to worry | |
449 | about ordering within this file. */ | |
450 | ||
451 | static void | |
452 | free_utypes PARAMS ((PTR)); | |
453 | ||
454 | static int | |
455 | attribute_size PARAMS ((unsigned int)); | |
456 | ||
457 | static CORE_ADDR | |
458 | target_to_host PARAMS ((char *, int, int, struct objfile *)); | |
459 | ||
460 | static void | |
461 | add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *)); | |
462 | ||
463 | static void | |
464 | handle_producer PARAMS ((char *)); | |
465 | ||
466 | static void | |
467 | read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
468 | ||
469 | static void | |
470 | read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
471 | ||
472 | static void | |
473 | read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *, | |
474 | struct objfile *)); | |
475 | ||
476 | static void | |
477 | scan_partial_symbols PARAMS ((char *, char *, struct objfile *)); | |
478 | ||
479 | static void | |
480 | scan_compilation_units PARAMS ((char *, char *, file_ptr, | |
481 | file_ptr, struct objfile *)); | |
482 | ||
483 | static void | |
484 | add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *)); | |
485 | ||
486 | static void | |
487 | basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *)); | |
488 | ||
489 | static void | |
490 | completedieinfo PARAMS ((struct dieinfo *, struct objfile *)); | |
491 | ||
492 | static void | |
493 | dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *)); | |
494 | ||
495 | static void | |
496 | psymtab_to_symtab_1 PARAMS ((struct partial_symtab *)); | |
497 | ||
498 | static void | |
499 | read_ofile_symtab PARAMS ((struct partial_symtab *)); | |
500 | ||
501 | static void | |
502 | process_dies PARAMS ((char *, char *, struct objfile *)); | |
503 | ||
504 | static void | |
505 | read_structure_scope PARAMS ((struct dieinfo *, char *, char *, | |
506 | struct objfile *)); | |
507 | ||
508 | static struct type * | |
509 | decode_array_element_type PARAMS ((char *)); | |
510 | ||
511 | static struct type * | |
512 | decode_subscript_data_item PARAMS ((char *, char *)); | |
513 | ||
514 | static void | |
515 | dwarf_read_array_type PARAMS ((struct dieinfo *)); | |
516 | ||
517 | static void | |
518 | read_tag_pointer_type PARAMS ((struct dieinfo *dip)); | |
519 | ||
520 | static void | |
521 | read_tag_string_type PARAMS ((struct dieinfo *dip)); | |
522 | ||
523 | static void | |
524 | read_subroutine_type PARAMS ((struct dieinfo *, char *, char *)); | |
525 | ||
526 | static void | |
527 | read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
528 | ||
529 | static struct type * | |
530 | struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
531 | ||
532 | static struct type * | |
533 | enum_type PARAMS ((struct dieinfo *, struct objfile *)); | |
534 | ||
535 | static void | |
536 | decode_line_numbers PARAMS ((char *)); | |
537 | ||
538 | static struct type * | |
539 | decode_die_type PARAMS ((struct dieinfo *)); | |
540 | ||
541 | static struct type * | |
542 | decode_mod_fund_type PARAMS ((char *)); | |
543 | ||
544 | static struct type * | |
545 | decode_mod_u_d_type PARAMS ((char *)); | |
546 | ||
547 | static struct type * | |
548 | decode_modified_type PARAMS ((char *, unsigned int, int)); | |
549 | ||
550 | static struct type * | |
551 | decode_fund_type PARAMS ((unsigned int)); | |
552 | ||
553 | static char * | |
554 | create_name PARAMS ((char *, struct obstack *)); | |
555 | ||
556 | static struct type * | |
557 | lookup_utype PARAMS ((DIE_REF)); | |
558 | ||
559 | static struct type * | |
560 | alloc_utype PARAMS ((DIE_REF, struct type *)); | |
561 | ||
562 | static struct symbol * | |
563 | new_symbol PARAMS ((struct dieinfo *, struct objfile *)); | |
564 | ||
565 | static void | |
566 | synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *, | |
567 | struct type *)); | |
568 | ||
569 | static int | |
570 | locval PARAMS ((struct dieinfo *)); | |
571 | ||
572 | static void | |
573 | set_cu_language PARAMS ((struct dieinfo *)); | |
574 | ||
575 | static struct type * | |
576 | dwarf_fundamental_type PARAMS ((struct objfile *, int)); | |
577 | ||
578 | ||
579 | /* | |
580 | ||
581 | LOCAL FUNCTION | |
582 | ||
583 | dwarf_fundamental_type -- lookup or create a fundamental type | |
584 | ||
585 | SYNOPSIS | |
586 | ||
587 | struct type * | |
588 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |
589 | ||
590 | DESCRIPTION | |
591 | ||
592 | DWARF version 1 doesn't supply any fundamental type information, | |
593 | so gdb has to construct such types. It has a fixed number of | |
594 | fundamental types that it knows how to construct, which is the | |
595 | union of all types that it knows how to construct for all languages | |
596 | that it knows about. These are enumerated in gdbtypes.h. | |
597 | ||
598 | As an example, assume we find a DIE that references a DWARF | |
599 | fundamental type of FT_integer. We first look in the ftypes | |
600 | array to see if we already have such a type, indexed by the | |
601 | gdb internal value of FT_INTEGER. If so, we simply return a | |
602 | pointer to that type. If not, then we ask an appropriate | |
603 | language dependent routine to create a type FT_INTEGER, using | |
604 | defaults reasonable for the current target machine, and install | |
605 | that type in ftypes for future reference. | |
606 | ||
607 | RETURNS | |
608 | ||
609 | Pointer to a fundamental type. | |
610 | ||
611 | */ | |
612 | ||
613 | static struct type * | |
614 | dwarf_fundamental_type (objfile, typeid) | |
615 | struct objfile *objfile; | |
616 | int typeid; | |
617 | { | |
618 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
619 | { | |
620 | error ("internal error - invalid fundamental type id %d", typeid); | |
621 | } | |
622 | ||
623 | /* Look for this particular type in the fundamental type vector. If one is | |
624 | not found, create and install one appropriate for the current language | |
625 | and the current target machine. */ | |
626 | ||
627 | if (ftypes[typeid] == NULL) | |
628 | { | |
629 | ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid); | |
630 | } | |
631 | ||
632 | return (ftypes[typeid]); | |
633 | } | |
634 | ||
635 | /* | |
636 | ||
637 | LOCAL FUNCTION | |
638 | ||
639 | set_cu_language -- set local copy of language for compilation unit | |
640 | ||
641 | SYNOPSIS | |
642 | ||
643 | void | |
644 | set_cu_language (struct dieinfo *dip) | |
645 | ||
646 | DESCRIPTION | |
647 | ||
648 | Decode the language attribute for a compilation unit DIE and | |
649 | remember what the language was. We use this at various times | |
650 | when processing DIE's for a given compilation unit. | |
651 | ||
652 | RETURNS | |
653 | ||
654 | No return value. | |
655 | ||
656 | */ | |
657 | ||
658 | static void | |
659 | set_cu_language (dip) | |
660 | struct dieinfo *dip; | |
661 | { | |
662 | switch (dip -> at_language) | |
663 | { | |
664 | case LANG_C89: | |
665 | case LANG_C: | |
666 | cu_language = language_c; | |
667 | break; | |
668 | case LANG_C_PLUS_PLUS: | |
669 | cu_language = language_cplus; | |
670 | break; | |
671 | case LANG_CHILL: | |
672 | cu_language = language_chill; | |
673 | break; | |
674 | case LANG_MODULA2: | |
675 | cu_language = language_m2; | |
676 | break; | |
677 | case LANG_FORTRAN77: | |
678 | case LANG_FORTRAN90: | |
679 | cu_language = language_fortran; | |
680 | break; | |
681 | case LANG_ADA83: | |
682 | case LANG_COBOL74: | |
683 | case LANG_COBOL85: | |
684 | case LANG_PASCAL83: | |
685 | /* We don't know anything special about these yet. */ | |
686 | cu_language = language_unknown; | |
687 | break; | |
688 | default: | |
689 | /* If no at_language, try to deduce one from the filename */ | |
690 | cu_language = deduce_language_from_filename (dip -> at_name); | |
691 | break; | |
692 | } | |
693 | cu_language_defn = language_def (cu_language); | |
694 | } | |
695 | ||
696 | /* | |
697 | ||
698 | GLOBAL FUNCTION | |
699 | ||
700 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info | |
701 | ||
702 | SYNOPSIS | |
703 | ||
704 | void dwarf_build_psymtabs (struct objfile *objfile, | |
705 | struct section_offsets *section_offsets, | |
706 | int mainline, file_ptr dbfoff, unsigned int dbfsize, | |
707 | file_ptr lnoffset, unsigned int lnsize) | |
708 | ||
709 | DESCRIPTION | |
710 | ||
711 | This function is called upon to build partial symtabs from files | |
712 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
713 | ||
714 | It is passed a bfd* containing the DIES | |
715 | and line number information, the corresponding filename for that | |
716 | file, a base address for relocating the symbols, a flag indicating | |
717 | whether or not this debugging information is from a "main symbol | |
718 | table" rather than a shared library or dynamically linked file, | |
719 | and file offset/size pairs for the DIE information and line number | |
720 | information. | |
721 | ||
722 | RETURNS | |
723 | ||
724 | No return value. | |
725 | ||
726 | */ | |
727 | ||
728 | void | |
729 | dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize, | |
730 | lnoffset, lnsize) | |
731 | struct objfile *objfile; | |
732 | struct section_offsets *section_offsets; | |
733 | int mainline; | |
734 | file_ptr dbfoff; | |
735 | unsigned int dbfsize; | |
736 | file_ptr lnoffset; | |
737 | unsigned int lnsize; | |
738 | { | |
739 | bfd *abfd = objfile->obfd; | |
740 | struct cleanup *back_to; | |
741 | ||
742 | current_objfile = objfile; | |
743 | dbsize = dbfsize; | |
744 | dbbase = xmalloc (dbsize); | |
745 | dbroff = 0; | |
746 | if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || | |
747 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
748 | { | |
749 | free (dbbase); | |
750 | error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); | |
751 | } | |
752 | back_to = make_cleanup (free, dbbase); | |
753 | ||
754 | /* If we are reinitializing, or if we have never loaded syms yet, init. | |
755 | Since we have no idea how many DIES we are looking at, we just guess | |
756 | some arbitrary value. */ | |
757 | ||
758 | if (mainline || objfile -> global_psymbols.size == 0 || | |
759 | objfile -> static_psymbols.size == 0) | |
760 | { | |
761 | init_psymbol_list (objfile, 1024); | |
762 | } | |
763 | ||
764 | /* Save the relocation factor where everybody can see it. */ | |
765 | ||
766 | base_section_offsets = section_offsets; | |
767 | baseaddr = ANOFFSET (section_offsets, 0); | |
768 | ||
769 | /* Follow the compilation unit sibling chain, building a partial symbol | |
770 | table entry for each one. Save enough information about each compilation | |
771 | unit to locate the full DWARF information later. */ | |
772 | ||
773 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); | |
774 | ||
775 | do_cleanups (back_to); | |
776 | current_objfile = NULL; | |
777 | } | |
778 | ||
779 | /* | |
780 | ||
781 | LOCAL FUNCTION | |
782 | ||
783 | read_lexical_block_scope -- process all dies in a lexical block | |
784 | ||
785 | SYNOPSIS | |
786 | ||
787 | static void read_lexical_block_scope (struct dieinfo *dip, | |
788 | char *thisdie, char *enddie) | |
789 | ||
790 | DESCRIPTION | |
791 | ||
792 | Process all the DIES contained within a lexical block scope. | |
793 | Start a new scope, process the dies, and then close the scope. | |
794 | ||
795 | */ | |
796 | ||
797 | static void | |
798 | read_lexical_block_scope (dip, thisdie, enddie, objfile) | |
799 | struct dieinfo *dip; | |
800 | char *thisdie; | |
801 | char *enddie; | |
802 | struct objfile *objfile; | |
803 | { | |
804 | register struct context_stack *new; | |
805 | ||
806 | push_context (0, dip -> at_low_pc); | |
807 | process_dies (thisdie + dip -> die_length, enddie, objfile); | |
808 | new = pop_context (); | |
809 | if (local_symbols != NULL) | |
810 | { | |
811 | finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr, | |
812 | dip -> at_high_pc, objfile); | |
813 | } | |
814 | local_symbols = new -> locals; | |
815 | } | |
816 | ||
817 | /* | |
818 | ||
819 | LOCAL FUNCTION | |
820 | ||
821 | lookup_utype -- look up a user defined type from die reference | |
822 | ||
823 | SYNOPSIS | |
824 | ||
825 | static type *lookup_utype (DIE_REF die_ref) | |
826 | ||
827 | DESCRIPTION | |
828 | ||
829 | Given a DIE reference, lookup the user defined type associated with | |
830 | that DIE, if it has been registered already. If not registered, then | |
831 | return NULL. Alloc_utype() can be called to register an empty | |
832 | type for this reference, which will be filled in later when the | |
833 | actual referenced DIE is processed. | |
834 | */ | |
835 | ||
836 | static struct type * | |
837 | lookup_utype (die_ref) | |
838 | DIE_REF die_ref; | |
839 | { | |
840 | struct type *type = NULL; | |
841 | int utypeidx; | |
842 | ||
843 | utypeidx = (die_ref - dbroff) / 4; | |
844 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
845 | { | |
846 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
847 | } | |
848 | else | |
849 | { | |
850 | type = *(utypes + utypeidx); | |
851 | } | |
852 | return (type); | |
853 | } | |
854 | ||
855 | ||
856 | /* | |
857 | ||
858 | LOCAL FUNCTION | |
859 | ||
860 | alloc_utype -- add a user defined type for die reference | |
861 | ||
862 | SYNOPSIS | |
863 | ||
864 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) | |
865 | ||
866 | DESCRIPTION | |
867 | ||
868 | Given a die reference DIE_REF, and a possible pointer to a user | |
869 | defined type UTYPEP, register that this reference has a user | |
870 | defined type and either use the specified type in UTYPEP or | |
871 | make a new empty type that will be filled in later. | |
872 | ||
873 | We should only be called after calling lookup_utype() to verify that | |
874 | there is not currently a type registered for DIE_REF. | |
875 | */ | |
876 | ||
877 | static struct type * | |
878 | alloc_utype (die_ref, utypep) | |
879 | DIE_REF die_ref; | |
880 | struct type *utypep; | |
881 | { | |
882 | struct type **typep; | |
883 | int utypeidx; | |
884 | ||
885 | utypeidx = (die_ref - dbroff) / 4; | |
886 | typep = utypes + utypeidx; | |
887 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
888 | { | |
889 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
890 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
891 | } | |
892 | else if (*typep != NULL) | |
893 | { | |
894 | utypep = *typep; | |
895 | complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); | |
896 | } | |
897 | else | |
898 | { | |
899 | if (utypep == NULL) | |
900 | { | |
901 | utypep = alloc_type (current_objfile); | |
902 | } | |
903 | *typep = utypep; | |
904 | } | |
905 | return (utypep); | |
906 | } | |
907 | ||
908 | /* | |
909 | ||
910 | LOCAL FUNCTION | |
911 | ||
912 | free_utypes -- free the utypes array and reset pointer & count | |
913 | ||
914 | SYNOPSIS | |
915 | ||
916 | static void free_utypes (PTR dummy) | |
917 | ||
918 | DESCRIPTION | |
919 | ||
920 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, | |
921 | and set numutypes back to zero. This ensures that the utypes does not get | |
922 | referenced after being freed. | |
923 | */ | |
924 | ||
925 | static void | |
926 | free_utypes (dummy) | |
927 | PTR dummy; | |
928 | { | |
929 | free (utypes); | |
930 | utypes = NULL; | |
931 | numutypes = 0; | |
932 | } | |
933 | ||
934 | ||
935 | /* | |
936 | ||
937 | LOCAL FUNCTION | |
938 | ||
939 | decode_die_type -- return a type for a specified die | |
940 | ||
941 | SYNOPSIS | |
942 | ||
943 | static struct type *decode_die_type (struct dieinfo *dip) | |
944 | ||
945 | DESCRIPTION | |
946 | ||
947 | Given a pointer to a die information structure DIP, decode the | |
948 | type of the die and return a pointer to the decoded type. All | |
949 | dies without specific types default to type int. | |
950 | */ | |
951 | ||
952 | static struct type * | |
953 | decode_die_type (dip) | |
954 | struct dieinfo *dip; | |
955 | { | |
956 | struct type *type = NULL; | |
957 | ||
958 | if (dip -> at_fund_type != 0) | |
959 | { | |
960 | type = decode_fund_type (dip -> at_fund_type); | |
961 | } | |
962 | else if (dip -> at_mod_fund_type != NULL) | |
963 | { | |
964 | type = decode_mod_fund_type (dip -> at_mod_fund_type); | |
965 | } | |
966 | else if (dip -> at_user_def_type) | |
967 | { | |
968 | if ((type = lookup_utype (dip -> at_user_def_type)) == NULL) | |
969 | { | |
970 | type = alloc_utype (dip -> at_user_def_type, NULL); | |
971 | } | |
972 | } | |
973 | else if (dip -> at_mod_u_d_type) | |
974 | { | |
975 | type = decode_mod_u_d_type (dip -> at_mod_u_d_type); | |
976 | } | |
977 | else | |
978 | { | |
979 | type = dwarf_fundamental_type (current_objfile, FT_VOID); | |
980 | } | |
981 | return (type); | |
982 | } | |
983 | ||
984 | /* | |
985 | ||
986 | LOCAL FUNCTION | |
987 | ||
988 | struct_type -- compute and return the type for a struct or union | |
989 | ||
990 | SYNOPSIS | |
991 | ||
992 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, | |
993 | char *enddie, struct objfile *objfile) | |
994 | ||
995 | DESCRIPTION | |
996 | ||
997 | Given pointer to a die information structure for a die which | |
998 | defines a union or structure (and MUST define one or the other), | |
999 | and pointers to the raw die data that define the range of dies which | |
1000 | define the members, compute and return the user defined type for the | |
1001 | structure or union. | |
1002 | */ | |
1003 | ||
1004 | static struct type * | |
1005 | struct_type (dip, thisdie, enddie, objfile) | |
1006 | struct dieinfo *dip; | |
1007 | char *thisdie; | |
1008 | char *enddie; | |
1009 | struct objfile *objfile; | |
1010 | { | |
1011 | struct type *type; | |
1012 | struct nextfield { | |
1013 | struct nextfield *next; | |
1014 | struct field field; | |
1015 | }; | |
1016 | struct nextfield *list = NULL; | |
1017 | struct nextfield *new; | |
1018 | int nfields = 0; | |
1019 | int n; | |
1020 | struct dieinfo mbr; | |
1021 | char *nextdie; | |
1022 | int anonymous_size; | |
1023 | ||
1024 | if ((type = lookup_utype (dip -> die_ref)) == NULL) | |
1025 | { | |
1026 | /* No forward references created an empty type, so install one now */ | |
1027 | type = alloc_utype (dip -> die_ref, NULL); | |
1028 | } | |
1029 | INIT_CPLUS_SPECIFIC(type); | |
1030 | switch (dip -> die_tag) | |
1031 | { | |
1032 | case TAG_class_type: | |
1033 | TYPE_CODE (type) = TYPE_CODE_CLASS; | |
1034 | break; | |
1035 | case TAG_structure_type: | |
1036 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
1037 | break; | |
1038 | case TAG_union_type: | |
1039 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
1040 | break; | |
1041 | default: | |
1042 | /* Should never happen */ | |
1043 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
1044 | complain (&missing_tag, DIE_ID, DIE_NAME); | |
1045 | break; | |
1046 | } | |
1047 | /* Some compilers try to be helpful by inventing "fake" names for | |
1048 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1049 | Thanks, but no thanks... */ | |
1050 | if (dip -> at_name != NULL | |
1051 | && *dip -> at_name != '~' | |
1052 | && *dip -> at_name != '.') | |
1053 | { | |
1054 | TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, | |
1055 | "", "", dip -> at_name); | |
1056 | } | |
1057 | /* Use whatever size is known. Zero is a valid size. We might however | |
1058 | wish to check has_at_byte_size to make sure that some byte size was | |
1059 | given explicitly, but DWARF doesn't specify that explicit sizes of | |
1060 | zero have to present, so complaining about missing sizes should | |
1061 | probably not be the default. */ | |
1062 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
1063 | thisdie += dip -> die_length; | |
1064 | while (thisdie < enddie) | |
1065 | { | |
1066 | basicdieinfo (&mbr, thisdie, objfile); | |
1067 | completedieinfo (&mbr, objfile); | |
1068 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) | |
1069 | { | |
1070 | break; | |
1071 | } | |
1072 | else if (mbr.at_sibling != 0) | |
1073 | { | |
1074 | nextdie = dbbase + mbr.at_sibling - dbroff; | |
1075 | } | |
1076 | else | |
1077 | { | |
1078 | nextdie = thisdie + mbr.die_length; | |
1079 | } | |
1080 | switch (mbr.die_tag) | |
1081 | { | |
1082 | case TAG_member: | |
1083 | /* Get space to record the next field's data. */ | |
1084 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1085 | new -> next = list; | |
1086 | list = new; | |
1087 | /* Save the data. */ | |
1088 | list -> field.name = | |
1089 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |
1090 | &objfile -> type_obstack); | |
1091 | FIELD_TYPE (list->field) = decode_die_type (&mbr); | |
1092 | FIELD_BITPOS (list->field) = 8 * locval (&mbr); | |
1093 | /* Handle bit fields. */ | |
1094 | FIELD_BITSIZE (list->field) = mbr.at_bit_size; | |
1095 | if (BITS_BIG_ENDIAN) | |
1096 | { | |
1097 | /* For big endian bits, the at_bit_offset gives the | |
1098 | additional bit offset from the MSB of the containing | |
1099 | anonymous object to the MSB of the field. We don't | |
1100 | have to do anything special since we don't need to | |
1101 | know the size of the anonymous object. */ | |
1102 | FIELD_BITPOS (list->field) += mbr.at_bit_offset; | |
1103 | } | |
1104 | else | |
1105 | { | |
1106 | /* For little endian bits, we need to have a non-zero | |
1107 | at_bit_size, so that we know we are in fact dealing | |
1108 | with a bitfield. Compute the bit offset to the MSB | |
1109 | of the anonymous object, subtract off the number of | |
1110 | bits from the MSB of the field to the MSB of the | |
1111 | object, and then subtract off the number of bits of | |
1112 | the field itself. The result is the bit offset of | |
1113 | the LSB of the field. */ | |
1114 | if (mbr.at_bit_size > 0) | |
1115 | { | |
1116 | if (mbr.has_at_byte_size) | |
1117 | { | |
1118 | /* The size of the anonymous object containing | |
1119 | the bit field is explicit, so use the | |
1120 | indicated size (in bytes). */ | |
1121 | anonymous_size = mbr.at_byte_size; | |
1122 | } | |
1123 | else | |
1124 | { | |
1125 | /* The size of the anonymous object containing | |
1126 | the bit field matches the size of an object | |
1127 | of the bit field's type. DWARF allows | |
1128 | at_byte_size to be left out in such cases, as | |
1129 | a debug information size optimization. */ | |
1130 | anonymous_size = TYPE_LENGTH (list -> field.type); | |
1131 | } | |
1132 | FIELD_BITPOS (list->field) += | |
1133 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |
1134 | } | |
1135 | } | |
1136 | nfields++; | |
1137 | break; | |
1138 | default: | |
1139 | process_dies (thisdie, nextdie, objfile); | |
1140 | break; | |
1141 | } | |
1142 | thisdie = nextdie; | |
1143 | } | |
1144 | /* Now create the vector of fields, and record how big it is. We may | |
1145 | not even have any fields, if this DIE was generated due to a reference | |
1146 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |
1147 | set, which clues gdb in to the fact that it needs to search elsewhere | |
1148 | for the full structure definition. */ | |
1149 | if (nfields == 0) | |
1150 | { | |
1151 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1152 | } | |
1153 | else | |
1154 | { | |
1155 | TYPE_NFIELDS (type) = nfields; | |
1156 | TYPE_FIELDS (type) = (struct field *) | |
1157 | TYPE_ALLOC (type, sizeof (struct field) * nfields); | |
1158 | /* Copy the saved-up fields into the field vector. */ | |
1159 | for (n = nfields; list; list = list -> next) | |
1160 | { | |
1161 | TYPE_FIELD (type, --n) = list -> field; | |
1162 | } | |
1163 | } | |
1164 | return (type); | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | ||
1169 | LOCAL FUNCTION | |
1170 | ||
1171 | read_structure_scope -- process all dies within struct or union | |
1172 | ||
1173 | SYNOPSIS | |
1174 | ||
1175 | static void read_structure_scope (struct dieinfo *dip, | |
1176 | char *thisdie, char *enddie, struct objfile *objfile) | |
1177 | ||
1178 | DESCRIPTION | |
1179 | ||
1180 | Called when we find the DIE that starts a structure or union | |
1181 | scope (definition) to process all dies that define the members | |
1182 | of the structure or union. DIP is a pointer to the die info | |
1183 | struct for the DIE that names the structure or union. | |
1184 | ||
1185 | NOTES | |
1186 | ||
1187 | Note that we need to call struct_type regardless of whether or not | |
1188 | the DIE has an at_name attribute, since it might be an anonymous | |
1189 | structure or union. This gets the type entered into our set of | |
1190 | user defined types. | |
1191 | ||
1192 | However, if the structure is incomplete (an opaque struct/union) | |
1193 | then suppress creating a symbol table entry for it since gdb only | |
1194 | wants to find the one with the complete definition. Note that if | |
1195 | it is complete, we just call new_symbol, which does it's own | |
1196 | checking about whether the struct/union is anonymous or not (and | |
1197 | suppresses creating a symbol table entry itself). | |
1198 | ||
1199 | */ | |
1200 | ||
1201 | static void | |
1202 | read_structure_scope (dip, thisdie, enddie, objfile) | |
1203 | struct dieinfo *dip; | |
1204 | char *thisdie; | |
1205 | char *enddie; | |
1206 | struct objfile *objfile; | |
1207 | { | |
1208 | struct type *type; | |
1209 | struct symbol *sym; | |
1210 | ||
1211 | type = struct_type (dip, thisdie, enddie, objfile); | |
1212 | if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) | |
1213 | { | |
1214 | sym = new_symbol (dip, objfile); | |
1215 | if (sym != NULL) | |
1216 | { | |
1217 | SYMBOL_TYPE (sym) = type; | |
1218 | if (cu_language == language_cplus) | |
1219 | { | |
1220 | synthesize_typedef (dip, objfile, type); | |
1221 | } | |
1222 | } | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | ||
1228 | LOCAL FUNCTION | |
1229 | ||
1230 | decode_array_element_type -- decode type of the array elements | |
1231 | ||
1232 | SYNOPSIS | |
1233 | ||
1234 | static struct type *decode_array_element_type (char *scan, char *end) | |
1235 | ||
1236 | DESCRIPTION | |
1237 | ||
1238 | As the last step in decoding the array subscript information for an | |
1239 | array DIE, we need to decode the type of the array elements. We are | |
1240 | passed a pointer to this last part of the subscript information and | |
1241 | must return the appropriate type. If the type attribute is not | |
1242 | recognized, just warn about the problem and return type int. | |
1243 | */ | |
1244 | ||
1245 | static struct type * | |
1246 | decode_array_element_type (scan) | |
1247 | char *scan; | |
1248 | { | |
1249 | struct type *typep; | |
1250 | DIE_REF die_ref; | |
1251 | unsigned short attribute; | |
1252 | unsigned short fundtype; | |
1253 | int nbytes; | |
1254 | ||
1255 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, | |
1256 | current_objfile); | |
1257 | scan += SIZEOF_ATTRIBUTE; | |
1258 | if ((nbytes = attribute_size (attribute)) == -1) | |
1259 | { | |
1260 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1261 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1262 | } | |
1263 | else | |
1264 | { | |
1265 | switch (attribute) | |
1266 | { | |
1267 | case AT_fund_type: | |
1268 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1269 | current_objfile); | |
1270 | typep = decode_fund_type (fundtype); | |
1271 | break; | |
1272 | case AT_mod_fund_type: | |
1273 | typep = decode_mod_fund_type (scan); | |
1274 | break; | |
1275 | case AT_user_def_type: | |
1276 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1277 | current_objfile); | |
1278 | if ((typep = lookup_utype (die_ref)) == NULL) | |
1279 | { | |
1280 | typep = alloc_utype (die_ref, NULL); | |
1281 | } | |
1282 | break; | |
1283 | case AT_mod_u_d_type: | |
1284 | typep = decode_mod_u_d_type (scan); | |
1285 | break; | |
1286 | default: | |
1287 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1288 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1289 | break; | |
1290 | } | |
1291 | } | |
1292 | return (typep); | |
1293 | } | |
1294 | ||
1295 | /* | |
1296 | ||
1297 | LOCAL FUNCTION | |
1298 | ||
1299 | decode_subscript_data_item -- decode array subscript item | |
1300 | ||
1301 | SYNOPSIS | |
1302 | ||
1303 | static struct type * | |
1304 | decode_subscript_data_item (char *scan, char *end) | |
1305 | ||
1306 | DESCRIPTION | |
1307 | ||
1308 | The array subscripts and the data type of the elements of an | |
1309 | array are described by a list of data items, stored as a block | |
1310 | of contiguous bytes. There is a data item describing each array | |
1311 | dimension, and a final data item describing the element type. | |
1312 | The data items are ordered the same as their appearance in the | |
1313 | source (I.E. leftmost dimension first, next to leftmost second, | |
1314 | etc). | |
1315 | ||
1316 | The data items describing each array dimension consist of four | |
1317 | parts: (1) a format specifier, (2) type type of the subscript | |
1318 | index, (3) a description of the low bound of the array dimension, | |
1319 | and (4) a description of the high bound of the array dimension. | |
1320 | ||
1321 | The last data item is the description of the type of each of | |
1322 | the array elements. | |
1323 | ||
1324 | We are passed a pointer to the start of the block of bytes | |
1325 | containing the remaining data items, and a pointer to the first | |
1326 | byte past the data. This function recursively decodes the | |
1327 | remaining data items and returns a type. | |
1328 | ||
1329 | If we somehow fail to decode some data, we complain about it | |
1330 | and return a type "array of int". | |
1331 | ||
1332 | BUGS | |
1333 | FIXME: This code only implements the forms currently used | |
1334 | by the AT&T and GNU C compilers. | |
1335 | ||
1336 | The end pointer is supplied for error checking, maybe we should | |
1337 | use it for that... | |
1338 | */ | |
1339 | ||
1340 | static struct type * | |
1341 | decode_subscript_data_item (scan, end) | |
1342 | char *scan; | |
1343 | char *end; | |
1344 | { | |
1345 | struct type *typep = NULL; /* Array type we are building */ | |
1346 | struct type *nexttype; /* Type of each element (may be array) */ | |
1347 | struct type *indextype; /* Type of this index */ | |
1348 | struct type *rangetype; | |
1349 | unsigned int format; | |
1350 | unsigned short fundtype; | |
1351 | unsigned long lowbound; | |
1352 | unsigned long highbound; | |
1353 | int nbytes; | |
1354 | ||
1355 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, | |
1356 | current_objfile); | |
1357 | scan += SIZEOF_FORMAT_SPECIFIER; | |
1358 | switch (format) | |
1359 | { | |
1360 | case FMT_ET: | |
1361 | typep = decode_array_element_type (scan); | |
1362 | break; | |
1363 | case FMT_FT_C_C: | |
1364 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, | |
1365 | current_objfile); | |
1366 | indextype = decode_fund_type (fundtype); | |
1367 | scan += SIZEOF_FMT_FT; | |
1368 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); | |
1369 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1370 | scan += nbytes; | |
1371 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1372 | scan += nbytes; | |
1373 | nexttype = decode_subscript_data_item (scan, end); | |
1374 | if (nexttype == NULL) | |
1375 | { | |
1376 | /* Munged subscript data or other problem, fake it. */ | |
1377 | complain (&subscript_data_items, DIE_ID, DIE_NAME); | |
1378 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1379 | } | |
1380 | rangetype = create_range_type ((struct type *) NULL, indextype, | |
1381 | lowbound, highbound); | |
1382 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1383 | break; | |
1384 | case FMT_FT_C_X: | |
1385 | case FMT_FT_X_C: | |
1386 | case FMT_FT_X_X: | |
1387 | case FMT_UT_C_C: | |
1388 | case FMT_UT_C_X: | |
1389 | case FMT_UT_X_C: | |
1390 | case FMT_UT_X_X: | |
1391 | complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1392 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1393 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1394 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1395 | break; | |
1396 | default: | |
1397 | complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1398 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1399 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1400 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1401 | break; | |
1402 | } | |
1403 | return (typep); | |
1404 | } | |
1405 | ||
1406 | /* | |
1407 | ||
1408 | LOCAL FUNCTION | |
1409 | ||
1410 | dwarf_read_array_type -- read TAG_array_type DIE | |
1411 | ||
1412 | SYNOPSIS | |
1413 | ||
1414 | static void dwarf_read_array_type (struct dieinfo *dip) | |
1415 | ||
1416 | DESCRIPTION | |
1417 | ||
1418 | Extract all information from a TAG_array_type DIE and add to | |
1419 | the user defined type vector. | |
1420 | */ | |
1421 | ||
1422 | static void | |
1423 | dwarf_read_array_type (dip) | |
1424 | struct dieinfo *dip; | |
1425 | { | |
1426 | struct type *type; | |
1427 | struct type *utype; | |
1428 | char *sub; | |
1429 | char *subend; | |
1430 | unsigned short blocksz; | |
1431 | int nbytes; | |
1432 | ||
1433 | if (dip -> at_ordering != ORD_row_major) | |
1434 | { | |
1435 | /* FIXME: Can gdb even handle column major arrays? */ | |
1436 | complain (¬_row_major, DIE_ID, DIE_NAME); | |
1437 | } | |
1438 | if ((sub = dip -> at_subscr_data) != NULL) | |
1439 | { | |
1440 | nbytes = attribute_size (AT_subscr_data); | |
1441 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); | |
1442 | subend = sub + nbytes + blocksz; | |
1443 | sub += nbytes; | |
1444 | type = decode_subscript_data_item (sub, subend); | |
1445 | if ((utype = lookup_utype (dip -> die_ref)) == NULL) | |
1446 | { | |
1447 | /* Install user defined type that has not been referenced yet. */ | |
1448 | alloc_utype (dip -> die_ref, type); | |
1449 | } | |
1450 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) | |
1451 | { | |
1452 | /* Ick! A forward ref has already generated a blank type in our | |
1453 | slot, and this type probably already has things pointing to it | |
1454 | (which is what caused it to be created in the first place). | |
1455 | If it's just a place holder we can plop our fully defined type | |
1456 | on top of it. We can't recover the space allocated for our | |
1457 | new type since it might be on an obstack, but we could reuse | |
1458 | it if we kept a list of them, but it might not be worth it | |
1459 | (FIXME). */ | |
1460 | *utype = *type; | |
1461 | } | |
1462 | else | |
1463 | { | |
1464 | /* Double ick! Not only is a type already in our slot, but | |
1465 | someone has decorated it. Complain and leave it alone. */ | |
1466 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1467 | } | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | /* | |
1472 | ||
1473 | LOCAL FUNCTION | |
1474 | ||
1475 | read_tag_pointer_type -- read TAG_pointer_type DIE | |
1476 | ||
1477 | SYNOPSIS | |
1478 | ||
1479 | static void read_tag_pointer_type (struct dieinfo *dip) | |
1480 | ||
1481 | DESCRIPTION | |
1482 | ||
1483 | Extract all information from a TAG_pointer_type DIE and add to | |
1484 | the user defined type vector. | |
1485 | */ | |
1486 | ||
1487 | static void | |
1488 | read_tag_pointer_type (dip) | |
1489 | struct dieinfo *dip; | |
1490 | { | |
1491 | struct type *type; | |
1492 | struct type *utype; | |
1493 | ||
1494 | type = decode_die_type (dip); | |
1495 | if ((utype = lookup_utype (dip -> die_ref)) == NULL) | |
1496 | { | |
1497 | utype = lookup_pointer_type (type); | |
1498 | alloc_utype (dip -> die_ref, utype); | |
1499 | } | |
1500 | else | |
1501 | { | |
1502 | TYPE_TARGET_TYPE (utype) = type; | |
1503 | TYPE_POINTER_TYPE (type) = utype; | |
1504 | ||
1505 | /* We assume the machine has only one representation for pointers! */ | |
1506 | /* FIXME: Possably a poor assumption */ | |
1507 | TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT ; | |
1508 | TYPE_CODE (utype) = TYPE_CODE_PTR; | |
1509 | } | |
1510 | } | |
1511 | ||
1512 | /* | |
1513 | ||
1514 | LOCAL FUNCTION | |
1515 | ||
1516 | read_tag_string_type -- read TAG_string_type DIE | |
1517 | ||
1518 | SYNOPSIS | |
1519 | ||
1520 | static void read_tag_string_type (struct dieinfo *dip) | |
1521 | ||
1522 | DESCRIPTION | |
1523 | ||
1524 | Extract all information from a TAG_string_type DIE and add to | |
1525 | the user defined type vector. It isn't really a user defined | |
1526 | type, but it behaves like one, with other DIE's using an | |
1527 | AT_user_def_type attribute to reference it. | |
1528 | */ | |
1529 | ||
1530 | static void | |
1531 | read_tag_string_type (dip) | |
1532 | struct dieinfo *dip; | |
1533 | { | |
1534 | struct type *utype; | |
1535 | struct type *indextype; | |
1536 | struct type *rangetype; | |
1537 | unsigned long lowbound = 0; | |
1538 | unsigned long highbound; | |
1539 | ||
1540 | if (dip -> has_at_byte_size) | |
1541 | { | |
1542 | /* A fixed bounds string */ | |
1543 | highbound = dip -> at_byte_size - 1; | |
1544 | } | |
1545 | else | |
1546 | { | |
1547 | /* A varying length string. Stub for now. (FIXME) */ | |
1548 | highbound = 1; | |
1549 | } | |
1550 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1551 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, | |
1552 | highbound); | |
1553 | ||
1554 | utype = lookup_utype (dip -> die_ref); | |
1555 | if (utype == NULL) | |
1556 | { | |
1557 | /* No type defined, go ahead and create a blank one to use. */ | |
1558 | utype = alloc_utype (dip -> die_ref, (struct type *) NULL); | |
1559 | } | |
1560 | else | |
1561 | { | |
1562 | /* Already a type in our slot due to a forward reference. Make sure it | |
1563 | is a blank one. If not, complain and leave it alone. */ | |
1564 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) | |
1565 | { | |
1566 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1567 | return; | |
1568 | } | |
1569 | } | |
1570 | ||
1571 | /* Create the string type using the blank type we either found or created. */ | |
1572 | utype = create_string_type (utype, rangetype); | |
1573 | } | |
1574 | ||
1575 | /* | |
1576 | ||
1577 | LOCAL FUNCTION | |
1578 | ||
1579 | read_subroutine_type -- process TAG_subroutine_type dies | |
1580 | ||
1581 | SYNOPSIS | |
1582 | ||
1583 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, | |
1584 | char *enddie) | |
1585 | ||
1586 | DESCRIPTION | |
1587 | ||
1588 | Handle DIES due to C code like: | |
1589 | ||
1590 | struct foo { | |
1591 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1592 | int b; | |
1593 | }; | |
1594 | ||
1595 | NOTES | |
1596 | ||
1597 | The parameter DIES are currently ignored. See if gdb has a way to | |
1598 | include this info in it's type system, and decode them if so. Is | |
1599 | this what the type structure's "arg_types" field is for? (FIXME) | |
1600 | */ | |
1601 | ||
1602 | static void | |
1603 | read_subroutine_type (dip, thisdie, enddie) | |
1604 | struct dieinfo *dip; | |
1605 | char *thisdie; | |
1606 | char *enddie; | |
1607 | { | |
1608 | struct type *type; /* Type that this function returns */ | |
1609 | struct type *ftype; /* Function that returns above type */ | |
1610 | ||
1611 | /* Decode the type that this subroutine returns */ | |
1612 | ||
1613 | type = decode_die_type (dip); | |
1614 | ||
1615 | /* Check to see if we already have a partially constructed user | |
1616 | defined type for this DIE, from a forward reference. */ | |
1617 | ||
1618 | if ((ftype = lookup_utype (dip -> die_ref)) == NULL) | |
1619 | { | |
1620 | /* This is the first reference to one of these types. Make | |
1621 | a new one and place it in the user defined types. */ | |
1622 | ftype = lookup_function_type (type); | |
1623 | alloc_utype (dip -> die_ref, ftype); | |
1624 | } | |
1625 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) | |
1626 | { | |
1627 | /* We have an existing partially constructed type, so bash it | |
1628 | into the correct type. */ | |
1629 | TYPE_TARGET_TYPE (ftype) = type; | |
1630 | TYPE_LENGTH (ftype) = 1; | |
1631 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; | |
1632 | } | |
1633 | else | |
1634 | { | |
1635 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1636 | } | |
1637 | } | |
1638 | ||
1639 | /* | |
1640 | ||
1641 | LOCAL FUNCTION | |
1642 | ||
1643 | read_enumeration -- process dies which define an enumeration | |
1644 | ||
1645 | SYNOPSIS | |
1646 | ||
1647 | static void read_enumeration (struct dieinfo *dip, char *thisdie, | |
1648 | char *enddie, struct objfile *objfile) | |
1649 | ||
1650 | DESCRIPTION | |
1651 | ||
1652 | Given a pointer to a die which begins an enumeration, process all | |
1653 | the dies that define the members of the enumeration. | |
1654 | ||
1655 | NOTES | |
1656 | ||
1657 | Note that we need to call enum_type regardless of whether or not we | |
1658 | have a symbol, since we might have an enum without a tag name (thus | |
1659 | no symbol for the tagname). | |
1660 | */ | |
1661 | ||
1662 | static void | |
1663 | read_enumeration (dip, thisdie, enddie, objfile) | |
1664 | struct dieinfo *dip; | |
1665 | char *thisdie; | |
1666 | char *enddie; | |
1667 | struct objfile *objfile; | |
1668 | { | |
1669 | struct type *type; | |
1670 | struct symbol *sym; | |
1671 | ||
1672 | type = enum_type (dip, objfile); | |
1673 | sym = new_symbol (dip, objfile); | |
1674 | if (sym != NULL) | |
1675 | { | |
1676 | SYMBOL_TYPE (sym) = type; | |
1677 | if (cu_language == language_cplus) | |
1678 | { | |
1679 | synthesize_typedef (dip, objfile, type); | |
1680 | } | |
1681 | } | |
1682 | } | |
1683 | ||
1684 | /* | |
1685 | ||
1686 | LOCAL FUNCTION | |
1687 | ||
1688 | enum_type -- decode and return a type for an enumeration | |
1689 | ||
1690 | SYNOPSIS | |
1691 | ||
1692 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) | |
1693 | ||
1694 | DESCRIPTION | |
1695 | ||
1696 | Given a pointer to a die information structure for the die which | |
1697 | starts an enumeration, process all the dies that define the members | |
1698 | of the enumeration and return a type pointer for the enumeration. | |
1699 | ||
1700 | At the same time, for each member of the enumeration, create a | |
1701 | symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, | |
1702 | and give it the type of the enumeration itself. | |
1703 | ||
1704 | NOTES | |
1705 | ||
1706 | Note that the DWARF specification explicitly mandates that enum | |
1707 | constants occur in reverse order from the source program order, | |
1708 | for "consistency" and because this ordering is easier for many | |
1709 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |
1710 | Entries). Because gdb wants to see the enum members in program | |
1711 | source order, we have to ensure that the order gets reversed while | |
1712 | we are processing them. | |
1713 | */ | |
1714 | ||
1715 | static struct type * | |
1716 | enum_type (dip, objfile) | |
1717 | struct dieinfo *dip; | |
1718 | struct objfile *objfile; | |
1719 | { | |
1720 | struct type *type; | |
1721 | struct nextfield { | |
1722 | struct nextfield *next; | |
1723 | struct field field; | |
1724 | }; | |
1725 | struct nextfield *list = NULL; | |
1726 | struct nextfield *new; | |
1727 | int nfields = 0; | |
1728 | int n; | |
1729 | char *scan; | |
1730 | char *listend; | |
1731 | unsigned short blocksz; | |
1732 | struct symbol *sym; | |
1733 | int nbytes; | |
1734 | int unsigned_enum = 1; | |
1735 | ||
1736 | if ((type = lookup_utype (dip -> die_ref)) == NULL) | |
1737 | { | |
1738 | /* No forward references created an empty type, so install one now */ | |
1739 | type = alloc_utype (dip -> die_ref, NULL); | |
1740 | } | |
1741 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1742 | /* Some compilers try to be helpful by inventing "fake" names for | |
1743 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1744 | Thanks, but no thanks... */ | |
1745 | if (dip -> at_name != NULL | |
1746 | && *dip -> at_name != '~' | |
1747 | && *dip -> at_name != '.') | |
1748 | { | |
1749 | TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, | |
1750 | "", "", dip -> at_name); | |
1751 | } | |
1752 | if (dip -> at_byte_size != 0) | |
1753 | { | |
1754 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
1755 | } | |
1756 | if ((scan = dip -> at_element_list) != NULL) | |
1757 | { | |
1758 | if (dip -> short_element_list) | |
1759 | { | |
1760 | nbytes = attribute_size (AT_short_element_list); | |
1761 | } | |
1762 | else | |
1763 | { | |
1764 | nbytes = attribute_size (AT_element_list); | |
1765 | } | |
1766 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
1767 | listend = scan + nbytes + blocksz; | |
1768 | scan += nbytes; | |
1769 | while (scan < listend) | |
1770 | { | |
1771 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1772 | new -> next = list; | |
1773 | list = new; | |
1774 | FIELD_TYPE (list->field) = NULL; | |
1775 | FIELD_BITSIZE (list->field) = 0; | |
1776 | FIELD_BITPOS (list->field) = | |
1777 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, | |
1778 | objfile); | |
1779 | scan += TARGET_FT_LONG_SIZE (objfile); | |
1780 | list -> field.name = obsavestring (scan, strlen (scan), | |
1781 | &objfile -> type_obstack); | |
1782 | scan += strlen (scan) + 1; | |
1783 | nfields++; | |
1784 | /* Handcraft a new symbol for this enum member. */ | |
1785 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, | |
1786 | sizeof (struct symbol)); | |
1787 | memset (sym, 0, sizeof (struct symbol)); | |
1788 | SYMBOL_NAME (sym) = create_name (list -> field.name, | |
1789 | &objfile->symbol_obstack); | |
1790 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
1791 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1792 | SYMBOL_CLASS (sym) = LOC_CONST; | |
1793 | SYMBOL_TYPE (sym) = type; | |
1794 | SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); | |
1795 | if (SYMBOL_VALUE (sym) < 0) | |
1796 | unsigned_enum = 0; | |
1797 | add_symbol_to_list (sym, list_in_scope); | |
1798 | } | |
1799 | /* Now create the vector of fields, and record how big it is. This is | |
1800 | where we reverse the order, by pulling the members off the list in | |
1801 | reverse order from how they were inserted. If we have no fields | |
1802 | (this is apparently possible in C++) then skip building a field | |
1803 | vector. */ | |
1804 | if (nfields > 0) | |
1805 | { | |
1806 | if (unsigned_enum) | |
1807 | TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; | |
1808 | TYPE_NFIELDS (type) = nfields; | |
1809 | TYPE_FIELDS (type) = (struct field *) | |
1810 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); | |
1811 | /* Copy the saved-up fields into the field vector. */ | |
1812 | for (n = 0; (n < nfields) && (list != NULL); list = list -> next) | |
1813 | { | |
1814 | TYPE_FIELD (type, n++) = list -> field; | |
1815 | } | |
1816 | } | |
1817 | } | |
1818 | return (type); | |
1819 | } | |
1820 | ||
1821 | /* | |
1822 | ||
1823 | LOCAL FUNCTION | |
1824 | ||
1825 | read_func_scope -- process all dies within a function scope | |
1826 | ||
1827 | DESCRIPTION | |
1828 | ||
1829 | Process all dies within a given function scope. We are passed | |
1830 | a die information structure pointer DIP for the die which | |
1831 | starts the function scope, and pointers into the raw die data | |
1832 | that define the dies within the function scope. | |
1833 | ||
1834 | For now, we ignore lexical block scopes within the function. | |
1835 | The problem is that AT&T cc does not define a DWARF lexical | |
1836 | block scope for the function itself, while gcc defines a | |
1837 | lexical block scope for the function. We need to think about | |
1838 | how to handle this difference, or if it is even a problem. | |
1839 | (FIXME) | |
1840 | */ | |
1841 | ||
1842 | static void | |
1843 | read_func_scope (dip, thisdie, enddie, objfile) | |
1844 | struct dieinfo *dip; | |
1845 | char *thisdie; | |
1846 | char *enddie; | |
1847 | struct objfile *objfile; | |
1848 | { | |
1849 | register struct context_stack *new; | |
1850 | ||
1851 | /* AT_name is absent if the function is described with an | |
1852 | AT_abstract_origin tag. | |
1853 | Ignore the function description for now to avoid GDB core dumps. | |
1854 | FIXME: Add code to handle AT_abstract_origin tags properly. */ | |
1855 | if (dip -> at_name == NULL) | |
1856 | { | |
1857 | complain (&missing_at_name, DIE_ID); | |
1858 | return; | |
1859 | } | |
1860 | ||
1861 | if (objfile -> ei.entry_point >= dip -> at_low_pc && | |
1862 | objfile -> ei.entry_point < dip -> at_high_pc) | |
1863 | { | |
1864 | objfile -> ei.entry_func_lowpc = dip -> at_low_pc; | |
1865 | objfile -> ei.entry_func_highpc = dip -> at_high_pc; | |
1866 | } | |
1867 | if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */ | |
1868 | { | |
1869 | objfile -> ei.main_func_lowpc = dip -> at_low_pc; | |
1870 | objfile -> ei.main_func_highpc = dip -> at_high_pc; | |
1871 | } | |
1872 | new = push_context (0, dip -> at_low_pc); | |
1873 | new -> name = new_symbol (dip, objfile); | |
1874 | list_in_scope = &local_symbols; | |
1875 | process_dies (thisdie + dip -> die_length, enddie, objfile); | |
1876 | new = pop_context (); | |
1877 | /* Make a block for the local symbols within. */ | |
1878 | finish_block (new -> name, &local_symbols, new -> old_blocks, | |
1879 | new -> start_addr, dip -> at_high_pc, objfile); | |
1880 | list_in_scope = &file_symbols; | |
1881 | } | |
1882 | ||
1883 | ||
1884 | /* | |
1885 | ||
1886 | LOCAL FUNCTION | |
1887 | ||
1888 | handle_producer -- process the AT_producer attribute | |
1889 | ||
1890 | DESCRIPTION | |
1891 | ||
1892 | Perform any operations that depend on finding a particular | |
1893 | AT_producer attribute. | |
1894 | ||
1895 | */ | |
1896 | ||
1897 | static void | |
1898 | handle_producer (producer) | |
1899 | char *producer; | |
1900 | { | |
1901 | ||
1902 | /* If this compilation unit was compiled with g++ or gcc, then set the | |
1903 | processing_gcc_compilation flag. */ | |
1904 | ||
1905 | if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) | |
1906 | { | |
1907 | char version = producer[strlen (GCC_PRODUCER)]; | |
1908 | processing_gcc_compilation = (version == '2' ? 2 : 1); | |
1909 | } | |
1910 | else | |
1911 | { | |
1912 | processing_gcc_compilation = | |
1913 | STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) | |
1914 | || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); | |
1915 | } | |
1916 | ||
1917 | /* Select a demangling style if we can identify the producer and if | |
1918 | the current style is auto. We leave the current style alone if it | |
1919 | is not auto. We also leave the demangling style alone if we find a | |
1920 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |
1921 | ||
1922 | if (AUTO_DEMANGLING) | |
1923 | { | |
1924 | if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) | |
1925 | { | |
1926 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); | |
1927 | } | |
1928 | else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) | |
1929 | { | |
1930 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); | |
1931 | } | |
1932 | } | |
1933 | } | |
1934 | ||
1935 | ||
1936 | /* | |
1937 | ||
1938 | LOCAL FUNCTION | |
1939 | ||
1940 | read_file_scope -- process all dies within a file scope | |
1941 | ||
1942 | DESCRIPTION | |
1943 | ||
1944 | Process all dies within a given file scope. We are passed a | |
1945 | pointer to the die information structure for the die which | |
1946 | starts the file scope, and pointers into the raw die data which | |
1947 | mark the range of dies within the file scope. | |
1948 | ||
1949 | When the partial symbol table is built, the file offset for the line | |
1950 | number table for each compilation unit is saved in the partial symbol | |
1951 | table entry for that compilation unit. As the symbols for each | |
1952 | compilation unit are read, the line number table is read into memory | |
1953 | and the variable lnbase is set to point to it. Thus all we have to | |
1954 | do is use lnbase to access the line number table for the current | |
1955 | compilation unit. | |
1956 | */ | |
1957 | ||
1958 | static void | |
1959 | read_file_scope (dip, thisdie, enddie, objfile) | |
1960 | struct dieinfo *dip; | |
1961 | char *thisdie; | |
1962 | char *enddie; | |
1963 | struct objfile *objfile; | |
1964 | { | |
1965 | struct cleanup *back_to; | |
1966 | struct symtab *symtab; | |
1967 | ||
1968 | if (objfile -> ei.entry_point >= dip -> at_low_pc && | |
1969 | objfile -> ei.entry_point < dip -> at_high_pc) | |
1970 | { | |
1971 | objfile -> ei.entry_file_lowpc = dip -> at_low_pc; | |
1972 | objfile -> ei.entry_file_highpc = dip -> at_high_pc; | |
1973 | } | |
1974 | set_cu_language (dip); | |
1975 | if (dip -> at_producer != NULL) | |
1976 | { | |
1977 | handle_producer (dip -> at_producer); | |
1978 | } | |
1979 | numutypes = (enddie - thisdie) / 4; | |
1980 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1981 | back_to = make_cleanup (free_utypes, NULL); | |
1982 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1983 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); | |
1984 | start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc); | |
1985 | record_debugformat ("DWARF 1"); | |
1986 | decode_line_numbers (lnbase); | |
1987 | process_dies (thisdie + dip -> die_length, enddie, objfile); | |
1988 | ||
1989 | symtab = end_symtab (dip -> at_high_pc, objfile, 0); | |
1990 | if (symtab != NULL) | |
1991 | { | |
1992 | symtab -> language = cu_language; | |
1993 | } | |
1994 | do_cleanups (back_to); | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | ||
1999 | LOCAL FUNCTION | |
2000 | ||
2001 | process_dies -- process a range of DWARF Information Entries | |
2002 | ||
2003 | SYNOPSIS | |
2004 | ||
2005 | static void process_dies (char *thisdie, char *enddie, | |
2006 | struct objfile *objfile) | |
2007 | ||
2008 | DESCRIPTION | |
2009 | ||
2010 | Process all DIE's in a specified range. May be (and almost | |
2011 | certainly will be) called recursively. | |
2012 | */ | |
2013 | ||
2014 | static void | |
2015 | process_dies (thisdie, enddie, objfile) | |
2016 | char *thisdie; | |
2017 | char *enddie; | |
2018 | struct objfile *objfile; | |
2019 | { | |
2020 | char *nextdie; | |
2021 | struct dieinfo di; | |
2022 | ||
2023 | while (thisdie < enddie) | |
2024 | { | |
2025 | basicdieinfo (&di, thisdie, objfile); | |
2026 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2027 | { | |
2028 | break; | |
2029 | } | |
2030 | else if (di.die_tag == TAG_padding) | |
2031 | { | |
2032 | nextdie = thisdie + di.die_length; | |
2033 | } | |
2034 | else | |
2035 | { | |
2036 | completedieinfo (&di, objfile); | |
2037 | if (di.at_sibling != 0) | |
2038 | { | |
2039 | nextdie = dbbase + di.at_sibling - dbroff; | |
2040 | } | |
2041 | else | |
2042 | { | |
2043 | nextdie = thisdie + di.die_length; | |
2044 | } | |
2045 | #ifdef SMASH_TEXT_ADDRESS | |
2046 | /* I think that these are always text, not data, addresses. */ | |
2047 | SMASH_TEXT_ADDRESS (di.at_low_pc); | |
2048 | SMASH_TEXT_ADDRESS (di.at_high_pc); | |
2049 | #endif | |
2050 | switch (di.die_tag) | |
2051 | { | |
2052 | case TAG_compile_unit: | |
2053 | /* Skip Tag_compile_unit if we are already inside a compilation | |
2054 | unit, we are unable to handle nested compilation units | |
2055 | properly (FIXME). */ | |
2056 | if (current_subfile == NULL) | |
2057 | read_file_scope (&di, thisdie, nextdie, objfile); | |
2058 | else | |
2059 | nextdie = thisdie + di.die_length; | |
2060 | break; | |
2061 | case TAG_global_subroutine: | |
2062 | case TAG_subroutine: | |
2063 | if (di.has_at_low_pc) | |
2064 | { | |
2065 | read_func_scope (&di, thisdie, nextdie, objfile); | |
2066 | } | |
2067 | break; | |
2068 | case TAG_lexical_block: | |
2069 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |
2070 | break; | |
2071 | case TAG_class_type: | |
2072 | case TAG_structure_type: | |
2073 | case TAG_union_type: | |
2074 | read_structure_scope (&di, thisdie, nextdie, objfile); | |
2075 | break; | |
2076 | case TAG_enumeration_type: | |
2077 | read_enumeration (&di, thisdie, nextdie, objfile); | |
2078 | break; | |
2079 | case TAG_subroutine_type: | |
2080 | read_subroutine_type (&di, thisdie, nextdie); | |
2081 | break; | |
2082 | case TAG_array_type: | |
2083 | dwarf_read_array_type (&di); | |
2084 | break; | |
2085 | case TAG_pointer_type: | |
2086 | read_tag_pointer_type (&di); | |
2087 | break; | |
2088 | case TAG_string_type: | |
2089 | read_tag_string_type (&di); | |
2090 | break; | |
2091 | default: | |
2092 | new_symbol (&di, objfile); | |
2093 | break; | |
2094 | } | |
2095 | } | |
2096 | thisdie = nextdie; | |
2097 | } | |
2098 | } | |
2099 | ||
2100 | /* | |
2101 | ||
2102 | LOCAL FUNCTION | |
2103 | ||
2104 | decode_line_numbers -- decode a line number table fragment | |
2105 | ||
2106 | SYNOPSIS | |
2107 | ||
2108 | static void decode_line_numbers (char *tblscan, char *tblend, | |
2109 | long length, long base, long line, long pc) | |
2110 | ||
2111 | DESCRIPTION | |
2112 | ||
2113 | Translate the DWARF line number information to gdb form. | |
2114 | ||
2115 | The ".line" section contains one or more line number tables, one for | |
2116 | each ".line" section from the objects that were linked. | |
2117 | ||
2118 | The AT_stmt_list attribute for each TAG_source_file entry in the | |
2119 | ".debug" section contains the offset into the ".line" section for the | |
2120 | start of the table for that file. | |
2121 | ||
2122 | The table itself has the following structure: | |
2123 | ||
2124 | <table length><base address><source statement entry> | |
2125 | 4 bytes 4 bytes 10 bytes | |
2126 | ||
2127 | The table length is the total size of the table, including the 4 bytes | |
2128 | for the length information. | |
2129 | ||
2130 | The base address is the address of the first instruction generated | |
2131 | for the source file. | |
2132 | ||
2133 | Each source statement entry has the following structure: | |
2134 | ||
2135 | <line number><statement position><address delta> | |
2136 | 4 bytes 2 bytes 4 bytes | |
2137 | ||
2138 | The line number is relative to the start of the file, starting with | |
2139 | line 1. | |
2140 | ||
2141 | The statement position either -1 (0xFFFF) or the number of characters | |
2142 | from the beginning of the line to the beginning of the statement. | |
2143 | ||
2144 | The address delta is the difference between the base address and | |
2145 | the address of the first instruction for the statement. | |
2146 | ||
2147 | Note that we must copy the bytes from the packed table to our local | |
2148 | variables before attempting to use them, to avoid alignment problems | |
2149 | on some machines, particularly RISC processors. | |
2150 | ||
2151 | BUGS | |
2152 | ||
2153 | Does gdb expect the line numbers to be sorted? They are now by | |
2154 | chance/luck, but are not required to be. (FIXME) | |
2155 | ||
2156 | The line with number 0 is unused, gdb apparently can discover the | |
2157 | span of the last line some other way. How? (FIXME) | |
2158 | */ | |
2159 | ||
2160 | static void | |
2161 | decode_line_numbers (linetable) | |
2162 | char *linetable; | |
2163 | { | |
2164 | char *tblscan; | |
2165 | char *tblend; | |
2166 | unsigned long length; | |
2167 | unsigned long base; | |
2168 | unsigned long line; | |
2169 | unsigned long pc; | |
2170 | ||
2171 | if (linetable != NULL) | |
2172 | { | |
2173 | tblscan = tblend = linetable; | |
2174 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, | |
2175 | current_objfile); | |
2176 | tblscan += SIZEOF_LINETBL_LENGTH; | |
2177 | tblend += length; | |
2178 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), | |
2179 | GET_UNSIGNED, current_objfile); | |
2180 | tblscan += TARGET_FT_POINTER_SIZE (objfile); | |
2181 | base += baseaddr; | |
2182 | while (tblscan < tblend) | |
2183 | { | |
2184 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, | |
2185 | current_objfile); | |
2186 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; | |
2187 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, | |
2188 | current_objfile); | |
2189 | tblscan += SIZEOF_LINETBL_DELTA; | |
2190 | pc += base; | |
2191 | if (line != 0) | |
2192 | { | |
2193 | record_line (current_subfile, line, pc); | |
2194 | } | |
2195 | } | |
2196 | } | |
2197 | } | |
2198 | ||
2199 | /* | |
2200 | ||
2201 | LOCAL FUNCTION | |
2202 | ||
2203 | locval -- compute the value of a location attribute | |
2204 | ||
2205 | SYNOPSIS | |
2206 | ||
2207 | static int locval (struct dieinfo *dip) | |
2208 | ||
2209 | DESCRIPTION | |
2210 | ||
2211 | Given pointer to a string of bytes that define a location, compute | |
2212 | the location and return the value. | |
2213 | A location description containing no atoms indicates that the | |
2214 | object is optimized out. The optimized_out flag is set for those, | |
2215 | the return value is meaningless. | |
2216 | ||
2217 | When computing values involving the current value of the frame pointer, | |
2218 | the value zero is used, which results in a value relative to the frame | |
2219 | pointer, rather than the absolute value. This is what GDB wants | |
2220 | anyway. | |
2221 | ||
2222 | When the result is a register number, the isreg flag is set, otherwise | |
2223 | it is cleared. This is a kludge until we figure out a better | |
2224 | way to handle the problem. Gdb's design does not mesh well with the | |
2225 | DWARF notion of a location computing interpreter, which is a shame | |
2226 | because the flexibility goes unused. | |
2227 | ||
2228 | NOTES | |
2229 | ||
2230 | Note that stack[0] is unused except as a default error return. | |
2231 | Note that stack overflow is not yet handled. | |
2232 | */ | |
2233 | ||
2234 | static int | |
2235 | locval (dip) | |
2236 | struct dieinfo *dip; | |
2237 | { | |
2238 | unsigned short nbytes; | |
2239 | unsigned short locsize; | |
2240 | auto long stack[64]; | |
2241 | int stacki; | |
2242 | char *loc; | |
2243 | char *end; | |
2244 | int loc_atom_code; | |
2245 | int loc_value_size; | |
2246 | ||
2247 | loc = dip -> at_location; | |
2248 | nbytes = attribute_size (AT_location); | |
2249 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); | |
2250 | loc += nbytes; | |
2251 | end = loc + locsize; | |
2252 | stacki = 0; | |
2253 | stack[stacki] = 0; | |
2254 | dip -> isreg = 0; | |
2255 | dip -> offreg = 0; | |
2256 | dip -> optimized_out = 1; | |
2257 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); | |
2258 | while (loc < end) | |
2259 | { | |
2260 | dip -> optimized_out = 0; | |
2261 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, | |
2262 | current_objfile); | |
2263 | loc += SIZEOF_LOC_ATOM_CODE; | |
2264 | switch (loc_atom_code) | |
2265 | { | |
2266 | case 0: | |
2267 | /* error */ | |
2268 | loc = end; | |
2269 | break; | |
2270 | case OP_REG: | |
2271 | /* push register (number) */ | |
2272 | stack[++stacki] | |
2273 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, | |
2274 | GET_UNSIGNED, | |
2275 | current_objfile)); | |
2276 | loc += loc_value_size; | |
2277 | dip -> isreg = 1; | |
2278 | break; | |
2279 | case OP_BASEREG: | |
2280 | /* push value of register (number) */ | |
2281 | /* Actually, we compute the value as if register has 0, so the | |
2282 | value ends up being the offset from that register. */ | |
2283 | dip -> offreg = 1; | |
2284 | dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, | |
2285 | current_objfile); | |
2286 | loc += loc_value_size; | |
2287 | stack[++stacki] = 0; | |
2288 | break; | |
2289 | case OP_ADDR: | |
2290 | /* push address (relocated address) */ | |
2291 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2292 | GET_UNSIGNED, current_objfile); | |
2293 | loc += loc_value_size; | |
2294 | break; | |
2295 | case OP_CONST: | |
2296 | /* push constant (number) FIXME: signed or unsigned! */ | |
2297 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2298 | GET_SIGNED, current_objfile); | |
2299 | loc += loc_value_size; | |
2300 | break; | |
2301 | case OP_DEREF2: | |
2302 | /* pop, deref and push 2 bytes (as a long) */ | |
2303 | complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); | |
2304 | break; | |
2305 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
2306 | complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); | |
2307 | break; | |
2308 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2309 | stack[stacki - 1] += stack[stacki]; | |
2310 | stacki--; | |
2311 | break; | |
2312 | } | |
2313 | } | |
2314 | return (stack[stacki]); | |
2315 | } | |
2316 | ||
2317 | /* | |
2318 | ||
2319 | LOCAL FUNCTION | |
2320 | ||
2321 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's | |
2322 | ||
2323 | SYNOPSIS | |
2324 | ||
2325 | static void read_ofile_symtab (struct partial_symtab *pst) | |
2326 | ||
2327 | DESCRIPTION | |
2328 | ||
2329 | When expanding a partial symbol table entry to a full symbol table | |
2330 | entry, this is the function that gets called to read in the symbols | |
2331 | for the compilation unit. A pointer to the newly constructed symtab, | |
2332 | which is now the new first one on the objfile's symtab list, is | |
2333 | stashed in the partial symbol table entry. | |
2334 | */ | |
2335 | ||
2336 | static void | |
2337 | read_ofile_symtab (pst) | |
2338 | struct partial_symtab *pst; | |
2339 | { | |
2340 | struct cleanup *back_to; | |
2341 | unsigned long lnsize; | |
2342 | file_ptr foffset; | |
2343 | bfd *abfd; | |
2344 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; | |
2345 | ||
2346 | abfd = pst -> objfile -> obfd; | |
2347 | current_objfile = pst -> objfile; | |
2348 | ||
2349 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2350 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2351 | ||
2352 | diecount = 0; | |
2353 | dbsize = DBLENGTH (pst); | |
2354 | dbbase = xmalloc (dbsize); | |
2355 | dbroff = DBROFF(pst); | |
2356 | foffset = DBFOFF(pst) + dbroff; | |
2357 | base_section_offsets = pst->section_offsets; | |
2358 | baseaddr = ANOFFSET (pst->section_offsets, 0); | |
2359 | if (bfd_seek (abfd, foffset, SEEK_SET) || | |
2360 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
2361 | { | |
2362 | free (dbbase); | |
2363 | error ("can't read DWARF data"); | |
2364 | } | |
2365 | back_to = make_cleanup (free, dbbase); | |
2366 | ||
2367 | /* If there is a line number table associated with this compilation unit | |
2368 | then read the size of this fragment in bytes, from the fragment itself. | |
2369 | Allocate a buffer for the fragment and read it in for future | |
2370 | processing. */ | |
2371 | ||
2372 | lnbase = NULL; | |
2373 | if (LNFOFF (pst)) | |
2374 | { | |
2375 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
2376 | (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != | |
2377 | sizeof (lnsizedata))) | |
2378 | { | |
2379 | error ("can't read DWARF line number table size"); | |
2380 | } | |
2381 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, | |
2382 | GET_UNSIGNED, pst -> objfile); | |
2383 | lnbase = xmalloc (lnsize); | |
2384 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
2385 | (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) | |
2386 | { | |
2387 | free (lnbase); | |
2388 | error ("can't read DWARF line numbers"); | |
2389 | } | |
2390 | make_cleanup (free, lnbase); | |
2391 | } | |
2392 | ||
2393 | process_dies (dbbase, dbbase + dbsize, pst -> objfile); | |
2394 | do_cleanups (back_to); | |
2395 | current_objfile = NULL; | |
2396 | pst -> symtab = pst -> objfile -> symtabs; | |
2397 | } | |
2398 | ||
2399 | /* | |
2400 | ||
2401 | LOCAL FUNCTION | |
2402 | ||
2403 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry | |
2404 | ||
2405 | SYNOPSIS | |
2406 | ||
2407 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) | |
2408 | ||
2409 | DESCRIPTION | |
2410 | ||
2411 | Called once for each partial symbol table entry that needs to be | |
2412 | expanded into a full symbol table entry. | |
2413 | ||
2414 | */ | |
2415 | ||
2416 | static void | |
2417 | psymtab_to_symtab_1 (pst) | |
2418 | struct partial_symtab *pst; | |
2419 | { | |
2420 | int i; | |
2421 | struct cleanup *old_chain; | |
2422 | ||
2423 | if (pst != NULL) | |
2424 | { | |
2425 | if (pst->readin) | |
2426 | { | |
2427 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
2428 | pst -> filename); | |
2429 | } | |
2430 | else | |
2431 | { | |
2432 | /* Read in all partial symtabs on which this one is dependent */ | |
2433 | for (i = 0; i < pst -> number_of_dependencies; i++) | |
2434 | { | |
2435 | if (!pst -> dependencies[i] -> readin) | |
2436 | { | |
2437 | /* Inform about additional files that need to be read in. */ | |
2438 | if (info_verbose) | |
2439 | { | |
2440 | fputs_filtered (" ", gdb_stdout); | |
2441 | wrap_here (""); | |
2442 | fputs_filtered ("and ", gdb_stdout); | |
2443 | wrap_here (""); | |
2444 | printf_filtered ("%s...", | |
2445 | pst -> dependencies[i] -> filename); | |
2446 | wrap_here (""); | |
2447 | gdb_flush (gdb_stdout); /* Flush output */ | |
2448 | } | |
2449 | psymtab_to_symtab_1 (pst -> dependencies[i]); | |
2450 | } | |
2451 | } | |
2452 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ | |
2453 | { | |
2454 | buildsym_init (); | |
2455 | old_chain = make_cleanup ((make_cleanup_func) | |
2456 | really_free_pendings, 0); | |
2457 | read_ofile_symtab (pst); | |
2458 | if (info_verbose) | |
2459 | { | |
2460 | printf_filtered ("%d DIE's, sorting...", diecount); | |
2461 | wrap_here (""); | |
2462 | gdb_flush (gdb_stdout); | |
2463 | } | |
2464 | sort_symtab_syms (pst -> symtab); | |
2465 | do_cleanups (old_chain); | |
2466 | } | |
2467 | pst -> readin = 1; | |
2468 | } | |
2469 | } | |
2470 | } | |
2471 | ||
2472 | /* | |
2473 | ||
2474 | LOCAL FUNCTION | |
2475 | ||
2476 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one | |
2477 | ||
2478 | SYNOPSIS | |
2479 | ||
2480 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) | |
2481 | ||
2482 | DESCRIPTION | |
2483 | ||
2484 | This is the DWARF support entry point for building a full symbol | |
2485 | table entry from a partial symbol table entry. We are passed a | |
2486 | pointer to the partial symbol table entry that needs to be expanded. | |
2487 | ||
2488 | */ | |
2489 | ||
2490 | static void | |
2491 | dwarf_psymtab_to_symtab (pst) | |
2492 | struct partial_symtab *pst; | |
2493 | { | |
2494 | ||
2495 | if (pst != NULL) | |
2496 | { | |
2497 | if (pst -> readin) | |
2498 | { | |
2499 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
2500 | pst -> filename); | |
2501 | } | |
2502 | else | |
2503 | { | |
2504 | if (DBLENGTH (pst) || pst -> number_of_dependencies) | |
2505 | { | |
2506 | /* Print the message now, before starting serious work, to avoid | |
2507 | disconcerting pauses. */ | |
2508 | if (info_verbose) | |
2509 | { | |
2510 | printf_filtered ("Reading in symbols for %s...", | |
2511 | pst -> filename); | |
2512 | gdb_flush (gdb_stdout); | |
2513 | } | |
2514 | ||
2515 | psymtab_to_symtab_1 (pst); | |
2516 | ||
2517 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2518 | we need to do an equivalent or is this something peculiar to | |
2519 | stabs/a.out format. | |
2520 | Match with global symbols. This only needs to be done once, | |
2521 | after all of the symtabs and dependencies have been read in. | |
2522 | */ | |
2523 | scan_file_globals (pst -> objfile); | |
2524 | #endif | |
2525 | ||
2526 | /* Finish up the verbose info message. */ | |
2527 | if (info_verbose) | |
2528 | { | |
2529 | printf_filtered ("done.\n"); | |
2530 | gdb_flush (gdb_stdout); | |
2531 | } | |
2532 | } | |
2533 | } | |
2534 | } | |
2535 | } | |
2536 | ||
2537 | /* | |
2538 | ||
2539 | LOCAL FUNCTION | |
2540 | ||
2541 | add_enum_psymbol -- add enumeration members to partial symbol table | |
2542 | ||
2543 | DESCRIPTION | |
2544 | ||
2545 | Given pointer to a DIE that is known to be for an enumeration, | |
2546 | extract the symbolic names of the enumeration members and add | |
2547 | partial symbols for them. | |
2548 | */ | |
2549 | ||
2550 | static void | |
2551 | add_enum_psymbol (dip, objfile) | |
2552 | struct dieinfo *dip; | |
2553 | struct objfile *objfile; | |
2554 | { | |
2555 | char *scan; | |
2556 | char *listend; | |
2557 | unsigned short blocksz; | |
2558 | int nbytes; | |
2559 | ||
2560 | if ((scan = dip -> at_element_list) != NULL) | |
2561 | { | |
2562 | if (dip -> short_element_list) | |
2563 | { | |
2564 | nbytes = attribute_size (AT_short_element_list); | |
2565 | } | |
2566 | else | |
2567 | { | |
2568 | nbytes = attribute_size (AT_element_list); | |
2569 | } | |
2570 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
2571 | scan += nbytes; | |
2572 | listend = scan + blocksz; | |
2573 | while (scan < listend) | |
2574 | { | |
2575 | scan += TARGET_FT_LONG_SIZE (objfile); | |
2576 | add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, | |
2577 | &objfile -> static_psymbols, 0, 0, cu_language, | |
2578 | objfile); | |
2579 | scan += strlen (scan) + 1; | |
2580 | } | |
2581 | } | |
2582 | } | |
2583 | ||
2584 | /* | |
2585 | ||
2586 | LOCAL FUNCTION | |
2587 | ||
2588 | add_partial_symbol -- add symbol to partial symbol table | |
2589 | ||
2590 | DESCRIPTION | |
2591 | ||
2592 | Given a DIE, if it is one of the types that we want to | |
2593 | add to a partial symbol table, finish filling in the die info | |
2594 | and then add a partial symbol table entry for it. | |
2595 | ||
2596 | NOTES | |
2597 | ||
2598 | The caller must ensure that the DIE has a valid name attribute. | |
2599 | */ | |
2600 | ||
2601 | static void | |
2602 | add_partial_symbol (dip, objfile) | |
2603 | struct dieinfo *dip; | |
2604 | struct objfile *objfile; | |
2605 | { | |
2606 | switch (dip -> die_tag) | |
2607 | { | |
2608 | case TAG_global_subroutine: | |
2609 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2610 | VAR_NAMESPACE, LOC_BLOCK, | |
2611 | &objfile -> global_psymbols, | |
2612 | 0, dip -> at_low_pc, cu_language, objfile); | |
2613 | break; | |
2614 | case TAG_global_variable: | |
2615 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2616 | VAR_NAMESPACE, LOC_STATIC, | |
2617 | &objfile -> global_psymbols, | |
2618 | 0, 0, cu_language, objfile); | |
2619 | break; | |
2620 | case TAG_subroutine: | |
2621 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2622 | VAR_NAMESPACE, LOC_BLOCK, | |
2623 | &objfile -> static_psymbols, | |
2624 | 0, dip -> at_low_pc, cu_language, objfile); | |
2625 | break; | |
2626 | case TAG_local_variable: | |
2627 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2628 | VAR_NAMESPACE, LOC_STATIC, | |
2629 | &objfile -> static_psymbols, | |
2630 | 0, 0, cu_language, objfile); | |
2631 | break; | |
2632 | case TAG_typedef: | |
2633 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2634 | VAR_NAMESPACE, LOC_TYPEDEF, | |
2635 | &objfile -> static_psymbols, | |
2636 | 0, 0, cu_language, objfile); | |
2637 | break; | |
2638 | case TAG_class_type: | |
2639 | case TAG_structure_type: | |
2640 | case TAG_union_type: | |
2641 | case TAG_enumeration_type: | |
2642 | /* Do not add opaque aggregate definitions to the psymtab. */ | |
2643 | if (!dip -> has_at_byte_size) | |
2644 | break; | |
2645 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2646 | STRUCT_NAMESPACE, LOC_TYPEDEF, | |
2647 | &objfile -> static_psymbols, | |
2648 | 0, 0, cu_language, objfile); | |
2649 | if (cu_language == language_cplus) | |
2650 | { | |
2651 | /* For C++, these implicitly act as typedefs as well. */ | |
2652 | add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), | |
2653 | VAR_NAMESPACE, LOC_TYPEDEF, | |
2654 | &objfile -> static_psymbols, | |
2655 | 0, 0, cu_language, objfile); | |
2656 | } | |
2657 | break; | |
2658 | } | |
2659 | } | |
2660 | ||
9846de1b | 2661 | /* *INDENT-OFF* */ |
c906108c SS |
2662 | /* |
2663 | ||
2664 | LOCAL FUNCTION | |
2665 | ||
2666 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2667 | ||
2668 | DESCRIPTION | |
2669 | ||
2670 | Process the DIE's within a single compilation unit, looking for | |
2671 | interesting DIE's that contribute to the partial symbol table entry | |
2672 | for this compilation unit. | |
2673 | ||
2674 | NOTES | |
2675 | ||
2676 | There are some DIE's that may appear both at file scope and within | |
2677 | the scope of a function. We are only interested in the ones at file | |
2678 | scope, and the only way to tell them apart is to keep track of the | |
2679 | scope. For example, consider the test case: | |
2680 | ||
2681 | static int i; | |
2682 | main () { int j; } | |
2683 | ||
2684 | for which the relevant DWARF segment has the structure: | |
2685 | ||
2686 | 0x51: | |
2687 | 0x23 global subrtn sibling 0x9b | |
2688 | name main | |
2689 | fund_type FT_integer | |
2690 | low_pc 0x800004cc | |
2691 | high_pc 0x800004d4 | |
2692 | ||
2693 | 0x74: | |
2694 | 0x23 local var sibling 0x97 | |
2695 | name j | |
2696 | fund_type FT_integer | |
2697 | location OP_BASEREG 0xe | |
2698 | OP_CONST 0xfffffffc | |
2699 | OP_ADD | |
2700 | 0x97: | |
2701 | 0x4 | |
2702 | ||
2703 | 0x9b: | |
2704 | 0x1d local var sibling 0xb8 | |
2705 | name i | |
2706 | fund_type FT_integer | |
2707 | location OP_ADDR 0x800025dc | |
2708 | ||
2709 | 0xb8: | |
2710 | 0x4 | |
2711 | ||
2712 | We want to include the symbol 'i' in the partial symbol table, but | |
2713 | not the symbol 'j'. In essence, we want to skip all the dies within | |
2714 | the scope of a TAG_global_subroutine DIE. | |
2715 | ||
2716 | Don't attempt to add anonymous structures or unions since they have | |
2717 | no name. Anonymous enumerations however are processed, because we | |
2718 | want to extract their member names (the check for a tag name is | |
2719 | done later). | |
2720 | ||
2721 | Also, for variables and subroutines, check that this is the place | |
2722 | where the actual definition occurs, rather than just a reference | |
2723 | to an external. | |
2724 | */ | |
9846de1b | 2725 | /* *INDENT-ON* */ |
c906108c SS |
2726 | |
2727 | static void | |
2728 | scan_partial_symbols (thisdie, enddie, objfile) | |
2729 | char *thisdie; | |
2730 | char *enddie; | |
2731 | struct objfile *objfile; | |
2732 | { | |
2733 | char *nextdie; | |
2734 | char *temp; | |
2735 | struct dieinfo di; | |
2736 | ||
2737 | while (thisdie < enddie) | |
2738 | { | |
2739 | basicdieinfo (&di, thisdie, objfile); | |
2740 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2741 | { | |
2742 | break; | |
2743 | } | |
2744 | else | |
2745 | { | |
2746 | nextdie = thisdie + di.die_length; | |
2747 | /* To avoid getting complete die information for every die, we | |
2748 | only do it (below) for the cases we are interested in. */ | |
2749 | switch (di.die_tag) | |
2750 | { | |
2751 | case TAG_global_subroutine: | |
2752 | case TAG_subroutine: | |
2753 | completedieinfo (&di, objfile); | |
2754 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2755 | { | |
2756 | add_partial_symbol (&di, objfile); | |
2757 | /* If there is a sibling attribute, adjust the nextdie | |
2758 | pointer to skip the entire scope of the subroutine. | |
2759 | Apply some sanity checking to make sure we don't | |
2760 | overrun or underrun the range of remaining DIE's */ | |
2761 | if (di.at_sibling != 0) | |
2762 | { | |
2763 | temp = dbbase + di.at_sibling - dbroff; | |
2764 | if ((temp < thisdie) || (temp >= enddie)) | |
2765 | { | |
2766 | complain (&bad_die_ref, DIE_ID, DIE_NAME, | |
2767 | di.at_sibling); | |
2768 | } | |
2769 | else | |
2770 | { | |
2771 | nextdie = temp; | |
2772 | } | |
2773 | } | |
2774 | } | |
2775 | break; | |
2776 | case TAG_global_variable: | |
2777 | case TAG_local_variable: | |
2778 | completedieinfo (&di, objfile); | |
2779 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2780 | { | |
2781 | add_partial_symbol (&di, objfile); | |
2782 | } | |
2783 | break; | |
2784 | case TAG_typedef: | |
2785 | case TAG_class_type: | |
2786 | case TAG_structure_type: | |
2787 | case TAG_union_type: | |
2788 | completedieinfo (&di, objfile); | |
2789 | if (di.at_name) | |
2790 | { | |
2791 | add_partial_symbol (&di, objfile); | |
2792 | } | |
2793 | break; | |
2794 | case TAG_enumeration_type: | |
2795 | completedieinfo (&di, objfile); | |
2796 | if (di.at_name) | |
2797 | { | |
2798 | add_partial_symbol (&di, objfile); | |
2799 | } | |
2800 | add_enum_psymbol (&di, objfile); | |
2801 | break; | |
2802 | } | |
2803 | } | |
2804 | thisdie = nextdie; | |
2805 | } | |
2806 | } | |
2807 | ||
2808 | /* | |
2809 | ||
2810 | LOCAL FUNCTION | |
2811 | ||
2812 | scan_compilation_units -- build a psymtab entry for each compilation | |
2813 | ||
2814 | DESCRIPTION | |
2815 | ||
2816 | This is the top level dwarf parsing routine for building partial | |
2817 | symbol tables. | |
2818 | ||
2819 | It scans from the beginning of the DWARF table looking for the first | |
2820 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2821 | each additional TAG_compile_unit DIE. | |
2822 | ||
2823 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2824 | calls a subordinate routine to collect all the compilation unit's | |
2825 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2826 | new partial symtab structure into the partial symbol table. It also | |
2827 | records the appropriate information in the partial symbol table entry | |
2828 | to allow the chunk of DIE's and line number table for this compilation | |
2829 | unit to be located and re-read later, to generate a complete symbol | |
2830 | table entry for the compilation unit. | |
2831 | ||
2832 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2833 | compilation units into smaller DIE chunks and line number tables, | |
2834 | and associates them with a partial symbol table entry. | |
2835 | ||
2836 | NOTES | |
2837 | ||
2838 | If any compilation unit has no line number table associated with | |
2839 | it for some reason (a missing at_stmt_list attribute, rather than | |
2840 | just one with a value of zero, which is valid) then we ensure that | |
2841 | the recorded file offset is zero so that the routine which later | |
2842 | reads line number table fragments knows that there is no fragment | |
2843 | to read. | |
2844 | ||
2845 | RETURNS | |
2846 | ||
2847 | Returns no value. | |
2848 | ||
2849 | */ | |
2850 | ||
2851 | static void | |
2852 | scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile) | |
2853 | char *thisdie; | |
2854 | char *enddie; | |
2855 | file_ptr dbfoff; | |
2856 | file_ptr lnoffset; | |
2857 | struct objfile *objfile; | |
2858 | { | |
2859 | char *nextdie; | |
2860 | struct dieinfo di; | |
2861 | struct partial_symtab *pst; | |
2862 | int culength; | |
2863 | int curoff; | |
2864 | file_ptr curlnoffset; | |
2865 | ||
2866 | while (thisdie < enddie) | |
2867 | { | |
2868 | basicdieinfo (&di, thisdie, objfile); | |
2869 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2870 | { | |
2871 | break; | |
2872 | } | |
2873 | else if (di.die_tag != TAG_compile_unit) | |
2874 | { | |
2875 | nextdie = thisdie + di.die_length; | |
2876 | } | |
2877 | else | |
2878 | { | |
2879 | completedieinfo (&di, objfile); | |
2880 | set_cu_language (&di); | |
2881 | if (di.at_sibling != 0) | |
2882 | { | |
2883 | nextdie = dbbase + di.at_sibling - dbroff; | |
2884 | } | |
2885 | else | |
2886 | { | |
2887 | nextdie = thisdie + di.die_length; | |
2888 | } | |
2889 | curoff = thisdie - dbbase; | |
2890 | culength = nextdie - thisdie; | |
2891 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |
2892 | ||
2893 | /* First allocate a new partial symbol table structure */ | |
2894 | ||
2895 | pst = start_psymtab_common (objfile, base_section_offsets, | |
2896 | di.at_name, di.at_low_pc, | |
2897 | objfile -> global_psymbols.next, | |
2898 | objfile -> static_psymbols.next); | |
2899 | ||
2900 | pst -> texthigh = di.at_high_pc; | |
2901 | pst -> read_symtab_private = (char *) | |
2902 | obstack_alloc (&objfile -> psymbol_obstack, | |
2903 | sizeof (struct dwfinfo)); | |
2904 | DBFOFF (pst) = dbfoff; | |
2905 | DBROFF (pst) = curoff; | |
2906 | DBLENGTH (pst) = culength; | |
2907 | LNFOFF (pst) = curlnoffset; | |
2908 | pst -> read_symtab = dwarf_psymtab_to_symtab; | |
2909 | ||
2910 | /* Now look for partial symbols */ | |
2911 | ||
2912 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |
2913 | ||
2914 | pst -> n_global_syms = objfile -> global_psymbols.next - | |
2915 | (objfile -> global_psymbols.list + pst -> globals_offset); | |
2916 | pst -> n_static_syms = objfile -> static_psymbols.next - | |
2917 | (objfile -> static_psymbols.list + pst -> statics_offset); | |
2918 | sort_pst_symbols (pst); | |
2919 | /* If there is already a psymtab or symtab for a file of this name, | |
2920 | remove it. (If there is a symtab, more drastic things also | |
2921 | happen.) This happens in VxWorks. */ | |
2922 | free_named_symtabs (pst -> filename); | |
2923 | } | |
2924 | thisdie = nextdie; | |
2925 | } | |
2926 | } | |
2927 | ||
2928 | /* | |
2929 | ||
2930 | LOCAL FUNCTION | |
2931 | ||
2932 | new_symbol -- make a symbol table entry for a new symbol | |
2933 | ||
2934 | SYNOPSIS | |
2935 | ||
2936 | static struct symbol *new_symbol (struct dieinfo *dip, | |
2937 | struct objfile *objfile) | |
2938 | ||
2939 | DESCRIPTION | |
2940 | ||
2941 | Given a pointer to a DWARF information entry, figure out if we need | |
2942 | to make a symbol table entry for it, and if so, create a new entry | |
2943 | and return a pointer to it. | |
2944 | */ | |
2945 | ||
2946 | static struct symbol * | |
2947 | new_symbol (dip, objfile) | |
2948 | struct dieinfo *dip; | |
2949 | struct objfile *objfile; | |
2950 | { | |
2951 | struct symbol *sym = NULL; | |
2952 | ||
2953 | if (dip -> at_name != NULL) | |
2954 | { | |
2955 | sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack, | |
2956 | sizeof (struct symbol)); | |
2957 | OBJSTAT (objfile, n_syms++); | |
2958 | memset (sym, 0, sizeof (struct symbol)); | |
2959 | SYMBOL_NAME (sym) = create_name (dip -> at_name, | |
2960 | &objfile->symbol_obstack); | |
2961 | /* default assumptions */ | |
2962 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2963 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2964 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2965 | ||
2966 | /* If this symbol is from a C++ compilation, then attempt to cache the | |
2967 | demangled form for future reference. This is a typical time versus | |
2968 | space tradeoff, that was decided in favor of time because it sped up | |
2969 | C++ symbol lookups by a factor of about 20. */ | |
2970 | ||
2971 | SYMBOL_LANGUAGE (sym) = cu_language; | |
2972 | SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack); | |
2973 | switch (dip -> die_tag) | |
2974 | { | |
2975 | case TAG_label: | |
2976 | SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc; | |
2977 | SYMBOL_CLASS (sym) = LOC_LABEL; | |
2978 | break; | |
2979 | case TAG_global_subroutine: | |
2980 | case TAG_subroutine: | |
2981 | SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc; | |
2982 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); | |
2983 | if (dip -> at_prototyped) | |
2984 | TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; | |
2985 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
2986 | if (dip -> die_tag == TAG_global_subroutine) | |
2987 | { | |
2988 | add_symbol_to_list (sym, &global_symbols); | |
2989 | } | |
2990 | else | |
2991 | { | |
2992 | add_symbol_to_list (sym, list_in_scope); | |
2993 | } | |
2994 | break; | |
2995 | case TAG_global_variable: | |
2996 | if (dip -> at_location != NULL) | |
2997 | { | |
2998 | SYMBOL_VALUE_ADDRESS (sym) = locval (dip); | |
2999 | add_symbol_to_list (sym, &global_symbols); | |
3000 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
3001 | SYMBOL_VALUE (sym) += baseaddr; | |
3002 | } | |
3003 | break; | |
3004 | case TAG_local_variable: | |
3005 | if (dip -> at_location != NULL) | |
3006 | { | |
3007 | int loc = locval (dip); | |
3008 | if (dip -> optimized_out) | |
3009 | { | |
3010 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; | |
3011 | } | |
3012 | else if (dip -> isreg) | |
3013 | { | |
3014 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
3015 | } | |
3016 | else if (dip -> offreg) | |
3017 | { | |
3018 | SYMBOL_CLASS (sym) = LOC_BASEREG; | |
3019 | SYMBOL_BASEREG (sym) = dip -> basereg; | |
3020 | } | |
3021 | else | |
3022 | { | |
3023 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
3024 | SYMBOL_VALUE (sym) += baseaddr; | |
3025 | } | |
3026 | if (SYMBOL_CLASS (sym) == LOC_STATIC) | |
3027 | { | |
3028 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, | |
3029 | which may store to a bigger location than SYMBOL_VALUE. */ | |
3030 | SYMBOL_VALUE_ADDRESS (sym) = loc; | |
3031 | } | |
3032 | else | |
3033 | { | |
3034 | SYMBOL_VALUE (sym) = loc; | |
3035 | } | |
3036 | add_symbol_to_list (sym, list_in_scope); | |
3037 | } | |
3038 | break; | |
3039 | case TAG_formal_parameter: | |
3040 | if (dip -> at_location != NULL) | |
3041 | { | |
3042 | SYMBOL_VALUE (sym) = locval (dip); | |
3043 | } | |
3044 | add_symbol_to_list (sym, list_in_scope); | |
3045 | if (dip -> isreg) | |
3046 | { | |
3047 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
3048 | } | |
3049 | else if (dip -> offreg) | |
3050 | { | |
3051 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; | |
3052 | SYMBOL_BASEREG (sym) = dip -> basereg; | |
3053 | } | |
3054 | else | |
3055 | { | |
3056 | SYMBOL_CLASS (sym) = LOC_ARG; | |
3057 | } | |
3058 | break; | |
3059 | case TAG_unspecified_parameters: | |
3060 | /* From varargs functions; gdb doesn't seem to have any interest in | |
3061 | this information, so just ignore it for now. (FIXME?) */ | |
3062 | break; | |
3063 | case TAG_class_type: | |
3064 | case TAG_structure_type: | |
3065 | case TAG_union_type: | |
3066 | case TAG_enumeration_type: | |
3067 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
3068 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
3069 | add_symbol_to_list (sym, list_in_scope); | |
3070 | break; | |
3071 | case TAG_typedef: | |
3072 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
3073 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
3074 | add_symbol_to_list (sym, list_in_scope); | |
3075 | break; | |
3076 | default: | |
3077 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
3078 | data, but since we must specifically ignore things we don't | |
3079 | recognize, there is nothing else we should do at this point. */ | |
3080 | break; | |
3081 | } | |
3082 | } | |
3083 | return (sym); | |
3084 | } | |
3085 | ||
3086 | /* | |
3087 | ||
3088 | LOCAL FUNCTION | |
3089 | ||
3090 | synthesize_typedef -- make a symbol table entry for a "fake" typedef | |
3091 | ||
3092 | SYNOPSIS | |
3093 | ||
3094 | static void synthesize_typedef (struct dieinfo *dip, | |
3095 | struct objfile *objfile, | |
3096 | struct type *type); | |
3097 | ||
3098 | DESCRIPTION | |
3099 | ||
3100 | Given a pointer to a DWARF information entry, synthesize a typedef | |
3101 | for the name in the DIE, using the specified type. | |
3102 | ||
3103 | This is used for C++ class, structs, unions, and enumerations to | |
3104 | set up the tag name as a type. | |
3105 | ||
3106 | */ | |
3107 | ||
3108 | static void | |
3109 | synthesize_typedef (dip, objfile, type) | |
3110 | struct dieinfo *dip; | |
3111 | struct objfile *objfile; | |
3112 | struct type *type; | |
3113 | { | |
3114 | struct symbol *sym = NULL; | |
3115 | ||
3116 | if (dip -> at_name != NULL) | |
3117 | { | |
3118 | sym = (struct symbol *) | |
3119 | obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol)); | |
3120 | OBJSTAT (objfile, n_syms++); | |
3121 | memset (sym, 0, sizeof (struct symbol)); | |
3122 | SYMBOL_NAME (sym) = create_name (dip -> at_name, | |
3123 | &objfile->symbol_obstack); | |
3124 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
3125 | SYMBOL_TYPE (sym) = type; | |
3126 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
3127 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
3128 | add_symbol_to_list (sym, list_in_scope); | |
3129 | } | |
3130 | } | |
3131 | ||
3132 | /* | |
3133 | ||
3134 | LOCAL FUNCTION | |
3135 | ||
3136 | decode_mod_fund_type -- decode a modified fundamental type | |
3137 | ||
3138 | SYNOPSIS | |
3139 | ||
3140 | static struct type *decode_mod_fund_type (char *typedata) | |
3141 | ||
3142 | DESCRIPTION | |
3143 | ||
3144 | Decode a block of data containing a modified fundamental | |
3145 | type specification. TYPEDATA is a pointer to the block, | |
3146 | which starts with a length containing the size of the rest | |
3147 | of the block. At the end of the block is a fundmental type | |
3148 | code value that gives the fundamental type. Everything | |
3149 | in between are type modifiers. | |
3150 | ||
3151 | We simply compute the number of modifiers and call the general | |
3152 | function decode_modified_type to do the actual work. | |
3153 | */ | |
3154 | ||
3155 | static struct type * | |
3156 | decode_mod_fund_type (typedata) | |
3157 | char *typedata; | |
3158 | { | |
3159 | struct type *typep = NULL; | |
3160 | unsigned short modcount; | |
3161 | int nbytes; | |
3162 | ||
3163 | /* Get the total size of the block, exclusive of the size itself */ | |
3164 | ||
3165 | nbytes = attribute_size (AT_mod_fund_type); | |
3166 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3167 | typedata += nbytes; | |
3168 | ||
3169 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3170 | ||
3171 | modcount -= attribute_size (AT_fund_type); | |
3172 | ||
3173 | /* Now do the actual decoding */ | |
3174 | ||
3175 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |
3176 | return (typep); | |
3177 | } | |
3178 | ||
3179 | /* | |
3180 | ||
3181 | LOCAL FUNCTION | |
3182 | ||
3183 | decode_mod_u_d_type -- decode a modified user defined type | |
3184 | ||
3185 | SYNOPSIS | |
3186 | ||
3187 | static struct type *decode_mod_u_d_type (char *typedata) | |
3188 | ||
3189 | DESCRIPTION | |
3190 | ||
3191 | Decode a block of data containing a modified user defined | |
3192 | type specification. TYPEDATA is a pointer to the block, | |
3193 | which consists of a two byte length, containing the size | |
3194 | of the rest of the block. At the end of the block is a | |
3195 | four byte value that gives a reference to a user defined type. | |
3196 | Everything in between are type modifiers. | |
3197 | ||
3198 | We simply compute the number of modifiers and call the general | |
3199 | function decode_modified_type to do the actual work. | |
3200 | */ | |
3201 | ||
3202 | static struct type * | |
3203 | decode_mod_u_d_type (typedata) | |
3204 | char *typedata; | |
3205 | { | |
3206 | struct type *typep = NULL; | |
3207 | unsigned short modcount; | |
3208 | int nbytes; | |
3209 | ||
3210 | /* Get the total size of the block, exclusive of the size itself */ | |
3211 | ||
3212 | nbytes = attribute_size (AT_mod_u_d_type); | |
3213 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3214 | typedata += nbytes; | |
3215 | ||
3216 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3217 | ||
3218 | modcount -= attribute_size (AT_user_def_type); | |
3219 | ||
3220 | /* Now do the actual decoding */ | |
3221 | ||
3222 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |
3223 | return (typep); | |
3224 | } | |
3225 | ||
3226 | /* | |
3227 | ||
3228 | LOCAL FUNCTION | |
3229 | ||
3230 | decode_modified_type -- decode modified user or fundamental type | |
3231 | ||
3232 | SYNOPSIS | |
3233 | ||
3234 | static struct type *decode_modified_type (char *modifiers, | |
3235 | unsigned short modcount, int mtype) | |
3236 | ||
3237 | DESCRIPTION | |
3238 | ||
3239 | Decode a modified type, either a modified fundamental type or | |
3240 | a modified user defined type. MODIFIERS is a pointer to the | |
3241 | block of bytes that define MODCOUNT modifiers. Immediately | |
3242 | following the last modifier is a short containing the fundamental | |
3243 | type or a long containing the reference to the user defined | |
3244 | type. Which one is determined by MTYPE, which is either | |
3245 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3246 | type we are generating. | |
3247 | ||
3248 | We call ourself recursively to generate each modified type,` | |
3249 | until MODCOUNT reaches zero, at which point we have consumed | |
3250 | all the modifiers and generate either the fundamental type or | |
3251 | user defined type. When the recursion unwinds, each modifier | |
3252 | is applied in turn to generate the full modified type. | |
3253 | ||
3254 | NOTES | |
3255 | ||
3256 | If we find a modifier that we don't recognize, and it is not one | |
3257 | of those reserved for application specific use, then we issue a | |
3258 | warning and simply ignore the modifier. | |
3259 | ||
3260 | BUGS | |
3261 | ||
3262 | We currently ignore MOD_const and MOD_volatile. (FIXME) | |
3263 | ||
3264 | */ | |
3265 | ||
3266 | static struct type * | |
3267 | decode_modified_type (modifiers, modcount, mtype) | |
3268 | char *modifiers; | |
3269 | unsigned int modcount; | |
3270 | int mtype; | |
3271 | { | |
3272 | struct type *typep = NULL; | |
3273 | unsigned short fundtype; | |
3274 | DIE_REF die_ref; | |
3275 | char modifier; | |
3276 | int nbytes; | |
3277 | ||
3278 | if (modcount == 0) | |
3279 | { | |
3280 | switch (mtype) | |
3281 | { | |
3282 | case AT_mod_fund_type: | |
3283 | nbytes = attribute_size (AT_fund_type); | |
3284 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3285 | current_objfile); | |
3286 | typep = decode_fund_type (fundtype); | |
3287 | break; | |
3288 | case AT_mod_u_d_type: | |
3289 | nbytes = attribute_size (AT_user_def_type); | |
3290 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3291 | current_objfile); | |
3292 | if ((typep = lookup_utype (die_ref)) == NULL) | |
3293 | { | |
3294 | typep = alloc_utype (die_ref, NULL); | |
3295 | } | |
3296 | break; | |
3297 | default: | |
3298 | complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); | |
3299 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3300 | break; | |
3301 | } | |
3302 | } | |
3303 | else | |
3304 | { | |
3305 | modifier = *modifiers++; | |
3306 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3307 | switch (modifier) | |
3308 | { | |
3309 | case MOD_pointer_to: | |
3310 | typep = lookup_pointer_type (typep); | |
3311 | break; | |
3312 | case MOD_reference_to: | |
3313 | typep = lookup_reference_type (typep); | |
3314 | break; | |
3315 | case MOD_const: | |
3316 | complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3317 | break; | |
3318 | case MOD_volatile: | |
3319 | complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3320 | break; | |
3321 | default: | |
3322 | if (!(MOD_lo_user <= (unsigned char) modifier | |
3323 | && (unsigned char) modifier <= MOD_hi_user)) | |
3324 | { | |
3325 | complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); | |
3326 | } | |
3327 | break; | |
3328 | } | |
3329 | } | |
3330 | return (typep); | |
3331 | } | |
3332 | ||
3333 | /* | |
3334 | ||
3335 | LOCAL FUNCTION | |
3336 | ||
3337 | decode_fund_type -- translate basic DWARF type to gdb base type | |
3338 | ||
3339 | DESCRIPTION | |
3340 | ||
3341 | Given an integer that is one of the fundamental DWARF types, | |
3342 | translate it to one of the basic internal gdb types and return | |
3343 | a pointer to the appropriate gdb type (a "struct type *"). | |
3344 | ||
3345 | NOTES | |
3346 | ||
3347 | For robustness, if we are asked to translate a fundamental | |
3348 | type that we are unprepared to deal with, we return int so | |
3349 | callers can always depend upon a valid type being returned, | |
3350 | and so gdb may at least do something reasonable by default. | |
3351 | If the type is not in the range of those types defined as | |
3352 | application specific types, we also issue a warning. | |
3353 | */ | |
3354 | ||
3355 | static struct type * | |
3356 | decode_fund_type (fundtype) | |
3357 | unsigned int fundtype; | |
3358 | { | |
3359 | struct type *typep = NULL; | |
3360 | ||
3361 | switch (fundtype) | |
3362 | { | |
3363 | ||
3364 | case FT_void: | |
3365 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3366 | break; | |
3367 | ||
3368 | case FT_boolean: /* Was FT_set in AT&T version */ | |
3369 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); | |
3370 | break; | |
3371 | ||
3372 | case FT_pointer: /* (void *) */ | |
3373 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3374 | typep = lookup_pointer_type (typep); | |
3375 | break; | |
3376 | ||
3377 | case FT_char: | |
3378 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); | |
3379 | break; | |
3380 | ||
3381 | case FT_signed_char: | |
3382 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); | |
3383 | break; | |
3384 | ||
3385 | case FT_unsigned_char: | |
3386 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); | |
3387 | break; | |
3388 | ||
3389 | case FT_short: | |
3390 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); | |
3391 | break; | |
3392 | ||
3393 | case FT_signed_short: | |
3394 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); | |
3395 | break; | |
3396 | ||
3397 | case FT_unsigned_short: | |
3398 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); | |
3399 | break; | |
3400 | ||
3401 | case FT_integer: | |
3402 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3403 | break; | |
3404 | ||
3405 | case FT_signed_integer: | |
3406 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); | |
3407 | break; | |
3408 | ||
3409 | case FT_unsigned_integer: | |
3410 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); | |
3411 | break; | |
3412 | ||
3413 | case FT_long: | |
3414 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); | |
3415 | break; | |
3416 | ||
3417 | case FT_signed_long: | |
3418 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); | |
3419 | break; | |
3420 | ||
3421 | case FT_unsigned_long: | |
3422 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); | |
3423 | break; | |
3424 | ||
3425 | case FT_long_long: | |
3426 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); | |
3427 | break; | |
3428 | ||
3429 | case FT_signed_long_long: | |
3430 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); | |
3431 | break; | |
3432 | ||
3433 | case FT_unsigned_long_long: | |
3434 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); | |
3435 | break; | |
3436 | ||
3437 | case FT_float: | |
3438 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); | |
3439 | break; | |
3440 | ||
3441 | case FT_dbl_prec_float: | |
3442 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); | |
3443 | break; | |
3444 | ||
3445 | case FT_ext_prec_float: | |
3446 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); | |
3447 | break; | |
3448 | ||
3449 | case FT_complex: | |
3450 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); | |
3451 | break; | |
3452 | ||
3453 | case FT_dbl_prec_complex: | |
3454 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); | |
3455 | break; | |
3456 | ||
3457 | case FT_ext_prec_complex: | |
3458 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); | |
3459 | break; | |
3460 | ||
3461 | } | |
3462 | ||
3463 | if (typep == NULL) | |
3464 | { | |
3465 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3466 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3467 | { | |
3468 | complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); | |
3469 | } | |
3470 | } | |
3471 | ||
3472 | return (typep); | |
3473 | } | |
3474 | ||
3475 | /* | |
3476 | ||
3477 | LOCAL FUNCTION | |
3478 | ||
3479 | create_name -- allocate a fresh copy of a string on an obstack | |
3480 | ||
3481 | DESCRIPTION | |
3482 | ||
3483 | Given a pointer to a string and a pointer to an obstack, allocates | |
3484 | a fresh copy of the string on the specified obstack. | |
3485 | ||
3486 | */ | |
3487 | ||
3488 | static char * | |
3489 | create_name (name, obstackp) | |
3490 | char *name; | |
3491 | struct obstack *obstackp; | |
3492 | { | |
3493 | int length; | |
3494 | char *newname; | |
3495 | ||
3496 | length = strlen (name) + 1; | |
3497 | newname = (char *) obstack_alloc (obstackp, length); | |
3498 | strcpy (newname, name); | |
3499 | return (newname); | |
3500 | } | |
3501 | ||
3502 | /* | |
3503 | ||
3504 | LOCAL FUNCTION | |
3505 | ||
3506 | basicdieinfo -- extract the minimal die info from raw die data | |
3507 | ||
3508 | SYNOPSIS | |
3509 | ||
3510 | void basicdieinfo (char *diep, struct dieinfo *dip, | |
3511 | struct objfile *objfile) | |
3512 | ||
3513 | DESCRIPTION | |
3514 | ||
3515 | Given a pointer to raw DIE data, and a pointer to an instance of a | |
3516 | die info structure, this function extracts the basic information | |
3517 | from the DIE data required to continue processing this DIE, along | |
3518 | with some bookkeeping information about the DIE. | |
3519 | ||
3520 | The information we absolutely must have includes the DIE tag, | |
3521 | and the DIE length. If we need the sibling reference, then we | |
3522 | will have to call completedieinfo() to process all the remaining | |
3523 | DIE information. | |
3524 | ||
3525 | Note that since there is no guarantee that the data is properly | |
3526 | aligned in memory for the type of access required (indirection | |
3527 | through anything other than a char pointer), and there is no | |
3528 | guarantee that it is in the same byte order as the gdb host, | |
3529 | we call a function which deals with both alignment and byte | |
3530 | swapping issues. Possibly inefficient, but quite portable. | |
3531 | ||
3532 | We also take care of some other basic things at this point, such | |
3533 | as ensuring that the instance of the die info structure starts | |
3534 | out completely zero'd and that curdie is initialized for use | |
3535 | in error reporting if we have a problem with the current die. | |
3536 | ||
3537 | NOTES | |
3538 | ||
3539 | All DIE's must have at least a valid length, thus the minimum | |
3540 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |
3541 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |
3542 | are forced to be TAG_padding DIES. | |
3543 | ||
3544 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying | |
3545 | that if a padding DIE is used for alignment and the amount needed is | |
3546 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |
3547 | enough to align to the next alignment boundry. | |
3548 | ||
3549 | We do some basic sanity checking here, such as verifying that the | |
3550 | length of the die would not cause it to overrun the recorded end of | |
3551 | the buffer holding the DIE info. If we find a DIE that is either | |
3552 | too small or too large, we force it's length to zero which should | |
3553 | cause the caller to take appropriate action. | |
3554 | */ | |
3555 | ||
3556 | static void | |
3557 | basicdieinfo (dip, diep, objfile) | |
3558 | struct dieinfo *dip; | |
3559 | char *diep; | |
3560 | struct objfile *objfile; | |
3561 | { | |
3562 | curdie = dip; | |
3563 | memset (dip, 0, sizeof (struct dieinfo)); | |
3564 | dip -> die = diep; | |
3565 | dip -> die_ref = dbroff + (diep - dbbase); | |
3566 | dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, | |
3567 | objfile); | |
3568 | if ((dip -> die_length < SIZEOF_DIE_LENGTH) || | |
3569 | ((diep + dip -> die_length) > (dbbase + dbsize))) | |
3570 | { | |
3571 | complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length); | |
3572 | dip -> die_length = 0; | |
3573 | } | |
3574 | else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) | |
3575 | { | |
3576 | dip -> die_tag = TAG_padding; | |
3577 | } | |
3578 | else | |
3579 | { | |
3580 | diep += SIZEOF_DIE_LENGTH; | |
3581 | dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, | |
3582 | objfile); | |
3583 | } | |
3584 | } | |
3585 | ||
3586 | /* | |
3587 | ||
3588 | LOCAL FUNCTION | |
3589 | ||
3590 | completedieinfo -- finish reading the information for a given DIE | |
3591 | ||
3592 | SYNOPSIS | |
3593 | ||
3594 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) | |
3595 | ||
3596 | DESCRIPTION | |
3597 | ||
3598 | Given a pointer to an already partially initialized die info structure, | |
3599 | scan the raw DIE data and finish filling in the die info structure | |
3600 | from the various attributes found. | |
3601 | ||
3602 | Note that since there is no guarantee that the data is properly | |
3603 | aligned in memory for the type of access required (indirection | |
3604 | through anything other than a char pointer), and there is no | |
3605 | guarantee that it is in the same byte order as the gdb host, | |
3606 | we call a function which deals with both alignment and byte | |
3607 | swapping issues. Possibly inefficient, but quite portable. | |
3608 | ||
3609 | NOTES | |
3610 | ||
3611 | Each time we are called, we increment the diecount variable, which | |
3612 | keeps an approximate count of the number of dies processed for | |
3613 | each compilation unit. This information is presented to the user | |
3614 | if the info_verbose flag is set. | |
3615 | ||
3616 | */ | |
3617 | ||
3618 | static void | |
3619 | completedieinfo (dip, objfile) | |
3620 | struct dieinfo *dip; | |
3621 | struct objfile *objfile; | |
3622 | { | |
3623 | char *diep; /* Current pointer into raw DIE data */ | |
3624 | char *end; /* Terminate DIE scan here */ | |
3625 | unsigned short attr; /* Current attribute being scanned */ | |
3626 | unsigned short form; /* Form of the attribute */ | |
3627 | int nbytes; /* Size of next field to read */ | |
3628 | ||
3629 | diecount++; | |
3630 | diep = dip -> die; | |
3631 | end = diep + dip -> die_length; | |
3632 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; | |
3633 | while (diep < end) | |
3634 | { | |
3635 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); | |
3636 | diep += SIZEOF_ATTRIBUTE; | |
3637 | if ((nbytes = attribute_size (attr)) == -1) | |
3638 | { | |
3639 | complain (&unknown_attribute_length, DIE_ID, DIE_NAME); | |
3640 | diep = end; | |
3641 | continue; | |
3642 | } | |
3643 | switch (attr) | |
3644 | { | |
3645 | case AT_fund_type: | |
3646 | dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3647 | objfile); | |
3648 | break; | |
3649 | case AT_ordering: | |
3650 | dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3651 | objfile); | |
3652 | break; | |
3653 | case AT_bit_offset: | |
3654 | dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3655 | objfile); | |
3656 | break; | |
3657 | case AT_sibling: | |
3658 | dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3659 | objfile); | |
3660 | break; | |
3661 | case AT_stmt_list: | |
3662 | dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3663 | objfile); | |
3664 | dip -> has_at_stmt_list = 1; | |
3665 | break; | |
3666 | case AT_low_pc: | |
3667 | dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3668 | objfile); | |
3669 | dip -> at_low_pc += baseaddr; | |
3670 | dip -> has_at_low_pc = 1; | |
3671 | break; | |
3672 | case AT_high_pc: | |
3673 | dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3674 | objfile); | |
3675 | dip -> at_high_pc += baseaddr; | |
3676 | break; | |
3677 | case AT_language: | |
3678 | dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3679 | objfile); | |
3680 | break; | |
3681 | case AT_user_def_type: | |
3682 | dip -> at_user_def_type = target_to_host (diep, nbytes, | |
3683 | GET_UNSIGNED, objfile); | |
3684 | break; | |
3685 | case AT_byte_size: | |
3686 | dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3687 | objfile); | |
3688 | dip -> has_at_byte_size = 1; | |
3689 | break; | |
3690 | case AT_bit_size: | |
3691 | dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3692 | objfile); | |
3693 | break; | |
3694 | case AT_member: | |
3695 | dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3696 | objfile); | |
3697 | break; | |
3698 | case AT_discr: | |
3699 | dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3700 | objfile); | |
3701 | break; | |
3702 | case AT_location: | |
3703 | dip -> at_location = diep; | |
3704 | break; | |
3705 | case AT_mod_fund_type: | |
3706 | dip -> at_mod_fund_type = diep; | |
3707 | break; | |
3708 | case AT_subscr_data: | |
3709 | dip -> at_subscr_data = diep; | |
3710 | break; | |
3711 | case AT_mod_u_d_type: | |
3712 | dip -> at_mod_u_d_type = diep; | |
3713 | break; | |
3714 | case AT_element_list: | |
3715 | dip -> at_element_list = diep; | |
3716 | dip -> short_element_list = 0; | |
3717 | break; | |
3718 | case AT_short_element_list: | |
3719 | dip -> at_element_list = diep; | |
3720 | dip -> short_element_list = 1; | |
3721 | break; | |
3722 | case AT_discr_value: | |
3723 | dip -> at_discr_value = diep; | |
3724 | break; | |
3725 | case AT_string_length: | |
3726 | dip -> at_string_length = diep; | |
3727 | break; | |
3728 | case AT_name: | |
3729 | dip -> at_name = diep; | |
3730 | break; | |
3731 | case AT_comp_dir: | |
3732 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |
3733 | know how to deal with it. (FIXME). */ | |
3734 | dip -> at_comp_dir = strrchr (diep, ':'); | |
3735 | if (dip -> at_comp_dir != NULL) | |
3736 | { | |
3737 | dip -> at_comp_dir++; | |
3738 | } | |
3739 | else | |
3740 | { | |
3741 | dip -> at_comp_dir = diep; | |
3742 | } | |
3743 | break; | |
3744 | case AT_producer: | |
3745 | dip -> at_producer = diep; | |
3746 | break; | |
3747 | case AT_start_scope: | |
3748 | dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3749 | objfile); | |
3750 | break; | |
3751 | case AT_stride_size: | |
3752 | dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3753 | objfile); | |
3754 | break; | |
3755 | case AT_src_info: | |
3756 | dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3757 | objfile); | |
3758 | break; | |
3759 | case AT_prototyped: | |
3760 | dip -> at_prototyped = diep; | |
3761 | break; | |
3762 | default: | |
3763 | /* Found an attribute that we are unprepared to handle. However | |
3764 | it is specifically one of the design goals of DWARF that | |
3765 | consumers should ignore unknown attributes. As long as the | |
3766 | form is one that we recognize (so we know how to skip it), | |
3767 | we can just ignore the unknown attribute. */ | |
3768 | break; | |
3769 | } | |
3770 | form = FORM_FROM_ATTR (attr); | |
3771 | switch (form) | |
3772 | { | |
3773 | case FORM_DATA2: | |
3774 | diep += 2; | |
3775 | break; | |
3776 | case FORM_DATA4: | |
3777 | case FORM_REF: | |
3778 | diep += 4; | |
3779 | break; | |
3780 | case FORM_DATA8: | |
3781 | diep += 8; | |
3782 | break; | |
3783 | case FORM_ADDR: | |
3784 | diep += TARGET_FT_POINTER_SIZE (objfile); | |
3785 | break; | |
3786 | case FORM_BLOCK2: | |
3787 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3788 | break; | |
3789 | case FORM_BLOCK4: | |
3790 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3791 | break; | |
3792 | case FORM_STRING: | |
3793 | diep += strlen (diep) + 1; | |
3794 | break; | |
3795 | default: | |
3796 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3797 | diep = end; | |
3798 | break; | |
3799 | } | |
3800 | } | |
3801 | } | |
3802 | ||
3803 | /* | |
3804 | ||
3805 | LOCAL FUNCTION | |
3806 | ||
3807 | target_to_host -- swap in target data to host | |
3808 | ||
3809 | SYNOPSIS | |
3810 | ||
3811 | target_to_host (char *from, int nbytes, int signextend, | |
3812 | struct objfile *objfile) | |
3813 | ||
3814 | DESCRIPTION | |
3815 | ||
3816 | Given pointer to data in target format in FROM, a byte count for | |
3817 | the size of the data in NBYTES, a flag indicating whether or not | |
3818 | the data is signed in SIGNEXTEND, and a pointer to the current | |
3819 | objfile in OBJFILE, convert the data to host format and return | |
3820 | the converted value. | |
3821 | ||
3822 | NOTES | |
3823 | ||
3824 | FIXME: If we read data that is known to be signed, and expect to | |
3825 | use it as signed data, then we need to explicitly sign extend the | |
3826 | result until the bfd library is able to do this for us. | |
3827 | ||
3828 | FIXME: Would a 32 bit target ever need an 8 byte result? | |
3829 | ||
3830 | */ | |
3831 | ||
3832 | static CORE_ADDR | |
3833 | target_to_host (from, nbytes, signextend, objfile) | |
3834 | char *from; | |
3835 | int nbytes; | |
3836 | int signextend; /* FIXME: Unused */ | |
3837 | struct objfile *objfile; | |
3838 | { | |
3839 | CORE_ADDR rtnval; | |
3840 | ||
3841 | switch (nbytes) | |
3842 | { | |
3843 | case 8: | |
3844 | rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from); | |
3845 | break; | |
3846 | case 4: | |
3847 | rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from); | |
3848 | break; | |
3849 | case 2: | |
3850 | rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from); | |
3851 | break; | |
3852 | case 1: | |
3853 | rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from); | |
3854 | break; | |
3855 | default: | |
3856 | complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); | |
3857 | rtnval = 0; | |
3858 | break; | |
3859 | } | |
3860 | return (rtnval); | |
3861 | } | |
3862 | ||
3863 | /* | |
3864 | ||
3865 | LOCAL FUNCTION | |
3866 | ||
3867 | attribute_size -- compute size of data for a DWARF attribute | |
3868 | ||
3869 | SYNOPSIS | |
3870 | ||
3871 | static int attribute_size (unsigned int attr) | |
3872 | ||
3873 | DESCRIPTION | |
3874 | ||
3875 | Given a DWARF attribute in ATTR, compute the size of the first | |
3876 | piece of data associated with this attribute and return that | |
3877 | size. | |
3878 | ||
3879 | Returns -1 for unrecognized attributes. | |
3880 | ||
3881 | */ | |
3882 | ||
3883 | static int | |
3884 | attribute_size (attr) | |
3885 | unsigned int attr; | |
3886 | { | |
3887 | int nbytes; /* Size of next data for this attribute */ | |
3888 | unsigned short form; /* Form of the attribute */ | |
3889 | ||
3890 | form = FORM_FROM_ATTR (attr); | |
3891 | switch (form) | |
3892 | { | |
3893 | case FORM_STRING: /* A variable length field is next */ | |
3894 | nbytes = 0; | |
3895 | break; | |
3896 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |
3897 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |
3898 | nbytes = 2; | |
3899 | break; | |
3900 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |
3901 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |
3902 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |
3903 | nbytes = 4; | |
3904 | break; | |
3905 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |
3906 | nbytes = 8; | |
3907 | break; | |
3908 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |
3909 | nbytes = TARGET_FT_POINTER_SIZE (objfile); | |
3910 | break; | |
3911 | default: | |
3912 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3913 | nbytes = -1; | |
3914 | break; | |
3915 | } | |
3916 | return (nbytes); | |
3917 | } |