]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Find a variable's value in memory, for GDB, the GNU debugger. |
7d9884b9 | 2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
36b9d39c | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
36b9d39c JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
36b9d39c | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
36b9d39c JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 19 | |
bd5635a1 | 20 | #include "defs.h" |
bd5635a1 | 21 | #include "symtab.h" |
51b57ded | 22 | #include "gdbtypes.h" |
bd5635a1 RP |
23 | #include "frame.h" |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
26 | #include "inferior.h" | |
27 | #include "target.h" | |
28 | ||
29 | #if !defined (GET_SAVED_REGISTER) | |
30 | ||
31 | /* Return the address in which frame FRAME's value of register REGNUM | |
32 | has been saved in memory. Or return zero if it has not been saved. | |
33 | If REGNUM specifies the SP, the value we return is actually | |
34 | the SP value, not an address where it was saved. */ | |
35 | ||
36 | CORE_ADDR | |
37 | find_saved_register (frame, regnum) | |
38 | FRAME frame; | |
39 | int regnum; | |
40 | { | |
41 | struct frame_info *fi; | |
42 | struct frame_saved_regs saved_regs; | |
43 | ||
44 | register FRAME frame1 = 0; | |
45 | register CORE_ADDR addr = 0; | |
46 | ||
47 | if (frame == 0) /* No regs saved if want current frame */ | |
48 | return 0; | |
49 | ||
50 | #ifdef HAVE_REGISTER_WINDOWS | |
51 | /* We assume that a register in a register window will only be saved | |
52 | in one place (since the name changes and/or disappears as you go | |
53 | towards inner frames), so we only call get_frame_saved_regs on | |
54 | the current frame. This is directly in contradiction to the | |
55 | usage below, which assumes that registers used in a frame must be | |
56 | saved in a lower (more interior) frame. This change is a result | |
57 | of working on a register window machine; get_frame_saved_regs | |
58 | always returns the registers saved within a frame, within the | |
59 | context (register namespace) of that frame. */ | |
60 | ||
61 | /* However, note that we don't want this to return anything if | |
62 | nothing is saved (if there's a frame inside of this one). Also, | |
63 | callers to this routine asking for the stack pointer want the | |
64 | stack pointer saved for *this* frame; this is returned from the | |
65 | next frame. */ | |
66 | ||
67 | ||
68 | if (REGISTER_IN_WINDOW_P(regnum)) | |
69 | { | |
70 | frame1 = get_next_frame (frame); | |
71 | if (!frame1) return 0; /* Registers of this frame are | |
72 | active. */ | |
73 | ||
74 | /* Get the SP from the next frame in; it will be this | |
75 | current frame. */ | |
76 | if (regnum != SP_REGNUM) | |
77 | frame1 = frame; | |
78 | ||
79 | fi = get_frame_info (frame1); | |
80 | get_frame_saved_regs (fi, &saved_regs); | |
81 | return saved_regs.regs[regnum]; /* ... which might be zero */ | |
82 | } | |
83 | #endif /* HAVE_REGISTER_WINDOWS */ | |
84 | ||
85 | /* Note that this next routine assumes that registers used in | |
86 | frame x will be saved only in the frame that x calls and | |
87 | frames interior to it. This is not true on the sparc, but the | |
88 | above macro takes care of it, so we should be all right. */ | |
89 | while (1) | |
90 | { | |
91 | QUIT; | |
92 | frame1 = get_prev_frame (frame1); | |
93 | if (frame1 == 0 || frame1 == frame) | |
94 | break; | |
95 | fi = get_frame_info (frame1); | |
96 | get_frame_saved_regs (fi, &saved_regs); | |
97 | if (saved_regs.regs[regnum]) | |
98 | addr = saved_regs.regs[regnum]; | |
99 | } | |
100 | ||
101 | return addr; | |
102 | } | |
103 | ||
104 | /* Find register number REGNUM relative to FRAME and put its | |
105 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
106 | was optimized out (and thus can't be fetched). Set *LVAL to | |
107 | lval_memory, lval_register, or not_lval, depending on whether the | |
108 | value was fetched from memory, from a register, or in a strange | |
109 | and non-modifiable way (e.g. a frame pointer which was calculated | |
110 | rather than fetched). Set *ADDRP to the address, either in memory | |
111 | on as a REGISTER_BYTE offset into the registers array. | |
112 | ||
113 | Note that this implementation never sets *LVAL to not_lval. But | |
114 | it can be replaced by defining GET_SAVED_REGISTER and supplying | |
115 | your own. | |
116 | ||
117 | The argument RAW_BUFFER must point to aligned memory. */ | |
118 | void | |
119 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
120 | char *raw_buffer; | |
121 | int *optimized; | |
122 | CORE_ADDR *addrp; | |
123 | FRAME frame; | |
124 | int regnum; | |
125 | enum lval_type *lval; | |
126 | { | |
127 | CORE_ADDR addr; | |
128 | /* Normal systems don't optimize out things with register numbers. */ | |
129 | if (optimized != NULL) | |
130 | *optimized = 0; | |
131 | addr = find_saved_register (frame, regnum); | |
51b57ded | 132 | if (addr != 0) |
bd5635a1 RP |
133 | { |
134 | if (lval != NULL) | |
135 | *lval = lval_memory; | |
136 | if (regnum == SP_REGNUM) | |
137 | { | |
138 | if (raw_buffer != NULL) | |
139 | *(CORE_ADDR *)raw_buffer = addr; | |
140 | if (addrp != NULL) | |
141 | *addrp = 0; | |
142 | return; | |
143 | } | |
144 | if (raw_buffer != NULL) | |
145 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
146 | } | |
147 | else | |
148 | { | |
149 | if (lval != NULL) | |
150 | *lval = lval_register; | |
151 | addr = REGISTER_BYTE (regnum); | |
152 | if (raw_buffer != NULL) | |
153 | read_register_gen (regnum, raw_buffer); | |
154 | } | |
155 | if (addrp != NULL) | |
156 | *addrp = addr; | |
157 | } | |
158 | #endif /* GET_SAVED_REGISTER. */ | |
159 | ||
160 | /* Copy the bytes of register REGNUM, relative to the current stack frame, | |
161 | into our memory at MYADDR, in target byte order. | |
162 | The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). | |
163 | ||
164 | Returns 1 if could not be read, 0 if could. */ | |
165 | ||
166 | int | |
167 | read_relative_register_raw_bytes (regnum, myaddr) | |
168 | int regnum; | |
169 | char *myaddr; | |
170 | { | |
171 | int optim; | |
172 | if (regnum == FP_REGNUM && selected_frame) | |
173 | { | |
51b57ded FF |
174 | (void) memcpy (myaddr, &FRAME_FP(selected_frame), |
175 | REGISTER_RAW_SIZE(FP_REGNUM)); | |
176 | SWAP_TARGET_AND_HOST (myaddr, REGISTER_RAW_SIZE(FP_REGNUM)); /* in target order */ | |
bd5635a1 RP |
177 | return 0; |
178 | } | |
179 | ||
e1ce8aa5 | 180 | get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame, |
bd5635a1 RP |
181 | regnum, (enum lval_type *)NULL); |
182 | return optim; | |
183 | } | |
184 | ||
185 | /* Return a `value' with the contents of register REGNUM | |
186 | in its virtual format, with the type specified by | |
187 | REGISTER_VIRTUAL_TYPE. */ | |
188 | ||
189 | value | |
190 | value_of_register (regnum) | |
191 | int regnum; | |
192 | { | |
193 | CORE_ADDR addr; | |
194 | int optim; | |
195 | register value val; | |
196 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
197 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
198 | enum lval_type lval; | |
199 | ||
200 | get_saved_register (raw_buffer, &optim, &addr, | |
201 | selected_frame, regnum, &lval); | |
202 | ||
203 | target_convert_to_virtual (regnum, raw_buffer, virtual_buffer); | |
204 | val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); | |
51b57ded FF |
205 | (void) memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer, |
206 | REGISTER_VIRTUAL_SIZE (regnum)); | |
bd5635a1 RP |
207 | VALUE_LVAL (val) = lval; |
208 | VALUE_ADDRESS (val) = addr; | |
209 | VALUE_REGNO (val) = regnum; | |
210 | VALUE_OPTIMIZED_OUT (val) = optim; | |
211 | return val; | |
212 | } | |
213 | \f | |
214 | /* Low level examining and depositing of registers. | |
215 | ||
216 | The caller is responsible for making | |
217 | sure that the inferior is stopped before calling the fetching routines, | |
218 | or it will get garbage. (a change from GDB version 3, in which | |
219 | the caller got the value from the last stop). */ | |
220 | ||
221 | /* Contents of the registers in target byte order. | |
222 | We allocate some extra slop since we do a lot of bcopy's around `registers', | |
223 | and failing-soft is better than failing hard. */ | |
224 | char registers[REGISTER_BYTES + /* SLOP */ 256]; | |
225 | ||
226 | /* Nonzero if that register has been fetched. */ | |
227 | char register_valid[NUM_REGS]; | |
228 | ||
229 | /* Indicate that registers may have changed, so invalidate the cache. */ | |
230 | void | |
231 | registers_changed () | |
232 | { | |
233 | int i; | |
234 | for (i = 0; i < NUM_REGS; i++) | |
235 | register_valid[i] = 0; | |
236 | } | |
237 | ||
238 | /* Indicate that all registers have been fetched, so mark them all valid. */ | |
239 | void | |
240 | registers_fetched () | |
241 | { | |
242 | int i; | |
243 | for (i = 0; i < NUM_REGS; i++) | |
244 | register_valid[i] = 1; | |
245 | } | |
246 | ||
247 | /* Copy LEN bytes of consecutive data from registers | |
248 | starting with the REGBYTE'th byte of register data | |
249 | into memory at MYADDR. */ | |
250 | ||
251 | void | |
252 | read_register_bytes (regbyte, myaddr, len) | |
253 | int regbyte; | |
254 | char *myaddr; | |
255 | int len; | |
256 | { | |
257 | /* Fetch all registers. */ | |
258 | int i; | |
259 | for (i = 0; i < NUM_REGS; i++) | |
260 | if (!register_valid[i]) | |
261 | { | |
262 | target_fetch_registers (-1); | |
263 | break; | |
264 | } | |
265 | if (myaddr != NULL) | |
51b57ded | 266 | (void) memcpy (myaddr, ®isters[regbyte], len); |
bd5635a1 RP |
267 | } |
268 | ||
269 | /* Read register REGNO into memory at MYADDR, which must be large enough | |
f2ebc25f JK |
270 | for REGISTER_RAW_BYTES (REGNO). Target byte-order. |
271 | If the register is known to be the size of a CORE_ADDR or smaller, | |
272 | read_register can be used instead. */ | |
bd5635a1 RP |
273 | void |
274 | read_register_gen (regno, myaddr) | |
275 | int regno; | |
276 | char *myaddr; | |
277 | { | |
278 | if (!register_valid[regno]) | |
279 | target_fetch_registers (regno); | |
51b57ded FF |
280 | (void) memcpy (myaddr, ®isters[REGISTER_BYTE (regno)], |
281 | REGISTER_RAW_SIZE (regno)); | |
bd5635a1 RP |
282 | } |
283 | ||
284 | /* Copy LEN bytes of consecutive data from memory at MYADDR | |
285 | into registers starting with the REGBYTE'th byte of register data. */ | |
286 | ||
287 | void | |
288 | write_register_bytes (regbyte, myaddr, len) | |
289 | int regbyte; | |
290 | char *myaddr; | |
291 | int len; | |
292 | { | |
293 | /* Make sure the entire registers array is valid. */ | |
294 | read_register_bytes (0, (char *)NULL, REGISTER_BYTES); | |
51b57ded | 295 | (void) memcpy (®isters[regbyte], myaddr, len); |
bd5635a1 RP |
296 | target_store_registers (-1); |
297 | } | |
298 | ||
299 | /* Return the contents of register REGNO, regarding it as an integer. */ | |
51b57ded FF |
300 | /* FIXME, this loses when the REGISTER_VIRTUAL (REGNO) is true. Also, |
301 | why is the return type CORE_ADDR rather than some integer type? */ | |
bd5635a1 RP |
302 | |
303 | CORE_ADDR | |
304 | read_register (regno) | |
305 | int regno; | |
306 | { | |
51b57ded FF |
307 | REGISTER_TYPE reg; |
308 | ||
bd5635a1 RP |
309 | if (!register_valid[regno]) |
310 | target_fetch_registers (regno); | |
51b57ded FF |
311 | memcpy (®, ®isters[REGISTER_BYTE (regno)], sizeof (REGISTER_TYPE)); |
312 | SWAP_TARGET_AND_HOST (®, sizeof (REGISTER_TYPE)); | |
bd5635a1 RP |
313 | return reg; |
314 | } | |
315 | ||
316 | /* Registers we shouldn't try to store. */ | |
317 | #if !defined (CANNOT_STORE_REGISTER) | |
318 | #define CANNOT_STORE_REGISTER(regno) 0 | |
319 | #endif | |
320 | ||
321 | /* Store VALUE in the register number REGNO, regarded as an integer. */ | |
51b57ded FF |
322 | /* FIXME, this loses when REGISTER_VIRTUAL (REGNO) is true. Also, |
323 | shouldn't the val arg be a LONGEST or something? */ | |
bd5635a1 RP |
324 | |
325 | void | |
326 | write_register (regno, val) | |
327 | int regno, val; | |
328 | { | |
51b57ded FF |
329 | REGISTER_TYPE reg; |
330 | ||
bd5635a1 RP |
331 | /* On the sparc, writing %g0 is a no-op, so we don't even want to change |
332 | the registers array if something writes to this register. */ | |
333 | if (CANNOT_STORE_REGISTER (regno)) | |
334 | return; | |
335 | ||
51b57ded FF |
336 | reg = val; |
337 | SWAP_TARGET_AND_HOST (®, sizeof (REGISTER_TYPE)); | |
bd5635a1 RP |
338 | |
339 | target_prepare_to_store (); | |
340 | ||
341 | register_valid [regno] = 1; | |
51b57ded | 342 | memcpy (®isters[REGISTER_BYTE (regno)], ®, sizeof (REGISTER_TYPE)); |
bd5635a1 RP |
343 | |
344 | target_store_registers (regno); | |
345 | } | |
346 | ||
347 | /* Record that register REGNO contains VAL. | |
348 | This is used when the value is obtained from the inferior or core dump, | |
349 | so there is no need to store the value there. */ | |
350 | ||
351 | void | |
352 | supply_register (regno, val) | |
353 | int regno; | |
354 | char *val; | |
355 | { | |
356 | register_valid[regno] = 1; | |
51b57ded FF |
357 | (void) memcpy (®isters[REGISTER_BYTE (regno)], val, |
358 | REGISTER_RAW_SIZE (regno)); | |
bd5635a1 RP |
359 | } |
360 | \f | |
361 | /* Given a struct symbol for a variable, | |
362 | and a stack frame id, read the value of the variable | |
363 | and return a (pointer to a) struct value containing the value. | |
777bef06 JK |
364 | If the variable cannot be found, return a zero pointer. |
365 | If FRAME is NULL, use the selected_frame. */ | |
bd5635a1 RP |
366 | |
367 | value | |
368 | read_var_value (var, frame) | |
369 | register struct symbol *var; | |
370 | FRAME frame; | |
371 | { | |
372 | register value v; | |
373 | struct frame_info *fi; | |
374 | struct type *type = SYMBOL_TYPE (var); | |
375 | CORE_ADDR addr; | |
bd5635a1 RP |
376 | register int len; |
377 | ||
378 | v = allocate_value (type); | |
379 | VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */ | |
380 | len = TYPE_LENGTH (type); | |
381 | ||
382 | if (frame == 0) frame = selected_frame; | |
383 | ||
384 | switch (SYMBOL_CLASS (var)) | |
385 | { | |
386 | case LOC_CONST: | |
51b57ded | 387 | (void) memcpy (VALUE_CONTENTS_RAW (v), &SYMBOL_VALUE (var), len); |
bd5635a1 RP |
388 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len); |
389 | VALUE_LVAL (v) = not_lval; | |
390 | return v; | |
391 | ||
392 | case LOC_LABEL: | |
393 | addr = SYMBOL_VALUE_ADDRESS (var); | |
51b57ded | 394 | (void) memcpy (VALUE_CONTENTS_RAW (v), &addr, len); |
bd5635a1 RP |
395 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len); |
396 | VALUE_LVAL (v) = not_lval; | |
397 | return v; | |
398 | ||
399 | case LOC_CONST_BYTES: | |
36b9d39c JG |
400 | { |
401 | char *bytes_addr; | |
402 | bytes_addr = SYMBOL_VALUE_BYTES (var); | |
51b57ded | 403 | (void) memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len); |
36b9d39c JG |
404 | VALUE_LVAL (v) = not_lval; |
405 | return v; | |
406 | } | |
bd5635a1 RP |
407 | |
408 | case LOC_STATIC: | |
bd5635a1 RP |
409 | addr = SYMBOL_VALUE_ADDRESS (var); |
410 | break; | |
411 | ||
bd5635a1 | 412 | case LOC_ARG: |
51b57ded FF |
413 | if (SYMBOL_BASEREG_VALID (var)) |
414 | { | |
415 | addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var)); | |
416 | } | |
417 | else | |
418 | { | |
419 | fi = get_frame_info (frame); | |
420 | if (fi == NULL) | |
421 | return 0; | |
422 | addr = FRAME_ARGS_ADDRESS (fi); | |
423 | } | |
424 | if (!addr) | |
425 | { | |
426 | return 0; | |
427 | } | |
bd5635a1 RP |
428 | addr += SYMBOL_VALUE (var); |
429 | break; | |
430 | ||
431 | case LOC_REF_ARG: | |
51b57ded FF |
432 | if (SYMBOL_BASEREG_VALID (var)) |
433 | { | |
434 | addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var)); | |
435 | } | |
436 | else | |
437 | { | |
438 | fi = get_frame_info (frame); | |
439 | if (fi == NULL) | |
440 | return 0; | |
441 | addr = FRAME_ARGS_ADDRESS (fi); | |
442 | } | |
443 | if (!addr) | |
444 | { | |
445 | return 0; | |
446 | } | |
bd5635a1 | 447 | addr += SYMBOL_VALUE (var); |
51b57ded | 448 | read_memory (addr, (char *) &addr, sizeof (CORE_ADDR)); |
bd5635a1 RP |
449 | break; |
450 | ||
451 | case LOC_LOCAL: | |
452 | case LOC_LOCAL_ARG: | |
51b57ded FF |
453 | if (SYMBOL_BASEREG_VALID (var)) |
454 | { | |
455 | addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var)); | |
456 | } | |
457 | else | |
458 | { | |
459 | fi = get_frame_info (frame); | |
460 | if (fi == NULL) | |
461 | return 0; | |
462 | addr = FRAME_LOCALS_ADDRESS (fi); | |
463 | } | |
464 | addr += SYMBOL_VALUE (var); | |
bd5635a1 RP |
465 | break; |
466 | ||
467 | case LOC_TYPEDEF: | |
468 | error ("Cannot look up value of a typedef"); | |
469 | break; | |
470 | ||
471 | case LOC_BLOCK: | |
472 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); | |
473 | return v; | |
474 | ||
475 | case LOC_REGISTER: | |
476 | case LOC_REGPARM: | |
477 | { | |
777bef06 | 478 | struct block *b; |
bd5635a1 | 479 | |
777bef06 JK |
480 | if (frame == NULL) |
481 | return 0; | |
482 | b = get_frame_block (frame); | |
483 | ||
bd5635a1 RP |
484 | v = value_from_register (type, SYMBOL_VALUE (var), frame); |
485 | ||
51b57ded FF |
486 | /* Nonzero if a struct which is located in a register or a LOC_ARG |
487 | really contains | |
488 | the address of the struct, not the struct itself. GCC_P is nonzero | |
489 | if the function was compiled with GCC. */ | |
490 | #if !defined (REG_STRUCT_HAS_ADDR) | |
491 | #define REG_STRUCT_HAS_ADDR(gcc_p) 0 | |
492 | #endif | |
493 | ||
e1ce8aa5 | 494 | if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b)) |
51b57ded FF |
495 | && ( (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
496 | || (TYPE_CODE (type) == TYPE_CODE_UNION))) | |
bd5635a1 RP |
497 | addr = *(CORE_ADDR *)VALUE_CONTENTS (v); |
498 | else | |
499 | return v; | |
500 | } | |
501 | break; | |
502 | ||
503 | default: | |
504 | error ("Cannot look up value of a botched symbol."); | |
505 | break; | |
506 | } | |
507 | ||
508 | VALUE_ADDRESS (v) = addr; | |
509 | VALUE_LAZY (v) = 1; | |
510 | return v; | |
511 | } | |
512 | ||
513 | /* Return a value of type TYPE, stored in register REGNUM, in frame | |
514 | FRAME. */ | |
515 | ||
516 | value | |
517 | value_from_register (type, regnum, frame) | |
518 | struct type *type; | |
519 | int regnum; | |
520 | FRAME frame; | |
521 | { | |
522 | char raw_buffer [MAX_REGISTER_RAW_SIZE]; | |
523 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
524 | CORE_ADDR addr; | |
525 | int optim; | |
526 | value v = allocate_value (type); | |
527 | int len = TYPE_LENGTH (type); | |
528 | char *value_bytes = 0; | |
529 | int value_bytes_copied = 0; | |
530 | int num_storage_locs; | |
531 | enum lval_type lval; | |
532 | ||
533 | VALUE_REGNO (v) = regnum; | |
534 | ||
535 | num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ? | |
536 | ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 : | |
537 | 1); | |
538 | ||
539 | if (num_storage_locs > 1) | |
540 | { | |
541 | /* Value spread across multiple storage locations. */ | |
542 | ||
543 | int local_regnum; | |
544 | int mem_stor = 0, reg_stor = 0; | |
545 | int mem_tracking = 1; | |
546 | CORE_ADDR last_addr = 0; | |
547 | CORE_ADDR first_addr; | |
548 | ||
549 | value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE); | |
550 | ||
551 | /* Copy all of the data out, whereever it may be. */ | |
552 | ||
553 | for (local_regnum = regnum; | |
554 | value_bytes_copied < len; | |
555 | (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum), | |
556 | ++local_regnum)) | |
557 | { | |
558 | get_saved_register (value_bytes + value_bytes_copied, | |
559 | &optim, | |
560 | &addr, | |
561 | frame, | |
562 | local_regnum, | |
563 | &lval); | |
564 | if (lval == lval_register) | |
565 | reg_stor++; | |
566 | else | |
567 | { | |
568 | mem_stor++; | |
569 | ||
570 | if (regnum == local_regnum) | |
571 | first_addr = addr; | |
572 | ||
573 | mem_tracking = | |
574 | (mem_tracking | |
575 | && (regnum == local_regnum | |
576 | || addr == last_addr)); | |
577 | } | |
578 | last_addr = addr; | |
579 | } | |
580 | ||
581 | if ((reg_stor && mem_stor) | |
582 | || (mem_stor && !mem_tracking)) | |
583 | /* Mixed storage; all of the hassle we just went through was | |
584 | for some good purpose. */ | |
585 | { | |
586 | VALUE_LVAL (v) = lval_reg_frame_relative; | |
587 | VALUE_FRAME (v) = FRAME_FP (frame); | |
588 | VALUE_FRAME_REGNUM (v) = regnum; | |
589 | } | |
590 | else if (mem_stor) | |
591 | { | |
592 | VALUE_LVAL (v) = lval_memory; | |
593 | VALUE_ADDRESS (v) = first_addr; | |
594 | } | |
595 | else if (reg_stor) | |
596 | { | |
597 | VALUE_LVAL (v) = lval_register; | |
598 | VALUE_ADDRESS (v) = first_addr; | |
599 | } | |
600 | else | |
601 | fatal ("value_from_register: Value not stored anywhere!"); | |
602 | ||
603 | VALUE_OPTIMIZED_OUT (v) = optim; | |
604 | ||
605 | /* Any structure stored in more than one register will always be | |
606 | an integral number of registers. Otherwise, you'd need to do | |
607 | some fiddling with the last register copied here for little | |
608 | endian machines. */ | |
609 | ||
610 | /* Copy into the contents section of the value. */ | |
51b57ded | 611 | (void) memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len); |
bd5635a1 RP |
612 | |
613 | return v; | |
614 | } | |
615 | ||
616 | /* Data is completely contained within a single register. Locate the | |
617 | register's contents in a real register or in core; | |
618 | read the data in raw format. */ | |
619 | ||
620 | get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval); | |
621 | VALUE_OPTIMIZED_OUT (v) = optim; | |
622 | VALUE_LVAL (v) = lval; | |
623 | VALUE_ADDRESS (v) = addr; | |
624 | ||
625 | /* Convert the raw contents to virtual contents. | |
626 | (Just copy them if the formats are the same.) */ | |
627 | ||
628 | target_convert_to_virtual (regnum, raw_buffer, virtual_buffer); | |
629 | ||
630 | if (REGISTER_CONVERTIBLE (regnum)) | |
631 | { | |
632 | /* When the raw and virtual formats differ, the virtual format | |
633 | corresponds to a specific data type. If we want that type, | |
634 | copy the data into the value. | |
635 | Otherwise, do a type-conversion. */ | |
636 | ||
637 | if (type != REGISTER_VIRTUAL_TYPE (regnum)) | |
638 | { | |
639 | /* eg a variable of type `float' in a 68881 register | |
640 | with raw type `extended' and virtual type `double'. | |
641 | Fetch it as a `double' and then convert to `float'. */ | |
642 | v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); | |
51b57ded | 643 | (void) memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len); |
bd5635a1 RP |
644 | v = value_cast (type, v); |
645 | } | |
646 | else | |
51b57ded | 647 | (void) memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len); |
bd5635a1 RP |
648 | } |
649 | else | |
650 | { | |
651 | /* Raw and virtual formats are the same for this register. */ | |
652 | ||
653 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
654 | if (len < REGISTER_RAW_SIZE (regnum)) | |
655 | { | |
656 | /* Big-endian, and we want less than full size. */ | |
657 | VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len; | |
658 | } | |
659 | #endif | |
660 | ||
51b57ded FF |
661 | (void) memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), |
662 | len); | |
bd5635a1 RP |
663 | } |
664 | ||
665 | return v; | |
666 | } | |
667 | \f | |
36b9d39c | 668 | /* Given a struct symbol for a variable or function, |
bd5635a1 | 669 | and a stack frame id, |
36b9d39c JG |
670 | return a (pointer to a) struct value containing the properly typed |
671 | address. */ | |
bd5635a1 RP |
672 | |
673 | value | |
674 | locate_var_value (var, frame) | |
675 | register struct symbol *var; | |
676 | FRAME frame; | |
677 | { | |
678 | CORE_ADDR addr = 0; | |
679 | struct type *type = SYMBOL_TYPE (var); | |
bd5635a1 RP |
680 | value lazy_value; |
681 | ||
682 | /* Evaluate it first; if the result is a memory address, we're fine. | |
683 | Lazy evaluation pays off here. */ | |
684 | ||
685 | lazy_value = read_var_value (var, frame); | |
686 | if (lazy_value == 0) | |
687 | error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var)); | |
688 | ||
36b9d39c JG |
689 | if (VALUE_LAZY (lazy_value) |
690 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
bd5635a1 RP |
691 | { |
692 | addr = VALUE_ADDRESS (lazy_value); | |
7d9884b9 | 693 | return value_from_longest (lookup_pointer_type (type), (LONGEST) addr); |
bd5635a1 RP |
694 | } |
695 | ||
696 | /* Not a memory address; check what the problem was. */ | |
697 | switch (VALUE_LVAL (lazy_value)) | |
698 | { | |
699 | case lval_register: | |
700 | case lval_reg_frame_relative: | |
701 | error ("Address requested for identifier \"%s\" which is in a register.", | |
702 | SYMBOL_NAME (var)); | |
703 | break; | |
704 | ||
705 | default: | |
706 | error ("Can't take address of \"%s\" which isn't an lvalue.", | |
707 | SYMBOL_NAME (var)); | |
708 | break; | |
709 | } | |
710 | return 0; /* For lint -- never reached */ | |
711 | } |