]>
Commit | Line | Data |
---|---|---|
1ab3bf1b | 1 | /* GDB routines for manipulating objfiles. |
02b40a19 | 2 | Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc. |
1ab3bf1b JG |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
1ab3bf1b JG |
20 | |
21 | /* This file contains support routines for creating, manipulating, and | |
22 | destroying objfile structures. */ | |
23 | ||
1ab3bf1b JG |
24 | #include "defs.h" |
25 | #include "bfd.h" /* Binary File Description */ | |
26 | #include "symtab.h" | |
27 | #include "symfile.h" | |
5e2e79f8 | 28 | #include "objfiles.h" |
610a7e74 | 29 | #include "gdb-stabs.h" |
c5198d93 | 30 | #include "target.h" |
1ab3bf1b | 31 | |
318bf84f | 32 | #include <sys/types.h> |
2b576293 | 33 | #include "gdb_stat.h" |
318bf84f | 34 | #include <fcntl.h> |
f309ad95 | 35 | #include "obstack.h" |
2b576293 | 36 | #include "gdb_string.h" |
1ab3bf1b | 37 | |
b607efe7 FF |
38 | /* FIXME: imported from mdebugread.c */ |
39 | ||
40 | extern void ecoff_relocate_efi PARAMS ((struct symbol *, CORE_ADDR)); | |
41 | ||
318bf84f FF |
42 | /* Prototypes for local functions */ |
43 | ||
1867b3be FF |
44 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
45 | ||
46 | static int | |
47 | open_existing_mapped_file PARAMS ((char *, long, int)); | |
48 | ||
318bf84f | 49 | static int |
b0246b3b | 50 | open_mapped_file PARAMS ((char *filename, long mtime, int mapped)); |
318bf84f | 51 | |
54109914 FF |
52 | static PTR |
53 | map_to_file PARAMS ((int)); | |
54 | ||
1867b3be FF |
55 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ |
56 | ||
b607efe7 FF |
57 | static void |
58 | add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR)); | |
59 | ||
5e2e79f8 FF |
60 | /* Externally visible variables that are owned by this module. |
61 | See declarations in objfile.h for more info. */ | |
1ab3bf1b JG |
62 | |
63 | struct objfile *object_files; /* Linked list of all objfiles */ | |
5e2e79f8 FF |
64 | struct objfile *current_objfile; /* For symbol file being read in */ |
65 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
02b40a19 | 66 | struct objfile *rt_common_objfile; /* For runtime common symbols */ |
5e2e79f8 | 67 | |
318bf84f | 68 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
1ab3bf1b | 69 | |
73d0fc78 RP |
70 | /* Locate all mappable sections of a BFD file. |
71 | objfile_p_char is a char * to get it through | |
72 | bfd_map_over_sections; we cast it back to its proper type. */ | |
73 | ||
74 | static void | |
75 | add_to_objfile_sections (abfd, asect, objfile_p_char) | |
76 | bfd *abfd; | |
77 | sec_ptr asect; | |
78 | PTR objfile_p_char; | |
79 | { | |
80 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
81 | struct obj_section section; | |
82 | flagword aflag; | |
83 | ||
84 | aflag = bfd_get_section_flags (abfd, asect); | |
e14316e7 | 85 | if (!(aflag & SEC_ALLOC)) |
73d0fc78 RP |
86 | return; |
87 | if (0 == bfd_section_size (abfd, asect)) | |
88 | return; | |
89 | section.offset = 0; | |
4365c36c | 90 | section.objfile = objfile; |
94d4b713 | 91 | section.the_bfd_section = asect; |
73d0fc78 RP |
92 | section.addr = bfd_section_vma (abfd, asect); |
93 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
5579919f | 94 | obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof(section)); |
5573d7d4 | 95 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
73d0fc78 RP |
96 | } |
97 | ||
98 | /* Builds a section table for OBJFILE. | |
4d57c599 JK |
99 | Returns 0 if OK, 1 on error (in which case bfd_error contains the |
100 | error). */ | |
73d0fc78 | 101 | |
4d57c599 | 102 | int |
73d0fc78 RP |
103 | build_objfile_section_table (objfile) |
104 | struct objfile *objfile; | |
105 | { | |
e14316e7 JK |
106 | /* objfile->sections can be already set when reading a mapped symbol |
107 | file. I believe that we do need to rebuild the section table in | |
108 | this case (we rebuild other things derived from the bfd), but we | |
109 | can't free the old one (it's in the psymbol_obstack). So we just | |
110 | waste some memory. */ | |
73d0fc78 RP |
111 | |
112 | objfile->sections_end = 0; | |
113 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile); | |
ccd87bf2 JK |
114 | objfile->sections = (struct obj_section *) |
115 | obstack_finish (&objfile->psymbol_obstack); | |
5573d7d4 | 116 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; |
73d0fc78 RP |
117 | return(0); |
118 | } | |
119 | ||
b0246b3b FF |
120 | /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates |
121 | whether or not an objfile is to be mapped (MAPPED), allocate a new objfile | |
122 | struct, fill it in as best we can, link it into the list of all known | |
123 | objfiles, and return a pointer to the new objfile struct. */ | |
1ab3bf1b JG |
124 | |
125 | struct objfile * | |
b0246b3b | 126 | allocate_objfile (abfd, mapped) |
1ab3bf1b | 127 | bfd *abfd; |
318bf84f | 128 | int mapped; |
1ab3bf1b | 129 | { |
318bf84f | 130 | struct objfile *objfile = NULL; |
7f4c8595 | 131 | struct objfile *last_one = NULL; |
318bf84f FF |
132 | |
133 | mapped |= mapped_symbol_files; | |
134 | ||
135 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) | |
100f92e2 | 136 | { |
318bf84f | 137 | |
100f92e2 JK |
138 | /* If we can support mapped symbol files, try to open/reopen the |
139 | mapped file that corresponds to the file from which we wish to | |
140 | read symbols. If the objfile is to be mapped, we must malloc | |
141 | the structure itself using the mmap version, and arrange that | |
142 | all memory allocation for the objfile uses the mmap routines. | |
143 | If we are reusing an existing mapped file, from which we get | |
144 | our objfile pointer, we have to make sure that we update the | |
145 | pointers to the alloc/free functions in the obstack, in case | |
146 | these functions have moved within the current gdb. */ | |
147 | ||
148 | int fd; | |
149 | ||
150 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
151 | mapped); | |
152 | if (fd >= 0) | |
153 | { | |
100f92e2 JK |
154 | PTR md; |
155 | ||
54109914 | 156 | if ((md = map_to_file (fd)) == NULL) |
100f92e2 JK |
157 | { |
158 | close (fd); | |
159 | } | |
160 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
161 | { | |
162 | /* Update memory corruption handler function addresses. */ | |
163 | init_malloc (md); | |
164 | objfile -> md = md; | |
165 | objfile -> mmfd = fd; | |
166 | /* Update pointers to functions to *our* copies */ | |
2ad5709f FF |
167 | obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc); |
168 | obstack_freefun (&objfile -> psymbol_cache.cache, mfree); | |
100f92e2 JK |
169 | obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc); |
170 | obstack_freefun (&objfile -> psymbol_obstack, mfree); | |
171 | obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc); | |
172 | obstack_freefun (&objfile -> symbol_obstack, mfree); | |
173 | obstack_chunkfun (&objfile -> type_obstack, xmmalloc); | |
174 | obstack_freefun (&objfile -> type_obstack, mfree); | |
175 | /* If already in objfile list, unlink it. */ | |
176 | unlink_objfile (objfile); | |
177 | /* Forget things specific to a particular gdb, may have changed. */ | |
178 | objfile -> sf = NULL; | |
179 | } | |
180 | else | |
181 | { | |
182 | ||
183 | /* Set up to detect internal memory corruption. MUST be | |
184 | done before the first malloc. See comments in | |
185 | init_malloc() and mmcheck(). */ | |
186 | ||
187 | init_malloc (md); | |
188 | ||
189 | objfile = (struct objfile *) | |
190 | xmmalloc (md, sizeof (struct objfile)); | |
191 | memset (objfile, 0, sizeof (struct objfile)); | |
192 | objfile -> md = md; | |
193 | objfile -> mmfd = fd; | |
194 | objfile -> flags |= OBJF_MAPPED; | |
195 | mmalloc_setkey (objfile -> md, 0, objfile); | |
2ad5709f FF |
196 | obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache, |
197 | 0, 0, xmmalloc, mfree, | |
198 | objfile -> md); | |
100f92e2 JK |
199 | obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack, |
200 | 0, 0, xmmalloc, mfree, | |
201 | objfile -> md); | |
202 | obstack_specify_allocation_with_arg (&objfile -> symbol_obstack, | |
203 | 0, 0, xmmalloc, mfree, | |
204 | objfile -> md); | |
205 | obstack_specify_allocation_with_arg (&objfile -> type_obstack, | |
206 | 0, 0, xmmalloc, mfree, | |
207 | objfile -> md); | |
208 | } | |
209 | } | |
210 | ||
211 | if (mapped && (objfile == NULL)) | |
212 | { | |
213 | warning ("symbol table for '%s' will not be mapped", | |
214 | bfd_get_filename (abfd)); | |
215 | } | |
216 | } | |
318bf84f | 217 | #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */ |
1ab3bf1b | 218 | |
318bf84f | 219 | if (mapped) |
1ab3bf1b | 220 | { |
e7b6403a | 221 | warning ("mapped symbol tables are not supported on this machine; missing or broken mmap()."); |
318bf84f FF |
222 | |
223 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
224 | any more, which shuts up gdb unless the user specifically gives the | |
225 | "mapped" keyword again. */ | |
226 | ||
227 | mapped_symbol_files = 0; | |
1ab3bf1b | 228 | } |
318bf84f FF |
229 | |
230 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
231 | ||
232 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
233 | mapped, or failed to open the mapped file for some reason, then revert | |
234 | back to an unmapped objfile. */ | |
235 | ||
236 | if (objfile == NULL) | |
1ab3bf1b JG |
237 | { |
238 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
4ed3a9ea | 239 | memset (objfile, 0, sizeof (struct objfile)); |
318bf84f | 240 | objfile -> md = NULL; |
2ad5709f FF |
241 | obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0, |
242 | xmalloc, free); | |
cd46ffad FF |
243 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, |
244 | free); | |
245 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, | |
246 | free); | |
247 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, | |
248 | free); | |
1ab3bf1b JG |
249 | } |
250 | ||
b0246b3b FF |
251 | /* Update the per-objfile information that comes from the bfd, ensuring |
252 | that any data that is reference is saved in the per-objfile data | |
253 | region. */ | |
1ab3bf1b JG |
254 | |
255 | objfile -> obfd = abfd; | |
2d6d969c FF |
256 | if (objfile -> name != NULL) |
257 | { | |
258 | mfree (objfile -> md, objfile -> name); | |
259 | } | |
b0246b3b | 260 | objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd)); |
1ab3bf1b JG |
261 | objfile -> mtime = bfd_get_mtime (abfd); |
262 | ||
73d0fc78 RP |
263 | /* Build section table. */ |
264 | ||
265 | if (build_objfile_section_table (objfile)) | |
266 | { | |
267 | error ("Can't find the file sections in `%s': %s", | |
c4a081e1 | 268 | objfile -> name, bfd_errmsg (bfd_get_error ())); |
73d0fc78 RP |
269 | } |
270 | ||
7f4c8595 | 271 | /* Add this file onto the tail of the linked list of other such files. */ |
1ab3bf1b | 272 | |
7f4c8595 SS |
273 | objfile -> next = NULL; |
274 | if (object_files == NULL) | |
275 | object_files = objfile; | |
276 | else | |
277 | { | |
278 | for (last_one = object_files; | |
279 | last_one -> next; | |
280 | last_one = last_one -> next); | |
281 | last_one -> next = objfile; | |
282 | } | |
1ab3bf1b JG |
283 | return (objfile); |
284 | } | |
285 | ||
3a470454 JK |
286 | /* Put OBJFILE at the front of the list. */ |
287 | ||
288 | void | |
289 | objfile_to_front (objfile) | |
290 | struct objfile *objfile; | |
291 | { | |
292 | struct objfile **objp; | |
293 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
294 | { | |
295 | if (*objp == objfile) | |
296 | { | |
297 | /* Unhook it from where it is. */ | |
298 | *objp = objfile->next; | |
299 | /* Put it in the front. */ | |
300 | objfile->next = object_files; | |
301 | object_files = objfile; | |
302 | break; | |
303 | } | |
304 | } | |
305 | } | |
306 | ||
6c316cfd FF |
307 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the |
308 | list. | |
309 | ||
310 | It is not a bug, or error, to call this function if OBJFILE is not known | |
311 | to be in the current list. This is done in the case of mapped objfiles, | |
312 | for example, just to ensure that the mapped objfile doesn't appear twice | |
313 | in the list. Since the list is threaded, linking in a mapped objfile | |
314 | twice would create a circular list. | |
315 | ||
316 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
317 | unlinking it, just to ensure that we have completely severed any linkages | |
318 | between the OBJFILE and the list. */ | |
319 | ||
320 | void | |
321 | unlink_objfile (objfile) | |
322 | struct objfile *objfile; | |
323 | { | |
324 | struct objfile** objpp; | |
325 | ||
326 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next)) | |
327 | { | |
328 | if (*objpp == objfile) | |
329 | { | |
330 | *objpp = (*objpp) -> next; | |
331 | objfile -> next = NULL; | |
332 | break; | |
333 | } | |
334 | } | |
335 | } | |
336 | ||
1ab3bf1b JG |
337 | |
338 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
339 | that as much as possible is allocated on the symbol_obstack and | |
80d68b1d FF |
340 | psymbol_obstack, so that the memory can be efficiently freed. |
341 | ||
342 | Things which we do NOT free because they are not in malloc'd memory | |
343 | or not in memory specific to the objfile include: | |
344 | ||
345 | objfile -> sf | |
346 | ||
2d6d969c FF |
347 | FIXME: If the objfile is using reusable symbol information (via mmalloc), |
348 | then we need to take into account the fact that more than one process | |
349 | may be using the symbol information at the same time (when mmalloc is | |
350 | extended to support cooperative locking). When more than one process | |
351 | is using the mapped symbol info, we need to be more careful about when | |
352 | we free objects in the reusable area. */ | |
1ab3bf1b JG |
353 | |
354 | void | |
355 | free_objfile (objfile) | |
356 | struct objfile *objfile; | |
357 | { | |
2d6d969c FF |
358 | /* First do any symbol file specific actions required when we are |
359 | finished with a particular symbol file. Note that if the objfile | |
360 | is using reusable symbol information (via mmalloc) then each of | |
361 | these routines is responsible for doing the correct thing, either | |
362 | freeing things which are valid only during this particular gdb | |
363 | execution, or leaving them to be reused during the next one. */ | |
1ab3bf1b | 364 | |
80d68b1d FF |
365 | if (objfile -> sf != NULL) |
366 | { | |
367 | (*objfile -> sf -> sym_finish) (objfile); | |
368 | } | |
2d6d969c FF |
369 | |
370 | /* We always close the bfd. */ | |
371 | ||
80d68b1d | 372 | if (objfile -> obfd != NULL) |
1ab3bf1b | 373 | { |
346168a2 | 374 | char *name = bfd_get_filename (objfile->obfd); |
9de0904c JK |
375 | if (!bfd_close (objfile -> obfd)) |
376 | warning ("cannot close \"%s\": %s", | |
377 | name, bfd_errmsg (bfd_get_error ())); | |
346168a2 | 378 | free (name); |
1ab3bf1b JG |
379 | } |
380 | ||
2d6d969c | 381 | /* Remove it from the chain of all objfiles. */ |
1ab3bf1b | 382 | |
6c316cfd | 383 | unlink_objfile (objfile); |
1ab3bf1b | 384 | |
02b40a19 PS |
385 | /* If we are going to free the runtime common objfile, mark it |
386 | as unallocated. */ | |
387 | ||
388 | if (objfile == rt_common_objfile) | |
389 | rt_common_objfile = NULL; | |
390 | ||
1ab3bf1b JG |
391 | /* Before the symbol table code was redone to make it easier to |
392 | selectively load and remove information particular to a specific | |
393 | linkage unit, gdb used to do these things whenever the monolithic | |
394 | symbol table was blown away. How much still needs to be done | |
395 | is unknown, but we play it safe for now and keep each action until | |
396 | it is shown to be no longer needed. */ | |
397 | ||
1ab3bf1b JG |
398 | #if defined (CLEAR_SOLIB) |
399 | CLEAR_SOLIB (); | |
c5198d93 JK |
400 | /* CLEAR_SOLIB closes the bfd's for any shared libraries. But |
401 | the to_sections for a core file might refer to those bfd's. So | |
402 | detach any core file. */ | |
403 | { | |
404 | struct target_ops *t = find_core_target (); | |
405 | if (t != NULL) | |
406 | (t->to_detach) (NULL, 0); | |
407 | } | |
1ab3bf1b | 408 | #endif |
4d57c599 JK |
409 | /* I *think* all our callers call clear_symtab_users. If so, no need |
410 | to call this here. */ | |
1ab3bf1b JG |
411 | clear_pc_function_cache (); |
412 | ||
2d6d969c FF |
413 | /* The last thing we do is free the objfile struct itself for the |
414 | non-reusable case, or detach from the mapped file for the reusable | |
415 | case. Note that the mmalloc_detach or the mfree is the last thing | |
416 | we can do with this objfile. */ | |
1ab3bf1b | 417 | |
55b3ef9a FF |
418 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
419 | ||
2d6d969c FF |
420 | if (objfile -> flags & OBJF_MAPPED) |
421 | { | |
422 | /* Remember the fd so we can close it. We can't close it before | |
423 | doing the detach, and after the detach the objfile is gone. */ | |
100f92e2 JK |
424 | int mmfd; |
425 | ||
2d6d969c FF |
426 | mmfd = objfile -> mmfd; |
427 | mmalloc_detach (objfile -> md); | |
55b3ef9a | 428 | objfile = NULL; |
4ed3a9ea | 429 | close (mmfd); |
2d6d969c | 430 | } |
55b3ef9a FF |
431 | |
432 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
433 | ||
434 | /* If we still have an objfile, then either we don't support reusable | |
435 | objfiles or this one was not reusable. So free it normally. */ | |
436 | ||
437 | if (objfile != NULL) | |
2d6d969c FF |
438 | { |
439 | if (objfile -> name != NULL) | |
440 | { | |
441 | mfree (objfile -> md, objfile -> name); | |
442 | } | |
346168a2 JG |
443 | if (objfile->global_psymbols.list) |
444 | mfree (objfile->md, objfile->global_psymbols.list); | |
445 | if (objfile->static_psymbols.list) | |
446 | mfree (objfile->md, objfile->static_psymbols.list); | |
2d6d969c | 447 | /* Free the obstacks for non-reusable objfiles */ |
2ad5709f | 448 | obstack_free (&objfile -> psymbol_cache.cache, 0); |
2d6d969c FF |
449 | obstack_free (&objfile -> psymbol_obstack, 0); |
450 | obstack_free (&objfile -> symbol_obstack, 0); | |
451 | obstack_free (&objfile -> type_obstack, 0); | |
452 | mfree (objfile -> md, objfile); | |
55b3ef9a | 453 | objfile = NULL; |
2d6d969c | 454 | } |
1ab3bf1b JG |
455 | } |
456 | ||
cba0d141 | 457 | |
0eb22669 | 458 | /* Free all the object files at once and clean up their users. */ |
cba0d141 JG |
459 | |
460 | void | |
461 | free_all_objfiles () | |
462 | { | |
463 | struct objfile *objfile, *temp; | |
464 | ||
465 | ALL_OBJFILES_SAFE (objfile, temp) | |
466 | { | |
467 | free_objfile (objfile); | |
468 | } | |
0eb22669 | 469 | clear_symtab_users (); |
cba0d141 | 470 | } |
3c02636b JK |
471 | \f |
472 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
473 | entries in new_offsets. */ | |
474 | void | |
475 | objfile_relocate (objfile, new_offsets) | |
476 | struct objfile *objfile; | |
477 | struct section_offsets *new_offsets; | |
478 | { | |
479 | struct section_offsets *delta = (struct section_offsets *) alloca | |
480 | (sizeof (struct section_offsets) | |
481 | + objfile->num_sections * sizeof (delta->offsets)); | |
482 | ||
483 | { | |
484 | int i; | |
485 | int something_changed = 0; | |
486 | for (i = 0; i < objfile->num_sections; ++i) | |
487 | { | |
488 | ANOFFSET (delta, i) = | |
489 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); | |
490 | if (ANOFFSET (delta, i) != 0) | |
491 | something_changed = 1; | |
492 | } | |
493 | if (!something_changed) | |
494 | return; | |
495 | } | |
496 | ||
497 | /* OK, get all the symtabs. */ | |
498 | { | |
499 | struct symtab *s; | |
500 | ||
72bba93b | 501 | ALL_OBJFILE_SYMTABS (objfile, s) |
3c02636b JK |
502 | { |
503 | struct linetable *l; | |
504 | struct blockvector *bv; | |
505 | int i; | |
506 | ||
507 | /* First the line table. */ | |
508 | l = LINETABLE (s); | |
509 | if (l) | |
510 | { | |
511 | for (i = 0; i < l->nitems; ++i) | |
512 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
513 | } | |
514 | ||
515 | /* Don't relocate a shared blockvector more than once. */ | |
516 | if (!s->primary) | |
517 | continue; | |
518 | ||
519 | bv = BLOCKVECTOR (s); | |
520 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
521 | { | |
522 | struct block *b; | |
523 | int j; | |
524 | ||
525 | b = BLOCKVECTOR_BLOCK (bv, i); | |
526 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
527 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
528 | ||
529 | for (j = 0; j < BLOCK_NSYMS (b); ++j) | |
530 | { | |
531 | struct symbol *sym = BLOCK_SYM (b, j); | |
532 | /* The RS6000 code from which this was taken skipped | |
533 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
534 | But I'm leaving out that test, on the theory that | |
535 | they can't possibly pass the tests below. */ | |
536 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
537 | || SYMBOL_CLASS (sym) == LOC_STATIC) | |
538 | && SYMBOL_SECTION (sym) >= 0) | |
539 | { | |
540 | SYMBOL_VALUE_ADDRESS (sym) += | |
541 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
542 | } | |
72bba93b SG |
543 | #ifdef MIPS_EFI_SYMBOL_NAME |
544 | /* Relocate Extra Function Info for ecoff. */ | |
545 | ||
546 | else | |
547 | if (SYMBOL_CLASS (sym) == LOC_CONST | |
548 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
549 | && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) | |
b607efe7 | 550 | ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section)); |
72bba93b | 551 | #endif |
3c02636b JK |
552 | } |
553 | } | |
554 | } | |
555 | } | |
556 | ||
610a7e74 ILT |
557 | { |
558 | struct partial_symtab *p; | |
559 | ||
560 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
561 | { | |
562 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT); | |
563 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT); | |
564 | } | |
565 | } | |
566 | ||
567 | { | |
2ad5709f | 568 | struct partial_symbol **psym; |
610a7e74 ILT |
569 | |
570 | for (psym = objfile->global_psymbols.list; | |
571 | psym < objfile->global_psymbols.next; | |
572 | psym++) | |
2ad5709f FF |
573 | if (SYMBOL_SECTION (*psym) >= 0) |
574 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym)); | |
610a7e74 ILT |
575 | for (psym = objfile->static_psymbols.list; |
576 | psym < objfile->static_psymbols.next; | |
577 | psym++) | |
2ad5709f FF |
578 | if (SYMBOL_SECTION (*psym) >= 0) |
579 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym)); | |
610a7e74 ILT |
580 | } |
581 | ||
3c02636b JK |
582 | { |
583 | struct minimal_symbol *msym; | |
584 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
610a7e74 ILT |
585 | if (SYMBOL_SECTION (msym) >= 0) |
586 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); | |
3c02636b | 587 | } |
3a470454 JK |
588 | /* Relocating different sections by different amounts may cause the symbols |
589 | to be out of order. */ | |
590 | msymbols_sort (objfile); | |
3c02636b JK |
591 | |
592 | { | |
593 | int i; | |
594 | for (i = 0; i < objfile->num_sections; ++i) | |
595 | ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); | |
596 | } | |
72bba93b SG |
597 | |
598 | { | |
599 | struct obj_section *s; | |
600 | bfd *abfd; | |
601 | ||
3a470454 | 602 | abfd = objfile->obfd; |
72bba93b | 603 | |
3a470454 JK |
604 | for (s = objfile->sections; |
605 | s < objfile->sections_end; ++s) | |
72bba93b SG |
606 | { |
607 | flagword flags; | |
608 | ||
609 | flags = bfd_get_section_flags (abfd, s->the_bfd_section); | |
610 | ||
611 | if (flags & SEC_CODE) | |
612 | { | |
613 | s->addr += ANOFFSET (delta, SECT_OFF_TEXT); | |
614 | s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT); | |
615 | } | |
616 | else if (flags & (SEC_DATA | SEC_LOAD)) | |
617 | { | |
618 | s->addr += ANOFFSET (delta, SECT_OFF_DATA); | |
619 | s->endaddr += ANOFFSET (delta, SECT_OFF_DATA); | |
620 | } | |
621 | else if (flags & SEC_ALLOC) | |
622 | { | |
623 | s->addr += ANOFFSET (delta, SECT_OFF_BSS); | |
624 | s->endaddr += ANOFFSET (delta, SECT_OFF_BSS); | |
625 | } | |
626 | } | |
627 | } | |
a4b4f520 SG |
628 | |
629 | if (objfile->ei.entry_point != ~0) | |
630 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT); | |
631 | ||
632 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) | |
633 | { | |
634 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
635 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
636 | } | |
637 | ||
638 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
639 | { | |
640 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
641 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
642 | } | |
643 | ||
644 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
645 | { | |
646 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
647 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
648 | } | |
3c02636b JK |
649 | } |
650 | \f | |
1ab3bf1b JG |
651 | /* Many places in gdb want to test just to see if we have any partial |
652 | symbols available. This function returns zero if none are currently | |
653 | available, nonzero otherwise. */ | |
654 | ||
655 | int | |
656 | have_partial_symbols () | |
657 | { | |
658 | struct objfile *ofp; | |
1ab3bf1b | 659 | |
84ffdec2 | 660 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
661 | { |
662 | if (ofp -> psymtabs != NULL) | |
663 | { | |
84ffdec2 | 664 | return 1; |
1ab3bf1b JG |
665 | } |
666 | } | |
84ffdec2 | 667 | return 0; |
1ab3bf1b JG |
668 | } |
669 | ||
670 | /* Many places in gdb want to test just to see if we have any full | |
671 | symbols available. This function returns zero if none are currently | |
672 | available, nonzero otherwise. */ | |
673 | ||
674 | int | |
675 | have_full_symbols () | |
676 | { | |
677 | struct objfile *ofp; | |
1ab3bf1b | 678 | |
84ffdec2 | 679 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
680 | { |
681 | if (ofp -> symtabs != NULL) | |
682 | { | |
84ffdec2 | 683 | return 1; |
1ab3bf1b JG |
684 | } |
685 | } | |
84ffdec2 | 686 | return 0; |
1ab3bf1b JG |
687 | } |
688 | ||
689 | /* Many places in gdb want to test just to see if we have any minimal | |
690 | symbols available. This function returns zero if none are currently | |
691 | available, nonzero otherwise. */ | |
692 | ||
693 | int | |
694 | have_minimal_symbols () | |
695 | { | |
696 | struct objfile *ofp; | |
1ab3bf1b | 697 | |
84ffdec2 | 698 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
699 | { |
700 | if (ofp -> msymbols != NULL) | |
701 | { | |
84ffdec2 | 702 | return 1; |
1ab3bf1b JG |
703 | } |
704 | } | |
84ffdec2 | 705 | return 0; |
1ab3bf1b JG |
706 | } |
707 | ||
1867b3be FF |
708 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
709 | ||
710 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
711 | of the corresponding symbol file in MTIME, try to open an existing file | |
712 | with the name SYMSFILENAME and verify it is more recent than the base | |
713 | file by checking it's timestamp against MTIME. | |
714 | ||
715 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
716 | ||
717 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
718 | user has specified creation of a mapped file. If so, we don't issue | |
719 | any warning message because we will be creating a new mapped file anyway, | |
720 | overwriting the old one. If not, then we issue a warning message so that | |
721 | the user will know why we aren't using this existing mapped symbol file. | |
722 | In either case, we return -1. | |
723 | ||
724 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
725 | some reason, then prints an appropriate system error message and returns -1. | |
726 | ||
727 | Otherwise, returns the open file descriptor. */ | |
728 | ||
729 | static int | |
730 | open_existing_mapped_file (symsfilename, mtime, mapped) | |
731 | char *symsfilename; | |
732 | long mtime; | |
733 | int mapped; | |
734 | { | |
735 | int fd = -1; | |
736 | struct stat sbuf; | |
737 | ||
738 | if (stat (symsfilename, &sbuf) == 0) | |
739 | { | |
740 | if (sbuf.st_mtime < mtime) | |
741 | { | |
742 | if (!mapped) | |
743 | { | |
a679650f FF |
744 | warning ("mapped symbol file `%s' is out of date, ignored it", |
745 | symsfilename); | |
1867b3be FF |
746 | } |
747 | } | |
748 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
749 | { | |
750 | if (error_pre_print) | |
751 | { | |
199b2450 | 752 | printf_unfiltered (error_pre_print); |
1867b3be FF |
753 | } |
754 | print_sys_errmsg (symsfilename, errno); | |
755 | } | |
756 | } | |
757 | return (fd); | |
758 | } | |
759 | ||
b0246b3b | 760 | /* Look for a mapped symbol file that corresponds to FILENAME and is more |
318bf84f | 761 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb |
b0246b3b FF |
762 | use a mapped symbol file for this file, so create a new one if one does |
763 | not currently exist. | |
318bf84f FF |
764 | |
765 | If found, then return an open file descriptor for the file, otherwise | |
766 | return -1. | |
767 | ||
768 | This routine is responsible for implementing the policy that generates | |
769 | the name of the mapped symbol file from the name of a file containing | |
1867b3be FF |
770 | symbols that gdb would like to read. Currently this policy is to append |
771 | ".syms" to the name of the file. | |
772 | ||
773 | This routine is also responsible for implementing the policy that | |
774 | determines where the mapped symbol file is found (the search path). | |
775 | This policy is that when reading an existing mapped file, a file of | |
776 | the correct name in the current directory takes precedence over a | |
777 | file of the correct name in the same directory as the symbol file. | |
778 | When creating a new mapped file, it is always created in the current | |
779 | directory. This helps to minimize the chances of a user unknowingly | |
780 | creating big mapped files in places like /bin and /usr/local/bin, and | |
781 | allows a local copy to override a manually installed global copy (in | |
782 | /bin for example). */ | |
318bf84f FF |
783 | |
784 | static int | |
b0246b3b FF |
785 | open_mapped_file (filename, mtime, mapped) |
786 | char *filename; | |
318bf84f FF |
787 | long mtime; |
788 | int mapped; | |
789 | { | |
790 | int fd; | |
1867b3be | 791 | char *symsfilename; |
318bf84f | 792 | |
1867b3be FF |
793 | /* First try to open an existing file in the current directory, and |
794 | then try the directory where the symbol file is located. */ | |
318bf84f | 795 | |
1867b3be FF |
796 | symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); |
797 | if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0) | |
318bf84f | 798 | { |
1867b3be FF |
799 | free (symsfilename); |
800 | symsfilename = concat (filename, ".syms", (char *) NULL); | |
801 | fd = open_existing_mapped_file (symsfilename, mtime, mapped); | |
318bf84f FF |
802 | } |
803 | ||
1867b3be FF |
804 | /* If we don't have an open file by now, then either the file does not |
805 | already exist, or the base file has changed since it was created. In | |
806 | either case, if the user has specified use of a mapped file, then | |
807 | create a new mapped file, truncating any existing one. If we can't | |
808 | create one, print a system error message saying why we can't. | |
318bf84f FF |
809 | |
810 | By default the file is rw for everyone, with the user's umask taking | |
811 | care of turning off the permissions the user wants off. */ | |
812 | ||
1867b3be | 813 | if ((fd < 0) && mapped) |
318bf84f | 814 | { |
1867b3be FF |
815 | free (symsfilename); |
816 | symsfilename = concat ("./", basename (filename), ".syms", | |
817 | (char *) NULL); | |
818 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
819 | { | |
820 | if (error_pre_print) | |
821 | { | |
199b2450 | 822 | printf_unfiltered (error_pre_print); |
1867b3be FF |
823 | } |
824 | print_sys_errmsg (symsfilename, errno); | |
825 | } | |
318bf84f FF |
826 | } |
827 | ||
1867b3be | 828 | free (symsfilename); |
318bf84f FF |
829 | return (fd); |
830 | } | |
831 | ||
54109914 FF |
832 | static PTR |
833 | map_to_file (fd) | |
834 | int fd; | |
835 | { | |
836 | PTR md; | |
837 | CORE_ADDR mapto; | |
54109914 FF |
838 | |
839 | md = mmalloc_attach (fd, (PTR) 0); | |
840 | if (md != NULL) | |
841 | { | |
842 | mapto = (CORE_ADDR) mmalloc_getkey (md, 1); | |
843 | md = mmalloc_detach (md); | |
844 | if (md != NULL) | |
845 | { | |
846 | /* FIXME: should figure out why detach failed */ | |
847 | md = NULL; | |
848 | } | |
849 | else if (mapto != (CORE_ADDR) NULL) | |
850 | { | |
851 | /* This mapping file needs to be remapped at "mapto" */ | |
852 | md = mmalloc_attach (fd, (PTR) mapto); | |
853 | } | |
854 | else | |
855 | { | |
856 | /* This is a freshly created mapping file. */ | |
857 | mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024); | |
0a4d0a49 | 858 | if (mapto != 0) |
54109914 FF |
859 | { |
860 | /* To avoid reusing the freshly created mapping file, at the | |
861 | address selected by mmap, we must truncate it before trying | |
862 | to do an attach at the address we want. */ | |
863 | ftruncate (fd, 0); | |
864 | md = mmalloc_attach (fd, (PTR) mapto); | |
865 | if (md != NULL) | |
866 | { | |
867 | mmalloc_setkey (md, 1, (PTR) mapto); | |
868 | } | |
869 | } | |
870 | } | |
871 | } | |
872 | return (md); | |
873 | } | |
874 | ||
1867b3be | 875 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ |
73d0fc78 RP |
876 | |
877 | /* Returns a section whose range includes PC or NULL if none found. */ | |
878 | ||
4365c36c | 879 | struct obj_section * |
73d0fc78 RP |
880 | find_pc_section(pc) |
881 | CORE_ADDR pc; | |
882 | { | |
883 | struct obj_section *s; | |
884 | struct objfile *objfile; | |
885 | ||
886 | ALL_OBJFILES (objfile) | |
887 | for (s = objfile->sections; s < objfile->sections_end; ++s) | |
888 | if (s->addr <= pc | |
889 | && pc < s->endaddr) | |
4365c36c | 890 | return(s); |
73d0fc78 RP |
891 | |
892 | return(NULL); | |
893 | } | |
38b90473 PS |
894 | |
895 | /* In SVR4, we recognize a trampoline by it's section name. | |
896 | That is, if the pc is in a section named ".plt" then we are in | |
897 | a trampoline. */ | |
898 | ||
899 | int | |
900 | in_plt_section(pc, name) | |
901 | CORE_ADDR pc; | |
902 | char *name; | |
903 | { | |
904 | struct obj_section *s; | |
905 | int retval = 0; | |
906 | ||
907 | s = find_pc_section(pc); | |
908 | ||
909 | retval = (s != NULL | |
910 | && s->the_bfd_section->name != NULL | |
911 | && STREQ (s->the_bfd_section->name, ".plt")); | |
912 | return(retval); | |
913 | } |