]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Find a variable's value in memory, for GDB, the GNU debugger. |
7d9884b9 | 2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
36b9d39c | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
36b9d39c JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
36b9d39c | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
36b9d39c JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 19 | |
bd5635a1 | 20 | #include "defs.h" |
bd5635a1 | 21 | #include "symtab.h" |
51b57ded | 22 | #include "gdbtypes.h" |
bd5635a1 RP |
23 | #include "frame.h" |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
26 | #include "inferior.h" | |
27 | #include "target.h" | |
28 | ||
ade40d31 RP |
29 | /* Basic byte-swapping routines. GDB has needed these for a long time... |
30 | All extract a target-format integer at ADDR which is LEN bytes long. */ | |
31 | ||
32 | #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8 | |
33 | /* 8 bit characters are a pretty safe assumption these days, so we | |
34 | assume it throughout all these swapping routines. If we had to deal with | |
35 | 9 bit characters, we would need to make len be in bits and would have | |
36 | to re-write these routines... */ | |
37 | you lose | |
38 | #endif | |
39 | ||
40 | LONGEST | |
41 | extract_signed_integer (addr, len) | |
42 | PTR addr; | |
43 | int len; | |
44 | { | |
45 | LONGEST retval; | |
46 | unsigned char *p; | |
47 | unsigned char *startaddr = (unsigned char *)addr; | |
48 | unsigned char *endaddr = startaddr + len; | |
49 | ||
50 | if (len > sizeof (LONGEST)) | |
51 | error ("\ | |
52 | That operation is not available on integers of more than %d bytes.", | |
53 | sizeof (LONGEST)); | |
54 | ||
55 | /* Start at the most significant end of the integer, and work towards | |
56 | the least significant. */ | |
57 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
58 | p = startaddr; | |
59 | #else | |
60 | p = endaddr - 1; | |
61 | #endif | |
62 | /* Do the sign extension once at the start. */ | |
5573d7d4 | 63 | retval = ((LONGEST)*p ^ 0x80) - 0x80; |
ade40d31 RP |
64 | #if TARGET_BYTE_ORDER == BIG_ENDIAN |
65 | for (++p; p < endaddr; ++p) | |
66 | #else | |
67 | for (--p; p >= startaddr; --p) | |
68 | #endif | |
69 | { | |
70 | retval = (retval << 8) | *p; | |
71 | } | |
72 | return retval; | |
73 | } | |
74 | ||
75 | unsigned LONGEST | |
76 | extract_unsigned_integer (addr, len) | |
77 | PTR addr; | |
78 | int len; | |
79 | { | |
80 | unsigned LONGEST retval; | |
81 | unsigned char *p; | |
82 | unsigned char *startaddr = (unsigned char *)addr; | |
83 | unsigned char *endaddr = startaddr + len; | |
84 | ||
85 | if (len > sizeof (unsigned LONGEST)) | |
86 | error ("\ | |
87 | That operation is not available on integers of more than %d bytes.", | |
88 | sizeof (unsigned LONGEST)); | |
89 | ||
90 | /* Start at the most significant end of the integer, and work towards | |
91 | the least significant. */ | |
92 | retval = 0; | |
93 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
94 | for (p = startaddr; p < endaddr; ++p) | |
95 | #else | |
96 | for (p = endaddr - 1; p >= startaddr; --p) | |
97 | #endif | |
98 | { | |
99 | retval = (retval << 8) | *p; | |
100 | } | |
101 | return retval; | |
102 | } | |
103 | ||
104 | CORE_ADDR | |
105 | extract_address (addr, len) | |
106 | PTR addr; | |
107 | int len; | |
108 | { | |
109 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
110 | whether we want this to be true eventually. */ | |
111 | return extract_unsigned_integer (addr, len); | |
112 | } | |
113 | ||
114 | void | |
115 | store_signed_integer (addr, len, val) | |
116 | PTR addr; | |
117 | int len; | |
118 | LONGEST val; | |
119 | { | |
120 | unsigned char *p; | |
121 | unsigned char *startaddr = (unsigned char *)addr; | |
122 | unsigned char *endaddr = startaddr + len; | |
123 | ||
124 | /* Start at the least significant end of the integer, and work towards | |
125 | the most significant. */ | |
126 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
127 | for (p = endaddr - 1; p >= startaddr; --p) | |
128 | #else | |
129 | for (p = startaddr; p < endaddr; ++p) | |
130 | #endif | |
131 | { | |
132 | *p = val & 0xff; | |
133 | val >>= 8; | |
134 | } | |
135 | } | |
136 | ||
137 | void | |
138 | store_unsigned_integer (addr, len, val) | |
139 | PTR addr; | |
140 | int len; | |
141 | unsigned LONGEST val; | |
142 | { | |
143 | unsigned char *p; | |
144 | unsigned char *startaddr = (unsigned char *)addr; | |
145 | unsigned char *endaddr = startaddr + len; | |
146 | ||
147 | /* Start at the least significant end of the integer, and work towards | |
148 | the most significant. */ | |
149 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
150 | for (p = endaddr - 1; p >= startaddr; --p) | |
151 | #else | |
152 | for (p = startaddr; p < endaddr; ++p) | |
153 | #endif | |
154 | { | |
155 | *p = val & 0xff; | |
156 | val >>= 8; | |
157 | } | |
158 | } | |
159 | ||
160 | void | |
161 | store_address (addr, len, val) | |
162 | PTR addr; | |
163 | int len; | |
164 | CORE_ADDR val; | |
165 | { | |
166 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
167 | whether we want this to be true eventually. */ | |
168 | store_unsigned_integer (addr, len, (LONGEST)val); | |
169 | } | |
170 | \f | |
ad09cb2b PS |
171 | /* Swap LEN bytes at BUFFER between target and host byte-order. This is |
172 | the wrong way to do byte-swapping because it assumes that you have a way | |
173 | to have a host variable of exactly the right size. Once extract_floating | |
174 | and store_floating have been fixed, this can go away. */ | |
175 | #if TARGET_BYTE_ORDER == HOST_BYTE_ORDER | |
176 | #define SWAP_TARGET_AND_HOST(buffer,len) | |
177 | #else /* Target and host byte order differ. */ | |
178 | #define SWAP_TARGET_AND_HOST(buffer,len) \ | |
179 | { \ | |
180 | char tmp; \ | |
181 | char *p = (char *)(buffer); \ | |
182 | char *q = ((char *)(buffer)) + len - 1; \ | |
183 | for (; p < q; p++, q--) \ | |
184 | { \ | |
185 | tmp = *q; \ | |
186 | *q = *p; \ | |
187 | *p = tmp; \ | |
188 | } \ | |
189 | } | |
190 | #endif /* Target and host byte order differ. */ | |
191 | ||
192 | /* There are many problems with floating point cross-debugging. | |
193 | ||
194 | 1. These routines only handle byte-swapping, not conversion of | |
195 | formats. So if host is IEEE floating and target is VAX floating, | |
196 | or vice-versa, it loses. This means that we can't (yet) use these | |
197 | routines for extendeds. Extendeds are handled by | |
48792545 JK |
198 | REGISTER_CONVERTIBLE. What we want is to use floatformat.h, but that |
199 | doesn't yet handle VAX floating at all. | |
ad09cb2b PS |
200 | |
201 | 2. We can't deal with it if there is more than one floating point | |
202 | format in use. This has to be fixed at the unpack_double level. | |
203 | ||
204 | 3. We probably should have a LONGEST_DOUBLE or DOUBLEST or whatever | |
205 | we want to call it which is long double where available. */ | |
206 | ||
207 | double | |
208 | extract_floating (addr, len) | |
209 | PTR addr; | |
210 | int len; | |
211 | { | |
212 | if (len == sizeof (float)) | |
213 | { | |
214 | float retval; | |
215 | memcpy (&retval, addr, sizeof (retval)); | |
216 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
217 | return retval; | |
218 | } | |
219 | else if (len == sizeof (double)) | |
220 | { | |
221 | double retval; | |
222 | memcpy (&retval, addr, sizeof (retval)); | |
223 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
224 | return retval; | |
225 | } | |
226 | else | |
227 | { | |
228 | error ("Can't deal with a floating point number of %d bytes.", len); | |
229 | } | |
230 | } | |
231 | ||
232 | void | |
233 | store_floating (addr, len, val) | |
234 | PTR addr; | |
235 | int len; | |
236 | double val; | |
237 | { | |
238 | if (len == sizeof (float)) | |
239 | { | |
240 | float floatval = val; | |
241 | SWAP_TARGET_AND_HOST (&floatval, sizeof (floatval)); | |
242 | memcpy (addr, &floatval, sizeof (floatval)); | |
243 | } | |
244 | else if (len == sizeof (double)) | |
245 | { | |
246 | SWAP_TARGET_AND_HOST (&val, sizeof (val)); | |
247 | memcpy (addr, &val, sizeof (val)); | |
248 | } | |
249 | else | |
250 | { | |
251 | error ("Can't deal with a floating point number of %d bytes.", len); | |
252 | } | |
253 | } | |
254 | \f | |
bd5635a1 RP |
255 | #if !defined (GET_SAVED_REGISTER) |
256 | ||
257 | /* Return the address in which frame FRAME's value of register REGNUM | |
258 | has been saved in memory. Or return zero if it has not been saved. | |
259 | If REGNUM specifies the SP, the value we return is actually | |
260 | the SP value, not an address where it was saved. */ | |
261 | ||
262 | CORE_ADDR | |
263 | find_saved_register (frame, regnum) | |
264 | FRAME frame; | |
265 | int regnum; | |
266 | { | |
267 | struct frame_info *fi; | |
268 | struct frame_saved_regs saved_regs; | |
269 | ||
270 | register FRAME frame1 = 0; | |
271 | register CORE_ADDR addr = 0; | |
272 | ||
273 | if (frame == 0) /* No regs saved if want current frame */ | |
274 | return 0; | |
275 | ||
276 | #ifdef HAVE_REGISTER_WINDOWS | |
277 | /* We assume that a register in a register window will only be saved | |
278 | in one place (since the name changes and/or disappears as you go | |
279 | towards inner frames), so we only call get_frame_saved_regs on | |
280 | the current frame. This is directly in contradiction to the | |
281 | usage below, which assumes that registers used in a frame must be | |
282 | saved in a lower (more interior) frame. This change is a result | |
283 | of working on a register window machine; get_frame_saved_regs | |
284 | always returns the registers saved within a frame, within the | |
285 | context (register namespace) of that frame. */ | |
286 | ||
287 | /* However, note that we don't want this to return anything if | |
288 | nothing is saved (if there's a frame inside of this one). Also, | |
289 | callers to this routine asking for the stack pointer want the | |
290 | stack pointer saved for *this* frame; this is returned from the | |
291 | next frame. */ | |
292 | ||
293 | ||
294 | if (REGISTER_IN_WINDOW_P(regnum)) | |
295 | { | |
296 | frame1 = get_next_frame (frame); | |
297 | if (!frame1) return 0; /* Registers of this frame are | |
298 | active. */ | |
299 | ||
300 | /* Get the SP from the next frame in; it will be this | |
301 | current frame. */ | |
302 | if (regnum != SP_REGNUM) | |
303 | frame1 = frame; | |
304 | ||
305 | fi = get_frame_info (frame1); | |
306 | get_frame_saved_regs (fi, &saved_regs); | |
307 | return saved_regs.regs[regnum]; /* ... which might be zero */ | |
308 | } | |
309 | #endif /* HAVE_REGISTER_WINDOWS */ | |
310 | ||
311 | /* Note that this next routine assumes that registers used in | |
312 | frame x will be saved only in the frame that x calls and | |
313 | frames interior to it. This is not true on the sparc, but the | |
314 | above macro takes care of it, so we should be all right. */ | |
315 | while (1) | |
316 | { | |
317 | QUIT; | |
318 | frame1 = get_prev_frame (frame1); | |
319 | if (frame1 == 0 || frame1 == frame) | |
320 | break; | |
321 | fi = get_frame_info (frame1); | |
322 | get_frame_saved_regs (fi, &saved_regs); | |
323 | if (saved_regs.regs[regnum]) | |
324 | addr = saved_regs.regs[regnum]; | |
325 | } | |
326 | ||
327 | return addr; | |
328 | } | |
329 | ||
4d50f90a JK |
330 | /* Find register number REGNUM relative to FRAME and put its (raw, |
331 | target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the | |
332 | variable was optimized out (and thus can't be fetched). Set *LVAL | |
333 | to lval_memory, lval_register, or not_lval, depending on whether | |
334 | the value was fetched from memory, from a register, or in a strange | |
bd5635a1 RP |
335 | and non-modifiable way (e.g. a frame pointer which was calculated |
336 | rather than fetched). Set *ADDRP to the address, either in memory | |
337 | on as a REGISTER_BYTE offset into the registers array. | |
338 | ||
339 | Note that this implementation never sets *LVAL to not_lval. But | |
340 | it can be replaced by defining GET_SAVED_REGISTER and supplying | |
341 | your own. | |
342 | ||
343 | The argument RAW_BUFFER must point to aligned memory. */ | |
4d50f90a | 344 | |
bd5635a1 RP |
345 | void |
346 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
347 | char *raw_buffer; | |
348 | int *optimized; | |
349 | CORE_ADDR *addrp; | |
350 | FRAME frame; | |
351 | int regnum; | |
352 | enum lval_type *lval; | |
353 | { | |
354 | CORE_ADDR addr; | |
355 | /* Normal systems don't optimize out things with register numbers. */ | |
356 | if (optimized != NULL) | |
357 | *optimized = 0; | |
358 | addr = find_saved_register (frame, regnum); | |
51b57ded | 359 | if (addr != 0) |
bd5635a1 RP |
360 | { |
361 | if (lval != NULL) | |
362 | *lval = lval_memory; | |
363 | if (regnum == SP_REGNUM) | |
364 | { | |
365 | if (raw_buffer != NULL) | |
4d50f90a | 366 | { |
ade40d31 RP |
367 | /* Put it back in target format. */ |
368 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
4d50f90a | 369 | } |
bd5635a1 RP |
370 | if (addrp != NULL) |
371 | *addrp = 0; | |
372 | return; | |
373 | } | |
374 | if (raw_buffer != NULL) | |
375 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
376 | } | |
377 | else | |
378 | { | |
379 | if (lval != NULL) | |
380 | *lval = lval_register; | |
381 | addr = REGISTER_BYTE (regnum); | |
382 | if (raw_buffer != NULL) | |
383 | read_register_gen (regnum, raw_buffer); | |
384 | } | |
385 | if (addrp != NULL) | |
386 | *addrp = addr; | |
387 | } | |
388 | #endif /* GET_SAVED_REGISTER. */ | |
389 | ||
390 | /* Copy the bytes of register REGNUM, relative to the current stack frame, | |
391 | into our memory at MYADDR, in target byte order. | |
392 | The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). | |
393 | ||
394 | Returns 1 if could not be read, 0 if could. */ | |
395 | ||
396 | int | |
397 | read_relative_register_raw_bytes (regnum, myaddr) | |
398 | int regnum; | |
399 | char *myaddr; | |
400 | { | |
401 | int optim; | |
402 | if (regnum == FP_REGNUM && selected_frame) | |
403 | { | |
ade40d31 RP |
404 | /* Put it back in target format. */ |
405 | store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM), | |
406 | FRAME_FP(selected_frame)); | |
bd5635a1 RP |
407 | return 0; |
408 | } | |
409 | ||
e1ce8aa5 | 410 | get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame, |
bd5635a1 RP |
411 | regnum, (enum lval_type *)NULL); |
412 | return optim; | |
413 | } | |
414 | ||
415 | /* Return a `value' with the contents of register REGNUM | |
416 | in its virtual format, with the type specified by | |
417 | REGISTER_VIRTUAL_TYPE. */ | |
418 | ||
419 | value | |
420 | value_of_register (regnum) | |
421 | int regnum; | |
422 | { | |
423 | CORE_ADDR addr; | |
424 | int optim; | |
48792545 | 425 | register value reg_val; |
bd5635a1 | 426 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 RP |
427 | enum lval_type lval; |
428 | ||
429 | get_saved_register (raw_buffer, &optim, &addr, | |
430 | selected_frame, regnum, &lval); | |
431 | ||
48792545 | 432 | reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); |
ad09cb2b PS |
433 | |
434 | /* Convert raw data to virtual format if necessary. */ | |
435 | ||
436 | #ifdef REGISTER_CONVERTIBLE | |
437 | if (REGISTER_CONVERTIBLE (regnum)) | |
438 | { | |
439 | REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum), | |
48792545 | 440 | raw_buffer, VALUE_CONTENTS_RAW (reg_val)); |
ad09cb2b PS |
441 | } |
442 | else | |
443 | #endif | |
48792545 | 444 | memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer, |
ad09cb2b | 445 | REGISTER_RAW_SIZE (regnum)); |
48792545 JK |
446 | VALUE_LVAL (reg_val) = lval; |
447 | VALUE_ADDRESS (reg_val) = addr; | |
448 | VALUE_REGNO (reg_val) = regnum; | |
449 | VALUE_OPTIMIZED_OUT (reg_val) = optim; | |
450 | return reg_val; | |
bd5635a1 RP |
451 | } |
452 | \f | |
453 | /* Low level examining and depositing of registers. | |
454 | ||
455 | The caller is responsible for making | |
456 | sure that the inferior is stopped before calling the fetching routines, | |
457 | or it will get garbage. (a change from GDB version 3, in which | |
458 | the caller got the value from the last stop). */ | |
459 | ||
460 | /* Contents of the registers in target byte order. | |
ade40d31 | 461 | We allocate some extra slop since we do a lot of memcpy's around `registers', |
bd5635a1 RP |
462 | and failing-soft is better than failing hard. */ |
463 | char registers[REGISTER_BYTES + /* SLOP */ 256]; | |
464 | ||
465 | /* Nonzero if that register has been fetched. */ | |
466 | char register_valid[NUM_REGS]; | |
467 | ||
468 | /* Indicate that registers may have changed, so invalidate the cache. */ | |
469 | void | |
470 | registers_changed () | |
471 | { | |
472 | int i; | |
473 | for (i = 0; i < NUM_REGS; i++) | |
474 | register_valid[i] = 0; | |
475 | } | |
476 | ||
477 | /* Indicate that all registers have been fetched, so mark them all valid. */ | |
478 | void | |
479 | registers_fetched () | |
480 | { | |
481 | int i; | |
482 | for (i = 0; i < NUM_REGS; i++) | |
483 | register_valid[i] = 1; | |
484 | } | |
485 | ||
486 | /* Copy LEN bytes of consecutive data from registers | |
487 | starting with the REGBYTE'th byte of register data | |
488 | into memory at MYADDR. */ | |
489 | ||
490 | void | |
491 | read_register_bytes (regbyte, myaddr, len) | |
492 | int regbyte; | |
493 | char *myaddr; | |
494 | int len; | |
495 | { | |
496 | /* Fetch all registers. */ | |
497 | int i; | |
498 | for (i = 0; i < NUM_REGS; i++) | |
499 | if (!register_valid[i]) | |
500 | { | |
501 | target_fetch_registers (-1); | |
502 | break; | |
503 | } | |
504 | if (myaddr != NULL) | |
0791c5ea | 505 | memcpy (myaddr, ®isters[regbyte], len); |
bd5635a1 RP |
506 | } |
507 | ||
508 | /* Read register REGNO into memory at MYADDR, which must be large enough | |
f2ebc25f JK |
509 | for REGISTER_RAW_BYTES (REGNO). Target byte-order. |
510 | If the register is known to be the size of a CORE_ADDR or smaller, | |
511 | read_register can be used instead. */ | |
bd5635a1 RP |
512 | void |
513 | read_register_gen (regno, myaddr) | |
514 | int regno; | |
515 | char *myaddr; | |
516 | { | |
517 | if (!register_valid[regno]) | |
518 | target_fetch_registers (regno); | |
0791c5ea JK |
519 | memcpy (myaddr, ®isters[REGISTER_BYTE (regno)], |
520 | REGISTER_RAW_SIZE (regno)); | |
bd5635a1 RP |
521 | } |
522 | ||
523 | /* Copy LEN bytes of consecutive data from memory at MYADDR | |
524 | into registers starting with the REGBYTE'th byte of register data. */ | |
525 | ||
526 | void | |
527 | write_register_bytes (regbyte, myaddr, len) | |
528 | int regbyte; | |
529 | char *myaddr; | |
530 | int len; | |
531 | { | |
532 | /* Make sure the entire registers array is valid. */ | |
533 | read_register_bytes (0, (char *)NULL, REGISTER_BYTES); | |
0791c5ea | 534 | memcpy (®isters[regbyte], myaddr, len); |
bd5635a1 RP |
535 | target_store_registers (-1); |
536 | } | |
537 | ||
ade40d31 RP |
538 | /* Return the raw contents of register REGNO, regarding it as an integer. */ |
539 | /* This probably should be returning LONGEST rather than CORE_ADDR. */ | |
bd5635a1 RP |
540 | |
541 | CORE_ADDR | |
542 | read_register (regno) | |
543 | int regno; | |
544 | { | |
bd5635a1 RP |
545 | if (!register_valid[regno]) |
546 | target_fetch_registers (regno); | |
0791c5ea | 547 | |
ade40d31 RP |
548 | return extract_address (®isters[REGISTER_BYTE (regno)], |
549 | REGISTER_RAW_SIZE(regno)); | |
bd5635a1 RP |
550 | } |
551 | ||
552 | /* Registers we shouldn't try to store. */ | |
553 | #if !defined (CANNOT_STORE_REGISTER) | |
554 | #define CANNOT_STORE_REGISTER(regno) 0 | |
555 | #endif | |
556 | ||
ade40d31 RP |
557 | /* Store VALUE, into the raw contents of register number REGNO. */ |
558 | /* FIXME: The val arg should probably be a LONGEST. */ | |
bd5635a1 RP |
559 | |
560 | void | |
561 | write_register (regno, val) | |
5573d7d4 | 562 | int regno; |
443abae1 | 563 | LONGEST val; |
bd5635a1 | 564 | { |
ade40d31 | 565 | PTR buf; |
df14b38b | 566 | int size; |
ade40d31 | 567 | |
bd5635a1 RP |
568 | /* On the sparc, writing %g0 is a no-op, so we don't even want to change |
569 | the registers array if something writes to this register. */ | |
570 | if (CANNOT_STORE_REGISTER (regno)) | |
571 | return; | |
572 | ||
ade40d31 RP |
573 | size = REGISTER_RAW_SIZE(regno); |
574 | buf = alloca (size); | |
575 | store_signed_integer (buf, size, (LONGEST) val); | |
576 | ||
df14b38b SC |
577 | /* If we have a valid copy of the register, and new value == old value, |
578 | then don't bother doing the actual store. */ | |
bd5635a1 | 579 | |
df14b38b SC |
580 | if (register_valid [regno]) |
581 | { | |
ade40d31 | 582 | if (memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0) |
df14b38b SC |
583 | return; |
584 | } | |
585 | ||
586 | target_prepare_to_store (); | |
587 | ||
ade40d31 | 588 | memcpy (®isters[REGISTER_BYTE (regno)], buf, size); |
df14b38b SC |
589 | |
590 | register_valid [regno] = 1; | |
bd5635a1 RP |
591 | |
592 | target_store_registers (regno); | |
593 | } | |
594 | ||
595 | /* Record that register REGNO contains VAL. | |
596 | This is used when the value is obtained from the inferior or core dump, | |
597 | so there is no need to store the value there. */ | |
598 | ||
599 | void | |
600 | supply_register (regno, val) | |
601 | int regno; | |
602 | char *val; | |
603 | { | |
604 | register_valid[regno] = 1; | |
0791c5ea JK |
605 | memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno)); |
606 | ||
607 | /* On some architectures, e.g. HPPA, there are a few stray bits in some | |
608 | registers, that the rest of the code would like to ignore. */ | |
609 | #ifdef CLEAN_UP_REGISTER_VALUE | |
610 | CLEAN_UP_REGISTER_VALUE(regno, ®isters[REGISTER_BYTE(regno)]); | |
611 | #endif | |
bd5635a1 RP |
612 | } |
613 | \f | |
443abae1 JK |
614 | /* Will calling read_var_value or locate_var_value on SYM end |
615 | up caring what frame it is being evaluated relative to? SYM must | |
616 | be non-NULL. */ | |
617 | int | |
618 | symbol_read_needs_frame (sym) | |
619 | struct symbol *sym; | |
620 | { | |
621 | switch (SYMBOL_CLASS (sym)) | |
622 | { | |
623 | /* All cases listed explicitly so that gcc -Wall will detect it if | |
624 | we failed to consider one. */ | |
625 | case LOC_REGISTER: | |
626 | case LOC_ARG: | |
627 | case LOC_REF_ARG: | |
628 | case LOC_REGPARM: | |
629 | case LOC_REGPARM_ADDR: | |
630 | case LOC_LOCAL: | |
631 | case LOC_LOCAL_ARG: | |
632 | case LOC_BASEREG: | |
633 | case LOC_BASEREG_ARG: | |
634 | return 1; | |
635 | ||
636 | case LOC_UNDEF: | |
637 | case LOC_CONST: | |
638 | case LOC_STATIC: | |
639 | case LOC_TYPEDEF: | |
640 | ||
641 | case LOC_LABEL: | |
642 | /* Getting the address of a label can be done independently of the block, | |
643 | even if some *uses* of that address wouldn't work so well without | |
644 | the right frame. */ | |
645 | ||
646 | case LOC_BLOCK: | |
647 | case LOC_CONST_BYTES: | |
648 | case LOC_OPTIMIZED_OUT: | |
649 | return 0; | |
650 | } | |
100f92e2 | 651 | return 1; |
443abae1 JK |
652 | } |
653 | ||
bd5635a1 RP |
654 | /* Given a struct symbol for a variable, |
655 | and a stack frame id, read the value of the variable | |
656 | and return a (pointer to a) struct value containing the value. | |
777bef06 JK |
657 | If the variable cannot be found, return a zero pointer. |
658 | If FRAME is NULL, use the selected_frame. */ | |
bd5635a1 RP |
659 | |
660 | value | |
661 | read_var_value (var, frame) | |
662 | register struct symbol *var; | |
663 | FRAME frame; | |
664 | { | |
665 | register value v; | |
666 | struct frame_info *fi; | |
667 | struct type *type = SYMBOL_TYPE (var); | |
668 | CORE_ADDR addr; | |
bd5635a1 RP |
669 | register int len; |
670 | ||
671 | v = allocate_value (type); | |
672 | VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */ | |
673 | len = TYPE_LENGTH (type); | |
674 | ||
675 | if (frame == 0) frame = selected_frame; | |
676 | ||
677 | switch (SYMBOL_CLASS (var)) | |
678 | { | |
679 | case LOC_CONST: | |
ade40d31 RP |
680 | /* Put the constant back in target format. */ |
681 | store_signed_integer (VALUE_CONTENTS_RAW (v), len, | |
682 | (LONGEST) SYMBOL_VALUE (var)); | |
bd5635a1 RP |
683 | VALUE_LVAL (v) = not_lval; |
684 | return v; | |
685 | ||
686 | case LOC_LABEL: | |
ade40d31 RP |
687 | /* Put the constant back in target format. */ |
688 | store_address (VALUE_CONTENTS_RAW (v), len, SYMBOL_VALUE_ADDRESS (var)); | |
bd5635a1 RP |
689 | VALUE_LVAL (v) = not_lval; |
690 | return v; | |
691 | ||
692 | case LOC_CONST_BYTES: | |
36b9d39c JG |
693 | { |
694 | char *bytes_addr; | |
695 | bytes_addr = SYMBOL_VALUE_BYTES (var); | |
0791c5ea | 696 | memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len); |
36b9d39c JG |
697 | VALUE_LVAL (v) = not_lval; |
698 | return v; | |
699 | } | |
bd5635a1 RP |
700 | |
701 | case LOC_STATIC: | |
bd5635a1 RP |
702 | addr = SYMBOL_VALUE_ADDRESS (var); |
703 | break; | |
704 | ||
bd5635a1 | 705 | case LOC_ARG: |
ade40d31 RP |
706 | fi = get_frame_info (frame); |
707 | if (fi == NULL) | |
708 | return 0; | |
709 | addr = FRAME_ARGS_ADDRESS (fi); | |
51b57ded FF |
710 | if (!addr) |
711 | { | |
712 | return 0; | |
713 | } | |
bd5635a1 RP |
714 | addr += SYMBOL_VALUE (var); |
715 | break; | |
ade40d31 | 716 | |
bd5635a1 | 717 | case LOC_REF_ARG: |
ade40d31 RP |
718 | fi = get_frame_info (frame); |
719 | if (fi == NULL) | |
720 | return 0; | |
721 | addr = FRAME_ARGS_ADDRESS (fi); | |
51b57ded FF |
722 | if (!addr) |
723 | { | |
724 | return 0; | |
725 | } | |
bd5635a1 | 726 | addr += SYMBOL_VALUE (var); |
ade40d31 RP |
727 | addr = read_memory_unsigned_integer |
728 | (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT); | |
bd5635a1 | 729 | break; |
ade40d31 | 730 | |
bd5635a1 RP |
731 | case LOC_LOCAL: |
732 | case LOC_LOCAL_ARG: | |
ade40d31 RP |
733 | fi = get_frame_info (frame); |
734 | if (fi == NULL) | |
735 | return 0; | |
736 | addr = FRAME_LOCALS_ADDRESS (fi); | |
51b57ded | 737 | addr += SYMBOL_VALUE (var); |
bd5635a1 RP |
738 | break; |
739 | ||
ade40d31 RP |
740 | case LOC_BASEREG: |
741 | case LOC_BASEREG_ARG: | |
742 | { | |
743 | char buf[MAX_REGISTER_RAW_SIZE]; | |
744 | get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var), | |
745 | NULL); | |
746 | addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var))); | |
747 | addr += SYMBOL_VALUE (var); | |
748 | break; | |
749 | } | |
750 | ||
bd5635a1 RP |
751 | case LOC_TYPEDEF: |
752 | error ("Cannot look up value of a typedef"); | |
753 | break; | |
754 | ||
755 | case LOC_BLOCK: | |
756 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); | |
757 | return v; | |
758 | ||
759 | case LOC_REGISTER: | |
760 | case LOC_REGPARM: | |
35247ccd | 761 | case LOC_REGPARM_ADDR: |
bd5635a1 | 762 | { |
777bef06 | 763 | struct block *b; |
bd5635a1 | 764 | |
777bef06 JK |
765 | if (frame == NULL) |
766 | return 0; | |
767 | b = get_frame_block (frame); | |
768 | ||
bd5635a1 RP |
769 | v = value_from_register (type, SYMBOL_VALUE (var), frame); |
770 | ||
35247ccd | 771 | if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR) |
0791c5ea JK |
772 | { |
773 | addr = *(CORE_ADDR *)VALUE_CONTENTS (v); | |
774 | VALUE_LVAL (v) = lval_memory; | |
775 | } | |
bd5635a1 RP |
776 | else |
777 | return v; | |
778 | } | |
779 | break; | |
780 | ||
35247ccd SG |
781 | case LOC_OPTIMIZED_OUT: |
782 | VALUE_LVAL (v) = not_lval; | |
783 | VALUE_OPTIMIZED_OUT (v) = 1; | |
784 | return v; | |
785 | ||
bd5635a1 RP |
786 | default: |
787 | error ("Cannot look up value of a botched symbol."); | |
788 | break; | |
789 | } | |
790 | ||
791 | VALUE_ADDRESS (v) = addr; | |
792 | VALUE_LAZY (v) = 1; | |
793 | return v; | |
794 | } | |
795 | ||
796 | /* Return a value of type TYPE, stored in register REGNUM, in frame | |
797 | FRAME. */ | |
798 | ||
799 | value | |
800 | value_from_register (type, regnum, frame) | |
801 | struct type *type; | |
802 | int regnum; | |
803 | FRAME frame; | |
804 | { | |
805 | char raw_buffer [MAX_REGISTER_RAW_SIZE]; | |
bd5635a1 RP |
806 | CORE_ADDR addr; |
807 | int optim; | |
808 | value v = allocate_value (type); | |
809 | int len = TYPE_LENGTH (type); | |
810 | char *value_bytes = 0; | |
811 | int value_bytes_copied = 0; | |
812 | int num_storage_locs; | |
813 | enum lval_type lval; | |
814 | ||
815 | VALUE_REGNO (v) = regnum; | |
816 | ||
817 | num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ? | |
818 | ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 : | |
819 | 1); | |
820 | ||
0791c5ea JK |
821 | if (num_storage_locs > 1 |
822 | #ifdef GDB_TARGET_IS_H8500 | |
823 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
824 | #endif | |
825 | ) | |
bd5635a1 RP |
826 | { |
827 | /* Value spread across multiple storage locations. */ | |
828 | ||
829 | int local_regnum; | |
830 | int mem_stor = 0, reg_stor = 0; | |
831 | int mem_tracking = 1; | |
832 | CORE_ADDR last_addr = 0; | |
5573d7d4 | 833 | CORE_ADDR first_addr = 0; |
bd5635a1 RP |
834 | |
835 | value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE); | |
836 | ||
837 | /* Copy all of the data out, whereever it may be. */ | |
838 | ||
0791c5ea JK |
839 | #ifdef GDB_TARGET_IS_H8500 |
840 | /* This piece of hideosity is required because the H8500 treats registers | |
841 | differently depending upon whether they are used as pointers or not. As a | |
842 | pointer, a register needs to have a page register tacked onto the front. | |
843 | An alternate way to do this would be to have gcc output different register | |
844 | numbers for the pointer & non-pointer form of the register. But, it | |
845 | doesn't, so we're stuck with this. */ | |
846 | ||
35247ccd SG |
847 | if (TYPE_CODE (type) == TYPE_CODE_PTR |
848 | && len > 2) | |
bd5635a1 | 849 | { |
0791c5ea JK |
850 | int page_regnum; |
851 | ||
852 | switch (regnum) | |
853 | { | |
854 | case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM: | |
855 | page_regnum = SEG_D_REGNUM; | |
856 | break; | |
857 | case R4_REGNUM: case R5_REGNUM: | |
858 | page_regnum = SEG_E_REGNUM; | |
859 | break; | |
860 | case R6_REGNUM: case R7_REGNUM: | |
861 | page_regnum = SEG_T_REGNUM; | |
862 | break; | |
863 | } | |
864 | ||
865 | value_bytes[0] = 0; | |
866 | get_saved_register (value_bytes + 1, | |
bd5635a1 RP |
867 | &optim, |
868 | &addr, | |
869 | frame, | |
0791c5ea | 870 | page_regnum, |
bd5635a1 | 871 | &lval); |
0791c5ea | 872 | |
bd5635a1 RP |
873 | if (lval == lval_register) |
874 | reg_stor++; | |
875 | else | |
df14b38b SC |
876 | mem_stor++; |
877 | first_addr = addr; | |
0791c5ea | 878 | last_addr = addr; |
bd5635a1 | 879 | |
0791c5ea JK |
880 | get_saved_register (value_bytes + 2, |
881 | &optim, | |
882 | &addr, | |
883 | frame, | |
884 | regnum, | |
885 | &lval); | |
886 | ||
887 | if (lval == lval_register) | |
888 | reg_stor++; | |
889 | else | |
890 | { | |
891 | mem_stor++; | |
892 | mem_tracking = mem_tracking && (addr == last_addr); | |
bd5635a1 RP |
893 | } |
894 | last_addr = addr; | |
895 | } | |
0791c5ea JK |
896 | else |
897 | #endif /* GDB_TARGET_IS_H8500 */ | |
898 | for (local_regnum = regnum; | |
899 | value_bytes_copied < len; | |
900 | (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum), | |
901 | ++local_regnum)) | |
902 | { | |
903 | get_saved_register (value_bytes + value_bytes_copied, | |
904 | &optim, | |
905 | &addr, | |
906 | frame, | |
907 | local_regnum, | |
908 | &lval); | |
df14b38b SC |
909 | |
910 | if (regnum == local_regnum) | |
911 | first_addr = addr; | |
0791c5ea JK |
912 | if (lval == lval_register) |
913 | reg_stor++; | |
914 | else | |
915 | { | |
916 | mem_stor++; | |
0791c5ea JK |
917 | |
918 | mem_tracking = | |
919 | (mem_tracking | |
920 | && (regnum == local_regnum | |
921 | || addr == last_addr)); | |
922 | } | |
923 | last_addr = addr; | |
924 | } | |
bd5635a1 RP |
925 | |
926 | if ((reg_stor && mem_stor) | |
927 | || (mem_stor && !mem_tracking)) | |
928 | /* Mixed storage; all of the hassle we just went through was | |
929 | for some good purpose. */ | |
930 | { | |
931 | VALUE_LVAL (v) = lval_reg_frame_relative; | |
932 | VALUE_FRAME (v) = FRAME_FP (frame); | |
933 | VALUE_FRAME_REGNUM (v) = regnum; | |
934 | } | |
935 | else if (mem_stor) | |
936 | { | |
937 | VALUE_LVAL (v) = lval_memory; | |
938 | VALUE_ADDRESS (v) = first_addr; | |
939 | } | |
940 | else if (reg_stor) | |
941 | { | |
942 | VALUE_LVAL (v) = lval_register; | |
943 | VALUE_ADDRESS (v) = first_addr; | |
944 | } | |
945 | else | |
946 | fatal ("value_from_register: Value not stored anywhere!"); | |
947 | ||
948 | VALUE_OPTIMIZED_OUT (v) = optim; | |
949 | ||
950 | /* Any structure stored in more than one register will always be | |
951 | an integral number of registers. Otherwise, you'd need to do | |
952 | some fiddling with the last register copied here for little | |
953 | endian machines. */ | |
954 | ||
955 | /* Copy into the contents section of the value. */ | |
0791c5ea | 956 | memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len); |
bd5635a1 | 957 | |
df14b38b SC |
958 | /* Finally do any conversion necessary when extracting this |
959 | type from more than one register. */ | |
960 | #ifdef REGISTER_CONVERT_TO_TYPE | |
961 | REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v)); | |
962 | #endif | |
bd5635a1 RP |
963 | return v; |
964 | } | |
965 | ||
966 | /* Data is completely contained within a single register. Locate the | |
967 | register's contents in a real register or in core; | |
968 | read the data in raw format. */ | |
969 | ||
970 | get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval); | |
971 | VALUE_OPTIMIZED_OUT (v) = optim; | |
972 | VALUE_LVAL (v) = lval; | |
973 | VALUE_ADDRESS (v) = addr; | |
ad09cb2b PS |
974 | |
975 | /* Convert raw data to virtual format if necessary. */ | |
bd5635a1 | 976 | |
ad09cb2b | 977 | #ifdef REGISTER_CONVERTIBLE |
bd5635a1 RP |
978 | if (REGISTER_CONVERTIBLE (regnum)) |
979 | { | |
ad09cb2b PS |
980 | REGISTER_CONVERT_TO_VIRTUAL (regnum, type, |
981 | raw_buffer, VALUE_CONTENTS_RAW (v)); | |
bd5635a1 RP |
982 | } |
983 | else | |
ad09cb2b | 984 | #endif |
bd5635a1 RP |
985 | { |
986 | /* Raw and virtual formats are the same for this register. */ | |
987 | ||
988 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
989 | if (len < REGISTER_RAW_SIZE (regnum)) | |
990 | { | |
991 | /* Big-endian, and we want less than full size. */ | |
992 | VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len; | |
993 | } | |
994 | #endif | |
995 | ||
ad09cb2b | 996 | memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len); |
bd5635a1 RP |
997 | } |
998 | ||
999 | return v; | |
1000 | } | |
1001 | \f | |
36b9d39c | 1002 | /* Given a struct symbol for a variable or function, |
bd5635a1 | 1003 | and a stack frame id, |
36b9d39c JG |
1004 | return a (pointer to a) struct value containing the properly typed |
1005 | address. */ | |
bd5635a1 RP |
1006 | |
1007 | value | |
1008 | locate_var_value (var, frame) | |
1009 | register struct symbol *var; | |
1010 | FRAME frame; | |
1011 | { | |
1012 | CORE_ADDR addr = 0; | |
1013 | struct type *type = SYMBOL_TYPE (var); | |
bd5635a1 RP |
1014 | value lazy_value; |
1015 | ||
1016 | /* Evaluate it first; if the result is a memory address, we're fine. | |
1017 | Lazy evaluation pays off here. */ | |
1018 | ||
1019 | lazy_value = read_var_value (var, frame); | |
1020 | if (lazy_value == 0) | |
0791c5ea | 1021 | error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 | 1022 | |
36b9d39c JG |
1023 | if (VALUE_LAZY (lazy_value) |
1024 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
bd5635a1 RP |
1025 | { |
1026 | addr = VALUE_ADDRESS (lazy_value); | |
7d9884b9 | 1027 | return value_from_longest (lookup_pointer_type (type), (LONGEST) addr); |
bd5635a1 RP |
1028 | } |
1029 | ||
1030 | /* Not a memory address; check what the problem was. */ | |
1031 | switch (VALUE_LVAL (lazy_value)) | |
1032 | { | |
1033 | case lval_register: | |
1034 | case lval_reg_frame_relative: | |
1035 | error ("Address requested for identifier \"%s\" which is in a register.", | |
0791c5ea | 1036 | SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
1037 | break; |
1038 | ||
1039 | default: | |
1040 | error ("Can't take address of \"%s\" which isn't an lvalue.", | |
0791c5ea | 1041 | SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
1042 | break; |
1043 | } | |
1044 | return 0; /* For lint -- never reached */ | |
1045 | } |