]>
Commit | Line | Data |
---|---|---|
b34f6357 DB |
1 | /* frv trap support |
2 | Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc. | |
3 | Contributed by Red Hat. | |
4 | ||
5 | This file is part of the GNU simulators. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License along | |
18 | with this program; if not, write to the Free Software Foundation, Inc., | |
19 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #define WANT_CPU frvbf | |
22 | #define WANT_CPU_FRVBF | |
23 | ||
24 | #include "sim-main.h" | |
25 | #include "targ-vals.h" | |
26 | #include "cgen-engine.h" | |
27 | #include "cgen-par.h" | |
28 | #include "sim-fpu.h" | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "libiberty.h" | |
32 | ||
33 | /* The semantic code invokes this for invalid (unrecognized) instructions. */ | |
34 | ||
35 | SEM_PC | |
36 | sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc) | |
37 | { | |
38 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
39 | return vpc; | |
40 | } | |
41 | ||
42 | /* Process an address exception. */ | |
43 | ||
44 | void | |
45 | frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia, | |
46 | unsigned int map, int nr_bytes, address_word addr, | |
47 | transfer_type transfer, sim_core_signals sig) | |
48 | { | |
49 | if (sig == sim_core_unaligned_signal) | |
50 | { | |
51 | if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) | |
52 | frv_queue_data_access_error_interrupt (current_cpu, addr); | |
53 | else | |
54 | frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr); | |
55 | } | |
56 | ||
57 | frv_term (sd); | |
58 | sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig); | |
59 | } | |
60 | ||
61 | void | |
62 | frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia) | |
63 | { | |
64 | int i; | |
65 | if (current_cpu != NULL) | |
66 | CIA_SET (current_cpu, cia); | |
67 | ||
68 | /* Invalidate the insn and data caches of all cpus. */ | |
69 | for (i = 0; i < MAX_NR_PROCESSORS; ++i) | |
70 | { | |
71 | current_cpu = STATE_CPU (sd, i); | |
72 | frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0); | |
73 | frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1); | |
74 | } | |
75 | frv_term (sd); | |
76 | } | |
77 | \f | |
78 | /* Read/write functions for system call interface. */ | |
79 | ||
80 | static int | |
81 | syscall_read_mem (host_callback *cb, struct cb_syscall *sc, | |
82 | unsigned long taddr, char *buf, int bytes) | |
83 | { | |
84 | SIM_DESC sd = (SIM_DESC) sc->p1; | |
85 | SIM_CPU *cpu = (SIM_CPU *) sc->p2; | |
86 | ||
87 | frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); | |
88 | return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes); | |
89 | } | |
90 | ||
91 | static int | |
92 | syscall_write_mem (host_callback *cb, struct cb_syscall *sc, | |
93 | unsigned long taddr, const char *buf, int bytes) | |
94 | { | |
95 | SIM_DESC sd = (SIM_DESC) sc->p1; | |
96 | SIM_CPU *cpu = (SIM_CPU *) sc->p2; | |
97 | ||
98 | frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0); | |
99 | frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); | |
100 | return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes); | |
101 | } | |
102 | ||
103 | /* Handle TRA and TIRA insns. */ | |
104 | void | |
105 | frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset) | |
106 | { | |
107 | SIM_DESC sd = CPU_STATE (current_cpu); | |
108 | host_callback *cb = STATE_CALLBACK (sd); | |
109 | USI num = ((base + offset) & 0x7f) + 0x80; | |
110 | ||
111 | #ifdef SIM_HAVE_BREAKPOINTS | |
112 | /* Check for breakpoints "owned" by the simulator first, regardless | |
113 | of --environment. */ | |
114 | if (num == TRAP_BREAKPOINT) | |
115 | { | |
116 | /* First try sim-break.c. If it's a breakpoint the simulator "owns" | |
117 | it doesn't return. Otherwise it returns and let's us try. */ | |
118 | sim_handle_breakpoint (sd, current_cpu, pc); | |
119 | /* Fall through. */ | |
120 | } | |
121 | #endif | |
122 | ||
123 | if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT) | |
124 | { | |
125 | frv_queue_software_interrupt (current_cpu, num); | |
126 | return; | |
127 | } | |
128 | ||
129 | switch (num) | |
130 | { | |
131 | case TRAP_SYSCALL : | |
132 | { | |
133 | CB_SYSCALL s; | |
134 | CB_SYSCALL_INIT (&s); | |
135 | s.func = GET_H_GR (7); | |
136 | s.arg1 = GET_H_GR (8); | |
137 | s.arg2 = GET_H_GR (9); | |
138 | s.arg3 = GET_H_GR (10); | |
139 | ||
140 | if (s.func == TARGET_SYS_exit) | |
141 | { | |
142 | sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1); | |
143 | } | |
144 | ||
145 | s.p1 = (PTR) sd; | |
146 | s.p2 = (PTR) current_cpu; | |
147 | s.read_mem = syscall_read_mem; | |
148 | s.write_mem = syscall_write_mem; | |
149 | cb_syscall (cb, &s); | |
150 | SET_H_GR (8, s.result); | |
151 | SET_H_GR (9, s.result2); | |
152 | SET_H_GR (10, s.errcode); | |
153 | break; | |
154 | } | |
155 | ||
156 | case TRAP_BREAKPOINT: | |
157 | sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | |
158 | break; | |
159 | ||
160 | /* Add support for dumping registers, either at fixed traps, or all | |
161 | unknown traps if configured with --enable-sim-trapdump. */ | |
162 | default: | |
163 | #if !TRAPDUMP | |
164 | frv_queue_software_interrupt (current_cpu, num); | |
165 | return; | |
166 | #endif | |
167 | ||
168 | #ifdef TRAP_REGDUMP1 | |
169 | case TRAP_REGDUMP1: | |
170 | #endif | |
171 | ||
172 | #ifdef TRAP_REGDUMP2 | |
173 | case TRAP_REGDUMP2: | |
174 | #endif | |
175 | ||
176 | #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2)) | |
177 | { | |
178 | char buf[256]; | |
179 | int i, j; | |
180 | ||
181 | buf[0] = 0; | |
182 | if (STATE_TEXT_SECTION (sd) | |
183 | && pc >= STATE_TEXT_START (sd) | |
184 | && pc < STATE_TEXT_END (sd)) | |
185 | { | |
186 | const char *pc_filename = (const char *)0; | |
187 | const char *pc_function = (const char *)0; | |
188 | unsigned int pc_linenum = 0; | |
189 | ||
190 | if (bfd_find_nearest_line (STATE_PROG_BFD (sd), | |
191 | STATE_TEXT_SECTION (sd), | |
192 | (struct symbol_cache_entry **) 0, | |
193 | pc - STATE_TEXT_START (sd), | |
194 | &pc_filename, &pc_function, &pc_linenum) | |
195 | && (pc_function || pc_filename)) | |
196 | { | |
197 | char *p = buf+2; | |
198 | buf[0] = ' '; | |
199 | buf[1] = '('; | |
200 | if (pc_function) | |
201 | { | |
202 | strcpy (p, pc_function); | |
203 | p += strlen (p); | |
204 | } | |
205 | else | |
206 | { | |
207 | char *q = (char *) strrchr (pc_filename, '/'); | |
208 | strcpy (p, (q) ? q+1 : pc_filename); | |
209 | p += strlen (p); | |
210 | } | |
211 | ||
212 | if (pc_linenum) | |
213 | { | |
214 | sprintf (p, " line %d", pc_linenum); | |
215 | p += strlen (p); | |
216 | } | |
217 | ||
218 | p[0] = ')'; | |
219 | p[1] = '\0'; | |
220 | if ((p+1) - buf > sizeof (buf)) | |
221 | abort (); | |
222 | } | |
223 | } | |
224 | ||
225 | sim_io_printf (sd, | |
226 | "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n", | |
227 | (unsigned)pc, buf, (unsigned)base, (int)offset); | |
228 | ||
229 | for (i = 0; i < 64; i += 8) | |
230 | { | |
231 | long g0 = (long)GET_H_GR (i); | |
232 | long g1 = (long)GET_H_GR (i+1); | |
233 | long g2 = (long)GET_H_GR (i+2); | |
234 | long g3 = (long)GET_H_GR (i+3); | |
235 | long g4 = (long)GET_H_GR (i+4); | |
236 | long g5 = (long)GET_H_GR (i+5); | |
237 | long g6 = (long)GET_H_GR (i+6); | |
238 | long g7 = (long)GET_H_GR (i+7); | |
239 | ||
240 | if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0) | |
241 | sim_io_printf (sd, | |
242 | "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", | |
243 | i, i+7, g0, g1, g2, g3, g4, g5, g6, g7); | |
244 | } | |
245 | ||
246 | for (i = 0; i < 64; i += 8) | |
247 | { | |
248 | long f0 = (long)GET_H_FR (i); | |
249 | long f1 = (long)GET_H_FR (i+1); | |
250 | long f2 = (long)GET_H_FR (i+2); | |
251 | long f3 = (long)GET_H_FR (i+3); | |
252 | long f4 = (long)GET_H_FR (i+4); | |
253 | long f5 = (long)GET_H_FR (i+5); | |
254 | long f6 = (long)GET_H_FR (i+6); | |
255 | long f7 = (long)GET_H_FR (i+7); | |
256 | ||
257 | if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0) | |
258 | sim_io_printf (sd, | |
259 | "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", | |
260 | i, i+7, f0, f1, f2, f3, f4, f5, f6, f7); | |
261 | } | |
262 | ||
263 | sim_io_printf (sd, | |
264 | "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", | |
265 | (long)GET_H_SPR (272), | |
266 | (long)GET_H_SPR (273), | |
267 | (long)GET_H_SPR (256), | |
268 | (long)GET_H_SPR (263)); | |
269 | } | |
270 | break; | |
271 | #endif | |
272 | } | |
273 | } | |
274 | ||
275 | /* Handle the MTRAP insn. */ | |
276 | void | |
277 | frv_mtrap (SIM_CPU *current_cpu) | |
278 | { | |
279 | /* Check the status of media exceptions in MSR0. */ | |
280 | SI msr = GET_MSR (0); | |
281 | if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr)) | |
282 | frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION); | |
283 | } | |
284 | ||
285 | /* Handle the BREAK insn. */ | |
286 | void | |
287 | frv_break (SIM_CPU *current_cpu) | |
288 | { | |
289 | IADDR pc; | |
290 | SIM_DESC sd = CPU_STATE (current_cpu); | |
291 | ||
292 | #ifdef SIM_HAVE_BREAKPOINTS | |
293 | /* First try sim-break.c. If it's a breakpoint the simulator "owns" | |
294 | it doesn't return. Otherwise it returns and let's us try. */ | |
295 | pc = GET_H_PC (); | |
296 | sim_handle_breakpoint (sd, current_cpu, pc); | |
297 | /* Fall through. */ | |
298 | #endif | |
299 | ||
300 | if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT) | |
301 | { | |
302 | /* Invalidate the insn cache because the debugger will presumably | |
303 | replace the breakpoint insn with the real one. */ | |
304 | #ifndef SIM_HAVE_BREAKPOINTS | |
305 | pc = GET_H_PC (); | |
306 | #endif | |
307 | sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | |
308 | } | |
309 | ||
310 | frv_queue_break_interrupt (current_cpu); | |
311 | } | |
312 | ||
313 | /* Return from trap. */ | |
314 | USI | |
315 | frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field) | |
316 | { | |
317 | USI new_pc; | |
318 | /* if (normal running mode and debug_field==0 | |
319 | PC=PCSR | |
320 | PSR.ET=1 | |
321 | PSR.S=PSR.PS | |
322 | else if (debug running mode and debug_field==1) | |
323 | PC=(BPCSR) | |
324 | PSR.ET=BPSR.BET | |
325 | PSR.S=BPSR.BS | |
326 | change to normal running mode | |
327 | */ | |
328 | int psr_s = GET_H_PSR_S (); | |
329 | int psr_et = GET_H_PSR_ET (); | |
330 | ||
331 | /* Check for exceptions in the priority order listed in the FRV Architecture | |
332 | Volume 2. */ | |
333 | if (! psr_s) | |
334 | { | |
335 | /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */ | |
336 | if (! psr_et) | |
337 | { | |
338 | SIM_DESC sd = CPU_STATE (current_cpu); | |
339 | sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | |
340 | } | |
341 | ||
342 | /* privileged_instruction interrupt will have already been queued by | |
343 | frv_detect_insn_access_interrupts. */ | |
344 | new_pc = pc + 4; | |
345 | } | |
346 | else if (psr_et) | |
347 | { | |
348 | /* Halt if PSR.S is set. See chapter 6 of the LSI. */ | |
349 | if (psr_s) | |
350 | { | |
351 | SIM_DESC sd = CPU_STATE (current_cpu); | |
352 | sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | |
353 | } | |
354 | ||
355 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
356 | new_pc = pc + 4; | |
357 | } | |
358 | else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0) | |
359 | { | |
360 | USI psr = GET_PSR (); | |
361 | /* Return from normal running state. */ | |
362 | new_pc = GET_H_SPR (H_SPR_PCSR); | |
363 | SET_PSR_ET (psr, 1); | |
364 | SET_PSR_S (psr, GET_PSR_PS (psr)); | |
365 | sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); | |
366 | } | |
367 | else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1) | |
368 | { | |
369 | USI psr = GET_PSR (); | |
370 | /* Return from debug state. */ | |
371 | new_pc = GET_H_SPR (H_SPR_BPCSR); | |
372 | SET_PSR_ET (psr, GET_H_BPSR_BET ()); | |
373 | SET_PSR_S (psr, GET_H_BPSR_BS ()); | |
374 | sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); | |
375 | CPU_DEBUG_STATE (current_cpu) = 0; | |
376 | } | |
377 | else | |
378 | new_pc = pc + 4; | |
379 | ||
380 | return new_pc; | |
381 | } | |
382 | \f | |
383 | /* Functions for handling non-excepting instruction side effects. */ | |
384 | static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index) | |
385 | { | |
386 | FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); | |
387 | if (control->spr[H_SPR_NECR].implemented) | |
388 | { | |
389 | int limit; | |
390 | USI necr = GET_NECR (); | |
391 | ||
392 | /* See if any NESRs are implemented. First need to check the validity of | |
393 | the NECR. */ | |
394 | if (! GET_NECR_VALID (necr)) | |
395 | return NO_NESR; | |
396 | ||
397 | limit = GET_NECR_NEN (necr); | |
398 | for (++current_index; current_index < limit; ++current_index) | |
399 | { | |
400 | SI nesr = GET_NESR (current_index); | |
401 | if (! GET_NESR_VALID (nesr)) | |
402 | return current_index; | |
403 | } | |
404 | } | |
405 | return NO_NESR; | |
406 | } | |
407 | ||
408 | static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index) | |
409 | { | |
410 | FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); | |
411 | if (control->spr[H_SPR_NECR].implemented) | |
412 | { | |
413 | int limit; | |
414 | USI necr = GET_NECR (); | |
415 | ||
416 | /* See if any NESRs are implemented. First need to check the validity of | |
417 | the NECR. */ | |
418 | if (! GET_NECR_VALID (necr)) | |
419 | return NO_NESR; | |
420 | ||
421 | limit = GET_NECR_NEN (necr); | |
422 | for (++current_index; current_index < limit; ++current_index) | |
423 | { | |
424 | SI nesr = GET_NESR (current_index); | |
425 | if (GET_NESR_VALID (nesr)) | |
426 | return current_index; | |
427 | } | |
428 | } | |
429 | return NO_NESR; | |
430 | } | |
431 | ||
432 | BI | |
433 | frvbf_check_non_excepting_load ( | |
434 | SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index, | |
435 | SI immediate_disp, QI data_size, BI is_float | |
436 | ) | |
437 | { | |
438 | BI rc = 1; /* perform the load. */ | |
439 | SIM_DESC sd = CPU_STATE (current_cpu); | |
440 | int daec = 0; | |
441 | int rec = 0; | |
442 | int ec = 0; | |
443 | USI necr; | |
444 | int do_elos; | |
445 | SI NE_flags[2]; | |
446 | SI NE_base; | |
447 | SI nesr; | |
448 | SI ne_index; | |
449 | FRV_REGISTER_CONTROL *control; | |
450 | ||
451 | SI address = GET_H_GR (base_index); | |
452 | if (disp_index >= 0) | |
453 | address += GET_H_GR (disp_index); | |
454 | else | |
455 | address += immediate_disp; | |
456 | ||
457 | /* Check for interrupt factors. */ | |
458 | switch (data_size) | |
459 | { | |
460 | case NESR_UQI_SIZE: | |
461 | case NESR_QI_SIZE: | |
462 | break; | |
463 | case NESR_UHI_SIZE: | |
464 | case NESR_HI_SIZE: | |
465 | if (address & 1) | |
466 | ec = 1; | |
467 | break; | |
468 | case NESR_SI_SIZE: | |
469 | if (address & 3) | |
470 | ec = 1; | |
471 | break; | |
472 | case NESR_DI_SIZE: | |
473 | if (address & 7) | |
474 | ec = 1; | |
475 | if (target_index & 1) | |
476 | rec = 1; | |
477 | break; | |
478 | case NESR_XI_SIZE: | |
479 | if (address & 0xf) | |
480 | ec = 1; | |
481 | if (target_index & 3) | |
482 | rec = 1; | |
483 | break; | |
484 | default: | |
485 | { | |
486 | IADDR pc = GET_H_PC (); | |
487 | sim_engine_abort (sd, current_cpu, pc, | |
488 | "check_non_excepting_load: Incorrect data_size\n"); | |
489 | break; | |
490 | } | |
491 | } | |
492 | ||
493 | control = CPU_REGISTER_CONTROL (current_cpu); | |
494 | if (control->spr[H_SPR_NECR].implemented) | |
495 | { | |
496 | necr = GET_NECR (); | |
497 | do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr); | |
498 | } | |
499 | else | |
500 | do_elos = 0; | |
501 | ||
502 | /* NECR, NESR, NEEAR are only implemented for the full frv machine. */ | |
503 | if (do_elos) | |
504 | { | |
505 | ne_index = next_available_nesr (current_cpu, NO_NESR); | |
506 | if (ne_index == NO_NESR) | |
507 | { | |
508 | IADDR pc = GET_H_PC (); | |
509 | sim_engine_abort (sd, current_cpu, pc, | |
510 | "No available NESR register\n"); | |
511 | } | |
512 | ||
513 | /* Fill in the basic fields of the NESR. */ | |
514 | nesr = GET_NESR (ne_index); | |
515 | SET_NESR_VALID (nesr); | |
516 | SET_NESR_EAV (nesr); | |
517 | SET_NESR_DRN (nesr, target_index); | |
518 | SET_NESR_SIZE (nesr, data_size); | |
519 | SET_NESR_NEAN (nesr, ne_index); | |
520 | if (is_float) | |
521 | SET_NESR_FR (nesr); | |
522 | else | |
523 | CLEAR_NESR_FR (nesr); | |
524 | ||
525 | /* Set the corresponding NEEAR. */ | |
526 | SET_NEEAR (ne_index, address); | |
527 | ||
528 | SET_NESR_DAEC (nesr, 0); | |
529 | SET_NESR_REC (nesr, 0); | |
530 | SET_NESR_EC (nesr, 0); | |
531 | } | |
532 | ||
533 | /* Set the NE flag corresponding to the target register if an interrupt | |
534 | factor was detected. | |
535 | daec is not checked here yet, but is declared for future reference. */ | |
536 | if (is_float) | |
537 | NE_base = H_SPR_FNER0; | |
538 | else | |
539 | NE_base = H_SPR_GNER0; | |
540 | ||
541 | GET_NE_FLAGS (NE_flags, NE_base); | |
542 | if (rec) | |
543 | { | |
544 | SET_NE_FLAG (NE_flags, target_index); | |
545 | if (do_elos) | |
546 | SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED); | |
547 | } | |
548 | ||
549 | if (ec) | |
550 | { | |
551 | SET_NE_FLAG (NE_flags, target_index); | |
552 | if (do_elos) | |
553 | SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED); | |
554 | } | |
555 | ||
556 | if (do_elos) | |
557 | SET_NESR (ne_index, nesr); | |
558 | ||
559 | /* If no interrupt factor was detected then set the NE flag on the | |
560 | target register if the NE flag on one of the input registers | |
561 | is already set. */ | |
562 | if (! rec && ! ec && ! daec) | |
563 | { | |
564 | BI ne_flag = GET_NE_FLAG (NE_flags, base_index); | |
565 | if (disp_index >= 0) | |
566 | ne_flag |= GET_NE_FLAG (NE_flags, disp_index); | |
567 | if (ne_flag) | |
568 | { | |
569 | SET_NE_FLAG (NE_flags, target_index); | |
570 | rc = 0; /* Do not perform the load. */ | |
571 | } | |
572 | else | |
573 | CLEAR_NE_FLAG (NE_flags, target_index); | |
574 | } | |
575 | ||
576 | SET_NE_FLAGS (NE_base, NE_flags); | |
577 | ||
578 | return rc; /* perform the load? */ | |
579 | } | |
580 | ||
581 | /* Record state for media exception: media_cr_not_aligned. */ | |
582 | void | |
583 | frvbf_media_cr_not_aligned (SIM_CPU *current_cpu) | |
584 | { | |
585 | SIM_DESC sd = CPU_STATE (current_cpu); | |
586 | ||
587 | /* On the fr400 this generates an illegal_instruction interrupt. */ | |
588 | if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) | |
589 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
590 | else | |
591 | frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0); | |
592 | } | |
593 | ||
594 | /* Record state for media exception: media_acc_not_aligned. */ | |
595 | void | |
596 | frvbf_media_acc_not_aligned (SIM_CPU *current_cpu) | |
597 | { | |
598 | SIM_DESC sd = CPU_STATE (current_cpu); | |
599 | ||
600 | /* On the fr400 this generates an illegal_instruction interrupt. */ | |
601 | if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) | |
602 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
603 | else | |
604 | frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0); | |
605 | } | |
606 | ||
607 | /* Record state for media exception: media_register_not_aligned. */ | |
608 | void | |
609 | frvbf_media_register_not_aligned (SIM_CPU *current_cpu) | |
610 | { | |
611 | SIM_DESC sd = CPU_STATE (current_cpu); | |
612 | ||
613 | /* On the fr400 this generates an illegal_instruction interrupt. */ | |
614 | if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) | |
615 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
616 | else | |
617 | frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0); | |
618 | } | |
619 | ||
620 | /* Record state for media exception: media_overflow. */ | |
621 | void | |
622 | frvbf_media_overflow (SIM_CPU *current_cpu, int sie) | |
623 | { | |
624 | frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie); | |
625 | } | |
626 | ||
627 | /* Queue a division exception. */ | |
628 | enum frv_dtt | |
629 | frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt, | |
630 | int target_index, int non_excepting) | |
631 | { | |
632 | /* If there was an overflow and it is masked, then record it in | |
633 | ISR.AEXC. */ | |
634 | USI isr = GET_ISR (); | |
635 | if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr)) | |
636 | { | |
637 | dtt &= ~FRV_DTT_OVERFLOW; | |
638 | SET_ISR_AEXC (isr); | |
639 | SET_ISR (isr); | |
640 | } | |
641 | if (dtt != FRV_DTT_NO_EXCEPTION) | |
642 | { | |
643 | if (non_excepting) | |
644 | { | |
645 | /* Non excepting instruction, simply set the NE flag for the target | |
646 | register. */ | |
647 | SI NE_flags[2]; | |
648 | GET_NE_FLAGS (NE_flags, H_SPR_GNER0); | |
649 | SET_NE_FLAG (NE_flags, target_index); | |
650 | SET_NE_FLAGS (H_SPR_GNER0, NE_flags); | |
651 | } | |
652 | else | |
653 | frv_queue_division_exception_interrupt (current_cpu, dtt); | |
654 | } | |
655 | return dtt; | |
656 | } | |
657 | ||
658 | void | |
659 | frvbf_check_recovering_store ( | |
660 | SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float | |
661 | ) | |
662 | { | |
663 | FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); | |
664 | int reg_ix; | |
665 | ||
666 | CPU_RSTR_INVALIDATE(current_cpu) = 0; | |
667 | ||
668 | for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); | |
669 | reg_ix != NO_NESR; | |
670 | reg_ix = next_valid_nesr (current_cpu, reg_ix)) | |
671 | { | |
672 | if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix)) | |
673 | { | |
674 | SI nesr = GET_NESR (reg_ix); | |
675 | int nesr_drn = GET_NESR_DRN (nesr); | |
676 | BI nesr_fr = GET_NESR_FR (nesr); | |
677 | SI remain; | |
678 | ||
679 | /* Invalidate cache block containing this address. | |
680 | If we need to count cycles, then the cache operation will be | |
681 | initiated from the model profiling functions. | |
682 | See frvbf_model_.... */ | |
683 | if (model_insn) | |
684 | { | |
685 | CPU_RSTR_INVALIDATE(current_cpu) = 1; | |
686 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
687 | } | |
688 | else | |
689 | frv_cache_invalidate (cache, address, 1/* flush */); | |
690 | ||
691 | /* Copy the stored value to the register indicated by NESR.DRN. */ | |
692 | for (remain = size; remain > 0; remain -= 4) | |
693 | { | |
694 | SI value; | |
695 | ||
696 | if (is_float) | |
697 | value = GET_H_FR (regno); | |
698 | else | |
699 | value = GET_H_GR (regno); | |
700 | ||
701 | switch (size) | |
702 | { | |
703 | case 1: | |
704 | value &= 0xff; | |
705 | break; | |
706 | case 2: | |
707 | value &= 0xffff; | |
708 | break; | |
709 | default: | |
710 | break; | |
711 | } | |
712 | ||
713 | if (nesr_fr) | |
714 | sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn, | |
715 | value); | |
716 | else | |
717 | sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn, | |
718 | value); | |
719 | ||
720 | nesr_drn++; | |
721 | regno++; | |
722 | } | |
723 | break; /* Only consider the first matching register. */ | |
724 | } | |
725 | } /* loop over active neear registers. */ | |
726 | } | |
727 | ||
728 | static void | |
729 | clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float) | |
730 | { | |
731 | int reg_ix; | |
732 | ||
733 | /* Only implemented for full frv. */ | |
734 | SIM_DESC sd = CPU_STATE (current_cpu); | |
735 | if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv) | |
736 | return; | |
737 | ||
738 | /* Clear the appropriate NESR and NEEAR registers. */ | |
739 | for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); | |
740 | reg_ix != NO_NESR; | |
741 | reg_ix = next_valid_nesr (current_cpu, reg_ix)) | |
742 | { | |
743 | SI nesr; | |
744 | /* The register is available, now check if it is active. */ | |
745 | nesr = GET_NESR (reg_ix); | |
746 | if (GET_NESR_FR (nesr) == is_float) | |
747 | { | |
748 | if (target_index < 0 || GET_NESR_DRN (nesr) == target_index) | |
749 | { | |
750 | SET_NESR (reg_ix, 0); | |
751 | SET_NEEAR (reg_ix, 0); | |
752 | } | |
753 | } | |
754 | } | |
755 | } | |
756 | ||
757 | static void | |
758 | clear_ne_flags ( | |
759 | SIM_CPU *current_cpu, | |
760 | SI target_index, | |
761 | int hi_available, | |
762 | int lo_available, | |
763 | SI NE_base | |
764 | ) | |
765 | { | |
766 | SI NE_flags[2]; | |
767 | int exception; | |
768 | ||
769 | GET_NE_FLAGS (NE_flags, NE_base); | |
770 | if (target_index >= 0) | |
771 | CLEAR_NE_FLAG (NE_flags, target_index); | |
772 | else | |
773 | { | |
774 | if (lo_available) | |
775 | NE_flags[1] = 0; | |
776 | if (hi_available) | |
777 | NE_flags[0] = 0; | |
778 | } | |
779 | SET_NE_FLAGS (NE_base, NE_flags); | |
780 | } | |
781 | ||
782 | /* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1 | |
783 | means to check for any register available. */ | |
784 | static void | |
785 | which_registers_available ( | |
786 | SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float | |
787 | ) | |
788 | { | |
789 | if (is_float) | |
790 | frv_fr_registers_available (current_cpu, hi_available, lo_available); | |
791 | else | |
792 | frv_gr_registers_available (current_cpu, hi_available, lo_available); | |
793 | } | |
794 | ||
795 | void | |
796 | frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float) | |
797 | { | |
798 | int hi_available; | |
799 | int lo_available; | |
800 | int exception; | |
801 | SI NE_base; | |
802 | USI necr; | |
803 | FRV_REGISTER_CONTROL *control; | |
804 | ||
805 | /* Check for availability of the target register(s). */ | |
806 | which_registers_available (current_cpu, & hi_available, & lo_available, | |
807 | is_float); | |
808 | ||
809 | /* Check to make sure that the target register is available. */ | |
810 | if (! frv_check_register_access (current_cpu, target_index, | |
811 | hi_available, lo_available)) | |
812 | return; | |
813 | ||
814 | /* Determine whether we're working with GR or FR registers. */ | |
815 | if (is_float) | |
816 | NE_base = H_SPR_FNER0; | |
817 | else | |
818 | NE_base = H_SPR_GNER0; | |
819 | ||
820 | /* Always clear the appropriate NE flags. */ | |
821 | clear_ne_flags (current_cpu, target_index, hi_available, lo_available, | |
822 | NE_base); | |
823 | ||
824 | /* Clear the appropriate NESR and NEEAR registers. */ | |
825 | control = CPU_REGISTER_CONTROL (current_cpu); | |
826 | if (control->spr[H_SPR_NECR].implemented) | |
827 | { | |
828 | necr = GET_NECR (); | |
829 | if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr)) | |
830 | clear_nesr_neear (current_cpu, target_index, is_float); | |
831 | } | |
832 | } | |
833 | ||
834 | void | |
835 | frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float) | |
836 | { | |
837 | SI NE_base; | |
838 | SI NE_flags[2]; | |
839 | BI NE_flag; | |
840 | int exception; | |
841 | int hi_available; | |
842 | int lo_available; | |
843 | USI necr; | |
844 | FRV_REGISTER_CONTROL *control; | |
845 | ||
846 | /* Check for availability of the target register(s). */ | |
847 | which_registers_available (current_cpu, & hi_available, & lo_available, | |
848 | is_float); | |
849 | ||
850 | /* Check to make sure that the target register is available. */ | |
851 | if (! frv_check_register_access (current_cpu, target_index, | |
852 | hi_available, lo_available)) | |
853 | return; | |
854 | ||
855 | /* Determine whether we're working with GR or FR registers. */ | |
856 | if (is_float) | |
857 | NE_base = H_SPR_FNER0; | |
858 | else | |
859 | NE_base = H_SPR_GNER0; | |
860 | ||
861 | /* Determine whether a ne exception is pending. */ | |
862 | GET_NE_FLAGS (NE_flags, NE_base); | |
863 | if (target_index >= 0) | |
864 | NE_flag = GET_NE_FLAG (NE_flags, target_index); | |
865 | else | |
866 | { | |
867 | NE_flag = | |
868 | hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0; | |
869 | } | |
870 | ||
871 | /* Always clear the appropriate NE flags. */ | |
872 | clear_ne_flags (current_cpu, target_index, hi_available, lo_available, | |
873 | NE_base); | |
874 | ||
875 | control = CPU_REGISTER_CONTROL (current_cpu); | |
876 | if (control->spr[H_SPR_NECR].implemented) | |
877 | { | |
878 | necr = GET_NECR (); | |
879 | if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag) | |
880 | { | |
881 | /* Clear the appropriate NESR and NEEAR registers. */ | |
882 | clear_nesr_neear (current_cpu, target_index, is_float); | |
883 | frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION); | |
884 | } | |
885 | } | |
886 | } | |
887 | ||
888 | /* Generate the appropriate fp_exception(s) based on the given status code. */ | |
889 | void | |
890 | frvbf_fpu_error (CGEN_FPU* fpu, int status) | |
891 | { | |
892 | struct frv_fp_exception_info fp_info = { | |
893 | FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION | |
894 | }; | |
895 | ||
896 | if (status & | |
897 | (sim_fpu_status_invalid_snan | | |
898 | sim_fpu_status_invalid_qnan | | |
899 | sim_fpu_status_invalid_isi | | |
900 | sim_fpu_status_invalid_idi | | |
901 | sim_fpu_status_invalid_zdz | | |
902 | sim_fpu_status_invalid_imz | | |
903 | sim_fpu_status_invalid_cvi | | |
904 | sim_fpu_status_invalid_cmp | | |
905 | sim_fpu_status_invalid_sqrt)) | |
906 | fp_info.fsr_mask |= FSR_INVALID_OPERATION; | |
907 | ||
908 | if (status & sim_fpu_status_invalid_div0) | |
909 | fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO; | |
910 | ||
911 | if (status & sim_fpu_status_inexact) | |
912 | fp_info.fsr_mask |= FSR_INEXACT; | |
913 | ||
914 | if (status & sim_fpu_status_overflow) | |
915 | fp_info.fsr_mask |= FSR_OVERFLOW; | |
916 | ||
917 | if (status & sim_fpu_status_underflow) | |
918 | fp_info.fsr_mask |= FSR_UNDERFLOW; | |
919 | ||
920 | if (status & sim_fpu_status_denorm) | |
921 | { | |
922 | fp_info.fsr_mask |= FSR_DENORMAL_INPUT; | |
923 | fp_info.ftt = FTT_DENORMAL_INPUT; | |
924 | } | |
925 | ||
926 | if (fp_info.fsr_mask != FSR_NO_EXCEPTION) | |
927 | { | |
928 | SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner; | |
929 | frv_queue_fp_exception_interrupt (current_cpu, & fp_info); | |
930 | } | |
931 | } |