]>
Commit | Line | Data |
---|---|---|
1ab3bf1b | 1 | /* GDB routines for manipulating objfiles. |
02b40a19 | 2 | Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc. |
1ab3bf1b JG |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | /* This file contains support routines for creating, manipulating, and | |
22 | destroying objfile structures. */ | |
23 | ||
1ab3bf1b JG |
24 | #include "defs.h" |
25 | #include "bfd.h" /* Binary File Description */ | |
26 | #include "symtab.h" | |
27 | #include "symfile.h" | |
5e2e79f8 | 28 | #include "objfiles.h" |
610a7e74 | 29 | #include "gdb-stabs.h" |
c5198d93 | 30 | #include "target.h" |
1ab3bf1b | 31 | |
318bf84f | 32 | #include <sys/types.h> |
2b576293 | 33 | #include "gdb_stat.h" |
318bf84f | 34 | #include <fcntl.h> |
1ab3bf1b | 35 | #include <obstack.h> |
2b576293 | 36 | #include "gdb_string.h" |
1ab3bf1b | 37 | |
318bf84f FF |
38 | /* Prototypes for local functions */ |
39 | ||
1867b3be FF |
40 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
41 | ||
42 | static int | |
43 | open_existing_mapped_file PARAMS ((char *, long, int)); | |
44 | ||
318bf84f | 45 | static int |
b0246b3b | 46 | open_mapped_file PARAMS ((char *filename, long mtime, int mapped)); |
318bf84f FF |
47 | |
48 | static CORE_ADDR | |
49 | map_to_address PARAMS ((void)); | |
50 | ||
1867b3be FF |
51 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ |
52 | ||
5e2e79f8 FF |
53 | /* Externally visible variables that are owned by this module. |
54 | See declarations in objfile.h for more info. */ | |
1ab3bf1b JG |
55 | |
56 | struct objfile *object_files; /* Linked list of all objfiles */ | |
5e2e79f8 FF |
57 | struct objfile *current_objfile; /* For symbol file being read in */ |
58 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
02b40a19 | 59 | struct objfile *rt_common_objfile; /* For runtime common symbols */ |
5e2e79f8 | 60 | |
318bf84f | 61 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
1ab3bf1b | 62 | |
73d0fc78 RP |
63 | /* Locate all mappable sections of a BFD file. |
64 | objfile_p_char is a char * to get it through | |
65 | bfd_map_over_sections; we cast it back to its proper type. */ | |
66 | ||
67 | static void | |
68 | add_to_objfile_sections (abfd, asect, objfile_p_char) | |
69 | bfd *abfd; | |
70 | sec_ptr asect; | |
71 | PTR objfile_p_char; | |
72 | { | |
73 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
74 | struct obj_section section; | |
75 | flagword aflag; | |
76 | ||
77 | aflag = bfd_get_section_flags (abfd, asect); | |
e14316e7 | 78 | if (!(aflag & SEC_ALLOC)) |
73d0fc78 RP |
79 | return; |
80 | if (0 == bfd_section_size (abfd, asect)) | |
81 | return; | |
82 | section.offset = 0; | |
4365c36c | 83 | section.objfile = objfile; |
94d4b713 | 84 | section.the_bfd_section = asect; |
73d0fc78 RP |
85 | section.addr = bfd_section_vma (abfd, asect); |
86 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
87 | obstack_grow (&objfile->psymbol_obstack, §ion, sizeof(section)); | |
5573d7d4 | 88 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
73d0fc78 RP |
89 | } |
90 | ||
91 | /* Builds a section table for OBJFILE. | |
4d57c599 JK |
92 | Returns 0 if OK, 1 on error (in which case bfd_error contains the |
93 | error). */ | |
73d0fc78 | 94 | |
4d57c599 | 95 | int |
73d0fc78 RP |
96 | build_objfile_section_table (objfile) |
97 | struct objfile *objfile; | |
98 | { | |
e14316e7 JK |
99 | /* objfile->sections can be already set when reading a mapped symbol |
100 | file. I believe that we do need to rebuild the section table in | |
101 | this case (we rebuild other things derived from the bfd), but we | |
102 | can't free the old one (it's in the psymbol_obstack). So we just | |
103 | waste some memory. */ | |
73d0fc78 RP |
104 | |
105 | objfile->sections_end = 0; | |
106 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile); | |
ccd87bf2 JK |
107 | objfile->sections = (struct obj_section *) |
108 | obstack_finish (&objfile->psymbol_obstack); | |
5573d7d4 | 109 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; |
73d0fc78 RP |
110 | return(0); |
111 | } | |
112 | ||
b0246b3b FF |
113 | /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates |
114 | whether or not an objfile is to be mapped (MAPPED), allocate a new objfile | |
115 | struct, fill it in as best we can, link it into the list of all known | |
116 | objfiles, and return a pointer to the new objfile struct. */ | |
1ab3bf1b JG |
117 | |
118 | struct objfile * | |
b0246b3b | 119 | allocate_objfile (abfd, mapped) |
1ab3bf1b | 120 | bfd *abfd; |
318bf84f | 121 | int mapped; |
1ab3bf1b | 122 | { |
318bf84f | 123 | struct objfile *objfile = NULL; |
7f4c8595 | 124 | struct objfile *last_one = NULL; |
318bf84f FF |
125 | |
126 | mapped |= mapped_symbol_files; | |
127 | ||
128 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) | |
100f92e2 | 129 | { |
318bf84f | 130 | |
100f92e2 JK |
131 | /* If we can support mapped symbol files, try to open/reopen the |
132 | mapped file that corresponds to the file from which we wish to | |
133 | read symbols. If the objfile is to be mapped, we must malloc | |
134 | the structure itself using the mmap version, and arrange that | |
135 | all memory allocation for the objfile uses the mmap routines. | |
136 | If we are reusing an existing mapped file, from which we get | |
137 | our objfile pointer, we have to make sure that we update the | |
138 | pointers to the alloc/free functions in the obstack, in case | |
139 | these functions have moved within the current gdb. */ | |
140 | ||
141 | int fd; | |
142 | ||
143 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
144 | mapped); | |
145 | if (fd >= 0) | |
146 | { | |
147 | CORE_ADDR mapto; | |
148 | PTR md; | |
149 | ||
150 | if (((mapto = map_to_address ()) == 0) || | |
151 | ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL)) | |
152 | { | |
153 | close (fd); | |
154 | } | |
155 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
156 | { | |
157 | /* Update memory corruption handler function addresses. */ | |
158 | init_malloc (md); | |
159 | objfile -> md = md; | |
160 | objfile -> mmfd = fd; | |
161 | /* Update pointers to functions to *our* copies */ | |
162 | obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc); | |
163 | obstack_freefun (&objfile -> psymbol_obstack, mfree); | |
164 | obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc); | |
165 | obstack_freefun (&objfile -> symbol_obstack, mfree); | |
166 | obstack_chunkfun (&objfile -> type_obstack, xmmalloc); | |
167 | obstack_freefun (&objfile -> type_obstack, mfree); | |
168 | /* If already in objfile list, unlink it. */ | |
169 | unlink_objfile (objfile); | |
170 | /* Forget things specific to a particular gdb, may have changed. */ | |
171 | objfile -> sf = NULL; | |
172 | } | |
173 | else | |
174 | { | |
175 | ||
176 | /* Set up to detect internal memory corruption. MUST be | |
177 | done before the first malloc. See comments in | |
178 | init_malloc() and mmcheck(). */ | |
179 | ||
180 | init_malloc (md); | |
181 | ||
182 | objfile = (struct objfile *) | |
183 | xmmalloc (md, sizeof (struct objfile)); | |
184 | memset (objfile, 0, sizeof (struct objfile)); | |
185 | objfile -> md = md; | |
186 | objfile -> mmfd = fd; | |
187 | objfile -> flags |= OBJF_MAPPED; | |
188 | mmalloc_setkey (objfile -> md, 0, objfile); | |
189 | obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack, | |
190 | 0, 0, xmmalloc, mfree, | |
191 | objfile -> md); | |
192 | obstack_specify_allocation_with_arg (&objfile -> symbol_obstack, | |
193 | 0, 0, xmmalloc, mfree, | |
194 | objfile -> md); | |
195 | obstack_specify_allocation_with_arg (&objfile -> type_obstack, | |
196 | 0, 0, xmmalloc, mfree, | |
197 | objfile -> md); | |
198 | } | |
199 | } | |
200 | ||
201 | if (mapped && (objfile == NULL)) | |
202 | { | |
203 | warning ("symbol table for '%s' will not be mapped", | |
204 | bfd_get_filename (abfd)); | |
205 | } | |
206 | } | |
318bf84f | 207 | #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */ |
1ab3bf1b | 208 | |
318bf84f | 209 | if (mapped) |
1ab3bf1b | 210 | { |
318bf84f FF |
211 | warning ("this version of gdb does not support mapped symbol tables."); |
212 | ||
213 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
214 | any more, which shuts up gdb unless the user specifically gives the | |
215 | "mapped" keyword again. */ | |
216 | ||
217 | mapped_symbol_files = 0; | |
1ab3bf1b | 218 | } |
318bf84f FF |
219 | |
220 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
221 | ||
222 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
223 | mapped, or failed to open the mapped file for some reason, then revert | |
224 | back to an unmapped objfile. */ | |
225 | ||
226 | if (objfile == NULL) | |
1ab3bf1b JG |
227 | { |
228 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
4ed3a9ea | 229 | memset (objfile, 0, sizeof (struct objfile)); |
318bf84f | 230 | objfile -> md = NULL; |
cd46ffad FF |
231 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, |
232 | free); | |
233 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, | |
234 | free); | |
235 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, | |
236 | free); | |
1ab3bf1b JG |
237 | } |
238 | ||
b0246b3b FF |
239 | /* Update the per-objfile information that comes from the bfd, ensuring |
240 | that any data that is reference is saved in the per-objfile data | |
241 | region. */ | |
1ab3bf1b JG |
242 | |
243 | objfile -> obfd = abfd; | |
2d6d969c FF |
244 | if (objfile -> name != NULL) |
245 | { | |
246 | mfree (objfile -> md, objfile -> name); | |
247 | } | |
b0246b3b | 248 | objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd)); |
1ab3bf1b JG |
249 | objfile -> mtime = bfd_get_mtime (abfd); |
250 | ||
73d0fc78 RP |
251 | /* Build section table. */ |
252 | ||
253 | if (build_objfile_section_table (objfile)) | |
254 | { | |
255 | error ("Can't find the file sections in `%s': %s", | |
c4a081e1 | 256 | objfile -> name, bfd_errmsg (bfd_get_error ())); |
73d0fc78 RP |
257 | } |
258 | ||
7f4c8595 | 259 | /* Add this file onto the tail of the linked list of other such files. */ |
1ab3bf1b | 260 | |
7f4c8595 SS |
261 | objfile -> next = NULL; |
262 | if (object_files == NULL) | |
263 | object_files = objfile; | |
264 | else | |
265 | { | |
266 | for (last_one = object_files; | |
267 | last_one -> next; | |
268 | last_one = last_one -> next); | |
269 | last_one -> next = objfile; | |
270 | } | |
1ab3bf1b JG |
271 | return (objfile); |
272 | } | |
273 | ||
3a470454 JK |
274 | /* Put OBJFILE at the front of the list. */ |
275 | ||
276 | void | |
277 | objfile_to_front (objfile) | |
278 | struct objfile *objfile; | |
279 | { | |
280 | struct objfile **objp; | |
281 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
282 | { | |
283 | if (*objp == objfile) | |
284 | { | |
285 | /* Unhook it from where it is. */ | |
286 | *objp = objfile->next; | |
287 | /* Put it in the front. */ | |
288 | objfile->next = object_files; | |
289 | object_files = objfile; | |
290 | break; | |
291 | } | |
292 | } | |
293 | } | |
294 | ||
6c316cfd FF |
295 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the |
296 | list. | |
297 | ||
298 | It is not a bug, or error, to call this function if OBJFILE is not known | |
299 | to be in the current list. This is done in the case of mapped objfiles, | |
300 | for example, just to ensure that the mapped objfile doesn't appear twice | |
301 | in the list. Since the list is threaded, linking in a mapped objfile | |
302 | twice would create a circular list. | |
303 | ||
304 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
305 | unlinking it, just to ensure that we have completely severed any linkages | |
306 | between the OBJFILE and the list. */ | |
307 | ||
308 | void | |
309 | unlink_objfile (objfile) | |
310 | struct objfile *objfile; | |
311 | { | |
312 | struct objfile** objpp; | |
313 | ||
314 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next)) | |
315 | { | |
316 | if (*objpp == objfile) | |
317 | { | |
318 | *objpp = (*objpp) -> next; | |
319 | objfile -> next = NULL; | |
320 | break; | |
321 | } | |
322 | } | |
323 | } | |
324 | ||
1ab3bf1b JG |
325 | |
326 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
327 | that as much as possible is allocated on the symbol_obstack and | |
80d68b1d FF |
328 | psymbol_obstack, so that the memory can be efficiently freed. |
329 | ||
330 | Things which we do NOT free because they are not in malloc'd memory | |
331 | or not in memory specific to the objfile include: | |
332 | ||
333 | objfile -> sf | |
334 | ||
2d6d969c FF |
335 | FIXME: If the objfile is using reusable symbol information (via mmalloc), |
336 | then we need to take into account the fact that more than one process | |
337 | may be using the symbol information at the same time (when mmalloc is | |
338 | extended to support cooperative locking). When more than one process | |
339 | is using the mapped symbol info, we need to be more careful about when | |
340 | we free objects in the reusable area. */ | |
1ab3bf1b JG |
341 | |
342 | void | |
343 | free_objfile (objfile) | |
344 | struct objfile *objfile; | |
345 | { | |
2d6d969c FF |
346 | /* First do any symbol file specific actions required when we are |
347 | finished with a particular symbol file. Note that if the objfile | |
348 | is using reusable symbol information (via mmalloc) then each of | |
349 | these routines is responsible for doing the correct thing, either | |
350 | freeing things which are valid only during this particular gdb | |
351 | execution, or leaving them to be reused during the next one. */ | |
1ab3bf1b | 352 | |
80d68b1d FF |
353 | if (objfile -> sf != NULL) |
354 | { | |
355 | (*objfile -> sf -> sym_finish) (objfile); | |
356 | } | |
2d6d969c FF |
357 | |
358 | /* We always close the bfd. */ | |
359 | ||
80d68b1d | 360 | if (objfile -> obfd != NULL) |
1ab3bf1b | 361 | { |
346168a2 | 362 | char *name = bfd_get_filename (objfile->obfd); |
9de0904c JK |
363 | if (!bfd_close (objfile -> obfd)) |
364 | warning ("cannot close \"%s\": %s", | |
365 | name, bfd_errmsg (bfd_get_error ())); | |
346168a2 | 366 | free (name); |
1ab3bf1b JG |
367 | } |
368 | ||
2d6d969c | 369 | /* Remove it from the chain of all objfiles. */ |
1ab3bf1b | 370 | |
6c316cfd | 371 | unlink_objfile (objfile); |
1ab3bf1b | 372 | |
02b40a19 PS |
373 | /* If we are going to free the runtime common objfile, mark it |
374 | as unallocated. */ | |
375 | ||
376 | if (objfile == rt_common_objfile) | |
377 | rt_common_objfile = NULL; | |
378 | ||
1ab3bf1b JG |
379 | /* Before the symbol table code was redone to make it easier to |
380 | selectively load and remove information particular to a specific | |
381 | linkage unit, gdb used to do these things whenever the monolithic | |
382 | symbol table was blown away. How much still needs to be done | |
383 | is unknown, but we play it safe for now and keep each action until | |
384 | it is shown to be no longer needed. */ | |
385 | ||
1ab3bf1b JG |
386 | #if defined (CLEAR_SOLIB) |
387 | CLEAR_SOLIB (); | |
c5198d93 JK |
388 | /* CLEAR_SOLIB closes the bfd's for any shared libraries. But |
389 | the to_sections for a core file might refer to those bfd's. So | |
390 | detach any core file. */ | |
391 | { | |
392 | struct target_ops *t = find_core_target (); | |
393 | if (t != NULL) | |
394 | (t->to_detach) (NULL, 0); | |
395 | } | |
1ab3bf1b | 396 | #endif |
4d57c599 JK |
397 | /* I *think* all our callers call clear_symtab_users. If so, no need |
398 | to call this here. */ | |
1ab3bf1b JG |
399 | clear_pc_function_cache (); |
400 | ||
2d6d969c FF |
401 | /* The last thing we do is free the objfile struct itself for the |
402 | non-reusable case, or detach from the mapped file for the reusable | |
403 | case. Note that the mmalloc_detach or the mfree is the last thing | |
404 | we can do with this objfile. */ | |
1ab3bf1b | 405 | |
55b3ef9a FF |
406 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
407 | ||
2d6d969c FF |
408 | if (objfile -> flags & OBJF_MAPPED) |
409 | { | |
410 | /* Remember the fd so we can close it. We can't close it before | |
411 | doing the detach, and after the detach the objfile is gone. */ | |
100f92e2 JK |
412 | int mmfd; |
413 | ||
2d6d969c FF |
414 | mmfd = objfile -> mmfd; |
415 | mmalloc_detach (objfile -> md); | |
55b3ef9a | 416 | objfile = NULL; |
4ed3a9ea | 417 | close (mmfd); |
2d6d969c | 418 | } |
55b3ef9a FF |
419 | |
420 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
421 | ||
422 | /* If we still have an objfile, then either we don't support reusable | |
423 | objfiles or this one was not reusable. So free it normally. */ | |
424 | ||
425 | if (objfile != NULL) | |
2d6d969c FF |
426 | { |
427 | if (objfile -> name != NULL) | |
428 | { | |
429 | mfree (objfile -> md, objfile -> name); | |
430 | } | |
346168a2 JG |
431 | if (objfile->global_psymbols.list) |
432 | mfree (objfile->md, objfile->global_psymbols.list); | |
433 | if (objfile->static_psymbols.list) | |
434 | mfree (objfile->md, objfile->static_psymbols.list); | |
2d6d969c FF |
435 | /* Free the obstacks for non-reusable objfiles */ |
436 | obstack_free (&objfile -> psymbol_obstack, 0); | |
437 | obstack_free (&objfile -> symbol_obstack, 0); | |
438 | obstack_free (&objfile -> type_obstack, 0); | |
439 | mfree (objfile -> md, objfile); | |
55b3ef9a | 440 | objfile = NULL; |
2d6d969c | 441 | } |
1ab3bf1b JG |
442 | } |
443 | ||
cba0d141 | 444 | |
0eb22669 | 445 | /* Free all the object files at once and clean up their users. */ |
cba0d141 JG |
446 | |
447 | void | |
448 | free_all_objfiles () | |
449 | { | |
450 | struct objfile *objfile, *temp; | |
451 | ||
452 | ALL_OBJFILES_SAFE (objfile, temp) | |
453 | { | |
454 | free_objfile (objfile); | |
455 | } | |
0eb22669 | 456 | clear_symtab_users (); |
cba0d141 | 457 | } |
3c02636b JK |
458 | \f |
459 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
460 | entries in new_offsets. */ | |
461 | void | |
462 | objfile_relocate (objfile, new_offsets) | |
463 | struct objfile *objfile; | |
464 | struct section_offsets *new_offsets; | |
465 | { | |
466 | struct section_offsets *delta = (struct section_offsets *) alloca | |
467 | (sizeof (struct section_offsets) | |
468 | + objfile->num_sections * sizeof (delta->offsets)); | |
469 | ||
470 | { | |
471 | int i; | |
472 | int something_changed = 0; | |
473 | for (i = 0; i < objfile->num_sections; ++i) | |
474 | { | |
475 | ANOFFSET (delta, i) = | |
476 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); | |
477 | if (ANOFFSET (delta, i) != 0) | |
478 | something_changed = 1; | |
479 | } | |
480 | if (!something_changed) | |
481 | return; | |
482 | } | |
483 | ||
484 | /* OK, get all the symtabs. */ | |
485 | { | |
486 | struct symtab *s; | |
487 | ||
72bba93b | 488 | ALL_OBJFILE_SYMTABS (objfile, s) |
3c02636b JK |
489 | { |
490 | struct linetable *l; | |
491 | struct blockvector *bv; | |
492 | int i; | |
493 | ||
494 | /* First the line table. */ | |
495 | l = LINETABLE (s); | |
496 | if (l) | |
497 | { | |
498 | for (i = 0; i < l->nitems; ++i) | |
499 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
500 | } | |
501 | ||
502 | /* Don't relocate a shared blockvector more than once. */ | |
503 | if (!s->primary) | |
504 | continue; | |
505 | ||
506 | bv = BLOCKVECTOR (s); | |
507 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
508 | { | |
509 | struct block *b; | |
510 | int j; | |
511 | ||
512 | b = BLOCKVECTOR_BLOCK (bv, i); | |
513 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
514 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
515 | ||
516 | for (j = 0; j < BLOCK_NSYMS (b); ++j) | |
517 | { | |
518 | struct symbol *sym = BLOCK_SYM (b, j); | |
519 | /* The RS6000 code from which this was taken skipped | |
520 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
521 | But I'm leaving out that test, on the theory that | |
522 | they can't possibly pass the tests below. */ | |
523 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
524 | || SYMBOL_CLASS (sym) == LOC_STATIC) | |
525 | && SYMBOL_SECTION (sym) >= 0) | |
526 | { | |
527 | SYMBOL_VALUE_ADDRESS (sym) += | |
528 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
529 | } | |
72bba93b SG |
530 | #ifdef MIPS_EFI_SYMBOL_NAME |
531 | /* Relocate Extra Function Info for ecoff. */ | |
532 | ||
533 | else | |
534 | if (SYMBOL_CLASS (sym) == LOC_CONST | |
535 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
536 | && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) | |
537 | ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section)); | |
538 | #endif | |
3c02636b JK |
539 | } |
540 | } | |
541 | } | |
542 | } | |
543 | ||
610a7e74 ILT |
544 | { |
545 | struct partial_symtab *p; | |
546 | ||
547 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
548 | { | |
549 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT); | |
550 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT); | |
551 | } | |
552 | } | |
553 | ||
554 | { | |
555 | struct partial_symbol *psym; | |
556 | ||
557 | for (psym = objfile->global_psymbols.list; | |
558 | psym < objfile->global_psymbols.next; | |
559 | psym++) | |
560 | if (SYMBOL_SECTION (psym) >= 0) | |
561 | SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym)); | |
562 | for (psym = objfile->static_psymbols.list; | |
563 | psym < objfile->static_psymbols.next; | |
564 | psym++) | |
565 | if (SYMBOL_SECTION (psym) >= 0) | |
566 | SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym)); | |
567 | } | |
568 | ||
3c02636b JK |
569 | { |
570 | struct minimal_symbol *msym; | |
571 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
610a7e74 ILT |
572 | if (SYMBOL_SECTION (msym) >= 0) |
573 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); | |
3c02636b | 574 | } |
3a470454 JK |
575 | /* Relocating different sections by different amounts may cause the symbols |
576 | to be out of order. */ | |
577 | msymbols_sort (objfile); | |
3c02636b JK |
578 | |
579 | { | |
580 | int i; | |
581 | for (i = 0; i < objfile->num_sections; ++i) | |
582 | ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); | |
583 | } | |
72bba93b SG |
584 | |
585 | { | |
586 | struct obj_section *s; | |
587 | bfd *abfd; | |
588 | ||
3a470454 | 589 | abfd = objfile->obfd; |
72bba93b | 590 | |
3a470454 JK |
591 | for (s = objfile->sections; |
592 | s < objfile->sections_end; ++s) | |
72bba93b SG |
593 | { |
594 | flagword flags; | |
595 | ||
596 | flags = bfd_get_section_flags (abfd, s->the_bfd_section); | |
597 | ||
598 | if (flags & SEC_CODE) | |
599 | { | |
600 | s->addr += ANOFFSET (delta, SECT_OFF_TEXT); | |
601 | s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT); | |
602 | } | |
603 | else if (flags & (SEC_DATA | SEC_LOAD)) | |
604 | { | |
605 | s->addr += ANOFFSET (delta, SECT_OFF_DATA); | |
606 | s->endaddr += ANOFFSET (delta, SECT_OFF_DATA); | |
607 | } | |
608 | else if (flags & SEC_ALLOC) | |
609 | { | |
610 | s->addr += ANOFFSET (delta, SECT_OFF_BSS); | |
611 | s->endaddr += ANOFFSET (delta, SECT_OFF_BSS); | |
612 | } | |
613 | } | |
614 | } | |
a4b4f520 SG |
615 | |
616 | if (objfile->ei.entry_point != ~0) | |
617 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT); | |
618 | ||
619 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) | |
620 | { | |
621 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
622 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
623 | } | |
624 | ||
625 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
626 | { | |
627 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
628 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
629 | } | |
630 | ||
631 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
632 | { | |
633 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
634 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
635 | } | |
3c02636b JK |
636 | } |
637 | \f | |
1ab3bf1b JG |
638 | /* Many places in gdb want to test just to see if we have any partial |
639 | symbols available. This function returns zero if none are currently | |
640 | available, nonzero otherwise. */ | |
641 | ||
642 | int | |
643 | have_partial_symbols () | |
644 | { | |
645 | struct objfile *ofp; | |
1ab3bf1b | 646 | |
84ffdec2 | 647 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
648 | { |
649 | if (ofp -> psymtabs != NULL) | |
650 | { | |
84ffdec2 | 651 | return 1; |
1ab3bf1b JG |
652 | } |
653 | } | |
84ffdec2 | 654 | return 0; |
1ab3bf1b JG |
655 | } |
656 | ||
657 | /* Many places in gdb want to test just to see if we have any full | |
658 | symbols available. This function returns zero if none are currently | |
659 | available, nonzero otherwise. */ | |
660 | ||
661 | int | |
662 | have_full_symbols () | |
663 | { | |
664 | struct objfile *ofp; | |
1ab3bf1b | 665 | |
84ffdec2 | 666 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
667 | { |
668 | if (ofp -> symtabs != NULL) | |
669 | { | |
84ffdec2 | 670 | return 1; |
1ab3bf1b JG |
671 | } |
672 | } | |
84ffdec2 | 673 | return 0; |
1ab3bf1b JG |
674 | } |
675 | ||
676 | /* Many places in gdb want to test just to see if we have any minimal | |
677 | symbols available. This function returns zero if none are currently | |
678 | available, nonzero otherwise. */ | |
679 | ||
680 | int | |
681 | have_minimal_symbols () | |
682 | { | |
683 | struct objfile *ofp; | |
1ab3bf1b | 684 | |
84ffdec2 | 685 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
686 | { |
687 | if (ofp -> msymbols != NULL) | |
688 | { | |
84ffdec2 | 689 | return 1; |
1ab3bf1b JG |
690 | } |
691 | } | |
84ffdec2 | 692 | return 0; |
1ab3bf1b JG |
693 | } |
694 | ||
1867b3be FF |
695 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
696 | ||
697 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
698 | of the corresponding symbol file in MTIME, try to open an existing file | |
699 | with the name SYMSFILENAME and verify it is more recent than the base | |
700 | file by checking it's timestamp against MTIME. | |
701 | ||
702 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
703 | ||
704 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
705 | user has specified creation of a mapped file. If so, we don't issue | |
706 | any warning message because we will be creating a new mapped file anyway, | |
707 | overwriting the old one. If not, then we issue a warning message so that | |
708 | the user will know why we aren't using this existing mapped symbol file. | |
709 | In either case, we return -1. | |
710 | ||
711 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
712 | some reason, then prints an appropriate system error message and returns -1. | |
713 | ||
714 | Otherwise, returns the open file descriptor. */ | |
715 | ||
716 | static int | |
717 | open_existing_mapped_file (symsfilename, mtime, mapped) | |
718 | char *symsfilename; | |
719 | long mtime; | |
720 | int mapped; | |
721 | { | |
722 | int fd = -1; | |
723 | struct stat sbuf; | |
724 | ||
725 | if (stat (symsfilename, &sbuf) == 0) | |
726 | { | |
727 | if (sbuf.st_mtime < mtime) | |
728 | { | |
729 | if (!mapped) | |
730 | { | |
a679650f FF |
731 | warning ("mapped symbol file `%s' is out of date, ignored it", |
732 | symsfilename); | |
1867b3be FF |
733 | } |
734 | } | |
735 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
736 | { | |
737 | if (error_pre_print) | |
738 | { | |
199b2450 | 739 | printf_unfiltered (error_pre_print); |
1867b3be FF |
740 | } |
741 | print_sys_errmsg (symsfilename, errno); | |
742 | } | |
743 | } | |
744 | return (fd); | |
745 | } | |
746 | ||
b0246b3b | 747 | /* Look for a mapped symbol file that corresponds to FILENAME and is more |
318bf84f | 748 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb |
b0246b3b FF |
749 | use a mapped symbol file for this file, so create a new one if one does |
750 | not currently exist. | |
318bf84f FF |
751 | |
752 | If found, then return an open file descriptor for the file, otherwise | |
753 | return -1. | |
754 | ||
755 | This routine is responsible for implementing the policy that generates | |
756 | the name of the mapped symbol file from the name of a file containing | |
1867b3be FF |
757 | symbols that gdb would like to read. Currently this policy is to append |
758 | ".syms" to the name of the file. | |
759 | ||
760 | This routine is also responsible for implementing the policy that | |
761 | determines where the mapped symbol file is found (the search path). | |
762 | This policy is that when reading an existing mapped file, a file of | |
763 | the correct name in the current directory takes precedence over a | |
764 | file of the correct name in the same directory as the symbol file. | |
765 | When creating a new mapped file, it is always created in the current | |
766 | directory. This helps to minimize the chances of a user unknowingly | |
767 | creating big mapped files in places like /bin and /usr/local/bin, and | |
768 | allows a local copy to override a manually installed global copy (in | |
769 | /bin for example). */ | |
318bf84f FF |
770 | |
771 | static int | |
b0246b3b FF |
772 | open_mapped_file (filename, mtime, mapped) |
773 | char *filename; | |
318bf84f FF |
774 | long mtime; |
775 | int mapped; | |
776 | { | |
777 | int fd; | |
1867b3be | 778 | char *symsfilename; |
318bf84f | 779 | |
1867b3be FF |
780 | /* First try to open an existing file in the current directory, and |
781 | then try the directory where the symbol file is located. */ | |
318bf84f | 782 | |
1867b3be FF |
783 | symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); |
784 | if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0) | |
318bf84f | 785 | { |
1867b3be FF |
786 | free (symsfilename); |
787 | symsfilename = concat (filename, ".syms", (char *) NULL); | |
788 | fd = open_existing_mapped_file (symsfilename, mtime, mapped); | |
318bf84f FF |
789 | } |
790 | ||
1867b3be FF |
791 | /* If we don't have an open file by now, then either the file does not |
792 | already exist, or the base file has changed since it was created. In | |
793 | either case, if the user has specified use of a mapped file, then | |
794 | create a new mapped file, truncating any existing one. If we can't | |
795 | create one, print a system error message saying why we can't. | |
318bf84f FF |
796 | |
797 | By default the file is rw for everyone, with the user's umask taking | |
798 | care of turning off the permissions the user wants off. */ | |
799 | ||
1867b3be | 800 | if ((fd < 0) && mapped) |
318bf84f | 801 | { |
1867b3be FF |
802 | free (symsfilename); |
803 | symsfilename = concat ("./", basename (filename), ".syms", | |
804 | (char *) NULL); | |
805 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
806 | { | |
807 | if (error_pre_print) | |
808 | { | |
199b2450 | 809 | printf_unfiltered (error_pre_print); |
1867b3be FF |
810 | } |
811 | print_sys_errmsg (symsfilename, errno); | |
812 | } | |
318bf84f FF |
813 | } |
814 | ||
1867b3be | 815 | free (symsfilename); |
318bf84f FF |
816 | return (fd); |
817 | } | |
818 | ||
819 | /* Return the base address at which we would like the next objfile's | |
820 | mapped data to start. | |
821 | ||
822 | For now, we use the kludge that the configuration specifies a base | |
823 | address to which it is safe to map the first mmalloc heap, and an | |
824 | increment to add to this address for each successive heap. There are | |
825 | a lot of issues to deal with here to make this work reasonably, including: | |
826 | ||
827 | Avoid memory collisions with existing mapped address spaces | |
828 | ||
829 | Reclaim address spaces when their mmalloc heaps are unmapped | |
830 | ||
831 | When mmalloc heaps are shared between processes they have to be | |
832 | mapped at the same addresses in each | |
833 | ||
834 | Once created, a mmalloc heap that is to be mapped back in must be | |
835 | mapped at the original address. I.E. each objfile will expect to | |
836 | be remapped at it's original address. This becomes a problem if | |
837 | the desired address is already in use. | |
838 | ||
839 | etc, etc, etc. | |
840 | ||
841 | */ | |
842 | ||
843 | ||
844 | static CORE_ADDR | |
845 | map_to_address () | |
846 | { | |
847 | ||
848 | #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT) | |
849 | ||
850 | static CORE_ADDR next = MMAP_BASE_ADDRESS; | |
851 | CORE_ADDR mapto = next; | |
852 | ||
853 | next += MMAP_INCREMENT; | |
854 | return (mapto); | |
855 | ||
856 | #else | |
857 | ||
858 | return (0); | |
859 | ||
860 | #endif | |
861 | ||
862 | } | |
1867b3be FF |
863 | |
864 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
73d0fc78 RP |
865 | |
866 | /* Returns a section whose range includes PC or NULL if none found. */ | |
867 | ||
4365c36c | 868 | struct obj_section * |
73d0fc78 RP |
869 | find_pc_section(pc) |
870 | CORE_ADDR pc; | |
871 | { | |
872 | struct obj_section *s; | |
873 | struct objfile *objfile; | |
874 | ||
875 | ALL_OBJFILES (objfile) | |
876 | for (s = objfile->sections; s < objfile->sections_end; ++s) | |
877 | if (s->addr <= pc | |
878 | && pc < s->endaddr) | |
4365c36c | 879 | return(s); |
73d0fc78 RP |
880 | |
881 | return(NULL); | |
882 | } | |
38b90473 PS |
883 | |
884 | /* In SVR4, we recognize a trampoline by it's section name. | |
885 | That is, if the pc is in a section named ".plt" then we are in | |
886 | a trampoline. */ | |
887 | ||
888 | int | |
889 | in_plt_section(pc, name) | |
890 | CORE_ADDR pc; | |
891 | char *name; | |
892 | { | |
893 | struct obj_section *s; | |
894 | int retval = 0; | |
895 | ||
896 | s = find_pc_section(pc); | |
897 | ||
898 | retval = (s != NULL | |
899 | && s->the_bfd_section->name != NULL | |
900 | && STREQ (s->the_bfd_section->name, ".plt")); | |
901 | return(retval); | |
902 | } |